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1.1 fHER{EES M

1.1.1 fEFE LI RIRE

MEHIMHO FIZFET 2R OB TH Y, WERARRGFETHLTZD, E1rbd

(MR ZHlT b olL, HEifzdlT21 Enbil, Z2< OEESCAIBETICTE W THE
DHFFEBHFE DL A NAT O T & 7. 1960 FFRD b EE M EL & FEITN D B8k B 23 B
e, EH SN TWD . EAEMEHNT, [ ZHEEMU EOMEIZHAa8kET 5 2
LWL T, EHMBEMTIIRHHOZILOTERVHEZRIELED L DI LM, S
DIZEERBIZWRIT T EM e~ TLHOHBR R mr AT 5, Dl &b ZoDFH
LR S TEMEEMBEDETZL D] EERSNL TV, ABITERNLL Z0BES
MBI OERIZWES ML Z AT L, BEAFICBWTEHALTEZ. X, bb%x
BELZEHEREZ T FOLESCA AT VO R ERET N5, BAROELIZE
HT 2 &, REROBGESFICHEET 2 HERE S GO MR SUEE Th 2 K IR o9
BENZT NG, FHEREEIX, MALEICIRLTMBIZLZENEZIEY b TER-
SNTHBALATH Y, B EELZMHAE TERIATWS . £72, KR OBEEL,
BIREE L FEIN D E< BN LEORTNZER THELZBETH Y, HAK,
HIX, 8] ROMHEAZ KT L7 b D), AR (fEEe) 2 E2MEHE L &/ 8 (17
UOMTFTEZBETHVBELLLD) IR RNICEZMIT 72 LRI XD B
TWn5.

ZOXIIT, B NEIFRA MBI EMA G DED ZEICK VT EE AT
LB ORI 2 R A T E 7203, I AREY 2 G HEHT 1940 RO 5 R FLUOCHER H I K
[E TR S vz 7 7 AfHMERI 7° 7 A F 7 (Glass Fiber Reinforced Plastic : GFRP)
IZHRED. YIFD GFRP IH 7 ZHMEIC R Y = 2T VIR &2 GRS ETM BT, BE
TIEMEICENTE Y, KEDFH KRR KR TICERAEORE 2 7 & LTEMME
SHT. D%, TR UM, B = X7 LRGSO EEE L REAE S0 2L AT Y8 M A
NEAZ R & LT, HT AMEZ T TRRFBMME, 7T I, 777 S O
Zoafbdt & U T A b o illifEs{k 727 A F ~ 7 (Fiber Reinforced Plastics : FRP)
WA INTE . £, WEMEZAM 5T 572DIZ&BMEZ B & L 7o iiiEsR b &
J& (Fiber Reinforced Metal : FRM) X°t 7 I v 7 X &R/ & L7-fi#Esmfb o7 I v 7 &

(Fiber Reinforced Ceramics : FRC) B STV 5.
AR, B OF B ISRV IE Y Lm0 L, KV enWEaoE



FEMEN TR SN TWD . & 51T, MERIERL, BRIYEM-CEFME & v o o HERBR S -
T RN —E~OELOEED D, ZXAX—EROM L CO, HITE A KD bi
TWBHONRBURTH Y, TNHOEREM -T2 DITHE~ 2% T, ZMELERRTEE
DEAEMEIREH S TWD . FRIC, MIZEHES B BB % ofk AR O ST R E
PR BB R DR CO, BTN 5 720, B & THECHIMEICEN 5 FRP % i o5
PO WHEEM & UGl L2 EFIABEML T 5. fl21E, 2003 0 HEIREE GO,
2009 FEICHIRATICHREZI L, 2011 4F 10 A 26 HIZ4 H 228 A% pk - 30 Tt R4 o pg
HTRAT Z B hs L 72 Boeing @ B-787 13, BRIK T B DK 50%IZ R Rkt 77 2 F v
27 (Carbon Fiber Reinforced Plastic : CFRP ) #f#H 45 Z L2 L W Ao B2
BL, 363 P OREEROBEIZLDHEDRIZLD, B-767 H &L
TH) 20% DREHEE &8 L CO, HFHEDHITIC P L TW % (Boeing HP :
http://www.newairplane.com/787/) . —Ji, HEVHEFEFEIZIB WV TIX, BMW 2 H AR
BT 2014 FFIZHIEE LT T TA N7V vy NAKR—=Y I —i8 DHEART L — AT
CFRP ZfH A L CH Y, FFILIRREN D EEE#E 100km F TONEKFF A 4.5 F, 100km 5
720 25L DIERRE L N AR—=I D=7 T ADNNT —, a7 N —27 T ADKE
PERE Z Al 2 R ERE U 7 4 OBFEICKTI L, HEHZIBOTWS (BMW HP :
http://www.bmw.co.jp/jp/ja/newvehicles/i/i8/2013/showroom/) . F 7=, k& HE B2 8
WO, JITIE E T 3ERES AR R 0] & 72 5 CFRP X 4288 H 0 $k1E 8357 ] A B efWING
CEBL, AEOKEALARE/ICNLZ, TFXLF—a R hOHIE, BT ALY
VEEICE D R LSRRI T RO EEFEBLL TV (IR E TEERX
2%k HP : http://www.khi.co.jp/news/detail/20140314_1.html).

FRP % FFR OB 0 B 720 TR FARBEZ R LXF —0BFIZBWTHIEHA S
TWa. flziE, RAOEEHN T L — ROMEEMIZIE GFRP AMEHINATEY, EElk
BLOEMEICERRL TE2[2]. £, &ETIE, RAOREH IR T L—FEESD
2 FITHHIT D Z S EEORAULRETEHAICH Y, FRICHESTT L— KD
B IO 2T 572012, 1k GFRP 24 24 F L LT CFRP 28 Z 2 &
TEMASHST v~ —27 @ Vestas O KA EIZEA S, fEbhtsd s (BAR
RRERTEE TR HAROREFE R & NV ci U mskik 2013 4 7 A
18 H). Zofiich, KREBKGEREER (AHY—F—) THEHTLY—F7—/x%
NVBRE% GFRPICE VAERIL, EOZENTHRIN LM TH > THREHMICH
AR ELEFEBEBLAREICLZER (HRE BP BRERE 7 4+ — 7 A HP:
http://business.nikkeibp.co.jp/article/emf/20130425/247225/) © & 5.

