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Preface

Randomly generated extraordinary amplitude nonlinear wave in fluid dynamics can be charac-
terized by rogue waves. An optical analog of oceanic rogue waves, so-called optical rogue waves,
were firstly observed inside optical fibers in 2007. Since the publication of a pioneering paper
by Solli et al. in 2007, investigations of optical rogue waves have become increasingly common
and have formed the basis for a new subfield in optics. In practical situations, large undesired
fluctuations have been found in case of generating optical rogue waves, which are quite difficult
to suppress using external means. Optical rogue waves are characterized by their“ L-shaped”
statistics, reflecting the fact that most waves have low amplitudes, but high-amplitude waves
can also form with low probability.

Because of the nonlinear process called modulational instability (MI), a perturbed continuous
wave (CW) is divided into a pulse train containing higher-order solitons while propagating in-
side anomalous dispersion fiber. Moreover, when third-order dispersion (TOD) exists, generated
higher-order solitons split into quasi-solitons, which correspond to the multiple eigenvalues of
the higher-order soliton and dispersive waves. Quantitative description has been undertaken in
this study for generating optical rogue waves from soliton collision and fusion.

This dissertation presents a study of optical rogue wave phenomena generated in optical fiber
using soliton’s eigenvalues. The thesis contents are based on research the author conducted dur-
ing a doctoral course at the Department of Electrical, Electronic and Information Engineering,
Osaka University, Japan. This dissertation is organized as explained below.

Chapter 1 presents a general introduction of the dissertation, with explanation of the back-
ground and the purpose of this study. In recent years, research on rogue wave has been con-
ducted actively in various fields including light waves other than hydrodynamic context. In this
framework, the motivation of this work is clarified. The aim of the research is also explained.

In Chapter 2, the fundamental concepts related to optical rogue waves are presented. Concepts
of optical solitons such as fundamental and higher-order soliton solutions are discussed at the
beginning of this chapter. MI is discussed as a main nonlinear phenomenon initiating optical rare
and strong events inside optical fiber. Soliton fission, fusion, and collision processes are described
to inspire ideas of such concepts. An eigenvalue equation associated with nonlinear Schrödinger
equation (NLSE) is discussed as an evaluation method for optical rogue wave generation.

Chapter 3 is devoted to characterization of optical rogue waves for an NLSE-based model.
After brief discussion of the generation of optical rogue waves in the NLSE-based model, effects
of TOD for optical rogue wave generation are demonstrated numerically. The optical rogue wave
generation mechanism for the NLSE-based model is evaluated by using the eigenvalues of the
solitons. Finally, the stability of solitons against TOD is demonstrated numerically as a proof-of-
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evaluation.
In Chapter 4, soliton collision generated optical rogue waves for a higher-order NLSE (HNLSE)

based model is demonstrated. TOD can be considered within an integrable framework for this
model. An eigenvalue equation associated with HNLSE is solved to evaluate the soliton collision
behavior. Numerical demonstrations of the effects of TOD on optical rogue wave generation for
the HNLSE-based model are conducted using the achieved numerical peak power calculations
and eigenvalue evaluations. Generation mechanisms of optical rogue waves for a wider TOD
parameter range are demonstrated for the HNLSE-based model. Numerical demonstrations of
the stability of solitons for the HNLSE-based model are conducted at the end of this chapter.

Chapter 5 examines the concept of soliton fusion phenomenon and discusses the dependency
on the initial soliton pulse parameters. After introducing the fundamental concepts, the effects of
temporal spacing and frequency separation for soliton fusion are demonstrated. Next, the effects
of frequency separation and phase difference for soliton fusion are demonstrated. Fusion events
for different soliton parameters are presented to inspire brief ideas. The authenticity assessment
of numerical simulation results is discussed before the conclusion. Finally, the achieved soliton
parameter range for soliton fusion phenomena is summarized.

Finally, Chapter 6 presents conclusions reached from the results and implications of the entire
thesis, with a summary of all results.

All results presented in this dissertation have been published in OSA Optics Express, Else-
vier Optics Communications, Advanced Optics 2014, Nonlinear Photonics 2015, OptoElectronics
and Communication Conference (OECC 2016), and domestic conferences in Japan, which are
presented in the list of publications.

Rambukwelle Weerasekara Mudiyanselage
Gihan Kanishka Bandara Weerasekara

Osaka, Japan
January 2017
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Chapter 1

Introduction

1.1 Rogue Wave Phenomenon

Rogue waves are a wave phenomenon that is localized temporally and spatially, exhibiting
waves of extraordinary amplitude far beyond that of background waves. The phenomenon it-
self has received a great deal of attention because of its emergence in various fields, ranging
from fluid dynamics and oceanography. Existence of rogue waves or the freak wave stories en-
countered with the unexpected and unusually large waves in the ocean have been proffered and
shared among seafarers for many years. After being ignored or dismissed for decades, rogue
waves have emerged as dominant oceanographic research subject. The current literature in-
cludes various conjectured mechanisms aimed at explaining some factors underlying the occur-
rence of rogue waves. Rogue waves might appear for a multiplicity of reasons. Indeed, no uni-
versally accepted definition for rogue waves exists [1]. Rogue waves in the ocean reach around
30 meters height. Such huge waves will sink ships during their voyages. Such disasters occur
worldwide, not only shallow and deep water, but also in coastal areas [1], where rogue waves can
cause floods suddenly.

Rogue waves represent a frightening and life-threatening phenomenon for seafarers. Many
cases have been reported of such waves striking passenger ships, container ships, oil tankers,
fishing boats, and offshore and coastal structures, sometimes with catastrophic consequences.
It is believed that more than 22 ships have been lost solely because of rogue waves between
1969 and 1994, as presented in Fig. 1.1 [2], [3]. On April 16, 2005, the cruise ship Norwegian
Dawn, sailing through moderately choppy waters off the southeastern U. S. coast in a waning
storm, was hit suddenly by a colossal wave more than 20 meters height. The huge wave loomed
unexpectedly from the ocean’s surface, and hammered the ship as presented in Fig. 1.2. The wave
pressure damaged several windows on the ninth and tenth decks. Several decks were flooded.
Nevertheless, the extensive damage was not life-threatening in this incident: four passengers
were injured slightly.

Moreover, more than 131 cases of rogue wave disasters have been reported during 2006–
2010 [5]. Unfortunately, events associated with loss of life and damage are also included among
these reports. Among the 131 cases of disasters, maximum peak power exceeded twice the signif-
icant wave power in 78 cases. Significant wave power is the mean peak power of the highest third
of the detected peak power of some point [6]. In nonlinear theory of the hydrodynamic context,
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2 Chapter 1. Introduction

Fig. 1.1: Locations of 22 ships presumed lost after collisions with rogue waves between 1969 and
1994 (in Ref. [3]).

Fig. 1.2: Damaged cruise ship (in Ref. [4]).

the waves grow exponentially by Benjamin–Feir instability [7]. Growth of instability increases
exponentially in the initial state. It then saturates with continued pulse development and finally
attenuates to the initial state. In other words, in the nonlinear theory of the conservative sys-
tems, all waves invariably appear from nowhere and disappear without any trace. Zakharov has
reported that a nonlinear Schrödinger equation (NLSE) is useful to represent wave phenomena
in the deep sea, showing also that solitons can exist even in the deep sea [8].

Research of rogue wave phenomena has been conducted actively in various fields outside of the
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hydrodynamic context, including light wave research, since the publication of a pioneering paper
by Solli et al. [9]. Rogue waves in optics were observed when analyzing supercontinuum (SC)
generation in fiber systems, which launched a new subfield in optics. Optical rogue waves share
the main characteristics of oceanic rogue waves. In SC generation, the initial light in a narrow
band of frequencies converted into ultra-broadband light. According to pioneering measurements
by Solli et al. [9], temporally and spatially localized extraordinary high-amplitude peaks differ-
ent from the average background level in the chaotic spectrum were observed as the first step.
An area of broad interest has emerged among studies of this quickly emerged novel subject:
analyzing optical rogue waves. Rogue waves can be generated by several mechanisms. Soliton
collision and fusion generated optical rogue waves are mainly emphasized [10]– [13]. Collision of
Akhmediev breather (AB)s [14] and wave turbulence [14], [15] are also regarded as optical rogue
wave generation mechanisms. Soliton solutions and ABs are two well-known classes of solutions
of NLSE [16]. Wave turbulence is a classical nonlinear phenomenon observed in various phys-
ical systems [17], dealing with the statistical behavior of numerous weakly interacting waves
with random phases. Moreover, Peregrine solitons [18] and Kuznetsov–Ma solitons [19], [20]
have been reported as prototypes to describe optical rogue waves. The Peregrine soliton and
the Kuznetsov–Ma solitons are also the analytical solutions of the NLSE. Peregrine soliton can
also be seen as the limiting case of the space–periodic AB when the period tends to infinity. On
the other hand, the Peregrine soliton can also be seen as the limiting case of the time–periodic
Kuznetsov–Ma soliton when the period tends to infinity. Recently, these soliton solutions have
been found in various nonlinear evolution equations [21], [22]. The strict definition of rogue
waves remains an open question. The mean height of the highest third of detected optical inten-
sities is called the significant wave height (SWH). Recently, SWH is used to define optical rogue
wave phenomena in many technical papers. Wave events of amplitude greater than twice the
SWH are qualified by the extreme wave criterion [23].

TX
Optical Rogue Wave

Perturbed CW
Fig. 1.3: Basic concept of optical rogue wave generation.

Modulational instability (MI) is a main nonlinear phenomenon generating optical rare and
strong events inside optical fiber [24]. MI itself, a complex nonlinear process exhibiting emer-
gent behavior and strong sensitivity to initial conditions [25], [26], plays a central role in the
appearance of rogue waves in many optical scenarios [26]– [27]. Anomalous events nevertheless
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arise because of sensitivity to the initial conditions. As portrayed schematically in Fig. 1.3, when
some perturbed continuous wave (CW) is launched as the initial waveform into an anomalous
dispersion fiber, a localized wave is formed because of MI. In the case of SC generation [28]– [30],
rogue waves can appear as rare solitons, possessing anomalously large red-shifted energy and
peak intensity. Because of MI, perturbed CW is divided into pulse train contained higher-order
soliton in anomalous dispersion fiber. Moreover, when third-order dispersion (TOD) exists, a gen-
erated higher-order soliton will split into quasi-solitons corresponding to multiple eigenvalues of
the higher-order soliton and dispersive waves. Convective effects caused by TOD play a major
role in the interplay between linear and nonlinear effects in the formation of extraordinary op-
tical intensities. Higher-order linear and nonlinear terms engender influence on optical rogue
waves in strong manner. Presence of TOD in optical fibers turns the system to be unstable and
generate optical rogue waves. Detailed descriptions related to MI are presented in chapter 2.

In practical situations, large undesirable fluctuations are found when generating optical rogue
waves. They are quite difficult to suppress through external means. The probability density
function (PDF) constructed by chaotic wave field, in optics is analogous to the“L-shaped”PDF
of network traffic distribution. Most waves have low amplitudes, but high-amplitude waves can
also form with low probability, as represented by“ L-shaped”statistics. Early detection of a
rogue wave phenomenon gives remarkable value to escape from disasters. Storms and typhoons
allow advance prediction by a few days or a few hours. Nevertheless, unfortunately, the science
of rogue waves in optics has supported prediction by only a few seconds until recently. Recent
studies in optics have confirmed some situations and generation mechanisms of optical rogue
waves. Related studies have emerged as an area of broad interest to researchers [31]. Analogy
between localized structures in optics and extreme waves on the ocean has opened up many
avenues for exploration and inspiration. There is now an effort underway worldwide to study
these extreme events in optics.

1.2 Research Trends of Rogue Waves in Various Fields

The initial idea of optical rogue waves in the process of SC generation has expanded and en-
riched by new approaches. Recently optical rogue waves have been discovered in lasers, appear-
ing in wide aperture cavities, in plasmas and in various other optical systems such as multi-
mode optical systems [31]. Chaotic pulses have also been observed experimentally in fiber ring
lasers [32] and various mode-locked laser (MLL) configurations [33]- [35]. This particular type
is an example of a laser-generated optical rogue wave. Regarding multimode optical systems,
optical rogue waves have been characterized by different degrees of nonlinearity, all having in
common the excitation of many spatial modes experimentally.

First, SC-generated optical rogue waves are considered herein. In SC generation, light in a
narrow band of frequencies is initially converted into ultra-broadband light, which has received
a great deal of attention in recent years for its complex physics and wealth of potential applica-
tions [37], [38]. The experimental apparatus for SC generation in pioneering paper by Solli et al.
is addressed here [9]. A schematic of the experimental apparatus is presented in Fig. 1.4. The
SC source consists of a master oscillator, a fiber amplifier, and a 15 m length of highly nonlinear
microstructured fiber. The master oscillator is a mode-locked ytterbium-doped fiber laser. The
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output pulses from MLL are amplified to a desired level in a large-mode-area ytterbium-doped-
fiber amplifier. Picosecond pulses at a wavelength of 1064 nm with a repetition rate of 20 MHz
were launched into the highly nonlinear microstructured fiber as the initial seed pulses. The out-
put is red-pass-filtered at 1450 nm. A critically important challenge to observing rogue waves is
the lack of real-time instruments that can capture numerous extremely short random events in
a single shot. To capture thousands of events with high resolution, wavelength-to-time transfor-
mation for real-time detection is accomplished using a highly dispersive optical fiber producing
about -1300 ps/nm of group velocity dispersion (GVD). This technique was inspired by the con-
cept of photonic time-stretch analog-to-digital conversion [39]. Adjacent pulses do not overlap
in time after being stretched. Then the stretched signal is fed into a fast photodetector (PD)
and captured using a real-time 20 GSa/s oscilloscope. Real-time oscilloscope records sequences
of 15000 pulses with high temporal resolution in a single-shot measurement.

Figs. 1.5(a) and (b) respectively depict a representative single-shot time traces and histograms
for three average power levels 0.8 µW (red), 3.2 µW (blue), and 12.8 µW (green). The noise floor
of the measurement process is shown as a grey shaded area in each histogram. A histogram
of each measurement display has a clear“ L-shaped”profile with the vast majority of events
buried in this low intensity range, and the rogue events reach intensities of at least 30-40 times
the average value. In other words, typical events are apparently occurring much more frequently
than the rare extreme events.

It is noteworthy that MLL is an attractive source of ultrashort optical pulses for many appli-
cations. Actually, it is an ideal platform for the fundamental exploration of complex dissipative
nonlinear dynamics and an attractive source of rogue wave generation [36]. Rare events of ex-
tremely high optical intensity are recorded experimentally at the output of a mode-locked fiber
laser. The probability distribution of these intensity fluctuations depends strongly on the cavity
parameters and features an“ L-shaped”distribution.

The experimental setup is presented in Fig. 1.6. The fiber ring laser cavity has dual 980 nm
pumping of a 2 m long erbium doped fiber (EDF, normal dispersion D = -12.5 ps nm−1km−1). The
maximum injected power is 800 mW. The ring includes a polarization-insensitive optical isolator
(ISO) that ensures unidirectional laser emission at λ ∼ 1.5µm. It also consists of a polarization
controller (PC) made of small fiber loops (PC1), a 3% output coupler (OC), a polarization beam
splitter (PBS), a four port 80:20 coupler, and a second polarization controller (PC2). The overall
cavity length is 12 m, yielding a round trip time of 58 ns. The cavity operates at an anoma-
lous path averaged chromatic dispersion (D = +10 ps/nm/km). The laser output is fed into a 45
GHz PD, with the electrical signal is recorded using a 20 GHz, 40 GSa/s real-time oscilloscope
(WaveMaster 820Zi-A; LeCroy Corp.), which has a rise time of 22 ps.

