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In this paper we will propose a concept of unknotted surfaces in the Eucli-
dean 4-space i?4 and discuss primary topics related to it. Throughout this paper,
spaces and maps will be considered in the piecewise-linear category, unless otherwise
stated. One result of this paper is as follows: A locally flat oήentable closed
connected surf ace F in i?4 satisfies that πJJRϊ-F) is an infinite cyclic group if and only
if an unknotted surface can be obtained from F by hyperboloίdal transformations
along trivial l-handles (See Theorem 2.10.). In other words, π^R^-F) is infi-
nite cyclic if and only if F is stably unknotted in i?4. As a corollary of this, if
πx(R*-F) is infinite cyclic, then the complement R^-F is homotopy equivalent to a
bouquet of one 1-sphere, 2n 2-spheres and one 3-sphere, where n is the genus of F.
We will denote by R3[t0] the hyperplane of 7?4 whose fourth coordinate t is t0,
and for a subspace A of i?3[0], A[a<t<b] means the subspace {(xyt)^Ri\
(x,0)^A,a<t<b} of Ri. The configuration of a surface in i?4 will be described
by adopting the motion picture method, (cf. R.H. Fox[4], F. Hosokawa[8], A.
Kawauchi-T. Shibuya[13] or S. Suzuki[21].)

1. A concept of unknottedness

We consider a closed, connected and orientedυ surface Fn of genus n(n>0)
in the oriented 4-space i?4. We will assume that Fn is locally flat in i?4. Before
stating our definition of unknotted surfaces, we note the following known basic
fact: Every surface Fn bounds a compact, connected orinetable 3-manifold in i?4.

(cf. H. Gluck[6], A. Kawauchi-T. Shibuya[13], Chapter II.) We will define an
unknotted surface as the boundary of a solid torus in RA. Precisely.

DEFINITION 1.1 Fn is said to be unknotted in i?4, if there exists a solid tours
Tn of genus n in RA whose boundary dTn is Fn. If such a solid torus does not
exist, then Fn is said to be knotted in i?4.

1) A non-orientable version will be described in the final section.
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In the case of 2-spheres (i.e., surfaces of genus zero), Definition 1.1 is the

usual definition of unknotted 2-sρheres in Ri and it is well-known that any un-

knotted 2-sphere is ambient isotopic to the boundary of a 3-cell in the hyperplane

The following theorem seems to justify Definition 1.1 for arbitrary unknotted

surfaces.

Theorem 1.2. Fn is unknotted in JR4 if and only if Fn is ambient isotopic to

the boundary of a regular neighborhood of an n-leafed rose Ln in i?3[0].

A 0-leafed rose Lo in R3[0] is understood as a point in i?3[0]. For n> 1 and
w-leafed rose Ln in R3[0] is a bouquet of n 1-spheres imbedded in a plane in
#[0].

For example, the surface F genus one in Fig. 1 is unknotted, since it bounds
a solid torus of genus one that is shown in Fig. 2.

Fig. 2

1.3. Proof of Theorem 1.2. It suffices to prove Theorem 1.2 for the case
n > 1. Assume Fn is unknotted. By definition, Fn bounds a solid torus Tn of genus
n. Let a system {Bly •••, Bn} be mutually disjoint n 3-cells in Tn, obtained by
thickenning a system of meridian disks of Tn> such that B=cl(Tn—B1 (J ••• U Bn)
is a 3-cell. B is ambient isotopic to a 3-cell in i?3[0]; so we assume that B is
contained in i?3[0]. Let Ln be a bouquet of n 1-spheres in Int( Tn) at a base
point vEzB which is a spine of Tn, i.e., to which Tn collapses. Choose a suffi-
ciently small, compact and connected neighborhood U(v) of v in Ln so that
U(v) contains no vertices of Ln except for v. We may consider that U(v)=Ln f] B
and B\—l<t<l]Π(Ln—U(v))=0. It is not hard to see that Ln is ambient
isotopic to an n-leafed rose in i?3[0] by an ambient isotopy of 724 keeping B[— 1 <
t<l] fixed. So, we regard Ln as an w-leafed rose in i?3[0]. Let Rl=cl(R4—
B[—l<t<l]) and cl(Ln— U(v))=lλ U ••• \JlH, where /, is a simple arc properly
imbedded in Biy i=ly 2, •••, n. Note that cl(Tn—B)=B1 U ••• ΌBn. We shall
show that there exist mutually disjoint regular neighborhoods Ht of /, in i?J
that meet the boundary 8RQ regularly and such that the pairs (BjClH^ are
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proper, i.e., dBt=(dHt) f)Bt. To prove this, triangulate i?4, so that B1\J-"\JBH

is a subcomplex of i?4, and so that /x U U /n is a subcomplex ofB1[j'"\JBn. Let
X and H/ be the barycentric second derived neighborhoods of lx U U /„ in Bx (J
\jBn and in i?4,, respectively. It is easily seen that the pair (XdH') is proper.
Since cl{Bλ U — UBn—X) is homeomorphic to cl(Fn—dB)χ [0,1], Bλ (J ••• UBn is
ambient isotopic to X by an ambient isotopy of Rt. Using this ambient iso-
topy, the desired pair (Bλ U ••• UBndH1[j ••• U#M) is obtained.

