

Title	Proposals for unknotted surfaces in four-spaces
Author(s)	Hosokawa, Fujitsugu; Kawauchi, Akio
Citation	Osaka Journal of Mathematics. 1979, 16(1), p. 233–248
Version Type	VoR
URL	https://doi.org/10.18910/6174
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Hosokawa, F. and Kawauchi, A. Osaka J. Math. 16 (1979), 233-248

PROPOSALS FOR UNKNOTTED SURFACES IN FOUR-SPACES

Dedicated to Professor A. Komatu on his 70th birthday

FUJITSUGU HOSOKAWA AND AKIO KAWAUCHI

(Received November 24, 1977)

In this paper we will propose a concept of unknotted surfaces in the Euclidean 4-space R^4 and discuss primary topics related to it. Throughout this paper. spaces and maps will be considered in the piecewise-linear category, unless otherwise stated. One result of this paper is as follows: A locally flat orientable closed connected surface F in \mathbb{R}^4 satisfies that $\pi_1(\mathbb{R}^4$ -F) is an infinite cyclic group if and only if an unknotted surface can be obtained from F by hyperboloidal transformations along trivial l-handles (See Theorem 2.10.). In other words, $\pi_1(R^4-F)$ is infinite cyclic if and only if F is stably unknotted in R^4 . As a corollary of this, if $\pi_1(R^4-F)$ is infinite cyclic, then the complement R^4-F is homotopy equivalent to a bouquet of one 1-sphere, 2n 2-spheres and one 3-sphere, where n is the genus of F. We will denote by $R^{3}[t_{0}]$ the hyperplane of R^{4} whose fourth coordinate t is t_{0} , and for a subspace A of $R^{3}[0]$, $A[a \le t \le b]$ means the subspace $\{(x, t) \in R^{4}\}$ $(x, 0) \in A, a \le t \le b$ of R^4 . The configuration of a surface in R^4 will be described by adopting the motion picture method. (cf. R.H. Fox[4], F. Hosokawa[8], A. Kawauchi-T. Shibuya[13] or S. Suzuki[21].)

1. A concept of unknottedness

We consider a closed, connected and oriented¹⁾ surface F_n of genus $n(n \ge 0)$ in the oriented 4-space R^4 . We will assume that F_n is *locally flat* in R^4 . Before stating our definition of unknotted surfaces, we note the following known basic fact: *Every surface* F_n bounds a compact, connected orinetable 3-manifold in R^4 . (cf. H. Gluck[6], A. Kawauchi-T. Shibuya[13], Chapter II.) We will define an unknotted surface as the boundary of a solid torus in R^4 . Precisely.

DEFINITION 1.1 F_n is said to be *unknotted* in R^4 , if there exists a solid tours T_n of genus n in R^4 whose boundary ∂T_n is F_n . If such a solid torus does not exist, then F_n is said to be *knotted* in R^4 .

¹⁾ A non-orientable version will be described in the final section.

In the case of 2-spheres (i.e., surfaces of genus zero), Definition 1.1 is the usual definition of unknotted 2-spheres in R^4 and it is well-known that any unknotted 2-sphere is ambient isotopic to the boundary of a 3-cell in the hyperplane R^3 [0].

The following theorem seems to justify Definition 1.1 for arbitrary unknotted surfaces.

Theorem 1.2. F_n is unknotted in \mathbb{R}^4 if and only if F_n is ambient isotopic to the boundary of a regular neighborhood of an n-leafed rose L_n in $\mathbb{R}^3[0]$.

A 0-leafed rose L_0 in $R^3[0]$ is understood as a point in $R^3[0]$. For $n \ge 1$ and *n*-leafed rose L_n in $R^3[0]$ is a bouquet of *n* 1-spheres imbedded in a plane in $R^3[0]$.

For example, the surface F genus one in Fig. 1 is unknotted, since it bounds a solid torus of genus one that is shown in Fig. 2.

Proof of Theorem 1.2. It suffices to prove Theorem 1.2 for the case 1.3. $n \ge 1$. Assume F_n is unknotted. By definition, F_n bounds a solid torus T_n of genus *n*. Let a system $\{B_1, \dots, B_n\}$ be mutually disjoint *n* 3-cells in T_n , obtained by thickenning a system of meridian disks of T_n , such that $B = cl(T_n - B_1 \cup \cdots \cup B_n)$ is a 3-cell. B is ambient isotopic to a 3-cell in $R^{3}[0]$; so we assume that B is contained in $R^{3}[0]$. Let L_{n} be a bouquet of *n* 1-spheres in $Int(T_{n})$ at a base point $v \in B$ which is a spine of T_n , i.e., to which T_n collapses. Choose a sufficiently small, compact and connected neighborhood U(v) of v in L_n so that U(v) contains no vertices of L_n except for v. We may consider that $U(v) = L_n \cap B$ and $B[-1 \le t \le 1] \cap (L_n - U(v)) = \emptyset$. It is not hard to see that L_n is ambient isotopic to an *n*-leafed rose in $R^{3}[0]$ by an ambient isotopy of R^{4} keeping $B[-1 \leq$ $t \le 1$] fixed. So, we regard L_n as an *n*-leafed rose in $R^3[0]$. Let $R_0^4 = cl(R^4 - cl)$ $B[-1 \le t \le 1]$) and $cl(L_n - U(v)) = l_1 \cup \cdots \cup l_n$, where l_i is a simple arc properly imbedded in B_i , $i=1, 2, \dots, n$. Note that $cl(T_n-B)=B_1\cup\dots\cup B_n$. We shall show that there exist mutually disjoint regular neighborhoods H_i of l_i in R_0^4 that meet the boundary ∂R_0^4 regularly and such that the pairs $(B_i \subset H_i)$ are

proper, i.e., $\partial B_i = (\partial H_i) \cap B_i$. To prove this, triangulate R_0^4 so that $B_1 \cup \cdots \cup B_n$ is a subcomplex of R_0^4 and so that $l_1 \cup \cdots \cup l_n$ is a subcomplex of $B_1 \cup \cdots \cup B_n$. Let X and H' be the barycentric second derived neighborhoods of $l_1 \cup \cdots \cup l_n$ in $B_1 \cup \cdots \cup B_n$ and in R_0^4 , respectively. It is easily seen that the pair $(X \subset H')$ is proper. Since $cl(B_1 \cup \cdots \cup B_n - X)$ is homeomorphic to $cl(F_n - \partial B) \times [0, 1], B_1 \cup \cdots \cup B_n$ is ambient isotopic to X by an ambient isotopy of R_0^4 . Using this ambient isotopy, the desired pair $(B_1 \cup \cdots \cup B_n \subset H_1 \cup \cdots \cup H_n)$ is obtained.