The histogram displayed in Fig. 1.7(a) is for the recorded maximum optical intensity fluctu-
ation for 4.9 × 106 events with pumping power of 600 mW. SWH is 41.9 mV for this case. Fig.
1.7(b) depicts the histogram for optical intensity record of a chaotic bunch of pulses when the PC
is tilted by just 4 degrees. The long-tailed histogram presented in Fig. 1.7(b) displays numerous
high-intensity events, thereby revealing the generation of rogue waves in the cavity. SWH of 81.2
mV histogram is obtainable and the extreme events are apparent up to three times the SWH.
The yellow dotted line presented in Fig. 1.7(b) represents the classical distribution. The his-
togram shows a large deviation above the classical distribution. These transient waves appear
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Mode-locked Laser Yb-doped Fiber Amplifier Supercontinuum
Nonlinear Fiber

Filter
-1300 ps/nm GVD

Photodetector
Real-time Oscilloscope

Fig. 1.4: Schematic showing the experimental apparatus used for SC generation (in Ref. [9]).

unexpectedly and disappear without a trace. Ultimately, the degrees of freedom of the nonlinear
cavity transfer function, which are activated by adjusting the orientations of the polarization
controllers, allow optimization of the occurrence of rogue wave phenomena.

Moreover, fiber fuse is a phenomenon known as a damage mechanism observed in waveguides.
The fiber fuse itself can also be regarded as an adverse effect because it generates high peak
power of optical rogue waves. Specific type of catastrophic destruction of an optical fiber core from
the point of initiation toward the laser light source can be discovered because of this disturbance
phenomenon [40], [41]. Damage is manifested by the periodic-like bullet-shaped cavities left
in the core and filled with oxygen [42]. The effect can be initiated either by bringing the fiber
output end into contact with absorbent materials, by bending the fiber and/or simply by heating
the fiber with a flame from the end or in the middle of the fiber [41], [43]. Aside from the fiber
fuse phenomenon, optical rogue waves can destroy optical fiber transmission devices such as
amplifiers because of the high peak power.

1.3 Purpose of the study

The optical analog of oceanic rogue waves, named optical rogue waves, has recently been iden-
tified inside optical fibers, as described earlier. The main objective of this dissertation is explo-
ration of optical rogue wave generation mechanisms. Soliton eigenvalue analysis was conducted
as the analytical method. Different nonlinear evolution models can be considered when ana-
lyzing optical rogue waves. Actually, NLSE has played a pivotal role as the simplest universal
nonlinear model [44]. However, it is necessary to go beyond the standard NLSE-based model to
explain optical rogue wave phenomena because of NLSE limitations. Various types of dynamical
and statistical behaviors are apparent for nonlinear models of different types [45]– [49]. In this
dissertation, optical rogue wave behavior for NLSE and integrable higher-order NLSE (HNLSE)
are investigated. In terms of generality, NLSE-based and HNLSE-based models resemble prac-
tical nonlinear evolution models.

Effects of higher-order dispersion terms must be considered for the pulses with narrow pulse
width, such as optical rogue waves. To observe the crucially important role of higher-order dis-
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Fig. 1.5: (a) Single-shot time traces including roughly 15000 pulses each and (b) associated his-
tograms (in Ref. [9]).

persion terms, effects of TOD have been evaluated. Moreover, investigations of optical rogue
waves have confirmed the existence of TOD in optical fibers engenders generation of these ex-
treme waves [50]– [52]. The effects of TOD on optical rogue waves also differ from model to
model. Because of the non-integrability of NLSE-based model, analyses related to the effect
of TOD stand only for small TOD coefficients [53]. Although optical rogue wave investigations
flourish in different fields, the effect of large TOD on optical rogue waves becomes indispensable.
To observe effects of large TOD on optical rogue waves, an HNLSE-based model is used for an
integrable model. Optical rogue wave generation processes are also an open question in different
nonlinear models [54]. Soliton’s eigenvalue analysis tool was used to explore the soliton collision
generated optical rogue waves for both NLSE-based and HNLSE-based models.

In addition to soliton-collision-generated optical rogue waves, soliton fusion generated optical
rogue waves also exist in fiber systems. The phenomenon itself has been analyzed using various
nonlinear evolution models [55]– [64]. Initial conditions for a pair of soliton pulses strongly in-
fluence pulse interactions [65]. In fact, soliton fusion has been observed in different fields. More
complex and interesting one from a practical perspective is rogue wave structure. Amplitude
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SWH=41.9mV
Amplitude (mV)Number of E

vents

(a)

SWH=81.2mV
Amplitude (mV)Number of E

vents

(b)

Fig. 1.7: (a) Histogram for the pumping power of 600 mW and (b) the achieved histogram after
tilting one polarization controller by 4 degrees (in Ref. [36]).

maintenance for long propagation after merging of two solitons is the most remarkable prop-
erty of soliton fusion generated optical rogue waves. The effects of initial parameters of a pair
of soliton pulses such as initial pulse spacing, frequency separation, and phase difference are
analyzed to validate the soliton fusion generated optical rogue waves. Firstly, the effects of tem-
poral spacing and frequency separation are analyzed. Next, the effects of frequency separation
and phase difference are analyzed to ascertain pulse spacing parameters with which the soliton
fusion phenomenon occurs.

The mathematical and physical analogies relating optical rogue waves are considered in each
chapter. Early detection of rogue wave phenomena is extremely important. The main goal of
this dissertation is to validate the soliton collision and fusion generated optical rogue waves to
suppress this adverse effect on optical fiber systems.
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Fig. 1.8: Thesis organization.

1.4 Thesis organization

This thesis explains a study of optical rogue wave generation mechanisms in optical fiber based
on soliton eigenvalues. Six chapters are organized as presented schematically in Fig. 1.8.

Chapter 2 presents fundamental concepts related to optical rogue waves. MI is discussed as a
main nonlinear phenomenon to initiate optical rare and strong events inside optical fiber. Soliton
fission, fusion, and collision processes are described to inspire ideas related to such concepts.
Eigenvalue equations associated with NLSE are discussed as an optical rogue wave generation
evaluation method. Finally, concepts related to optical solitons, such as fundamental and higher-
order soliton solutions, are discussed.

Chapter 3 is devoted to characterize optical rogue waves for an NLSE-based model. After brief
discussion of the generation of optical rogue waves in the NLSE-based model, effects of TOD on
optical rogue wave generation are investigated numerically. Generation mechanisms of optical
rogue waves for the NLSE-based model are evaluated using the eigenvalues of solitons. Finally,
soliton stability against TOD is demonstrated numerically as a proof-of-evaluation of the NLSE-
based model.

In Chapter 4, soliton collision generated optical rogue waves for a HNLSE-based model is
demonstrated. By using this model, TOD can be considered within the framework of an inte-
grable model. Eigenvalue equations associated with HNLSE are presented as an evaluation
method. Numerical demonstrations of the effect of TOD on optical rogue waves for the HNLSE-
based model are conducted using peak power calculations and eigenvalues evaluation. Genera-
tion mechanisms of optical rogue waves for a wider range of TOD parameter can be explained
based on the HNLSE-based model. Numerical demonstrations of soliton stability for the HNLSE-
based model are conducted at the end of the chapter.
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Chapter 5 emphasizes an explanation of the soliton fusion phenomenon, with discussion of the
effects of initial parameters. After introducing the fundamental concepts, numerical models and
the effects of temporal spacing and frequency separation of initial pulse pair for soliton fusion
are demonstrated. Next, effects of frequency separation and phase difference of initial pulse pair
for soliton fusion are demonstrated. Fusion events for different initial parameters are presented
briefly to inspire several ideas. The assessment of the authenticity of numerical simulation
results is discussed before presenting the conclusion. Finally, the achieved initial parameter
range for soliton fusion phenomena is concluded.

Finally, Chapter 6 draws conclusions from the entire thesis and presents a summary of the
results.



Chapter 2

Theoretical Background of Rogue
Wave Phenomenon in Optical Fiber

2.1 Introduction

Basic concepts related to optical rogue wave generation are presented in this chapter. Funda-
mental and higher-order soliton solutions take a key role in this research. Therefore, overview
of optical solitons is presented at the beginning of this chapter. Modulational instability (MI) is
introduced as a nonlinear phenomenon to initiate rare optical events that occur inside optical
fiber. Soliton fission, fusion, and collision processes are described to inspire ideas related to such
concepts. Eigenvalue equation associated with nonlinear Schrödinger equation (NLSE) is dis-
cussed as a method of evaluating optical rogue wave generation. Eigenvalues are determined by
solving the matrix form eigenvalue equation.

Concepts of soliton solutions such as fundamental and higher-order soliton are discussed in
section 2.2. Section 2.3 presents a detailed description of MI. Moreover, soliton fission and fusion
phenomena that occur from soliton interactions are described in this section. In Section 2.4, basic
concepts of the eigenvalue equation associated with NLSE are addressed from the viewpoint of
evaluation techniques of numerical simulation results. Finally, section 2.5 concludes Chapter 2.

2.2 Overview of Optical Solitons

An optical soliton is a specific pulse that propagates without distortion during long-haul propa-
gation. The pulse shape is maintained by the delicate balance between group velocity dispersion
(GVD) and self-phase modulation (SPM) effects along the fiber length. It sometimes follows a
periodic evolution pattern. Hasegawa and Tappert found such a stable pulse inside a fiber in
1987 [66]. Many studies have been undertaken for long-haul transmission application [67]– [71].

2.2.1 Fundamental Soliton

First-order soliton (N = 1) corresponding to a single eigenvalue is often called as fundamental
soliton. When u(Z = 0, T ) is a solution of the NLSE (see Eq. (2.29)) with σ = 0, eigenvalue
ζ is constant irrespective of Z. The eigenvalue for initial value u(Z = 0, T ) and eigenfunction

11
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Ψl(Z, T ), (l = 1, 2) are calculable using this property. The discrete eigenvalue of the eigenvalue
equation associated with the NLSE (see Eq. (2.30)) can be represented as

ζj =
κj + iηj

2
, (j = 1, 2, . . . . . . , N) . (2.1)

Using the eigenvalue given by Eq. (2.1), the following expression presents the asymptotic form
of N -order soliton solution.

u(Z, T ) =

N∑
j=1

ηj sech[ηj(T + κjZ − T0j)]exp

[
−iκjT +

i

2
(ηj

2 − κj
2)Z + iθ0j

]
. (2.2)

Here ηj , κj , T0j , and θ0j respectively represent the amplitude, frequency, initial position, and
the initial phase of the j-th optical soliton. Also, ηj and κj are the imaginary and real parts of
eigenvalues represented in Eq. (2.1). Next, the hyperbolic-second shape pulse is regarded as the
initial waveform.

u(Z = 0, T ) = A sech(T ) . (2.3)

Here, A represents the peak amplitude of u. Eigenvalue of of the eigenvalue equation associ-
ated with the NLSE (see Eq. (2.30)) for the initial waveform given by Eq. (2.3) can be derived
analytically. The number of discrete eigenvalues N satisfies as [72]

A− 1

2
< N ≤ A+

1

2
. (2.4)

Here, pure imaginary eigenvalues can be expressed as the following formula.

ζj = i
ηj
2

= i

(
A− j +

1

2

)
, (j = 1, 2, . . . . . . , N) . (2.5)

The following relation between A and ηj can be derived using Eq. (2.5).

ηj = 2(A− j) + 1 , (j = 1, 2, . . . . . . , N) . (2.6)

When A coincides with an integer number N , the solution for the initial waveform of Eq. (2.3)
does not include dispersive waves and becomes the N -order soliton solution. The amplitude of N
solitons is given by the following equation,

ηj = 2(N − j) + 1 = 1, 3, 5, . . . . . . , (2N − 1) , (j = 1, 2, . . . . . . , N) . (2.7)

Fig. 2.1 presents the relation between the amplitude of initial waveform shown in Eq. (2.3)
and the achievable imaginary part of eigenvalues. In other words, the number of soliton N is a
function of initial amplitude A as shown in Fig. 2.1.

2.2.2 Higher-order Soliton

Higher-order soliton consists of multiple fundamental solitons corresponding to the multiple
eigenvalues. When κj = 0 in Eq. (2.2), the soliton solution can be asymptotically written as

uj(Z, T ) =
N∑
j=1

ηj sech {ηj(T − T0j)} exp
{
i

(
ηj

2

2
Z + θ0j

)}
. (2.8)
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The waveform is changing periodically by interference among multi solitons which amplitudes

are ηj . For this case, the individual phase change is given by
ηj

2

2
Z. For N = 2 case, the phase

difference of two solitons can be expressed as ∆θ =
η2i − η2j

2
Z. So the waveform is periodically

changing with the period of Zp expressed as

Zp =
2π

η21/2− η22/2
=

4π

|η21 − η22|
. (2.9)

Zp is designated as the soliton period. When the initial pulse is given by Eq. (2.3) with A = 2,
then Zp can be expressed as

Zp =
4π

32 − 12
=
π

2
. (2.10)

Pulse having more than two discrete eigenvalues is called higher-order soliton. It appears in
the case of A > 1.5 in Eq. (2.3) and its feature is periodically changing waveform. It is quite
different from fundamental soliton whose waveform does does not change during the propaga-
tion. Figs. 2.2(a) and (b) respectively show temporal evolutions of a fundamental soliton and a
higher-order soliton. In Fig. 2.2(b), SPM is dominant in the early stages of propagation and con-
traction of the pulse dispersion effect becomes dominant soon after and back to the initial soliton
pulse waveform after the soliton period. The total energy is 2A2 for higher-order soliton given by
Eq. (2.3). However, total energy becomes 2η for fundamental soliton solution u = η sech(ηT ).

2.3 Occurrence of Localized Waves

2.3.1 Principle of Modulational Instability

Many nonlinear systems exhibit instability in an anomalous dispersion regime and manifest it
as a breakup of continuous wave (CW) or quasi-CW radiation into a train of ultra-short pulses as
a result of interplay between the nonlinear and dispersive effects [24]. This concept is referred
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Fig. 2.2: Soliton solutions.

to MI and studied during the 1960s in various fields including fluid dynamics [73] and nonlinear
optics [74]– [76]. The stability of a steady state depends strongly on whether light experiences a
normal or anomalous GVD in optical fiber. In the nonlinear theory of the hydrodynamic context,
the waves grow exponentially because of Benjamin–Feir instability [7]. Instability increases
exponentially in the initial stage and reaches a saturated level. After reaching that level, it
returns gradually to the initial stage. In other words, in a conservative system, all waves appear
from nowhere and always disappear without any trace. Many theories can be considered for
the formation of optical rare or unexpected events under different conditions. MI, a complex
nonlinear process exhibiting emergent behavior and a strong sensitivity to initial conditions
[25], [26] serves a crucially important role in the appearance of extraordinary waves in many
optical scenarios [9,26,28,77].

MI is theoretically analyzed in this subsection. The behavior of the complex envelope of a light
wave propagating in a fiber in the presence of the second and the third order dispersion and
nonlinear effects can be expressed as [78]

i
∂u

∂Z
− b

2

∂2u

∂T 2
+ |u|2u = iσ

∂3u

∂T 3
, (2.11)

where Z, T , and u(Z, T ) respectively represent the normalized quantities of propagation dis-
tance, time moving frame with the group velocity, and the complex envelope of the electric field.
Moreover, b (= ±1) and σ respectively define the normalized second and third order dispersion
coefficients [78]. While b = 1 corresponds to normal dispersion case, b = −1 corresponds to
anomalous dispersion case.

Here, we consider a CW propagation inside an optical fiber. For CW, the amplitude is inde-
pendent with T at the input end of the fiber at Z = 0. Assuming that u(Z, T ) remains time-
independent during propagation inside the fiber, the steady state solution of Eq. (2.11) is given
by,

uCW(Z, T ) =
√
P (0) exp(iϕNL) . (2.12)

Here, P (0)(= |u(Z = 0, T )|2) is the normalized input power at Z = 0.

