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F1E &R

1.1 MREOER DL L

RIS OREF I, AR O RBRIZATRTH D, HHETIE, kD
BRLORT/13E, BEMRT VX, MZEFH, 08, &M, Joi= /L X o5k
REDOGBFTHRENRIAENTEY, KENOHEE RIS ~OFENEE > T H[1].
TAERSI 2 D 7oA 0%, FBEA ISR L CTHRIIMEE 2 5- 2 T O RE & i 7= 3729
I, XOLBEHERTREOOESDEEZEZOND. ERMEIOBERENTZEMNE L TIE
Bl D RS 3R <, 1700 4 2 A O OB ARER 0 L ClE i s EH 0 7 7 1 A
DER S TWE[2], £ 0%, FEXRFMPOE I OMESRT K o TREGE & O 8E 235
b &, 1950 4EA LA > CNC (Computer numerical control) (2 & % #4358 A3 A 4k
ZAEE LHBAEICE - TU 5. Taniguchi 1% 1983 FEICH B I TOREDOLEE L BLAE2 £ L 0
TWAHI3]. 1950 4FARIEAY 10 upm DOINTLHEE CTh o723, FIFEERE W L —F D%
&, Tz LI - AR D EAM 41 XV, 1990 FARIZ1X 1 nm D il {# 53
fREEDNFEBLE LTz,

FEEIN L - GRS T D MR R EE I N D — T, KA & TAEBAICRI L
TUX, P2 BT T 0L 25 A TV, Uriarte H[ANXZ OFER & LT, pE
¥ERTIE M — RO KRB O A2 B ICfER T 5 2 & BAEEE S, BIGEA OWE
IZE EFEDBEMICH T2 EEEHRL TS, L LAaRs, KAEREES,Z SN
WET LD DOAFENRIERIT, SBVLBIZRDHEEZLND. BAELIERDHEAE L
T, 2014 4|2 CIRP Annals T#t A & 417 ‘Design and management of manufacturing systems
for production quality’ 232176 s, ®BEICV AT AMEINTZHRO THIZEBWNT, 7
IR O 2 S fl D B A E A FBL T 572 O OIS T OHINHER N E Lo b, fF
kicHET_E FEEN T e T s ay s AT 4 OFFAE L TIRRENZ[5]. K&
EFEME R E LTEEOROFEIRREEBE T, SEICIAZ A XS EAEER
THRWE AT 5. Bl xE, KRERGESS CIIAEEREICHET 22 K084 Z 3T
W7 L CRMMBKNT D9 R, PIHEMD RS ERERORNETHL-D, RENPEELL
BEOBIENERTHD. LEN-T, 20X RMEEMRT D2HIFEH N RO 5T
W5, HIDROSCER[5] T, Fig. 1-1 (23 8 HE ORI 7= D SeilEH T (Advanced
technological enablers) 232817 B4, IWHEOFREEMREOM L SR ) ML
LA EHREBEFEORBENUEEICEEZ LTI EBMHFEINTWD., L LAERD,
RIKEEE S O 8LE 231 2 TH - TEY - TEEM, BX O e w20k ELZZE L,
BERAICAFE M E ZRGET DM Z R L FHIE AL TR, LLEDOEFNS,
TAEREMRIC BT 200 T« GO BRI O @ E - A7 MMb &, v AT A OEE -
FHASI oM@, WHROBERF I ORI LEZOND.
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BEERINDRETOF 230 - 94 T4 DM (Target of production quality)
LEEE DRATAXERE, FE—REE R IREEDAHER KD RE

(Small batch, customized, or even one-of-a-kind products) (New paradigm beyond six sigma approach) (Zero—defect manufacturing)

F|EMLETOE L3 F )T EBO 8 D EEF (Mainissues for integrated production quality)
BRIEO=6 O EERIH BN THEEN-GE EEMREBRTEMRE FEAEOFE

(Advanced technological enablers) (Innovative and integrated quality) (Production logistics and maintenance design) (Management and control methods)

W25 M B B (Research objectives) Subsection

2 2B E R T (Product inspection technology)
N T B/ EL T (Process monitoring technology)
TILFE BT —2EE EE T (Multi- sensor data fusion technology)

YIHIMT (=511 RO B R R .

(Process monitoring of machining dynamics)

o HMEIMIICHE T TEEMTETEROE B

s 0 A p 8 e

FE R - BAIERNIE % (Learningtechniques and cognitive computing methods) (Process monitoring of tool and surface integrity) 22
1B#ERIZ LS FE 2 AT (E-maintenance technology) KRB DA T BRI as
B8 L —HE T BEE T (Product traceability technology) (On-machine measurement of precision large parts) -

4 BE BB ET (Production monitoring technology) ° T8 27 AOKSEE 124

(Integrated management of manufacturing systems)

EHRBIE- T2 BRI (ICT" and digital manufacturing technology) o

*Information and communication technology

Fig. 1-1 Overview of production quality.

ZIT, MENMTYAT AOMBRERNSHFE L, R X THROHE I FEEIRRD.
THE - THE® - TIEMMN D722 v A7 AOEREICH L, 4 B ORBE GO fET
EETNEME, S DIk RGO 72 WHLE  (Zero-defect manufacturing) @ FEHLIC
BV 7= EE AR OBIR A Fig. 1-212E£ Lz, Mz shniangy, THE - T{Ey - T
TEREIR D2 B b Ak PR O S D, Bz iX, THTIEmiEE - EAml
D= OIZEMIIR, MiE, a—F 027, RAXEEORMNNLETH S L, TIEEMK
TIXERE - BIERLO- OB E LT, Mg, 2560 8E, rEko ik, 88
fLpEMzETFToND. —FHT, KX TIREER 3 DOBER LEEREROZ 2L D5
R ORBEICER T 5. SAOITAEESEICRHL, KV EENICEETLLEEZLN,
Fig. 1-2 TIXERMIC BT 2R FN 2 3 DOMEERZ, HXWIZHT TRLTND. H
112, BERMEERZ AT RWNE ORI, SIHN T oA (Cutting dynamics) DR 1%
LTS, BPFEICEAL TEETAEZHA & LT, TASLTIEMOHE - MHREE
RENRFTOLNDLIN, BIROTHRLVEH LY, TEE TEMOHMAERIZX 2IREND
SN OLBEETHD. FH212, TOIMMUOHEIT T vt 24l (Process control) (2R3 %
MEZRL TS, LR ETEYORICALES DN TREMEROAERBEITMA, TAE
AR X D T HARRE DN EPESEMRAED R L 725, & 1 L5 2 OFERICRT 5
g & U<, MTEEHL (Process monitoring) OMFHANZIRMEEZ NS, H 31T,
TAE® O ~FiEFHA] (Dimensional measurement) Y iF %, TAEY & T/EMM O 55 R 68
WICBWT, AHENRREMREZEE T 54~ #H (On-machine measurement) 73
AAIREZEZBND. RKIEEHGEEZIO WO GEI1E, S 5IT 3 Difhr O/MAlZ P 5 PHE 2
KAMBD Y, AFESERFEICE T 2 RENEHE T 2 Z LICRE LR T IR 5 R0,
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Fig. 1-2 Issues and strategies of precision large-scale manufacturing.

DFE Y, KEEEE L O APENE 2 RAWICRIET 220 DM E O FiEGRP RO SN 5.
Bl 21T, £ 1 OBPEETIEERO Yot 2 THNL D 2R EERZEE LT
BEHEALETHY, H 2 o7 e AL TiE, ZafEDEEENO T o' X5,
B L RESZ T 5, AR TEANRD 5D, BRI RH %2 29 25 KA
R O BIH 7 1 & 22BN T, B 2 RN SINLEEH & 2T L OFr 72 72 et 7
MUWETHDHEEZLND. 51T, § 3 OFEFHINCE WX, KB T /E# O 22/
H7efLE DD FEZE (Volumetric errors) 7217 T2 <, VAT ANRHE SN LBREO LB HE
(Environmental variation) HEET 5L ENHDH. 2O K H R F CEE 2RI
ERET L7010, 2Rtk Sl b —Y T ety VIV AT AD
WENVLETHD., OO REZBEL, AL IINTERICET 28RS LT,
Jeu ) fE B ALEE YL (Advanced signal processing) 35 XY~ LT & W REEE (Multi-sensor
fusion) =% 2., A~ v UEHAIO RS & L €, ~ /L F & > P70 (Multi-sensor cooperation)
T 5. TNHOEIRICESWTHEINTLI AT ALY, ek 2B XL
BN L —HYEYTF o285 L L8, TH - TEY « TIEMBICE DL A EBRN A
YRR A THBMICEND Z LT, MAMNREENENMEES NS B
H¥sd.

UBTIEET, MTEMRS AT A LT, EUMEOREE BRIz Tn <.
AR D X 912, TAEHEM T ) A — ML A —F ONLERDFREENER S, AL
WICEDREM LT e A HMIEIILTCEZ[6][7]. LrLAans, N Tnirbisd T
TEBMRIC W T, TEE TEHOM CEBEICE Z > TV AR & BEHEN F 213N
ZOHGTHIL, 7ot AGIEICERFICK S S 5 M TERICE L T, —RIZiTbi
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LZUENCHR L THREO®R ETHS[8]. ZHITWHIO HEHHIEOESEZ E-TH, F
T DR M M AN LD CTHKH TELCL[NEMRBE THDLZ LTk D.
LD LR D, AEMEEZWET DO TEROMEMNTIIETEIEEICRD L
DEZEZHND. £IT, miﬁﬁﬁmmﬁimﬁﬁ BEETICHLIZR>TND
HEZHBLL-0L, 121280 53O ENOERICE D

EEMELOBREI O BHESNTIZE L CiX, 1976 40 Micheletti © OG> T HJEE
FEOMFZE[I01IIZ U E D, 1983 Hi2iE Tlusty BT K-> CUIHNCEE L 2B &2 AT 5
UV, BIORMEIRAEFNT 2 F B & i 2 72 A GEiR L O $E R S A7 [11].
OIHIHCHL, T#hEfr, AE (Acoustic emission) 72 & D28 ®) & % FHI9 2 0 TR &, B2l
TERWEA v o FEHNERA S DY, T AL T/EM O NE & F - 25 A
%, BAECELZETHETLIEZ S THDH. 1995 4£121X Byrne LD 7 v —7 (2 L DA
FERAY, T HARBERAE (Tool condition monitoring ; TCM) & L CE & bii-[12]. 4Ef
» TCM ORFZEE A 2 Table 1-1 (Z7R~9. oV OFHARMICE L TIX, OB ETIC
ﬁ@&ﬁ@ﬁ%@%iﬁﬁ%ﬁéhfbé.%@%@%w%®ﬂﬁ%ﬁ®ﬁi’iof
FEH EDY AT 2MENESEEE 220, 2010 4£1C1E TCM ICB 1T 518 BALBR R0 & Bk
EHRIE O IS B A RIS S LT 5 [13]. RAEDRE B IZ B WX, UIHI 7 v R ICfET %
APESVERAEICE WFRENH D ), MLES S X7 AORGEFFITA 7. Table 1-1
OUIHI 7 et AL L HEAZ RS 5 &, OOV IESE) (Chatter), 1 TR &k, YE
SHe, LHERE, THBBRENTERERLERSTWD. AIROEBY, Z6IEKRE
FEEHMOMIEICB N TILICEANRMEL R WREREZEZ NS, 22T, YA
MTOMREFERE LT, OBV IRBICREZI N2 BREICET 2 MEE 1.21 ¢, TR
BILOIMTREOREBERICETSMELZ 1.22 TE#Eim L T <.

Table 1-1 Sensor research for tool and process monitoring in machining [12].

Application =~ Machine  Force/  Power Chatter Work  Swrface Process/ Toal Tool

Sensor Diagnostic  Torque Size  Finish ChipForm WearRate Gondition

Acoustic Emission!

Force A
Eddy Current

Elec Resistance
Power

Motor Current
Vibr'n/Accel'n
Ultrasonic?
Temperature
Vision/Optical
Profilometer
Proximity/Touch
Spindle Speed/T'ach
Acoustic8

Note: 1High frequency-passive
2 Active Low
3 Low frequency Research Activity Level



Fig. 1-3 Machine tools for large parts [1], (a) movable column, (b) gantry, (c) elevated gantry, and
(d) large wing skin machining on a dual spindle gantry.

Flo, MILHEEA L~ THHT 2 FEIICBE L TiE, REEESMICERIND
FEEE LGN S 2B B L, KRB T/EBIC R A O EROBRELZR O LERH L.
Fig. 1-3 (2 KA TAEREMR D 5] 2 74, Uriarte & [1]1%, @5 O TAVERERR & RBLER & a1 TR
B DR D SE B OFENR, (LERD - I TREICEET 2R -2 L, SM0MhE o
RILER i %2 BYAE S D 72 DL, RAZEORHE - MIESm A MNATH L Z L 2Lz,
5T, MEEMICE D fHTe T EERELE LT, BELZ5~50m OFiEICxd 5 @)
O L=V T NRHBEBERET O TS, L LR D, FEHEENEET 5 &0t
TICBIT 220G TOEFRZR L, WEBY CEMNT 29 2A TAAAREEZONDE
FICEH L TIL, EBRENOLBENZ2FHICE & F 0 [14] [15], EAE S RLAEEZ TN 5
VAT AR LT, IORDHMENRKRDOLNTWS. @72 R MK 25800 TKED
BAZ2EETDLLE, KASEMMICHELZ FL—Y 7R AT A2 #BESH 2 L
X, EELOBENEEICENEBEZOND. L0 RERE 2, 123 THMEKRO
Fro= T URNCET A EMEONCT S, E 61T, 1.2.4 TIEIT - Gl 2R H i
ERE AT AL L TREMIIERT2BICEE T XEHBIZSNS.