By using the uniqueness theorem of regular neighborhoods, we may assume that $H_i = N(l_i, R_0^3) [-1 \le t \le 1], i=1, 2, \dots, n$, where $R_0^3 = cl(R^3[0] - B)$ and $N(l_i, R_0^3)$ is a regular neighborhood of l_i in R_0^3 meeting the boundary ∂R_0^3 regularly. More precisely, we can assume that $(\partial R_0^3) \cap N(l_i, R_0^3) = (\partial B) \cap B_i$.

We need the following lemma:

Lemma 1.4. Let a 1-sphere S^1 be contained in a 2-sphere S^2 and consider a proper surface Y in $S^2 \times [0,1]$, (absolutely) homeomorphic to $S^1 \times [0,1]$. If $Y \cap S^2 \times 0 = S^1 \times 0$ and $Y \cap S^2 \times 1 = S^1 \times 1^2$), then Y is ambient isotopic to $S^1 \times [0,1]$ by an ambient isotopy of $S^2 \times [0,1]$ keeping $S^2 \times 0 \cup S^2 \times 1$ fixed.

By using Lemma 1.4, $cl(\partial B_i - B)$ is ambient isotopic to $cl(\partial N(l_i, R_0^3) - \partial B)$ by an ambient isotopy of $cl[\partial H_i - (\partial B)[-1 \le t \le 1]]$ keeping the boundary fixed. Hence by using a collar neighborhood of $cl[\partial H_i - (\partial B)[-1 \le t \le 1]]$ in R_0^4 , we obtain that $cl(\partial B_i - \partial B)$ is ambient isotopic to $cl(\partial N(l_i, R_0^3) - \partial B)$ by an ambient isotopy of R_0^4 keeping ∂R_0^4 fixed. This implies that F_n is ambient isotopic to the boundary of a regular neighborhood of L_n in $R^3[0]$. Since the converse is obvious, we complete the proof.

1.5. Proof of Lemma 1.4. Let $D \subset S^2$ be a 2-cell with $\partial D = S^1$. The 2-sphere $Y \cup D \times 0 \cup D \times 1$ bounds the 3-cell E in $S^2 \times [0, 1]$, since $S^2 \times [0, 1] \subset S^3$. Let $p \in \text{Int}(D)$ and choose a proper simple arc α in E to which E collapses and such that $\alpha \cap S^2 \times 0 = p \times 0$ and $\alpha \cap S^2 \times 1 = p \times 1$. Since there is an ambient isotopy of $S^2 \times [0, 1]$ keeping $S^2 \times 0 \cup S^2 \times 1$ fixed and carrying α to $p \times [0, 1]$, it follows from the uniqueness theorem of regular neighborhoods that E is ambient isotopic to $D \times [0, 1]$ by an ambient isotopy of $S^2 \times [0, 1]$ keeping $S^2 \times 0 \cup S^2 \times 1$ fixed. This proves Lemma 1.4.

Corollary 1.6. For any unknotted surface F_n in \mathbb{R}^4 , the bounding solid torus T_n is unique up to ambient isotopies of \mathbb{R}^4 .

Proof. Let T_n be a solid trous in R^4 with $\partial T_n = F_n$. It suffices to construct an ambient isotopy $\{h_s\}$ of R^4 such that $h_1(T_n)$ is a regular neighborhood of an *n*-leafed rose in $R^3[0]$. By Theorem 1.2 we can assume that F_n is the boundary of a regular neighborhood of an *n*-leafed rose in $R^3[0]$. Let $N(F_n)$ be a

²⁾ Here, the equality symbol "=" means "equals with the orientations of ∂Y and $\partial(S^1 \times [0,1])$ associated with some orientations of Y and $S^1 \times [0,1]$ ".

sufficiently thin regular neighborhood of F_n in $K^3[0]$. Then we may consider that the union of T_n and one component $C(F_n)$ of $N(F_n)-F_n$ is a solid torus T'_n . (Note that $C(F_n)$ is homeomorphic to $F_n \times (0, 1]$.) Let T''_n be a regular neighborhood of an *n*-leafed rose in $C(F_n)$ such that $cl(T'_n - T''_n)$ is homeomorphic to $F_n \times [0, 1]$. Since T_n is ambient isotopic to T'_n and T'_n is ambient isotopic to T''_n , the desired ambient isotopy is obtained. This completes the proof.

One may note that for $n \ge 1$ the bounding solid torus T_n is not unique up to ambient isotopies of R^4 keeping F_n setwise fixed, because, for example, F_n is contained in a 3-sphere S^3 in R^4 so that S^3 is the union of two solid tori with common boundary F_n .

Here is another characterization of unknotted surfaces. (cf. M. Klingmann [14].)

Theorem 1.7. F_n is ambient isotopic to a surface in $R^3[0]$ if and only if F_n is unknotted in R^4 .

We will give this proof at the last of §2, since it is convenient to use a terminology defined in §2.

2. Hyperboloidal transformations

Let F be a (possibly disconnected) closed and oriented surface in \mathbb{R}^4 . An oriented 3-cell B in \mathbb{R}^4 is said to span F as a 1-handle, if $B \cap F = (\partial B) \cap F$ and this intersection is the union of disjoint two 2-cells, and the surface $F \cup \partial B$ —Int $[(\partial B) \cap F]$ can have an orientation compatible with both the orientations of $F-(\partial B) \cap F$ (induced from F) and $\partial B-(\partial B) \cap F$ (induced from B). Also, an oriented 3-cell B in \mathbb{R}^4 spans F as a 2-handle, if $B \cap F = (\partial B) \cap F$ and this intersection is homeomorphic to the annulus $S^1 \times [0,1]$, and the surface $F \cup \partial B$ -Int $[(\partial B) \cap F]$ can have an orientation compatible with both the orientations of $F-(\partial B) \cap F$ and $\partial B-(\partial B) \cap F$.