By using the uniqueness theorem of regular neighborhoods, we may assume
that flr

ί=JV(/f-,-R2)[—l^ί^l],ί=l,2, - ,» , where R3

0=cl(R3[0]-B) and iV(/f,jR?)
is a regular neighborhood of /, in Rl meeting the boundary dRl regularly.
More precisely, we can assume that (dR3

0) f] N(liy Rl)=(dB)f)Bι.
We need the following lemma:

Lemma 1.4. Let a \-sphere S1 be contained in a 2-sphere S2 and consider a
proper surface Y in S2 X [0,1], {absolutely) homeomorphic to S1 X [0,1]. If Y f] S2 X
O^S1 x 0 and Yf]S2xl=S1X 12), then Y is ambient isotopic to S1 X [0,1] by an
ambient isotopy of S2 X [0,1] keeping S2 X 0 U S2 X 1 fixed.

By using Lemma 1.4, cl{dBt—B) is ambient isotopic to cl(dN(liy R3

0)—dB)
by an ambient isotopy of cl[dHt—(dB)[—l<t<l]] keeping the boundary fixed.
Hence by using a collar neighborhood of cl[dHι — (dB)[—l<t<\]] in 7?o> we
obtain that cl(dBt — dB) is ambient isotopic to cl(dN(ln Rl)—dB) by an am-
bient isotopy of i?o keeping dRt fixed. This implies that Fn is ambient iso-
topic to the boundary of a regular neighborhood of Ln in i?3[0]. Since the
converse is obvious, we complete the proof.

1.5. Proof of Lemma 1.4. Let DaS2 be a 2-cell with dD=SK The 2-
sphere FijZ>x0U-Dxl bounds the 3-cell E in S2 X [0,1], since S2 X [0,1] c S3.
Let ^>eInt(Z)) and choose a proper simple arc α in E to which £ collapses and
such that a Π S2 X 0=/> X 0 and α Π 5 2 X 1 = £ X 1. Since there is an ambient
isotopy of S2 X [0,1] keeping S2 X 0 (J S2 X 1 fixed and carrying a to p X [0,1], it
follows from the uniqueness theorem of regular neighborhoods that E is ambient
isotopic to D X [0,1] by an ambient isotopy of S2 X [0,1] keeping S2 X 0 U S2 X 1
fixed. This proves Lemma 1.4.

Corollary 1.6. .For any unknotted surface Fn in R\ the bounding solid torus
Tn is unique up to ambient isotopies of i?4.

Proof. Let Tn be a solid trous in JR4 with dTn=Fu. It suffices to con-
struct an ambient isotopy {hs} of i?4 such that hx{T^) is a regular neighborhood
of an //-leafed rose in Rz[ϋ\. By Theorem 1.2 we can assume that Fn is the
boundary of a regular neighborhood of an w-leafed rose in ϋ3[0]. Let N(Fn) be a

2) Here, the equality symbol " = " means "equals with the orientations of d Y and diS1 X [0,1])
associated with some orientations of Yand S^ X [0,1]".
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sufficiently thin regular neighborhood of Fn in A3[0]. Then we may consider
that the union of Tn and one component C(Fn) of N(Fn)—Fn is a solid torus Tf

n.
(Note that C(Fn) is homeomorphic to Fnx(Q, 1].) Let T'n

r be a regular neigh-
borhood of an w-leafed rose in C(Fn) such that cl(Tf

n—T'/) is homeomorphic to
Fnx[Oy 1]. Since Tn is ambient isotopic to T'n and 77, is ambient isotopic to
T'n

f, the desired ambient isotopy is obtained. This completes the proof.

One may note that for n> 1 the bounding solid torus Tn is not unique up
to ambient isotopies of i?4 keeping Fn setwise fixed, because, for example, Fn is
contained in a 3-sphere S3 in JR4 so that S3 is the union of two solid tori with
common boundary Fn.

Here is another characterization of unknotted surfaces, (cf. M. Klingmann

[14].)

Theorem 1.7. Fn is ambient isotopic to a surface in R3[0] if and only if Fn

is unknotted in i?4.

We will give this proof at the last of §2, since it is convenient to use a
terminology defined in §2.

2. Hyperboloidal transformations

Let F be a (possibly disconnected) closed and oriented surface in JR4. An
oriented 3-cell B in Ri is said to span F as a 1-handle, if BΓ)F=(dB)Γ\F and
this intersection is the union of disjoint two 2-cells, and the surface F\JdB—
Int[(35) Π F] can have an orientation compatible with both the orientations of
F-{dB)Γ)F (induced from F) and dB—(dB)f]F (induced from B). Also, an
oriented 3-cell B in Λ4 spans F as a 2-handle, if B Π F=(dB) (Ί F and this inter-
section is homeomorphic to the annulus ΛS1 X [0,1], and the surface F{JdB-Int
[(dB) Π F] can have an orientation compatible with both the orientations of
F-(dB) Π F and dB—(dB) Π F.