1.2 MEDE

1.2.1 EIEIMN T IC§ 1+ 5 B R Rt D BE fR B Al

GIHNZ B D 2 B EORIE DO 2 TH, QO IEEINIE L ORI EET L5
LL L TRMINTW6]. £ TAEM £ 12 X TEORMIMEIMERW G S I1X 7 7 AR R
EARTEICHA D L9 <, MTmICAYERELE LTHLDIE, SMEICEEDD DHEE %D
TR ZITHREEN S D, OOV LI OO L HEI OO TR SN D8, KA
fh O SVE OB BIE, YTHHRPI NS VIREETHLRAL H 5, BEIVTOYD ~DRREN
KD END. BRI R8T 1960 £ IF 2 kT OIEl 2%t & & L= R b2y 722 & u[16],
Fig. 1-4 (SR 5 5 1o, 1 HHERT & BIEDIRBYZE (L & D3 b AT NS HANROEF L
2k, RMELEEIAL— T ROREEBBEE L TRbhiz. Uk, IV 277
EDO L EMERBMIZIRE R E LI FHAERRD O EMEMIT 28T 7= [17][18] 43,
1995 4E|Z Altintas H[19] M ER L7- 2 —V > 721 % B — @I %L (Single frequency
solution) 12X » CRFREAMMER S N/- 2 & TIEARBENILN Y, 7 a2 85Ok
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a) Chuck
Tool

Feed Direction h, T
\J

h(s) F (s) s
0 :—);ﬂ h(s) Ka | ' ¢(s), y(s)
[ Machine Structure
°) y(s) Inner Modulation
Y,(s) Outer Modulation [ ys
LA

Fig. 1-4 Dynamics of orthogonal cutting system [16] (quoted in [20]).

LB R OERITH VSN T E-[20][21]. BAEE TICI—V 72z, fedl[22],
R—1U»7[23], RUINTLR241NZKT 2K R0 72 Bam 0B & RGN A <ATH
nNTWs., 51, BEMEOUBEICHEEFT 2 REE v F T H[25], HEHEICLZ2 000
mi[26]72 £, AEEMEDOM LD DI FEMANIZIEN L7 Ef A HE S Tnsd.

O IREIORAICEAL TIE, BEEHONDIMLEIETT o A &Mk L7256 T
b, TEEFEOREIC L 0 YIHEIN ML, REEIREBICERT LN A LN 5[27].
R SEIR AT D FERIT LV, il L H & EEFE T BTk 2 OO0 IRE) Ry 1 D EL IR RiE 7
EMTOND L9127 -572[28]. L L7enn, BINZELEOHEGET VOATIE, F
SFE M TEMENRIET 2 80EB S TR IE A EE LR b & b vz [21). B %
RAET 2 BLE T, OO0 Z2RABERICIZ, RESERKLARVWER et 22 E Ik
L, TESTIEEMOBE: EORBEE/NNRICEOAIHERNPLIVEETHS. 20X
IRWREMOA T aE AV BRENEN R D 5L TE Y [29][30], YIHIBLISR O &) 72
TGz &5 5 ORERERMEIC L > T, OV OESCIRE = XL X% IEFEICFE T 5
FfricidE B 23 & > CTu 5 [31]. Quintana & Ciurana (2 & 2 40 OV Y #FZE O #FE[21]
IZBWTH, A7 rEA00Y BANTER TREHAREHEOO L DL L THER
JFHENTEY, GO EREEENEWESORETE, BXORNRE QBT LT
URXLAOBEBEENEHESNTND., ZHET, MEEY BN v THUS L 72
FANTH LT, mi 7 — Y =254 (Fast Fourier transform ; FFT) (2 & 056 7= 8k
ALY NV OREE O O = % )L X (Frequency-band energy) % B4 2 Hi%[32], v = —
7Ly FZEHE (Wavelet transform ; WT) 12 K 2 EBIR I Z BIR 92 HIE[33]78 E N RE S
Nz, bk, Ho0r U0 OFEERZIEL TWLIHEAICADITHL. EHIT,
JEI W FL S RE T 25 A9~ A5 51Tkt LT, WER S I B AT [34], FHIC K 2 3% — 385k
[35], T b EYE[36)72 EDOIE BALEL T L 2 U X A A VT I TR BE O HEE 5 3 2



r,(t) r,(1-7)

\-\ (,\ _*_’/7.._ Tool position inthe previous cut
oA T TN KON

VoL LA

Fig. 1-5 Hole shapes resulting from drilling blind holes (left) [24]: (a) stable cut, (b) sunray pattern
due to torsional-axial chatter vibration, (c) trigon caused by whirling vibrations and (d) surface
resulting from chatter and whirling vibration. Regeneration effect in bending vibration (right) [39].

EINTHY, FEANZOOY BB T 2RI RN GA LRSS TE S, LR &
LT, 2=V I DIE, R—U 7 [B71° R U AT HE SN TNS.

KAEFE I IMIZEZ AL, FFICHEERMEEENRDOND FUMTIZX LT
b, Fig. 1-5 2R & 9 RERVRHE O RBNBLAL D FTHetED & 5 T2 60 [24], AR FRIZHE
THET AN SN TE72[39]. TETIEHARRICMZ, KT HREBEFEOLEL EE L
72 KU LOVWY Rtk FHREMO) B IRE SN TS, LavL, =2 th A R L
ThoTh, I—U IR E X TTEEMEBRPER TH D 5 2, IMLROEERH
DR GEMER OO BRI ET H2BEN RSN TE Y [41], & F S ERRBkS %
R D, EEO RV AIMTICET 50O REEEZRO W= FHHIEL L R0, &5
2, BELEMLEHETH-TH, NEOHEREBDOILL DX LEEOEITIZL Y OV
D AR, TEMBICERNIBENND 5720, MTEROFEEILEHV[42]. L72BA-> T,
BHERIRBR D2 ELEFL OOV ICHET IR EREL, O 2R ETHR
LERE~OEBEZBWVISEETHRET 2 FERRDOLNA TS, 22T, H3ETIE,
IR AR B ORI JE R B & AT NVREEC X 5 RN & $ A6 o 72 8 7o 70 e (U
MERFERMOFELREL, EREORMERKICHIT LS4 722200 KEHRZ O
AREME A, AR E—Eru—2 DRI LR CHRIET 5.

1.2.2 PEIMIICE+TAITREEMIREMERDOEREM

AR X 51, EKHECHEZY TEOERE, i, Fo v 7 laxtsg s LT,
BIHIRET, WEREHE, E—XEh, AEZEHT S, MBEICLD TCM B ST
7. RADEES SO TEAICHEHE T 288 0%, KM TA/EEBA~0FEELZE LTk
DEEDRO OGNS, 7, UIHIEGUICE L TEEBRENTOFHNIZIAS AN TE
A, B U E DR ARRE ORI N B D I, RIS~ F AN EE Ly [43].
HEENZBE L T, RTFEEBEESCTBICET 2 TELSLERAMTELZ ERRINT



W5 [44][45]. LU, TAEMSROE—% OFEMKE IS U TRENRLED L 1-0, DE4
PESICE W CHE) 2 BEZRE L T LERREDO TRAIT) Z &N LW & 5 FREN
Holz. Zhick L, Tk EhOT—¥ OFEHMEL, TH - 7o RECETS
HWMPAEZENTEY, ZALE2 3BT 52 LT, MERERNEGOLN D ATREMEE
BLTWDH[46]. ZNOHERESELZFFE LT, CNC O —RIEHREFA LW
L AOUIHHEFIR AEN R STV H[47][48]. — 7 T Fig. 1-6 123 X 912, HIHNIC
BIFDH AE I, E#E, BYELER, GgomEiETREL, MLICBITLBRES A XL
AE 155 OB BE A Lee HAICE» TE EH BN TWD. £ 7=, UIHI[50], AFHI[51],
WHEE[S2] DN TR 720 T72 <, TR & TAEM OB A ~DIEH[B3] b A~ Hitd. AE
DEFICE Y, 1Eh0® P TR A W2 ICET 2B E2 5 O RETED
WD AREMEDN B D23, AE OFEICED 2 THIE T VB4 DIEES, [RIERK R L D%
ICEDESOENISHETHEL RS, LER->T, EHAMRMITERY AT LA
THEDIIE, LRI EET 5 FOREICINZ, WY RE SO HHL 2
EAHEMARMEBRTEOREANRD OND. 2ok ) RlEEICR L TiE, v v FRrUD
AlA B IE 23R MR S LT H D [65][56], EKERCIE LS E R L0~k YO EH O 72T
T, TEHOREERR 2 EAFNICHM TE I AEEEZF LTV D.

microscale macroscale
AAE sources AE sources
107 '
i 2rgranular
10 rofracture
inclusions
£) 10°
4 "€ shearing
e microvoids
§_ 10 ) elastic fracture
£ ignal
w 2 v
< 10 3 plastic yield
¥
102  area A fatigue
cutting mechanics
accelerometer|signal
3 sensing area
10 load cell sensing area
>

10~ 10* 10" 10° 10’ 10°
material removal lengthscale (um)
t ultraprecision I precisi Jw.. >

plastically
deformed

microvoids

%
8- 554 -

I dislocation elastic A *,9°/ microcracks  ~0.1 m'gﬁm ertiary
crystal interactions springback 0-1MM- inclusions shear zone
orientation e 1pm shear zone

ultraprecision precision conventional
machining machining machining

Fig. 1-6 Sources of AE in material removal process [49].
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Fig. 1-7 Milling experiment using multi-sensor setup by Axinte [59].

WA KAE B OME TRORKMESZE LT, MILERV AT LAOEFEE 2 5.
ZNETOTCM OIFETIE, AFPIREN K E < B2 5 E O TREZ B— 0 TAE#M CHE
TT52HAITE LA EBES N2 h-oT-, BEMBTIRNET A oM lEEE L T,
AN & AR B FINE o TR %2 Rl 2 O TAEREH TN L3 2 B &£ 50 5 [57]72%, KA &
LTI, BEEV BRSO TR EAZZE L C, M- R o X 5 BN TR
D EODTAEMICENT 2K LA THD. 20X D REA, UHHKHCHEE
DR o Tk, IRARTE R BT TR T HAREEN G LNV EBEN
N5, ZokH 7 ICx LT, Stavolopoulos &[58]1%, Tl — & i & Mk FE o 4F
MEEZMAEDEETREEREO TR ZRA, —EORECTHETEXHI/REEZETND.
L L, MEEEZHWDIGEE, BEESS TR O B FeE 12 B 2 M br & ICERE D
b ELIERMS N, 2Tk LT Axinte 5[59]1%, Fig. 1-7 IZ#3 X 512, AE & 814
BEHLOFEHIEH 23072, REMEWEMAT 28832 2 & T AE L OIHIREIOMEE, B X
OREMEROEFIRAE L AE BAORKRE M Z LTI Lz, S 6I2, REORF
Z b5 T D HIE 7 E[60], 8 X ONFREHL S & —EIROHIE 7 E[61] 78 £, N T4k % il
BT A BIRESNTNDS. 2O X HICITED TCM TiE, BRICRFE S5 T AR
B2z, ®EOML BN TE o SERECE CEROFIEDILESI N TV D Z & 234
McThsd. UbLoERzEEz, 6 4 E IR TIEERICB T 2EANR TREZ2EE
L, TEHRELMTREMRICEBET 2 S EFSEREF2AENICERTIZE2HE
L, F#Hht—%%EjE AE OREELHAGOEIEBREBOHEIZESL, v LTk
YA OZEEEN O AN A MRINLER S AT A2 RET 5. EBREOREREICE
FrFEFE L THERY e —2DOI—Y TN TERY B, VAT L2024 ME%
BREET 5.



1.2.3 KEREBROT <o UetRBMR

FH AT DI ERIEORSZ 2T O TH Y, S CIXFrZE o ic)s Uk
BT AT L, NS 258 L 7o I 72 GHATER G 03 E 23 5K B 5 [62]. F 724
INFE & GHIANHEDN S OBAMRIE, APEMELPRNE R T & B EHERE OO & 2 H[63]. S 51
@ﬁ%@fﬂt%?:~yF£WTiAfyfmtx-ﬁyvvyﬂﬁ®$£@ﬁ%io
THEY, FHREMOEMEZ T TR, RANRMERIECHEGT AR RO b T
W2 [64]. @A SERE BE 23 K 0 %ﬂéﬁtﬂ’é%éﬁéﬁuuf X, ESHEo b —% U T 1 %
EEL, RSP EUNCFEM S NG AT 22 WD LN G 5. 3 IR ICEERIE
% (Coordinate measuring machine ; CMM) % 1960 FCiCBIR &h, FL—HE U T 4 D
BRILIZ L V651 ERFEICIEIAS A SN TWD. L Lans, fMamikic k> Tix
— 72 CMM ~DORENEE L <, v 7 n A =2 PERMAT —7 0 E, Rignrs
MREVWTFEIIROND b o7z, LEER->T, KETIEERICB T A~
FHANEE, MBERAEE T UWE T ORDEELRPEOOLDLEEXOND. KINELE
EHFZEPTE & EURAMET (European Association of National Metrology Institutes) ¢ ¥ 75[66]
TlE, A—bA~F v A — MA—FOEEREREFHEINOFTENSHE T ETHEZ,
Z X RBER T, BN, BIUOHM IR XAREORECHEHINLGEL TS,
% 7=, LUMINAR (Large volume Unified Metrology for Industry Novel Applications & Research)
7'u Y= M7 TIE, Table 1-2 IT7”" T & 5 2 BARR R 5HAIRE & LR 51T b T 5.
E T b KRAAEEEB L O AT TR FE O EE[69]X°, KAEZHEE: O IR FHAI[70]172 & D
FHNTM A, SESERFHMOER M ZERL, iRy b TR O E R D
K& 2 MfifE 3 DA &2 o, JERHICEBEL S 7= T35 (Light controlled factory) D&
[TURHE SN TS, BRI LI VSN EE2 MBIGEET 5720121
RHT —Z AT o~ F e oA HIELBEE R D[T2][73]. T b O R ED D
SRR I, FrEF OFERIE & RERAY ICHE D H LTV 5 [74].