DEFINITION 2.1. If B_1, \dots, B_m are mutually disjoint oriented 3-cells in R^4 which span F as 1-handles, then the resulting oriented surface $h^1(F; B_1, \dots, B_m) = F \cup \partial B_1 \cup \dots \partial B_m$ -Int $[F \cap (\partial B_1 \cup \dots \cup \partial B_m)]$ with orientation induced from $F - F \cap (B_1 \cup \dots \cup B_m)$ is called the surface obtained from F be hyperboloidal transformations along 1-handles B_1, \dots, B_m . Likewise, if B_1, \dots, B_m span F as 2-handles, the resulting oriented surface $h^2(F; B_1, \dots, B_m) = F \cup \partial B_1 \cup \dots \cup \partial B_m$ -Int $[F \cap (\partial B_1 \cup \dots \cup \partial B_m)]$ is called the surface obtained from F by hyperboloidal transformations along 2-handles B_1, \dots, B_m .

One may notice that the hyperboloidal transformations along 1-handles and 2-handles, respectively, are dual concepts each other.

We may have the following:

2.2. For arbitrary integers m and n with $1 \le m \le n$, if F_n is unknotted in \mathbb{R}^4 , then there exist mutaully disjoint m 3-cells B_1, \dots, B_m in \mathbb{R}^4 which span F_n as 2-handles and such that $h^2(F_n; B_1, \dots, B_m)$ is an unknotted surface of genus n-m.

We shall show the following theorem which was partially suggested to the authors by T. Yajima:

Theorem 2.3. For arbitrary integers m and n with $1 \le m \le n$ and an unknotted surface F_n of genus n in \mathbb{R}^4 , one can find mutually disjoint m 3-cells B_1, \dots, B_m in \mathbb{R}^4 which span F_n as 2-handles and such that $h^2(F_n; B_1, \dots, B_m)$ is a knotted surface of genus n-m. Further, every knotted surface in \mathbb{R}^4 is ambient isotopic to a surface $h^2(F_n; B_1, \dots, B_m)$ associated with an unknotted surface F_n and certain spanning 2-handles B_1, \dots, B_m for some m and n.

The proof will be given later.

Combined 2.2 with Theorem 2.3, we conclude that the knot type³ of the surface $h^2(F_n; B_1, \dots, B_m)$ in \mathbb{R}^4 depends on the choice of 2-handles B_1, \dots, B_m , even if F_n is unknotted. In case F_n is knotted, the same assertion has been obtained by T. Yajima[23]. (See 3.2 later for further topics on this.)

On the other hand, concerning 1-handles, we shall obtain the following:

Theorem 2.4. Given an unknotted surface F_n and mutually disjoint 3-cells B_1, \dots, B_m in \mathbb{R}^4 which span F_n as 1-handles, then the resulting surface $h^1(F_n; B_1, \dots, B_m)$ of genus n+m is necessarily unknotted.

DEFINITION 2.5. A 1-handle B on a surface F in \mathbb{R}^4 is said to be *trivial*, if there exists a 4-cell \mathbb{N}^4 in \mathbb{R}^4 containing B such that $N \cap F = (\partial N) \cap F$ and this intersection is a 2-cell. [Note that the attaching two 2-cells of B to F are contained in the 2-cell $(\partial N) \cap F$, since $(\partial B) \cap F = B \cap F \subset N \cap F = (\partial N) \cap F$.]

From the proof of Theorem 1.2 and trivial observations, one can easily see that $h^1(F;B_1)$ and $h^1(F;B_2)$ belong to the same knot type for arbitrary two trivial 1-handles B_1 , B_2 on F in \mathbb{R}^4 .

REMARK 2.6. In case F_n is a knotted surface, then the knot type of the surface $h_1(F_n; B_1, \dots, B_m)$ generally depends on the choice of 1-handles B_1, \dots, B_m . For example, let us consider the 2-sphere S illustrated in Fig. 3.

3) The knot type of F in \mathbb{R}^4 is the class of imbedded surfaces F' in \mathbb{R}^4 such that there exists a homeomorphism $\mathbb{R}^4 \to \mathbb{R}^4$ sending F onto F' with orientations on \mathbb{R}^4 and on F and F'(if F is orientable) preserved.

This 2-sphere S is certainly knotted, since the fundamental group $\pi_1(R^4-S)$ has a presentation (a, b: aba=bab) whose Alexander polynomial is t^2-t+1 . [In fact, this 2-sphere has the same knot type as the spun 2-knot of a trefoil.] Let B be a 3-cell that spans S as a 1-handle, as shown in Fig. 4.

The surface $F_1 = h^1(S; B)$ of genus one is illustrated in Fig. 5.

The fundamental group $\pi_1(R^4-F_1)$ is easily seen to be an infinite cyclic group. [In 2.9 we shall show that this surface F_1 is actually unknotted.] On the other hand, consider a surface F'_1 obtained from S by a hyperboloidal transformation along a trivial 1-handle. The fundamental group $\pi_1(R^4-F')$ is isomorphic to the group $\pi_1(R^4-S)$ that is non-abelian. Therefore, the knot types of F_1 and F'_1 are distinct.

The following lemma is an important lemma of this paper.

Lemma 2.7. Consider a surface F in \mathbb{R}^4 such that $\pi_1(\mathbb{R}^4 - F)$ is an infinite cyclic group. Then an arbitrary 1-handle B on F is trivial.

Proof. Let α be a simple proper arc in B such that the union $F \cup \alpha$ is a spine of the union $F \cup B$. We may assume that $F \cap R^3[0]$ is a link in $R^3[0]$. By sliding α along F and by deforming α itself, we can assume that α is attached to the same component C of the link $F \cap R^3[0]$ and the two attaching points of α to C have compact and connected neighborhoods n^+ and n^- in α which are contained in $R^3[0]$. Let β be one component of C divided by the attaching points of α . Let $\alpha' = cl(\alpha - n^+ \cup n^-)$. We join the end points of α' with a simple arc γ such that the loop $\beta \cup n^+ \cup n^- \cup \gamma$ bounds a non-singular disk Din $R^3[0]$ with $(D - \beta \cup n^+ \cup n^-) \cap (F \cup \alpha) = \emptyset$. We illustrated this situation in Fig. 6. UNKNOTTED SURFACES IN FOUR-SPACES

The simple loop $\gamma \cup \alpha'$ is in general not homologous to zero in $\mathbb{R}^4 - F$. However, by twisting γ along C (See for example Fig. 7.), we can assume that the simple loop $\gamma \cup \alpha'$ is homologous to zero in $\mathbb{R}^4 - F$.