LED X5z, ki CHAERfE= R VX — 3823651 % FRP O i F 626 =
RO H LR E RS AHNEEIC FRP BAEEAL TV D BIRIZONTRL
725, HAEMNIZBWTIX20114E3 A 11 HIZHELEZHRBIARELZ#IZ, =%



XF—IZHTH2ELNEY —EBREEY, BARABFICE =RV F—BURENBHHRFI S
TW5. BRIBPEFEL D 2014 4 AICRE L= 3 L F—HARHE T, BARE WX
LR L LT, R IREBOLREMEICHT H8E, RO 2 {baBE~D
EAFDOWERPELENRA ADOPHEBEOBIEENZEZ T ONLTWD. £z, ZThbDifE
T HHBLEZLS FTONTWD. ZbDHh, EREMICBIT 5 SHaE
FONXR = ROHEE, HAFNEDRLE—TH 5 AT « HE B ANNE I B 72 Bl
HOuE, NAF v A, KBS - IS OFAERTRE T KL X — BV IZ X DB e
BAMRBT XL —REMELEDE T XL X = AT LOBEELHEET D
TEMFETHITEHEY,FRP AR ARG B & L THEREREF ZMH S LHEAIND.

1.1.2 IR L EFEFSE

FRP O AN 72 AL BE 1T ME 2 — H Ml &, TRz &R 37—k
Mk HE R 5 #4£F (Unidirectional Fiber Reinforced Plastic : UD-FRP) ((Fig.1.1(a)) T
b5, Fio, Mt LTIl m S CRE L72BEEM (Fig.1.1(b)) OFA &%V,
WIE T M ORECHIMERZE LTV EWIRERHD. X LT, B THD
MRME R 2 MER T E BRGNS R ZSE MO ESE L 7528 T, TORBEMRL
T- ik &+ B (Woven Fabric Composites : WFC) W& 5. 7238, #W LM ITRY,
MY OBICTERNIFET D, £, ML ZFmIChm S & THE Lok 2R Y
T 2T VI T A% CieA L oo kiRt E &4 8 (Non-crimp Fabric Composites :
NCFC) MNEHZMOTEY, MELL SN TWD[3-17]. #EHMMERILESHEHT
WEE G B &l U CTRHE 5 22 0 23D 72 < R L —TMRICEN S .

(a) Unidirectional composite (b) Laminates of unidirectional composite

Fig. 1.1 Typical reinforcement types



FRP OREMAIFENED 9 6, FFETRE JILHEBETH D. %%ﬁ%f@lalmé
& TIE 2.1 TH DO LTH T AMERIGE G BTl 8.0, RFBMAMEIRILE S K
TIX 25.0 LIERICTENTERY, K@il u@‘ﬁ“é&jﬁ'ﬁ%ﬁ LTW5[18]. F£7=,
W97 E b EE D — o Th D, —BlE LT, Fig.1.2 1 F LA EbR B ik
HETRILE A MBI O R 0 5IRIE BRI X 5 S-NRRK[19]12 773 . Al 54D S-N ##IX
HPFE TR SN TV DD, REFEWMEBICESHEORE ITTREIT Al G LD ENLT
WDLZEDRDLND.

600

& CFRP
A7075-T6 (Aluminum alloy)
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Fig. 1.2 S-N diagram of plane specimen with hole [19]

EiRo LBV, FRPIZIZEE A R LIEENTFEL, TONMEEITIEMETHD. =
DONEREENEHETH D03 212, FRPICHADBER Lo EEZFE S - HMdET
H5H. [0/90ns D7 v AT T A FEEMIZENARIR LW ENEH L2 O FRP OHEEE
REVE, MEHEMGWT, MEZIAL, 90° B h T v ANR—R XA 0° /90° RE KT D HH
SR O FE R HBE, MERILE T AR R EHORZETITE T S BRI ERkx T
B 5[20]. RMEHIEIR LA ENMEAT 256, B0 X /ANRAE, #EREL, K&
@%K%éﬁ,mP®%é,%bﬁﬁ%ﬂEJ%_,%L<iﬁﬁ@%%&fb@ﬁ
H3A, HEREL, REKEEICES[21]. B, HEEMICEIT 2K LAE FOEEBS
X OEEEIZ SV T, Read H[221IFKIZ/RT 4 DD B %%@&%&¢Lﬂ\é



(1) HHEHERE OV ERIL, RSB IZHIT Ao~ N v 7 AEX AN LI
FAEL, SBICB T2 AN MMKREBIZET L. ZoffMmikiE 4% CDS
(Characteristic Damage State) & FE.5.
(2) CDSIZHBWT, BHFBEICEI Y RFMICEBOEHNEHRT 5.
(3) o2k LARMMPERFBEORE EGR L sl 7.
(4) HEEGEREDORMEERIX, BMERBE L 0° JBIZ31T D HHMERNTIZ KV R T
bihd.

ERo X oD, B bEAMEIOBERREIZ~ MY v XA, JBRHIBE, i
Wi CdH v, BAEBEIEAN TR OMMENRELZRD, I X0 4 U 2 ik
MIEL &7V AT . EEOBREEREFXSOH L LT, EEM, SESHE,
MEAMHMERICEAM B OZNZNICHE LA ENMEA LEBOXE 2] LT 5.
Reifsnider & [23]13 iR Ffkifte =R F S BHIEREEM 1T L TR A FEHi L TW\W5D.
FEIEHERCIX[0/90,]), FIEBEITAIRY SI5R, ST 0.1, AT 10Hz, HKKiG7
LAUVIEBIRRED 70% Th 5D, EFRFERLE LT, BELEOUH TIT NI v AN—
AEHNIAEL, ZO%, 0/90 FE THMOEMIZBENTAL, #IR LEHNY
5E, 1 ODOREMNFERICITSEEL, TOMOBRIZBELEMNT S L@ELTWD.
£/, 0° BITBOWTHEBI NS R4, MK LB OB O HEEIN A K E, 0/90° &R
HCRAELZBMIZKHOLBIELZEMEL WD E72, BRIZSBHE N7 v A —
AXHULMEENEDOREMTRETHELHREL TN D,

RIZ Vallons & [81I R FMhHE, = R % U BIIER A STk LT 5738 4 0 L
TV, MiEEITERY, MEREIIAIREVSIETHD. KIS L~ 700MPa (5]
BEFRIE DR 70%) (ZF 1 D EHME AR LEE 10°mITh v, MK L 10° [T b
T U AN— RGN AE, 100 B TIEHEEI LB KOV M REES S AE L, MR L3k o $En
W WHERI (BT Mo B8R B X OERABORENMBEI N EHRELTND.

