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1.1 HEE=R

A% 1 RO L e LTEA ISR 2T D ERE R L OVKFEH MmO fhiF o = & % ftih
F e SRR, EE, R, WIREIC L DERE T M OREHNIT I, MR E o Thb AR
RREEISATH Y, AGSCTIE Z OFE T 2R & L&,

FEHFIZ L VAT DT E— A v R EfETE— A 2 R~ #EITE— 2 Moxtd 558
JE 2 AR TR & RS, MR T E— A Y M, EREACSHLERICH LS, 22Tk
BED. 1oL, HE, HEMEERSIOFIICL > TELHKTHEFE—2 2 R T
BDH.WE DI, B EFIITHE S IEEHEIC X - TEC 2RGEITTE—2A > N THD.
Z LT, AR Z 5 2HEh T — A o b ORRFYE 2 #Edh R AT & v DL b LMD E
i T R ACTREE 2 BRI DN E— A 0 b 22T 72356, FOMKITITHEICES. iMAOE
I, AR BRSO O K7 E OB BRI A, ANy OREREKNRREH YA 7
LI HREMED D D, Tb b, MRORE T AR IO L2 ZFHET 5 5 2 Tik b H
FRRHTEE D 1 > ThH 5.

MEHTIRE DR EDRK &2 2 5N D MOITHEFHITV < OEIh TS, #lzIT,
1990 AR 00 B 2000 AFARATHT T T, AL Lzl & > 7 — OPr i a 41% Lz,
1997 4£ 1 A2 Nakhodka 5[1][2]25 H AWEH T, 1999 4E 12 H(Z Erika B[3]28 7 7 > AT
(Fig. 1-1 (a)), 2002 4 11 J1Z Prestige S[4]23 A4 > #T (Fig. 1-1 (b)) FHLHITHE -
WL, R HC K D KRB YR AE LTz, WO b AR 2 25 4FRi: Th
STz, FOFERJFERNTRELCITHE S HETREE M OME D RS XU TARIZE - T,
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MERITIREN RRE L2 Z & B2 b TWA. 2B, ZALITHEIET TR BT RMTICE

NWTHF U TRETAEL TS, ZNLOFEKEZZKEE LT, EHEMEBSEHES
(International Associate of Classification Society: IACS) 2LV, A7 X ¥ U T i o H—

DZNZIUTxET 5 HmEEE B A] (Common structural rule: CSR)  23MERL S 4172[6][7].

(c) Napoli[8]
Fig. 1-1 Structural failure of ships

£72, 2007 41 HIZA F Y AUFHEIZ I T = 7 FEHY MSC Napoli (8] (FHHif K
a7 FREEEL  4,419TEU) 23R F o ZIRRECHHE L7 (Fig. 1-1(c) . HTEISHERI= R O
Wi CA U7z, FEHJRE O 1212, Whipping OS2 2354 417, Whipping & 1%, FiKH
VIR AR 2SI T X AT 55815 (Slamming Bl5) (2L - Tkt & 5l ER) 7¢
M iRIRE) D Z & Td . Whipping 1 K DT E— A > F3@EE OftHiTE— A b (=
B RERT B — A > N HIRMEHTE— A > B) ICEET 2 &, AERIT RIS K & 7ot
HIFE—A 2 N2 D2 L0 D. 61T, 2013 4F 6 AIZA > REEMHCa s 7 ki
MOL COMFORT %5 (Gl K = > 7 TR : 8,110TEU) MAAF o ZIRETHHEL -
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[9]1[10][11]. FHJHK & LT, Whipping DFEITIM %, KER/NT A NEE, 227 Tl
72 & T HRIEICDEENE < mAMEFEN R X L TOREMITREREZ KT S5 2 L s
f§ S4L7=. MOL COMFORT 5 OHr A Sl IAM LD 5 & FHEACBRN B D 72D, IKREIT
R Z R D

FVAMTIZ— RIS D X 5 27Tt 2 &7 8 o THEMITHREEICE 5. fitdh T o5 3EM T,
Blitge SR L SOMTH 7 & ORETMIZ IR A U 5. MRt O OF Ak 2 BRI 5 72 51X, £h
B DOREEA O 5 | BERARIREE AN ALTRIE & 72 5. JERINC I T, A 23 - BRI &
S TIRAFREEIZZE L, ZO%, MW AME T 2. FEIE - BRRDE C7ofEmM 2352 1T #5 T
o2 DOFWEIZOWTIE, EOMOEELRMETHM BZ T2, Wb b, fWfEO ALY
WAL D, IDITHEENT AN 5 &, ZO@E72HERM B RIE « BMRAE T 5. #ifhiFo
By, MR REIC D 28 OGENIEIC Y 1 Th A 7=, HEE O P SLil OB E) & R
IRI3 5, FEEBAE OO FREEDSEIR BN HEAT S 2 . AW OO LRI THEER Ot 7 2ME T2
&, BTN S D72 DMt E— A > M EZITRFOZ N TE e 720, fitdh 1 R IC
T 5. Z O BRI IZ B9 A AW TR E RN D AN Dz,
2006 4 4 AIZHifT SALZRTIR O CSRIZEBWTTH D, ZDtk, /L7 XX VT EME B
— 2RI & IZHERE S 4L T2 CSR OFFFE3ED B4, 2015 45 1 HI1Z CSR-BC&OT (Common
structural rules for bulk carriers and oil tankers) 23#7721ZJiifT & 4172[12]. CSR-BC&OT 23\
THHI&EHEE, T RAETREICBT 2 BN BES LTV,

BB OHBE LI RREBARR SO — FEOR |, 8L, HIRZEZHEE (Finite
Element Method: FEM) O Y L X— Z7U oty — KA NTowyPh—7~LEYoY 7k
[ DFE RN, fErh 1 A6 8h 2 JERRIE FEM I & > CEAMICHITRIEEE 72 0 90 b 5.
LU d s, BT B Z G TeERRIE FEM (Z X 2 Mt BERARAT 12250 2 97 T3 S5
DTREL, MO THWOID Z &3 2. —J57, ERP Mtz
FREEFEMTIE & LU Smith JE[13]13—RIZIA< VWS TE Y, CSR-BC&OT 2BV T HER
MEnTWa. Smith {ETiE, ST ORRITZLET, »o, w2 R 5 &
BRE LT, ERmAER ST\ D. BTN 2 BB S r VB3R L ARELR T EI L, FERITHE
JE 3 X OBEROEBE Z[E LT ONFES ) — FHOTHERE 52 5. £ LT, 2
HIERT 28R e OGO T, B S xVEHER O E SR O /1O T4 5 R4
Wri OPSLEN OB 2 B RE L7208 5, MEdhER A B B THEWTIRNIC 5 2 5. BEET 2 BB S %
NVEH (RER) OMAEZBITERT 2 00, {fHM OBRREZBIET 52 LN TE,
230, FERE FEM & Lhilis U CIERIZ DRI e P R 2155 Z L TE 5.

Smith £ TIE, AW OTFIRANZE &SRR 2 60E LT, Midh 67 E T el T REzE)
EEOES . L Lo b, MERICIFHEE T E— 2 > FESMOKESCHEA M OER &V o7
R 7R M EME < 72D, BB IIZER N AE L D, Ko T, KESHEAM OFELZ
& LU CHEM TR REEMAT 217 2 A1, Smith k2 FOEFHEHATHZ LT, A
R S CIKERCFE A D E 72 & " EIERICRMIICE < fiE sy, ftliFE—A b RED

—3-



ERME LA LT, ERHWE] 50T [REME] EFFHRT5. a7 ol
A, FEMEE LCKEEayTTFEEN HEICEE LTHL.

L AT, B TOEMN A EBRT A0 3 T NIIEE AR S D, — 5,
IR ED = o7 T ORI E R RIRMERT 27O E B LOMME 7 LT ORK X 7ol b
5. LoT, arTHIMENLMEICE > THRE SN DA, HAIM ARz Edd
L. TRt arT HRIEEKFICEBWNTRICRX U ZREBE D, £, iR g
DAR—/L R TIE, KEIZKD8E LA EOMEN 27 T OEEIC L DEE T A E OffHE
EVHREL DD, DF D, AP RE O " HEIIREEMICIS W TEHRE LM EisihE 25 X
IMMTERZAELD. Lo T, AT IEBOARESMIITAF o 712 L D HEEM & HIED
S22 T AT L AMEEMENEE T 5 Z &2 5. AT, EEIIMIET IS i
SNDH T, MRS B ERRIRRE & 72 v, FRIRIREE 25 2 5 ECIER I Ly i R RE
LD ZOL D IR E & el T e — 2 > N MER T 2 A ERRE T
WREL D LT REIREINME T T2 LB N0, 2T TR & RS MY R w7 B
DSHER T AR B dS K OV R IC RIT TR A LB I AR L TR Y, £hx b
ST EEEIIIA LT > TV, £z, BORO@E Y, Smith HEITHEARITHMANT T DR
RAREMRATIC LB T &E Ao, fRJEJRER A B DR 8 2 5 8 T & 2 EM Y ftih 5%
RHREMRITIE DB PN L EN TN D,
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1.2 MOL COMFORT B NiTiEaEig

201346 A 17 H, YU HAR—=ANLHTIT ZETITAIFHITL Tz 8,000TEU # D
=7 J S MOL COMFORT 7 (AR, Figih) oS s/ Lz, HIERAR,
FHO T ACHNTARRT & BB L, e L. RO EN GBI ES £ T
DN SN FEIRO G B % Fig. 1-2 1R 7 . FHMIEAR S ZIREE TR Iz s
WTHHEL TWD 2 ENp0n5. 723, FHURIE 2008 47 HIZ5E T L, FHEERFOMERIT
KIS HETh o 7o, FHMNOREEMAT, EHATEI X O E 35 T A - 7ok i1 E B AT
TEDEEB L OHIKTh 7272, EHZEEWFER 2013 FI2 2 7 FIEMAN 400 R
BRtZEBRERE) 9[11]B LOHAREERS 2014 FICK 3 o7 v BmaTa 2
&) (1) FHEROFEZIT-o7-. TORETIE, Fh & R OL 2R RBTThi,
4210 = 6 E DRI O (A8 o 9L 00— F EAREESMIRIZ 35U N TR IS Hr IR A T L2 SR 25
DFERENRO SN, £, BEY I 2 L—2a 10k 0, FHHNE - 7ERA E & ik
P D FEHT T B TR EE DOHEE M T AT, VR E ORI I3 BT A FERT A3 B % L
TR A B » TIRIZES S PEIRMEHEE Y 7 5 NMRIW 23, fEdh (7 B & om B O fighT Iz
IFPLHFERRIE FEM fi#r 7 & LS-Dyna (B5fi#i5) 2SHW oLz, FERIEA Y v BT X
DI G, MESRIZ XTI Whipping JHZ&IZ & 0 K& Aeftdif £ — A > b 2SFHOR 2@ <
T ENRENTZ. FT, FERIE FEM RATIC XV, FEEGIIT I OMYES RN B SHERR 1 i
KREDFERE T2 0T 2 LB LML RoTn. ZH D DM FHY DM S 4
o SN a T oERE, #MORRBER EOREEMEROITL>E L EET
DL, EFITHRWHERTIIH 503, FHEMOHEN T RAIRE 2 /ER Kt T — 2 & F2sEE
L, TIENEZV 95 Z LAmRaiz. 2015 4 3 HICAR SN 2 o7 FiEh L et
ZESORMEREEN]TIE, Ko 7 FogERE BT 2SN >\ T, LIF
DYIERHF 2 B INAT O RE L OR_REVR R INT.
> MTE (M E) (2 X 2 8 IMMAHE RN T BB I BRI BR L TV o 72D, RE

HEIEIZ 31T DI T) D ZlihWE A 5 Lo R B (IRIAMT EE) DR 2 B [T 2 MvIAHIEdh 1T
SEEOHRIE T2 2 L. (22 CORME S IIAR L COMERTMELFRETHD.)
>  Whipping )52 O 58 2 BN S E T DMt T REOHAI L35 2 L.
> MEREECEET 2 BBIOEMIY 5 (BREME) ORROMED Faitd o2 L.

£z, 2015 F 6 Alca T RroOHEREIZEST 5 TACS #—H I S11A (Longitudinal
Strength Standard for Container Ships) [14]23FTHICERIR S 472, S11A TIiE, FRIR - HEJHTEE
DFMIC B W TER W EORBELZET 5 2 &, Htdh T REREOFAMHIZ I W T
Whipping D8 ZEET 52 LA KA a7 Fickd 28MEH: L LTnsd. BUFIZE
XEFT.