(2 TAEREAL & BRI L 72 SHEFHEN 28 0 K 5. 1970 AR & 0 BVELLIC L BTt
$A®%%ﬁ%§éhﬁﬂ1%0@ﬁ®%¥ﬁﬁ,ﬁ%ﬁﬁﬁvx?b®%$ﬁﬂ@ml
FEBE DORGE[TTI T DT 1E Dy, ALY P 0 B AR IEIC K 5 KB T /e 0O B 1E B 2+
[78] bk A H LTV S, 1986 4E(21% Donmez 5 728 TAEREMR D7 B DFEFE & ~HEMIEIS
B4 2 FiEim a2 BB L 7-[79]. 25 2% 1989 4£(Z Shiraishi 51X, #8d~TiEEEH T
H-DA T at A A~ L EHE 2B LT 5[80]. #ji“@‘, S O ErEE

Table 1-2 LUMINAR project: Large Volume Metrology in Industry [68].

Aerospace Advanced manufacturing Big science

Airplane body Airplane wing Factory of the future High value_ engineering LHC replacement at CERN
y - . . g (Metrology networks, such as jet engines
(International traceability) (Laminar flow wing, weight loss) . (10x better beam accuracy)
error map of large tools) (Thermal error compensation)
Need: calibrate/verify ADM Need: 100 pm full wing accuracy Need: < 100 pm Need: 100 pm in 15°C to 30 °C factory Need: 10 pm accuracy in 200 m

SOA: requires intrinsic interferometer ~ SOA; 400 ym SOA: 200 pm SOA: 200 um, slow photogrammetry SOA; 100 pm to 300 pym

SOA: State of art ADM: Absolute distance meter LHC: Large hadron collider
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Main heat source

1 Bearings _ Position Y,
2 Gearand hydraulic oil

3 Drives and clufches %
4 Pumps and motors
5 Guideways

6 Cutting action and swarf e
7 External heat source Position Y"

e
7
.Eﬂ
e

Deformation due to internal Deformation due to external
heat sources heat sourcas

Fig. 1-8 Thermal effects on machine [81] (left, quoted in [82]) and positioning error due to
volumetric error (right).

A U EERTSIC0E, MEROBEEOBKE R VNSRS D, Fig.
1-8(a)lZ /s T BN D FLKI[81][82WZ N &, KRIEUAEE W) D F 32 THE FE D 52788 C 22 il i 7
ARZENA U, Fig. 1-8(0)ICBIRd 5 1 M O BEEEIC KT LT HALE DK AAYEZE D Al HEMEAR
b5, ZORBEICK L, 1995 4121 Weck & [83]BEAENLIZ K » T LAEMEMIZAE U 2 %
HIRRFE D B 24P U 7= [RIBFIC Sartori B [841IF ERKEFE IS4 2372 D MifE k%
B L AT AT U 72, 2000 AELAMELE, HEBRHEE O E 7 AAL[BE]R0E AT U U A D M A
[86]3 D AFZEIC AN %, Schwenke ©IZ X % B FH I 0> B %£ [87][88][89] it B, i i ]
TREI T O H D 3 RITHRLEROBREL AT 2 ENFAEEL o7, Th
(ZfEVY CNC I ZE B IERSRE DS I S 40, ZHI[90] + KT T AR [9111C %69 7% K JEE MR FiE
DIED,  ZERFRZEDE T AL[92][93]X°, HIE Mk & RNHEH S DMRFT[94][95] 7 & 3t A
T 5. 2010 4ELAREIE, 5 Pl EOHIEE % 9 25 26l TIEREIC F5 A O 38 2514 T 15
WCHIEAZREE D, Mayr[96]5=° lbaraki 5 [97]i1C & » CTAFFEEIAIA L LD SN TN D.

FOREE N E 2BMAROREEICB T, TEBMOBESRIITEARE LTEHD
BLEN D D, B, BN, AL, ZEMRREFHH, TIEHORE, BIOM T e
T AR EOERPRFHEE L 72 5[96]. AR EURAMET I3 2013 £4£72 5 2016 40> 3 4
¢, WEBSGICB T L b —Y T At~ U3l E BIE L TH S “Traceable
in-process dimensional measurement’ % 338 L, B IEFE25 0 B 38 [98]4 L OMEAR AR & oD 22 Bl
BEE[99][100], BRBEZAE) O W B A AT 5 (M A [101][102) 722 & DBFFE A3 D & 17
2016 41213 Schmitt 512 & 5 K EH O RIF[L51I2 35T, Fig. 1-9 O X 5 2 AR
AFEVAT LOBMEBIRRINTVD., ZALOEREEEL, & 5 mTIE, KRAUEE
il LERELZHCa RZR Mt v~V UEHIIV AT A EREL, RR¥—F
vu—ZEHEHICET T, EHMEEZBE L ML — TR IEEREET 5.
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Fig. 1-9 Concept of CPPS (Cyber-physical production systems) for the manufacturing of large
turbine housings by WZL RWTH Aachen University [15].

1.2.4 MI -§HARATLOHEEE

AT E CICAEEMEIZEBR LT - 3l 27 A0 F Rt ML, XimXTix%
B~ LT PR AT A 2HMETL2HMNEZ R L. ST, ZNUHDOHEANKRT
HHMET A R TG EBZZ T SE, VAT AORE - M6 - AaEHRICEL T, KM
BEHMTIZED LS RN EEITHA 95 . ZoOMEICKT 20 & >DOfREET,
Allwood ©[103]%% 2016 4£{Z “Manufacturing at double the speed’ THEME L7- KL 9512, 4 H
ORGEHIM Z WHCER TEL20EWVNI DO THA ). HEHITBMROBEELHEHL T
WHBBEAI Y FiF b7z, et - 27 A - #EERLR (Co-ordination) @ 3 DOl
MAaZT, FOMTEE E L. KAEEERGO 7 vt R L TiX, YIAHI[104] - HFHI
[105] - FBEALFAN T.[106]72 & DA OFREM T C, AEMEN EOFENED LI TN 5.
KL O EEITIMIL - FH S 2T A Th 273, BUEHIM ORI R 2 #ET 5720121,
VAT LR T mE R L ORISR T ONEND D.

ZIT, —HERRIET A v ax G L LItk odERROM RS A E T 5. T
AR D R FERRI O Fom bkt L TiE, #iESAT 2 2 7 & (Manufacturing execution system ;
MES) MERITIG U7/ Ny r—U L LTRSS TV A[107]. @EICEEL - > A7 A
fbEan=T8ciE, fEEES R (Manufacturing operation management ; MOM) & Fe#fl
HDH L&, MO BEEEROE AW Z R~ B EEEFAMIERE (Key performance indicator ;
KPI) 73%E53% S 405 [108]. 1S022400[109] T i, & PERE( 5 — & ILEE O Ko |2 B L T,
KP1 BINZEEHEAL 23D STV 5 . Fig. 1-10 (3RLE R ICB T 2 EERBEE T L2 £ L
THY, ZOEIWE Lo MEBEERO KPI 2 EXTDH I LT, M—REETR
BT 2D, — 5 T LAEMMOMEE TIX, CNC BREAfbINTHrOEVWHIEZRT
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c*

, RIEM OB REE IR SNTZH DO TH - 72 [111]. VT4 T b i i OB S o &
PESL L CIIAR (b N To— 5 C, KAV E I 0 BEBLS CIE, Fig. 1-10 D 0 26 2 D
BEE IS 7= 2 7 m e AFEITH I I AR D B D . T AV ATR O 5 R O BRI D
AFESVEICHEET D Z & RS T 5. Atluru H[112]1% 2011 F I TR - 4o~ >3
HEgaE, BLOREREICET 282 H 2 2 MIAEE S AT LO KA % Fig. 1-11 O
EHICHR LTz, L LD, EEORIEERE T T AT A O E IS & MGk L7z 3
Bl LEOFEZEZZEL, 6 2 B CTIIREEEBRHOMT « FHHl> 27 50 R
BERCIZRE L C, AR Y — B U REMHORE TR 2 FHICE T CHRENRMRAEEZTT D .

Level 4 Business Planning 4- Establighing the b;sic plant sphedule -
production, material use, delivery, and

& Logistics oD o
Ptsat Production Schacking, “mseh?r;::% Determining inventory levels.

e — = Months, weeks, days

: Level 3 3 - Work flow / recipe control to produce the
: desired end products. Maintaining records
and optimizing the production process.
me Frame
Days, shifts, hours, minutes, seconds

Manufacturing
Operations Management

2 - Monitoring, supervisory control an :
automated control of the production process
Time Frame
Hours, minutes, seconds, subseconds

Level 2

1 - Sensing the production process,
manipulating the production process

Fig. 1-10 Functional hierarchy model of a manufacturing enterprise [110].

Machine Tool ————»  External Sensor / Device
Machine Tool Process Monitoring
Controller
I l l l l
Mactlna On Machine Togl' Health and
Tool < Condition -
Probing N Maintenance
A Internal Metrology Monitoring
Machine
Paronietes Controller
arameters| |\ ariable
Machine Part/ Tool Machine
Dynamics Accuracy Condition| Health
Process Control
\ 4 A\ 4
: ) : > lnptelligent
uperv
pervisory System roce.ss
Planning
Knowledge User Preference Part Design / Specification
Database

Fig. 1-11 Schematic of supervisory system architecture [112].
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1.3 AL DIERK

B Ok Z BB L, BEF O TIXE R ZRIEE SN LTV, KA
DOREBE IR & RS E LN« 5HS AT AOBEICE D e, $E M4 #
NERKIBICTERA SN DG RGEZIRTT 520, UBOKE CHEm T IEA T, BAR
REHIRGEE G A TS, B0 CEBEN 2B D ETR R TEEO RN 7
R 2 AR 572 0I121E, RONZERZ ARNIIER U TR O Ede il i 2 08 5 12 ke
THZENRDOEND., RFRILIINOLOERIZESEET D, AKX —E U REHKD
BB &2 ISR, W OEES AT LRI L 05, ZEREME A i 2 5 0 TEAR -
F o~ AR ICBE T A REE R 1T o 72,

52 BT DINL - GHAIS 27 A0 RBEEI S ~D RN L, "HETRICE
FAMLER « Ao~ VI AT 2O RN B A B8 L, EEMNEOMRFEICK
D HNDFEAYE L BHEEZKRRICE L DS 2T, WEBSO TIEEKICRT LTy A
T LR BET A A RS, S50, RRF—EURERORGEEZNRLE LT
FHIZMFEL, FHIFEBLOHE 4 ®H, FH5HE T WS FEOMME T &R A BT,

3 X THRFEWEBMTIC L 54 o Pt 2000 I8 LML, ITERD
LR L ORGEFH & LT, B5 ORI ES < BERMEN 20 EiF7-. &
FetE AR L 22 5N L7 2 & 2 ONGEEAS B2kt U CRe RN BT 2@ L, 'OV
WENCK ST 2/ ELZOH T TR FEEBRE L. VAT AFIEKIY —
vy —42 ORI TR THRIET S.

W4 T TTHER - MTRmMRo~LvF e o P@aREsmm L, T
Iz B I 5286l - e X2 MuoHEpIE LT, v~ v FRvrV@aHiiicEl] Lz, T
B oot P TREERICET 2 E2F 2 UfENICHRAT 2700, Fit— 2 EiR
& AE B ORMEEMAGOE N TESRE L, DPEAEICBT 2N TLE&EORESL
Rl HBERE DA IR L. VAT AIRR Y- o —ZDiEANTE
THAET 5.

%5 X TR TR oMM EIC L DA~ o HEatil) L, KAEES O
U= T sHEFH B IR L CHi- it 2 on 5. T/EMM ECRkEH O
RV - R ZEHR L TR2AHELMT 700, ZEMBRELRELHZEE LAV~
VURHNTFERZRRL, R Y- rn—Z OlEH TRICB T 5 HEFN THIET 5.
PERIZRVEWFIAEENRD 5D 72, BEFOEEOFEE OLBKRIEZ &,
RN S ERET H 8L LT,

b Xz, AEMEOM a2 ERBME L TRAERESSOMT « FHll 2T 4
IZR D B D HEMESRE A2 &= CEBICHRIEL, ZOR kB % TR IR BRI R
THZEEHARLE. KX OEMB % Fig. 1-12 (277
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1.3

L S 2 M5t AT LD AEIEE SR~ O REASEE

(Introduction) H (Development strategy of manufacturing systems)
R . i Hik - R
Ao = -
HEOERLABL (Backgrounds and aims) 22 (Technical level and development strategy)
g
o BRI—CUREBONETECH T HHRI

BH% D B #9 (Research objectives) 23 (Verification throughout the actual manufacturing processes)

YIEINT 1L 513 2B HE DB R Jiete

L2 (Process monitoring of machining dynamics)

w®

B R B AR AT & B L TR RV T YRR AN

(In—process chatter detection using time -frequency analysis)

12y THMTICETS TALMT RBIEROBREN ot ]

(Process monitoring of tool and surface integrity)

) : L, 3 TEER NIREEROTLF L YRERERSEN
123 RENEFEBRDA T BRI o=, (Multi-sensor fusion strategy for tool wear and surface integrity)
" (On-machine measurement of precision large parts) | o

124 MI-FARTLOHEEE o '5 AE TS O ZEMMIEICLbF T ke
7 (Integrated management of manufacturing systems) (On-machine measurement by volumetric error compensation) -|
AR X DIFRL (Structure of the dissertation) . bt |

A A A

(Conclusion)

Fig. 1-12 Outline of the dissertation.
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Fig. 2-1 Level of advanced monitoring techniques for precision large-scale manufacturing.
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[Calendar time (24/7) ]

[Available production time 1 1] Factory closed
[Pianned production time I  Planned downtime
[Operating time B  Unplanned downtime

[Net operating time | v | Speed losses & minor stoppages
[Valuable operating time |V Quality losses

Fig. 2-2 Times considered in OEE. Roman numbers correspond to losses [14].
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Machine tool X i | III-/J-IIIIIII-II--I-I (ONERIO N
Operating (green) Non-operating (yellow)
Machine tool Y i1 III\I]lIIIHIIIIIﬁII e Ty enr .
(a) Typical machine tool utilization
> »
.
4 In-depth perception of failure (sensor-fused) 4 < ;
Specific measurement tasks with tight tolerances
. 3 |
D 3 Process'traceability (sensor-integrated) ) 3 ‘ ;
> > Specific measurement tasks with complex shape
4 . 3 3
2 Prevention of failure (sensor-assisted) 2 ‘—
Automated conventional measurement tasks
.
1 Perception of failure (human-centred) 1
Manual inspection
Quality discrepancy ratio for Total non-operating time for
‘continuous-type' process 'discrete-type' process
(b)  Benefits of multi-sensor fusion (c)  Benefits of multi-sensor cooperation
(Tool condition monitoring) (On-machine measurement)

Fig. 2-3 Overview of machine tool utilization and benefits of sensor-fused systems.
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Table 2-1 Solutions for tool condition monitoring.