WA, Fig 1.3 IC R X URIIE SR AT O A 7 A A e R L E 54k & Fig.1.4
IR BRI L E &2 5 LB oRBR £ mo CCD Bl G %2 Th TR
J. RS L LT, MEEMAERRIL[0/90]s, fEARITARY = AT IVINT R, A /S¥—
I e~y b, JBIEHEUE 2Hz, S 0.1, BRI L UViE 213MPa (5] 3R
D 50%) ThdH. 2EB, TOHRKIETVAVIZEIT D MEIE LEIEL 3025 B TH 5.
MM TIE R T o AN—RXZ fEEINAREEL, VA 7 VBN 5 & B BRI
B2 ERREE, R EERBESRAET S, BERIE R TIX, 2D O R RS
TECHNCHERE U, MRHERWT & > CTREAEIBricE 5.



I Resin rich region

»

» Glass fiber bundle

Loading direction

P

(a) Face (b) back
Fig. 1.3 Glass fiber NCF

Free edee delamination Free edge delamination

Local delamination

»

Loading direction

P

(a) N=1 cycle (b) N =2000 cycle (c) N=3000 cycle
Fig. 1.4 CCD images of in-situ observation for NCFC

1.2 EFHREZERLE L-EEMRTETOMER

1.1 #ilC Tl _7=L 51, BE - 23 VX —RE~OBELOREE Y ND, ks
SYEFCIE, BRI L L CO PR B ORI Z A S\, FRP & A& 2 & — kA&
ELTCHIHAT 2B ENERTHD. RIS, BWEED 2 &G 2854, M ok
RHHBRE OB R EZW - LN D, MR LMELEE Ly mERF N En5.
—F, WMIZEC DI GBMICERT 248 )) REMOBEIXIEL X2 HT 572
W, TNHEMEEEEE L TR D Z & THBIBED OFTE OFREZ MR T DR %
EEINCERAET DIEREMERR G2 H 5. Fig.1.5 (2 J1-i8 €T L [24] % R T.

Local delamination




Distribution of strength

Distribution of stress

Probability density function

Stress level

Fig. 1.5 Scheme of Stress—Strength model [24]

ZHUE, IR EREARAEREE X, IS REEIEOMED (FERAE x) |

v, GREE O fife 8 BB fr(x) & ST ORERE B L) A MEENZ S VIR L7 b O
ThHD. ISP RELBL T ZITBERAECD ET DL, 16T L REORMEIA
WCBWTHWIEZRY A N EREE 52 D5 REE2D. ZOFMIZB VT,
IS5 (8 J1) BROBREOSAFERBEMTHLILERH 5.

o7 R A LA L LB MR GEHCIE, AN COMERFEL S D ELL IS
ZHHEMRFMEFE, BHIMICO BN AE U\ iR 2 S L 3 2 5 IREE
N 5. Fig.1.6 (T 7 E MRG0 BRI FIEOWRAL[25]1 %2 ~T. AFIETIE, #
BHERI, AR, frER SR 72 & O, B ECr e SN iR o Bk
BIFEDOERB ML E L 0D, 7ok, R S-NHBEOAREMEIRICE T 5 FIENSAR
Faaxat, WHREMTICR T 2 BIENE FREZRGFHCRET 5. ARFMEZF O
A, RSN EZOHEMPREEDY OFMOMEEEZMDLERNDH Y, IR
FERFOLE, WHIRE L ZONMFEE M D NENH D, Fig. 1.7 (T 57 58 /54 B
FOEHHEMOMAOBEAXX ZRT. OO MEICE S MEmkEREZE L7
P-S-N Hif#t (Fig.1.8) MfEMT C& A, EIREM E FIZBIT 2 (LR MR L Ok
O E B -CHIE MR 2 T E DML NS X 7 sk dt A rie s 72 b, Lz o
T, Mg EREMEFE T, P-S-N MBROIENREETHY, ZOLDITITHFHR S-N
HAR ORI X O FHMOWHRE DDA EEZ ML TR 2NN E LR D,



Material, Shape,
Load, Environment

Unanalyzable

No Statistical

!

strength

Estimation of statistical strength |

Estimation of fatigue life

Region of fatigue
limit

Region of finite
fatigue life

Estimation of fatigue limit

Distribution
characteristic
of fatigue limit

Distribution
characteristic
of fatigue life

Estimation of
characteristic

f distribution
of fatigue life

Estimation of distribution
characteristic of fatigue limit

| Estimation of P-S-N curve |

End

Fig. 1.6 Flowchart of fatigue design procedure based on reliability [25]