» Yielding and buckling assessments are to be carried out in accordance with the Rules of the

—-5-



Classification Society, taking into consideration additional hull girder loads (wave torsion, wave
horizontal bending and static cargo torque), as well as local loads. All in-plane stress components
(i.e. biaxial and shear stresses) induced by hull girder loads and local loads are to be considered.
»  Hull girder ultimate strength assessment is to take into consideration the whipping contribution

to the vertical bending moment according to the Classification Society procedures.

MOL COMFORT & D18 % D i Afs Fds L OV IACS #—HH S11A OFTHIERIR 2 B %
Z, BARWEERHSIT 2015 4 12 AIZ a3 o7 OSBRI ICBES 2 HHI 2 S, MR
faf 85 & Whipping D524 Z 8 U 7o Ml (F 5 A o0 B2 12 B3 2 BN A 8 72 (S HUE L 72 [15][16].
ZOBAITIE, MERPIICALE T SRR I BV T, oK e T E— A > b & Whipping
WEE R UICRGEIMTE— A FEGEIL, MIERMAEOZELZE L TROIAR
XU R TOMEMT BATRE N Z g ERD Z L2 EFEL LTWD. MEREME S R
X7 E— AL D DMB) < MR D B TR I IAREESMR D RHE R & FE & L7 i S R RIEIC
FoTROTWD . ZOMGFHRIETIE, MBI U TR AR IS X 2 e R #4658
FEOKTFRBE SN TWDA, JHEHEIZ X 0 E U 2 M85 M EHEIS 5 OHEE 2T R — v
RETIVOEBSREFRNLEL 2 5.

Fig. 1-2 Structural failure of MOL COMFORT][9]

VLB X 912, Whipping WZT K 2 EMMEHITE— A > b OB & RIEREHEICE S

—6—
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e F B IR O T A MOL COMFORT 5 OHHEF MO EHEHRN E LTEZ LN TN D, &
DIED>, FIEAR ORISR IZ BV THER S V72 PR R R AT BEE L C, RIS BT Sk
ROBBIRAEEREN17]08 0 IR LAFE R D86 OB EEI[18]72 &, HRIA R THF
BRED LI TN D,



1.3 ROt T &EREICET S ETHE

PR IR T DRETREE 7 & QN T BT BRI BE - D WFZE DFE T DUV T, SCHR[19]~[21]
ICFE LSRR STV D, REICTIX, MERT BT O 5 fATEIC BT 2098 &, IER
HEOER T COM T IR ICRE T 2 RICEREZKRY, BEOHRNFEZE LD

O

131 #itHIFRRABEDOEZBITEICET H0R

e k& iR 2 G DO AR e FED—2 L LT, #HIHBREREEOHITFE—X > M2
PR B — A v AR BRIRE DR L T HHENBZOND. LILERNG, &6
O b e T O FEMHN ORERI THRAT HIEIREOR B L BT L2 L1225, 1965 FIT
(mmmmﬂﬁﬁﬁm%%%%ELfﬁﬁﬁmmﬁ%ﬁ%ﬁﬁb,m%ﬁ%%ﬁﬁéﬁﬁﬁ
D HEERRE LTz, Caldwell D5 ETIE, MMARORIN IR 2 FM & 2 & &z, B

AT PE D IO A iR DOF D % LRI 1) O T &2 R ITEREIC L > TEET 5. LT, it
Hi U SR TR BE R I 331 2 BRI i D HE 7 it 1) D 53 A & B2 TR O S A i BRAR(E L C,
W%H%%%E@%&%ﬁ%%wfwé Caldwell %, JEMEIMIH 7O T %2 &4 5% 2 b
ERTNRTRA—B AT 4 ZITV, ZORBELZFTTND. TO%, HETIM ORI
BRPE A HEE X < R, @qu@ﬁﬁ_%o%M®%m%%E%ﬁ%#éﬁﬁ@ﬁ£#,@
Ji[23], =& 5[24], Paik and Mansour[25]1Z L W #2 R 7=,

Caldwell D FIETIE, EMHTM DS ERICHFE ST 2 7 m 2 A3BE IS TELT, T
f@%%ﬁ#ﬂﬁ’aﬁﬁﬁ_iﬁékﬁmﬁé ;Dﬁfﬁ<ﬁ%i BRI 2 HE S
B 1o, JEEE U7 MBS Ot MK T &2 B8 L2, HEHH OREE - WIPEREEIE % |2
ﬂmwxwﬁmzm%%%% IE DB A BRI B T 5 MR B 5. 1977 41T Smith[13]
X « BEARIZLE O REHE Ot 71 DK F &2 B 18 L 72203 Hffedh F Fof&nh i 4 5K D 2 B AR
HEMEAT FIEZ TR Lo, Smith 5 TIE, A 2 Bis S oo VB8 ECERICHEIL, KEHR
(ZHEJE - BRR OB A B8 L 7=l EfE 3 KOS 1R T 2381 2 %06 ) — B O3 A BEfR
ZH 2D, ZONEENET) — FEHEOT RBR A R D FIEIT W OMRRE I TV S il
Z1E, Gordo and Soares[26]13AK DA Mg 2 JEMEOT A DOBI% & LTFR L, B Lo fhEE
= REBEBREL T, BICFEEER ) — 03 2R Z2 5N TW5H . Yao and
Nikolov[27] [28]1 i &t BH O A 0 288 Z BEVE K 7o DO AFRITIZ K 0, [EEER O O 2$8) % W3
PEMSRERRATIC & 0 SR, BHEE SR L DT — NIl SRR L O IR Y EE— &
RE LT, SERlhE ) — PO BBk 5 ik E2RE L TA. E72, Smith $EIEH
BT OHETT TR, Ha REMFETOMPTICEHA TE L LRI T b, Filzix
Fujikubo ©[29], ¥ X OV L #)11[30]1% Smith k% A fZICIRIE 2 A9 D AR O Mt ph 1 B & i
FEFRATIZ @ U, BRI 0O AT OEARNT & 2 Zlhdh i F o B A2 B R Lo, KO EFR
JEZHEE LT 2. Tanaka S31JITMEARIPIREEBO T 2~ v 7 207 %% U 7 2 HR
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BN L > TET ML, TDOETT/WIZ Smith %% 58 U CTHER I R ALTREE M 217> C
W5, ZZTOERRETINVEL, Ny TV A X7 2G0T HIT2E£TREELUR
YIN—= B Y B O RIER AR T ORE, A2 RTHIEER (27) X T LT
TN THD. 723, Smith EOFEMITE 3 BIZER5.

132 MERBMFAEOEEZEZE LIt TF&EREICET 5HME

FRfEFE AT RBE D SV 7 X % U 7 2 b RAT, MRS < Jry i far 25 23 s (AR D #E il 1 F A
BRECIC AT T B L U n W< 2o0d 5. FEREAMHREED LY X4 U 7 T,
ZEfg D HIENSRE LR X ERICEHT oS, Zo ZHEIEDFRHREITERICL D, KRX
> TR T AR MK T35 . Bstvold 5[33]1 2004 4EZ X F~ v 7 AL T X U T O
3 /v RET VA FAWTIERIE FEM 12 X 2 g HTIRRBIZ 31T 2 #tdh 1 R it %
TV, “HIEO RE T 2K O Rl T Hf&imE T 5 2845 U7z, Amlashi and
Moan[34][35)1Z 7 — 7 A ANV X% U T 241D, 12+1+12 A—/V RET L EZHNT
[FIRE O EAT 2 F2h L, FYESHME O R I AR 1% OO N~ O faf B FFRL A3 & - C, ikl 15—
A2 b — i RBHRD “double-maxima” 272 % = L AR LT2[34]. F7z, MRKroftdh S
— A b EARIEICE) < KIEE L L LT WRAETE 71 IR RE T o ek EE R B RAMR N 2 12 58
L 72[35]. Kippenes 5[36]i% CSR ICHEIL L 7= — TP A ANV 7 X% U T D3 A—/L KET
ERNT, FRIEFEAAT T RAEIZ I TR o DO D3E IR U B TR L2 B F T 8
Z AR, “double-maxima” B Dt T E— A > b — =R OO D B — 7 fER WA 7= F~
DB K& %D Z L Za3 L=, Shuand Moan[38] 5 1% CSR IZHEHL U 7= 7 — 71 AN
NI Fx VT O 3 R—)v RET V% R THEM T R 22 i U, & iR EAHBI RS
AR L=, A Amlashi and Moan 2 $24E U 7= Fc iR EEFH B BRI & & 2 HIZR U
ThH D0, MECEH S KEDKEEZRXRTIRBEZEALTWD. Z OREIIIERRIE FEM fif
Hrin B 15 DT R EMBIAR & — BT 2 L 5 ICESIN TV D, S HIZ, Shuand Moan
1%, R4 U 7o BofkiR BEAH BARE AR A W TREIE R IEMERRAT 217\, R MR 33 2 SdA
FZEm L TWAH[37]. 72F, LLEIZiR~7 Gstvold &, Amlashi and Moan, Kippenes ©, Shu
and Moan OHFFEIZINT, FEIE FEM EATICIZIA Y 7 b Abaqus WL TR Y, (2
FRVENZ X DT M TN TN D, Darie HR3NIZ TNV A RO —TH A X007 Fx 1
T RGBT 3 A=V RET VA& HWCHRE T BRESRIT 217V, ZHEIEO R e A3 e
AR RIE TR A T~ T\ 5. FEM fi#fr Y 7 Ml LS-DYNA Z# vy, Ziuic 54k
SNDREFRE Y NR—ZEH L TWD. ZOWFSEDH T, Darie HI% Smith (£ ~EHEDJF)
T AR O BEEZETE R0 EFERAT TV D. Pei B4R AHTIREED B 4
Y=y 7 AT X v )T Bt BRI HRIE FEM (MSC Mare D& Y L3 —Zfd ) 3 X
OERAR A i 25275 (ISUME: Idealized Structural Unit Method) 2 K T, #E i U e #4& 00 FE AT %
{ToTCW5h. £ LT, ARk Tanaka H[31]OWFIEIZIS\NNT, BEAARET /L L Smith 15 % fH A
B O T BE KRBT K o THEE U7 fitih (T Sf&TREE & Pei D DOFFATRER &t T 5

—9-



LT, TOWERELZBIEL TWND.

Matsumoto ©[41]23 2016 “FIZ4T - 72FFETlX, 4,000TEU~10,000TEU #&OEED =27
FHED 12+1+1/2 F—)V RET V2 XG0T, LS-Dyna O [GfiEE > v —% U TR Rl fr
LT E— A FOMERT 258 OREREZFAEL T 5. FERRIE FEM 2> b 157t
il T e AR BREE & Smith YE1Z & 0 HEE U 7= s T O34 OMEr T R fOREE & el U, AVES R
IS & D HEMT R IRE DR FTREZFI TS, DLED X 512, IR IREED L
7 %% U 7 O T SR BT D22 IV O E SN TV D 0D, 2T i
(23U TS SRy Ay B DAE il (T R R L2k 3- 2 S &G U T2l gE 13 72200,

—10 -
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1.4 AHXOBW EHER

KimXDOHIKREL 2955, 1 DiF, MERIMEL AF L 7E—2 0 FAMEHATS
BAEFEIRETO 2 T ORE T AEZEH ZH 60T 52 L THD. W 1203, i
JERE R B OB ZER TX, 2o, ERRMEHT EAORETHME LR T2 2L Th 5.
Z DOFEMRIRHEH T RALTRERHMIE L LT, RO 2 SOHEERET S, 1-20%, Smith i
(S W E OB E BB T & DT RERREMITETH S, b O 120, IiEHTIC
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Fig. 2-1 Deformation of double bottom due to local loads.
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Table 2-1 Scantling of longitudinals at double bottom.
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Fig. 2-4 Mesh division for bottom stiffened panel.

—16 —



o5 2 TR AR TSI T D HER T RS Eh O fF

Fig. 2-3 [ZB W T, R —/v RO F{ASA PSRBT Oxt5:TdH Y, Fine mesh % Jifi L T
V5. Fine mesh fEIK COMETM K LT, BAMICn o VME 8§ EE, V=7 % 6 B,
77Uk 483, F£77 coarsemesh fEILTCIE, o UVMAE 4R, VTR IEE, TT
YUR2ERIIHEITSH. 72721, Fig. 2-3 IZKRFITARIALE T, KD R > P Fig. 2-4
R T K97 AT T 7 (Seallap) ZET /ML L TWDHTe®, K VEEMAR A v 2 =2 45E % i
T BRI 4HAEN K = /VEFE (MSCMare @ Element 75) W 5. 1/2+1+1/2 F—
IV RETIVORE BT 508352, MEFREUL 535972 LiroT-.