Strategy

O

Technological level Fundamental feature
Level 5 Prediction of process
Model-based feedback / Material Tool Tool Structural
Process optimization removal path geometry dynam|cs
41 Unsavie In-depth perception of failure
Level 4 O E Longenty =
Advanced TCM g £
(Multi-sensor fusion / F| ey Twesno K-
Advanced signal processing) Por—— “”x/,, “
Adaptive thresholding Time-frequency analysis

©

Process traceability
Dynamic limit Limit A |imit B

Level 3 O B

g T | it ‘
Sensor-integrated TCM @ |, = rime g
Constant threshold Dynamic limits Relative threshold
Prevention of failure 8
Level2 > W .
Sensor-assisted TCM
Machine vision Pressure sensor Pneumatic sensor

Level 1

Human-centred monitoring Lack of real-time capability and traceability

X

O Future consideration Scientific topic discussed in . Approprﬁation of _ Sho_uld be
chapter 3 and chapter 4 conventional techniques avoided
O Indispensable for ensuring the production quality of large-scale components
Il Suitable for conventional mechanical components
Table 2-2 Solutions for on-machine measurement.
Technological level Fundamental feature Strategy
Level 5

Uncertainty management Model-based prediction of measurement uncertainty

O

Level 4 O

Specific measurement
tasks with tight tolerances

Level 3 O ||
Specific measurement
tasks with complex shape

O]

L
CAD model CAT for Machine tool Task-specific measurement

Level 2 O | ]
Automated conventional
measurement tasks

Touch-trigger probe Probe calibration

On-machine measurement

Level 1

Manual inspection Poor repeatability / Time consuming

X

Scientific topic discussed in Appropriation of

O Future consideration chapter 5 conventional techniques

0 Indispensable for ensuring the production quality of large-scale components

[l Suitable for conventional mechanical components
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A KPls KPI: Key performance indicator
OEE: Overall equipment effectiveness
MEE: Manufacturing equipment effectiveness
/

S . /— Manufacturing operation management
capability E
Ll
—'1‘~
Process ) A
data Quality =~ Model
« update
; loop .
‘

Process 4 .»" -~
-
© forecast -

P Future potential
(dashed lines)

SR
Bing, it

L Ren )
47" Real world

OMMS: On-machine measurement system
TIMS: Traceable in-process measurement system
TCMS: Tool condition monitoring system

Shop floor

Fig. 2-4 Conceptual drawing of quality loop for precision large-scale manufacturing.
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Fig. 2-5 Key manufacturing subsystems for production quality.

Table 2-3 Summary of scope and system implementation.

Example P Scope System implementation
(Level) rocess P (Sensors/ Signal processing / Modelling)
E Tool wear Spindle motor current
1 s . . .
Groove milling . . Acoustic emission
(TCM-4) Surface integrity Adaptive thresholding
E Accelerometer
(TCl\jI 4 Pin-hole drilling Chatter vibration Time-frequency analysis §
; Dynamic modelling
(= Groove slottin Process variation Spindle motor power
(TCM-3) 9 Chip disposal Displacement sensor
E4 . . . ™ .
(TCM-2) Pin-hole reaming Chucking stability Pneumatic sensor
E Volumetric error Laser tracker
OMISVI 4 Horizontal turning Absolute length Lasertracer
( 4) 9 Artefact
. . ) Spindle {
Ee . . In-line probing Extended fixture
Tool
(OMM-3) Deep inlet boring Path control CAT framework ) ool {
Fixture {
E; . Multiple probing Extended probe
(OMM-3) Groove slotting Path control CAT framework
Eq . . - . .
(OMM-2) Coupling hole boring  Repeatability Touch-trigger probe

OMM: On-machine measurement
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TR ADOELOX 2R FHEHL TS, MEKOREICB TSN TERZ I -
72BN D ACCENT Yu ¥ =7 RIBRETESEINTVWDL LI, 5o Tak AT —4
DEREICE Y, REHEL ST L=V T s KZOENRLEEND. E, TIX
J—~7UNLHoTEMRREBORZENLEMAT 2720, EERECHEY I v ZITED
BEHAEA L. o0 TROFEER DT HEGE ) OFEERTHY, EMEICHED
TRV AT ATERT S ZE CREARAREL /ML, WEBSGIZEIT 505/
ANBREZ R LTz,

T~ o NOBEAEFICEL T, Es DX ) ICT/E#EBO Tllicy v F U AT
0 —7[15] % B0 i 5 RAEFKEARL LTWAD. E;, Tk, 2n v MEOBEMERIRICK
ST AT, Ta—T~y IO e —7ker e+ My v 7 N2 7. 3T
JERRRER TIE R FETH LI, ThEho7n—7KICHT 2 RIEEHRE, LT
TEREMR = C TAEMICE DI A ET 2729, CAT ZFIH L CEHIIA ® CNC 7
nr7 hEHMERT D FIEEHBEL TV D, E lXREOMERAEZHNT, Fr—v v
DALy M ELENDEADOTEICHL, EEIFEEZHWTTEZESE LZRET
DA TA EHAZREET L. 26 DEMARAE, A~ A 7o A =278 L
TEWHRVIELEELZHT 52 L CRERIECEHS L, TN 2REBEEEDANER
WTE D, Biko X 5, THikRl | OER I T 2 % HE EREOHIRICIRTH 5.

2.4 ®E

AFESMEOM L2 B E L REEE RSO T - FHll 27 ACER L, ZamfEd
BAEMOMETRERORMAZRL T, A7 LORMBIEZML L. £, &K
U RERORE TRENRE LIEMGEZITo7. MREZLUTICELDD.

1) AFEMEEWRT D200 E FITKBELZRE L., KEBETH BT,
S I E BALEIE e~ L TF R oA ICESSIMITER, BXO~LvF o
FEFH L hL—H Tt~ VRO BEMERNE WD L AEN T

2) MTEEM « Ao~ VOV AT 2MEIZBWT, VAT 2B AL T 5729
ICHE TR ORI O R B2 R KRICTEH L& St 2R Lie., £, @i s
Wi OB BN EE A A E L= BAIC, VAT LAEAIZL>TEHELNAINEELH L2
Wz L7z,

3) ARF—EUREHORETRICEBWTIT « HIl AT A2 FH L, & Bk
xS DABEEZ RGE L7z, 240 D O AR R & 72 7 AL ET - T3
B e odIc Lo THRET ORMELZERML, AMXTHRETIVAT LAONME
T EEFR L.
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3.1 #sE

1.2.1 Tl X 91z, D A > 7 e 2N, AFESEICEMST AR BE
RMEOONESTH D, Ko, METEANERMICE XSKBESTIX, UE 7 et X
DOARRE & ERFU] CIEMEICHE T A2 M TLER S AT AR RO LN S.

INTEHRICBNTIX, DHEEZHRAT S22 ORI, WEYRE S AL
ENRRDSND. 1550, AT (Preprocessing), HF{#dhH (Feature extraction),
FegoE e (Feature selectlon) D 3 DOOEEMEN LRER S AL, INTRTE & BIEME D & O R
BEPRESND[L]. KL O FETH D LR LR A 2R TIT 9 72, RET
ﬁ,UUD%IEME®%@ﬂHHCaihé_k%ﬁﬁb,ﬁﬁ%ﬁﬁ%ﬁmié%
BHEZIERH L TA 7 m 2 20 EEORFBICER Y s Z & & L7z, Fig. 3-1 1318
BRI DFRAUC T D ARBBONME T 2R LT\ 5 . REE R BRI 35 1T 2 e
m@%kﬁiﬁ%ﬁ%Té ET, MEERVOCDYBRMEFERTLHLOTHD. Hidk D
Lo, MIEHOSFICEWTY, FYuk ACHMIBEI NS SHEIC, B 7 —
Y =725 #4 (Short-time Fourier transform ; STFT) U = — 7 L v MNE#L 72 & O RER]JE 3 2K
IO FEPHNLND L IR 7Dy, R 23 BRI ST 2 FH61E £
727 <, @A%ﬁﬁﬁgl%%ﬁﬁéﬁﬁﬁﬁb%@wﬁﬁﬁﬁfhé.*ﬁf,E
%ﬁ-ﬂ%%ﬂi@ﬁﬂa IMTIZ I TUE, P ] B I SRR AT 23 e 18kl (IS FE R A9 I R S 40 T
=72[2]. & 2006% Antoni 5N EHXAL L7z A7 hLAEE (Spectral kurtosis ; SK)

%1k Lt@%&%ﬁé@?&%ﬁf%ﬁ GEN5EEME (Impulsiveness) O VR4 & #An -
T AN E AT HGEICHC G, SEZ O S ;ET'%L“C%K[S] il 2 1%, b
Y W [l O 5B IS 3 1) 5 B DIk 2 2 5 %6, Fig. 3-2 _/T#ot 512 STFT
ICHEDSDWTEHRER LT SKZEEET LN TE 5. @JEIJ7 BEZAOL I, T TH
A CHREEEB L BEL 2256 TH, TORIRFERICK 5L{E$%® e =l EeIE )
EEZOND. L, MLEMROSE CIX, REREEMEEEICHE S < Bt 2 R &
HeFEITELED L, BN RERRFECE EEo T, £ TARETIE, STFT &
SK ZflAGDOETHAEIZ L > TOWY IRE) L WEF R LRI HEL, ZOT XX
IR ETHZ LT, A 7B ATRFEHELITO HIEEZRET S, ERBIEITIAEX
A —bEru—ZORGITITRTHEMLL., EEMEBETIE, —EOUHIKMETRY AT
ZITO Ko BGAMITH, TR - T/EME - T/EWICEET 2 BFrtE N 2 b7 % "l REME
NHO[B], A7 aAO0NY REAEERR, OO0 ZEMEMITN -+ B ST
WELEBIG ICRFIZIRIN TH D EE X b5, 32 TIERRET LN RN Y M T.OE
T NVERL, 33 TESUBEIEZBEE LD L, 34 TEREOTnwRICEIT 5 BREHE
L OREAATEITY, SHICRYMOENAZBE LTS AT LOZYMEERFIET 5 .
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Transformation into
frequency domain
FFT, STFT, WT
Time domain signals g
(Digital) l
A_“a'olgue Preprocessing Feature extraction
i (Filtering, RMS, Kurtosis Feature selection
A/D conversion, Band energy
Segmentation) preeen @

E:Extracted energy map.'g
{ (STFT and SK-based)

Fig. 3-2 SK of measurements on a gearbox submitted to an accelerated fatigue test [3].

3.2 FTBEFY)LNT

3.2.1 VU YIRBIDETIL

BRI LTI, REBICH L THEFICEVWLAEEEZ bSO RUAREH 5. Fig. 3-3
R T—EREAMTHOR CNHAN R VEEZ LGS, &b EMAEBNE T LVITY
— Wi % K E L7 Euler-Bernoulli 32 & Za72 38 O T 1, ili i 2 F 5 1F 0 B A IR B 51,
KA TR I D[6].

2 |EI (3-1)
L? |pA
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Tapered shank

Ql—s =
L Y
(a)
“f/’——_ﬁ\\\\\§hkg
=
(b)

Fig. 3-3 Geometry of a long drill used for deep-hole drilling: (a) drill bit with tapered shank; (b)
fixed—pinned condition of Euler—Bernoulli beam in first bending mode. D and L represent the
diameter and length of the drill, respectively.

Z I T, EIXMEEMEREL, NIBEHEETE—RA N, pldBEE, AIXWEE CTH D, Ulsoy 5[7]
%, WA ER )/u@éﬁﬁﬁ/ ié: EHEEZEZEL, £PWMEETT A2 AWM (o
EL7RJ7M) OBE)E AT LSO ZFRMFICH T 2 EA KRB b TR D &
2(L[6] Jr 9 [ - 8 H B Tl wp, = 0.356w", 7 [ E -7 5 X FF Cldwn, = 1.5620" & 72
L RICI =V T RIIAWER E LTHRA D8], FULORMIERIZHN DAL
%%#ﬂﬁ‘fé,ﬁ ICEETHOHENHDH. Ema H[9[1011E, EAH KU Ao EAIEEN K L
HNFIRBY O JE RN K< —BT 2 2 L 2 FEBRITR LT, wpo/wp DERFRIE 4.39 (2% L
T, EREIZ 25 TH o720, SIIMIFO RY AORNEIEEREIREBIZIWE &%
O LTz, ol E i, AR, TuwrxFx vy s, St TR CBE I 2%
FERRZ X ks (Soft spring characteristic) , B X ORDOEEZE L, E£HHEETT L
ZARE LT R U VIR % LU T OB 5y 77 #2350 (Delay-differential equation) T L 7-.