ϕNL(Z) = P (0)Z , (2.13)
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is the nonlinear phase shift induced by SPM. Eq. (2.12) implies that CW is expected to propagate
through the fiber unchanged, except for acquisition of a power-dependent phase shift.

Next, stability against small perturbations of the steady state solution Eq. (2.12) is examined.
The initial input is illustrated in Fig. 2.3. We assume that the solution of Eq. (2.11) can be
expressed as

u(Z, T ) =
{√

P (0) + a(Z, T )
}
exp(iϕNL) , (2.14)

where a(Z, T ) represents a small perturbation which satisfies |a|2 ≪ P (0). Substituting Eq. (2.14)
in Eq. (2.11) and linearizing in a,

i
∂a

∂Z
− b

2

∂2a

∂T 2
+ P (0)(a+ a∗) = iσ

∂3a

∂T 3
, (2.15)

can be obtained. The Fourier transform of a(Z, T ) can be written as

ã(Z,Ω) =
1√
2π

∫ ∞

−∞
a(Z, T ) exp(−iΩT )dT . (2.16)

Perform Fourier transform to Eq. (2.15), and we obtain

d

dZ

{
ã+ ã∗

ã− ã∗

}
=


0 i

(
b

2
Ω2 − σΩ3

)

i

{
b

2
Ω2 − σΩ3 + 2P (0)

}
0


{
ã+ ã∗

ã− ã∗

}
. (2.17)

Hereafter we consider σ = 0 case for simplicity.

(1) When b = 1 (normal dispersion), or b = −1 (anomalous dispersion) and |Ω| > 2
√
P (0),

ã(Z,Ω) = ã(0,Ω) cos{θ(Z )}+ i
sin{θ(Z )}√
1 +

4P(0)

bΩ2

[
ã(0,Ω) +

2P(0)

bΩ2
{ã(0,Ω) + ã∗(0,Ω)}

]
. (2.18)
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Fig. 2.4: Power of perturbed CW at Z = 100 vs. magnitude of TOD coefficient for normal disper-
sion case.

Here,

θ(Z) =
Ω2

2

√
1 +

4P (0)

bΩ2
Z . (2.19)

Therefore,

|ã(Z,Ω)|2 = |ã(0,Ω)|2 + sin2{θ(Z )}

2 +
bΩ2

2P (0)

[
2P (0)

bΩ2
{ã(0,Ω) + ã∗(0,Ω)}2

+{ã(0,Ω)}2 + {ã∗(0,Ω)}2
]
, (2.20)

and |ã(Z,Ω)|2 is a periodic function with the period of

Zp =
4π

Ω2

√
1 +

4P (0)

bΩ2

. (2.21)

Then, |ã(Z,Ω)|2 is not increasing exponentially with Z and the CW solution of Eq. (2.11) is stable.
σ ̸= 0 case is examined in Fig. 2.4. This shows |u(Z = 100, T = 0)|2 when a perturb CW
is launched in a fiber having small third-order dispersion (TOD) coefficient. No instability is
observed for these cases. In these cases,(

b

2
Ω2 − σΩ3

){
b

2
Ω3 − σΩ3 + 2P (0)

}
> 0 (2.22)

is satisfied.
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(2) When b = −1 (Anomalous dispersion) and |Ω| < 2
√
P (0),

ã(Z,Ω) = ã(0,Ω)cosh{θ′(Z )} − i
sinh{θ′(Z )}√
4P(0)

Ω2
− 1

[
ã(0,Ω)− 2P(0)

Ω2
{ã(0,Ω) + ã∗(0,Ω)}

]
. (2.23)

Here,

θ
′
(Z) =

Ω2

2

√
4P (0)

Ω2
− 1 Z . (2.24)

Therefore,

|ã(Z,Ω)|2 = |ã(0,Ω)|2 + sinh2{θ′(Z)}

2− Ω2

2P (0)

[
2P (0)

Ω2
{ã(0,Ω) + ã∗(0,Ω)}2

−
(
{ã(0,Ω)}2 + {ã∗(0,Ω)}2

)]
. (2.25)

It is noteworthy that |ã(Z,Ω)|2 is proportional to the factor exp[2θ′(Z)] and exponentially increas-
ing with Z for Z ≫ 1. Therefore, CW solution of Eq. (2.11) is unstable and this instability is
called MI.

Fig. 2.5 shows perturbed CW transforms into higher-order soliton pulse train and a dispersive
wave with respective to Z. When the TOD is zero, higher-order solitons are generated because
MI process propagate through the fiber by changing the temporal waveform and frequency spec-
trum periodically. However, when considering the non-zero TOD case, higher-order solitons split
into multiple quasi-solitons that correspond to multiple eigenvalues of the eigenvalue equation
associated with NLSE while they propagate in the fiber.

-8 -4 0 4 8 0 1510 20501
105

Higher-order soliton+Dispersive wavePerturbed CW light
Normalized 
power, 

Fig. 2.5: MI process.

2.3.2 Soliton Fission

Soliton fission is a process that breaks higher-order soliton apart because of higher-order dis-
persive or nonlinear perturbations. Higher-order solitons generated via MI process propagate
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(a) N=3. (b) N=5.

Fig. 2.6: Soliton fission when considering TOD (σ = 0.02).

inside the fiber by changing the temporal waveform periodically with the period of the soliton
period Zp represented in Eq. (2.9) when TOD is zero. However, when the TOD is non-zero,
higher-order solitons split into fundamental solitons that correspond to multiple eigenvalues.
This phenomenon is called soliton fission. Figs. 2.6(a) and (b) respectively represent N = 3 and
N = 5 cases. Here N denotes the order of the solitons.

As shown in Figs. 2.6(a) and (b), a higher-order soliton splits into multiple fundamental soli-
tons accompanied by generation of dispersive waves. The fundamental soliton corresponding to
the largest eigenvalue η = 5 can only be observed clearly in Fig. 2.6(a) for N = 3 case. However,
in practice, fundamental solitons corresponding to eigenvalues η = 1 and η = 3 also split and
propagate with respect to Z. Solitons corresponding to eigenvalue η = 1 and η = 3 are invisible
because the amplitudes of those solitons are extremely low compared with η = 5 soliton. As
shown in Fig. 2.6(b), fundamental solitons corresponding to the largest eigenvalue η = 9 and the
second largest eigenvalue η = 7 are mutually separated and they propagate with respect to Z for
N = 5 case.

2.3.3 Soliton Interactions

Soliton interactions are occured between co-propagating solitons due to nonlinearity. Soliton
fusion is one of wave phenomena caused by soliton interactions between co-propagating solitons
with small temporal, frequency, and appropriate phase separation, as presented in Fig. 2.7.
Particularly, it has been predicted that solitons can fuse when propagating in nonlinear medium
[55]. Merging of solitons into a single pulse during soliton collision is the principal feature of
soliton fusion. As a result of soliton fusion, a high-intensity robust light structure arises and
propagates over significant distances without recovering to the initial solitons. Soliton fusion is
considered as one of optical rogue wave generation mechanisms. Initial conditions in a pair of
soliton pulses strongly influence the interactions between pulses. Moreover, energy dissipation
of solitons is visible during interaction processes. Some amount of soliton’s energy is transferred
to dispersive waves. Consequently, soliton fusion will be accelerated as a result of multiple
interactions between solitons and dispersive waves [55].

Two simultaneously launched optical solitons with different soliton parameters can be repre-
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Fig. 2.7: Interactions between solitons.

sented as

u(Z = 0, T ) = sech(T +∆T/2)exp(i∆νT/2 + i∆θ/2)

+ sech(T −∆T/2)exp(−i∆νT/2− i∆θ/2) , (2.26)

where ∆T , ∆ν, and ∆θ respectively represent the normalized quantities of pulse spacing, fre-
quency separation, and phase difference between those simultaneously launched two optical
solitons. When two identical solitons are launched into an optical fiber, they either co-propagate
or mutually repulse depending on their parameters. To inspire a brief idea related to soliton
interactions, intensity profiles along the propagation distance for soliton collision process are
presented schematically in Fig. 2.8 for different pulse spacing and frequency separation. Two
fundamental solitons given by Eq. (2.26) are used as the initial waveform for Eq. (2.11) with
b = −1 and σ = 0. Whereas Fig. 2.8(a) presents the co-propagating solitons for ∆T = ∆ν = 0.5

and ∆θ = 0 case, Fig. 2.8(b) shows repulsing solitons for ∆T = 6.0, ∆ν = 0.3, and ∆θ = 0 case.
Co-propagation and repulsion are apparent after the collision according to temporal spacing and
frequency separation of two solitons. Two soliton-fission-ejected solitons will meet such interac-
tions rather than quasi-elastic collision when the temporal and frequency separation between
two solitons is small. In the repulsion case, two solitary pulses have been found to propagate in-
dependently after the collision. Because conditions for the soliton fusion are extremely delicate,
the fusion itself is a very rare event.

The total energy of the initial waveform given by Eq. (2.26) can be represented as

ET =

∫ ∞

−∞
|u(Z = 0, T )|2dT = 1− π

sinh(π∆ν/2)[sin(∆ν∆T +∆θ)− sin(∆θ)]

sinh(∆T )[1− cosh(π∆ν)]
. (2.27)

Soliton collision is accompanied by strong irradiation of a low-intensity dispersive wave. Disper-
sive wave energy can be given as the difference between the total energy and the soliton’s energy.
So dispersive wave energy ∆E is given as

∆E(∆T,∆ν,∆θ) = ET − 2
N∑
i=1

ηi , (2.28)

where 2ηi represents the i-th soliton’s energy and N stands for the number of solitons.
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Fig. 2.8: (a) Co-propagation of solitons for ∆T = ∆ν = 0.5, ∆θ = 0 and (b) repulsion after soliton
collision for ∆T = 6.0, ∆ν = 0.3, ∆θ = 0.

2.4 Eigenvalue Equation Associated with NLSE

2.4.1 Principle of Eigenvalue Analysis

Recently, eigenvalues have drawn interest in research in the field of optics as an approach to
evaluate the numerically and experimentally obtained results [79]. The behavior of the complex
envelope of a light wave propagating in a fiber can be represented by widely known NLSE. We
set b = −1 in Eq. (2.11), the normalized NLSE in the presence of TOD in anomalous dispersion
regime can be represented as

i
∂u

∂Z
+

1

2

∂2u

∂T 2
+ |u|2u = iσ

∂3u

∂T 3
. (2.29)

Special kind of nonlinear wave equations are integrable using inverse scattering transform
[80]. The normalized NLSE in Eq. (2.29) belongs to this special class when σ = 0. The inverse
scattering transform for the NLSE was firstly reported by Zakharov and Shabat in 1971 [81].
This method is similar to the Fourier transform that is widely used for solving linear partial
differential equations. The eigenvalue equation associated to Eq. (2.29) can be represented when
σ = 0 as

i
∂ψ1

∂T
+ u(Z, T )ψ2 = ζψ1 ,

−i∂ψ2

∂T
+ u∗(Z, T )ψ1 = ζψ2 , (2.30)

where ζ is complex eigenvalue and ψl(Z, T ), (l = 1, 2) are the eigenfunctions [80]. As long as u
is a solution of Eq. (2.29) with σ = 0, eigenvalue ζ of Eq. (2.30) is invariant with Z, even if the
temporal waveform and the frequency spectrum are drastically changed.

2.4.2 Calculation of Eigenvalues

To calculate eigenvalue ζ, Eq. (2.30) is converted to integral equations by performing Fourier
transform defined as
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f̃(Ω) =
1√
2π

∫ ∞

−∞
f(T ) exp(iΩT )dT . (2.31)

Then, Eq. (2.30) is transformed to
Ωψ̃1(Z,Ω) +

1√
2π

∫ ∞

−∞
ũ(Z,Ω− Ω′)ψ̃2(Z,Ω

′)dΩ′ = ζψ̃1(Z,Ω) ,

−Ωψ̃2(Z,Ω)−
1√
2π

∫ ∞

−∞
ũ∗(Z,Ω′ − Ω)ψ̃1(Z,Ω

′)dΩ′ = ζψ̃2(Z,Ω) ,
(2.32)

where ũ(Z,Ω) and ψ̃ℓ(Z,Ω), (ℓ = 1, 2) respectively represent the Fourier transform of u(Z, T ) and
ψℓ(Z, T ). Furthermore, by discretization ũ(Z,Ω) and ψ̃ℓ(Z,Ω) in the Ω domain and by replacing
the integration by summation over discretized sections, Eq. (2.32) can be converted into a discrete
form for a fixed distance as

Ωnψ̃1(Ωn) +
∆Ω√
2π

N∑
m=1

ũ(Ωn − Ωm)ψ̃2(Ωm) = ζψ̃1(Ωn) ,

−Ωnψ̃2(Ωn)−
∆Ω√
2π

N∑
m=1

ũ∗(Ωm − Ωn)ψ̃1(Ωm) = ζψ̃2(Ωn) ,

(2.33)

It is noteworthy that Eq. (2.33) can be rewritten as an eigenvalue problem of matrix form as[
A B

−B∗ −A

] Ψ̃1

Ψ̃2

 = ζ

 Ψ̃1

Ψ̃2

 . (2.34)

Here, Ψ̃ℓ, (ℓ = 1, 2) is a column vector with elements of ψ̃ℓ(Ωn). A and B are N × N square
matrices, for which respective elements are given by

ajk =

Ωj (j = k) ,

0 (otherwise) ,
(2.35)

bjk =


1√
2π
ũ(Ωnjk

)∆Ω (1 5 njk 5 N) ,

0 (otherwise) .
(2.36)

Here, njk = N/2+j−k+1 for even number N and ∆Ω (= Ωn+1−Ωn) is the discretization interval
in frequency. B∗ is the conjugate transpose of B.

2.5 Conclusions

This chapter introduced basic concepts related to optical rogue waves. At the beginning of the
chapter, concepts of optical solitons such as fundamental and higher-order soliton solutions were
introduced. Perturbed CW in anomalous dispersion fiber becomes unstable due to MI, which
initiate optical rogue wave generation. Starting with the introduction of MI, various concepts
related to solitons such as soliton fission, soliton interactions, and soliton fusion phenomenon
have been discussed in section 2.3. Eigenvalue equations associated with NLSE were presented
in section 2.4. Numerical calculation method of eigenvalues were introduced by solving the
matrix form eigenvalue problem.





Chapter 3

Characterization of Optical Rogue
Waves using NLSE-based Model

3.1 Introduction

Rogue wave research has been actively conducted based on the nonlinear Schrödinger equa-
tion (NLSE)-based model which is one of the simplest nonlinear evolution models. Recent stud-
ies have confirmed that the presence of third-order dispersion (TOD) in optical fibers turns the
system convectively unstable and generates extraordinary optical intensities. This statistical
signature has been observed experimentally and confirmed numerically both in hydrodynamic
and optical situations [2], [82]. The effects arising from higher-order dispersion terms such as
TOD cannot be ignored for pulses with narrow pulse width. The crucially important role of TOD
on the statistics of optical rogue waves is emphasized for the NLSE-based model in this chapter.
Moreover, as described in Chapter 1, previous reports have described that the collision of soliton
is one of generation mechanisms of optical rogue wave. Since pure solitons cannot exist when
TOD exist, terms“ soliton”and“ quasi-soliton”are used for zero and non-zero TOD cases,
respectively. In this chapter, quasi-soliton-collision-generated optical rogue waves are validated.
Soliton collision process can be elucidated using the eigenvalues of the eigenvalue equation as-
sociated with the NLSE. Invariant property of the eigenvalues during the collision reveals that
rogue waves are generated by the collision of two quasi-solitons.

This chapter is organized as follows. In section 3.2, numerical model and optical rogue wave
generation in the NLSE-based model are presented as an introductory overview. The effects
arising from TOD on extraordinary waves are demonstrated in section 3.3. In section 3.4, quasi-
soliton collision generated optical rogue waves are validated. Finally, stability of quasi-soliton
against the magnitude of TOD coefficient is explained.

