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In this paper we will propose a concept of unknotted surfaces in the Eucli-
dean 4-space R* and discuss primary topics related to it.  Throughout this paper,
spaces and maps will be considered in the piecewise-linear category, unless otherwise
stated. One result of this paper is as follows: A locally flat orientable closed
connected surface F in R* satisfies that = \(R*'-F) is an infinite cyclic group if and only
if an unknotted surface can be obtained from F by hyperboloidal transformations
along trivial l-handles (See Theorem 2.10.). In other words, =,(R*-F) is infi-
nite cyclic if and only if F is stably unknotted in R*. As a corollary of this, if
n(R*-F) is infinite cyclic, then the complement K'-F is homotopy equivalent to a
bougquet of one 1-sphere, 2n 2-spheres and one 3-sphere, where n is the genus of F.
We will denote by R®[¢,] the hyperplane of R* whose fourth coordinate ¢ is #,,
and for a subspace A of R¥0], A[a<t<b] means the subspace {(x,?)ER¢|
(x,0)e 4, a<t<b} of R*. The configuration of a surface in R* will be described
by adopting the motion picture method. (cf. R.H. Fox[4], F. Hosokawa[8], A.
Kawauchi-T. Shibuya[13] or S. Suzuki[21].)

1. A concept of unknottedness

We consider a closed, connected and oriented” surface F, of genus n(n>0)
in the oriented 4-space R*. We will assume that F, is locally flat in R*. Before
stating our definition of unknotted surfaces, we note the following known basic
fact: Ewvery surface F, bounds a compact, connected orinetable 3-manifold in R*.
(cf. H. Gluck[6], A. Kawauchi-T. Shibuya[13], Chapter II.) We will define an
unknotted surface as the boundary of a solid torus in R%. Precisely.

DerFINITION 1.1  F, is said to be unknotted in R, if there exists a solid tours
T, of genus n in R* whose boundary 97, is F,. If such a solid torus does not
exist, then F, is said to be knotted in R*.

1) A non-orientable version will be described in the final section.
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In the case of 2-spheres (i.e., surfaces of genus zero), Definition 1.1 is the
usual definition of unknotted 2-spheres in R* and it is well-known that any un-
knotted 2-sphere is ambient isotopic to the boundary of a 3-cell in the hyperplane
R¥[0].

The following theorem seems to justify Definition 1.1 for arbitrary unknotted
surfaces.

Theorem 1.2. F, is unknotted in R* if and only if F, is ambient isotopic to
the boundary of a regular neighborhood of an n-leafed rose L, in R*[0].

A 0-leafed rose L, in R*[0] is understood as a point in R¥0]. For n>1 and
n-leafed rose L, in R%[0] is a bouquet of n 1-spheres imbedded in a plane in
R¥0].

For example, the surface F genus one in Fig. 1 is unknotted, since it bounds
a solid torus of genus one that is shown in Fig. 2.

HEEBERER

HEEHERE

1.3. Proof of Theorem 1.2. It suffices to prove Theorem 1.2 for the case
n>1. Assume F, is unknotted. By definition, F, bounds a solid torus T, of genus
n. Let asystem {B,, -+, B,} be mutually disjoint n 3-cells in T,, obtained by
thickenning a system of meridian disks of T,, such that B=c/(T,—B, U --- UB,)
is a 3-cell. B is ambient isotopic to a 3-cell in R%*[0]; so we assume that B is
contained in R*[0]. Let L, be a bouquet of zn 1-spheres in Int(7,) at a base
point v €B which is a spine of T, i.e., to which T, collapses. Choose a suffi-
ciently small, compact and connected neighborhood U(v) of v in L, so that
U(v) contains no vertices of L, except for v. We may consider that U(v)=L,N B
and B[—1<t<1]N(L,—U(v))=0. It is not hard to see that L, is ambient
isotopic to an n-leafed rose in R3[0] by an ambient isotopy of R* keeping B[—1<
t<1] fixed. So, we regard L, as an n-leafed rose in R’[0]. Let Rj=cl(R‘—
B[—-1<t<1]) and ¢l(L,—U(v))=,LU--- UL, where [; is a simple arc properly
imbedded in B;,i=1, 2, ..-,n. Note that ¢/(T,—B)=B,U--UB,. We shall
show that there exist mutually disjoint regular neighborhoods H, of [, in R}
that meet the boundary 8Rj regularly and such that the pairs (B,CH,) are



UNKNOTTED SURFACES IN FOUR-SPACES 235

proper, i.e., 0B,=(0H,)N B,. 'To prove this, triangulate R so that B,U - UB,
is a subcomplex of Rj and so that /; U -+ U/, is a subcomplex of B,U -+ UB,. Let
X and H’ be the barycentric second derived neighborhoodsof , U --- U/, in B, U -++
UB, and in Rg, respectively. It is easily seen that the pair (X C H’) is proper.
Since ¢/(B,U -+- UB,—X) is homeomorphic to c/(F,—0B)x [0,1], B,U---UB, is
ambient isotopic to X by an ambient isotopy of Rj. Using this ambient iso-
topy, the desired pair (B,U---UB,CH,U - UH,) is obtained.