Since, by the assumption, we have the Hurewicz isomorphism $\pi_1(R^4-F) \approx H_1(R^4-F; Z)$, the simple loop $\gamma \cup \alpha'$ is null-homotopic in R^4-F . Hence by general position and by slight modification, this simple loop can bound a locally flat non-singular 2-cell in R^4-F . Thus, $F \cup \alpha$ is ambient isotopic to F with attaching arc α^0 in the hyperplane $R^3[0]$, as in Fig. 8. Then by using the

uniqueness theorem of regular neighborhoods, one can easily find a 4-cell N^4 containing B such that $N \cap F = (\partial N) \cap F$ and this intersection is a 2-cell. That is, B is a trivial 1-handle on F. This completes the proof.

2.8. Proof of Theorem 2.4. For an unknotted surface F_n , $\pi_1(R^4 - F_n)$ is an infinite cyclic group. The conclusion follows immediately from Lemma 2.7.

2.9. Proof of Theorem 2.3. We shall show that, for an unknotted surface F_1 of genus one, there exists a 3-cell B_1 in R^4 which spans F_1 as a 2-handle and

such that $h^2(F_1; B_1)$ is a knotted 2-sphere with non-abelian fundamental group $\pi_1(R^4 - h^2(F_1; B_1))$. Then for arbitrary m and n with $m \le n$ it is easy to find mutually disjoint 3-cells B_1, \dots, B_m which span an unknotted surface F_n as 2-handles and such that $h^2(F_n; B_1, \dots, B_m)$ is a knotted surface of genus n-m with $\pi_1(R^4 - h^2(F_n; B_1, \dots, B_m))$ isomorphic to the non-abelian group $\pi_1(R^4 - h^2(F_1; B_1))$. Consider, for example, the surface F_1 in Fig. 5. This surface is actually unknotted. In fact, let \overline{B} be the 3-cell which spans F_1 as a 2-handle, illustrated in Fig. 9. The resulting 2-sphere $S_0 = h^2(F_1; \overline{B})$ is clearly unknotted.

Then Theorem 2.4 shows that the surface $F_1 = h^1(S_0; \vec{B})$ is unknotted. Consider the 3-cell B in Fig. 4 that spans F_1 as a 2-handle. The resulting 2-sphere $h^2(F_1; B)$ is a knotted 2-sphere with non-abelian fundamental group $\pi_1(R^4 - h^2(F_1; B))$, because $h^2(F_1; B)$ is S in Fig. 3. Secondly, we shall show that any knotted surface F in R^4 is ambient isotopic to a surface $h^2(F_n; B_1, \dots, B_m)$ associated with an unknotted surface F_n and some spanning 2-handles B_1, \dots, B_m . Consider a compact, connected orientable 3-manifold M in R^4 with $\partial M = F$. We can find mutually disjoint 3-cells B_1, \dots, B_m in M which span F as 1-handles and such that $T = cl(M - B_1 \cup \dots \cup M_m)$ $\cup B_m$) is a solid torus with some genus. [In fact, take a 2-complex K that is a spine of M and let $K^{(1)}$ be the 1-skelton of K. Take the regular neighborhood $T' = N(K^{(1)}, M)$ of $K^{(1)}$ in M. We may assume that cl(K - T') consists of m2-cells $\Delta_1, \Delta_2, \dots, \Delta_m$ for some *m*. For each *i*, let B'_i be a 3-cell thickenning Δ_i in cl(M-T'). The union $M'=T'\cup B'_1\cup\cdots\cup B'_m$ is a regular neighborhood of K in M. Using the uniqueness theorem of regular neighborhoods, we obtain that M'is homeomorphic to M. Divide M into a solid torus T and m 3-cells B_1, \dots, B_m corresponding to T' and B'_1, \dots, B'_m respectively, by utilizing the homeomorphism $M' \rightarrow M$. The desired T and B_1, \dots, B_m are thus obtained.] Let $F_n = \partial T$, where *n* is the genus of *T*. By definition, F_n is unknotted. From construction, we have $F = h^2(F_n; B_1, \dots, B_m)$. This completes the proof.

Theorem 2.10. A surface F in \mathbb{R}^4 satisfies that $\pi_1(\mathbb{R}^4 - F)$ is an infinite cyclic group if and only if an unknotted surface can be obtained from F by hyperboloidal transformations along trivial 1-handles.

Proof. The hyperboloidal transformation along a trivial 1-handle does not alter the fundamental groups of the complements of surfaces in \mathbb{R}^4 . Hence if one produce an unknotted surface from F by hyperboloidal transformations along trivial 1-handles, then we obtain that $\pi_1(\mathbb{R}^4 - F)$ is an infinite cyclic group. Conversely, assume that $\pi_1(R^4 - F)$ is an infinite cyclic group. By Theorem 2.3, there are 1-handles B_1, \dots, B_m on F such that $h^1(F; B_1, \dots, B_m)$ is unknotted in R^4 . But by Lemma 2.7 these 1-handles B_1, \dots, B_m are all trivial, since $\pi_1(R^4 - F)$ is an infinite cyclic group. This completes the proof.

As a corollary of Theorem 2.10, we obtain the following:

Corollary 2.11. The complement $R^4 - F_n$ is homotopy equivalent to a bouquet of one 1-sphere, 2n 2-spheres and one 3-sphere for an arbitrary surface F_n of genus $n (\geq 0)$ in R^4 such that $\pi_1(R^4 - F_n)$ is an infinite cyclic group.