D E F I N I T I O N 2.1. If Bly- ,Bm are mutually disjoint oriented 3-cells in

R* which span F as 1-handles, t h e n the result ing oriented surface hι(F\Bly •••,Bm)

=FOdB1U"-dBm-lnt[Ff](dB1\J"'[JdBm)) with orientation induced from
F—FΓ\(B1\J ••• \jBm) is called the surface obtained from F be hyperboloidal trans-
formations along l-handles Bly - ,Bm. Likewise, if Bly~-,Bm span F as 2-handles,
the resulting oriented surface h2(F; Bu -- ,Bm)^F U dBλ\J ••• \JdBm-Int[FΓ\
(92?! U ••• UdBm)] is called the surface obtained from F by hyperboloidal transfor-
mations along 2-handles Bly •••, Bm.

One may notice that the hyperboloidal transformations along l-handles
and 2-handles, respectively, are dual concepts each other.

We may have the following:
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2.2. For arbitrary integers m and n with \<Lm<iny if Fn is unknotted in R4,

then there exist mutaully disjoint m 3 -cells Bly"-yBmin R4 which span Fn as 2-handles

and such that h2(Fn; Bly •••, Bm) is an unknotted surface of genus n—m.

We shall show the following theorem which was partially suggested to

the authors by T. Yajima:

Theorem 2.3. For arbitrary integers m andn with \<m<n and an unknotted

surface Fn of genus n in R4

y one can find mutually disjoint m 3-cells Bly" yBmin R4

which span Fn as 2-handles and such that h2(Fn; Bly" yBm) is a knotted surface of

genus n—m. Furthery every knotted surface in R4 is ambient isotopίc to a surface

h\Fn\ Bly ,Bm) associated with an unknotted surface Fn and certain spanning

2-handles Bly •••, Bmfor some m and n.

The proof will be given later.

Combined 2.2 with Theorem 2.3, we conclude that the knot type3) of the

surface h2(Fn; Bly - yBm) in R4 depends on the choice of 2-handles Bly •••,#,„, even

if Fn is unknotted. In case Fn is knotted, the same assertion has been obtained

by T. Yajima[23]. (See 3.2 later for further topics on this.)

On the other hand, concerning 1-handles, we shall obtain the following:

Theorem 2.4. Given an unknotted surface Fn and mutually disjoint Z-cells

Bly-- yBm in R4 which span Fn as l-handles, then the resulting surface h1(Fn;Bly-",Bm)

of genus n-{-m is necessarily unknotted.

DEFINITION 2.5. A 1-handle B on a surface F in JR4 is said to be trivial, if

there exists a 4-cell N4 in R4 containing B such that N Π F~(dN) Π F and this

intersection is a 2-cell. [Note that the attaching two 2-cells of B to F are con-

tained in the 2-cell (dN)ΠF, since (dB)ΠF=BΓ\Fc:N Γ\F=(dN)ΠF.]

From the proof of Theorem 1.2 and trivial observations, one can easily

see that hι(F\B^) and h1(F;B2) belong to the same knot type for arbitrary two

trivial l-handles Bl9 B2 on F in R4.

REMARK 2.6.

surface hλ(Fn\Bly

In case Fn is a knotted surface, then the knot type of the

-,Bm) generally depends on the choice of l-handles Bly •••,

Bm. For example, let us consider the 2-sphere S illustrated in Fig. 3.

t=-2 t=\ t = 2

Fig. 3

3) The knot type of F in R* is the class of imbedded surfaces F' in R4 such that there exists
a homeomorphism R4-*R* sending F onto F' with orientations on R4 and on F and F'
(if F is orientable) preserved.
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This 2-sphere S is certainly knotted, since the fundamental group π^R4—S) has

a presentation (a, b: aba—bab) whose Alexander polynomial is t2—ί+1. [In fact,

this 2-sρhere has the same knot type as the spun 2-knot of a trefoil.] Let B be a

3-cell that spans S as a 1-handle, as shown in Fig. 4.

Fig. 4

The surface F1=hι(S] .B) of genus one is illustrated in Fig. 5.

M

ί = - 3 ί = -
ft

t = 2 t==3

Fig. 5

The fundamental group π1(Ri—F1) is easily seen to be an infinite cyclic group,

fin 2.9 wre shall show that this surface Fx is actually unknotted.] On the other

hand, consider a surface F{ obtained from S by a hyperboloidal transformation

along a trivial 1-handle. The fundamental group .πx(RA—F') is isomorphic

to the group πx(R* —S) that is non-abelian. Therefore, the knot types of Fx

and F{ are distinct.

The following lemma is an important lemma of this paper.