3.2 Optical Rogue Wave Generation in the NLSE-based Model

Optical rogue wave generation using NLSE-based model is addressed in this section. At first,
Eq. (2.29) is considered without TOD. To simulate the rogue wave phenomenon numerically, the
NLSE is solved by split-step Fourier method (SSFM). Here, W = 20 was taken as the width
of the time window. Time window is a specified data range that we consider during numerical
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simulations instead of considering data from minus infinity to plus infinity. Accurate estimation
can be obtained using wide time window with suitable sampling points inside the time window.
The number of sampling points in the time window was set as 211. In addition, ∆Z = 10−5 was

taken as the step size to Z-direction. The energy is defined as E =

∫ W/2

−W/2
|u(Z, T )|2dT . The

average power is set as E/W = 1. In this study, a perturbed continuous wave (CW) was used
as the initial condition, as shown in Fig. 2.3. To perturb the CW light, Gaussian noise with a
normalized average power level of 10−5 was used. The rogue wave phenomenon was investigated
by propagating the initial waveform until Z = 2000.

Fig. 3.1(a) presents the temporal waveform with respect to Z in the vicinity of the maximum
peak power extraordinary wave. A rogue wave event, i.e., a waveform with extraordinary high
peak power compared to other waves nearby, is clearly observed at a distance of Z = 827.47.
When the peak power of a specific wave is greater than two times the significant wave height
(SWH), it is called as a rogue wave event. The peak power of the extraordinary localized wave
observed at a distance of Z = 827.47 is higher than two times the SWH. Therefore, this localized
structure emerging in Fig. 3.1(a) can be denoted as a rogue wave event. The contour plot near
the optical rogue wave is portrayed in Fig. 3.1(b). In addition, variations of imaginary part of
eigenvalues 2Im[ζ], which was calculated using temporal waveform, are shown in Fig. 3.1(c) as
a function of Z. The imaginary parts of the eigenvalues are almost constant around Z = 827.47;
it can be regarded as collision of two solitons corresponding to two eigenvalues that generate
the rogue wave. The imaginary part of eigenvalue corresponds to the amplitude of the soliton as
shown in Eq. (2.11) and (2.12) in Chapter 2. Therefore, the imaginary part of the eigenvalue and
the achieved soliton amplitude are compared to analyze the generation of rogue waves. Here,
the imaginary parts of the eigenvalues are 2.1 and 1.8. Therefore, their sum is 3.9. However,
the observed maximum peak power is 13.0. The corresponding amplitude is

√
13.0 = 3.6, which

is approximately equal to 3.9, which is the sum of the amplitude of two solitons. Therefore, a
rogue wave is generated by collision of two solitons for this case. Moreover, soliton collision can
be observed clearly in the contour plot near optical rogue wave generation. The maximum peak
power of the generated rogue wave was 13 times higher than the average power of the initial
waveform for σ = 0.

3.3 Numerical Demonstration of the Impact of TOD on Optical
Rogue Waves

By using a procedure and simulation parameters similar to those for σ = 0 case, the rogue wave
phenomenon for σ ̸= 0 was analyzed. For a precise and quantitative evaluation, the magnitude of
TOD was altered finely. The relation between the maximum peak power and the TOD coefficient
was considered when an initial pulse propagates until Z = 2000. Numerical simulations were
conducted for |σ| ≤ 0.03. As shown by the blue solid line in Fig. 3.2, the maximum achieved peak
power of the extraordinary wave depends on the magnitude of the TOD coefficient. The peak is
maximized around |σ| ≃ 0.02. The maximum achieved peak power of the optical rogue wave was
61.7 when σ = −0.0186. For |σ| ≤ 0.02, the maximum achieved peak power increased with |σ|.
However, the maximum achieved peak power decreased when 0.02 < |σ| ≤ 0.03. The tendency of
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Fig. 3.1: (a) Observed optical rogue wave profile at Z = 827.47, (b) contour plot, and (c) variations
of imaginary parts of eigenvalues near Z = 827.47 for σ = 0.

the peak power variation is dependent on the magnitude of TOD. Consequently, the maximum
peak power is independent of the sign of the TOD. It depends only on the absolute value of TOD.

3.4 Generation Mechanism of NLSE-based Optical Rogue Wave

3.4.1 Numerical Simulation Method

Depending on the magnitude of TOD, the maximum achieved peak power changes according
to some special behavior, as shown in Fig. 3.2. This special behavior raises the importance of
analyzing the rogue wave phenomenon more precisely. To analyze optical rogue wave phenomena
in detail, (a) the σ = 0.015 case was considered, which is a value of the TOD coefficient at which
the maximum peak power is drastically changed. On the other hand, (b) the σ = 0.02 case
was also analyzed, because the maximum peak power at σ = 0.02 is approximately 60 times
higher than that of the initial wave. The following section shows the calculated wave profile,
the contour plot of the wave height, and the imaginary part of the eigenvalues, at around the
distance at which an extraordinary high peak power wave is observed.
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Fig. 3.2: Maximum achieved peak power vs. TOD coefficient.

3.4.2 Numerical Simulation Results

(a) σ = 0.015 case

Rogue wave generation for σ = 0.015 is analyzed in this subsection. The wave profile at dis-
tances around the value at which is extraordinary high peak power is observed is presented in
Fig. 3.3(a), and Fig. 3.3(b) presents the contour plot of the wave profile. The maximally achieved
value of the peak power was 22.0 at Z = 1706.37, which is slightly higher than that in the σ = 0

case. The imaginary parts of the eigenvalues at each distance, where the optical rogue wave
generation is observed, are plotted in Fig. 3.3(c). The imaginary parts of the two eigenvalues
are almost constant around Z = 1706.37. Those waves are quasi-solitons corresponding to soli-
tons with eigenvalues of 2.5 and 1.8, respectively. Therefore, the sum of the amplitudes of two
quasi-solitons is 2.5 + 1.8 = 4.3. On the other hand, the peak power of the observed optical rogue
wave is 22, the amplitude of which is

√
22.0 = 4.7. Those amplitude values are almost identical.

This means that the rogue wave is generated by collision between two quasi-solitons. Moreover,
soliton collision can be observed clearly in the contour plot shown in Fig. 3.3(b).

(b) σ = 0.02 case

Extraordinary wave generation in the σ = 0.02 case is demonstrated in this subsection. Fig.
3.4(a) presents the wave profile over the distance where a highly localized wave is observed. An
optical rogue wave event was clearly distinguished from other background waves at a distance
of Z = 1885.75. The contour plot of the heights of those waves is presented in Fig. 3.4(b). In
addition, the imaginary part of the eigenvalues 2Im[ζ] of those waves is also shown in Fig. 3.4(c).
The maximal peak power, achieved at Z = 1885.75, is 59.1, which is extremely high compared
to that in σ = 0 case. The imaginary parts of the two eigenvalues are evaluated as 6.1 and
0.1, respectively, as shown in Fig. 3.4(c), under the assumption that the observed rogue wave
is generated by collision between two quasi-solitons. Their sum is 6.1 + 0.1 = 6.2. On the other



3.4. Generation Mechanism of NLSE-based Optical Rogue Wave 27

Normali
zed pow
er, 2520151050

(a)

Normalized time, TNormali
zed prop
agation 
distance
, Z

-10                           -5 0                              5                             10

1709
1708
1707
1706
1705
1704

(b)

Normalized propagation distance, Z
Imagina
ry part o
f Eigenv
alue , 2I
m[ζ]

1705.0                                 1705.5                                   1706.0                               1706.5

2
3

1
0

(c)

Fig. 3.3: (a) Observed localized wave profile at Z = 1706.37, (b) contour plot of the wave height,
and (c) the imaginary part of eigenvalues near Z = 1706.37 for σ = 0.015.

hand, the amplitude of the observed optical rogue wave is
√

59.1 = 7.7, which differs greatly from
the other value. Moreover, quasi-soliton collision is difficult to observe even when optical rogue
wave is generated, such that the contour plot apparently indicates the propagation of two single-
solitons. Therefore, quasi-soliton collision cannot be attributed to the generation mechanism of
optical rogue waves in this context.

The numerical simulation results presented for (a) σ = 0.015 and (b) σ = 0.02 show that a rogue
wave can be generated because of different mechanisms depending on the magnitude of TOD.
Hereinafter, rogue waves generated through quasi-soliton collision processes are specifically ad-
dressed. Numerical simulations were performed for |σ| ≤ 0.03, under the same conditions and
parameters as those of the previous analysis. Fig. 3.5 shows the imaginary parts of the two
largest eigenvalues of the observed rogue wave. For |σ| ≤ 0.015, two similar eigenvalues were
observed. However, for |σ| > 0.02, the largest eigenvalue is much larger than the second largest
one. 0.015 < |σ| ≤ 0.02 is the transition region of the two regions above.

The red line in Fig. 3.2 represents the calculated maximum peak power from the imaginary
part of eigenvalues shown in Fig. 3.5 under the assumption of a quasi-soliton collision generat-
ing a rogue wave. For |σ| ≤ 0.015, the calculated values agree with the maximum peak power
achieved in the numerical simulation. Therefore, it is reasonable to consider the quasi-soliton
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Fig. 3.4: (a) Wave profile around Z = 1885.75, (b) contour plot of the wave height, and (c) the
imaginary part of the eigenvalue around Z = 1885.75. The TOD is σ = 0.02.

collision as the mechanism of rogue wave generation in this parameter region.
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Fig. 3.5: Variations of imaginary parts of the two largest eigenvalues against TOD.
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3.5 Stability of Optical Solitons Against TOD for the NLSE-based
Model

Higher-order linear and nonlinear terms engender distortion of the pulse shape of optical soli-
tons. The initial appearance of pulse shape is strongly changing during propagation because of
dispersion and nonlinear effects. Pure soliton solutions cannot exist when σ ̸= 0 in Eq. (2.29).
Weak TOD of |σ| ≪ 1 can be regarded as a perturbation to pure soliton. The soliton which be-
haves as a solitary wave is called a quasi-soliton. Although eigenvalue ζ in Eq. (2.30) is invariant
regardless of u, which is obtained from the NLSE with σ = 0, the invariant of the eigenvalue is
not guaranteed mathematically for σ ̸= 0. In this regard, the relation between the stability of
quasi-soliton and the magnitude of TOD was examined. The soliton pulse u(0, T ) = ηsech(ηT )

was used as an initial waveform, and the stability of the imaginary part of its eigenvalues after
propagating over Z = 20 was investigated for σ ̸= 0. Here, we define that a quasi-soliton is stable
when its eigenvalue change is within 15% of the initial value, and is unstable otherwise. Fig.
3.6 shows the results, where the circle and cross indicate a stable and unstable quasi-solitons,
respectively. For |σ| ≤ 0.03, variation is small when the imaginary part of eigenvalue is less
than 5. As shown in Fig. 3.5, the maximum value of the imaginary part of the eigenvalue is
around 6 for 0.02 < |σ| ≤ 0.03. However, the imaginary part of the eigenvalue 6 is unstable for
0.02 < |σ| ≤ 0.03 as shown in Fig. 3.6. Therefore, the generation of a rogue wave cannot be ex-
plained by the quasi-soliton collision process for |σ| > 0.02. On the other hand, for |σ| ≤ 0.015, the
imaginary part of the eigenvalue becomes less than 5 as shown in Fig. 3.5 and the quasi-soliton
is stable as shown in Fig. 3.6. Therefore, quasi-soliton collision can be regarded as the optical
rogue wave generation mechanism for |σ| ≤ 0.015. As described above, 0.015 < |σ| ≤ 0.02 is the
transition region of those two regions.

TOD coefficient, |σ|Imagina
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= 2Im[ζ] Range for the imaginary part of eigenvalue to generate rogue waves from quasi-soliton collision Stable Quasi-SolitonsUnstable Quasi-Solitons

Fig. 3.6: Stability of quasi-solitons for different TOD coefficients.



30 Chapter 3. Characterization of Optical Rogue Waves using NLSE-based Model

3.6 Conclusions

Optical rogue wave generation using the simplest nonlinear evolution model has been demon-
strated in this chapter. Optical rogue wave phenomena in optical fiber with a small TOD (|σ| ≤
0.03) were analyzed numerically. The maximally achieved peak power of optical rogue waves de-
pends strongly on the magnitude of the TOD coefficient. For |σ| ≤ 0.02, the maximum achieved
peak power increased with |σ|. However, it decreased when 0.02 < |σ| ≤ 0.03. Consequently, the
maximum achieved peak power was highest around |σ| ≃ 0.02. Moreover, it was demonstrated
that the quasi-soliton collision process is the cause of optical rogue wave generation, from com-
parison of the observed peak power of the maximum amplitude rogue wave and the sum of
the two largest eigenvalues obtained by solving the eigenvalue equation associated with NLSE.
Quasi-soliton collision can be regarded as the cause of optical rogue wave generation mechanism
for |σ| ≤ 0.015 in the NLSE-based model. The generation mechanism of optical rogue wave for
large TODs is clarified in the next chapter.



Chapter 4

Soliton Collision Generated Optical
Rogue Waves for an HNLSE-based
Model

4.1 Introduction

As the simplest prototype of the nonlinear evolution model, the nonlinear Schrödinger equa-
tion (NLSE) has played a pivotal role in the field of optical rogue waves. However, it is necessary
to move beyond the standard NLSE description because of some unavoidable limitations. Dy-
namical and statistical behaviors of optical rogue waves depend on the type of nonlinear evo-
lution model [45]– [49]. Behaviors of optical rogue waves for integrable higher-order NLSE
(HNLSE) is mainly addressed in this chapter. Ablowitz, Kaup, Newell, and Segur (AKNS) have
developed a systematic means of constructing integrable HNLSEs [83]. The eigenvalues of the
equation associated with HNLSE are independent of the propagation distance. Because of the
non-integrability of NLSE perturbed by third-order dispersion (TOD), the analysis of the previ-
ous chapter was applicable only for small TOD [53]. The effect of TOD on optical rogue waves
also differs from model to model. As the investigation of rogue wave dependence on TOD has
flourished in different fields, the effects of large TOD on optical rogue waves have become im-
portant. This chapter analyzes the effect of large TODs, different from Chapter 3. In terms of
integrability, HNLSE is used to characterize the effect of larger TOD. The generation process
of optical rogue waves is also an open question in various nonlinear models [54]. In addition
to investigation of the effect of larger TOD, optical rogue wave generation processes are also
validated, using an HNLSE model.

This chapter is organized as follows. In section 4.2, the eigenvalue equation associated with
integrable HNLSE is presented. The effect of TOD on rogue wave phenomena analyzed by the
HNLSE model is presented in section 4.3. The analysis described in section 4.4 reveals the
emergence of optical rogue waves and the relation of TOD on their generation mechanisms.
Observed rogue wave profiles for different TOD coefficients are presented in this section. In
section 4.5, the soliton stability for the integrable HNLSE is discussed. Finally, soliton-collision-
generated optical rogue waves are validated by the magnitude of TOD.
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4.2 Eigenvalue Equation Associated with HNLSE

Inverse scattering transform (IST) is a method to solve an initial value problem in a wide-
range of nonlinear evolution equations such as NLSE, Korteweg-de Vries (KdV) equation, mod-
ified Korteweg-de Vries (mKdV) equation, and the sine-Gordon equation [72], [84]. Initial scat-
tering data is obtainable by the incident field, and the scattering data at a given distance can
be determined by solving the linear evolution equation. The propagating field is reconstructed
from the evolved scattering data. It is then applied to obtain the solutions of the original equa-
tions [78], [85]. To solve the different types of nonlinear evolution equations which are inte-
grable by the IST, AKNS have developed procedures to solve a suitable scattering problem [83].
The AKNS formalism provides a model linked to several types of nonlinear evolution equations.
The NLSE, the KdV equation, the mKdV equation, the sine-Gordon equation, and the consider-
ing integrable HNLSE shown in Eq. (4.2) can all be related to a unique eigenvalue equation in
which eigenvalues are invariant with the evolution. A detailed description of IST is presented in
appendix A.