Stress amplitude

S-N curve

/ Distribution of Fatigue strength
/ ; Distribution of Fatigue life

Number of cycles to failure

Fig. 1.7 Scheme of distribution of fatigue life and strength



P-S-N curve

[}

<

=

% Distribution of Fatigue strength

§ P, : Failure probability

g P,=99.9%
e Pr=50%

P;=0.1%

Number of cycles to failure

Fig. 1.8 Scheme of P-S-N curve based on distribution of fatigue strength

LU s, Hde S-N #ifR O BSGE X OV AR E O FE M 1L, 8 97 s B0 57 58
ENnAiE RO Dk (e y Mk, AT T 7r— x&)#%%f%@ AR E
THIHIREOT —Z SR NLELD720, B EERANRDO LD, ZITM %, FRP
DR TR AR, ISHERRCISHBRESORBREITEORELZ T, 512, ik
T, BIAGHE, SRAEMRES A2, MR/, ik (FEBIEY, BB, bk,
EMOMEEREFR L2 RRFELEPHFEL, ZNOLOREELZTLHI LMD
[81[14][26], BRI L BRHLKOEHAETEZEBETDHZ LIT S L2 HHERIA - B
o A bOEMERL . £, BEHOL 2% FEEE R T 5 9 2T, FFilZ P-S-N
AR 72 T, BEBEERZDHOOE TIMEL CH I ENEEL R D, AIETHER
7= X 91T FRP ICITkk 2 I BB ENTFIE L, A NOBERT 2 L2 o 03085, HiEHE
b IREIPHIC R S & W o T MR BIGE R A R T, EBRICB T 2 RGBS ICIE X
BAERWEBENET S TWDA[8][27-29], ERO L THEMEZITEL L5 &7
HE, INLELZORFMEBEANME LS5 TLE . Za— 3 UESNEIED

—RETZE DR, MIERTRL O - REHHIM OS2 X Mg M Ex B
LTCWbHZ ENb, FRP O, W7 FHFam, 0 Onmirttis L OHEEZE %
FWIRE K2 2 N CTRATE 5 FEOREREZEINS.



1.3 EHEHICETIBERE

ATER Tk 72 & 9 (St 55 15 s R 5 Tk P-S-N iR o B (Fhke S-N iR, 9%y
FE AR, FEIIRIE A OBAE) NEETH Y, FRP O P-S-N #ifR 2 HEn oK E
A CTRSATRERTFIEDOHENLEN TS, FRP 258 & LM EEMERICE
FAMERZELEDDLERDEBD THD.

(1) P-S-N #lit O BAFIZ 31T 5 ME A

- o SN R, R IT AR X ORI E A OFFE S LB TH D .
LML, ENDORSEICITMkA R BN L ZHORBRT — ¥ & 83 25 57w
MLEEE Y, B EEANRO LS.

(2) FRP &5 & L7 d7akBRiC 31T 5 ME A

*FRP IIZ < ORFHEHEZA L, REHEHHMBRSEIFITKAE L T FRP O 57 R e
BEXEH N LT D.

s Lo T, RTORBREM ERFFLEHOMAEEEZZR L COETRBREET D
ZEIES LR EBERANKLELRD.

T HORERICK L TIE, BB OERS L <X BEoRBRT — 2 0iG Ho#l
RinbE2LDE (1) BRFOEITART — 2 OIEHL (2) AREREIC X 2 BB
FIEOBEBMPADTOLL EHFEZA6NL. @RMESCEGHEHIRSWNT, Zh I
HMRITINETESZ AT TND.

1.3.1 BIFEOEFABRT—2DEH

H AR S22 JE Y SR AOIR 97 BRI IE[30)IC e STV B S-N Hl R E AR k4
HABEMEENDD. 2L, HHRBIVEONTH 1S Hagk oK sRBRT —%
b LI, BREEMEE 50%I2MHY T 5 S-N BB OMEARS & K A R 6 D akBE & AR
EL, EBIT, 2 o0HER A, B THOLILZ 2 KD S-N HifROREAHR & L < 1T
MEFETHD EHREDDN, HOLVIEWEICEDH DI ONTORBIREHEL T
AEEREETHS.

5 5B ENF ENE O RS ORI R ERE & U7 AR 73R T — % O ff
BEEREL, TOEIEERL TS, BETIEE S45C ORFEHFRBRT —Z 12 H
L, “ERKOHFET—ZZH T P-S-NHi# 27 ML TW\5.

T H: 5 [32-3411%, — 1581k T8OOH/Epoxy (R =0.1) ®IETHh5| 3R 55 BRI % L



THRARIGHZSIEBRE CIERIIT S 2 Lk, MR A EOKRFEEEZ IR R Z
EIMTELEHEL TS, Vallons H[8] % MhHERL M M4 D F 72 5 NCFC (Zxf L C i
L, TOEMEEZRL TS, SHICHIELIE, EEEFHRENR S (1-1) ZEFRL,
INEAWDSZ LKV IETER T T — & ORRHERL B A AR AFME &S o R & R
VRS ZEMTEDLEHREL TS, 22T, XF Doy FIETHFHARE, o (TS5 H
WiE, o, I TFEHISNTHS.

S*=—"+ (1-1)

W B[35]1%, BIEMRENREARD 5 2 U — X0 SCM435 il 2 1 SR AR K ks L O
PR R O Jr kBT — 2ok LT, Rk SRR T — & TS ST R NE % i T Ak
W LUE 10° BN 2 RERISBREEIC L 0 IEHL, PSR SARMEE 7 — & I3k D iRiE %
TR L3 107 [BNC BT AERIMEIC L BT 22 & TF— 2 A %470,
P-S-N ¥ PEZ AT L, TOHEDMEZRLTWD. £72, MHL[B6]1RCIEARB[37)IX,
G 15 2 0 <0 i R FEE B oD BT i L 57 BB T — 2 Tkt LT, I DR IE & SRR CIEM
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Fig. 2.2 Scheme of variation factor on S-N diagram
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Table 2.2 Analysis of variance table [48]

Sum of squares | Degree of freedom Unbiased cestimate Variance ratio
of variance
Regression

Vagriation Sk h=p VieSel F=Vi/Ve
Residual _ _

variation St pr=n-p-1 Vi=Sel/§

Total variation Sr ¢=n-1
A
fopsn-p-1)
Distribution of V,/V

Fig. 2.3 Scheme of F distribution
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Fig. 2.4 Scheme of proposal method

B, BEFEL, 8ODS-NE#HEEUFET VICAETHS L TEY, LEICH %%?
NEBRRLTT—ZHFEOHENTRTH S, 7L, DO EEERT DB
3L e B 9% R BR ORI T — & Hopd i 3 2 S-NEh R ELRE T VISR TFE L Tﬁ&éﬁ%
W AR T T L TIE6E, rife T L TlZ4E, difkT T VIS B E R T — 2 $50XS
i, EHRESLTIIAMETH 5.