By using the uniqueness theorem of regular neighborhoods, we may assume
that H;=N(l;, R}) [—1<t<1],i=1,2, ---,n, where R{=cl(R*[0]—B) and N(I;, R})
is a regular neighborhood of /, in R} meeting the boundary 0R} regularly.
More precisely, we can assume that (0R3) N N(/;, R3)=(0B)N B,.

We need the following lemma:

Lemma 1.4. Let a 1-sphere S* be contained in a 2-sphere S* and consider a
proper surface Y in S* X [0,1], (absolutely) homeomorphic to S* X [0,1]. If Y N S?X
0=S'x0 and YNS*X1=8"x1?, then Y is ambient isotopic to S*x [0,1] by an
ambient isotopy of S?X [0, 1] keeping S*x0US?*x 1 fixed.

By using Lemma 1.4, cl(6B,—B) is ambient isotopic to c/(dN(/;, R})—0B)
by an ambient isotopy of cl/[0H,—(0B)[—1<t<1]] keeping the boundary fixed.
Hence by using a collar neighborhood of ¢/[0H,—(0B)[—1<t<1]] in R{, we
obtain that ¢/(0B,—0B) is ambient isotopic to c/(0N(/,, R})—0B) by an am-
bient isotopy of Rj keeping OR; fixed. This implies that F, is ambient iso-
topic to the boundary of a regular neighborhood of L, in R%*0]. Since the
converse is obvious, we complete the proof.

1.5. Proof of Lemma 1.4. Let DCS? be a 2-cell with 8D=S". The 2-
sphere Y UDX0UD X1 bounds the 3-cell E in $*x [0, 1], since S?x [0,1]C S%
Let peInt(D) and choose a proper simple arc @ in E to which E collapses and
such that aNS*X0=px0 and aNS?X1=px 1. Since there is an ambient
isotopy of §?x[0,1] keeping S?X0U .S?*x 1 fixed and carrying & to px [0, 1], it
follows from the uniqueness theorem of regular neighborhoods that E is ambient
isotopic to DX [0,1] by an ambient isotopy of S?x [0,1] keeping S2x0U S?x 1
fixed. This proves Lemma 1.4.

Corollary 1.6. For any unknotted surface F, in R*, the bounding solid torus
T, is unique up to ambient isotopies of R*.

Proof. Let T, be a solid trous in R* with 8T,=F,. It suffices to con-
struct an ambient isotopy {k;} of R* such that %,(T,) is a regular neighborhood
of an n-leafed rose in R¥0]. By Theorem 1.2 we can assume that F, is the
boundary of a regular neighborhood of an n-leafed rose in R*[0]. Let N(F,)bea

2) Here, the equality symbol “="" means “‘equals with the orientations of 8 Y and (.S x [0,1])
associated with some orientations of ¥ and S1Xx [0, 1]”.
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sufficiently thin regular neighborhood of F, in K3[0]. Then we may consider
that the union of T', and one component C(F,) of N(F,)—F, is a solid torus T',.
(Note that C(F,) is homeomorphic to F,x(0,1].) Let T/’ be a regular neigh-
borhood of an n-leafed rose in C(F,) such that ¢/(T;—T;’) is homeomorphic to
F,x[0,1]. Since T, is ambient isotopic to T and T is ambient isotopic to
T4/, the desired ambient isotopy is obtained. This completes the proof.

One may note that for n>1 the bounding solid torus T, is not unique up
to ambient isotopies of R* keeping F, setwise fixed, because, for example, F, is
contained in a 3-sphere S*® in R* so that S® is the union of two solid tori with
common boundary F,.

Here is another characterization of unknotted surfaces. (cf. M. Klingmann
[141)

Theorem 1.7. F, is ambient isotopic to a surface in R3[0] if and only if F,
is unknotted in R*.

We will give this proof at the last of §2, since it is convenient to use a
terminology defined in §2.

2. Hyperboloidal transformations

Let F be a (possibly disconnected) closed and oriented surface in R*. An
oriented 3-cell B in R*is said to span F as a 1-handle, if BN F=(0B)NF and
this intersection is the union of disjoint two 2-cells, and the surface F U0B—
Int[(0B)N F] can have an orientation compatible with both thc orientations of
F—(0@B)N F (induced from F) and d0B—(0B)N F (induced from B). Also, an
oriented 3-cell B in R* spans F as a 2-handle, if BN F=(0B)N F and this inter-
section is homeomorphic to the annulus S*x[0,1], and the surface F U09B-Int
[(B)NF] can have an orientation compatible with both the orientations of
F—(@B)NF and 0B—(0B)N F.