Lemma 2.7. Consider a surface F in RA such that πx(R*—F) is an infinite

cyclic group. Then an arbitrary 1-handle B on F is trivial.

Proof. Let a be a simple proper arc in B such that the union F U a is a spine
of the union F{JB. We may assume that FΓiR3[0] is a link in R3[0]. By
sliding a along F and by deforming a itself, we can assume that a is attached to
the same component C of the link F Π R3[0] and the two attaching points of
a to C have compact and connected neighborhoods n+ and n~ in a which are
contained in R3[0]. Let β be one component of C divided by the attaching
points of a. Let α ' ^ φ - ^ U w " ) . We join the end points of a! with a
simple arc γ such that the loop β U n+ΊJ vΓ U Ύ bounds a non-singular disk D
in i?3[0] with (D—β[jn+[jn-)f](F[Ja)=0. We illustrated this situation in
Fig. 6.
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Fig. 6

The simple loop γ U a! is in general not homologous to zero in R*—F. How-
ever, by twisting γ along C(See for example Fig. 7.), we can assume that the
simple loop γ (J af is homologous to zero in R*—F.

Fig. 7

Since, by the assumption, we have the Hurewicz isomorphism π^R^—F)^
H^R^—F Z), the simple loop γ U α ' is null-homotopic in R*—F. Hence by
general position and by slight modification, this simple loop can bound a locally
flat non-singular 2-cell in RA—F. Thus, F\Ja is ambient isotopic to F with
attaching arc a° in the hyperplane i?3[0], as in Fig. 8. Then by using the

•C

a0

Fig. 8

uniqueness theorem of regular neighborhoods, one can easily find a 4-cell N4

containing B such that N ΓΊ F=(dN) Π F and this intersection is a 2-cell. That
is, B is a trivial 1-handle on F. This completes the proof.

2.8. Proof of Theorem 2.4. For an unknotted surface Fn, ^(R*—FH) is an
infinite cyclic group. The conclusion follows immediately from Lemma 2.7.

2.9. Proof of Theorem 2.3. We shall show that, for an unknotted surface
F1 of genus one, there exists a 3-cell Bλ in i?4 which spans Fλ as a 2-handle and
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such that h2(F1\B1) is a knotted 2-sphere with non-abelian fundamental group
τri(i?4—tfζF^Bi)). Then for arbitrary m and n with m<n it is easy to find
mutually disjoint 3-cells Bly"-,Bm which span an unknotted surface Fn as 2-
handles and such that h2(Fn;Bly ~-yBm) is a knotted surface of genus n—m with
π1(Ri—h2(Fn;Bly*",Bm)) isomorphic to the non-abelian group π1(Ri — h2(F1\
B^). Consider, for example, the surface Fλ in Fig. 5. This surface is actually
unknotted. In fact, let B be the 3-cell which spans Fx as a 2-handle, illust-
rated in Fig. 9. The resulting 2-sρhere S0=A2(F1;5) is clearly unknotted.

t=\

Then Theorem 2.4 shows that the surface F1^=h1(S0;B) is unknotted. Consider
the 3-cell B in Fig. 4 that spans F1 as a 2-handle. The resulting 2-sphere h^F^B)
is a knotted 2-sphere with non-abelian fundamental group τr1(/?4--λ%F1;2?)), be-
cause h2(F1 B) is S in Fig. 3. Secondly, we shall show that any knotted surface F
in i?4 is ambient isotopic to a surface h\Fn 'yBly - yBm) associated with an unknotted
surface Fn and some spanning 2-handles Bl9 - m

9Bm. Consider a compact, con-
nected orientable 3-manifold M in i?4 with dM=F. We can find mutually disjoint
3-cells Bly '"fBm in M which span F as 1-handles and such that T=cl(M—B1 U •••
l)Bm) is a solid torus with some genαs. [In fact, take a 2-complex K that is a
spine of M and let Ka) be the 1-skelton of K. Take the regular neighborhood
T'=N(K<u, M) of K^ in M. We may assume that cl{K-T) consists of m
2-cells Δj, Δ2, •••, Am for some m. For each ι, let fiί be a 3-cell thickenning Δ, in
cl{M-T). The union Λί/=71/U-B{U — UJΪί» is a regular neighborhood of iC in
M. Using the uniqueness theorem of regular neighborhoods, we obtain that Mf

is homeomorphic to M. Divide M into a solid torus T and m 3-cells Bu -fBm

corresponding to T' and B{, •••,#£, respectively, by utilizing the homeomorphism
M'->M. The desired T and Bu ~,Bm are thus obtained.] Let Fn=dTy where
n is the genus of T. By definition, Fn is unknotted. From construction, we
have F=h2(Fn;Bly '~>Bm). This completes the proof.

Theorem 2.10. A surface F in R* satisfies that π^R^—F) is an infinite cyclic
group if and only if an unknotted surface can be obtained from F by hyperboloίdal
transformations along trivial l-handles.