Y2 7 EITIE 206.0GPa, AT Y UHICIX 0.3 AW S. 1 AR—L RICBIT A ELORE:
RIS TINX, Fig. 2-2 @ Region 1 Tl 313.6MPa, 7 v i3 IZAH4 3 5 Region2 TlL 355.0MPa
Thbd. MEHIFESWBMEEREZIKET 5.

222 #Eir-HH

W7D T, FREED A U 5 A ORIESMR & NIERIZE- 2 5. #1722~ & LT, Fig.
2-5 W VOO FIEE— K e W —X—fO2EE— R&BZET 5. Fig. 2-1 IIR
L7z ZHIEO RS L0, MESMRICIZERE S Fm, @A m e bICEMSIRET S,
O ZHHERME IS ) O IS T THRO PR AR EIIEC T 5 DT, wRREEE— N2 3T
EBEETEL L), v PHOROYIIT- DAL, ESFHAIZ 1~5 FEOMERE— K& EA
AR ENET D, 70T AN—R%& a, BYVAN—R% b, H—H—AX—R%
by, WOWIEZ t,, OMEENP A m LT D&, FEE— FOPHTZDOIH w I L ORIE
T ROPMITZ DA w L FTORX TR ENS.

(el

w —ji—ﬁn(ﬂxjﬁn y 2.2
¢ 1000 a b @2)

Floor

Local

Long. Girder Overall

Fig. 2-5 Initial deflections.
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Fig. 2-6 Boundary conditions of 1/2 +1 +1/2 hold model
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Fig. 2-7 Effect of boundary condition on deformation of double bottom.
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Fig. 2-8 Symmetrical condition on center line section.
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Fig. 2-9 Equivalent plastic strain contour plot view at ultimate strength under pure bending.
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Fig. 2-10 Equivalent von-Mises stress contour plot view in post collapse under pure bending.
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Fig. 2-11 Deformation of 1/2+1+1/2 model due to water pressure (Boundary condition: BC1).
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Fig. 2-12 Equivalent plastic strain contour plot view at ultimate strength under combined bending

moment and local loads (Boundary condition: BC1).
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Fig. 2-13 Equivalent von-Mises stress contour plot view in post collapse under combined bending

moment and local loads (Boundary condition: BC1).
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Fig. 2-14 Deformation of 1/2+1+1/2 model due to bottom water pressure (Boundary condition:
BC2).
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Fig. 2-15 Equivalent plastic strain contour plot view at point S under combined bending moment and

local loads (Boundary condition: BC2).
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Fig. 2-16 Equivalent plastic strain contour plot view at ultimate strength under combined bending

moment and local loads (Boundary condition: BC2).
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Fig. 2-17 Equivalent von-Mises stress contour plot view in post collapse under combined bending

moment and local loads (Boundary condition: BC2).
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(d) Rotation angle between PBHD and WBHD calculated from difference between displace of a

deck side node and a bottom side node in x direction.

Fig. 2-18 Longitudinal bending moment-rotation relationships under pure bending and BCI1.

Ultimate

-
-
-
-
-
-

Collapse~ A .

region Post-ultimate

Fig. 2-19 Effect of localization of deformation on end rotation.
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Fig. 2-20 Longitudinal bending moment-rotation angle relationship under Bl and BC2.

Table 2-2 Comparison of ultimate longitudinal bending strength [N*mm).
Combined load \
BCl BC2 \

Pure bending

1.69*10"3 1.38*10"3 1.36*10"3
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BB W THIZRIR L Y SeD. — 07, & HRREOKENMMER L T 2 REE TITMES MR D
FDREIZ K o THEMITBRAKBREIZET D, DF 0, Bm—/L RET/VOYIIMRRE & Ffkih
FEREOMEHTE— A > ME, 1 RTFFE L. vz, KIEE T E&REOMIckBs L2
FRIZEILR IR 0 32D, S TIREE S DV MIIAKIEA /N S WA TIENIEMRIS b B - T2
WAL D78, R OBIEBIRITEK D L2720, RET BN TZEOREBIT/NS hol-
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Fig. 2-21 Lateral pressure-longitudinal bending capacity relationship.
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Fig. 2-22 Deformation of 1/2+1+1/2 model due to water pressure and container load (Boundary
condition: BC1).
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Fig. 2-23 Equivalent plastic strain contour plot view at ultimate strength (Boundary condition: BC1,

container load: Pref).
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Fig. 2-24 Equivalent von-Mises stress contour plot view in post collapse (Boundary condition: BC1,

container load: Pref).
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Fig. 2-25 Container load-longitudinal bending capacity relationship.
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Fig. 2-26 Regions of BS1, BS2, BS3 and IB1
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Fig. 2-27 Average axial stress — average axial strain relationships at bottom stiffened panels.
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Fig. 2-28 Periodical boundary condition.
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Fig. 2-29 Average strain history of BS2 obtained from 1/2+1+1/2 hold analysis.
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Fig. 2-30 Ultimate strength interaction curve.
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Fig. 2-31 Deformation and distribution of equivalent plastic strain at ultimate strength.
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JERERAETREE ST PBC-2 TOEN LD b REL RDEEINWL 20FEZ 5. il 21X
JEAMIBERET LTI Floor & OZRZZERITI W THIS L OPEH IC ﬁﬁiﬁ*#%ﬁzét
¥, Floor O E X OBAEER 3T RN EZE SN TWRNZ ETHDH. T e idhl
\Z, PBHD fi7i& (Fig.2-31(a) OZEMNIZEH 5 2 A Floor [i]) (233 T Floor [HFEAEA A < 72
HZEL—REBZOND. AMBERET NV TIE, [AU Floor Mg HE 25 L ET 572
¥, PBHD {\Zi& T Floor [FI[@ 234 < 725 Z LIZ X D AHMB s8N B E S e\, Zh

OFBEIZE L CIIBRE R T IR, SORIRFPMLETHD.
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(b) PBC-2
Fig. 2-32 Comparison of average axial stress — average axial strain relationships between GA and

PBC-2.

252 HWERDEE

Fig. 2-27 2R LI ARIEESMR DB EE /S 351 2 R4 8HIS /) — ER O A BEfR O s P
1%, A= RET VORI EARE DR R AR L TEY, MESMISRATREEIZE Lo E
BRATHER T AR ICEE L TWVWD Z & &27Rd. Z ORI TIE, Fig. 2-12 (a)lZor L7z ) NJE
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13.0mFHY, =7 E : 2L, BEARSEM : BCl) 76157, Fig 2-33 Ofit)7 M O MEE S
J153Ai &, Fig. 2-34 OFEE RV IB1 OF-2JilE ) — SO 2 B3R 2 W TR 5.
Z ZC, Fig.2-33 & Fig.2-34 ®A P, Q, R I Fig.2-18 |Z/R L7zfitdh £ — 2 >~ —[alfisfg
BR EDZN B L LTV A, Fig. 2-33 O CTHTEETIE, S P25 AQ, MRIC
DT HEST 10 D JEREI 105800 LT 5. Fig. 2-34 O 2l F) — EH s O A BRI B8 C
H, RP DA Q OB TIHEMOT AN L, BIERRMAAELT TS, Ziux, MESMK
it SV ORI, ZHEHIKORE I H RO R AN ST 5720 Th 5.
NSRRI TR 7251880 AMERT 2 2 & L7220, [EMERESERMT 5. 2%V, [EHEfkE
OB 2 £ T TV DM, WIEHBITHEEFIREICHTF S L Cnian L1tk 5.
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(c) At point R

Fig. 2-33 Deformations and distributions of longitudinal stress.
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Fig. 2-34 Average axial stress — average axial strain relationships at inner bottom plate (IB1).
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FRMTIZ K 2 ME T AR EEARAT 2 ATV, AR JES R B AT B S AE it R B 2R i 30 X OV SR 1
TRELZHFZ., DLNICE LN a AR~ 5.

(1) 12+1+12 A=V RET LV ORTZEOWE A & LU, £ OAE TET V& BMESR 2
Y& (BC1), PBHD irf# DRESMRAS AEE U 7o R CHER T iR & 70 5.

(2) 12+1+12 R —)L RETF L OB BV TERIC KRR 2R T4 (BC2), kR
—/L RO WBHD 5 OWNER THAEEN AT 2235, £ 0%, PBHD (2 K VTV ViRES:
WS AR U 7 IR J5 Ot T B TR & 72 5

(3) WM THEEIE « BIRNIEAT T 26 TH > THMEANROEE 2 FEN & L CHErh
IARBREEICET D720, MESMRICE W CHIMIBEN A U D X 5 2 R ES R &
O GAE T CHREM T A& TR 2 FHili 2 ~& TH 5.

(4) JREBATEIC LV MEE T REIREME T2 1| DHOERERE, “EIEKOREHITAR
KV IEAMRICHEERE DM Sh, JFEIE - BYERRERBI RSN Z L ThD.

(5) JAEBATEIC KV METRIREME T2 2 SDHOEERIE, MIEIMIOFERZIC
BIRO GRS AN 2 L, e o5 iR ALE 92 WIER DR X v 7
T DENMEPNRTT 2L ThS.

(6) EHT HAEE IS I THRIESAME T oo R EMEIS 2%, ZHEME OIS E —E L LTk
D 7= P S RV R O B & TR EEAHBEBEARIZ, MR 7 1A ERE IS ) 23 AL 7R AE T L 72
%Y, HEMEER ORI E & b ITHUEMEIS D3N3 2. 2o, el mERE)c
BN TRAEE SRV D MEEAE R TR |2 R AE T IR 7 RIS D OB/ S E
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$F3E ZHEERZHULV- Smith (&
F A HEH (7 Z R BRIEARAT A

3.1 #E

%Wﬁ<%%@ﬁ@f5%ﬁﬁéﬁm¢étwmm,E@Lk%%ﬁ@ﬁﬁﬁﬁ?%%
& Lo, HESAM DL « VBVERREEAME 2 (TIEA Y, SRR HEr T BB 3 5 288 2 38 K
FNZIBRET D BN 5. 5 2 3 CTfT - 72 IERIE FEM f#fTix :m%%ﬁié’kﬁf%
DN, FETMEREEDHEA A MIZRTHD. —F7, B - BUEEEOILNR Y &80T
& D IR T R AR EEARATYE & L C Smith 15[13]235 1, CSR-BC&OT (ZHL Y At
NTWD. & 4 BICBWTRET MR EO R L B T 2 E 220 T ok
BREEARNTIEIY, Smith AL 35, 220, AZZEUWT Smith O35,
Smith {£TIX, Wi OIPIRANZE & FRRFF 2 BED S &, AW 2 R FR & B 1 L2 5%

ZaEIL, ZENENOERITEIE - BIROZEZE LT EAE T — O3 4Bk & 5
Z, Wrimi ORFEM T E— A > b —di=RBERA R T 2. Wik O nHIBERICE 2 2 S ) —
RO A BAR O HEE I ITFE 2 O FIENRE STV H[27][28]28, AT TIlEEIC
Gordo-Soares D i 5 H A [261% FHV 5. Smith EDOHEH T RAKTRE OHEEREE L, KET D
SN ) — SRR OT A BIRIC R & <UKRFEFET 2720, ZofGERICHO W THRT 2.

Smith VEIT & 2 fE il (TR R R EEAEAT CIE, EA OEJE - BRIRITHE D MR T, Z4ic kb
A2 U DB O WP ril OB B A EMEBER T 2 M H D . £ D7D, CSR-BC&OT Tl
748 (Incremental-iterative approach) & FEIZ AU 2 Rl 72 fif AT Tk %2 VT, Smith {512 &
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B HEMT B BT 21T 5. & 2 AT, Smith JEIZH W Wi OTAR AL & SRR DR
7E1%, Bernoulli-Euler 2 CTORE LR U THD. DF D, Smith EDOAKEILIERRIE 2 EHRF
PEZFFOROMETE— A > N —HEREMREZRD D Z LI . Lo T, ARROW
DGy ENE R N D LG T) — O3 B BAGR A& Pl ) — SR M O3 4 Bt
ICEEHEZ H 2 LT, Smith V5 &AM e e (T RN 2 R HHRIZ X D FEM f#MTIC k- T
EIirlHe TdH 5. FEM OfiEiLI21E, Newton-Raphson 1£% 1% U & 5 KEMEEZ I viud
v ZORARIEFR A2 AV 7o Smith i & Sl ZeHEdh B AREEMRATYE “FE/Smith 1£” O
TIAIZOWTARBE TS, aoFWiE (2 OFWimn &2 FFo%) Zx51C Smith £ &
FE/Smith {512 X 0 #Edh S BRAERNT 21T\, il TEN SR O DR RE kT2 2 & T,
Z DA% R
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%3 E PATRESE A HV - Smith 5 & Sl Z2E dh B R AR R IE

3.2 Smith ZDHE

Smith £ BHE & AEHT FIRIZ OV TR 5. Smith IEOFHH TIX, BT O 2 HI 3%

(B8R SV EFR I LOWEER) OFIET) — P OTHEMRP NI L 72 5. Afa LTl
ARHIIZ Gordo-Soares Dfifi 5y A% YT — FH O HBEMROFEEIZH NS . KREI Tk
Gordo-Soares Dffi Z HADE & 7T 5. 723, Gordo-Soares D 5 H X CSR-BC&OT
RS hTn5.