DrriNniTION 2.1, If By, -+, B,, are mutually disjoint oriented 3-cells in
R* which span F as 1-handles, then the resulting oriented surface #'(F;B,, -+, B,,)
=FUdB,U--0B,-Int[FN(0B,U--- U0B,)] with orientation induced from
F—FN(B,U-+-UB,) is called the surface obtained from F be hyperboloidal trans-
formations along 1-handles B,, ---,B,,. Likewise, if B), -+, B,, span F as 2-handles,
the resulting oriented surface A*F;B,,---,B,)=FU08B,U---U0B,-Int[FN
(0B,U --- U0B,,)] is called the surface obtained from F by hyperboloidal transfor-
mations along 2-handles B, -+, B,,.

One may notice that the hyperboloidal transformations along 1-handles
and 2-handles, respectively, are dual concepts each other.
We may have the following:
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2.2. For arbitrary integers m and n with 1<m<n, if F, is unknotted in R’,
then there exist mutaully disjoint m 3-cells B, -+, B,, in R* which span F, as 2-handles
and such that W*(F,; B,, -+, B,,)) is an unknotted surface of genus n—m.

We shall show the following theorem which was partially suggested to
the authors by T. Yajima:

Theorem 2.3. For arbitrary integers m and n with 1 <m<n and an unknotted
surface F, of genus n in R, one can find mutually disjoint m 3-cells B, ---,B,, in R*
which span F, as 2-handles and such that hA(F,; By, -+, B,,) is a knotted surface of
genus n—m. Further, every knotted swrface in R* is ambient isotopic to a surface
W (F,; By, -+, B,,) associated with an unknotted surface F, and certain spanning
2-handles B,, ---, B,, for some m and n.

The proof will be given later.

Combined 2.2 with Theorem 2.3, we conclude that the knot type® of the
surface h*(F,; B,,--+,B,,) in R* depends on the choice of 2-handles B,,-+,B,,, even
if F, is unknotted. In case F, is knotted, the same assertion has been obtained
by T. Yajima[23]. (See 3.2 later for further topics on this.)

On the other hand, concerning 1-handles, we shall obtain the following:

Theorem 2.4. Given an unknotted surface F, and mutually disjoint 3-cells
B,,:++,B,, in R* which span F, as 1-handles, then the resulting surface h'(F,;B,,---,B,,)
of genus n-+m 1is necessarily unknotted.

DerFINITION 2.5. A 1-handle B on a surface F in R! is said to be trivial, if
there exists a 4-cell N* in R* containing B such that NN F=(0N)NF and this
intersection is a 2-cell. [Note that the attaching two 2-cells of B to F are con-
tained in the 2-cell (AN)NF, since (B) NF=BNFCcNNF=(0N)NF.]

From the proof of Theorem 1.2 and trivial observations, one can easily
see that 4'(F;B,) and h'(F;B,) belong to the same knot type for arbitrary two
trivial 1-handles B,, B, on F in R*.

RemARK 2.6. In case F, is a knotted surface, then the knot type of the
surface #(F,; By, ---, B,) generally depends on the choice of 1-handles B, -+,
B,,. For example, let us consider the 2-sphere S illustrated in Fig. 3.

) ] 3

t=—1 t=1 t=2 t=3

Fig. 3

3) The knot type of F in R* is the class of imbedded surfaces F’ in R* such that there exists
a homeomorphism R‘—R* sending F onto F’ with orientations on R* and on F and F’

(if F is orientable) preserved.
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This 2-sphere S is certainly knotted, since the fundamental group z,(R*—.S) has
a presentation (a, b: aba=bab) whose Alexander polynomial is ##*—24-1. [In fact,
this 2-sphere has the same knot type as the spun 2-knot of a trefoil.] Let B be a
3-cell that spans S as a 1-handle, as shown in Fig. 4.

2= = =] |2

t=—1 ¢t=-0.5 t=0 t=0.5 t=1
Fig. 4

The surface F,=h'(S; B) of genus one is illustrated in Fig. 5.

100)E 00

=

Fig. 5

The fundamental group 7=,(R*—F),) is easily seen to be an infinite cyclic group.
[In 2.9 we shall show that this surface F, is actually unknotted.] On the other
hand, consider a surface F{ obtained from S by a hyperboloidal transformation
along a trivial 1-handle. The fundamental group =, (R*—F’) is isomorphic
to the group z,(R*—.S) that is non-abelian. Therefore, the knot types of F,
and F{ are distinct.

The following lemma is an important lemma of this paper.

Lemma 2.7. Consider a surface F in R* such that =,(R*—F) is an infinite
cyclic group. Then an arbitrary 1-handle B on F is trivial.