Proof. The hyperboloidal transformation along a trivial 1-handle does
not alter the fundamental groups of the complements of surfaces in R4. Hence
if one produce an unknotted surface from F by hyperboloίdal transformations
along trivial l-handles, then we obtain that π^Rϊ—F) is an infinite cyclic group.
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Conversely, assume that π1(R4 — F) is an infinite cyclic group. By Theorem
2.3, there are 1-handles Bx, - ,Bm on F such that h\F\Bly —,Bm) is unknotted
in R4. But by Lemma 2.7 these 1-handles Blf '",Bm are all trivial, since 7CX(R*
—F) is an infinite cyclic group. This completes the proof.

As a corollary of Theorem 2.10, we obtain the following:

Corollary 2.11. The complement R4 — Fn is homotopy equivalent to a bouquet
of one 1 sphere, 2n 2-spheres and one 3-sphere for an arbitrary surface Fn of genus
n (>0) in R4 such that π1(R4 — Fn) is an infinite cyclic group.

Proof. Let ^(RA — Fn) be an infinite cyclic group. By Theorem 2.10 there
are trivial 1-handles BΪ,—,B°m on Fn such that FH+m=h1(Fn;B°1r"9B°m) is un-
knotted in R4. It is convenient to consider that the surfaces Fn and Fn+m are
centained in the 4-sphere R4 U {°°} = S\ Identify π^S4 — Fn+m) with the infinite

cyclic group I. It is easily calculated that H2(S*^Fn+m; Z)«φZ[/] 2 ( w + ' w ) «

H2(S4—Fn; Z)ζBZ[I]2m by using the Mayer-Vietoris sequence, where~denotes
the universal cover, which is obviously an infinite cyclic cover and Z[I] denotes

the integral group ring of /. By a result of D. Quillen[19], H2(S4—Fn;Z) is a
free Z[I]-module of rank n.[D. Quillen showed precisely that a finitely generated
projective module over a polynomial ring with coefficients in a principal ideal
domain is free. Our variant is easily follows from his argument. See R.G. Swan

[24].] Next, we shall show that H3(S^Fn;Z)=0. Let M4 be the manifold
obtained from S4 by removing the interior of a regular neighborhood of F in S4.
Since H3(M; ())=0, it follows that H3(M\ Q) is finitely generated over Q. Using
H4(M;Z)=0, from the partial Poincare duality[10], Theorem 2.3, Case(5) we
obtain a duality H3(M;Q)^H0(M,dM;Q). 9M" is connected, for the homo-
morphism Hλ(dM\ Z)-+Hλ{M\ Z) induced by inclusion is onto. Hence H3(M; Q)
=H0(My dM; Q)=0. But H3(1\Ϊ;Z) is a torsion-free abelian group. Therefore

H3(f^Ftt; Z)=H3(M;Z)=0. Let fuf29 ...J2n:(S\p)-+(S4--Fn, x0) be maps

representing a Z[I]-basis for π2(S4-Fny xo)=H2(S4-Fn\ Z) and let/: (S\p)->
(S4—Fn,x0) be a map representing a generator of π1(S4—Fn,x0). The one-
point-union map /V/iV V/2ll:(5rlV*Sr?V V522.,jp)-^(5*-ί1

ll,Λ?0) clearly
gives a homotopy equivalence. Therefore, R4—Fn—S4—Fn U {°°} is homotopy
equivalent to a bouquet S1 VSI V ••• VSinVS3. This completes the proof.

2.12. Proof of Theorem 1.7. It sufficies to prove that if FndR3

y then
there exists a solid torus Tn of genus n in R4 with dTn=Fn> since the converse
follows from Theorem 1.2. By a result of R.H. Fox[5] or S. Suzuki[20], Pro-
position 1.3, Fn(dR3[0]) can be obtained from the union S=S1Ό ••• U Ss of
mutually disjoint 2-spheres Sj in i?3[0] by performing one by one hyperbo-
loidal transformations along 1-handles BlΊ •••, Bn+S_λ in i?3[0]. Push one by
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one these 1-hanclles Bn yB1 into i?3[0<Z< so that the resulting 1-

handles -B,'+S_i, •••, B{ are mutually disjoint and for each z, Sf)B'i consists of the
attaching two 2-cells of B\ to S and for each u with 0 < w < l B\ ΓιR3[u]=(SΓ)
B'i)\t—ιi\. By changing the index / of Sp if necessary, we may assume that for
each /, j= 1,2, ,s, the 2-sρhere Sj is innermost in the 2-spheres Slt , *S;. Let
0 = f o < ί 1 < ••• < ί β = l and 5 ' = £ i U — ΌB/

n+s_ι. Remove for each j the part
(SjΠB^lOKtKt^ljSj from B'iJS and then replace it by S ;.[ί=*J. Let
5/ = ^ = ^ ] a n d S '^SίU US'. Denote by £ Γ the 3-cell attaching to S'
as a 1-handle that is obtained from B\ by this subtraction. Let B"=B" U •••
UJΪίi,-!. Take the 3-cell E. in # 3 [ g bounded by S'j and let E=Eι\J ••• U£5.
From construction the union JΓU-B" is a solid torus of genus n. Since the
deformation of Fn into hι(S'; B{', •••, β,M5_i) is certainly realized by an ambient
isotopy of R* and the surface hι{S'\ B{f', •••, J5,M5_I) bounds the solid torus Ĵ U
5^, the original surface Fn bounds a solid torus Tn. This completes the proof.