. T y )
J+why = {—m [y(t) +y (t - 30)] Mg+ nsy3 — my} why (3-2)

k, (3-3)

Wn2 =

ZIZT, yiIdRET R OEN, 1B XNy, 03, IR E, Told KU LN O@EIEEKE, N IX
R UL & TAEM ORI 72 855, ko i3l TR, midSEMEETHD.

BAEZRT, 1RSI T LRl L BAEO TEMBEOMOZINICERL (1.2.1) ,
A (3-2) OALFE LBEICHIET S, £72, abB L UBEER, ez BT HEREE T &,
FaEldn, cae’s, B LU, « BVpDOBREZATND Z EIZHET XETh H[11]. n,lc
X ofiﬁaénéﬂém@&ﬁ%%g{ot SRS Z EIFEEL W2 0D[10], 2 Z TIEEAEM RO
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N =750 rpm, f = 159 Hz N =750rpm, f=159Hz N =750rpm, f=159Hz
(a) (b) (c)

Fig. 3-4 Simulated regenerative chatter vibrations during drilling for various damping coefficients:
(a) amplified oscillation; (b) undamped oscillation; (c) damped oscillation.

HELEWNRNORTOICE DD, O Tnw 22 vy 7 LIERIBIEROR) R
AL (n, =13 =0), FAERIICE T 2RIE ORI Z L 0RENEI % Fig. 3-4 IZR7T.
MB—EDOHZETYH, BWEOFETEREIRESLEDLDLIZ NN, 20X 5 il
IELTEBAEDROY I 2 b —2a T, BREOEITHAOCRYREIEZ L7672, 0
FAETHTEHE L., SSHICEEBO R VML TR, BEBSE508R CREEN/HEMNT S
ZEBRMBNTWAHII2][13]. R U VL REER O BEAEH & A8 28RS 5%
FRNTRINTWVDA, OO A A EMICRET 2 FIEICIHERRE L CGRERD S .

3.2.2 ZRE—EoO—2DOR"HITIFE

AR CIIEAH RV Lo — i REE 25tk Lz, EEOTa A2 RiET 5729
BT AR NEORBEIMTARD G5, 2EHN10m OARKY —vrue—%% T{EY
CEATE. m— X OE TR % Fig. 3-5)IC 5T . Ao — & 74— 7 R XA B & fE
HITIER S ETZ®H L, PR (Blade) BEH Y V2 AT D72 ORI E BN L2179 .
INEFRELUTPHREBMEANY CIREEE L, V—~THICk> TEEFIMT 2 HE.
TR e — 2 OIS U C, /RS 130 mm ~370 mm, SN 7mm ~18 mm 7 6 R
ENs. 74— 7 BEOESIZ ,ﬁmm@*kﬁ%%ﬁ%%%ﬁétbmfyvnﬁ
MO DR ENRFEA SR T T2 Th s, T/EMEMIX Fig. 3-5(b)Ind & 512
il 7N L &N CEE R R RE & i 2 72 IREE T, FEBRIC %mt._@lwwmizﬁkiﬁ
B RY L~y REOHMABTDLREICEY, SESEARNEE CER-HEFmORNE v T,
B, RS) ZAlggl L, —WmAEESHOBEAFEO-BERRIZHIST D, ~y RNOHH
X > TH—OFf2=y FOBRHEREERDO RU VI 65, FRFCHNS RY v
DOEIVE, BHEEVICHE RS, Hlfla=y NI RV LVOULAREE 2 5 Z ok $h1E,
FHhE R A2 HE T 5 & L i, IWEFHICESWEBERREZ T C, BREIET DM
BEE AT 5. RUAMNMTICBT 2ESHHSGIIEANLRERBEEIND 20, BEFOfE
PREZEZE L CERZ2 0L, VWS TEBEEEBEEORVZ R LFIZER LT
THEHS AT LAEBET LI ENROOLND. 3.3 TIHEFLHEIEOMMAZREL, 3.4
THETRICBIT AV AT AORHEEE1T 5.
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Feed Dril{ighd Wha(c) Step-feed
Turning fork-shaped grooves Deep-hole drilling for fixing pins Pre-assembly and reaming

(@)

Cylinder head Cylinder head
(3-axis) (6-axis)

Spindle unit

(single-axis)
Gearbox Signal processing unit
(A/D converter and PC)

Plate head  Plate head
(in-line) (staggered) Machine bed Controller

(b)

Fig. 3-5 Manufacturing procedure for a steam turbine rotor: (a) illustrations of manufacturing steps;
(b) schematic diagram of multi-axis deep-hole drilling system for fixing pins.

3.3 MIERATLDESNLE

[l HAHEAR DI FEZ T I W T, IR 2, B RFE SR, EE (Skewness), SR

(Kurtosis) 72 EDFEEFHNANT A —Z PHWH N TE 70, BEEERICE L TE, FED
JEBEEHE DT RN FICL > T LEEREL THIT2FERN DL, LEOIBEBIOTF v
VU7, 5%, WERBO LS RBERESNIRIET 2561, TEOBRRL MR T
BRWBENRH L. —FHT, REBEEEFROEXRBEZH WS L, BEGESICHETLIEE
REMEEDDH LN TE D, ZHISx L Obuchowski & [14]1%, 18 5ALERIC X 5 KR
B EIRE 21T O A, ReMERBERB OGO m ERIRMTH L 2 L 2 fiEHL
To AR D ITEZ SO O BT B E OB K O, STFT O A7 ha /' Z A (B
AR MVEFR L, KHE - B B RO OBEL 3 IWITHICRBLLTZZ 7 7) I
BT, WMEMEOFGNZ XL FORDLFENZEHT LHEFLEELRE L. UHI 7 =
T ADHEHTIL, Axinte H[I5]IZ KV, K EEERE S OHNICEH ST 5 AEE 5 4 il
H L7 3% VX KK (Condensed energy map) Z1ERkT 2 2 & TEBIRIED i@ L % [A)
&, oS (Target frequency band ; TFB) DOREARIZ & - T T EARBENSHEE T
THT LRSS, STRT IZE S SK ZER L L7z Antoni & 23 46H L T\ 2 K 912,
SK B CIZEFICET 22 EME S £ V[0, SLRLZERMRIENKDLND.
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Cutting process and tool
Transient events Vibrational mode
Damped oscillation Lateral chatter
Breakage and chipping Torsional-axial chatter
Collision between elements Whirling

|
Machine tool

W m— Transmission path effect
_/ Accelerometer P

General working vibration
(Spindle / Bearing / Gearbox)

Fig. 3-6 Measurement setup and factors that can affect measured signals.

ZIT, ZEh R Y VINTACE T DB #5303 5. Fig. 3-6 (X FEBRELELY & s 5
THHENZ2EFICEENI DR TE2RLTEY, BEFSZLREHT— FOEELHL
T HZETRINVOREEZHET DI L EZIEL TS, IR X 5 IO,
WO IREDMESR LA LNDD, WBEFRIIISEIERMTBEAXREEND ATREEND
5. |ETEOMEE Fig. 3-7 127 . TH@EBEEEERAH L-EHihtoRFEsonb,
OO BBELTCLEBEBICELDE TORBHURGEZZHARLTND. ZOREFICIET
o ACEKT DRI OIE), TR OEERICE D 2 IREICE N D OIRERKE O P E
EZTDHN, T T VAMEOMENREESNDI O L L., BETIETIE, T
FRIUE T2 LT, WA TREND L DI, STFTIZ LY KA BERB~EHRS 2
[16].

t+N,,—1

STFT(t, f) = Z h(n — O)x(n)e-I2mn (3-4)
n=t

Z 2T, h()IX#EBE, N,i% STFT OB ZITHIT—HEThbdH. T—HXREIZL > TH
W5 fRBE & JE I B S REENHE S D . Fig. 3-7 @ STFT DIRE ALY L TlE, BHED
RREEZEREL L CTHEIL THY, MEFERICKIET DRV EREE TOxZ R L,
OOV REI O F B OBKENRBO 5N 5. TFB X KU Lo EAREIHIC K SV CRE
T 5. Fiz, SKITREVE S OHEEMEZ BRI T 572 OIEAT S, SK OFEBITHWS H
NALERRERACIY, THANEO@BEMEFRRBEOS—X L3252 L 2B EICAN, OV
D OB 4G & HERE 2GR T X 5+ T/ S WIEIR] T & 5 $ 100 msec FREICERET H. TE
DREFEEFIZT D SK % STFT IZESWTHET 2 HE61E, kX X 5127 5[17].
Yeer|STFT (¢, )|

(Qter|STFT (¢, f)2)? B (3-5)

SK(f) = #T
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Fig. 3-7 Flowchart for proposed on-line condition monitoring technique. Synthetic signals that
include chatter and transient events are shown. STFT amplitude spectrum is normalised by the
maximum value.

Z T, #TITBRRERIACZEB T D STFT O% I Th 5. Atk O SK % Fig. 3-7 1
PFRE L7, BEFESNRAEL TV AHRICE W SKIEZS TR Y, B OFAFIIRE 2 E 2
LDV FFHTITEWSKE L 72 5. 26 DL Z ERFTITWRNA S, 5503 3k
FEREITIOCRY ITHE T 2581E, ZNENLO=RAFENKE LT 2. 2o
B, STFT @ TFB KB L NSK #_7 hv b Bl L, MiEOX7 FLEICK L THEN
TG A KIS CRE L EEA AL LT, BEFESR (Transient events) F 7213
Y #EHE) (Chatter) ~OBFEHIEEIT-7=. 2B, BMEIXT o A0S OKELZE
L, et ARMBEEZDO—EOHMEEFHRN (t,) TRETSH. EEORERM LTI E
izt a2 BET L0, TOHTOT — XU L B 2 KRBT SHRBRD S
5. £22°7C, ERHTHE LZBRERES VO ICET 2= VX EHKZH N
7 ADREE EENICHET 2 & &I, Fig.3-7T DA FIZrT L9512, TFBIZAHY T
L0000 O EARBOBERZRZNE L TR AFRHREL LTERT L2 LT, RENR
BEZRRIIISHERE 2 OND. BET DMIAEFERIT, 34 IZBWTHEKR Y —E
n—ZORYVML7Tat A28 L TIT.
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3.4  WETOERTEHZVTYEDRAZEORIE

3.4.1 VATLEBREERBREN

FERITIL Fig. 3-5(b)IZ/R T %8 KU VN THEZ iz, TEMTH 5 v —2 & TAEHM
DO EdhE OB OVATEZREBICRIE L0, o —X I EHA R7 v v aifBEEAL,
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O EAEEIEE, Ulsoy & Tekinalp i2X» TIESNEZETFTA[NTLIVHEEL TV D,
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wﬁ@;o_kﬁﬁﬁﬁéﬁﬁxﬁm VB EZ T DO THD. 1HEITHOREE D
JERE RIS EF (Rion PB-85) X Fig. 3-6 IR T X2~/ Ry hR—ZXZNLTRIU L
~y R EDOY#HMICHRE L. MEEEFEZITFvr— =2 23—% (Rion VP-40) TH&E
JE(E B L, AID Z#ig: (National instruments NI 9234) ([Z A1 L7=. BB L7-1E 5

X PC LD Y7 b7 TEIFHBAE L T — 2 OZEMMBP TS . RS L ES0E O
INT A —HF % Table 3-2 |2~ ¥ . BEEZ 007567, TFBIZX L TRHEZ O &
ZEE LU TR 2 1 kHZ IZRE L, ROV 7Y 7 L— k% 256 kHz 123k
E L7, STFT OMBREFIZIX 75% DA — T v Sl L b= 78 E W=, STFT Of
BrEZRET I, R &AM O LGMIEN b L — RA 7 OBMRIZH 5 (RFfH] 43 fiF
REZm D LB MENETT5) ZLICEET H. STFT TR 128 0541,
JE WK Sy R AELT 20 Hz, FERI>EREIL 0.0125s & 725, ZOSMIEL TFB AL TO UV
%ﬁ@# EMNARET, 2>2% 100 rpm FRJE O EdhEHRE CTHRA L 9 2R EFR L M7

(24372 STFT OB Eh /Dy fREEZ B E LTV 5. 3.3 T2 X 51T, SK OLLELEE
%iiﬁ%%®LLﬂﬁﬁkH&ﬁ@§éf OOV 2 S REM 72 BT 5 Al
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Table 3-1 Cutting conditions for experiment P, Q, and R.

Drill length (mm) 380
Diameters of drills A, B, and C (mm) 10.5/13.0/14.5
First bending mode of fixed—free beam, w,; (Hz) 42 /52157

First bending mode of fixed—pinned beam, w,, (Hz) 183 /226 / 252

Depth of holes (mm) 264
Step feed (mm) 6

Feed rate (mm/min) 30
Tool rotation (rpm) 330
Head type Inline 3-axis

cylinder head

Table 3-2 Measurement conditions.