The behavior of the complex envelope of a light wave propagating in a fiber can be repre-
sented by the widely known NLSE given by Eq. (2.29) in chapter 2. The initial value problem of
Eq. (2.29) with no TOD term is solvable using the IST [86]. To analyze the effect of TOD on opti-
cal rogue waves, it is necessary to go beyond the standard NLSE description. Here, the complex
envelope u in Eq. (2.29) is converted into the following form of U [87]:

U(Z, T ) = u(Z, T ) + 3iσ

[
∂u(Z, T )

∂T
+ 2u(Z, T )

∫ T

−∞
|u(Z, T ′)|2dT ′

]
. (4.1)

First-order terms of parameter σ are only considered when we obtain integrable equation from
Eq. (2.29) [88], [89]. An integrable HNLSE can be derived by substituting the conversion given by
Eq. (4.1) into Eq. (2.29). The HNLSE can then be expressed as the following evolution equation:

i
∂U

∂Z
+

1

2

∂2U

∂T 2
+ |U |2U = iσ

(
∂3U

∂T 3
+ 6|U |2∂U

∂T

)
. (4.2)

Particularly, the resulting HNLSE shown in Eq. (4.2) is also completely integrable using the IST
with the same eigenvalue problem associated with Eq. (2.29) for the σ = 0 case. The conversion
shown in Eq. (4.1) can be found by the fact that HNLSE has conserved quantities such as the
energy and the momentum.

Next, the eigenvalue equation that can be solved analytically is briefly reviewed. The eigen-
value equation associated to Eq. (4.2) is represented as

i
∂ψ1

∂T
+ Uψ2 = ζψ1 ,

−i∂ψ2

∂T
− U∗ψ1 = ζψ2 ,

(4.3)

where ζ ≡ (κ + iη)/2 is a complex eigenvalue with two real numbers, κ and η, and ψℓ(Z, T ),
(ℓ = 1, 2) are the eigenfunctions [86]. As long as U is a solution of Eq. (4.2), eigenvalue ζ of
Eq. (4.3) is invariant with Z. Eigenvalue ζ is calculable by three steps: (1) performing Fourier
transformation of Eq. (4.3), (2) discretization in frequency domain to compute the convolution
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integrals originated from the second term on the left-hand side of Eq. (4.3), and (3) solving the re-
sultant matrix form eigenvalue problem using a standard numerical procedure as demonstrated
in chapter 2.

4.3 Impact of TOD on Optical Rogue Waves for the HNLSE-based
Model

To analyze the role of TOD in optical rogue wave generation, Eq. (4.2) is integrated numerically
using the split-step Fourier method (SSFM). As an initial wave, a perturbed continuous wave
(CW) of P0 = 1 is used. Gaussian noise with a normalized power of 10−5 is superimposed on CW
to perturb the CW light. The waveform evolution until Z = 2000 is simulated, from which the
maximum peak power is extracted to identify a rogue wave. In the numerical calculation, the
time window size, the number of sampling point in the time window, and the step size in the
propagation direction are assumed to be W = 40, N = 211, and ∆Z = 10−5, respectively. A wide
time window is used to demonstrate different types of optical rogue waves [90]. To address the

generality, the average power E/W = 1 is utilized with the energy E =

∫ W/2

−W/2
|U(Z, T )|2dT .

For clarifying the effect of TOD on the HNLSE, Eq. (4.2) is solved for |σ| ≤ 0.1. The magnitude
of TOD is altered in an interval of ∆σ = 0.01, and the relation between σ and the maximum
peak power was calculated. To extract useful information to analyze the characteristics of these
extraordinary peaks generated during the propagation, statistical description of complementary
cumulative distribution function (CCDF) curve of the achieved peak power was adopted.
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Fig. 4.1: CCDF curves for different TOD coefficients.

A CCDF curve presents the probability of peak power exceeding a given particular power level.
Maximum peak power in the time window for each step is calculated during propagation until
Z = 2000. Calculated maximum peak power in each step is regarded as a statistical data. The
CCDF curves represent the probability of maximum peak power for each TOD coefficient. Curves
in Fig. 4.1 respectively represent CCDFs for different TOD magnitudes. A notable observation is
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that the maximum achieved peak power is increasing gradually with the magnitude of TOD. For
|σ| ≤ 0.07, the probability of generating extraordinary peaks guarantees some minimum level
of output power. However, for |σ| > 0.07, the situation differs greatly because the maximum
achieved peak power consists of peak excursions that occur much less often or at much lower
probability than the average content of the waveform for |σ| ≤ 0.07. Therefore, |σ| ≃ 0.07 plays
as the threshold TOD value.

4.4 Generation Mechanism Evaluated by the HNLSE Model

4.4.1 Numerical Simulation Method

Threshold TOD values allow deep probing into phenomena related to optical rogue waves.
Rogue wave phenomena are investigated for some specific TOD magnitudes. To analyze optical
rogue wave phenomena in detail, σ = 0.02 and σ = 0.1 are analyzed for |σ| ≤ 0.07 region and
|σ| > 0.07 region, respectively.

(a) (b)

(c)

Fig. 4.2: (a) Wave profile, (b) the contour plot of the wave height, and (c) the imaginary part of
the eigenvalue. The TOD is σ = 0.02.

(a) σ = 0.02 case

The rogue wave phenomenon for σ = 0.02 is demonstrated in this subsection. Fig. 4.2(a) plots
the calculated wave profile, where a wave profile with an extraordinary high peak power level
is emerged. The contour plot of the wave height is shown in Fig. 4.2(b), where the collision of
two pulses is also highlighted. The maximum peak power is achieved as 15.3 at Z = 499.07.
This extraordinary high peak power clearly indicates a rogue wave event. Fig. 4.2(c) presents
the imaginary part of the two largest eigenvalues over the distance where the optical rogue
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wave is generated. As shown in Fig. 4.2(c), the imaginary parts of the two eigenvalues are
almost constant as 2.1 and 1.7, respectively, around Z = 499.07, which correspond to two colliding
solitons. The sum of the amplitudes of the two soliton is 3.8 (= 2.1 + 1.7). The observed peak
power of the emerged optical rogue wave is 15.3. The corresponding amplitude is (

√
15.3 =

) 3.9. The peak power value obtained by the numerical simulations and the sum of the two
times the imaginary parts of eigenvalues are almost identical. Several wave profiles extracted
from Fig. 4.2(a) are presented in Figs. 4.3(a) - (d). These figures show that rare and strong
temporal optical events are initiated by modulational instabilities and are generated by collision
of solitons. This convective nature, which is induced mainly by the TOD, renders the system
convectively unstable in the σ = 0.02 case.

(a) (b)

(c) (d)

Fig. 4.3: Temporal wave profile at distances where the optical rogue wave is generated.

(b) σ = 0.1 case

Analysis of extraordinary wave generation for σ = 0.1 is presented in this section. The wave
evolution over the distance where a rogue wave is generated is presented in Fig. 4.4(a), which
reveals that the generated rogue wave has an extremely short lifetime. According to Fig. 4.4(a),
the appearance of the rogue wave is different from the soliton collision generated rogue wave as
it appears suddenly without any collision. The maximum peak power of 29.1 was observed at a
distance of Z = 1443.23, where the wave field looks chaotic. The maximally achieved peak power
was several times higher than the power with the highest probability. The peak power of the
optical rogue wave was greater than the most probable ones and lower than other peaks in the
surroundings. In this case, rogue wave generation is quite difficult to demonstrate because of
its extremely short lifetime. Therefore, no soliton collision appears. The observed rogue wave
is assumed to be generated through the collision of two solitons. The highest two eigenvalues
at distances where the rogue wave is generated were computed using a finite size time window,
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the imaginary parts of which are presented in Fig. 4.4(b). The two eigenvalues vary with the
propagation distance, suggesting that the observed rogue wave did not occur by the collision of
two solitons. To emphasize the difference between the σ = 0.02 and σ = 0.1 cases, it is helpful to
compare the corresponding temporal power profiles at distances where the optical rogue wave is
generated. The details of the evolution of the pulse power profile with the propagation distance
are presented in Figs. 4.5(a) - (d). The σ = 0.1 case shows new dynamics such that soliton
collision cannot be observed.

As described above, the HNLSE-based model indicates two kinds of a rogue wave: a rogue wave
generated from soliton collision, and that appearing suddenly and disappearing with no trace.
This result motivates a more precise analysis of the generation mechanism of optical rogue waves
by the HNLSE-based model. In the following section, to evaluate the optical rogue wave genera-
tion mechanism quantitatively, we perform simulations assuming various TOD magnitudes with
a small interval of ∆σ = 0.0005. Moreover, the relation between σ and the maximum peak power
was recalculated.

0
(a)

(b)

Fig. 4.4: (a) Observed optical rogue wave at Z = 1443.23 and (b) variations of imaginary parts of
eigenvalues near Z = 1443.23 for σ = 0.1.

4.4.2 Numerical Simulation Results

The maximum achieved peak power when the TOD is altered with an interval of ∆σ = 0.0005

is calculated, the result of which is indicated by the blue solid line in Fig. 4.6. The numerical
simulations reveal that the achieved maximum peak power depends only on the absolute value
of the TOD, but not on the sign. The maximum achieved peak power of the optical rogue wave
is 37.3 when σ = −0.0970, which is approximately 37 times higher than that when σ = 0. As
shown in Fig. 4.6, the peak power remained almost constant in a range of |σ| ≤ 0.075. The max-
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(a) (b)

(c) (d)

Fig. 4.5: Set of temporal wave profiles near the optical rogue wave at Z = 1443.23 for σ = 0.1.

imum achieved peak power is increasing gradually with the magnitude of TOD for |σ| > 0.075,
representing the same scenario as shown in Fig. 4.1. These results confirm that optical rogue
waves emerging from noise-seeded CW light in chaotic nature are induced by the TOD. Conse-
quently, the TOD magnitude strongly influences the dynamics of these rare events. As a next
step, the eigenvalues of associated equation to the HNLSE were calculated around the distance
where a rogue wave is generated. The red dashed line in Fig. 4.6 represents the calculated
peak power of the generating pulse using the largest two eigenvalues in the vicinity of the rogue
wave. An excellent agreement is found in Fig. 4.6, between the peak power and the eigenvalues
for |σ| ≤ 0.075. For large TOD coefficients, on the other hand, a remarkable difference is shown
between them. From these results, it can be concluded that the soliton collision is the dominant
mechanism for rogue wave generation when |σ| ≤ 0.075. Furthermore, the power is almost iden-
tical in this range. However, for |σ| > 0.075, rogue wave occurrence is expected to be caused by
different physical mechanisms.

4.5 TOD in the HNLSE-based Model

The numerical simulation results in the previous section revealed that the TOD engenders
the occurrence of rogue waves. The stability of soliton solutions differs depending on nonlinear
evolution models. Particularly, when the higher-order dispersion terms exist in a nonlinear evo-
lution model, the stability of soliton solutions must be considered before validating the results.
Therefore, special attention should be devoted to the stability of solitons when the optical rogue
wave generation process is described using the HNLSE-based model. The stability of soliton
solutions of Eq. (4.2) is discussed in detail in this section. To quantify the stability of solitons in
the HNLSE-based model, a numerical simulation was demonstrated for the fundamental soliton
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Fig. 4.6: Maximum achieved peak power vs. the TOD coefficient.

solution of Eq. (4.2). The IST is used to solve Eq. (4.2), the solution of which can be expressed as

U(Z, T ) = η sech[η(T + ση2Z)] exp

(
i
η2

2
Z

)
. (4.4)

This soliton solution with various values of amplitude η is used as an initial waveform at Z = 0.
To emphasize the crucially important role of the TOD on the different amplitude pulses, the
variation of the imaginary part of eigenvalues are evaluated when the pulse propagates until
Z = 100. Here, a soliton with the eigenvalue whose imaginary part varies within 10% of the
initial value is regarded as a stable soliton. The result is shown in Fig. 4.7, where a circles
and crosses represent stable and unstable solitons, respectively. A salient difference between
the HNLSE-based model (Fig. 4.7) and the NLSE-based model (Fig. 3.6) is that soliton solutions
with the imaginary part of eigenvalue 6 are stable for small TOD coefficients. Soliton solutions
with the imaginary part of eigenvalue 3 are stable for large TOD coefficients [53].

In the following, the two largest eigenvalues at a distance where a rogue wave is generated
are examined.Their imaginary parts are shown in Fig. 4.8. In the region |σ| ≤ 0.075, the imag-
inary part is almost constant around 2. According to Fig. 4.7, solitons with η ≤ 2 is stable for
|σ| ≤ 0.075. Therefore, the region |σ| ≤ 0.075 is an excellent agreement, indicating that soliton
collision is significant in the generation mechanism of rogue waves in the HNLSE-based model.
The magnitude of the TOD within this region strongly affects rogue wave formation dynamics.
In the region |σ| > 0.075, on the other hand, eigenvalue-based prediction differs from the nu-
merical simulation. The rogue wave generation dynamics in this region should be described by
mechanisms other than soliton collision.

In the following, a comparison of the NLSE and HNLSE-based models is presented. First, the
effect of the TOD shows different behaviors for the NLSE-based model and the HNLSE-based
model, as shown in Fig. 4.9. The maximum achieved peak power was remained nearly constant
at the range of |σ| ≤ 0.075 for HNLSE-based model, different from the perturbed NLSE-based
model. Moreover, soliton collision processes were the dominant optical rogue wave generation



4.6. Conclusions 39

TOD coefficient, |σ|Imagina
ry part o
f Eigenv
alue ,
= 2Im[ζ]

Collision Region

Stable SolitonsUnstable Solitons

Fig. 4.7: Stability of solitons for different TOD.

Fig. 4.8: Variations of the imaginary part of the two largest eigenvalues against TOD.

mechanism for |σ| ≤ 0.015 [53] in the perturbed NLSE-based model. The parameter range of
the soliton collision generated rogue waves is extended by five times (|σ| ≤ 0.075) in the cur-
rent HNLSE-based model compared with the previously stated perturbed NLSE-based model as
shown in Fig. 4.9 [91].

4.6 Conclusions

In various physical contexts, several models have been developed to describe the rogue wave
phenomenon. In order to indicate the crucially important role of the TOD on the dynamics and
statistics of rogue waves, numerical simulations were performed based on the HNLSE-based
model. The eigenvalues in conditions where rogue waves are generated were used. The impact
of TOD shows different behavior in the HNLSE-based model compare to the NLSE-based model
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Fig. 4.9: Comparison between NLSE-based and HNLSE-based models.

stated in Chapter 3. Moreover, the parameter range to generate optical rogue waves from the
collision of solitons is extended by five times in the HNLSE-based model. Similar behavior can
be experienced in fields of nonlinear science different from fiber optics, such as fluid dynamics
and plasma physics.



Chapter 5

Characterization of Soliton Fusion
Phenomena

5.1 Introduction

Soliton fusion is a wave phenomenon resulting from interactions between co-propagating soli-
tons. The process that two adjacent soliton shape pulses are merged into a single pulse is referred
as soliton fusion. A strong soliton gains energy from a weaker soliton and merge into a single
pulse when appropriate initial conditions are satisfied. Soliton fusion is strongly dependent on
the temporal spacing, the frequency separation, and the phase difference between a pair of soli-
ton pulses at the input. Because conditions for the soliton fusion occurring are extremely delicate,
the fusion itself rarely occurs. The necessary condition in terms of soliton parameters has been
investigated, based on the eigenvalues of solitons, in generation of high-intensity pulses, where
the nonlinear Schrödinger equation (NLSE) was used to describe pulse propagation. Through
such studies, soliton fusion has been observed in different fields. A complex and interesting ex-
ample of soliton fusion is a rogue wave. A peculiar feature of a rogue wave generated from soliton
fusion is unchanged amplitude for a long period after two solitons are merged. The objective of
this chapter is to demonstrate soliton fusion resulting from interactions between solitons, using
the eigenvalue of solitons to validate optical rogue wave generation via soliton fusion.