Proof. Let «a be asimple proper arc in B such that the union F' U ¢ is a spine
of the union FUB. We may assume that FNR¥0] is a link in R*[0]. By
sliding « along F and by deforming « itself, we can assume that « is attached to
the same component C of the link F N R%0] and the two attaching points of
a to C have compact and connected neighborhoods #n* and #»~ in « which are
contained in R[0]. Let B be one component of C divided by the attaching
points of . Let o’=cl(a—n*Un~). We join the end points of o’ with a
simple arc v such that the loop BUn*Un~Uv bounds a non-singular disk D
in R’[0] with (D—BUn*Un")N(FUa)=@. We illustrated this situation in
Fig. 6.
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The simple loop v U« is in general not homologous to zero in R*—F. How-
ever, by twisting v along C(See for example Fig. 7.), we can assume that the
simple loop v U’ is homologous to zero in R*—F.

Fig. 7
Since, by the assumption, we have the Hurewicz isomorphism z,(R‘—F)~
H\(R*—F; Z), the simple loop yU«’ is null-homotopic in R‘*—F. Hence by
general position and by slight modification, this simple loop can bound a locally

flat non-singular 2-cell in R*—F. Thus, F U« is ambient isotopic to F with
attaching arc o in the hyperplane R[0], as in Fig. 8. Then by using the

I
(24
Fig. 8

uniqueness theorem of regular neighborhoods, one can easily find a 4-cell N*
containing B such that NN F=(0N)N F and this intersection is a 2-cell. That
is, B is a trivial 1-handle on F. This completes the proof.

2.8. Proof of Theorem 2.4. For an unknotted surface F,, =,(R*—F,) is an
infinite cyclic group. The conclusion follows immediately from Lemma 2.7.

2.9. Proof of Theorem 2.3. We shall show that, for an unknotted surface
F, of genus one, there exists a 3-cell B, in R* which spans F, as a 2-handle and
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such that #%(F,;B,) is a knotted 2-sphere with non-abelian fundamental group
m(R*—H*(F;B))). Then for arbitrary m and n with m<n it is easy to find
mutually disjoint 3-cells B,::+,B,, which span an unknotted surface F, as 2-
handles and such that #*(F,;B,, -+, B,,) is a knotted surface of genus n—m with
m(R*—HK(F,;B,,+,B,)) isomorphic to the non-abelian group =,(R'—H(F,;
B,))). Consider, for example, the surface F, in Fig. 5. This surface is actually
unknotted. In fact, let B be the 3-cell which spans F, as a 2-handle, illust-
rated in Fig. 9. The resulting 2-sphere S,=H*(F,; B) is clearly unknotted.

& |8 &llelle

B {=—1 t=-05 =0 t=0.5 t=1
Fig. 9

Il

Then Theorem 2.4 shows that the surface F,=h'(S,; B) is unknotted. Consider
the 3-cell B in Fig. 4 that spans F, as a 2-handle. The resulting 2-sphere #*(F,; B)
is a knotted 2-sphere with non-abelian fundamental group =,(R*—#*(F,; B)), be-
cause A*(F,; B)is S'in Fig. 3. Secondly, we shall show that any knotted surface F
in R*is ambient isotopic to a surface #*(F,; B,,--,B,,) associated with an unknotted
surface F, and some spanning 2-handles B,,---,B,,. Consider a compact, con-
nected orientable 3-manifold M in R* with 9M=F. We can find mutually disjoint
3-cells By, :++, B,, in M which span F as 1-handles and such that T'=c/(M—B, U -+
UB,,) is a solid torus with some genus. [In fact, take a 2-complex K that is a
spine of M and let K® be the 1-skelton of K. Take the regular neighborhood
T'=N(K®, M) of K® in M. We may assume that ¢/(K —T") consists of m
2-cells A, A,, -++, A, for some m. For each 1, let B/ be a 3-cell thickenning A; in
c(M—T’). The union M’=T'UB{U-:-UBj, is a regular neighborhood of K in
M. Using the uniqueness theorem of regular neighborhoods, we obtain that M’
is homeomorphic to M. Divide M into a solid torus T and m 3-cells By,---,B,,
corresponding to 7 and BJ, .-+, B}, respectively, by utilizing the homeomorphism
M’—>M. The desired T and B,, -+, B,, are thus obtained.] Let F,=0T, where
n is the genus of 7. By definition, F, is unknotted. From construction, we
have F=HhF,;B,,-+,B,). This completes the proof.

Theorem 2.10. A4 surface F in R satisfies that = ,(R*— F) is an infinite cyclic
group if and only if an unknotted surface can be obtained from F by hyperboloidal
transformations along trivial 1-handles.