Proof. Let $\pi_1(R^4 - F_n)$ be an infinite cyclic group. By Theorem 2.10 there are trivial 1-handles B_1^0, \dots, B_m^0 on F_n such that $F_{n+m} = h^1(F_n; B_1^0, \dots, B_m^0)$ is unknotted in R^4 . It is convenient to consider that the surfaces F_n and F_{n+m} are centained in the 4-sphere $R^4 \cup \{\infty\} = S^4$. Identify $\pi_1(S^4 - F_{n \to m})$ with the infinite cyclic group I. It is easily calculated that $H_2(\widetilde{S^4-F}_{n+m};Z) \approx \oplus Z[I]^{2(n+m)} \approx$ $H_2(S^4 - F_n; Z) \oplus Z[I]^{2m}$ by using the Mayer-Vietoris sequence, where \sim denotes the universal cover, which is obviously an infinite cyclic cover and Z[I] denotes the integral group ring of I. By a result of D. Quillen[19], $H_2(\widetilde{S^4-F_n}; Z)$ is a free Z[I]-module of rank n.[D. Quillen showed precisely that a finitely generated projective module over a polynomial ring with coefficients in a principal ideal domain is free. Our variant is easily follows from his argument. See R.G. Swan [24].] Next, we shall show that $H_3(\widetilde{S^4-F_n};Z)=0$. Let M^4 be the manifold obtained from S^4 by removing the interior of a regular neighborhood of F in S^4 . Since $H_3(M;Q)=0$, it follows that $H_3(\tilde{M};Q)$ is finitely generated over Q. Using $H_4(\tilde{M};Z)=0$, from the partial Poincaré duality[10], Theorem 2.3, Case(5) we obtain a duality $H^{3}(\tilde{M}; Q) \approx H_{0}(\tilde{M}, \partial \tilde{M}; Q)$. $\partial \tilde{M}$ is connected, for the homomorphism $H_1(\partial M; Z) \rightarrow H_1(M; Z)$ induced by inclusion is onto. Hence $H_3(\tilde{M}; Q)$ $=H_0(\tilde{M}, \partial \tilde{M}; Q)=0$. But $H_3(\tilde{M}; Z)$ is a torsion-free abelian group. Therefore $H_3(\widetilde{S^4-F_n}; Z) = H_3(\tilde{M}; Z) = 0.$ Let $f_1, f_2, \dots, f_{2n}: (S^2, p) \to (S^4-F_n, x_0)$ be maps representing a Z[I]-basis for $\pi_2(S^4 - F_n, x_0) = H_2(\widetilde{S^4 - F_n}; Z)$ and let $f: (S^1, p) \rightarrow F_2(S^4 - F_n; Z)$ $(S^4 - F_n, x_0)$ be a map representing a generator of $\pi_1(S^4 - F_n, x_0)$. The onepoint-union map $f \lor f_1 \lor \cdots \lor f_{2n}: (S^1 \lor S_1^2 \lor \cdots \lor S_{2n}^2, p) \to (S^4 - F_n, x_0)$ clearly gives a homotopy equivalence. Therefore, $R^4 - F_n = S^4 - F_n \cup \{\infty\}$ is homotopy equivalent to a bouquet $S^1 \vee S_1^2 \vee \cdots \vee S_{2n}^2 \vee S^3$. This completes the proof.

2.12. Proof of Theorem 1.7. It sufficies to prove that if $F_n \subset \mathbb{R}^3$, then there exists a solid torus T_n of genus n in \mathbb{R}^4 with $\partial T_n = F_n$, since the converse follows from Theorem 1.2. By a result of R.H. Fox[5] or S. Suzuki[20], Proposition 1.3, $F_n(\subset \mathbb{R}^3[0])$ can be obtained from the union $\tilde{S} = S_1 \cup \cdots \cup S_s$ of mutually disjoint 2-spheres S_j in $\mathbb{R}^3[0]$ by performing one by one hyperboloidal transformations along 1-handles B_1, \dots, B_{n+s-1} in $\mathbb{R}^3[0]$. Push one by one these 1-handles B_{n+s-1}, \dots, B_1 into $R^3[0 \le t < +\infty)$ so that the resulting 1-handles B'_{n+s-1}, \dots, B'_1 are mutually disjoint and for each $i, \tilde{S} \cap B'_i$ consists of the attaching two 2-cells of B'_i to \tilde{S} and for each u with $0 \le u \le 1$ $B'_i \cap R^3[u] = (\tilde{S} \cap B'_i)[t=u]$. By changing the index j of S_j , if necessary, we may assume that for each $j, j=1, 2, \dots, s$, the 2-sphere S_j is innermost in the 2-spheres S_1, \dots, S_j . Let $0=t_0 < t_1 < \dots < t_s = 1$ and $\tilde{B}' = B'_1 \cup \dots \cup B'_{n+s-1}$. Remove for each j the part $(S_j \cap \tilde{B}')[0 \le t \le t_j] \cup S_j$ from $\tilde{B}' \cup \tilde{S}$ and then replace it by $S_j[t=t_j]$. Let $S'_j = S_j[t=t_j]$ and $\tilde{S}' = S'_1 \cup \dots \cup S'_s$. Denote by B'_i the 3-cell attaching to \tilde{S}' as a 1-handle that is obtained from B'_i by this subtraction. Let $\tilde{B}'' = B'_1' \cup \dots \cup E_s$. From construction the union $\tilde{E} \cup \tilde{B}''$ is a solid torus of genus n. Since the deformation of F_n into $h^1(\tilde{S}'; B'_1', \dots, B''_{n+s-1})$ is certainly realized by an ambient isotopy of R^4 and the surface $h^1(\tilde{S}'; B'_1', \dots, B''_{n+s-1})$ bounds the solid torus $\tilde{E} \cup \tilde{B}''$, the original surface F_n bounds a solid torus T_n . This completes the proof.

3. Further topics and related problems

3.1. Unknotting problems. The unknotting problem asks whether a surface F in \mathbb{R}^4 with the infinite cyclic fundamental group $\pi_1(\mathbb{R}^4-F)$ is necessarily unknotted. [Notice that if $\pi_1(R^4-F)$ is infinite cyclic, then the homotopy type of R^4-F is completely determined by Corollary 2.11.] A somewhat special problem of this is as follows: Is a surface F_n of genus n in R^4 unknotted, if F_n has 2n+2 critical points associated with parallel hyperplanes $R^3[t], -\infty < t < +\infty$? Note that 2n+2 is the least number of critical points which F_n can admit by the Morse's inequality. Further, note that $\pi_1(R^4 - F_n)$ is certainly infinite cyclic, since F_n has just one maximal point and one minimal point. [Apply the van Kampen theorem for, for example, a normal form of F_n in A. Kawauchi-T. Shibuya[13].] This problem in the case n=1 corresponds to Problem 4.30 of R. Kirby[15]. A trivial m-link of surfaces is the union of m connected surfaces which is the boundary of the union of mutually disjoint m solid tori in \mathbb{R}^4 . Then one can find mutually disjoint m 4-cells each of which contains one of these m solid tori. For disconnected surfaces, the corresponding problem on the least critical points is in general false. For example, consider the 2-link F of a surface of genus one and a 2-sphere illustrated in Fig. 10, using critical bands instead of critical points.