321 EHmEX
Smith ¥£ClX, HEWTEH ORIZEET, MW Emz2 /T2 EIRET D, 2t
Bernoulli-Euler Z CTORE LR U ThHDH. WE, Filrml i ROy Ak 5 2 2 i ok

xE 2%, Bl EOR(y, 2) TOMIS ) ol WO e DB o= f(L K ENhD L &,
S S DI Ao SO B OW 3 AsD BRI, HHRRE E, = df | dse AT

=E,-As 3.1)
2RI, Ae & AcORBIZIIWE FEfRFOIRE LD,
Ae=(2-1,)-Ak (3.2)

L ORBENE YLD, 2T, 3P aom S AR Y. F2, MrmomEr 4 & 15
& W A8 < #ih ) DEESYAP 1,

AP :jAAadA (3.3)
RIS, 33)RUB.HXEGHRERAT S &,
AP=| E (z-2,)dA Ak (3.4)

Le . g IREETIE, W e RIcE < @I e 2o, G4HRNTEr LD, S
F0,

[ E(2-2,)dA=0 (3.5)

ThbD., ZOFMI0PEOEE 2, N RED. 72720, ENIeDEBTHDLDT, AxD
Hhn, S F Y Ae DEINILED z, 13 % E BT 5. ZOEWT, Smith FAs 2B 25 AT
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il 2 BB R ST & R A TV DL Z OBRRETR NI E Y O IF ' — A > M AM 1
AM =L\Et(z—zn)2 dA-Ax (3.6)

LA,

Stiffened panel element

[ ] Plate element (hard corner)
C.L.

Fig. 3-1 Division of cross section in Smith method.

Smith £ ClE, AW % Fig. 3-1 O L 9 IZPE N RVER ERERIZHEIL, ZnEhic
JEIR IS J ORI D82 B E LT, WlEH - 53R E N2 1T 2 400 — F O 2 B%
2%, S —FEHOPTHEURICOWTIE 3.2.3 HIZFERT 5. Wik DO REHERE n
LU, i FHOERICET DHUG Iy, BOT A, HRAE, BRI FHOEFED
S & R E LD z JEE 2 2020, Aa, Aa, Eq Az &5 L, (3.1),(3.2), (3.5), 3.6
ZNENRD X O ICHBik Tx 5.

Ao, =E,-Ag (3.7)

Ag =(z,-1,)- Ak (3.8)

iznl:E“ A-(z,-2,)=0 (3.9)

AM :{Zn:Eti-A-AO'-(Zi—Zn)z}-AK (3.10)
=

72720, Wrim OERE O RTA 72T mIMEEG10)RUCB W TEH STV 5. Az BRI
BINEETAM ZRD, ThoZELadbys2 s T, fhifeT—2x0 b M &R DRFZEN
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3 PATRELEE & V2 Smith 75 & A 2o fE il Bk AR AR AT VA

/oD, £ LT, MOFKRMDPETEOHEM S RASTRE L 72 5. 70k, Wik k7 52
FI, BHEERROMEZBIIEE L2V, $72bb, ERICERTER L TW5H25, Zh
ZUIVBEL T, WOOMER T CHNLICEE T 2 L IRET 5.

322 fEMFIE

Smith [FZAMADHER T BER AT IZ LT O FNEZ FIV2[13]. B Tk =72 HfEa & b
JIESWT, ZOFIAREHHT 5.

(i) AR A, BiEe S VER R L OWERICHET 5. (FIEOBEBIEIC S

Ji)

(i) HERIZEMR OB RO EOE T CTOREE &K ORIR DR B L B [E L
TR — S HOT BB & T O 5. (REIZHER)

(i) Wrm FHEAFEORED S &, Wi RE2MoNcE2 5. BHERT v 7
TOEBEROOT BITXFIET D & FHE O HRINEZ T 60 Wl L 72 2057 —
FHOTHRBERNSEHET S, 2 LT, Wi Lol ho&iNnEe Lrs5k
HTH 5B MNS, BT SIHOMELZRD 5.

(iv)  BRIRERSTENOLE £ 0 oW o #FRIMEA K, (3.10)2 & v 5 7= #i S 4y
2R D E— A FEFETS.

v) B8R LV HX T T HEELZDOOT A ERD D,

(Vi) BERONLEET) — FEOT BRI B 2 KD, #hF 52 5 2 7=
LR DRELADIII B TAE VKD S.

(vii) Wi DT —A > K EHEOHS, BLO, I EOTAHOHESZ, BlEHHEA
Ty TOEE—AL N, R, 2T, BOTHRICENENE LiIAK, &
DOFFEAT v Tt

(viii) FMEGO D (Vi) 2R L, #ifE'E—2 2 b —ihEERE25ES
LU EDFNEZ AT Eg B e R TR L 23R 5 72 D121E, 52 DAk & +Hmi/h &<
EDVEND D,

—7J7, CSR-BC&OT THW LN AT FIA (Fig.3-2) TiX, ARGk 3870, =g
W Tl el Rz mic b2 5. £7, WinFEkFFOREDS &, FiFtHE AT v 7' ¢
RO HT-HNLE O EIZB WV CWIE I 2R L 5 2, FEROLOTHEZRD L. 51T,
T O UE( L7 ERIIG ) — O ABRICHE D, FERORIS I EFHET 5. K ELE O
R, Wit EO I OGHNER THLINET = v 7T 5. W€ v ORI ST
WRWEAE, TN EABE S TS, ZOELZE Y 0 2T 5 TRV IRL
179 WHR UI=RE R DIs S & PArBiOTEN ST E— A v FEFET S, 2ok Hig, &
RIS, KFHEAT v 7 THEZEMOMEIZ OV TR K LIGREHE 2179 L)
BT, OB AR L IS,
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First step
%1=0

Y

Calculation of the position of the neutral axis N, = 0

Increment of the curvature
X=X+ AY,

Calculation of the strain ¢ induced on
» each structural element by the curvature y,
for the neutral axis position N,

]

For each structural element; calculation of Curve o
the stress o relevant to the strain €

Calculation of the new position of the neutral
axis N, imposing the equilibrium
on the stress resultant F

Yes

d,, 3, = specified tolerance on zero value

Check on the position
of the neutral axis
IN:- Ny | <0,

No

Yes

Y

Calculation of the bending moment
M, relevant to the curvature y; summing the
contribution of each structural element stress

End

Fig. 3-2 Analysis flow of Smith method in CSR-BC&OT[12].

323 EHIEA—FHUOTHER

I EH T3 1T DB SV ORI T — SO R BR A HEE T D A D 7 iED iR
BINTWDD, ZOHIZ Godo-Soares Dfifi 5 [26]13% 5. Godo-Soares D H I
CSR-BC&OT (2351} % Smit {EIT & 2 il i e ALTREEMEATICER Y AN BT 5 [12]. Smith
VTR X BA B Sk L BESR EARER O 2 IS EIT 5. 205 BIRERIZOWT, A
— & — L INESMIE L OB & DAL (Fig. 3-1 DR O FEHCHRTeEIk) 128\ T,
WA AN Te DR B2 MRS 2 2 &, BB OFERIC X D2 RN ZEMDENZ L2 BE L
T, DR TA2ZBE LRV — Fa—F—BERNRKICH O D, ARETIX, CSR-
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3 PATRELEE & V2 Smith 75 & A 2o fE il Bk AR AR AT VA

BC&OT (ZHUE SN DB S0 VB, REHR, ~N— N a—F—EROFYL S —FH O
AR HOWCHiEILT 5. 72721, CSR-BC&OT IZHE SN DWERIL, A7 Fx U T 0O
IO DN DR RO e SNTM, D F 0, BB AN NG & %0 2%
HRE LTS, Lo L, RFROMNTE T 5 2 > 7 HROMEF IEH O R —L Rk
WTHE T ROMN 2 S5 Z L1372, £ Z T, Godo-Soares Dffi 5 H =, (CSR-BC&OT
DR) DE 2N - T, Kl 7N NG 2 52 A% 5 SER) 08 7] — O3 7 B%
©oRT. Table 3-1 (Wi Oy BIZHR L BT — 1, A OIS 5 FHIE T — FHOT 2
BROE S E £ LD, P S VEEICK L CUIEEORET— RAMRESTTEY, £
DOHF TR BIEWERRETREEZ 525 b ONZOEROREE— K& 2 5. Table 3-1 O
(H)~O)DFXIES — FHOFTHERIC OV, LUFICEERT 5.

Table 3-1 Modes of failure of stiffened panel

Load Element Mode of failure Stress-strain curve
Stiffened panel
) Elasto-plastic collapse
Tension Plate R (€))
(Material yielding)
Hard corner
Beam column buckling 2)
Stiffened panel Torsional buckling 3)
Web local buckling 4)
Plate buckling under transverse
. O]
Compression thrust
Plate
Plate buckling under longitudinal
(6)
thrust
Elasto-plastic collapse
Hard corner (1

(Material yielding)

(1) EEEERE (MEEK)

CSR-BC&OT TV THEVAMEAREE & 330 S TV D HREEE — R, JEIE2NE USRS
RTDEGHDOREET— RE2RT. HEBMEREO LN — FHOT AR A TR I
5.

oc=0o, (3.11)

22T, ol TS, o BMEIORIRIST), OIFRATER SN LMWK TH 5.

- 53—



-1 for ¢ <-1
b=3 g for —-1<g <1
1 for & >1

&IIERSOTHTHY, FHOT hel BIROT ey Z N TKA TR EIND.

(2) ZATEE

BB SR O GALE IR AR K 5, IR — O A ERIIRAIC L D

(3.12)

(3.13)

(3.14)

OIIIEBEEL, A (IBAEM OWiERE, b 230 > PRIORNE, b (IROAZIE, 6 (TROBE

THD. beldRATERIND.

(225_125
Be B
b for p. <1.25

jb for p. >1.25
b, =

IS, LI OMELRANT A= THYIRAUZLD.

b (o,¢
ﬁE:_ —=r

t,\ E

(3.15)

(3.16)

EZVYr 7R THD. GIHRDOELITEE1D oo 1ZA RS & OB R O JEMERE 43

L, wAizks.
Ter for o, < Ovéy
&g 2
Oc1 =
o,|1- Ty for op, >——
o 2
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Z 2T, ol lE Buler DEJRIS I THY, W TERIND.

1 2%l

= 3.18
T YT 19

LI 7 a7 A=, I 2LV OWHE 2 IRE— A N ThD. [ DFETIIHROER)
e & U CIREK DA ZE bey AW S.

b for g, >1.0
be, =1 B (3.19)

b for p.<1.0

Q) RYER
e S DR BEIRRRRIS S 5, VIS — PO ABRIIRIC L 5.

Aog, +btoc

= 3.20
Ocro A +btp (3.20)
2T, oo lIBEM OEREREARL, RAUTLD.
Tez for o, < iAd
gr
Ocp = o . o . (3.21)
1-—Y—r for > LT
Aoz e
ocp IO EMEREZER L, WAL TERIND.
(2.25_%}@ for p. >1.25
Ocp = B B (3.22)
oy for g <1.25
(3 21)R A D o 1 X Euler DR V) RS T)
2
e, :F[ﬁlzlw c, +0.385IT] (3.23)
p
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ThD. ZZIT, LIIHEM OWREiM 2 kE— A > b, Iri% Saint-Venant O ) Hpi£— 2
Vb, LAXEMEIEE— A N THY, Table 3-212F & DH. Table 3-22 HD 41X 7 7
OWrHFE, ALY =7 OWFE, e=ho+t/2 THD. £72, G)RADIZEEND i
BAEEEZRT T A—FTHY R TEHIND.