Proof. The hyperboloidal transformation along a trivial 1-handle does
not alter the fundamental groups of the complements of surfaces in R*. Hence
if one produce an unknotted surface from F by hyperboloidal transformations
along trivial 1-handles, then we obtain that z,(R*—F) is an infinite cyclic group.
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Conversely, assume that z,(R‘*—F) is an infinite cyclic group. By Theorem
2.3, there are 1-handles B,,-::,B,, on F such that A(F;B,, -, B,,) is unknotted

in R, But by Lemma 2.7 these 1-handles B,, -+, B,, are all trivial, since z,(R*
—F) is an infinite cyclic group. This completes the proof.

As a corollary of Theorem 2.10, we obtain the following:

Corollary 2.11. The complement R*—F, is homotopy equivalent to a bouquet
of one 1-sphere, 2n 2-spheres and one 3-sphere for an arbitrary surface F, of genus
n (>0) in R* such that = (R*—F,) is an infinite cyclic group.

Proof. Let z,(R*—F,) be an infinite cyclic group. By Theorem 2.10 there
are trivial 1-handles BY,---, B}, on F, such that F, ., =h'(F,;BY, -, B)) is un-
knotted in R*. It is convenient to consider that the surfaces F, and F,.,, are
centained in the 4-sphere R*U {0} =S*. Identify z,(S*—F,_,,) with the infinite
cyclic group 1. Tt is easily calculated that H,(S*—F,,,; Z)~PZ[IF*"~

——

Hy(S*—F,; Z)PZ[I" by using the Mayer-Vietoris sequence, where~denotes
the universal cover, which is obviously an infinite cyclic cover and Z[I] denotes
the integral group ring of 1. By a result of D. Quillen[19], Hz(éti‘"; Z)is a
free Z[I]-module of rank »#.[D. Quillen showed precisely that a finitely generated
projective module over a polynomial ring with coefficients in a principal ideal
domain is free. Our variant is easily follows from his argument. See R.G. Swan

[24].] Next, we shall show that Hs(S/';?if'n; Z)=0. Let M* be the manifold
obtained from S* by removing the interior of a regular neighborhood of Fin S*.
Since H,(M;Q)=0, it follows that H,(M;Q) is finitely generated over Q. Using
H(M;Z)=0, from the partial Poincaré duality[10], Theorem 2.3, Case(5) we
obtain a duality H*M;Q)~H(M,0M;Q). 0M is connected, for the homo-
morphism H,(0M; Z)—H,(M; Z) induced by inclusion is onto. Hence Hy(M; Q)
=H(M, dM; Q)=0. But H,(M;Z)is a torsion-free abelian group. Therefore
Hs(b::f',,; Z)=H,(M;Z)=0. Let f,,fo *, fon: (S% p)—(S*—F,, x,) be maps
representing a Z[I]-basis for =z, (S*—F,, xo):Hz(ﬁ,,; Z) and let f: (S*, p)—
(S*—F,, x,) be a map representing a generator of z,(S*—F,,x,). The one-
point-union map [V fiV-V fo,: (S*VSiV -V S35, p)— (S*—F,, x,) clearly
gives a homotopy equivalence. Therefore, R*—F,=S*—F,U {co} is homotopy
equivalent to a bouquet S'V STV -+ V.S3,V.S3. This completes the proof.

2.12. Proof of Theorem 1.7. It sufficies to prove that if F,CR® then
there exists a solid torus 7', of genus z in R* with 0T ,=F,, since the converse
follows from Theorem 1.2. By a result of R.H. Fox[5] or S. Suzuki[20], Pro-
position 1.3, F,(CR’[0]) can be obtained from the union §=S,U--US, of
mutually disjoint 2-spheres S; in R*[0] by performing one by one hyperbo-
loidal transformations along 1-handles B,, -+, B,.,_; in R¥0]. Push one by
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one these 1-handles B, ;, -*-, B; into R}[0<t¢< <) so that the resulting 1-
handles B}, ,, -+, B{ are mutually disjoint and for each 7, SN B/ consists of the
attaching two 2-cells of B/ to S and for each u with 0<u<1 B/ N Ru]=(SN
Bf)[t=u]. By changing the index j of S, if necessary, we may assume that for
each j, j=1,2,-+,s, the 2-sphere .S, is innermost in the 2-spheres Sy,++,.S,. Let
0=t,<t, < <t,=1 and B'=B{U--UBj,,_,. Remove for each j the part
(S NnB) [0<t<t]US; from B’US and then replace it by S[t=t]. Let
=S8 [t=t] and §'= S’U -US!. Denote by B!’ the 3-cell attachmg to S
as a 1- handle that is obtained from B} by this subtraction. Let B”=B{'U -
UBJi-i. Take the 3-cell E; in R[t;] bounded by S} and let E=E U UES.
From construction the union EUB” is a solid torus of genus n. Since the
deformation of F, into #'(S"; B{’, -+, B} _,) is certainly realized by an ambient
isotopy of R* and the surface #(S"; B{/,---, B}},_,) bounds the solid torus EU
B”, the original surface F, bounds a solid torus T,. This completes the proof.