The corresponding problem asks whether this 2-link F with 4+2=6 critical

bands is trivial. In fact, this 2-link F is non-trivial, since $\pi_1(R^4-F)$ is not a free group, but a free abelian group. However, we can notice that an *m*-link L^m of 2-spheres in R^4 is trivial, if L^m has 2m critical points. [To see this, first modify L^m so that L^m has only critical bands (See[13].) and then deform L^m such that all of the maximal bands of L^m are in the level $R^3[1]$ and all of the minimal bands of L^m are in the level $R^3[0]$. By using the isotopy extension theorem, we can assume that $L^m \cap R^3[0] = D_1 \cup \cdots \cup D_m$, the union of mutually disjoint 2-cells and for each $s, 0 < s < 1, L^m \cap R^3[s] = [\partial D_1 \cup \partial D_2 \cup \cdots \cup \partial D_m] [t=s]$ and $L^m \cap R^3[1]$ is the union of mutually disjoint m 2-cells bounded by the link $[\partial D_1 \cup \cdots \cup \partial D_m] [t=1]$. (See A. Kawauchi-T. Shibuya [13] sublemma 2.8.1) Then the Horibe and Yanagawa's lemma in [13] assures that the replacement of 2-cells of $L^m \cap R^3[1]$ by new ones in $R^3[1]$ does not alter the knot type of L^m . Hence L^m belongs to the knot type of the boundary of $[D_1 \cup \cdots \cup D_m] [0 \le t \le 1]$. That is, L^m is trivial (See, also, S. Suzuki [21], Lemma 5.5 for a quick proof of this assertion.)]

Another approach of the unknotting problem is to know when the surface obtained from a trivial link of surfaces by hyperboloidal transformations is unknotted. The problem on 1-handles asks whether the (connected) surface F obtained from a trivial m-link of surfaces by hyperboloidal transformations along m-1 1-handles is unknotted if $\pi_1(\mathbb{R}^4 - F)$ is infinite cyclic. In the case m=2 this is affirmative. The proof is essentially parallel to Y. Marumoto's proof which shows a special case that the 2-sphere S obtained from a trivial 2-link of 2-spheres by a hyperboloidal transformation along a 1-handle is unknotted if $\pi_1(R^4-S)$ is infinite cyclic (See [16].) and omitted. As a consequence, a somewhat weaker assertion of the main theorem in F. Hosokawa^{[8]4)} follows. That is, the 2-sphere S with one minimal point and one saddle point and two maximal points is equivalent⁵⁾ to an unknotted 2-sphere by an auto-homeomorphism of R^4 with the standard piecewise-linear structure of R^4 destroyed at a finite number of points. [The proof is mainly due to S. Suzuki. Note that the knot sum \overline{S} of the 2-sphere S and the reflected inverse of S is unknotted, since it is the 2-sphere obtained from a trivial 2-link of 2-spheres by a hyperboloidal transformation along a 1-handle and $\pi_1(R^4 - \bar{S})$ is an infinite cyclic group. Then by the inverse theorem of B. Mazur [18], S is equivalent to an unknotted 2-sphere by a desired homeomorphism.] The problem on 2-handles asks whether for an unknotted surface F_n of genus n and a 2-handle B on F_n , $h^2(F_n; B)$ is unknotted if $h^2(F_n; B)$ is a surface of genus n-1 and $\pi_1(R^4 - h^2(F_n; B))$ is infinite cyclic. It seems that this problem is difficult even in the simplest case n=1.

3.2. Knotted surfaces and 2-handles. Our first problem was whether there

⁴⁾ The proof of Lemma 2 in [8] contains a gap and hence the main theorem of [8] remains open.

⁵⁾ B. Mazur [18] called it "*-equivalent".

is a connected surface F_n of genus $n \ge 1$ such that there is no 2-handle B on F_n satisfying that $h^2(F_n; B)$ is a connected surface of genus n-1. Certainly, for each $n \ge 1$, infinitely many such examples of surfaces of genus n exist. In fact, K. Asano [1] constructs infinitely many examples of surfaces F_n in R^4 such that a simple closed curve α in F_n which is null-homotopic in $(R^4 - F_n) \cup \alpha$ is necessarily null-homologous in F_n . Let F_n be a connected surface of genus n such that there is a 2-handle B on F_n satisfying that $h^2(F_n; B)$ is a connected surface of genus n-1. Our second problem is whether one can necessarily find a 2-handle B' on F_n such that $\pi_1(R^4 - h^2(F_n; B'))$ is isomorphic to $\pi_1(R^4 - F_n)$. For n=1 there is a counterexample to this. The surface F_1 of genus one illustrated in Fig. 11 is such a counter-example.

In fact, it is easy to obtain a 2-handle B on the surface F_1 such that $h^2(F_1; B)$ is a knotted 2-sphere. However, for any 2-handle B' on F_1 , $\pi_1(R^4 - h^2(F_1; B'))$ is never isomorphic to $\pi_1(R^4 - F_1)$, because the presentation of $\pi = \pi_1(R^4 - F_1)$ is $(a, b | ab = ba^2, ba^5 = a^5b)^{6}$, which cannot be the group of a knotted 2-sphere in R⁴.[To see this, consider the abelianized commutator subgroup π'/π'' of $\pi = \pi_1$ (R^4-F) . Let π/π' be identified with the infinite cyclic group $\langle t \rangle$ with a specified generator t. By sending b to t, π'/π'' is isomorphic to $Z_5\langle t \rangle/(2t-1)$ as $Z\langle t \rangle$ -modules. Suppose π is the group of a knotted 2-sphere S in S⁴, i.e., $\pi \approx \pi_1(M)$ with $M = cl(S^4 - N(S))$ for the regular neighborhood N(S) of S in S⁴. We have $H_1(\tilde{M}; Z) = Z_5 \langle t \rangle / (2t-1)$ for the infinite cyclic connected cover M of M with covering translation group $\langle t \rangle$. Note that 2t-1 is the characteristic polynomial of $t_*: H_1(\tilde{M}; Z_5) \to H_1(\tilde{M}; Z_5)$. Since $H^1(\tilde{M}; Z_5) = \operatorname{Hom}_{Z_5}[H_1(\tilde{M}; Z_5)]$ Z_5 , Z_5 , Z_5 , it follows that 2t-1 is the characteristic polynomial of t^* : $H^1(\tilde{M}; Z_5)$ $\rightarrow H^1(\tilde{M}; Z_5)$. Using the duality $\cap \mu : H^1(\tilde{M}; Z_5) \approx H_2(\tilde{M}, \partial \tilde{M}; Z_5)$ (See[10].) with equality $(t^*u) \cap \mu = t_*^{-1}(u \cap \mu)$ for $u \in H^1(\tilde{M}; Z_5)$ and the natural isomorphism $H_2(\tilde{M}; Z_5) \approx H_2(\tilde{M}, \partial \tilde{M}; Z_5)$ we obtain that the characteristic polynomal of $t_*: H_2(\tilde{M}; Z_5) \rightarrow H_2(\tilde{M}; Z_5)$ is t-2. Note that $H_2(\tilde{M}; Z)=0$ because of the