4
¢, =1+ | ! (3.24)
\/3 . (b 4th
el

Table 3-2 Moment of inertia.

Stiffener type 1, Ir Iy
h'’t ht t h 't
Flat-bar — — (l 0.63—Wj —ww
3 3 h, 36
ht’ t, Ae'db’( A +26A
Angle-bar ———|1-0.63—
At 3 h, 12 A +A
- + A' ef ' 3
3 b,’t, t,
+—"]1-063— b'te:
Tee-bar 3 h, 288
12

4) HEMD z JDOBERERE
Bige SN D 7 = 7 O REE IR AR T 5, RG] — O RBRICOWTRET.
Angle-bar 35 L O Tee-bar D5
RIS ) = B OF B BERIFIRUZ L D

bEtp +h,t, +b,t;

—® 3.25
Tera = F 0y bt, +h,t, +b;t, (3:25)
T2, heBEM T =T OFYEITHY, AUk B.
(—2'25 —1'2§)hw for g, >1.25
h,. = By By (3.26)

h for g, <1.25

W

Bl = T OB AT A—2ThHY, KRICLD.
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Bu=7" : (3.27)

Flat-bar D&
SIS — O ABARIFR AT L 5.

Ao, +btpo_cp

— 3.28
Tera Ag+btp (328)
Z 2T, ocalFMiEEM OERERE K L, RAUTKD.
Oeq for o, < Ovér
g, 2
Ocy = (3.29)
o, & o, &
1- = for Yo
GY( 40'E4) Tes” 5
Ok4 IE Buler O BRI D &2#R L, AU L B.
t 2
&, =160000 (hlj (3.30)
£77, oep [ TRDIEMTREZ R L(3.22) N TERIND.
G) WRER (El3ARICENEHEN MMERT 25E)
R0 7 T T N AT & 52\ DR D SRS T — O3 A BRI R AU L 5.
1.0
— Do, -min 2 331
Ocps = POy 9(2.25_@)+0_1(1_9j(1+i2] (3:31)
I\ B Be | Be

6) RERE (RAARICEANEHENERT 558)
FD RN T NEME &2 52 0T DIRO RG] — O3 AE3fR1E, Eik®d Gordo-Soares ™D
FHHHEADOEZICHL ESTIE, ko kricFkRasns.
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Ocrs = POcp (3.32)
ocp I DEID T M DOJEMERE 2 F L (3.22):ATEIND.
()~(6)IZ7~ L 7= Gordo-Soares Dffi G HADIEARR a7 N, Q)&HFIZE VI

L. FTNEL, WOAE bplZOW T 5. (3.15)7D beld, Frankland DF[45]

b. 225 1.25
=2 (3.33)

o b B B

WZHEDNTND. 2 2oy IO EHE D EHEIRE CTd 5. Frankland (X 25D DT
BERRER 2 520 U, Rl B mNZJERMG &2 52 D FER O ) e e ik e & 5 2 5 A L L
TEB33)AXEHBTWAD. —J7, Faulkner[46]IX AR DR ATV, IRAZREL TN D.

b :Q—E (3.34)

b B P

(3.33)XB L VB3NN A BITHOMEILTH Y, KUK 5.

ﬂ:tg\/% (3.35)
p

MEHAIE, KRD X 5 ITROBIRIG oy & MEERIG Joe DL E LTHRT Z LN TE

5.
B= k—”z Oy (3.36)
12(1—1/2) o .

2T, VIART Vb, RITERRETH D, SO K E WDIE ERARIGC I Ee Ui A
JEISTIDN NS WERTH D Z & 279, Gordo-Soares Dfifi 5 A TIIAEXT O Frg B 7212
HALTGRI)XOMELNNT A =4 ZERLTWD. 3360)REBET D & 1TRAD
IR FTZENTED,

b ,O‘Yé‘ k7 oy,
=— r— 3.37
P t,\ E ‘\/12(1—1/2)\/ o: &, (337

Gordo-Soares Dfii ZHATIE, G.12)RXDEHEAIC LT, er=1 D& X, DFED, g=¢y
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A RS & OFEMIAER T 2 EMIS 2R T 72D, 3.14)THBW TR SRV EFED
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Fig. 3-3 Johnson’s formula.
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THIEZ AT DMK % S L7z Fig. 3-4 OWrBIR A £ 2 5. Smith 5 TIE, B
Wil % Fig. 3-4 (CHAR CRHTeB#Ee SR VR F I ERICHEI L, SEHRICHE - JEfED
i EAMER L7z & & ORGP O T 28R 2 BT 5. W&, £0FIEEOH
FEHDLE 2 WIPERE /Y s OB HIE ) &35 Fig. 3-5 OBARERLEEZ 5. 22 CTHER
GREISE L%, FRWTE S HGHM OFEA TEIN, FHMOMT R X O AWIE I, RO
FofETcRETE, WEHNORNEEZBHTE2EREZ V). 20X ) REERIT, £
< OPHREIERRYT Y 7 MCHE ST TW 5. HRRERZEORIMFE Y R, &05I8RE O
MRS Z 545, 5l 21% Fig. 3-4 O S VEFE A DA, ZOWriafE & Fig. 3-5 ORI
R A DRSNS LL 25 X0, HWAKEOWEZFHHE+ 5.

Fig. 3-4 Division of a cross section in Smith method.
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Integration point

Fig. 3-5 Idealized beam cross section and integration points for stiffness integration.
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KR4 O MK FIXOT AR 288 & R e 9. DL ED X 512 L TR L BP0 7
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np, PO THE P (=e—6°) LERT DI LI, EMRMETREIZE LI RICHRE
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JE AR OBRMIAIEL, R 7= bAOFBIC LV EEAL Y I T 5. 20X 5 28
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Smith % Ti%, HZfiOBE 2% L T Fig. 3-7 OEXO X 5 (W it ==« 2 #5580
252 %. [AUEREZZARERICE W THET 5720I121F, Fig. 3-7 04O X 51215
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=2 (3.39)
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B Softening

14 r /
1.2 \

18 Hardening
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06

Axial stress / elastic limit stress
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0 1 2 3
Plastic axial strain / elastic limit strain

Fig. 3-6 Axial stress-axial plastic strain relationship in FE/Smith method.

Smith method FE/Smith method
Cross section Beam element
K |

Wi =)

Fig. 3-7 Boundary condition of a beam element under pure bending.

3.3.4 FE/Smith j&IT & 2 #iteh (12 R AR IR ARAT

PERD Smith L TUE, SEHERE ) — P OT A (20FH) BREHEMAT 570, 3.22
TR ATz &9 Ae Ll OB 82 B8 T X 285BI Sy WKEMIT 7 0 7T h B E LT,
ZAUZx L, FE/Smith I, SO 2 BPEEEONT A S E L U COFEE il ) — -85 98 s
OTHEMREAERT 2 2 & C, I OT Ak K Ok & 35 8 C X 2 B FEM fighr
V7 R ThiUE, #EHAETHD.

Fig. 3-8 |2/ HEAS 4800mm, 78 & 73 3200mm O 2 OFWrE (= OF Wi 2 FF>%) %%t
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12, Kk Smith %38 X O FE/Smith (2 X - THER T BRI 2170, M FIE TR
BIEMARAERNE SN D Z L 2oRT. Wi OREIT 4 20mm & L, 5 & 800mm DR
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TER D oG F) — EA O3 2 B8 2 5 2. %5 . FE/Smith 512 X 2##HT121%, LA FEM fig
Wr7 w77 5 Marc 2 VW%, BREERICIE, HAGESE Marc/ Element 78[47]% W 5. Z O
FFClE, BEAM SECT parameter[48]% W\ C{LE DO ERWTEH O ZERL L, & O
(B OIS R OETTHER) 2RET D 2 N TE 5. 7ok, ML) — Pk
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o
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[ ] () [ ] 1 (] I [ T ( )
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Fig. 3-8 A u-shaped section
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BT 0B LN RE BOAOFERT, FE/Smith {512 X > TH LN REROOMHRT
R WRRNT DA DN TRERN R L T D Z 23D, FE/Smith {EIZ L DK
X U IRBE T OB R AT IC I C, Fig. 3-8 [~ 3 AW i b O RIPERE 55 a5 (it 71 E 45)
ABXOB THAEINTIS —20TAHEGE (BIHRAIE) % Fig. 3-10 12737, Z OIS —
EOTHBRIL, Smith AT T HDRER TONYLIE S —FHOTHERICH ST 5. Fig.
3-9 & Fig.3-10 % H\ T, FE/Smith {EMMENT L 72 R 2 7 REE T OB IR AR EIZ D\ CHl
7 5. £, Fig. 3-9 OfiiFE— 2> b —diRER EOR P IZBWT, i o5 R
BT 555 B THRARAE U (Fig. 3-10 ()DL P), RIZ AL Q B W THIF O [EHEM OFE 4y
LA TEHAIMEOIK FAAET D (Fig. 3-10 (@)D A Q). I BLIZHIRN NS &, S RIZBWT
FEO3 4L C TRARDAE L, S IZBWTHD A A CHEMEM W I OIK F23AE W (Fig. 3-10 (a)
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Hr% FE/Smith %2 FIWTEMTE 5 Z L ARSI N,
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b
P

Sagging
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Fig. 3-9 Comparison of Longitudinal bending moment-curvature relationship obtained by Smith

method and FE/Smith method.

Stress / yield stress

Strain / yield strain

(a) Integlation point A
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1.2

Stress / yield stress
ot o
(o2} [ee]

o
N
T

o
)

0 2 4 6 8 10
Strain / yield strain
(b) Integration point B

Fig. 3-10 Stress-strain curve calculated at integration points.

WIZ, Fig. 2-2 127”7 8,000TEU 7 7 AD KM 2 7 Ffin A X4, fEKD Smith 1535 X
O FE/Smith {512 X = TR X 2 ZREE T OMEHT ZRFAEEREAT 217 5 . FEIHhIES 7] — P
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Fig. 3-11 \Z/Rd. WIS L Dt — 20 b —iiRERITIELEA L L TRV,
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BRI ZHED T — X —fRIESMIIS L ONER DA ZETIT IV THWD 2, R R 50
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Fig. 3-11 Longitudinal bending moment-curvature relationship of 8,000TEU class container ship

under pure bending.
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aFFNT, EETOERE IR ETOa T FORRA TN S A0, i -
RB7 VT ORERMHERS>TEY, RHEFIZBWTRERFEDE—A L IBRELDH. —7,
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DL LT, BRREE D [T O T &2 FEfS /) — EE O3 4 BRICEE T 5.
Fig. 3-12 IR TR A M3~ v 7 ZABD 2 T w181, Eiko Fikick > Tir- 7z
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Fig. 3-12 Idealizing a Post-Panamax type container ship as beam elements.
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Fig. 3-13 Distribution of ultimate bending strength under specified torsional moment
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LB OERE, Dodx G ({Em) o “EIEOEGTMNR L L TOMITHIETSH 5. (4.12)

RE@GIDHRUTRAT D &, xldce OHEMEAEE LT, kXD L2 I2HEZ6N5.
1 7’ 16 Db, | . [7y

[ — sin| —= 4.13

SR = O I

FRUIE, Ko BRI L Poy DA P DRSS CHIT, a AT 5 2 & 2T
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Hull girder

WBHD. WBHD.

Double bottom

(a) Compressive load and bending moment acting on double bottom.

(b) Global and local curvature.

Fig. 4-1 Superposing local curvature of double bottom on global curvature of hull girder.