3. Further topics and related problems

3.1. Unknotting problems. The unknotting problem asks whether a surface
F in R4 with the infinite cyclic fundamental group π1(R4—F) is necessarily unknotted.
[Notice that if πλ(RA—F) is infinite cyclic, then the homotopy type of R4—F is
completely determined by Corollary 2.11.] A somewhat special problem of
this is as follows: Is a surface Fn of genus n in R4 unknotted, if Fn has 2n-\-2 critical
points associated with parallel hyper planes R3[t], — 00 <^<-|-cx) ? Note that
2/z+2 is the least number of critical points which Fn can admit by the Morse's
inequality. Further, note that π1(R4 — Fn) is certainly infinite cyclic, since Fn

has just one maximal point and one minimal point. [Apply the van Kampen
theorem for, for example, a normal form of Fn in A. Kawauchi-T. Shibuya[13].]
This problem in the case n= 1 corresponds to Problem 4.30 of R. Kirby[15].
A trivial m-link of surfaces is the union of m connected surfaces which is the
boundary of the union of mutually disjoint m solid tori in R4. Then one can
find mutually disjoint m 4-cells each of which contains one of these m solid tori.
For disconnected surfaces, the corresponding problem on the least critical
points is in general false. For example, consider the 2-link F of a surface of
genus one and a 2-sphere illustrated in Fig. 10, using critical bands instead of
critical points.

11
3 t == -2 t == - 1

A
t = 0

1 ϊ
t=ί

Fig. 10

The corresponding problem asks whether this 2-link F with 4 + 2 = 6 critical
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bands is trivial. In fact, this 2-link F is non-trivial, since πι(RA—F) is not a
free group, but a free abelian group. However, we can notice that an m-Knk
Lm of 2-spheres in R* is trivial, if Lm has 2m critical points. [To see this, first
modify Lm so that Lm has only critical bands (See[13].) and then deform Lm

such that all of the maximal bands of Lm are in the level R3[l] and all of the
minimal bands of Lm are in the level R3[0]. By using the isotopy extension
theorem, we can assume that Lm[\Rz\ϋ\=Dι\J ••• \jDm, the union of mutually
disjoint 2-cells and for each s,0<s<l,LmΓ\R3\s] = [dD1 U9 A U — UdDm] [t=s]
and LΓ Π R3[l] is the union of mutually disjoint m 2-cells bounded by the link
[9AU —U9Z)W] [t=l]. (See A. Kawauchi-T. Shibuya [13] sublemma 2.8.1)
Then the Horibe and Yanagawa's lemma in [13] assures that the replacement
of 2-cells of LΓ Π R?[\] by new ones in i?3[l] deos not alter the knot type of LΓ.
Hence Lm belongs to the knot type of the boundary of [A U ••• UA»] [ 0 < ί < l ] .
That is, LΓ is trivial (See, also, S. Suzuki [21], Lemma 5.5 for a quick proof of
this assertion.)]

Another approach of the unknotting problem is to know when the surface
obtained from a trivial link of surf aces by hyperboloidal transformations is unknotted.
The problem on 1-handles asks whether the (connected) surface F obtained from a
trivial m-lίnk of surfaces by hyperboloidal transformations along m-\ 1-handles is
unknotted if π1(R4—F) is infinite cyclic. In the case m=2 this is affirmative.
The proof is essentially parallel to Y. Marumoto's proof which shows a special
case that the 2-sphere S obtained from a trivial 2-link of 2-spheres by a hyper-
boloidal transformation along a 1-handle is unknotted if π^R^—S) is infinite
cyclic (See [16].) and omitted. As a consequence, a somewhat weaker assertion
of the main theorem in F. Hosokawa[8]4) follows. That is, the 2-sphere S
with one minimal point and one saddle point and two maximal points is equi-
valent^ to an unknotted 2-sphere by an auto-homeomorphism of i?4 with the
standard piecewise-linear structure of R4 destroyed at a finite number of points.
[The proof is mainly due to S. Suzuki. Note that the knot sum S of the 2-sphere
S and the reflected inverse of S is unknotted, since it is the 2-sphere obtained from
a trivial 2-link of 2-spheres by a hyperboloidal transformation along a 1-handle
and π^R4—S) is an infinite cyclic group. Then by the inverse theorem of
B. Mazur[18], S is equivalent to an unknotted 2-sphere by a desired homeomor-
phism.] The problem on 2-handles asks whether for an unknotted surface Fn of
genus n and a 2-handle B on Fn, h\Fn\B) is unknotted if h\Fn\ B) is a surface of
genus nΛ and πι(R4—h2(Fn\B)) is infinite cyclic. It seems that this problem is
difficult even in the simplest case n=l.