242 REFELBAABHZSEEDEEEZERTEERLDOLLE
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50%\ZHE Y 3 5 S-Nihf DR & AR Z R 2L L EAL T 5. 36, 29
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TEY, S-NEREIFET L E L TEBET LVOIZIIG L TS, RIETIX, F— 0K
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LT, AAWMYSEEOREEZMEESIOREFEZEMAT 5. 28, Fig2sic
RBRA, BOS-NRIX % R .

Table 2.3 Fatigue test data of test A and B [30]

Test A Test B
Stress (MPa) Number of cycles to failure Stress (MPa) Number of cycles to failure
450 34100 450 38200
450 52300 450 44400
420 96600 420 75500
420 149800 420 122700
390 272700 390 232800
390 412500 390 340600
360 801400 360 501300
360 1324200 360 943900
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Fig. 2.5 S-N diagram for test A and test B [30]

Table 23D 57k T — X 2% L C, HAMMASEEOGEEM T @A L=k
BTH DN, Table 24 IZEMRIEDOMERE R %, Table 2.5(25 /0, Z4, ZY9)H O
BEE R A~ FNF N 7. Table 2.438 L UTable 2.512R7"T BV, 2TOREICTE W

T, PRI TEHY, BRA, BO2KDEUFEMRIZITIAEENRLSFAETHD
LHRIRTLENTED.

Table 2.4 Result of linearity test based on JSME standard [30]

Data item Test A Test B
n; 8 8
/ 4 4
m; 2 2
x 405 405
y 53111 52213
B -0.01536 -0.01378
Fy 0.02122 0.08649
F(2,4;0.05) 6.944 6.944
Hypothesis for linearity Adoption Adoption




Table 2.5 Result of test of significant difference based on JSME standard [30]

Data item Test A Test B Common data item
n; 8 8 16
x 405 405
» 53111 52213
S(x;-x ) 9000 9000
2(y;-y ) 2.199 1.789
2(x;-x)yi-y) -138.2 -124.0
,ﬁ -0.01536 -0.01378 -0.01457
y- ,@ x 11.53 10.80
C/;z 0.01269 0.01318
o/—\lz 0.01293
aAOZ 0.01117
aAf 0.012808
FyorlFy, 1.038
F(6, 6 ; 0.025) 5.820
Hypothesis for equality of variance Adoption
t 0.9291
t (12, 0.05) 2.179
Hypothesis for equality of slope Adoption
t 1.587
¢t (13, 0.05) 2.160
Hypothesis for equality of intercept Adoption
Synthetic judgment Equality

KIZTable 23D kT — X IZxt LT, BT IEEZEMH L7 R %2 Table 2.6127R
. 7B, ABRA, BOEHRRT — X 121%, HAMEASERE48IC KD & Feh s
FET NV EBF L TWD. Table 2.6127 3 B0, REBRA, BOFE BT — XT3t L
THEBEKEOLIZB W TRERHAFEAN I A TWHWDL Z D, RAERA, BIZOFEAHE
T—HThDHEHEIND. i, RBRAICKIT 2 B ERAD BB O 57 3 5k
T2 %L 9 5, WBRBIZET D EREMBIRBRADWE FTHRRT — & 2HH L 5
HENHZETHLID, WEYFEMRILIFAFELEAREHLZLLEEMTHDLEBEL LN
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Table 2.6 Result of analysis of variance table based on proposal method

Regression parameter
of
S-N curve B

Slope 4

Intercept B

69.4

767

Test A - S-N curve B

Sum of squares

Degree of freedom

Unbiased estimate of
variance

Variance ratio

Regression variation

10885

2

5443

38.08

Residual variation

715

5

143

Total variation

11600

7

Foo1(2,5)

13.3

Judement

Rejection

Regression parameter
of
S-N curve A

Slope 4

Intercept B

62.9

739

Test B - S-N curve A

Sum of squares

Degree of freedom

Unbiased estimate of
variance

Variance ratio

Regression variation 7322 2 3661 25.16
Residual variation 727 5 145
Total variation 8049 7
Foo1 (2,5 13.3
Judement Rejection
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Table 2.7 Result of analysis of variance table for code 1 and code 2

Regression parameter of Slope 4 Intercept B
S-N curve of code 1 0.033 0.416
Code2- §-N curve of code Sum of squares Degree of freedom Unbiased-estimate of Variance ratio
1 variance
Regression variation 0.0417 2 0.0208 5.82
Residual variation 0.0287 8 0.0036 -
Total variation 0.0703 10 - -
Fo05(2,8) 4.46
Judement Rejection|
Regression parameter of Slope 4 Intercept 5
S-N curve of code 2 0.048 0.420
Code 1 - §-N curve of code Sum of squares Degree of freedom Unbiased'estimate of Variance ratio
2 variance
Regression variation 0.1735 2 0.0868 19.83
Residual variation 0.0613 14 0.0044 -
Total variation 0.2348 16 - -
Foos (2. 14) 374
Judement Rejection|




Table 2.8 Result of analysis of variance table for code 1 and code 3

Regression parameter of Slope 4 Intercept B
S-N curve of code 1 0.033 0.416
Code 3 - §-N curve of code Sum of squares Degree of freedom Unbiased'estimate of Variance ratio
1 variance
Regression variation 0.0812 2 0.0406 49.57
Residual variation 0.0098 12 0.0008 -
Total variation 0.0911 14 - -
Fo0s5(2,12) 3.89
Judement Rejection|
Regression parameter of Slope 4 Intercept B
§-N curve of code 3 0.036 0.419
Code 1-§-N curve of code Sum of squares Degree of freedom Unbiased'estimate of Variance ratio
3 variance
Regression variation 0.0765 2 0.0383 79.02
Residual variation 0.0068 14 0.0005 -
Total variation 0.0833 16 - -
Foos5(2,14) 3.74
Judement Rejection|