3. Further topics and related problems

3.1.  Unknotting problems. The unknotting problem asks whether a surface
F in R* with the infinite cyclic fundamental group m(R*— F) is necessarily unknotted.
[Notice that if z,(R*—F) is infinite cyclic, then the homotopy type of R*—F is
completely determined by Corollary 2.11.] A somewhat special problem of
this is as follows: Is a surface F, of genus n in R* unknotted, if F, has 2n+-2 critical
points associated with parallel hyperplanes R3[t], —oo <t<+4oo? Note that
2n-+2 is the least number of critical points which F, can admit by the Morse’s
inequality. Further, note that z,(R*—F,) is certainly infinite cyclic, since F,
has just one maximal point and one minimal point. [Apply the van Kampen
theorem for, for example, a normal form of F, in A. Kawauchi-T. Shibuya[13].]
This problem in the case n=1 corresponds to Problem 4.30 of R. Kirby[15].
A trivial m-link of surfaces is the union of m connected surfaces which is the
boundary of the union of mutually disjoint 7 solid tori in R*. 'Then one can
find mutually disjoint m 4-cells each of which contains one of these m solid tori.
For disconnected surfaces, the corresponding problem on the least critical
points is in general false. For example, consider the 2-link F of a surface of
genus one and a 2-sphere illustrated in Fig. 10, using critical bands instead of
critical points.

000303 09000E

t=—1 t=0 =1
Fig. 10

The corresponding problem asks whether this 2-link F with 4--2=6 critical
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bands is trivial. In fact, this 2-link F' is non-trivial, since z,(R*—F) is not a
free group, but a free abelian group. However, we can notice that an m-link
L" of 2-spheres in R* is trivial, if L™ has 2m critical points. [To see this, first
modify L" so that L™ has only critical bands (See[13].) and then deform L"
such that all of the maximal bands of L™ are in the level R[1] and all of the
minimal bands of L” are in the level R¥[0]. By using the isotopy extension
theorem, we can assume that L" N R30]=D, U --- UD,,, the union of mutually
disjoint 2-cells and for each s, 0<s<1, L" N R¥[s]=[8D,U8D,U --- UdD,,] [t=s]
and L" N R3[1] is the union of mutually disjoint m 2-cells bounded by the link
[0D,U---UdD,] [t=1]. (See A. Kawauchi-T. Shibuya [13] sublemma 2.8.1)
Then the Horibe and Yanagawa’s lemma in [13] assures that the replacement
of 2-cells of L” N R¥[1] by new ones in R[1] deos not alter the knot type of L.
Hence L" belongs to the knot type of the boundary of [D,U---UD,][0<¢<1].
That is, L" is trivial (See, also, S. Suzuki [21], Lemma 5.5 for a quick proof of
this assertion.)]

Another approach of the unknotting problem is to know when the surface
obtained from a trivial link of surfaces by hyperboloidal transformations is unknotted.
The problem on 1-handles asks whether the (connected) surface F obtained from a
trivial m-link of surfaces by hyperboloidal transformations along m-1 1-handles is
unknotted if m(R*—F) is infinite cyclic. In the case m=2 this is affirmative.
The proof is essentially parallel to Y. Marumoto’s proof which shows a special
case that the 2-sphere S obtained from a trivial 2-link of 2-spheres by a hyper-
boloidal transformation along a 1-handle is unknotted if ,(R*—.S) is infinite
cyclic (See [16].) and omitted. As a consequence, a somewhat weaker assertion
of the main theorem in F. Hosokawa[8]" follows. That is, the 2-sphere S
with one minimal point and one saddle point and two maximal points is equi-
valent® to an unknotted 2-sphere by an auto-homeomorphism of R* with the
standard piecewise-linear structure of R* destroyed at a finite number of points.
[The proof is mainly due to S. Suzuki. Note that the knot sum S of the 2-sphere
S and the reflected inverse of S is unknotted, since it is the 2-sphere obtained from
a trivial 2-link of 2-spheres by a hyperboloidal transformation along a 1-handle
and 7,(R‘*—S) is an infinite cyclic group. Then by the inverse theorem of
B. Mazur[18], S is equivalent to an unknotted 2-sphere by a desired homeomor-
phism.] The problem on 2-handles asks whether for an unknotted surface F, of
genus n and a 2-handle B on F,, B (F,; B) is unknotted if B(F,; B) is a surface of
genus n-1 and = (R*—h*(F,; B)) is infinite cyclic. It seems that this problem is
difficult even in the simplest case n=1.