3.2. Knotted surfaces and 2-handles. Our first problem was whether there

4) The proof of Lemma 2 in [8] contains a gap and hence the main theorem of [8] remains
open.

5) B. Mazur [18] called it "*-equivalent".
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is a connected surface Fn of genus n>\ such that there is no 2-handle B on Fn satisfy-

ing that h2(Fn;B) is a connected surface of genus n—\. Certainly, for each n > 1, in-

finitely many such examples of surfaces of genus n exist. In fact, K. Asano [1]
constructs infinitely many examples of surfaces Fn in R4 such that a simple closed
curve a in Fn which is null-homotopic in (R4~Fn) Dec is necessarily null-homo-
logous in Fn. Let Fn be a connected surface of genus n such that there is a
2-handle B on Fn satisfying that h\Fn\ B) is a connected surface of genus n—\.
Our second problem is whether one can necessarily find a 2-handle Bf on Fn such

that π1(R4—h2(Fn; B')) is isomorphic to π1(R4 — Fn). For n=l there is a counter-

example to this. The surface F1 of genus one illustrated in Fig. 11 is such a
counter-example.

*=-3 t=-2 t=-\ t = 2

Fig.lt

In fact, it is easy to obtain a 2-handle B on the surface Fx such that h2(F1; B)
is a knotted 2-sphere. However, for any 2-handle B' on Fl9 π^Rϊ — WiβΊ B')) is
never isomorphic to πλ(R4 — F^), because the presentation of π—π1(R4—F1) is
(a, b\ab=ba2, ba5=a5b)6\ which cannot be the group of a knotted 2-sphere in
R4.[Ύo see this, consider the abelianized commutator subgroup πf\πΠ of π—πλ

(R4—F). Let π\π' be identified with the infinite cyclic group (S) with a
specified generator t. By sending b to t, πr\π" is isomorphic to Z5ζtyi(2t—1)
as Z<^)>-modules. Suppose π is the group of a knotted 2-sphere S in *S4, i.e.,
π^πλ(M) with M=cl(S4 — N(S)) for the regular neighborhood N(S) of S in
S4. We have HX{M) Z)=Z5(t>l(2t—l) for the infinite cyclic connected cover
M of M with covering translation group <(ί]>. Note that 2/-1 is the characteri-
stic polynomial off*: H^M; Z^HX(M\ Z5). Since H\M\ Z5) - H o m Z s [Hλ{M\
Z5), ZJ, it follows that 2t— 1 is the characteristic polynomial of £*: Hι(M\ Z5)
->H\M]Z5). Using the duality Γiμ: H\M\ Z5)^H2(M, ΘM; Z5) (See[10].)
with equality (t*u) f] μ=t*1(u Π μ) for u^H\M; Z5) and the natural isomorphism
H2(M; Z5)^H2(M,dM; Z5) we obtain that the characteristic polynomal of
f*: H2(M; Z5)-^H2(M; Z5) is ί -2 . Note that H2{β\Z)=Q because of the

6) The group π with this presentation is the group of a knotted 3-sphere in R5. (See A.
Kawauchi [11] or S. Suzuki [21].)
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duality 0=H1(Λί; Z)^H2(M, dM; Z) and the boundary isomorphism 3: H3(M,
9M; Z)^H2(dM\ Z). Thus, from the universal coefficeint theorem H2(M;
Z5) is identical with a subgroup r^H^M; Z)) of HX(M\ Z) consisting of all
elements x in Hλ(M\ Z) with 5x=0. Since there is a natural isomorphism
r^H^M] Z))®Z5—H1(M; Z5), t — 2 is the characteristic polynomial of t^.: H1

(M; Z5)—>HΊ(M; Z5). This implies that 2t—l and t — 2 are equal up to units
of Z5, which is impossible. Therefore, π is not the group of a 2-sphere in S4.
(cf. [9] and M.A. Gutierrez|7].)]

3.3. The non-fibered property of surface exteriors. We show that for any
surface Fn of genus n>\ in S4, S4—Fn cannot be fibered over a circle. Let Mn=
cl(S4-N(Fn)) for a regular neighborhood N(Fn) of Fn in S\ If S4-Fn and
hence Mn is fibered over a circle, then the infinite cyclic connected cover Mn of
Mn can be written as the Cartesian product of a compact connected 3-manifold
N and the real line R1, since we work in the piecewise-linear category. In parti-
cular, H*{Mn\O)^H*(NxRι\Q) is finitely generated over O. However, we
now show that H2(Mn O) has the rank 2n as a O(ty-module , zvhere Qζt} is
the ratiofial group ring of the covering translation group <ί)> of Mn. Thus, H2