4.13)ROREfR%E Smith JEIZELD Adv, e T B RAREERENT 21T > 72038, R EIC L D
e P KR DK T 2+ 0Ic R T 2 E N TE edvo o, ThUE, KO BT SR 23
FEFIZREL, T RACTREICEET 2 £ TCOFA T PRESHRE LN &R
KThH-otz. (4.13) N TERINLHNERHPAD ks & DRIFRTIL, ARESMEOJEIE - HEPE AR 8
W2 ZHIEO RO A BB TE 2. DF Y, ZHIEORTBHEROHEINBLSR T
PAVERRAT CHLD D72 T IVEHE TE W E R L L 7o T,

(3) Model C

v =)V FEM AT OFER (B 21X, Fig.2-17) 75 PBHD DY EAMK & WBHD 8] D PN JE
WS L, “HEESR—/L FEH 50 G, TARLENLT D & THEBIZEL TN
AREMEN D o T2. DED, BEEN 1 SO ANTRAMET S & 9 A 2 kot (B o) AR
BT, 3 RITHIR FREED R T R RE DR FOER L & 2 b, £ 2T, £ 3 Smith
TR DI O Ry E 2 R (2R L CITVy, IRICTE U224 5 RALIE LS 3 2 MBS/ D B 5%
EWNERDEFE % Fig. 42 DL HIZ LT 1 ICE & TWrilE DB 2#Ff> 1 DOEFHE L %,
ZOHEFZXF L TA ] (PBHD—WBHD [H]) TOF-Edih)s ) — PO 2 B8f % 5.2 5
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ZlELT

A WIZFBWTHH DB #8524 % %, Fig. 4-3 IR L o277 m 7 &2 X)

DIZ 4 DORFERIZHEIL, MIESMRE L OWIEKIZ 1T Smith VEIZ AW 2 SER8 7] — O
THERE LG 2D, £ LT, M ClobA M a2 L, PBHD (iZ{& Ti% PBHD & % fli72fn1E
EREANWTEDLERET S, ZOREFMIFTEDKEL G 2, MR %2 BRI AT
9% Z & CWitE DB % FF OO A [ TOVRES ) — EEh O AR 2 Ko 7. £ 0
M ES /MR & PN O BE5E 0D T DM 8L B O F o i % 5%

K%, FE/Smith {EDE 2 IZHEW,

T, Z D ORI RS ) — R O 2 Bt & 5 2, M FEM (2 K- TfF

Mrait-o7z.

I'T" T T T T 1T

1.1, 1.1, 1. 1.1.1

Section DB

Fig. 4-2 Cross section of model C.

Double|

Floor space

bottom

WBHD

3;_

Beam element

Fig. 4-3 Beam model for calculating average stress-average strain relationship between PBHD and

WBHD.
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LLEIZ K0 RO Te A [ O FL5 S S — FEh O 2Btk 2 “HIE DO H%ERITE 2,
Z DD TOEFRITIT Smith 15 TH Dl O hET) — FEE O 2Bk & 5 %, fit
T B R AR 21T > 72, 2 OfENTIC L v, PBHD (IO N JEM THAEE DS A U3 ISt rh 1 B
IR T A 2 T D 2 AN TE . ©E Y, PBHD D PR o #5580 8 1t
TEOREIEDIK T 2ETZENTE, L LAaND, REHEIC X DT R A& E oK
TOEAWEY =/ FEM OFE R & il L TS o 7=, & 512, Fig.4-3 DEE T VO
\ZHW T, PBHD {IOFESME L 1 WBHD D NJEMK T FREEME4T L TR Y, PBHD
ULAE DRI O 5 O H THiErh T (IR T I 5 2% 8) (B 21X, Fig.2-13) ZHHLTX
2otz Ko C, PBHD IOMIESMK & WBHD IO O EHEIC L D “HEDORLE
B3, JR AT IS K DM T R IRE O FOER TIERWZ ERHL N E o7, e,
LI EOFERIY, WBHD (L& ClRIEREERMEZRT 2 &2, EEL biRElZRRTh s 2
L ERIET D, HEXEOFEEMN A EO S 720120%, Smith JEOMFHE S 2HFF L o>, &\
JEE D JE D BE RSP, - BARIC X D " HIEOR S5, B RO RETZbaZgRE2 L
IR DET MERMETH D EEZ L.
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4.3 i3k Smith EDERF

ATEINC TR AT T L TlE, JREmE & ARX 2 7T — A v FMERT D R IEHT O AR
BpE A T2 LN TE oz, L LD, Model B DTS, BiIMEHIPH TO
CHIED R RIS W, R RO INE S TR EARNT THRY o7
MIEHBTE W E 0 RESTZ. £72, ModelC DFEMTICZ LY, MESKE NEWRE BT
—fE LT 1 DORPEHETHTZ LT, PBHD MO NEHROHEH T I 5 G MEDIEK T
EHBTE D Z Lo T, JEIE Smith 75T, MEAME ENERE E Tl T 55 %
PSS, MIESMEO IS “EHIEOREFMEOINE BE TE 5ET V&%
T 5. £72, Model A~CIZdH D L O i€ 7 Va2 MW 2556, REmEIC LD HE
WU DS D IR E T 2 M E RS 5. EAmOFEEEZ%E 22 &, FHE M <
THIEOBMEISIENTIN G, MYERHTOMERT BT £ TE B L ITA D NEE L.
% Z THEIE Smith #:TiZ, PBHD % &1 WBHD R 1 Ax—/L NEiFH 2T & L, fHT
IC—BMEAERE 5. DUFICHEE Smith (DT T LA FR T 5.

431 ZEEDETIVE
Fig. 4-4 (32> 7 o0 “HEBEDKK TH L. RS HNMNX, T—F—LtnrnJitks
T, BHAIE 7B 7 IC L > THIRENTWD. 20X 9 &0 EMAT IS 1T L 757
MO\ EITHD. —RIZ, FEEFET AT, H—F—&7a7ilhHlzbHiOH%
PEFETHEL, MIESCE L OWNESIZEOFDEOH Y 2R EHZ D7 F 2L LT
MIPEICE AT %, —77, Smith ¥ TIE, Fig. 34 (R L-E 9 ICar YL E20mi 12 ary
AN—ZDOHIPAZE 1 BFE L CWiE & 0E3 5. ZHEIEOHEST -~ LR « BIR O Z R
PRIERZ BT 572 0120%, EHEENL Smith IEOBENLETH 5. £ 2T, IROFIEIC
Mo T, THEAFREREZMAVTET VLT D, T /MO BEHZRFH D=0, Fig. 4-5
ORI 2N & 5.
(i)  ARPRBRITIE 2 Smith IEIZHEW, B X OB SR VBRI ET 5. 0% 0,
Fig.3-5 L &< R L RHEITH S.
(i)  MEFTANTIE, PIEEKRD 1 53EI85E, 38X O UEA G RMEIC & 5 MR
D1 BFNEFEO LT 3o biE, 1 DORERL LY. 5FD,
Fig. 4-5 OfH CHTREBIC G AL D Wik 2 Ff o 7 PR 2 AL R EHR &+
5. WIS AT, BACTRTET 2 HOATHY, KA TS L@
T HOHEHZ, Smith £ L [FERIZ, RIS — RO 72 Bk & % E
T5. UTFZOHEELE, N HEHRESE (Inner-outer bottom element) & FE5.
(iii) )L OREWTEE Y, T b, H—4— & ZICHEET D IESMEE L O
WIEHGH 77 (Fig. 4-5 O— 848 CHTefEIk) 2\ E 1 DO HNRESR & A
I MIPERE Y AL, BALTRT X 91, Smith kO BEFRYEI T LIEIT S, IS
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H—OFT HEHROE Y L, ()DOERELFE U THD. LT ZORERE T
— & —313 (Girder element) & FE5.

(iv) fBEF A, 7 e T 2 RERTET LTS, 7 e T OMIFERICHT S,
RSN F L WM DB ZNEIEL, 7 a7 Ofifll 172 717 Z~— 2 #ifH &
T5. ZHOOREEMIE, HETRERT IV T, WIS LARE
T5.

(v) (i) & ()T £ > T, Section2~6 DOWrH A FF->72 5 DORERENRE I FMIZE
TUEESND. 2 S OREF RRESR & (iv) TET Wb LT F R E R 248
AUETHET 5 LT, “HEZVEE A EECET /VET S, Wiho
PERITY, AN OINT TR & ACER N O EZ AL B i EE A i ST
545, Zhick v, HxoBEHEoPIlE S 25Xl ETRA TE 5.

AT IO 1A=L I3 H4E5E Smith (5D E 7 /L% Fig. 4-6 (a)lZR7. 1 DOREHR

DEIIX1 77 AX—XThs. LEBOFIEG~V)IZHEW HEIT kg ABCD 12 X
STETMEEINS.

y _— Inner bottom plating

Bottom shell plating

Fig. 4-4 Structural arrangement of double bottom.
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Section 1

Inner-outer bottom

element

Girder element

(a) Idealization of a hold structure between WBHDs
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Side & Bilge

u,=0, 6,=0, 6,=0 at all nodes

O O O O
2% 2% 2% 2%

l_;
o
|

Double bottom

0,~0

at all nodes

____________________

b
H-0—0—0—0—0—

(b) Boundary conditions

Lo Ugy Yo Gox» oy » Ot

(c) Linkage between AD and EF
Fig. 4-6 Model for extended Smith method.
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432 M- ELCEHOETIVE

Fig. 4-5 ([2BW\WT, “HELS ORI Sectionl (FERR THHTeHIIC & E 4 5 Wri)
I, FERFFOBRENKL Y oL LT, &K% 1 DO%E LTHRY KD . R3S L OB <%
NWERSOZENEATH & &b, BHENIEICHIMERE S R AT 5. B2 1 Fig. 4-5 DEHR
%, FH29 ORI EAETDH. LLEICXL Y, Fig 3-5 OWikE!IL Fig. 4-5 @ Section 1~6 (25717
i, TNENNEE LTEEOHBEZFD. Fig.4-6 (a) OEHEDOLA, “HIKLSIO
REWTA RSy (RIXAM O R CHTER) 2 1 S0 EF & B7229. EF (2 ) B S HED
ZEEOSERIT, “HEHSEFRLETS. %0, 1 DOBEFEOESIT1 70T A~
ATdHD. GLEF &OFHET ABCD OFEAIEICOWTIE, 433 HE 434 KRS,

4.3.3 PBHD $& U WBHD DETILIE

a7 1L, WBHD [IZ PBHD 23MF(E3 5. WBHD MO —HEIEKO fhiF AR OHEEIZ R
WX, PBHD OEORE L2 ZET2LENSH D, M H49]1%, “HIKOMTFERIIK
7% PBHD OEHLZ MR FREIXRICTE S # 2 256 OXRIMER (8t B) 285\ Tk
0, AFETIEZOREEEZFMATS. 7205, Fig 4-6 (a)lZ/~"3 &L 9 (2 PBHD (L& DT
AT, “HEEAEPITRCHRELFICKRT . a7 TEEFEZET 25613, [FSKFRR
WCHEPRELZMNT 5. —J7, WBHD HIKIZET WLET, £ ONE CHRAREET IR
RNENOFRRER EAET D, 725, WBHD MLET 5 E T /VRIEIHOWE Tk, —
HE A2 KIS ABCD &l - BT A2 RTREF &2, Zadasil X 2MHEY 7 ([l
REFR) THET 5.

434 HRAREH - TEERHG

Fig. 4-6 O)IT, EET NVOEREMEZTRT. x, p, 2 WM OWHEEN 2 ZNZEI {ux, uy,
uy, A VEARERELY ORISR 22 EI {6, 8, 6 TRT. BEkod X 512, WBHD O
(BT VORI 1IZBWT, Him BB IO Him F & FhEi& 0 AB B8 L0 CD Lo
FESEZNZRERY 7 (MRS 2LV AT 5. FHEETOELUHIBER AD E
DOFFIZBNT, GIXHBE L, ZOMoBHEIXFE U x BEAEIZ S 2 M 2 & 93
EF LR EWim FriRFFORED S LA T 5. il 2L, Fig 4-6 ()27 AD LD
APOBEMEL, EF LOFRQDHAME L ORICROBRE 52 5.

Up, =Uq, + L6y, ;. : free
Up, =0 0, =0y, (4.14)
uPz = qu ePz = O

ZZT, LIFEISAP EHR Q DM OMERBECTH S, b ORHSEMIL Mare (2524
IWWTWHRMAESE RBE2 IZ K > TR GTHZENTEDH. AD ETaEZHHEBET
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DARPUE, H2 W TITo 72 v = VEFEE VA —/L RO FEM fEFTIZRBW T, REREIC
ISR HEHEL KL oT x BhEb Y ICEEET AL E —RICEL S L OMmRLE
BCWBDThS. £72, WET RO LI L& UE L, M BC IS
o> TS ZET. UEOX YA L 1 A—L RET L E, MAHA E, FIlgkBW0
TEAEIFICH L CHM T 5. 2oL X, A E FOWFh—Hix x A ETF
AL, EHBNZYeIcRET S, ZAUICKY, HiRE F 2SS HFHOLEOMRICHKE
LTh, o Eiz S L oo, fillST—A v b FOBKMERT 245 2 &2
TE L. WEE, KEZPHWESE LT, a7 FERZEPHEL L ORI FIC/ER S
TH. ZOWh, KEBEIOaL T FHEL—EIR-TEEE, M E F 2B T4 25K
HCHN S5 2 &7C, AT E OB B E 1 LI O R R ARG 41T 5

435 ¥i5R Smith JE(CH 1T BHEWHIL L —FEHV T AR
Meds X OB EE S v Oferh i 5 [/ O dilh 77107 BT O SEE)HhS ) — SERE O3 A BRI,
3.2.3 JHIZ1R 7= Gordo-Soares Dffi 5 E A AW 5.