This chapter explains the concept of the soliton fusion phenomenon, and is organized as fol-
lows. In section 5.2, the fundamental concepts, the numerical model, and the effect of temporal
spacing and frequency separation for soliton fusion are described. The effects of the frequency
separation and the phase difference are presented in section 5.3. Fusion events for different
soliton parameters are presented in this section. The authenticity assessment of numerical sim-
ulation results is discussed in section 5.4. Finally, the range of soliton parameters for achieving
soliton fusion phenomenon is concluded.
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5.2 Impact of Temporal Spacing and Frequency Separation on
Soliton Fusion

5.2.1 Characterization of Soliton Parameters

The objective of this chapter is to demonstrate the fusion process of a pair of soliton pulses,
using the soliton’s eigenvalues explained in chapter 2. As characteristics of the soliton fusion pro-
cess, colliding solitons are combined into a single giant solitary wave that propagates afterward
while maintaining its shape and intensity of about the double of the parental solitons. Delicate
conditions in terms of the temporal spacing, the frequency separation, and the phase difference
are necessary for the soliton fusion occurring. The normalized NLSE in an anomalous dispersion
regime can be represented as

i
∂u

∂Z
+

1

2

∂2u

∂T 2
+ |u|2u = 0 , (5.1)

where Z, T , and u(Z, T ) respectively represent the normalized quantities of the propagation
distance, the time in a frame moving with the group velocity, and the complex envelope of the
electric field. This NLSE is solved for the initial waveform given by Eq. (2.26), using the split-
step Fourier method (SSFM), in order to investigate the conditions for the fusion process. The
time window size and the number of sampling points in the numerical calculations are chosen,
respectively, as W = 640 and N = 210. Collision of solitons is accompanied by strong irradiation
of a low-intensity dispersive wave, as stated in Chapter 2. Because of a large value of the group
velocity, a part of those dispersive waves quickly pass out from the computational time window.
To suppress the reflection of the dispersive waves from the computational window edges, absorb-
ing boundary conditions are used, by application of a slightly increasing loss profile, to cancel out
dispersive waves at the edges of the time window. A 30% wide loss profile is added to both sides
of the computational window. In the following sections, the numerical simulation results on the
effects of the temporal spacing and the frequency separation are demonstrated.

5.2.2 Numerical Simulation Results

To elucidate the effect of the temporal spacing and the frequency separation on the fusion
process, numerical simulations are performed by setting ∆θ = 0 in Eq. (2.26). For simplicity,
the condition ∆T = ∆ν is assumed at first. The real and imaginary parts of discrete eigenvalues
and energy calculated using Eq. (2.26) with ∆T = ∆ν are depicted in Fig. 5.1. Eq. (2.26)
has two discrete eigenvalues in two special cases: (κ, η) = (0, 1), (0, 3) for ∆T = ∆ν = 0, and
(±∆ν/2, 1) for |∆ν| ≫ 1, which are already well known [78, 85]. Here, κ and η represent the
real and the imaginary part of the eigenvalue, respectively. However, the other conditions of
κ and η had not been investigated. Thus, we conducted numerical simulations to compute the
eigenvalues in the unknown conditions the results of which is shown in Fig. 5.1. In the figure,
in order to characterize the soliton fusion phenomenon, three particular regions are classified by
the black dotted line: (1) co-propagation (|∆ν| = |κ1 − κ2| < 0.01), (2) soliton fusion (when the
imaginary part of the second largest soliton becomes 0, it is less than 0.03 in the simulation),
and (3) repulsion (other than the above two conditions). Here, κ1 and κ2 denote the real part
of the largest and second largest soliton, respectively. The black solid and broken lines in the
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top diagram in Fig. 5.1 respectively represent the asymptotic line at ∆ν/2 and −∆ν/2, which
connect the origin. When the temporal spacing and the frequency spacing increase from ∆T =

∆ν = 0, the amplitude of the weaker soliton decreases slightly, and is then damped to zero
(region 1). The emergence of the dispersive wave represented by Eq. (2.28) can be associated
with the dissipation of the weaker soliton. Here, Eq. (2.26) has only one discrete eigenvalue for
1.13 ≤ ∆T ≤ 1.56. Fusion is apparent in this region 2. Furthermore, when temporal spacing and
frequency separation becomes larger, the weaker soliton reappears. The amplitude becomes 1 in
both soliton in region 3. They propagate independently. The weaker soliton reappears gradually
when the radiation of dispersion wave becomes low. Consequently, co-propagating solitons are
apparent for ∆T < 1.13 and 1.56 < ∆T ≤ 1.86. The bifurcation point of the curve can be found at
∆T = 1.86. Generally, sudden qualitative or topological change occurs in the bifurcation point,
which is most commonly observed in mathematical studies and dynamic systems [92]. When
∆T > 1.86, the two solitons propagate with different group velocities, as represented in the top
diagram in Fig. 5.1. In region 3, repulsion of two solitary pulses emerging from the collision of
the two solitons is apparent. Each energy level shown in Fig. 5.1 indicates that irradiation of
the dispersive waves is enhanced in region 2 by disappearance of the weaker soliton. A good
consistency is apparent in the energy conservation law for all regions. Table 5.1 summarizes the
results for the ∆T = ∆ν case.
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Fig. 5.1: Eigenvalues and energy of each pulse for ∆T = ∆ν.
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Table 5.1: Overview of the ∆T = ∆ν case.
Region 1 2 3

∆T

|∆T | < 1.13

&
1.56 < |∆T | ≤ 1.86

1.13 ≤ |∆T | ≤ 1.56 |∆T | > 1.86

No. of solitons 2 1 2
Observed phenomenon Co-propagation Fusion Repulsion

To verify the numerical simulation results obtained using Eq. (2.26) with ∆T = ∆ν, two spe-
cific cases of ∆T = ∆ν = 0.8 in region 1 and ∆T = ∆ν = 1.3 in region 2 were examined more
precisely. The peak power along the propagation distance in these two specific cases are por-
trayed in Fig. 5.2, where the peak power largely oscillates with the propagation distance for
∆T = 0.8 because two solitons coexist for this case. For ∆T = 1.3, on the other hand, the peak
power approaches 5 while oscillating with the propagation distance. The power calculated from
the amplitude is (2.24)2 = 5.02. The calculated power from the amplitude and the achieved power
after propagation are almost identical. Consequently, the amplitude calculation in regions 1 and
2 indicates that the soliton fusion can only occur in region 2.

Normalized propagation distance
Normalize
d power
1412108642 0     20     40     60    80    100

Fig. 5.2: Variation of peak power of the field for the ∆T = ∆ν case.

Fig. 5.3 shows the soliton period calculated using Eq. (2.9) and the interval between the peaks
for ∆T = ∆ν, where the soliton period increases with the pulse spacing. The analytical and
numerical simulation results mutually agree well. The soliton period is increasing with the
pulse spacing.

The initial conditions of ∆T = ∆ν is assumed in the above. In order to investigate the soliton
fusion phenomenon in more detail, the similar simulation was conducted for various ∆T and ∆ν

over a wide range. The results are presented in Fig. 5.4. Most of the soliton parameters which
generate soliton fusion exist above ∆ν ≥ 0.88∆T . Repulsing solitons are appearing in region 3.
The initial conditions of the pulse spacing and the frequency separation to produce either soliton
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fusion or co-propagating solitons are expected to be positioned over a range below the blue solid
line in Fig. 5.4. Optical solitons in region 2 can be related to generation of optical rogue waves
through the soliton fusion process.
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Fig. 5.3: Soliton period for the ∆T = ∆ν case.
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Fig. 5.4: Ranges classified with respect to ∆T and ∆ν for ∆θ = 0 case.

5.3 Impact of Frequency Separation and Phase Difference on
Soliton Fusion

The effects of the phase difference on the fusion process of two simultaneously launched soli-
tons are investigated in this section. An initial time interval of ∆T = 1.3 is chosen as a specific
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Fig. 5.5: Variation of eigenvalues and energy assignment for three cases when ∆T = 1.3.

case for the soliton fusion, as in the preceding section. First, the real and imaginary parts of
discrete eigenvalues and the energy are calculated using Eq. (2.26) with ∆ν = ∆θ. The result is
shown in Fig. 5.5(a). Soliton fusion cannot be observed for phase differences of −π ≤ ∆θ ≤ π in
this case. Next, conditions of ∆ν = 0.5 and ∆θ = 0.125π are examined. The results are portrayed
respectively in Figs. 5.5(b) and (c). Soliton fusion is apparent when 0.52π ≤ |∆θ| ≤ 0.91π in the
∆ν = 0.5 case, and is observed when 1.29 ≤ |∆ν| ≤ 1.95 in the ∆θ = 0.125π case. Tables 5.2
and 5.3 present the respective overviews of the ∆ν = 0.5 and ∆θ = 0.125π cases for ∆T = 1.3.

In order to investigate the soliton fusion phenomenon more precisely, the relation between
the observed phenomena and the initial conditions of the phase difference and the frequency
separation was examined. Such an evolution map is expected to indicate particular features,
revealing signatures of the soliton fusion. The results are presented in Fig. 5.6, where region 2
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denotes a parameter region in which the soliton fusion is observed.

The numerical simulation results were confirmed by observing variation of the peak power of
the field. Two specific cases ∆θ = 3π/4 in region 2 and ∆θ = π/2 in region 3 for ∆ν = 0.5 were
studies in more detail. The peak power as a function of the propagation distance for those two
specific cases are presented in Fig. 5.7. In the ∆θ = π/2 case, the peak power oscillates with the
propagation distance, because two solitons coexist. The power in the ∆θ = 3π/4 case approaches
0.47 with the propagation distance. The power calculated from the amplitude is (0.68)2 = 0.46.
The observed and the calculated amplitudes are almost identical. Eventually, fusion can occur
only in region 2.
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Fig. 5.6: Classified ranges with respect to ∆θ and ∆ν for the ∆T = 1.3 case.

Table 5.2: Overview of (∆T,∆ν) = (1.3, 0.5) case.
Region 1 2 3

∆θ |∆θ| ≤ 0.08π 0.52π ≤ |∆θ| ≤ 0.91π

0.08π < |∆θ| < 0.52π

&
0.91π < |∆θ| ≤ π

No. of solitons 2 1 2
Observed phenomenon Co-propagation Fusion Repulsion
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Fig. 5.7: Variation of peak power of the field for ∆ν = 0.5 and ∆T = 1.3.

Table 5.3: Overview of (∆T,∆θ) = (1.3, 0.125π) case.
Region 1 2 3

∆ν 0.70 ≤ |∆ν| ≤ 0.79 1.29 ≤ |∆ν| ≤ 1.95

|∆ν| < 0.70

&
0.79 < |∆ν| < 1.29

&
|∆ν| > 1.95

No. of solitons 2 1 2
Observed phenomenon Co-propagation Fusion Repulsion

5.4 Discussion on Numerical Simulation Result Authentication

Soliton fusion dramatically demonstrates a role of the initial conditions in interactions between
optical pulses. Pulses are fused into a single pulse when the pulse spacing and the frequency sep-
aration are nearly zero [65]. Our numerical simulation results revealed that the amount of the
pulse spacing, the frequency separation, and the phase difference engender the occurrence of
soliton fusion. The energy conservation law was also be used to quantify our numerical simula-
tion results.

A detailed description of the pulse spacing and the frequency separation in the ∆θ = 0 case
is summarized in Table 5.4, which concludes that soliton fusion occurs only in region 2. The
table also classifies κ and η in each region. Two solitons exist in region 1 and region 3. Region
2 has only one soliton because the weaker soliton is distinguished completely. A dispersive wave
is strongly irradiated when the weaker soliton disappears. The detailed characteristics for the
frequency separation and the phase difference for ∆T = 1.3 are presented in Table 5.5. Variation
of κ and η can be summarized as shown in Table 5.5. Two solitons exist in region 3. Only one
soliton exists in region 2, which supports the generation of soliton fusion.
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Table 5.4: Variations of κ and η for the ∆θ = 0 case.
Region 1 2 3

No. of solitons 2 1 2
κ κ1 = κ2 = 0 κ1 = 0 κ1 = −κ2
η η1 ̸= η2 η1 only η1 = η2 = 1

Observed phenomenon Co-propagation Fusion Repulsion

Table 5.5: Variations of κ and η for the ∆T = 1.3 case.
Region 1 2 3

No. of solitons 2 1 2
κ κ1 = κ2 κ1 only κ1 ̸= κ2

η η1 ̸= η2 η1 only η1 ̸= η2

Observed phenomenon Co-propagation Fusion Repulsion

Delicate initial conditions were necessary to observe fusion processes. Solitons cannot be sep-
arated by further propagation once they are mutually fused. This fact should be taken into
account in developing analytical models for soliton interactions governed by the NLSE.

Typical oblong shapes of some oceanic rogue waves resemble the shapes of optical rogue waves
generated because of soliton fusion [12]. In optical communication systems in general, it is
desired to launch pulses with a close temporal spacing for high data rates. However, mutual
interactions of closely spaced co-propagating solitons can degrade the performance of soliton
transmission systems [93].

5.5 Conclusions

The effects of the pulse spacing, the frequency separation, and the phase difference between
solitary pulses on the soliton fusion phenomena have been studied based on eigenvalue analy-
sis. The results show that the fusion process is quite sensitive to the initial condition of these
parameters. Soliton interactions can be changed from attractive to repulsive after collision,
depending on soliton parameters. Because of the interactions, solitons are merged together,
where the resultant amplitude is significantly greater than the initial amplitude of other soli-
tons. Soliton fusions occurred only in region 2, whereas regions 1 and 3 respectively feature the
co-propagation and repulsion of solitons. Co-propagation and soliton fusion regions were identi-
fied when |∆ν| = |κ1−κ2| < 0.01 and the imaginary part of the second largest eigenvalue becomes
0 (it is less than 0.03 in the simulation), respectively. Solitons which satisfy the conditions other
than the co-propagation and soliton fusion was regarded as repulsive solitons. Fusion of optical
solitons can be regarded as a new scenario to generate optical rogue waves.





Chapter 6

Conclusions

This dissertation has been devoted to presentation of an analysis of rogue wave phenomena
in optical fiber. A signature feature of rogue waves is their anomalously large amplitude. Work
on rogue waves is a dynamic area of research. Rogue wave phenomena in an optical fiber have
been analyzed using analytical tools referred to eigenvalues of solitons. Analysis objects, i.e.
the nonlinear Schrödinger equation (NLSE)-based model and the higher-order NLSE (HNLSE)-
based model, have been explained separately as well as soliton fusion phenomenon, which is the
key factor for rogue wave generation, in each chapter. Since the publication of the pioneer paper
by Solli et al. in 2007, rogue wave phenomena have become a dominant research topic in the field
of nonlinear optics.

The third-order dispersion (TOD) of optical fibers renders systems unstable, leading to optical
rogue waves. The effect of the TOD have been investigated, the results of which confirmed that
the TOD of optical fibers engender generation of these extreme waves. Various mechanisms
can be attributed to the rogue wave generation, including soliton collision, soliton fusion, and
collision of Akhmediev breather (AB)s. Peregrine solitons and Kuznetsov–Ma solitons have also
been reported as prototypes to describe optical rogue waves. Furthermore, wave turbulence was
reported as a generation mechanism of rogue waves. By exploiting the eigenvalues of optical
solitons, soliton collision has been demonstrated numerically, using the NLSE-based and the
HNLSE-based nonlinear evolution models. Moreover, soliton fusion phenomena were analyzed
using the same analytical tool. The main results achieved in this research were summarized in
Chapters 3–5.