Maximum sample rate of A/D converter (Hz) 51200
Measurable range of accelerometer (Hz) 1-7000
Sample rate (Hz) 2560
STFT length, N,, 128
Frequency resolution of STFT (Hz) 20
STFT overlap (%) 75
Window function Hanning
Processing period of SK, At (s) 0.3

3.4.2 T RREEBR DM

RBEFIEIC L > THE LIS THoth 20720, FEBRP L L THEMRABRELIToT
10 B (BEF30 M) O/UNLRZERBTHE LI-0b, 11HH (Py & X5) OMTLE
HICIEER N R RIBENREZ R L CEBELZFE LSS, UL ALY (BEXfHX)
BENRO LN, FERINI T ENEEEAZBLA L T WIFRLE L, Tb 2 L
fES A Fig. 3-8 12~ 3. N U VN TIXEEMERIE) VAR BIEZ AT 5 72, GIHI & IREEEh{E4
BRI A, BELEZUHIEEICRESA TV D20 7 a v 2K ORENT TI/E# KO
MEOKELRSELEZLN, 1FEAEORREE TIRWIEBIKUEICINE 2EH AR b
L. L L72RR 5, Fig. 3-8(b)F L ()T T L 5 ITH A FIC O Y 1Tt i T 2 HR1E 0O 1
MRFED HH, STFT TEOBEEHOHEBRZH LI L TWD. IMEEEFEFICLY, FEE
WO AEMEDH L O IREE (CVL, CV2) ~DAEMEBRNEH Sz, O OB
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Fig. 3-8 Time series, STFTs, and SK values of signals before tool failure (during the 11th process of
experiment P: Piy):
large-amplitude vibrations; (d) tool failure occurring during chatter. IV, OC, and CV represent
impulsive vibration, onset of chatter, and chatter vibration, respectively. Conventional criteria for
time series (RMS and kurtosis of 0.1-second intervals) are also shown for comparison.

(a)

impulsive small-amplitude vibrations;
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Fig. 3-9 Py; results: (a) extracted energy map relevant to transient events and chatter vibration; (b)
chatter energy transition near TFB (averaged energy of 0.1-second intervals); (c) energy transitions
for transient events and chatter vibrations. 1V, OC, and CV have the same meanings as in Fig. 6.
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Fig. 3-10 Results for experiment P, Q, and R: (a) chatter energy transition with respect to the number
of processes; P1; and Rs result in tool failure, whereas Qq; ends in normal wear; (b) extracted energy
map for Rs; (¢) comparison of averaged frequency contents in the chatter state for each experiment.
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4.2.1 EEUHEIE AE
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Bes (M) Thshd. UE7Tat 20 AE # BT 5854, MTAOREEIC AE &
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Fig. 4-1 Typical measuring chain for AE detection during machining [2].
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Fig. 4-2 Correlation map of AE frequency spectra [3].
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Fig. 4-3 Schematic illustration of state transition and adaptive thresholding for multi-step process.
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BUEM LAY, LEIX Z#ioMELZRLRN 6, XY FrN CHIMEFZ# <. —
72 I — U 7T TIE, TEREBOEIICE ST LELRHAIT O X 5 A
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54



72&# (Time based maintenance ; TBM) TiEM SN DL ENRL . I bIT, BE /LR
DOMEHERICET 2@\ alREL2Ete 2 &b, THREAX EMICHEET 2 L7 LT
1%, TEZHBEE LY TP 2HENEHE L VWAl 422 T80 THD. TEREOH
EWCBE LT, MEAMT—2 R 7021300 & Lin THEGFEFmO TR 515 EHFgE
SNTWBHII9]A, RETIE, A I—U 7 TROBERMEFEZEL, MEHHRIEIS
HEOLKIMTEMR Y AT AOMGEE CTExtg & Uiz, SITHIBEREIC X3 2 T HIRAE D FEH 72
EBREZHRET L0, @t (EHBXOTHE—2EW, AE) 2L 5 THEEMR
BRa2REICIR RS, ZOMREZIEICEZNZENO TRIZEB T H2EBIREL MR L CEEL
IEL, EEORBIMT CRYUMEEZMRAE LT, &ZICRRDEFHERICR T 2 BIED L
RMEICEA L C, BRI ORET -2 IZESWTiEmT 5.

iIIing Assembly

Roughing

Indexing Milling tool

Semi-finishing

Finishing

Tool locus for
curved groove

(b) (c)

Fig. 4-4 Overview of the production process of a steam turbine rotor: (a) manufacturing flow, (b) the
horizontal milling machine set up for form milling and (c) fir tree milling tools that create implanting
grooves by a multi-step process, where typical removal volume is shown in grey.

4.4 IILFLUYEEIC Kk HEBER

4.4.1 TREFMODOEER
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; e
- Coolant hole

Fig. 4-5 Experimental setup of the longevity tests: (a) form milling of a straight groove. An AE
sensor is located beside the tool holder and (b) fracture of the roughing tool after the test.
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NESREER E DT Fa T 4 VEMEBINZ LN TEY, BEMAEEEETO AT
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Table 4-1 Cutting conditions in longevity tests for type-A grooves (depth: 91 mm).

Roughing Semi-finishing Finishing
Groove length (mm) 330 (straight)
Tested length (mm) 2310 1980 1980
Feed rate (mm/min) 12 19 15
Spindle rotation (rpm) 220 190 190
Acceleration factor 1-1.5 1-1.75 1-1.75

FHRBROBR LB T 5720, 1#EH-V oLt — ¥ OJEEE ) % Fig. 4-6(a)l2 7~
T O HEBHIUENICHES Lo x A X 50R MM Lz, # - i B - £ EFown
THNOHAEIZS A D5 HFABME L, —&IC TREROEIT EMEBENmVE ST
W5, i, BREAEOBEZNS, HMTREOMEBHEIIMO 2 TR THREDE
N, iz, HHLTEOHRIEIZEK T D HEE®EORERINZELE Fig. 4-6(b)iZ 3. H
ATHRIZRLT, EL1LAEZNT T2 ZEICEMENZR TARMREOBIE AT I/E, 4
KEOEMTHICa—T > 7 OFEENRTED S, 5K H ORI T#% 21T T EOBRARIT
IO OBEE AT ENFAEL TV, HERENZAHTH, S KHOIEN D EBENEINT 5
Bricho, a—7 4 7OFBEREIREBIND THREOCERBICL T, M ORk
FHRIBRERNEEZ L CHEIT L EHEE SN D, DL X 5 R REE L & i ED A
FOEREA VL, HATEORERELZELSTIMMEARET LI ENTES. L
ML G, HEENTZFEE—Z OHNERITIKEST D720, o TEER 2 Vw5
BEWix, o7 —F_X—ANNEBELR2oTLEY. ZOX D I TEMR O AT
EEMMLTIEEET I 00, ZREVEAE~OBEHITE L. T2 TLURETIE, &
BLEOBII —V o ZMTICHET 2 TEREE REMEROOIERN R LG L7120,
T — X BIRORRIIMENT & AEG S 2 0FH L7e I TR Y A7 AZREET 5.

25 A

24 Roughing . -
2 / Roughing  Breakage, _
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Fig. 4-6 Transition of power consumption regarding cutting processes: (a) results of a single tool
with respect to groove number and (b) time series for roughing (acceleration factor is compensated).
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77 7RERE LY BIRITEEFFICELBEINDS. 22T, I—-V 7L
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NI RBNNT A —HZ 2%t LT, Box[20]iin & 1.5 O fEE T S/N kb (Signal to noise ratio)
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T —ZERO L DI v m A TIRET2EFO 0 AR MEEZFHNT 2 D5 L T
B9, UTFO XS ICmilk S h5[20].

} (4-1)
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EREEHECHER LG OB RISENFHETH L. £ LRICKT S AE B oxth%
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Fig. 4-7 S/N ratio of the spindle current and RMS value of the AE signal with respect to cutting
length (data with full radial immersion are shown for roughing).

4.4.2 THEFf NMIXAMHROERERA
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Fig. 4-8 Two-dimensional plots of S/N ratio of the spindle motor current and RMS value of the AE
signal. 10-second interval data plots of the longevity tests are shown.
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L L7, #iS#% Table 4-2 ([Z"3. F7z, it EFH M RIFHT AR LTiX, L6
WIRREBRBBED NN olle®d, ThENOT —F R EBIRE L B 72T,
MBI, Fig. 4812 T L RERME 2R L7y MMz 5. HlziX, HHATEDE
W EER 7 T AZM TR EMEICHE B EZN D700 2 ot RER & Lich, Wit
FFEEEFTIEX ERIXY OE—HMICOBT —Z NG AL LTV, 5
ST 1woc e 35, ROBRMEZRE CEEORMI TIZHB W THRIEL T <.

Table 4-2 Summary of provisional thresholds.

Roughing Semi-finishing Finishing
An 1.290 0.176 -
AERus 0.033 - 0.024

4.5 HMETORRICEFTH2ERERNBFEOREE

4.5.1 EEREH

Fig. 4-4(0)IZ/RT L D1, RRA—bErua—4DI—Y 7 axg s Li-FERERONT
BEt S AT AL, CNC B S 0 RICSREET 5. 2 O TA/EMMR T 30 kW D E#h 2 i 2., 17—
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IZRT. EEE— X OB RN E S DH CNC 2 E o FHilf X, Ffi<o PC Al E
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@%%%%(jﬁmkm~5@m4~w)ﬁ%fEMé B & [FARIZ, AE B4
X T H AV Z Ol I MR A5 T CRUE S h, T Chz LIREETHERT 5.

(@)

AE sensor Spindle motor CNC controller
Aralogua i (Electrn;:al unit)

Amplifier Current sensor |
v _ _ Alert 2 ;
I AID cohverter —| Digital /0 unit |————»{ Process information
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v
Data processing Threshold database Tool exchange
Spindle current S/N ratio Groove type | Roughing ¢ Spindle rotation
Analysis | Material Semi-finishing Inform :
AE RMS o Table feeding
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Indexing

Fig. 4-9 Performance verification of the TCM system for actual products: (a) schematic of real-time
data processing, (b) roughing of a type-A groove, and (c) roughing of a type-B groove.
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VAT AORRFEC BT T 44k % Table 4-3 1273, TELETIEHMTH D u—Z D
BT HHEMABRICET 50, WG LOLZEMEEZEBERELRB O VAT LE2BREET D720
T HAZH O (B RE) I TR &% Table 4-1 OB & b~ CEIEEEICS ibfu\é
A LD 44 1855 DFEERIZxE LT 10 BPEFE T 2 ot XNZ & FE L 72/ R % Fig. 4-10 (2R 7.
HILRETIE, T XTOANKOBEL TEY, "WE7 e ANLRESRMETHD Z LDk
RTED., —FTHEES - EFITRTIIV OO ENEEZ B 5580885
o, HHE BT TRTIE, BED IEOT — X DK, nO/VRNBEE/ L. ST 5
SEDOH - B TRETYH, RO BN o0, 4 EFRmikEo B 138n
2. ZOBGE, SR TR S AW KEO RS VA T I E.i?hfib 0,
T RAERZEN LTEbO LRSS, WEEHE 2T A0, VAT A
IC k2% E%R, TERELBEERT 2R EOFIELAEEITH 5. it,ﬁifi&f
BAPBEEZBEZ 20, AEZAnE X TREVWSBE L OHEMNH 5720, RN @
WRFAE LT G ORELEERT L THNEZ D, AE D4 BOEKIC %Lfi%m
T5. Dbk Xoic, A RO THEMRBRAZFRM LB X5 RFHEDOFIEZL E
HoOBE TREZEZFHR CHET 2L EICBNTH, +oEAMLER T 5.

Table 4-3 Cutting conditions in TCM verification.

4.5.2

Type A (depth: 91 mm) Type B (depth: 149 mm)

Roughing L Finishing  Roughing L Finishing
finishing finishing
Groove length (mm) 320 (curved) 507 (curved)
Replacement length (mm) 640 1280 640 1014 1014 1014
7 Unstable 7 Unstable L Unstable
@ Z o 0
- %17 Provisional | -5 %' - 17
g N ; o threshold g o sgf?_?_\{es g 2
w § Q W o o w
< < Pl <
0.01 9 0.01 &5 . & : 0.01 %
H ,
Ve
R g 5
0.001 0.001 4 ‘ ! ‘ i '§=| 0.001 — ‘

Decrementin S/N ratio A Decrementin S/N ratio An

Decrementin S/N ratio A

Roughing Semi-finishing Finishing

Fig. 4-10 Two-dimensional plots for type A compared with the provisional threshold in Fig. 5.
10-second-interval data plots for 44 grooves are shown.

62



7 Unstable L Unstable L Unstable
& a Provisional E:> ﬁ
E threshold for A j
% "7 B Provisional % "7 o % " ‘ Provisional
£ a threshold for A = o = #® threshold for A
w R w g w ‘
< < <<
001 - @ 001 } 001 o
1 ]
B
g @ Circle: A Circle: A g R Circle: A
o Diamond: B1 Diamond: B1 § 2 Diamond: B1
0001 - o Rectangle: B2 0001 4 Rectangle: B2 g 0.001 g Rectangle: B2
T T T T T T T 1 T T T T 1 T T
B 0 1 2 3 - 05 0 05 1 - 05 0 05 1
Decrement in S/N ratio An Decrementin S/N ratio A Decrementin S/N ratio An
Roughing Semi-finishing Finishing
1 1 1
e .
= = —
“@ 01+ : B 014 @ 01 —
: : ; : 8 : =
= e i | > — — > : ‘
o 001 — ; o 001 7 E — w001 : !
< — i < -+ i < .
0001 1 E=——4 i 0001 | —— i LR =
T T T T T T T T T
A B1 B2 A B1 B2 A B1 B2
Roughing Semi-finishing Finishing

Box plots of AEgys
Fig. 4-11 Two-dimensional plots for types A, B1l, and B2 in actual manufacturing. Each plot
represents one groove. Box plots clarify the differences between AE signals.

Table 4-4 Paired t-test statistics for TCM verification tests. 32 grooves of types B1 and B2 were
evaluated.