(1) EBEREROBRFIEOERE

Fig. 4-6 OfFHTET MTBWT, HETRE, ESM:E & PBHD Ol CHFrO%E,
JEAAEEREN LR E 72D, L LEFEITIE, DT THIMER, WEACE L WA HDH 0
7 v 7RIS EAT LT, BIAEN RAMET 5. 2O X ) REEEER O RFMlE, &
— L RERE L TORKBRER L OREKREFEIICREIEETS. 22T, AiMilo
PBHD-WBHD fIZ i - VA TE N5 2 L 2408 LT, Smith {5 THW A L O
B S OVEER OIS T) — SO ABMRICEIEA N R 5 2 & T, 7 /VITIERFRME
25 %2, BERORIHLZHET S, BAIZIE, 1| 7o 7 RICBWTROEE 1 %R O#
FHC Gordo-Soares -2 )] — XM ONT BRI ALY N2, Z OM ORI CIXrkRR
MR EL D ERET D, 7RT AN—R% a, WOWEK 1 ¥ EEL d, Yo7 F % E ¥
i) — O T 2R E o= f (LT 5 &, RFHMbE BB LI OT e 1FLL T O
LXTRIND.

qngg—@—gjf@) (4.15)
a a) E
415D WEF 1 BUTEE 1 B E d OFICAE U 5 B EMROTAEZR L, §F 2 BIXE
NPSAOFER, DF VRS a-d OB CTHMELRGIZ L > TEL 2 FHRIROT A a2 RS
Flod ORESL, JEDBEMESFFOMEIER ZE U CRIE I m Z2KD, d=a/mT X
STRETS.

CTHEEOREMIT AL, PBHD ICHET AN KREVWEEZILNDHDOT, FHEET
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PBHD 75 2 7 0 7 A= RFEIBO WTNNICE LD EREL, TOERICEENDN -4
JEMRERICDA4.15KDo- cioc BIREBE L, ZTOMOERIZITIETE Do- e BRE 52 5.
Fig. 4-7 \Z R b DL B [E U7 F2dhs ) — EE O 2R o —fFl 2 =3, 7r 7 A
NR—Z g EJEIE 1R d O, 41 0568 THD. RFHbORELZZE L2 LTk
ST, BELARWGS LI, BEIBEZOMA IOIKRTR, X0 /NSR P03 HTAL
TW5. ok, BUEOMAETIE, MEBXOREBEHENASA T EIZF—TRNZ &b, 7
Atz BB LT20 - cioc BIFRZ —MHICEA T, H&HSA TOREEE O R B 81
ICHBlESND.

09 |
08 |
07 t

06
L d=4:1
0.5 PN a

~
~
~
<
~
~<
~
~~

04
03
02

——— Without localization

Average compressive stress / yield stress

A [R— With localization

0 1 2 3
Average compressive strain / yield strain

Fig. 4-7 Average stress-average strain relationship considering localization of plastic deformation.

(2) MRAMEREGHIDEE

323 HIZEBW Tk 7zi8 Y, Gordo-Soares DG HAUL, er=1 ITB W THREKBE LD
FOERULEINEY, >l (BMEIRER) CTIXBMEREEIRED 1/ e fiF SNV & A709
ZEIZEoT, MWDK T EBE L TWAD. —J7, ZHHEME N IR 3K X
IR BIZoNT, BREHFMOHNEEIEIS MR T 2. 2 OMMEEEIS ) DI T2 ZE T 5
Z & T, Gordo-Soares Offi 5 HAITHE S MEMORELINZA D, K7 HOEHMIS ) % ox,
TN DERMIS oy &35 &, ZHEME & 52 2 JE 0 SR FE AR O P i S
UTFTDXricE£kIND.

(ol S
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m (TR H ORI TH L. DIFROMITHIMETH Y, RAUZLD.

D—_Eii_ 4.1
12(1-v7) (17

THRERE T O B FR AR O JEJEFBARFR O —f & Fig. 4-8 (12" T. (4.16): D, Eil
FHIENZEREIG S oy DMERT 2 & & ORI ORI oe, RO L5 1L 5.

Dz2(mb  a \ a Y
= | =+ = | | = 4.18
e bztp( a mb} (mbj % (*+19)

ZDoe Z#B3NADoe (AT 2 &, AT EMRHR AT A—=F N5, Zok)
W2 UC, &7 TR RS 71 D3R O B i 6 L OME I TR 28 B 1 X9 e B A Pl Ic B
T 5. PRI AEE m IE T MERIS I ORE SIS CTE LS E 5.

200
150
= m=1 T
a L m=2
s 100
8 m=3 [
50 \
KQﬂ
1
0 v

0 100 200 300 400 PEL 500 600
o, [MPal]

Fig. 4-8 Buckling strength interaction curve of a rectangular plate under bi-axial compression.
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4.4 L5k Smith K2 & S #iteh (F IR AT

FEFTRIE2I1355 2 2 L [A U 8,000TEU 7 7 AD KM 2 o5 ALY FiF 5. 2 =5
HIVT= Y =L FEM (T & B fEHT#E 5 & 50E Smith 512 & A IENTHE B2 k45 2 & T, $LE
Smith EDE T /ALD Z Y P JORE T Bt TR BE O HEE RS B A FREET 5. L3R Smith VD
T IE MSC Mare 2 FHIVWNTYT 9. 7088, 4.3.5 B (ITor L7 S ) — SERdh O3 7B tR
(X9 DG T A EAE IS S OB T, FRICH Y D720 R EE L2V, 2, 2.5.1 HEIIR
L7cAR—/V RET O OFER XLV, 087 MR ) 23 T B i B 12 R IE 352
B, SRIVHIORARIE T D B TUNS VW E NI HAEZH TN D7D TH
L. 72120, HERD T, W8T A M A SRS ) — AR O A BRICE E L1256 Ok
RIZOWT S, 443 ITTELET L. LLNOMNTCIE, IS T — FEE O 72 BAfR D i
PRIk (Fig. 3-6 @ AB [H) (28 DMK FOREI T/ NI W EE 2, KEME (IB) £T
IIIEHMEC, RHOIREZOMA IR TOAEZET S, T70bb, Fig 49 DFERTRS
N5 XD RS — O B BR A LR Smith B AN 5.

300
’ h
250 it N
I, ~~‘s
g 4 \~-“~~
£ 200 ‘\4:;
[
=
2
5 150
IS
- /
%1@
[«5)
5: / ----- Gordo-Soares equation
50
In extended Smith method
O I I
0 0.001 0.002 0.003 0.004

Average compressive strain

Fig. 4-9 Average compressive stress-average strain relationship used in extended Smith method.

441 MESNMR - RIEROES)

ARSI L O\WIER O %8 2 B34 5720, N - SMEHRES (Fig. 4-10 OALEI TP £
HEF) O 2 DOMIMERES RIZOWT, SIS ) — FEEOT 2Bk &, 20 EToik
71+ OF HIEIEZ Fig. 4-11 1ZR-7. ()IIMESMR BST, (b)IZHER Bl OFFRTHDH. 22
& BIFH MO RMEEIC X - T, MEARICITERIS S, NIERICIZSIRIS 804 T
% ARIESMR O PR EhIE ) & OO A, Fig. 4-11 )OBIRIZ LI > TEIET 5. —
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77, WIEAR DL ) — O A B D JEE L, Fig. 4-11 ()T DO A—> X —>@ DA L 72
S>TEY, A—>XOMIT—HERHNEL, TOX@E THELZAMT DA, Yz xL
DEEIREEICES 2 Z & 72 <, MIESMRDHREED 1T & o THEM T R ALTREEIZZE L TV D,
SF Y, NIEBROBENSHNHEIE L2 E E, HEthFREICES. DL EORER LY, ik
Smith k& W5 Z LI kv, ZHEO RN AT X 2 MRS DR O A O BN
ENEWRDOFIPEDIR TR E BITHBINTND Z ENgnD.

\—/_\

1Bl P4

o 551'::'\
kY

Fig. 4-10 BS1 and IB1.
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(a) Bottom shell plating (BS1)
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7 0.8+
=
(5]
=
P 06+
= At ultimate hull
; girder strength
= 0.4
4]
S
£
3 0.2+
(3]
<)
2 0
Z 0 : : :
-0.5 0 0.5 1 15 2

L

Average compressive strain / yield strain

i)
L

(b) Inner bottom plating (IB1)

Fig. 4-11 Average stress-average strain relationship calculated in extend Smith method.

1.8E+13 ~
1.69E+13 - - NN\ -
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1.2E+13 |

1.0E+13 [ Ultimate strength
by shell FEM
8.0E+12

6.0E+12

4,0E+12

Longitudinal bending moment [N*mm]

------- Pure bending
2.0E+12 |
—— With local loads

0.0E+00 . : : :
0.0E+00 1.0E-03 2.0E-03 3.0E-03 4.0E-03 5.0E-03

End rotation
Fig. 4-12 Longitudinal bending moment-end rotation relationships estimated by extended Smith

method.

442 HHITE—2 2 b—[EEABR

Fig. 4-12 IZ4£5E Smith VEIZ K 0 15 B AV AHT ORI & — A > b — s alfis g Btk &
AT RSN T O, ERD AT E A BE LIS A OME TH D, £72 Fig. 4-12 12
1%, =/ FEM Mt TR O AL e T & oREE & o3, SliihiF OB 5 13 9L5E Smith £ &+
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=/ FEM THEMITHREHBEIZEL — &L TW5b. —F, RWEEMENT 2854, ik
Smith J£/% 3 =/ FEM X U & ¢l i &R 2 & O ITHEE L T\ D. ZOFIKRE LT
TO2ORFEZXLND. £, FEHhL ) — I OT A BIFRIZ Gordo-Soares Dfifi 7 H
ERNTWD T, =)k FEM AT TI3E £ 0 e T M EME 2 B8 TS TR,
ZORIZOVWTIH 443 HIZBWTEET L. B2615H 9 1 DOERE, E/LTVEHOR
DIRNTHD. |-ETT /LTI, EAVEE EEKEUVEEL, AT MRERIE— KL
75T 1 D05 (Fig.4-6 (DG EF) & LTHE#T L LELTWD. Lnl, EERICIE
HE L ELVITEEE L TV A2, THEHIEOREITERIL, B CEOMIEIZITVERFT T
T BE RITTEBZOND. Fig.2-33 IR LIzl 0, MYESMR S AREE U 7= 1% O fEdh 7 1%t
TEHEMEOK TIX, “HEEONERZ T TR EALVEHONER THIET D Z L2
RENTWD. EATEIZBIT 2 20X 5 AR O T 2 el T Bf& R I RIE T
BIZOWTIE, 444 THIZB W CGRERT 5.
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Fig. 4-13 Average stress-average strain relationship considering effect of transverse compressive

stress.
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PL5R Smith {EIZHL Y AL, MErh T SR EERRNT 21T o 7o, iR J7 10 OB ERE IS 1 OHEEIZ
A F B[4322 R LT ZHIKIC 1O G HEERA . fENT G TR ESMRIT e K
THY 84.7MPa DI FEHEREIS N AL 5 EHEE STz, ZOEEZBE L CHR L
VJhs )] — SEEh O A Bk & Fig. 4-13 1ZR 7. MRS AERER S oy OB LD, BhfEER
FIVDFAETREDFH) 6.8%IE T LT\ 5. KIS, MEHTOMER T E— A o b — S mlds 7 B
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End rotation
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Fig. 4-16 Longitudinal bending moment-end rotation relationships when the plane grillyge region is

extended.

NTWD. ZHUE, mYNCHREIZ M E O A2 N2 TR D RIEL A & i ' —
LCW5. FfKIRE%ROX¥ENE 5 &, v =/ FEM i i, Jploe—71
AV MNOIKRTFENKE S, WESCCHE - L A~ ORFEOFE % b e T
MY —7 % L[R5 Z &3 o =, JEEE Smith {E X D57, MErh P RorsiE
\ZH T 2 BB O34 & Fig. 4-17 (T . KO X AN RKEIREE 122 L7254
FREE IR L BV UERIC E TR > TR Y, Fig. 2-12 OfEfh TR ER O & = )\ FEM
BT BT DHELBEOT oM e RESERD. 21X, —MKIC Smith JEIZIBV\ TR
ETDHN=Ra—F—OWMYPONBEKRT L EEX BN, REICTEETS.