(Mn Q) is infinitely generated over O. Therefore, for n> 1 Mn and hence S4—Fn

cannot be fibered over a circle. To show that rankQ<t>H2(Mn; Q)=2n, consider
t—\ p*

the following part of the Wang exact sequence H2(Mn; Q) >H2[Mn\ Q) -» H2

(Mn Q)= rJdQ2n, where p: Mn->Mn is the covering projection. Since H1(Mn O)
= Q, it follows that t-λ'.H^M^ O)^H1(Mn; O) and hence p*\ H2(Mn; Qy>
H2{Mn: 0) is onto. Write H2(Mn Q)^^Q<tyn^T, where Tis the O<»-torsion
part of H2(Mn\ O). [Note that 0<ί> is a principal ideal domain.] Since H^M^
dMn; Q)=0, it follows that Hλ(Mn, 3MM; Q) is a finitely generated (3<ί>-torsion
module ί̂ nd t—liH^M^dM^Q^H^ΛΪ^dAΪ^O). Consider a cyclic de-
composition ρ<ί>/(/i(0)^-+βKO/(/rW) o f H ^ d t t . Q). According to
Duality Theorem (II) of A. Kawauchi[12] (See also, R.C. Blanchfield[3].), T
is O<X>-isomorphic to Q<t>l(f1(Γ1))® '&Qφl{fr(r1)) and hence / - I : T-+T
is a 0 < ( 0 " i s o m o r P n i s m Therefore we have the following exact sequence:

^ JI2(Mn;O)ITP-i O2« - 0 .

From this we have that m=2n, as desired.

3.4. The aspherίcity problem. The asphericity problem asks whether there
is a knotted surface Fn of genus n>\ in S4 such that SA — Fn is aspherical.

3.5. Non-orientable version. The case of non-orientable surfaces becomes
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somewhat complicated in comparison with the case of orientable surfaces. For
simplicity, we will only treat of a locally flat, connected non-orientable surface
F in the oriented 4-space R4. According to H. Whitney[22], the Euler number
e(F) of the disk bundle over F associated with a regular neighborhood of F in
R4 is the invariant of the knot type of F C R4. The possible value of e(F) is 2X-f-4,
2%, 2X+4, -.,4—2% (See W.S. Massey[17].), where % is the Euler characteristic
of F. Consider the projective plane P illustrated in Fig. 12. We have e(P)=-\-2.

t=-2 t=-\ t=\
Fig. 12

We choose and fix the orientation of the containing 4-space R4 so that e(P)=-{-2
and denote this P by P+. Let P_ be the projective plane obtained by the reflec-
tion of P+ on the fourth axis of R4. We have e(P_.)= — 2. Since e(F)=e(F1)+
e(F2) for the knot sum F of non-orientable surfaces Fly F2 in R4 (See W.S. Massey
[17].), it follows that the possible value of e(F) can be realized by the knot sum
of some copies of P + and P_. Let Ft . denote the knot sum of z(>0) copies of
P+ and j(>0) copies of P_ with z + j > l . Note that e(FiJ)=2i~2j and i+j is
the non-orientable genus of Fijy i.e., the Z2-rank of Ήι(Fι.\Z2).

DEFINITION 3.5.1. A non-orientable surface F in JR4 is unknotted, if F
belongs to the knot type of Ft ] for some i and j .

It is easy to see that the knot type of an unknotted surface accompanied
with the non-orientable genus and the Euler number is unique and that πλ(R4—
K{ ])=Z2 for all iyj. This also implies that the knot type of FaR4 does not
determined uniquely by the fundamental group π1(R4—F) alone. This solves,
in a sense, Preblem 30 of R.H. Fox[4] by considering the case i-\-j=\. Now we
consider a surface F in R4 such that the Euler number e(F) is 0. By an analo-
gous method of H. Gluck[6], K. Asano[2] showed that e(F)=0 if and only if F
bounds a compact 3-manifold in R4.

As an analogh of Theorem 1.2, we have the following:

3.5.2. A surface F in R4 is the boundary of a solid Klein bottle (i.e., the disk

sum of some copies of S1xB2) in R4 if and only if F is unknotted with e(F)—0.

We note that the concepts of hyperboloidal transformations along 1-handles
and 2-handles are defined as an analogy of the orientable case. Consider a
non-orientable surface F in JR4 with e(F)=0. F bounds a compact 3-manifold
in R4. Then there exist 1-handles Bl9 * ,i?m on F such that the surface Fo ob-
tained from F by hyperboloidal transformations along these 1-handles Bu ~yBm
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bounds a solid Klein bottle in R\cϊ. 2.9.). By 3.5.2, this surface Fo is unknotted
with e(F0)=0. Further, suppose ^(R4—F)=Z2. Then these 1-handles
B1,' ',Bm are all trivial by an analogy of the proof of Lemma 2.7. Since for an
arbitrary non-orientable surface F in JR4 the knot sum Ff of F and F( . for some
i, j satisfies e(F')=0, we have the following:

3.5.3. A non-orientable surface F in R4 has the fundamental group π1(R4—F)

£&Z2 and the Euler number e if and only if the knot sum of F and F{, for some i

is unknotted with Euler number e.
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