B1 and B2 (AERMS)
Roughing Semi-finishing Finishing

P-value 5.83x10°° 3.01x10™ 5.54x107

4.6 5

ATIDIRFEIZ RN T, BRI 2 ko n— 2 8E 23257 —4# % Bl, B2 & L TIGL
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HMITE M 72 VIRRECTRIET 2720, + R ERELE > TR LA EL T\ 5.
LiEH7=0 O BHORERET, AROBIZ 4ETHL. FaRkBRaTh I ICHEY) 72
B TN LEEAR 21T 95 7202, REOWMHIREIZK T 57— 2FMA L, RKEMHEZE
FEeTH5ZeBRkOOND. ZNHDOIFEEOT — XK LT, 1LV ICHE L
An& AEgws % Fig. 4-11 1287, Ap (2 2 TR O 3O EHMEIH T 5D &) 1T,
WTNOEELER THo7mDy, AEpws it B M THL N RBMOMmE2 R L. £z,
Bl & B2 @ AEgrus (ZBET 204 O # 1, Table 4-4 IR T K HiZxF & 725 t E[23IC & »
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Fig. 4-12 AE generation for the finishing tool when a bundle of chips is intentionally left on the
semi-finished surface: (a) experimental setup and (b) the time series for each groove.
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Fig. 5-1 Accuracy of conventional three-dimensional coordinate measuring methods [7].

Fig. 5-2 Laser tracker: (a) basic principle [5] and (b) coordinate system [7].
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Fig. 5-3 Multilateration: (a) basic principle on 3-axis machine [9] and (b) M3D3 system [11].
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Fig. 5-4 Outline of the manufacturing steps for a steam turbine rotor: (a) forged rotor, (b) design
configuration, (c) assembly of blades, and (d) fully assembled rotor.
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Fig. 5-5 Schematic illustration of the proposed on-machine measurement system.
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Fig. 5-6 Measurement of axial-wheel positions using a laser tracker. O-Z-X is the machine
coordinate, and O,,~Z,—X,, is the workpiece coordinate.
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MU (B b Eg) RIBESE LW ERRTIENTE S, 20L&, ZMEERY PLD Z
HWRIE LB O y FRREL —B L, MiAM OB A —VALEZ RO D ERET LD,

F7-, n—ZEEROBEAFHNICE L TIX, Fig. 5-7@)II T & 912, TAEWO L
HEEGDOEEZRCH L THBT DT T4 A2 FAERE LD AREMENH Y, FHHE R~
DEBENRRKEV. TOBREL, KO TEDIZENTERLEE HW DO HUREEIC
EIRNL, TEMZ EICRERR D20, o UOTHT L Z N8 L. Fl 203,
f—DOEREAETHERABIOEB TFa—E 7 L8E, RIS ITEANC kT L
HMELZEL. Do UOSHEAAOFNAIT O 2 & T OMAHIMIETE 52, Fig.
5-7(b) D L 912, Z B EIRFD X FIn OB EEORBENZREE TERDL Z &hbnb.
KB TAEREM T2 m [Cbio o CTHEEZ —EICHRS Z ENEEL <, FRICHEH] R O il
2% L CIRMEE A 2 fE T EN D720, AENEFHE LW IIEHEIALETHDS. =
NEEWEECHIET 212X, FEAO Z@hE#h%2, L—% 87 v B O FMAH RO
FRENECRHIT AERENEZ NS, AidD X 51, HAif - 44 S5 o R E) =
ERDGEIE, RHENSORBY BLETHS. TE[15]TiX, ¥ 7 um O[alERE %

76



X _ - Straightness of Z-axis
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Fig. 5-7 Measurement of the shaft diameter considering (a) the alignment error and (b) the
straightness of the Z-axis in the X-direction.

LORKHEMZEANT, VL= T o B OFMATHOMEES X E2FEML, 5
OO ISR L CREEDRKREN 34um Tho7e ZEE2HEL TW5DH. BEOHIE
FEE (£50um) IZxF L THpIc/hEWeEZ X 65720, TEWOIERER )G, X filim
D7 —T8 ((HER) ONBZ#R x5 F#t2HH L.
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5.4 R SFHRIOKRIEEER
5.4.1 [B] $5 *t ¥R 44 oD e EIl T2

KA CNC ez 2 W T, IBELE VAT A2 ERORE TRICBW TRIET 5. TI7E
MeERDER 1Im ORER— & & I L2 KkEE % Fig. 5-8(a)l2~ 3. LGN TIT,
JL—rTu—2%Zm) FFEMMTYa vy 7O L2 RETIHEL D0, BEDZE
MITES Ebnd. TIEBBAEEERZ EICaHT2 X0 REERERS AT A fHb 5
BN ENEL, ARBEBOEELBMVRS ZEBE LY. LrLens, TIEYD
[mlx, #EHE e COBEREICERT2ERTHD, MFE#=, 274 Ny, Wi
A SN D ALICE L IR ESIE A 72 STV 5D, FRCEEEEEHO 2 e Rk,
0— X OBEBEEXFFTHY Y — T A ORI, SO EESEE 2 MR 5 DI 0 A
Thd. HEEOMERDICELTIE, X Z#ioZiZitg 0.0010 mm HALTHS T
X0, FEEOBBEX, FHORMENSICREL 52 5. EHE RPNk, v —
NN FFENT-BEGSMT v 72 A L. THEREREOREBIZL-T, M
THRDOKRA —NALEITFE ST 252 2 b0 REMENH 5720, T & &l
AHEARLATRAAF v~ o FIEEFINEE L VR S.

~ Y
U\ Reference
W planes

' s g T T —— 3 iy ~R e o
S Carriage = e T l % ”‘7 E

Touch trigger probe

Ao

Fig. 5-8 Photograph of the on-machine measurement system. (a) Workpiece and a large CNC lathe.
(b) View from the carriage to the tailstock side. (c) Laser tracker mounted on another carriage that is
stationary during the experiment. (d) View from the laser tracker side to the carriage. (e) Enlarged
view of a touch-trigger probe attached to a lamella and an SMR fixed aside.
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RHRIFEBR T, BEHNC KD ARA — AL BT T L7cREETH M L, "Rl K< A
JHA=FIZEoT, HHNPCORA—/VREEEEZFHI L2, —@#o TR TIE, &EF
BICKT 2WBI2H D IAZBEET L L, WGOBRICERKTL2EELDH L. TOZ
W, BIMTLEZRRIIBIT D L1, LT v 7T AR TEOKRGEFIEZ FEMICHRE L T
W5,

5.4.2 [B] 5 Xt #R 4K O < ik BRI 5B BX

SESERBRE T CoARAR NRMIENMTAD Z L2 RAET D720, HEUEREL LTHE
2% 20°C IZH LT, BLZ12°C ORETCEREZITo/I. B—FMN o220 LIEWE
FTi, EEEENDL R D TEBMOS A TEDOIMERAEL THD. flxide—
Z OFAGFEICE L TIE, 24 m OFRA —BBEBICH LT, HE~DOEER 0.2 mm
BAETDH., LiehoT, TOHTHYRRESKREZHTLERD S, T IT KR
ETHHZ EEIET LN, BRHMHEICOZ 252175 HA T, TEDS TIE#HKIC
NI DIBENSMLLBORELEET MMEL, AN SETHTHAMALMEL 2D,

5.4.2.1 RIEAEE

FE &AW L—4% ~Z » 7 (Automated Precision Inc. Radian) % Fig. 5-8(c)IZ /&
I, BREX—47 v b TH DHERIRK S8 (Spherically mounted retroreflector ; SMR)i%, Fig.
5-8€)D L DT T AT & XiFND, AA — /OBy & T e <INLT 5 72D O R
WO D iz, =73y hR—=ZXZHWTHEE L. #EOERNIZ 3 miE7 U XA
DHDIAALTHY, EROFLITEBWT, AFEEZ A & ATIC 180° F MK T 5 2
ET, V=Y T o h LOBEBAFTS. V=Y T v HIL ADM & TR A [EEHIC
iz 5. T#EFD He-Ne L —H1% 0.08 um D43 fiFfE & 0.5ppm DOFEE A A L, ADM L%
AVEIL 0.1 um & 10ppm TH D . FHHIHFITHEE ORI A LR WER Y, IR G W
EREBWTFWEHMELEI NS, FHBREICB T 2R[IESCKIEOLEEIIR L TiE, B
IZ K DHEEERHD>TnD., V=PRI v hDAf va=y MNE, =W EE2EH
LT, fii5 OEEECHME L OREICHET S, 2O, REGITE ORI E)
P (B 20, HIRFAEERS, JEMERE, o TEEMBZR L) ORBRR NI I IZHEEEZL-
72, Fig. 59l v AT A Ok Z o~ 3. L—H h T v I OB & I EEROBUSIE PC
TITH. £7, BHRAKERIEEINE S A7 L (Testo Saveris), B X UNCNC & (7 7+ v
7 Series 30i) & OEEHAEICE L TH, PCNOHHY 7 hU = 7ITHA Liz. CNC %
BCEITINTT0 T T LML T, FHEESCHBEIORES, BT v —7 Ol
MiTbhns. BIRKFEEZEBERET ey 74 REICLEDL, EEEOEBE 25| H
LThr7y W EWEOER 3EEERZMEET 5. Fig. 5-10 12777 L9512, TEMOES
FHNZ o REWVEREZ ST 2 85I ZEZHE L, X FHIZEBE S TGEM
T1REZFNTLZET, TIFEBMOBIERICES L, L—% 7 v I BIERERE
T&ED.
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Touch trigger probe Laser tracker Temperature sensors
Gauge block
ADM Workpiece
Interferometer Carriage
CNC controller Laser tracker

Coordinate Measurement Length Temperature
data settings data data
PC

Fig. 5-9 System diagram.

1]
!

Laser tracker

(p) Gaugeblock (C)

i 500 mm

L tracker,

Fig. 5-10 Experimental setup. (a) Laser tracker coordinate aligned parallel to the machine coordinate.

(b) Calibration step. (c) Photograph of the gauge block as a calibration artefact. (d) Measurement of
wheel positions.
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5422 FO—J¢ERERT7—T14279 F

SO 7 e — ey U AT MF S E I ERENH D03, 3 RICEHNCE T 5 F
Btk AE M ORGHENFFICERE L2 5[18]. EBRTIXELZ6mMmM OLE—EKE, E&
200 mm O ¥ 7 IO RHAZA T A%, BGWORELYT um (TR 20T &
Bt A \‘/7’“I\U7f7"m~7“@7’${$ (Renishaw RMP600) [19]\cHi 0 (F1F7-. 5 A 5 &
7'u— T RIEOEG X, AT — /N BIRE 2 mMAEEEIZE Y, ROV
B (£ 2 pm) 7%?60. CNC 7u 7' 7 A2k - T, CNC #@E 1T 7 v —7HEEDH 21k -
AL 2 HIE T 57210 TR, HERBRMOEZD DY — 7 U AR /NT A —H BRET
5. FHAMEIL CNC 2 E I —FEICiisk S, PCICERE S NG,

Hg5m@%;w©m7uyﬁﬁ~y’ié&ﬁiﬁ%%# IEOME 500 mm oD i il
Tuy =y (I M) 1, SHLEOREIZ ZEEFEITERD KO ICEE L.
ROFHHE L TTry 7 X —YOliMmE7n—Er 7 L-0b, EATRENENLD Y
T NEONRT A —HEFRE L, TVEBEM O RIZEB T 2 3HME 4 500 mm (26 bE 7.
V—H NT o D OEBERIIZ ORF R CTHEBEERE T 74 A FERTEY, 7avy s
7~y@@ﬂﬁé_ﬁmﬁéumm@tﬁ@ DB TEHITE 5. flziE, 11.5°C T
T 55E, EHERETHDHT,, = 20°C TOKRIEMIZX LT, %%@Eéiﬂ%@
B2 lohSWMixE &ED. 22T, A0—U 7B EEANL, 20°C IZBIFHAA—
w%ﬁ%@ﬁﬁhékbk.Eé&E@%E%T%M&l_mf.ﬁ*ﬁ@7m~t/7
OFHMEIT 1 um BLF E/NEL, TEEBBIIA Y~ > V3N L7 pLE ik o FETh
HEVZD. THHEORENSIE, 3 WLstCET AL —Y N7 v W OKIEE (3.6
pm/m) IZESW TR 72, 2L Fig. 5-10(b) D X 512, 7 v v 7 F— OFRENER
ITHT DB, ~y FORMEBEIZES ZL2ZB@LIEbLOT, RN DOERE
WaEhoiz., Znb0BEREMHAG DY TILERENS (k=2) 1£7.8um Tho 7.

Table 5-1 Uncertainty related to probing and length calibration.

Source of uncertainty Uncertainty (k = 2)
Unidirectional repeatability of probing at a point® 0.47 um
Unidirectional repeatability of probing at a point® 0.97 um
Repeatability of measurement of the gauge length® 1.8 pum
Length-measuring interferometer® 7.2 um
Length of gauge block® 2.2 um

#Readout from CNC controller, carriage travel <100 mm.

® Readout from CNC controller, carriage travel >1000 mm.

° Five successive measurements with an hour interval.

9 Calibrated value of the laser tracker 3D volumetric accuracy, less than 2-m distance.
® Dimensional deviation of the 500-mm gauge block.
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5.4.2.3 EHBIFIE

FEEIREDOTETH%, RA—/LOBGEALE ORI 2 £ U7z, ~FEFH AR oA E B
% Fig. 5-10(d)IZ/R 9. Z&ZRIRA DK L TR O 7 — X 12880\ T, o pgzd
L2MD PeaBMBAET D, T u—E U 73 ZARIROMmE NS 3 mm B 7 F
HETITo. V=" T oL DNE, Tu—Er 7805 X 5 200 mm B
ToIRBENLE (AR T, Z T e —7 L TEMOTFERRVIREETITY. 2oL X,
X J7 16 OB BE BB X dil o0 RERENEIPH & TS/ S Wi, BT 5 RN
7 MOERIIEETEX 5. Lo T, Mkt RIZET 2 EHO A G HRE RIS 5.
PR A R O FHAGE F 1 CNC BEE itk S, L —HF F T v W OFHAE L &H T PC
NTHETS.

5.4.3 HRLEER

Al S VT SE B, BRHERE TH D Ty = 20°C IR HETIEAR W, RATR
TR =V TR D TEBR L.