—-90 -



B4 B AJES RN B 2 5 R L 7 2 RORE i B YR AR AR AT U

X
X
X
X
x
X

X X%
3 k 3 k
3 X % 3

% % EVINE VS EVIRE S
%X % KK KK

xX
*x
xX
K

X
X
X
x
X
X
x

X

Fig. 4-17 Distribution of collapsed members at ultimate hull girder strength estimated by extended
Smith method.
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4-18 Average streSs<average strain relationship of HD1 obtained by shell FEM and equation

(3.32).
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Fig. 4-19 Effect of hard corner on hull girder collapse behaviors.
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Fig. 4-21 Comparison of longitudinal bending capacity between shell FEM and extended Smith
method (Effect of plate thickness of bottom shell).
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Fig. 4-22 Comparison of longitudinal bending capacity between shell FEM and extended Smith
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Fig. 5-1 Comparison of longitudinal bending capacity under pure bending.
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TIEHEI M NV ERIFE ICAE STV D 72w, BN C 28T 5.

Sec. C \/ Inner bottom
ol Je gy
bi2 b ey
- -
N. A.
m h
: | Wid ] L
< i 2 —

Bilge Bilge

Girder Outer bottom

Fig. 5-2 Cross section of double bottom for calculating M.
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524 MERTFMEICKYZEEICELIBIHMITE—A Y FOHTE

KEBLO 2T IWEICE > TEHEIZA U D REHETE— A b My 23R 5. K
SN BN THIIEE A2 £ U 5 Fig. 2-11 O X 5 2 “HIKOE %5 2 7-%4, PBHD |L
HIED T2 OADO¥EN%E, F7- WBHD 1 _HIED 7= OAA O EZ Z N ENONE TR 5
Bx%9%5. £ZC, _HEKZ% Fig.5-3 © X 51— XREE k, OB X1 (PBHD (Z4H
W) T, MIEEANIZRER ky ORERZ (WBHD ([CHY) CTHREFSNZREEZD. RoW
MY, RIEICIR A7 BAZKIE C &3 %. PBHD & TSR ZIEL, bz
L5, KEGIE, —BEOMMEE LT, OEE [IZE-> THE EmEicEx, a7
i P. X, PBHD fZEICHB W TEE P& I CEPMEE LTS 2 5. Zo& &, PBHD i

B CRITHEN T 28EME P 1T, 27 T WE P LEREIZRNS DN PkOBFHE 2D,
Mz T, PBHD L& ClobAAEMRT H7=80, KOELTHITFE—A N MM, F
72, WBHD A& T, [EfziZansbo e LTHiFE—2 2~ M 2M#< .

PBHD {\Z{&7>5 Fig. 5-3 OATTANZHHHE x BENZALE TORD Iz & oI % wx),
O )& L, TNENOEDRE ZSRE FAEB IO &35, P& M OEDRE %
Fig. 53D X5 &5 L, HmDﬁ%#EE%x%ﬂkﬁ%T@ﬁﬁ%~}VFM@(%E%
ARG & 72 B & & 1E) |

M(x)::Ml+Plx—gx2 (5.2)

I

L. Fim, EbBRwx)EHITFE— A2 b Mx)OMIZIE, ZERLIY

=M (x) (5.3)

w(l)=0, 6(0)=0 (5.4)

F72, #hiEiXa (PBHD I2AHY) & El#RIER (WBHD I2FHY) OO T P B IO My
X, FREH ky, ke &, TILEDALE TOT=bA L T2 w0), 6 ()% AT

P, =—k,w(0), M, =M (1)=-k,0(I) (5.5)

ERTZLENTED. B)X~GSREEN L THELS &, P& MIITKE g & 3T
HP.EZHNTENENRAD L IIZHEZOBND.
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Yoaf+4a+128+12 ° af+4a+125+12 2

(5.6)
__2+BPRl 3+pd"
Y 1+pB 2 148 6
22T, o BIFRATRINDIBER ORI TH S.
k,I° k|
=L —_w 5.7
“TEI d El G7
(5. DD F &R EEFRBARIR AU TN D My & M(x)DIKRIEE T 5 &,
R
Mdbzmax[M(x)}:MﬁE (5.8)

L7rb. 728, PBHD (LB CTORMPNMEEE X TWDHT20, EXO P.BIOL 121X, EED
a7 S E R LN PBHD OIXREED 53 D2 W2 T HUE R B 720 2 & ZIEE D
ETHD.

WBHD.

Fig. 5-3 Beam model for calculating M.

PBHD (ZHYS T D80 EIERDIZREE ky (I3 5 2R T 51X EH[49] %2 AV 5.
WBHD (2% § 2 [FE X RO ER RO HI12H7= 0, WBHD % Fig. 5-4 |T~"T L9 7
EUCHEEShIEREEZD. CHEHIESL WBHD OBEANME COMEIEMEZHEOL L,
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WBHD (ZH DO AR —/V RO —EEOEICORKILT 5 EIRETS. WBHD OF & & Wik
QIRE—AL " EENEN hyy Iy &5 5 &, WBHD & At 722 [HHRIZ D IZIER k 1T
TEINS.

kw ——w (5.9

Fig. 5-3 1278 L7222 O Wi 1% Fig. 5-2 OWia C & L7=. [k, WBHD O&Wim s> o Fig. 5-4
H EBNORTEAWm AR L, L2555, 2 OBRAEmIIENEMNT & 2N 2 Hieik T
MR S D, RO T O LEIZWrim C DR LRI & 2.

Section
Position of WBHD.
\[PBHD.
; ™
WBHD.
E I h
Double Bottom ww w
Double Bottom
g (Sec.C)
L J
ul
ul
[ ]

Fig. 5-4 Deformation of WBHD.

G.6)X LG EG)RITRA L TEEISH S hiFT—A 2 b MDA EED Z &
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% Fig. 5-5 2R3, Si#I% PBHD (& ClER % B fEH 7 (k, = 0), WBHD {\7i& Cld7=b A f
EWHR LT (k=) 5 EBOFRERTH L. ZOIREEN D PBHD DD A% 58 LI-5H OfE
Rz — REHMRIZ, W BHD OIXREZE L1560 R L IR T. St L —mgHifio sy
fiZz b9 % &, PBHD OFRIC LY “HIEOZbAM MR S 7-Z & T, PBHD (ER X
O'WBHD (Z{#IZAEC DT E—A L POREEINBHD L TND I &R0 D. £z, &K
OEIFE—RA > FDOEUDALEN PBHD (LEND x / I NEBBLE 02 ODALEIZY 7 ML T
Wb, 72770, x/1=02EFETOMITFE—A L FOKREZ XA, WBHD (L& TOFE— A
v hDOKE SITHART/IEVY. ZHUX, PBHD I OMESME L & WBHD Uf% 0 PNJEAR
WZBWTKEREMISHBAEL D Z L ZEKRL, NER COEENEITT2REBICHD. #7
FVETITARIEARIZ I W CTHIIHEIE 2342 U 2 iRt — R 2808 U CHRtlh T R L 2 HEE
THIEEFEHELTEY, AiBORKRITZNERES L7, WBHD OlXhxE[E L71-%E
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FTHMPE—AL FOREINBALTEY, MIEIMICIEENEITT 2REL 2o T
%. PBHD & COEREIXI L WBHD (L& CORERTREZEERTHZ LT, 5.2)=IHEE
L7ERREEE— FIC L TSR —HEOHITE— A FOSfMEHEL TWDEEEZ BN
5.

1.5E+10

1.0E+10 |
5.0E+09

0.0E+00

Bending moment [N*mm]

-5.0E+09 :
------ without sprin S ‘I~
-1.0E+10 Pring NS
- - — - with kp Sa
B0 T with kp & kw N
-2.0E+10
x/1

Fig. 5-5 Bendiing moment acting on double bottom calculated by equation (5.2)

=

o

o
T

20 Q@ 0.2 0.4 0.6 038 |

Compressive stress [MPa]
N
o

x/1

Fig. 5-6 Compressive stress distribution at the outer bottom plate along C.L. obtained from Shell
FEM.

— 5T, ERTIIRRKOIMFE—AL FOETCDAMED x /15 0.4~0.5 ORITALE LT
W5, [A CREHTESM T O 12+41+1/2 "—/v RET /LD =)L FEM fi#hi 7 6 5%7= C.L.
(Z BT D ARSI O B3 TRER S AV IEMEIS 1) D434 % Fig. 5-6 1273, e ROJERMENS 71
X x /15 02~03 DREIZAELTWD. 7272 L, Fig. 5-6 OIS0 ICIZRERR EIC X SR —
N RETLOREMITERICRRT 5 EMSINE END 2 LICHEERLETHDH. iz,
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5.22~524 BB HIET LY, Mo, Muan, Map 223K, (5.DFUTRAT 2 Z & THIE
JRER T EOVER T2 3T D HEMN T B AR E My 2 HEE T 5. Fig. 5-7 123 =/ FEM & #2555
W2 Ko TRD T Ml B f RS % LE# -5 . Fig. 5-7 (a) 1, MK 13.0m FH4 OKED F T,
FRIESAMR OIRE 1, 2 18mm, 20mm, 22mm, 24mm & 2L SEHEOFERTH D, RERIX
FEARHNTHSE X < Mt PRSI 2 HEE LTV 5. 7272 L, JERIE SR OHEEE 2 =91
MAROILD. Fig. S-1 IR LIZIEY,, Mo 1 XEWIEE CTHEE STV 5. @ 2 IZRTR O
ML, WIHIHEZ R L T 26 D)ROBEHEME T LTV D Z ERNFERO 1 & LTEX
SID. MESMRORIE 2 & 6T, Wik ST1EDORER T R TR (2 kT 5 B IO T E B
RHRBAEN B TIH 5. Fig. 5-7(b) & (e)E 1, %2 20mm & L7=9H 2T, KEBION= 7 F 4
HORESEEZTHBAOHNERTHD. KEBI N T FHEOKRE 13243 HE
FO244 HIZBWTHWEZ WD, fSHEEIR, KEBIXOa T FimEOEELY
EMEICHEZ, @RS CHEREA EOEM TIZB T 2 2 0 7 T OREH T B ks s 2 HE
ELTNWD I ENDND.

2.0E+13

1.5E+13 | ®
[ J

el Al

t,=18, 20, 22, 24

5.0E+12 F

Simplified estimation method[N*mm]

0.0E+00 : : :
0.0E+00 5.0E+12 1.0E+13 15E+13 2.0E+13

Shell FEM [N*mm]

(a) Effect of plate thickness of bottom shell
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2.0E+13

15E+13 | A

1.0E+13 |

5.0E+12

Simplified estimation method [N*mm]

0.0E+00 : : :
0.0E+00 5.0E+12 1.0E+13 1.5E+13 2.0E+13

Shell FEM [N*mm]

(b) Effect of water pressure

2.0E+13

15E+13 ﬁ

1.0E+13 |

5.0E+12

Simplified estimation method [N*mm]

0.0E+00 : : :
0.0E+00 5.0E+12 1.0E+13 15E+13 2.0E+13

Shell FEM [N*mm]

(c) Effect of container load
Fig. 5-7 Comparison of longitudinal bending capacity between shell FEM and simplified estimation
method.

HOHEE R TR L 22 5 AT —#1%, Smith 5 THW D IMARERT O ROMIZIE, &
—/V NE, [ZREH ky, ke IZBIT % BHD O, X OREMESRGEOATH 5. Smith 15
& RFEIRWEHRYT )T, Fig. 5-7 (\ZR T REEE TR R EAE A T C OfErD 1T ot o 2 2 H#E
EARETH Y, RAMRY —LTHDHEERD. 2L, AR TIXESHEEEE 1 £OM
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-112 -



555 T NIRRT B A B RE L T T B SR O i B HERE 15

54 5

52 ®D 3Rty =/ FEM 36 X O 4 B OPREE Smith VEIZ X 2 M BT 1 515 5
NIEERE S LI, MIEREMEDORELBE TE DMt T R&mEM M EEEREL
72 REETIIAESMR O WIHIRE & e & U - e oA B BIR A AV 5. R RIEIC X
B e 1 T A& SR OHEEN &2 > = /L FEM IC X B 2N 0 LT 5 2 & T, $RRIEOHEH T
HETRE OHEEREE 2 MGE L7z, LFICARBE TR LN fima ik~ 2%.

1) N—Fa—F =B TERIC DM IO T ZEET 5 L, Smith IEOHMHITR
RE T OREM T T A BREE OHEEREEE 23 A 1§ 5.

(2) MRIEIMK ORI 22T LT b @5 HEEIE T FEARNNTREEE X < MEdh U i om s 2 42 L
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