⁶⁾ The group π with this presentation is the group of a knotted 3-sphere in \mathbb{R}^5 . (See A. Kawauchi [11] or S. Suzuki [21].)

duality $0=H^1(\tilde{M};Z)\approx H_2(\tilde{M},\partial\tilde{M};Z)$ and the boundary isomorphism $\partial: H_3(\tilde{M},\partial\tilde{M};Z)\approx H_2(\partial\tilde{M};Z)$. Thus, from the universal coefficient theorem $H_2(\tilde{M};Z_5)$ is identical with a subgroup $\tau_5(H_1(\tilde{M};Z))$ of $H_1(\tilde{M};Z)$ consisting of all elements x in $H_1(\tilde{M};Z)$ with 5x=0. Since there is a natural isomorphism $\tau_5(H_1(\tilde{M};Z))\otimes Z_5\simeq H_1(\tilde{M};Z_5)$, t-2 is the characteristic polynomial of $t_*:H_1(\tilde{M};Z_5)\rightarrow H_1(\tilde{M};Z_5)$. This implies that 2t-1 and t-2 are equal up to units of Z_5 , which is impossible. Therefore, π is not the group of a 2-sphere in S^4 . (cf. [9] and M.A. Gutierrez[7].)]

3.3. The non-fibered property of surface exteriors. We show *that for any* surface F_n of genus $n \ge 1$ in S^4 , $S^4 - F_n$ cannot be fibered over a circle. Let $M_n =$ $cl(S^4 - N(F_n))$ for a regular neighborhood $N(F_n)$ of F_n in S^4 . If $S^4 - F_n$ and hence M_n is fibered over a circle, then the infinite cyclic connected cover \tilde{M}_n of M_n can be written as the Cartesian product of a compact connected 3-manifold N and the real line R^1 , since we work in the piecewise-linear category. In particular, $H_*(\tilde{M}_n; Q) \approx H_*(N \times R^1; Q)$ is finitely generated over Q. However, we now show that $H_2(\tilde{M}_n; O)$ has the rank 2n as a $O\langle t \rangle$ -module, where $O\langle t \rangle$ is the rational group ring of the covering translation group $\langle t \rangle$ of \tilde{M}_n . Thus, H_2 $(\tilde{M}_n; Q)$ is infinitely generated over Q. Therefore, for $n \ge 1$ M_n and hence $S^4 - F_n$ cannot be fibered over a circle. To show that $\operatorname{rank}_{Q \le t >} H_2(\tilde{M}_n; Q) = 2n$, consider the following part of the Wang exact sequence $H_2(\tilde{M}_n; Q) \xrightarrow{t-1} H_2(\tilde{M}_n; Q) \xrightarrow{p_*} H_2$ $(M_n; Q) = \oplus Q^{2n}$, where $p: \tilde{M}_n \to M_n$ is the covering projection. Since $H_1(M_n; Q)$ = O, it follows that $t-1: H_1(\tilde{M}_n; O) \approx H_1(\tilde{M}_n; O)$ and hence $p_*: H_2(\tilde{M}_n; O) \rightarrow H_2(\tilde{M}_n; O)$ $H_2(\tilde{M}_n; Q)$ is onto. Write $H_2(\tilde{M}_n; Q) \approx \oplus Q \langle t \rangle^m \oplus T$, where T is the $Q \langle t \rangle$ -torsion part of $H_2(\tilde{M}_n; Q)$. [Note that $Q\langle t \rangle$ is a principal ideal domain.] Since $H_1(M_n, Q)$ $\partial M_n; Q = 0$, it follows that $H_1(\tilde{M}_n, \partial \tilde{M}_n; Q)$ is a finitely generated $Q \langle t \rangle$ -torsion module and $t-1: H_1(\tilde{M}_n, \partial \tilde{M}_n; Q) \approx H_1(\tilde{M}_n, \partial \tilde{M}_n; Q)$. Consider a cyclic decomposition $Q\langle t\rangle/(f_1(t))$ $\oplus \cdots \oplus Q\langle t\rangle/(f_r(t))$ of $H_1(\tilde{M}_n, \partial \tilde{M}_n; Q)$. According to Duality Theorem (II) of A. Kawauchi[12] (See also, R.C. Blanchfield[3].), T is $Q\langle t \rangle$ -isomorphic to $Q\langle t \rangle/(f_1(t^{-1})) \oplus \cdots \oplus Q\langle t \rangle/(f_r(t^{-1}))$ and hence $t-1: T \to T$ is a $O\langle t \rangle$ -isomorphism. Therefore we have the following exact sequence:

$$\begin{array}{c} H_2(\tilde{M}_n; Q)/T \xrightarrow{t-1} H_2(\tilde{M}_n; Q)/T \xrightarrow{p_*} Q^{2n} \to 0 \\ & || \\ \oplus Q \langle t \rangle^m \\ & \oplus Q \langle t \rangle^m \end{array}$$

From this we have that m=2n, as desired.

3.4. The asphericity problem. The asphericity problem asks whether there is a knotted surface F_n of genus $n \ge 1$ in S^4 such that $S^4 - F_n$ is aspherical.

3.5. Non-orientable version. The case of non-orientable surfaces becomes

somewhat complicated in comparison with the case of orientable surfaces. For simplicity, we will only treat of a locally flat, connected non-orientable surface F in the oriented 4-space \mathbb{R}^4 . According to H. Whitney[22], the Euler number e(F) of the disk bundle over F associated with a regular neighborhood of F in \mathbb{R}^4 is the invariant of the knot type of $F \subset \mathbb{R}^4$. The possible value of e(F) is 2X+4, $2X, 2X+4, \dots, 4-2X$ (See W.S. Massey[17].), where X is the Euler characteristic of F. Consider the projective plane P illustrated in Fig. 12. We have e(P)=+2.