Table 2.9 Result of analysis of variance table for code 1 and code 5

Regression parameter of Slope 4 Intercept B
S-N curve of code 1 0.033 0.416
Code 5 - §-N curve of code Sum of squares Degree of freedom UnbiasedAestimate of Variance ratio
1 variance
Regression variation 0.0381 2 0.0191 27.3
Residual variation 0.0035 5 0.0007 -
Total variation 0.0416 7 - -
Foo05(2,5) 5.79
Judement Rejection|
Regression parameter of Slope 4 Intercept B
S-N curve of code 5 0.033 0.408
Code 1 - S-N curve of code Sum of squares Degree of fieedom UnbiasedAestimate of Variance ratio
5 variance
Regression variation 0.0647 2 0.0323 77.22
Residual variation 0.0059 14 0.0004 -
Total variation 0.0706 16 - -
Foos5(2,14) 3.74
Judement Rejection




Table 2.10 Result of analysis of variance table for code 2 and code 3

Regression parameter of Slope 4 Intercept B
S-N curve of code 2 0.048 0.420
Code3-§ -N2 curve of code Sum of squares Degree of freedom Unbiasvzc;:ztcil:ate of Variance ratio
Regression variation 0.1812 2 0.0906 29.39
Residual variation 0.037 12 0.0031 -
Total variation 0.2182 14 - -
Foos 2, 12) 3.89
Judement Rejection
Regression parameter of Slope 4 Intercept B
S-N curve of code 3 0.363 0.419
Code2-§ -N3 curve of code Sum of squares Degree of freedom Unbiasvzcii:iiz]ate of Variance ratio
Regression variation 0.0414 2 0.0207 7.30
Residual variation 0.0227 8 0.0028 -
Total variation 0.0641 10 - -
Foo0s5(2,8) 4.46
Judement Rejection
Table 2.11 Result of analysis of variance table for code 2 and code 5
Regression parameter of Slope 4 Intercept B
S-N curve of code 2 0.048 0.420
Code5-S-N curve of code Sum of squares Degree of freedom Unbiased.estimate of Variance ratio
2 variance
Regression variation 0.0878 2 0.0439 10.12
Residual variation 0.0217 5 0.0043 -
Total variation 0.1095 7 - -
Foos (2,5) 5.79
Judement Rejection
Regression parameter of Slope 4 Intercept B
S-N curve of code 5 0.033 0.408
Code2-§-N curve of code Sum of squares Degree of freedom Unbiased'estimate of Variance ratio
5 variance
Regression variation 0.0352 2 0.0176 6.33
Residual variation 0.0222 8 0.0028 -
Total variation 0.0574 10 - -
Foos(2,8) 4.46
Judement Rejection




Table 2.12 Result of analysis of variance table for code 3 and code 5

Regression parameter of Slope 4 Intercept B
S-N curve of code 3 0.036 0.419
Code 5 - §-N curve of code Sum of squares Degree of freedom Unbiased_eStmw of Variance ratio
3 variance
Regression variation 0.0445 2 0.0223 31.84
Residual variation 0.0035 5 0.0007
Total variation 0.0480 7
Flos(2,5) 5.79
Judement Rejection
Regression parameter of Slope 4 Intercept B
S-N curve of code 5 0.033 0.408
Code 3 - §-N curve of code Sum of squares Degree of freedom Unbiased'estimate of Variance ratio
5 variance
Regression variation 0.0807 2 0.0404 51.34
Residual variation 0.0094 12 0.0008
Total variation 0.0902 14
Foos(2,12) 3.89
Judement Rejection
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Table 2.13 Probability density function of each distribution [55]
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Fig. 2.9 Fatigue life distribution of UD-CFRP on Log-normal probability paper
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Table 3.1 Data series of UD-GFRP
Code No. [ Code Name Fiber Resin Vi [%] Tickness [mm] [ Number of layers | Stress ratio Frequency (Hz) Ave. of oz (MPa)
1 A060 Glass Polyester 46.3 1.76 10 0.1 5,10,12 580
2 A130C Glass Polyester 35.6 2.97 6 0.1 2,5,8,10 728
3 A260 Glass Polyester 36.8 3.71 4 0.1 2,5,8,10 776
4 DO072A Glass Polyester 33.0 3.30 10 0.1 4,5,10 799.0
5 D092B Glass Polyester 38.8 2.76 9 0.1 4,5,10,12,15 908.0
6 D092D Glass Polyester 333 2.64 7 0.1 2,4,8,10,12,15 731.0
7 D155B Glass Polyester 39.9 2.70 5 0.1 1,2,3,4,5,7,8,10,12,15,20 842
8 DI155H Glass Polyester 51.5 2.93 7 0.1 4,5,10,12,15 1031
9 D155] Glass Polyester 58.3 3.54 9 0.1 5,12 1143
10 A130G Glass Polyester 55.0 438 14 0.1 2,4,5,8,15 1203
11 CM1701A Glass Polyester 38.0 3.20 5 0.1 2,4,5,10 796
12 D092F Glass Polyester 49.2 3.00 12 0.1 4,15 1135
13 D092G Glass Polyester 52.0 3.25 14 0.1 1,2,4,5,10,12,15 1168
14 D155C Glass Polyester 474 2.99 7 0.1 2,4,5,10,12,15 1175
15 D155G Glass Polyester 58.4 2.81 8 0.1 24,5,10,12 1314
16 DI155K Glass Polyester 32.8 4.45 7 0.1 1,2,4,6,12 861
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Fig. 3.4 Results of S-N curve by using JSMS standard
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Table 3.2 Data list of each parameter for analysis objects

JSMS
Code number Vi (%) Ave. of oz(MPa) Regression parameter
A B (MPa)
1 46.3 580 22 247
2 35.6 728 24 296
3 36.8 776 32 350
4 33.0 799 40 367
5 38.8 908 38 388
6 333 731 26 308
7 39.9 842 38 376
8 51.5 1031 43 448
9 58.3 1143 57 522
10 55.0 1203 52 446
11 38.0 796 47 366
12 49.2 1135 61 508
13 52.0 1168 55 448
14 47.4 1175 59 507
15 58.4 1314 76 562
16 32.8 861 29 305