3.2. Knotted surfaces and 2-handles. Our first problem was whether therc

4) The proof of Lemma 2 in [8] contains a gap and hence the main theorem of [8] remains
open.
5) B. Mazur [18] called it “x-equivalent”.
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is a connected surface F, of genus n>1 such that there is no 2-handle B on F, satisfy-
ing that K*(F,; B) is a connected surface of genus n—1. Certainly, for eachn>1, in-
finitely many such examples of surfaces of genus 7 exist. In fact, K. Asano [1]
constructs infinitely many examples of surfaces F, in R* such that a simple closed
curve o in F, which is null-homotopic in (R*—F,) U« is necessarily null-homo-
logous in F,. Let F, be a connected surface of genus z such that there is a
2-handle B on F, satisfying that #*(F,; B) is a connected surface of genus n—1.
Our second problem is whether one can necessarily find a 2-handle B’ on F, such
that 7 \(R*— W (F,; B')) is isomorphic to m\(R*—F,). For n=1 there is a counter-
example to this. The surface F, of genus one illustrated in Fig. 11 is such a
counter-example.
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In fact, it is easy to obtain a 2-handle B on the surface F, such that #*(F,; B)
is a knotted 2-sphere. However, for any 2-handle B’ on F\, n,(R*—H*(F\; B")) is
never isomorphic to z,(R*—F)), because the presentation of z=m(R'—F)) is
(a, b|ab=ba?, ba>=a®h)®, which cannot be the group of a knotted 2-sphere in
R*.[To see this, consider the abelianized commutator subgroup z’/z”" of z=m,
(R*—F). Let =/z’ be identified with the infinite cyclic group <{¢> with a
specified generator ¢. By sending & to ¢, z//z’” is isomorphic to ZKt>/(2t—1)
as Z{ty>-modules. Suppose = is the group of a knotted 2-sphere S in S% i.e.,
n~n (M) with M=cl(S*—N(S)) for the regular neighborhood N(S) of S in
S*. We have H,(M; Z)=Zt>/(2t—1) for the infinite cyclic connected cover
M of M with covering translation group <t>. Note that 2¢-1 is the characteri-
stic polynomial of t,: H,(M; Z5)— H,(M; Z5). Since H\(M; Z5):Homzs[H1(M;
Zs), Z ], it follows that 2¢—1 is the characteristic polynomial of #*: H\(M; Zj)
— HY(M; Zs). Using the duality Np: H(M; Zs)~H,M, 0M; Z;) (See[10].)
with cquality (#*u) N p=1t5"(u N w) for uc H'(M; Z;) and the natural isomorphism
H,(M; Z)~H,(M, 0M; Z;) we obtain that the characteristic polynomal of
t*:HZ(M; Zs)— H,(M; Z5) is t—2. Note that H,(M;Z)=0 because of the

6) The group 7 with this presentation 1s the group of a knotted 3-sphere in R°. (See A.
Kawauchi [11] or S. Suzuki [21].)
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duality 0=H'(M; Z)~H,(M, 0M; Z) and the boundary isomorphism 8: H,(M,
OM; Z)~H,(0M; Z). 'Thus, from thc universal coefficeint theorem H,(M;
Zs) is identical with a subgroup 75(H,(M; Z)) of H,(M;Z) consisting of all
elements x in H(M;Z) with 5x=0. Since there is a natural isomorphism
m(H(M; Z2))QZs=H,(M; Z), t—2 is the characteristic polynomial of t: H,
(M; Z;)— H\(M; Z;). This implies that 2¢—1 and ¢—2 are equal up to units
of Z;, which is impossible. Therefore, 7 is not the group of a 2-sphere in S*.
(cf. [9] and ML.A. Gutierrez[7].)]

3.3. The non-fibered property of surface exteriors. We show that for any
surface F, of genus n>1 in S*, S*—F, cannot be fibered over a circle. Let M,=
cl(S*—N(F),)) for a regular neighborhood N(F,) of F, in S*. If S*—F, and
hence M, is fibered over a circle, then the infinite cyclic connected cover M, of
M, can be written as the Cartesian product of a compact connected 3-manifold
N and the real line R', since we work in the piecewise-linear category. In parti-
cular, Hy(M,; Q)~H (N x R'; Q) is finitely generated over Q. However, we
now show that H,(M,; O) has the rank 2n as a Q<t)>-module, where Q<t> is
the rational group ring of the covering translation group <{t> of M,. Thus, H,
(M,;0) is infinitely generated over Q. Therefore, for n>1 M, and hence S*—F,
cannot be fibered over a circle. To show that rankQ<t>H2(]l7In; 0)=2n, consider