Following the introduction in Chapter 1, Chapter 2 presents the fundamental concepts related
to rogue wave generation in optical fiber. The overview of optical solitons, including fundamental
and higher-order solitons, were presented at the beginning of Chapter 2. Modulational instabil-
ity (MI) was discussed as a key nonlinear phenomenon to initiate optical rare and extraordinary
high peak power events inside an optical fiber. Soliton fission and interaction processes of soli-
tons were described to inspire an idea on such concepts. Eigenvalue equations associated with
the NLSE were discussed as an analytical tool for discussing optical rogue wave generation.

Chapter 3 is devoted to characterization of optical rogue wave generation using the NLSE-
based model. In order to obtain an idea of rogue wave phenomena in optical fibers, we assumed
a perturbed continuous wave (CW) as an initial waveform, which propagated until a normalized
distance of Z = 2000 and generated an extraordinary wave generation in a zero TOD case. After
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describing the generation of optical rogue waves in the zero TOD case, the effects of the TOD
on optical rogue waves were numerically investigated, using the NLSE-based model with a TOD
magnitude of |σ| ≤ 0.03. It was shown that the maximally achieved peak power of optical rogue
waves depends on the magnitude of the TOD coefficient, such that, as |σ| increases from zero,
the peak power increases, is maximal around |σ| ≃ 0.02, and then decreases for 0.02 < |σ| ≤ 0.03.
The results also showed that the maximally achieved peak power depends only on the absolute
value of the TOD, not on its sign. The generation mechanism of optical rogue waves based on the
NLSE-based model was validated as the next step of this analysis. The maximum achieved peak
power for the previous step was compared with the peak power calculated by the imaginary part
of the eigenvalues in the vicinity of rogue wave generation. For |σ| ≤ 0.015, two eigenvalues were
observed to have similar values of the imaginary parts. Quasi-soliton collision can be regarded as
the optical rogue wave generation mechanism for |σ| ≤ 0.015 in the NLSE-based model. Finally
in Chapter 3, the stability of the quasi-solitons against the TOD was demonstrated numerically
as a proof-of-evaluation for the considered NLSE-based model.

Chapter 4 describes the numerical simulations, using the HNLSE-based model, to analyze op-
tical rogue wave generated from soliton collision. In Chapter 3, because of the non-integrability
of the NLSE, the effects of the TOD on rogue waves were analyzed only for small TOD coeffi-
cients. Thereupon, the effects of the TOD and the optical rogue wave generation mechanism
for wider range were evaluated using the HNLSE-based model in Chapter 4. Regarding the de-
pendency of the TOD in the HNLSE-based model, the maximum achieved peak power remained
almost constant in a range of |σ| ≤ 0.075. For |σ| > 0.075, the maximum achieved peak power
increased gradually with the magnitude of the TOD. The power calculated from the largest two
eigenvalues, when a rogue wave is generated, and the maximally achieved peak power were com-
pared, in order to suggest the generation mechanism. Excellent agreement was found between
the peak power and eigenvalues for |σ| ≤ 0.075. Consequently, the soliton collision is the dom-
inant mechanism for rogue wave generation for |σ| ≤ 0.075. The stability of solitons were also
investigated numerically, using the HNLSE-based model, in Chapter 4. The parameter range for
soliton-collision based rogue waves to generate, obtained by the HNLSE-based model, is the five
times wider than that obtained by the perturbed NLSE-based model.

Chapter 5 was devoted to demonstration of the effect of initial soliton parameters on soliton
fusion phenomena. Soliton fusion can be regarded as a mechanism of optical rogue wave gen-
eration. In order to have an idea regarding soliton fusion, the fundamental concepts of soliton
interactions were presented. The effects of soliton parameters were evaluated using eigenval-
ues of the solitons. First, the effects of the temporal spacing and the frequency separation were
analyzed. The results apparently showed that the occurrence of soliton co-propagation, soliton
fusion, and repulsion is sensitive to these soliton parameters. Soliton fusion occurs in region 2,
where the imaginary part of the second largest eigenvalue becomes 0. Because the conditions for
the soliton fusion to occur are extremely sensitive to the system parameters, the fusion itself is
a very rare event. Next, the effects of the frequency separation and the phase difference were
evaluated for a normalized temporal spacing of ∆T = 1.3. According to the results of this eval-
uation, the initial soliton parameters such as temporal spacing and frequency separation should
be small, while appropriate phase difference between two solitons is required to generate soliton
fusion. Finally in Chapter 5, the range of the soliton parameter for soliton fusion phenomenon
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to occur was found.
Soliton collision and fusion generated optical rogue waves in optical fiber were evaluated theo-

retically in terms of eigenvalues of solitons. Soliton collision was studied in a framework of clas-
sical nonlinear evolution equations: NLSE and HNLSE. Recently, as an approach to evaluate
numerical and experimental results, eigenvalues have drawn interest in the field of optics [79].
No report of the relevant literature describes a study that employs eigenvalues to evaluate the
rogue wave phenomenon. Suppression of the generation of optical rogue waves is important for
optical fiber transmission systems. However, optical rogue waves can be used for some future
applications, such as soliton fusion generated optical rogue wave propagation for long distances
without distortion. Optical fiber loss was neglected to highlight the nonlinear and dispersive
mechanisms of rogue wave formation dynamics, in Eq. (2.29), Eq. (4.2), and elsewhere in this
research. Based on the guiding center theory [94], the effect of fiber loss can be omitted. It does
not change the conclusions of this research qualitatively.





Appendix A

Normalization of nonlinear
Schrödinger equation

The behavior of the complex envelope of a light wave propagating in a fiber can be described
by

i
∂E

∂z
− β2

2

∂2E

∂t2
+ γ|E|2E = −iαE + i

β3
6

∂3E

∂t3
. (A.1)

Here, z [m], t [s], E(z, t) [
√
W], β2 [s2/m], β3 [s3/m], γ [1/(m ·W )], and α [1/m]are respectively repre-

sent the propagation distance, the time moving with the group velocity, the complex envelope of
electric field, the group velocity dispersion (GVD), third order dispersion (TOD), nonlinear coeffi-
cient, and fiber loss coefficient. Here, by using the reference time t0 [s], we define the normalized
time T , normalized distance Z, and normalized complex envelope of electric field u as shown
below:

T=
t

t0
,

Z=
|β2|
t02

z ,

u=t0

√
γ

|β2|
E .

(A.2)

Then, Eq. (A.1) can be converted into the following equation in anomalous dispersion (β2 < 0)
region.

i
∂u

∂Z
+

1

2

∂2u

∂T 2
+ |u|2u = −iΓu+ iσ

∂3u

∂T 3
, (A.3)

where Γ =
t0

2α

|β2|
and σ =

β3
6|β2|t0

. Consequently, we obtain the normalized equation which

governs the behavior of an optical pulse propagating in a fiber.
GVD (β2 [s2/m]) and the dispersion parameter related to TOD (Dλ [ps/(nm2.km)]) are given by

β2 = −λ
2D

2πc
, (A.4)

and
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Dλ = −2D

λ
+

(
2πc

λ2

)2

β3 , (A.5)

where λ, D, and c represent the operating wavelength, dispersion parameter, and the speed of
light, respectively.

Detailed description of the rogue wave generation in actual fiber transmission lines is also re-
quired to extend the results of this research into practical situation. Therefore, the actual values
of the maximum achieved peak power, the distance for rogue wave generation, and the disper-
sion parameter related to TOD are estimated using fiber parameters of (a) dispersion shifted
fiber (DSF) and (b) single mode fiber (SMF). σ = 0.015 case on NLSE-based model is considered
as an example to present the actual values corresponding to the normalized values. Optical
rogue wave was observed with normalized peak power 22.0 at normalized propagation distance
Z = 1706.37 for σ = 0.015 case. t0 is defined as 10 [ps] for both cases.

Table A.1: Parameters of DSF at wavelength 1550 [nm].
Symbol Description value

D Dispersion Parameter 1.0 [ps/(nm.km)]

γ Nonlinear Coefficient 0.52 [1/(km.W)]

α Fiber Loss Coefficient 0.24 [dB/km]

(a) DSF case

Table A.1 presents DSF parameters at wavelength 1550 [nm]. According to Eq. (A.4) and σ =
β3

6|β2|t0
, β2 and β3 respectively become β2 = −1.275× 10−27 [s2/m] and β3 = −1.148× 10−39 [s3/m].

Therefore, actual values of the maximum achieved peak power, the distance for rogue wave
generation, and the dispersion parameter related to TOD can be obtained as



|E|2=27.32 [dBm] ,

z=1.338× 105 [km] ,

Dλ=0.705 [ps/(nm2.km)] .

(A.6)

Table A.2: Parameters of SMF at wavelength 1550 [nm].
Symbol Description value

D Dispersion Parameter 17.0 [ps/(nm.km)]

γ Nonlinear Coefficient 0.27 [1/(km.W)]

α Fiber Loss Coefficient 0.24 [dB/km]
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(b) SMF case

Actual values for the maximum achieved peak power, the distance for rogue wave genera-
tion, and the dispersion parameter related to TOD are obtained for SMF in this section. Ta-
ble A.2 presents the SMF parameters at wavelength 1550 [nm]. β2 and β3 respectively become
β2 = −2.167× 10−26 [s2/m] and β3 = −1.950× 10−38 [s3/m] for SMF. Therefore, actual value of the
maximum achieved peak power, the distance for rogue wave generation, and the dispersion pa-
rameter related to TOD can be obtained as

|E|2=42.47 [dBm] ,

z=7874 [km] ,

Dλ=11.978 [ps/(nm2.km)] .

(A.7)

Consequently, high peak power optical rogue wave is generated inside SMF compare with the
DSF case for σ = 0.015 case in NLSE-based model.

Finally, the possibility of rogue wave generation is discussed by considering the practical val-
ues. Typical value of Dλ of a DSF is approximately 10 times higher than the value listed in
(A.6). Calculated σ, which corresponds to the normalized system becomes σ = 0.0015, for the
typical Dλ(= 0.07 [ps/(nm2.km)]) of DSF at 1550 [nm]. This is almost similar to zero TOD
case in the NLSE-based model. Normalized peak power of 13.0 rogue wave can generate for
this case. Therefore, the generating peak power is 13 times the initial waveform. However,
z = 1.338× 105 [km] is far beyond the practical conditions. Therefore, rogue waves are scarcely
observed in practical DSF systems. On the other hand, typical value of Dλ in SMF is considered
to discuss the possibility of rogue wave generation inside SMF. The typical value of Dλ in SMF
is Dλ = 0.09 [ps/(nm2.km)] at 1550 [nm]. Therefore, σ becomes σ = 0.0012 for this typical Dλ

in SMF at 1550 [nm]. Here also σ almost becomes zero and peak power of 13.0 rogue wave can
generate as same as the DSF case. Moreover, the distance for rogue wave generation becomes
z = 7874 [km]. This z is not far beyond the practical conditions. Therefore, the rogue waves can
frequently generate in SMF systems.





Appendix B

Inverse Scattering Method

The inverse scattering method can solve an initial value problem of some partial differen-
tial equations including the nonlinear Schrödinger equation (NLSE) [72], [83], [95]. Gardner,
Greene, Kruskal, and Miura have reported a method to solve an initial value problem of a non-
linear evolution equation that was first brought to light in the Korteweg-de Vries (KdV) equation
given by Eq. (B.1) [96]:

∂q

∂Z
+ 6q

∂q

∂T
+
∂3q

∂T 3
= 0 . (B.1)

Here, Z, T , and q(Z, T ) respectively represent the normalized quantities of the propagation dis-
tance, the time in a frame moving with the group velocity, and the complex envelope of the
electric field. First, the KdV equation is transformed to a linear eigenvalue equation and a spa-
tial evolution equation of the eigenfunction with respect to Z. Then, the initial value problem
of the KdV equation is solved by utilizing the fact that the eigenvalue is invariant with Z and
by adapting the idea of a direct and inverse scattering problem to the eigenvalue equation. This
method is designated as inverse scattering. At that time, the inverse scattering was regarded as
an effective method to solve only the initial-value problem of the KdV equation. Generalization
of the inverse scattering method by Lax, Zakharov and Shabat found that inverse scattering
method can also be used to solve the initial value problem of the NLSE [86] given by

i
∂V

∂Z
+

1

2

∂2V

∂T 2
+ |V |2V = 0 , (B.2)

where Z, T , and V (Z, T ) respectively represent the normalized quantities of the propagation
distance, the time in a frame moving with the group velocity, and the complex envelope of the
electric field. With the direct and inverse scattering ideas, Eq. (B.2) can be solved for any given
initial value V (Z, 0), the solution of which decays rapidly as |T | → ∞. Moreover, this inverse
scattering method is applicable to solve an initial value problem of the modified KdV (mKdV)
equation and the sine-Gordon equation [98]. These results demonstrated the feasibility and
the versatility of the inverse scattering method to solve certain physically interesting nonlinear
partial differential equations. Shortly thereafter, Ablowitz, Kaup, Newell, and Segur (AKNS)
developed a method to solve an initial value problem of a broad class of nonlinear evolution
equations using that approach [83]. They were designated as inverse scattering transform (IST).

59



60 Appendix B. Inverse Scattering Method

For example, it turns out the KdV, the mKdV, the NLSE, and the sine-Gordon equations can all
be known to be related to one master eigenvalue problem.

B.1 Lax’s Approach

The nonlinear evolution equation given by

∂V

∂Z
= K(V ) (B.3)

is discussed in this section. In the above equation, K is a nonlinear operator acting on a scalar
function V (Z, T ). Here, we introduce linear operators L and M that depend on the solution
V (Z, T ) of Eq. (B.3). Assuming that L and M satisfy an operator equation given by

i
∂L

∂Z
=
[
M,L

]
=ML− LM , (B.4)

then operator L satisfies the following eigenvalue equation:

LΨ = ζΨ , (B.5)

where ζ represents an eigenvalue and Ψ expresses an eigenfunction. In Eq. (B.5), the eigenvalue
ζ is independent of Z and the variation of eigenfunction Ψ with respect to Z satisfies

i
∂Ψ

∂Z
=MΨ . (B.6)

For a given L, Lax shows how to construct an associated operator M which satisfies Eq. (B.4).
This is designated as Lax’s approach and L and M are called Lax pair.

B.2 AKNS Formulation

The difficulties in Lax’s approach are that one must guess a suitable L and then find an M

to satisfy Eq. (B.4). As an alternative, AKNS proposed a technique which can be formulated
generally as follows. Consider two linear equations of

∂Ψ

∂T
= NΨ , (B.7)

and

∂Ψ

∂Z
=MΨ , (B.8)

where Ψ represents the eigenfunction of an n-dimensional vector. Moreover, N and M are n× n

matrices. Then, cross-differentiation (i.e., taking
∂

∂Z
in Eq. (B.7),

∂

∂T
in Eq. (B.8) and setting

them equal) yields

∂N

∂Z
− ∂M

∂T
+NM −MN = 0 . (B.9)
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This equation is fundamentally equivalent to Eq. (B.4). It turns out that, for a given N , a simple
deductive procedure can be used to find M such that Eq. (B.9) contains a nonlinear evolution
equation. For Eq. (B.9) to be effective, the associated operator N is expected to have a parameter

that plays the role of an eigenvalue, say ζ, and which obeys
dζ

dZ
= 0.