H AR B S IEE481IC L 0 15 b7z A s E MR E R £ 7 VO REi /T A — & L gl
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TEESRBL TS, B, MHBREDRKELZRT /N7 A =2 OMEEE, §IERE
oy U B (FHBAFR%% 0.942), U1 B LA 4 (FABIR%L 0.958) TH 5. Figl.s
FZOBBRERTRLIEL O TH Y, & BEMRISK U THERE Z /N ORE i R IEIC
L vRDEEUFEREZXG-HB LOKG-HITRLTWDS., LER- T, HRHEERE
T NDGE, ALED— I 7 ARMERICAE G B O B IRIRE op 2 5 (3-4)F &
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Table 3.3 Coefficient of Correlations between parameters

A B
oy 0.922 0.942
A 0.958
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Fig. 3.7 Results of estimated S-N curve by using proposal method
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Fig. 3.7 Results of estimated S-N curve by using proposal method (Continued)
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Table 3.4 Percentage for data series containing test data within estimated bounds

. Percentage for data
. Number of data series ) g ..
Data series serles contaming test

Number of | containing test data o )
. . . . data within estimated
data series | within estimated interval

Material interval (%)
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Table 4.1 Classification of failure mode of element for damage development analysis

Anisotropic damage model for fiber bundle

Mode Z & ZL

Damage mode

Sudden failure 9,
(Maximum stress to strength ratio) F,'F,f
D, 00 100
Damage tensor | 0 D, 0 000

0 0D 000 000

(o;, 7 : Stress, F': Tensile strength, F¢: Compressive strength, F*: Shearing strength)
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X, MEHC @I WiEEeN AR S, HDHMIR LI N TESWRENSRET HIHE,
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LTB. ZOEEZINTIN ny, ny, v, mp TR IS A O LV R
% RFEEEE X n/Ni, ny/Ny, -, ndN, THDHND, BREBEICE 28I (4-26)
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AR CIRET DI FmAEEIEIX, 4.2 f#iCr LI BEERMITIEICRTIE O 57
BIEETNVEEATHZETEBT L. BEFETEHLIELROBEEICL Y FAHOE
FRIZEL DI HESICER S 25 “22REER (Sudden failure)” &, #uR LK) TIC
BIF2B2EEFHEEICERNT S “HEEES (Wear out failure)” @ 2 D> DEEHA %
ERET 5. Table 4.2 IZEFBEEM L WHEBEHNOBEEET— N ZOREHIELE LD
5.

Table 4.2 Classification of failure mode of element for fatigue analysis

Anisotropic damage model for fiber bundle

Mode L Mode Z & ZL
Damage mode 7
‘JA\" T 4
2 2 2
Sudden failure o O'Tz or Tir 0'22 - Tu Tz
(Maximum stress to strength ratio) F'FSf F,'F,° L F,'F,f FE,’ F,,
‘Wear out
(Maximum damage parameter) D Miner, L D Miner, T or D Miner, LT D Miner, Z or D Miner, ZL D Miner, TZ

D 0 0 100 000 000 000
Damage tensor | 0 D, 0 000 010 000 010
0 0D 000 000 001 001

(o, 7, : Stress, F': Tensile strength, F¢: Compressive strength, F*: Shearing strength)
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é Evaluation of S-N property for UD material
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1
End

Fig. 4.7 Flow chart of estimation procedure
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Fig. 4.8 Scheme of estimation of fatigue strength distribution of unidirectional material
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Fig. 4.9 Flow chart of estimation procedure based on fatigue strength distribution of

unidirectional material
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Fig. 5.1 Geometry and dimension of specimen for plain woven CFRP [74]



Table 5.1 Mechanical properties of fiber and matrix resin
) Material Fiber Matrix resin

Me;?g}?:;;is Carbon Epoxy
Young's modulus (GPa) | E, 230.0 E, 3.30
Shear modulus (GPa) | G, 12.75 G, 1.17
Poisson's ratio - Ve 0.3 Vi 0.35
Tensile strength (MPa) | & f’ 4900 s, 330
Compressive strength  (MPa) - St 330

Table 5.2 Mechanical properties of fiber bundle and matrix resin in plain woven CFRP
Fiber bundle Matrix resin
Material
Mechanical Carbon/Epoxy Epoxy
Properties

E; 197.2

Y oung's modulus (GPa) | E; 11.3 E 3.30
E, 11.3
Gy 4.24

Shear modulus (GPa) | G4 7.32 G 1.17
Gir 7.32
Vrz 0.328

Poisson's ratio Var 0.018 1 0.35
Vir 0.307
F,' 2004

Tensile strength (MPa) | F,! 53.0 F! 330
F,' 53.0
F,° 1197

Compressive strength (MPa) | . © 204 F¢ 330
F,¢ 204
Fr,* 42.0

Shear strength (MPa) | F,* 137.0 F* 330
F;7° 137.0
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Fig. 5.2 Obtained S-N curves for each stress components (Double logarithmic linear model)
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Fig. 5.3 Obtained S-N curves for each stress components (Bastenaire model)
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Number of total Elements  : 4160
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(a) Fiber bundle (b) Fiber bundle with resin

Fig. 5.4 Finite element mesh for plain woven CFRP

Fig. 5.5 Boundary conditions for plain woven CFRP
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Fig. 5.6 Calculational result of stress-strain curve for plain woven CFRP under tensile

condition
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PERBIZE DY TIEDIFMM HIT-o 72, 728, 2 B CITMBEMREEMER L=, AKH
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Fig. 5.7 Predicted S-N curve for plain woven CFRP

Table 5.3 Result of analysis of variance table based on predicted S-N curve for plain woven

CFRP by using Bastenaire mode as fatigue damage model

Sum of squares Degree of freedom Unbiased.estimate of Variance ratio
variance
Regression variation 0.114 2 0.0571 14.75
Residual variation 0.031 8 0.0039
Total variation 0.145 10
Foo (2,8) 8.65
Judement Rejection




Table 5.4 Result of analysis of variance table based on predicted S-N curve for plain woven

CFRP by using double logarithmic linear mode as fatigue damage model

Sum of squares | Degree of freedom| Uroiased estimate ol e ratio
variance
Regression variation 0.056 2 0.0281 7.59
Residual variation 0.030 8 0.0037
Total variation 0.086 10
Foo01(2,8) 8.65
Judement Adoptiot
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Fig. 5.8 Distribution of fatigue life for S-N plot of plain woven CFRP by calculation
(Log-normal probability paper)