We choose and fix the orientation of the containing 4-space R^4 so that e(P)=+2and denote this P by P_+ . Let P_- be the projective plane obtained by the reflection of P_+ on the fourth axis of R^4 . We have $e(P_-)=-2$. Since $e(F)=e(F_1)+e(F_2)$ for the knot sum F of non-orientable surfaces F_1, F_2 in R^4 (See W.S. Massey [17].), it follows that the possible value of e(F) can be realized by the knot sum of some copies of P_+ and P_- . Let $F_{i,j}$ denote the knot sum of $i(\geq 0)$ copies of P_+ and $j(\geq 0)$ copies of P_- with $i+j\geq 1$. Note that $e(F_{i,j})=2i-2j$ and i+j is the non-orientable genus of $F_{i,j}$, i.e., the Z_2 -rank of $H_1(F_{i,j}; Z_2)$.

DEFINITION 3.5.1. A non-orientable surface F in \mathbb{R}^4 is *unknotted*, if F belongs to the knot type of $F_{i,j}$ for some i and j.

It is easy to see that the knot type of an unknotted surface accompanied with the non-orientable genus and the Euler number is unique and that $\pi_1(R^4 - K_{i,j}) = Z_2$ for all i, j. This also implies that the knot type of $F \subset R^4$ does not determined uniquely by the fundamental group $\pi_1(R^4 - F)$ alone. This solves, in a sense, Preblem 30 of R.H. Fox[4] by considering the case i+j=1. Now we consider a surface F in R^4 such that the Euler number e(F) is 0. By an analogous method of H. Gluck[6], K. Asano[2] showed that e(F)=0 if and only if Fbounds a compact 3-manifold in R^4 .

As an analogh of Theorem 1.2, we have the following:

3.5.2. A surface F in \mathbb{R}^4 is the boundary of a solid Klein bottle (i.e., the disk sum of some copies of $S^1 \times B^2$) in \mathbb{R}^4 if and only if F is unknotted with e(F)=0.

We note that the concepts of hyperboloidal transformations along 1-handles and 2-handles are defined as an analogy of the orientable case. Consider a non-orientable surface F in \mathbb{R}^4 with e(F)=0. F bounds a compact 3-manifold in \mathbb{R}^4 . Then there exist 1-handles B_1, \dots, B_m on F such that the surface F_0 obtained from F by hyperboloidal transformations along these 1-handles B_1, \dots, B_m bounds a solid Klein bottle in $R^4(cf. 2.9.)$. By 3.5.2, this surface F_0 is unknotted with $e(F_0)=0$. Further, suppose $\pi_1(R^4-F)=Z_2$. Then these 1-handles B_1, \dots, B_m are all trivial by an analogy of the proof of Lemma 2.7. Since for an arbitrary non-orientable surface F in R^4 the knot sum F' of F and $F_{i,j}$ for some i, j satisfies e(F')=0, we have the following:

3.5.3. A non-orientable surface F in \mathbb{R}^4 has the fundamental group $\pi_1(\mathbb{R}^4 - F) \approx \mathbb{Z}_2$ and the Euler number e if and only if the knot sum of F and $F_{i,i}$ for some i is unknotted with Euler number e.

Kobe University Osaka City University

References

- K. Asano: A note on surfaces in 4-spaces, Math. Sem. Notes Kobe Univ. 4 (1976), 195-198.
- [2] K. Asano: The embedding of non-orientable surfaces in 4-space, (in preparation)
- [3] R.C. Blanchfield: Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math. 65 (1957), 82–99.
- [4] R.H. Fox: A quick trip through knot theory, Some problems in knot theory, Topology of 3-Manifolds and Related Topics, M.K. Fort, Jr., ed., Prentice-Hall, Englewood Cliffs, 1962.
- [5] R.H. Fox: On the imbedding of polyhedra in 3-space, Ann. of Math. 49 (1948), 462–470.
- [6] H. Gluck: The embeddings of two-shperes in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308-333.
- [7] M.A. Gutierrez: On knot modules, Invent. Math. 17 (1972), 329-335.
- [8] F. Hosokawa: On trivial 2-spheres in 4-space, Quart. J. Math. 19 (1965), 249-384.
- [9] F. Hosokawa and A. Kawauchi: A proposal for unknotted surfaces in 4-space (preliminary report) (1976)
- [10] A. Kawauchi: A partial Poincaré duality theorem for infinite cyclic coverings, Quart. J. Math. 26 (1975), 437–458.
- [11] A. Kawauchi: A partial Poincaré duality theorem for topological infinite cyclic coverings and applications to higher dimensional topological knots (unpublished) (1975) A revised version will appear.
- [12] A. Kawauchi: On quadratic forms of 3-manifolds, Invent. Math. 43 (1977), 177– 198.
- [13] A. Kawauchi and T. Shibuya: Descriptions on surfaces in four-space, mimeographed notes, 1976.
- [14] M. Klingmann: Kurven auf orientierbaren Flächen, Manuscripta Math. 8 (1973), 111-130.
- [15] R. Kirby: Problems in low dimensional manifold theory, Proc. AMS Summer Institute in Topology, Stanford, 1976 (to appear)
- [16] Y. Marumoto: On ribbon 2-knots of 1-fusion, Math. Sem. Notes Kobe Univ.

F. HOSOKAWA AND A. KAWAUCHI

5 (1977), 59-67.

- [17] W.S. Massey: Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969), 143– 156.
- [18] B. Mazur: On the structure of certain semi-groups of spherical knot class, Publ. Math. I.H.E.S. 3 (1959), 5-17.
- [19] D. Quillen: Projective modules over polynomial rings, Invent. Math. 36 (1976), 167– 171.
- [20] S. Suzuki: On a complexity of a surface in 3-sphere, Osaka J. Math. 11 (1974), 113-127.
- [21] S. Suzuki: Knotting problems of 2-spheres in 4-sphere, Math. Sem. Notes Kobe Univ. 4 (1975), 241-371.
- [22] H. Whitney: On the topology of differentiable manifolds, Lectures in topology, Michigan Univ. Press, 1940
- [23] T. Yajima: On the fundamental groups of knotted 2-manifolds in the 4-space, J. Math. Osaka City Univ. 13 (1962), 63-71.
- [24] R.G. Swan: Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237 (1978), 111-120.