H= Ltrackerg/Lcalibratedg (5-2)

ZZT, Lcalibratedg ii71:l o~ b‘“—i/@*i_—lf.ﬁ é THhY s ﬁ%@{ﬂ%};ﬂ:ntﬂ:i‘j‘ﬁ«é@%ﬁ é
Loo/ 3R TE I NG

Lact,-’ = (Ltracker() - Ltracker;)/:u (5'3)

Table 5-2 [ZFHHIFE R OMRFME R T A — VM IE %2 B L - fIXFFA A2 (£0.13 mm)
ZWT LTS LERTE 5. Fig. 5-11 ICRERMEN S OB % B L3R R %
Y. F77, Fig. 5-12 IIE Y AT AIC LD 2 Mo 0R LEHANE, FE#i~A 70 A —%
MO S R A R T, BRI BRE R L L THBTH S, MmO —
TEIHTH S, hEe— 2o EF TRICESMZEL, FAAENTORAL —IL
DAL EF B, EEICRESNA TV S0 ThS. Ay vy HEENHIIICE > T, &
NEFBMES BN TODET TR, FHE L TIED O WHI S 2 RIHER S R
EL, FEERHOMEIIHT LT LWHAEO —~Bznd.
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Table 5-2 Representative measurement results of the axial-wheel position (unit: mm).

Position Nominal value L, W/0 sc? Error w/o SC Lm,-' with SC° Error with SC

Pz -2425.020 -2424.824 0.196 -2425.052 -0.032
P.4 -986.520 -986.424 0.096 -986.517 0.003
P4 986.520 986.435 -0.085 986.528 0.008
P; 2425.020 2424.902 -0.118 2425.130 0.110

Scale correction (SC) converts the lengths in the actual environment to those in the standard
temperature.
®Scaling factor = 0.999906.

0.2
015 - =0~ On-machine measurement ,
4
01 L }with uncertainty in calibration !

Position error of wheel (mm)

P, PP P P, PP Py P PP PP PP

Measurement points

Fig. 5-11 Experimental results of the length measurement with scale correction.

Wiz, A~y UV E SFHEBRICH LT, Z #liym ol EREEZRGET 5
7o, HMEOKIERA L —Y T AT 220 itllz 4774 0 Tirole. L—
HFFPEE (Agilent 5529A) &, L—H T v HIZ LD ZEIERDIZEET 5 it R4
Fig. 5-13 (2R, 1/~4f\1“’7‘\y7J Wkt LT, Al LA >~ Ul O BRBE (115°C)

BRI 2EOMY IR LR, L—FTFHEHIEERE TH D 20 °C ([THE s
g%%wawé L= FSEt o IE, TEMPAHEH I TWRVIRET, 0~
VU IZIER%EORERE T (12°C) THOHIZEm L. L —PTEF AT A

T, Ifﬂ%&%m%\mﬁ DI IRRE A & 2 & RE L CTHiIERS S 4 LTb\ét&b,
R 5 NN S 2 & L-MaT 2 N2 2. 1S0230-2[20] Tl, {irE &k B kBRI
HARMENSOERNEZHE L CTEY, Table 5-3 IZ/R-FT X 91 %%l@#ﬁf%ﬁﬁé_
EMTED. Fig. 5-13 DR DO SHRIT, CNODORENSOEEBERNELZLDOTHS.
FEAEE T, = 20°C 2% LT, (RIEMIC 10°C DR FABEL-HE, L—H T b
DOPEFRERLE TV —FE2AHE TS, FETHIICIE Z 847 & O 5000-6600 mm T2 A3 4
BIDD, ZHHITEHIREOERSMOER EICEEINTZ D LEEZLND.
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Fig. 5-12 Experimental results of the length measurement with scale correction.
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Fig. 5-13 Comparison between the Agilent 5529A interferometer and the laser tracker.

Table 5-3 Example of uncertainty budget estimated for the length-measuring interferometer using
environmental compensation.

Source of uncertainty Formula Standard uncertainty
Upevice 0.6 X Rpgyice X L 2.8 Lpum
Uns macHINE TOOL 0.6 X a X L X R() 28 L um
Uk macHINE TooL 0.6 X AT X L X R(a) 36 Lpum
Combined uncertainty 46 L um

where Rpgyicp=4.65 pm, a=11.7 um/m - K, R(@)==2 °C (uncertainty of temperature measurement),
AT=10°C (deviation from 20°C), R(o)==%3.0 um/m-K (uncertainty of coefficient of thermal
expansion), and L is in metres. Upgpicp 1S the uncertainty of the length-measuring instrument.
Uy macuive Toor,  Tepresents the uncertainty due to temperature measurement. Ug ycuive roor
represents the uncertainty related to the coefficient of thermal expansion.
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5.5 2276 IE DRI EER

5.5.1 THEPOERBREZDRE

H GO KA — ALEFNCRE X, ERFHMORRMEMGET 5. 22 TIETIEw &
L C, Fig. 5-14@IZRTAHRA =L DT AT MRS, HEX—EBron—%
EHWD. RA— VERHOFKGHE & FFANZEIT 817-877£0.05 mm TH 5. EBRIZH W
72 CNC JEMRILATEI O & D L 1T E7R D 72, Wik o BEE) FRAEC2Z MR 222 B4 2 Rtk 13 =
BRbsn., Lal, IMLICED L ERM LR EEERIZFECTH L. m—2iFL 2 @D
T — PV KRS REE T, ERERICEE SN D, Al o L 912, CNC ek
O X i - Z WO E AR e & OKFAFE TN, TAEWD Zicxtd 57 74 A2 b
MEEZ LOAEMEN D L. TIEWOMERREICE L T, ZHEEEOB LSS OMIEE1T
I ENTERNWEYD, ZHRABIZBVWTEEKTEORKHAZITS>. 2F Y, Fig.
5-14(b) DEHAM A 73 DM BGIZALE T S Py & Pig #ZMER L LT, Z v F T n—7 & RA
~A A —FZOEEOHBEEZR AT 5. Z OFEBRIT, HEHER E 2TV EREE (19-22 °C)
THEE L., TO, AiHEOFER & L LU CRERREOSTEE~ORE T/ S, L
FOERPNNISWIEE TS, ZHRERED SN EAFTHINCEEL B LT T REER D 5.
ZITINDLEMET L0, EMEBREOFT T T4 VFHHFEREZITD.

D

Tailstock

Fig. 5-14 Experimental arrangements for diameter measurement. (a) Rotor configuration. (b)
Overview of a high-pressure rotor loaded on a CNC lathe.
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5.5.2 EHREOAF 754 VFtAIEER

BURL A7 23 IE S AL TAEY) O FERE R AN U 7% E S L7 RBBIZ B W T, Fig. 5-7(b)lc
AL E O, EEEICHET 2RE ZTX FEREICESENICEEZ B LET. 22Tk
VDI/VDE 2617[21JiC L 7273\, 1 3CF H X% @, 2 053133 (Translation), 3 305
HIZW T 282 KT, XTX DL I ICF—XFOLEAIE, EHFRVEROERT. — 5T
XTZ & ZTY OEZAEICHT 5B/ S V. fl20E, 22 ZTY 2205 mm » 554 T
H, BREOEEL06um THo. Z0OLX 5 REMEOE v FFRELS D ZE A5 % 0
EWCEET 2720, BAatllE~LrF I T —v g k30, L—F L —W

(Etalon) (& KX 2 FHIEBR 24T > 72, FHAl~ v FORXERTE % Fig. 5-15(a)(2~3". 1 8o
SR ZE Y o EHEEICH LT, L—Y ML —HF pm A —F ORMEN S T LY R
IZZEMRREAFHITE 5. CNC EBIFER T 5 2O H THRK SIS 728, Fig. 5-15(b)
DX DI e Y A AW BB 2 3Rl ZEA L, v v F 77 L —3 3 Ui
L HEAEE RN S, EEBIOFHAICBIT S L —F L —V OREME &, FHlx5
Th 2 K HBEOBENNEN %2 Fig. 5-15(c)I12/~ 7. EBRFOIEEIX 19-20°C Th - 7-.

Z
,y1 Oﬂ
X
> (v)

Reflector

Fig. 5-15 Indirect volumetric error measurement for an unloaded machine tool: (a) Lasertracer
mounted on a workpiece bed, (b) tracking a cats-eye reflector fixed on the carriage, and (c) schematic
of the arrangements and reflector paths.

86



HEICLE e 4 O3 POH E, Y7 b7 (Etalon TRAC-CAL) TIEMLE R
BLOEHEE, ©yF-a—-m—)Lih% EAEREZRE L. Ro—% Fig. 5-16
IZRT. XTZ & ZTY O BB E TEAFHIICEENICEELZ LTS 20nolcxt LT, ZTX
1%-7000 mm AFIE O 2 M CEHEI L 7235 SIS IE R R SHEEN A T D XTX O EMRLE
WDIZEE LTI, EARDOHEXFHIC LB 7 BRENFIFH 2340 30 mm Tod 5 72D EIT/ NI\,
BH SN A S O3 % Table 5-4 (27”3, JEME CIIBELE ORI &, BRI 3
WHFHZEA L2 L2k D, ZTX R ZTY ORFEN SN R E WS, um 4 —4
TXEMBRELZIET A ENRRETH - 72,

0 0.02
0.02 - 0
—_ — -0.02
E o0 E on
E 008 ¢ E oo
-0.08 -0.08
-0.1 L 1 L I I -0.1 L L L L
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X position (mm) Z position (mm)
Straightness error XTZ (at Tg) Straightness error ZTY (at Tgy)

Fig. 5-16 Results of the multilateration by the Lasertracer.
Table 5-4 Uncertainty parameters related to the Lasertracer measurement.

Error Uncertainty (k = 2)
Position error XTX 1.3 um
Straightness error XTZ 0.8 um
Straightness error ZTX 5.1 um
Straightness error ZTY 8.6 um

5.5.3 HEEODA VL UaAIER

ZTX OBFBEENERFINCEE TH L Z LD, TEHEZEHELZRETOEESD
EENEE A HIET5729, Fig. 5-17 IR T 4~V U aHIOBRY @A L. v—W%
N7 BIFRIEICHEALZLO LR THY, v —X ORIHEHIC ZMZ2 HWTERE L.
kT v B ERERIE, Fig. 5-17(@)2~7 3 MU ko TRE L=, 3RS & 72 5 BRI B
B, (EEE DT AT THEIC Fig. 5-17(b) DR AE TREE L, B FHH D 3t G567 & & £ 2400
mm @O Z $hEREhEFH Ik LT, 200 mm MR CEEE LTS, L—F FL—HIT &
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WRIHLEZEEEL, Ao~y oL —F b7 v D2 AEbE TR LEMEEE Fig.
5-18 12" T . L—H T v W & TAEMO EHEICFHE LT ZTX OEEE 253 55613,
FALAAFEORERENSICEBET HDLERDH S, 22 TliE, 532 TSHN, ZERETE
52 2 W2 HIRIE S D FEE[L5)IC L DA EDOR K%, GO RfEr S & LTEET
L. LEPLOEFCKFAEELIRELZL—F ML —HIZH LT, £~ OHEBE
FHEICUE, BRIR S S 852 THATE L VA Im FHEICERE L 7=, WA o B B AR 5,
BLZ002mm OEEZETTHDIN, ZOL)RFEREOREL, TNThOEREE
WRTO, TFEBORESMICEIDIEENRELTVWDLIEDEEZZOND. ZTRHODHE
RZHSNTTH72DI20E, RIFEZEREEICOVWTELICHERIVLETHD. LA
NH, V=B RrIF o BICEDA 0~ UFHNCE L T, LEMRES S-SR
WT, FEAEOEBEEZESVHBEMETIHMTE S Z LR bhoTt.

Fig. 5-17 Experimental arrangements for diameter measurement: (a) definition of coordinate and (b)
touch probe and a SMR fixed on a lamella.
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Fig. 5-18 Experimental results for straightness measurement.
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5.5.4 HREER

BRI A EZBT 25720, e —7 CH A Lo EBEEEICS LT, L—F R Ty
TRl L7z ZTX OB EEZFAWTHIIE L7z, fiERRE TEHRHIC L 2R 2 B L
72b D% Fig. 5-19 (2 d. B — X OBBBIEIEMICK T 257 74 A > FiEEE, SHA
D P& PllBWnT e —7 & FEEHITHML, TORTORENRRNE D EREL
TW5. WZFOREREITHRKT0.028mm DEZE OO0, HANI R 72— EHED.
BEEFHINCET A2 AN SO RMEY % Table5-5 (I~ d. FEi~vA 7 u XA —XICk 55
SMOFHHITE, B REWARENSNECTCLE IR, To—7 L 5HBITIEEN
HHMEZER T 5. EEEKE THDH 20 °C L BARDEE CHET LI5S, Aifio XL )
BREIREFIERRD 5N H0, BEEFHICET #8727 —7 17 7 7 NOBRIL,
TAEMEM O (T OHKIREEEZEBLT, SR L W BERD L. £z, H
EEFENCR T 2 T EF LI 2 X 0 EREICHC X 23R OB E HiE bR - &
Zbhb.

0.1
© }Touch probe measurement
o~ -
g =/+= Manual measurement
= 0.05
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Fig. 5-19 Experimental results for straightness measurement.

Table 5-5 Uncertainty related to the diameter measurement at standard temperature.

Source of uncertainty Uncertainty (k = 2)
Repeatability of probing 3.5 um
Straightness measurement ZTX (Laser tracker)? 3.4 um
Reference measurement” 20 gm

*Measurement uncertainty of ranging errors as a function of azimuth in commercial laser trackers.
A maximum value of the residual error of several tested trackers is shown according to [15].
®Uncertainty of a manual instrument at 800-900 mm from a catalogue [22].
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