the following part of the Wang exact sequence H,(M,; Q)t—-l»Hz(M,,; Q)P—i: H,
(M,; Q)=D0%, where p: M,—M, is the covering projection. Since H,(M,;0)
=0, it follows that t—1: H,(M,; Q)~H,(M,; O) and hence py: Hy(M,; Q)—>
Hy(M,:Q) is onto. Write H,(M,; 0)~-POt>"+ T, wherc T is the Q{¢)-torsion
part of H,(M,; Q). [Note that O<(#> is a principal ideal domain.] Since H,(M,,
oM, ; 0)=0, it follows that H,(M,, 8M,; Q) is a finitely generated Q<t>-torsion
module #nd ¢—1: H(M,, 0M,; Q)~H,(M,, 0M,; Q). Consider a cyclic de-
composition Q<E>/(fi())+ -+ OLE(f,(t)) of Hy(M,, 0M,; Q). According to
Duality Theorem (II) of A. Kawauchi[12] (Sce also, R.C. Blanchfield[3].), T
is Q<¢y-isomorphic to Q{tD/(fi(27Y)) @ -2 O<D/(f,(t7")) and hence t—1: T—T

is a O{¢)>-isomorphism. Therefore we have the following exact sequence:

_ t—1 P
IL(M,; O)| T~ (I, Q)T ™% 0 0.,
[ I
DO PO

From this we have that m=2n, as desired.

3.4. The asphericity problem. The asphericity problem asks whether there
is a knotted surface F, of genus n>11in S* such that S*—F, is aspherical.

3.5. Non-orientable version. 'The case of non-orientable surfaces becomes
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somewhat complicated in comparison with the case of orientable surfaces. For
simplicity, we will only treat of a locally flat, connected non-orientable surface
F in the oriented 4-space R*. According to H. Whitney[22], the Euler number
e(F) of the disk bundle over F associated with a regular neighborhood of F in
R*is the invariant of the knot type of FCR!. 'The possible value of e(F) is 2X -4,
2X, 2X+4,-+-,4—2X (See W.S. Massey[17].), where X is the Euler characteristic
of F. Consider the projective plane P illustrated in Fig. 12. We have e(P)=-2.

t=—-2 t=—1 t=0
Fig. 12

We choose and fix the orientation of the containing 4-space R* so that e(P)=+-2
and denote this P by P,. Let P_ be the projective plane obtained by the reflec-
tion of P, on the fourth axis of RY. We have e(P_)=—2. Since e(F)=e(F,)+
e(F,) for the knot sum I of non-orientable surfaces F;, I, in R* (See W.S. Massey
[17].), it follows that the possible value of e(F) can be realized by the knot sum
of some copies of P, and P_. Let F, ; denote the knot sum of #(>0) copies of
P, and j(>0) copies of P_ with i+j>1. Note that e(F; ;)=2i—2j and i+j is
the non-orientable genus of F; , i.e., the Z,-rank of H\(F, ;; Z,).

1,59

DrrINITION 3.5.1. A non-orientable surface F in R* is umknotted, if F
belongs to the knot type of F,  for some 7 and j.

It is easy to see that the knot type of an unknotted surface accompanied
with the non-orientable genus and the Euler number is unique and that z,(R*—
K; )=2Z, for all 4,j. 'This also implies that the knot type of F'C R’ does not
determined uniquely by the fundamental group z,(R*—F) alone. This solves,
in a sense, Preblem 30 of R.H. Fox[4] by considering the casc i+j=1. Now we
consider a surface F in R* such that the Euler number ¢(F) is 0. By an analo-
gous method of H. Gluck[6], K. Asano[2] showed that e(F)=0 if and only if F
bounds a compact 3-manifold in R*.

As an analogh of Theorem 1.2, we have the following:

3.5.2. A surface F in R*is the boundary of a solid Klein bottle (i.e., the disk
sum of some copies of S*'X B?) in R* if and only if F is unknotted with e(F)=0.

We note that the concepts of hyperboloidal transformations along 1-handles
and 2-handles are defined as an analogy of the orientable case. Consider a
non-orientable surface F in R* with e(F)=0. F bounds a compact 3-manifold
in R*. Then there exist 1-handles B,,-:+,B,, on F such that the surface F, ob-
tained from F by hyperboloidal transformations along these 1-handles B, -+, B,,
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bounds a solid Klein bottle in R'(cf. 2.9.). By 3.5.2, this surface F, is unknotted

with  e(Fy)=0.

B,,:--,B,, are all trivial by an analogy of the proof of Lemma 2.7. Since for an

Further, suppose = (R*—F)=Z, Then these 1-handles

arbitrary non-orientable surface F in R the knot sum F’ of F and F ; for some
7, j satisfies e(F/)=0, we have the following:

3.5.3.

A non-orientable surface F in R* has the fundamental group n,(R*—F)

~Z, and the Euler number e if and only if the knot sum of F and F;; for some i
is unknotted with Euler number e.
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