(a) 98 cycles

Fig. 5.9 Damage state of plain woven CFRP under cyclic loading (Stress level: 0.7)



(b) 327158 cycles

(c) 30617313 cycles

Fig. 5.9 Damage state of plain woven CFRP under cyclic loading (Stress level: 0.7)

(Continued)
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Fig. 5.10 Distribution of fatigue life for S-N plot within 10’ cycles of plain woven CFRP by

calculation (Log-normal probability paper)
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Fig. 5.11 P-S-N curve of plain woven CFRP based on Log-normal distribution of fatigue

life by calculation
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Fig. 5.12 Geometry and dimension of specimen for plain woven GFRP [77]



Table 5.5 Mechanical properties of fiber and matrix resin

Mecharionl Material Fiber Matrix resin
Properties E-glass Epoxy
Young's modulus (GPa) | E, 72.0 E, 3.30
Shear modulus (GPa) | G, 29.3 G, 1.17
Poisson's ratio - vy 0.23 Vi 0.35
Tensile strength (MPa) | /! 2479 Sp' 88.26
Compressive strength  (MPa) - Sm’ 117.7

Table 5.6 Mechanical properties of fiber bundle and matrix resin in plain woven GFRP

Fiber bundle Matrix resin
Material
Mechanical E-glass/Epoxy Epoxy
Properties (Vy = 63%)
E; 46.6
Young's modulus (GPa) | E; 11.5 E 3.30
E, 11.5
Gy 491
Shear modulus (GPa) | G4 4.14 G 1.17
Gir 4.14
Vg 0.379
Poisson's ratio v 0.068 1% 0.35
Vir 0.274
F;' 1563
Tensile strength (MPa) | F.! 48.7 F' 88.26
F Zt 48.7
F,¢ 2960
Compressive strength (MPa) | . © 65.0 Fe 117.7
F,¢ 65.0
Fr,° 32.5
Shear strength (MPa) | F,* 32.5 F* 117.7
F;° 32.5
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Fig. 5.13 Obtained S-N curves for each stress components (Bastenaire model)

532 THASRABHARLEEMBOBERERETILEEREY

Fig. 5. 12 12 kM O AR E S € T /L & - T, Fig.5.14()2 R~ X 9 IRk 2 ik <,
MR E2HEFOTENRTN R L TWD., 2B, #HiEE O %MERIROERICIX,

WiseTex[76]% FV 7=, “ERER O fRHT 121X Table 5.4 (278 L7-#kfE R & =R T #HiE oW
PEAE A W, Fig S AS ISR THRRASEEZ MG L. xz WICIEE MR REG 245 Lz



Number of total Elements  : 4160
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(a) Fiber bundle (b) Fiber bundle with resin

Fig. 5.14 Finite element mesh for plain woven GFRP

Fig. 5.15 Boundary conditions for plain woven GFRP
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Fig. 5.17 Predicted S-N curve for plain woven GFRP

Table 5.7 Result of analysis of variance table based on predicted S-N curve for plain woven

GFRP by using Bastenaire mode as fatigue damage model

Sum of squares

Degree of freedom

Unbiased estimate of

Variance ratio

variance
Regression variation 0.597 2 0.2984 18.54
Residual variation 0.338 21 0.0161
Total variation 0.935 23
Foo (2,21) 5.78
Judement Rejection
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Table 5.8 Mechanical properties of fiber and matrix resin

Mechamodl Material Fiber Matrix resin
Properties E-glass Epoxy
Young's modulus (GPa) | E, 72.0 E, 3.30
Shear modulus (GPa) | G, 29.3 G, 1.17
Poisson's ratio - vy 0.23 Vo 0.35
Tensile strength (MPa) s ft 2479 S 88.26
Compressive strength  (MPa) - Sp¢ 117.7

Table 5.9 Mechanical properties of fiber bundle and matrix resin in NCFC

Fiber bundle Matrix resin
Material
E-glass/Epoxy
Mechanical ‘ 0° ply 90° ply Epoxy
Froperties V,=70.6% V,=60.9%
E; 51.8 452
Young's modulus (GPa) | E, 14.5 10.8 E 330
E, 14.5 10.8
Gy 6.05 4.68
Shear modulus (GPa) | G4 5.27 3.91 G L17
Gr 5.27 3.91
Vg 0.346 0.387
Poisson's ratio Vo 0.074 0.066 v 035
Vir 0.265 0.277
F,' 1751 1514
Tensile strength (MPa) | F,! 46.4 49.4 F' 88.26
F,' 46.4 49.4
F,°¢ 3628 2823
Compressive strength (MPa) | F° 61.9 65.8 F¢ 1177
F,° 61.9 65.8
F.,° 31.0 32.9
Shear strength (MPa) | F,,* 31.0 32.9 F* 88.26
F,;* 31.0 32.9
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Fig. 5.23 Calculational result of stress-strain curve for NCFC under tensile condition
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Fig. 5.24 CCD images of in-situ observation for NCFC under tensile condition
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Fig. 5.25 Damage state of resin ply for NCFC under tensile condition (&= 2.0%)
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Fig. 5.26 Predicted S-N curve for NCFC



Table 5.10 Result of analysis of variance table based on predicted S-N curve for NCFC by

using Bastenaire mode as fatigue damage model

Sum of squares Degree of freedom Unbiased.estimate of Variance ratio
variance
Regression variation 0.403 2 0.2016 33.16
Residual variation 0.128 21 0.0061
Total variation 0.531 23
Foo1(2,21) 5.78
Judement Rejection
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Fig. 5.27 CCD images of in-situ observation for NCFC under cyclic loading (Stress level:
40%, Number of cycles to failure: 24111 cycles)

(a) 1 cycle

Fig .5.28 Damage state of NCFC under cyclic loading (Stress level: 40%, Number of cycles
to failure: 439686 cycles)



(b) 439686 cycle

Fig .5.28 Damage state of NCFC under cyclic loading (Stress level: 40%, Number of cycles
to failure: 439686 cycles) (Continued)
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