A 2× 2 eigenvalue problem is discussed here. The scattering problem of Zakharov and Shabat
is modified as

∂Ψ1

∂T

∂Ψ2

∂T

 =

(
−iζ q

r iζ

)(
Ψ1

Ψ2

)
. (B.10)

It is noteworthy that when r = −1 or r = ±q∗ (or r = ±q if q is real), physically significant
nonlinear equations are obtained from the above formalization. Let

∂Ψ1

∂Z

∂Ψ2

∂Z

 =

(
A B

C D

)(
Ψ1

Ψ2

)
(B.11)

be an evolution equation corresponding to Eq. (B.10) with respect to Z, where A, B, C, and D

respectively denote scalar functions independent of Ψ. For Eqs. (B.10) and (B.11) to be compat-
ible, a certain set of conditions should be satisfied on A, B, C, and D. Assuming that cross-
differentiation of Eq. (B.10) and Eq. (B.11) are equal and that the eigenvalues are independent
of Z, we obtain

∂A

∂T
= qC − rB ,

∂B

∂T
= −i2ζB +

∂q

∂Z
− 2qA ,

∂C

∂T
= i2ζC +

∂r

∂Z
+ 2rA ,

D = −A .

(B.12)

IfA,B, andC are determined to satisfy Eq. (B.12), then the solvable nonlinear evolution equation
Eq. (B.9) can be derived.

Because the eigenvalue ζ can have an arbitrary value (it might be small), we can assume an
exact truncated power series in terms of ζ as a solution of Eq. (B.12). A simple expansion that
yields an representative nonlinear evolution equation is expressed as


A = A3ζ

3 +A2ζ
2 +A1ζ +A0 ,

B = B3ζ
3 +B2ζ

2 +B1ζ +B0 ,

C = C3ζ
3 + C2ζ

2 + C1ζ + C0 .

(B.13)

Here, we substitute Eq. (B.13) into Eq. (B.12) and equate coefficients of the power of ζ.
The above procedure can be applied to any polynomial expansion in ζ. As an example, the re-

sults for the most significant cases are quoted. Polynomials in ζ to the third power are expressed
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as 
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2
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4
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2
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,
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2
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2
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∂T
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4
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)
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(B.14)

and the evolution equations of


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+
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4
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∂T 3
− 6qr

∂q
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)
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1

2
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)
− ia1

∂q

∂T
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+
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4
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(
∂3r

∂T 3
− 6qr

∂r

∂T

)
− 1

2
a2

(
∂2r

∂T 2
− 2qr2

)
− ia1

∂r

∂T
+ 2a0r = 0

(B.15)

can be found.
Evolution equations of physical interest are obtained as special cases. Taking a0 = a1 = a2 = 0,

a3 = −4i, and r = −1, the KdV equation represented in Eq. (B.1) is obtainable. On the other
hand, a0 = a1 = a2 = 0, a3 = −4i, and r = ∓q, the mKdV equation is obtainable. The q = iV and
r = iV ∗ cases used in this study are summarized below. If a0 = a1 = 0, a2 = −i, and a3 = −4ib3

in Eqs. (B.10), (B.11), (B.14), and (B.15), we obtain

i
∂V

∂Z
+

1

2

∂2V

∂T 2
+ |V |2V = ib3

(
∂3V

∂T 3
+ 6|V |2∂V

∂T

)
. (B.16)

In this case, Eqs. (B.10) and (B.11) can be expressed as


∂Ψ1

∂T
= −iζΨ1 + iVΨ2 ,

∂Ψ2

∂T
= iζΨ2 + iV ∗Ψ1 ,

(B.17)


∂Ψ1

∂Z
= AΨ1 +BΨ2 ,

∂Ψ2

∂Z
= CΨ1 −AΨ2 ,

(B.18)

where

A = ib3
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V
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2
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}
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V ζ +
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,
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−4ζ2V ∗ − 2i

∂V

∂T
ζ + 2|V |2V ∗ +

∂2V ∗

∂T 2

}
+ i

(
V ∗ζ − i

2

∂V ∗
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)
.

(B.19)
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Fig. B.1: Process of solving an initial value problem using Fourier transform.Initial value problem of NLSE Direct scatteringproblem Initial value of scattering parameter and eigenfunctionInitial value
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Inverse Scattering Transform

Fig. B.2: Process of solving an initial value problem using IST.

B.3 Inverse Scattering Transform

It is noteworthy that IST can solve an initial value problem for certain classes of nonlinear
partial differential equations. It can be viewed as a nonlinear analogue of the Fourier transform.
In this section, IST is explained with comparison to the Fourier transform. Here, the following
linear evolution equation is discussed:

i
∂V

∂Z
= A

(
i
∂

∂T

)
V =

∞∑
n=0

pn

(
i
∂

∂T

)n

V pn : is an arbitrary constant . (B.20)
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Generally, the Fourier transformation of an initial value V (T, 0) is expressed as

Ṽ (ω, 0) =
1√
2π

∫ ∞

−∞
V (T, 0)e−iωTdT . (B.21)

By performing Fourier transformation onto Eq. (B.20), we have

∂Ṽ

∂Z
= −iA(ω)Ṽ . (B.22)

This equation is solvable, the solution of which is

Ṽ (ω,Z) = Ṽ (ω, 0)exp[−iA(ω)Z] , (B.23)

describing the development of Ṽ along the propagation distance Z. Finally, by calculating the
inverse Fourier transform of Ṽ (ω,Z), V (T,Z) is obtainable as

V(T,Z) =
1√
2π

∫ ∞

−∞
Ṽ (ω,Z)eiωTdω =

1√
2π

∫ ∞

−∞
Ṽ (ω, 0)ei{ωT−A(ω)Z}dω . (B.24)

This procedure is presented in Fig. B.1. In contrast, scattering parameter S(ζ, Z = 0) is ob-
tained by solving the direct scattering problem of the eigenvalue equation for a given initial
value V (T,Z = 0) in IST. Then, the evolution equation of the eigenfunction along Z is used to
ascertain the scattering parameter S(ζ, Z) with respect to Z. Inverse scattering techniques are
then applied to obtain the solution V (T,Z) of the original equation. This procedure is presented
in Fig. B.2. In the following, the direct scattering problem, the development of the scattering
parameter during the propagation, and the inverse scattering problem are presented under sep-
arate subsections.

B.3.1 Direct Scattering Problem

Examining the amount of reflection (reflection rate) and penetration (transmission rate) of
an incident wave for a given potential is the crux of the direct scattering problem. Solving the
scattering problem given in Eq. (B.17) is referred from the direct scattering problem when the
initial value V (T,Z = 0) for a given potential. The reflected wave for T → ∞ and the transmitted
wave for T → −∞ is determined for the incident wave coming from T = ∞. Actually, Eq. (B.17)
satisfies the boundary condition V = 0 for T → ∞. Here, the eigenfunction Ψ represents the
incident wave, the reflected wave, and the transmitted wave. For an assigned V (T,Z = 0), the
reflection rate and the transmission rate are obtainable by determining the eigenfunction Ψ. For
T → ∞, V becomes 0, then Eq. (B.17) can be rewritten as

∂Ψ1

∂T
= −iζΨ1 ,

∂Ψ2

∂T
= iζΨ2 .

(B.25)

First, one can consider a case in which eigenvalue ζ can be represented by a real number ξ. The
solution of Eq. (B.25) can be expressed as

Ψ1(T ) = Ψ10 exp (−iξT ) ,

Ψ2(T ) = Ψ20 exp (iξT ) ,

(B.26)
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where Ψ10 and Ψ20 represent integral constants.
From these equations, the solutions of Eq. (B.17), which satisfy the boundary conditions T →

∞, can be represented in terms of ϕ, ϕ, χ, and χ as:



ϕ(ξ, T ) =

ϕ1(ξ, T )
ϕ2(ξ, T )

 =

1

0

 exp (−iξT ) (T → −∞) ,

ϕ(ξ, T ) =

 ϕ∗2(ξ, T )

−ϕ∗1(ξ, T )

 =

 0

−1

 exp (iξT ) (T → −∞) ,

(B.27)



χ(ξ, T ) =

χ1(ξ, T )

χ2(ξ, T )

 =

0

1

 exp (iξT ) (T → ∞) ,

χ(ξ, T ) =

 χ∗
2(ξ, T )

−χ∗
1(ξ, T )

 =

1

0

 exp (−iξT ) (T → ∞) ,

(B.28)

where ϕ, ϕ, χ, and χ are called the Jost functions. ϕ, ϕ, χ, and χ are linearly independent. It is
noteworthy that ϕ and ϕ can be expressed when one set of the above equations is chosen as the
base of the solutions of Eq. (B.17). Using appropriate coefficients a(ξ) and b(ξ) as, ϕ and ϕ can
be expressed by using χ and χ as

ϕ(ξ, T ) = a(ξ)χ(ξ, T ) + b(ξ)χ(ξ, T ) ,

ϕ(ξ, T ) = −a∗(ξ)χ(ξ, T ) + b∗(ξ)χ(ξ, T ) .

(B.29)

Here, a and b satisfy |a(ξ)|2 + |b(ξ)|2 = 1. Then, χ and χ can be represented as χ(ξ, T ) = −a(ξ)ϕ(ξ, T ) + b∗(ξ)ϕ(ξ, T ) ,

χ(ξ, T ) = a∗(ξ)ϕ(ξ, T ) + b(ξ)ϕ(ξ, T ) .
(B.30)

The above are the solutions for an incident wave arriving from T = ±∞ and scattered by the
potential V (Z = 0, T ). In the following, we consider a case in which an incident wave comes
from T = ∞. The first equation of Eq. (B.29) represents a solution of Eq. (B.17) when Eq. (B.29)
satisfies the following boundary conditions:



ϕ(ξ, T ) =

ϕ1(ξ, T )
ϕ2(ξ, T )

 =

exp (−iξT )

0

 (T → −∞) ,

ϕ(ξ, T ) =

ϕ1(ξ, T )
ϕ2(ξ, T )

 =

a(ξ) exp (−iξT )
b(ξ) exp (iξT )

 (T → ∞) .

(B.31)

Here, scattering caused by the potential V is shown in Fig. B.3. Incident wave comes from T → ∞
and scatter due to the potential V . Transmitted wave propagates to T → −∞, while reflected
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Transmitted wave Incident waveReflected wave
Fig. B.3: Scattering caused by potential V (T,Z = 0).

wave reflects to T → ∞. No electric field comes fromT → −∞. a(ξ) exp (−iξT ) and b(ξ) exp (iξT )
in Eq. (B.31), respectively represent the incident wave and reflected wave at T → ∞ as shown in
Fig. B.3.

Next, real eigenvalue ξ is replaced with complex eigenvalue ζ = ξ + iα (α: real number). In
Eqs. (B.27) and (B.28), even if ξ is replaced by ξ + iα, ϕ(ξ, T ) and χ(ξ, T ) are not divergent for
α > 0, and then analytic continuation is made in the complex upper half-plane. Moreover, when
ϕ(ξ, T ) and χ(ξ, T ) are not divergent for α < 0, then analytic continuation is possible in the
complex lower half-plane. When ξ is replaced with ξ + iα in the second equation of Eq. (B.31) in
the complex upper half-plane, we obtain

ϕ(ζ, T ) =

(
a(ζ) exp (−iζT + αT )

b(ζ) exp (iζT − αT )

)
. (B.32)

For a(ζ) ̸= 0, ϕ → ∞ with T → ∞, which seems strange result as a boundary condition. There-
fore, a(ζ) should be 0 for this case.

The complex eigenvalues of Eq. (B.17) become discrete when a(ζ) = 0. Then, we write eigen-
value ζ as ζn (n = 1, 2..., N). Setting ϕn(T ) ≡ ϕ(ζn, T ), ϕn(T ) ≡ ϕ(ζn, T ), χn(T ) ≡ χ(ζn, T ), and
χn(T ) ≡ χ(ζn, T ), we rewrite Eq. (B.29) and Eq. (B.30) as

ϕn(T ) = b(ζn)χn(T ) ,

ϕn(T ) = b∗(ζ∗n)χn(T ) ,

χn(T ) = b∗(ζ∗n)ϕn(T ) ,

χn(T ) = b(ζn)ϕn(T ) .

(B.33)

In summary, a(ζ)，b(ζ) and r(ξ)，γ(ζn) in a direct scattering problem can be determined for a
direct scattering problem for the initial value V (T,Z = 0). Scattering parameter r(ξ) and γ(ζn)

are calculable by the following equations consisting of a(ζ) and b(ζ):
r(ξ, Z = 0) =

b(ξ, Z = 0)

a(ξ, Z = 0)
,

γn(Z = 0) = γ(ζn, Z = 0) =
b(ζn, Z = 0)

a′(ζn, Z = 0)
,

(B.34)

where

a′(ζn, Z = 0) =
∂a(ζ, Z = 0)

∂ζ

∣∣∣∣
ζ=ζn

. (B.35)
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B.3.2 Development with Respect to Distance of the Scattering Parameter

This subsection describes the behavior of the scattering parameter along the propagation dis-
tance. The evolution equations of the eigenfunction Ψ with respect to Z, given by Eq. (B.18),
are used to determine the scattering parameter’s spatial variation. First, based on the boundary
condition of V = 0 for |T | → ∞, we rewrite Eq. (B.18) as

∂Ψ1

∂Z
= −iζ2Ψ1 ,

∂Ψ2

∂Z
= iζ2Ψ2 .

(B.36)

Next, the dependency of the eigenfunction on Z is expressed in a form of the Jost functions as

ϕ(Z)(ζ, T, Z) = ϕ(ζ, T ) exp (−iζ2Z) ,

ϕ
(Z)

(ζ, T, Z) = ϕ(ζ, T ) exp (iζ2Z) ,

χ(Z)(ζ, T, Z) = χ(ζ, T ) exp (iζ2Z) ,

χ(Z)(ζ, T, Z) = χ(ζ, T ) exp (−iζ2Z) ,

(B.37)

where ϕ(Z) satisfies Eq. (B.18) as
∂ϕ

(Z)
1

∂Z
=

(
∂ϕ1
∂Z

− iζ2ϕ1

)
exp (−iζ2Z) =

{
i

(
|V |2

2
− ζ2

)
ϕ1 +

(
iζV − 1

2

∂V

∂T

)
ϕ2

}
exp (−iζ2Z) ,

∂ϕ
(Z)
2

∂Z
=

(
∂ϕ2
∂Z

− iζ2ϕ2

)
exp (−iζ2Z) =

{(
iζV ∗ − 1

2

∂V ∗

∂T

)
ϕ1 − i

(
|V |2

2
− ζ2

)
ϕ2

}
exp (−iζ2Z) .

(B.38)

The above equation is summarized in a matrix form as

∂ϕ

∂Z
=


i
|V |2

2
iζV − 1

2

∂V

∂T

iζV ∗ − 1

2

∂V ∗

∂T
i

(
2ζ2 − |V |2

2

)
ϕ . (B.39)

Partial derivative with respect to Z of the second equation in Eq. (B.31) and Eq. (B.39) is regarded
as equal for T → ∞. Using Eq. (B.36),

∂a

∂Z
exp (−iζT )

∂b

∂Z
exp (iζT )

 =

(
0

2iζ2b exp (iζT )

)
(B.40)

can be obtained. By solving Eq. (B.40), a and b can be represented as a(ζ, Z) = a(ζ, Z = 0) ,

b(ζ, Z) = b(ζ, Z = 0) exp (2iζ2Z) .
(B.41)

Substituting Eq. (B.41) into Eq. (B.34), the scattering parameters can be expressed as
r(ξ, Z) =

b(ξ, Z)

a(ξ, Z)
=
b(ξ, Z = 0)

a(ξ, Z = 0)
exp (2iξ2Z) = r(ξ, Z = 0) exp (2iξ2Z) ,

γn(Z) =
b(ζn, Z)

a′(ζn, Z)
=

b(ζn, Z = 0)

a′(ζn, Z = 0)
exp (2iζ2Z) = γn(Z = 0) exp (2iζ2Z) .

(B.42)
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B.3.3 Inverse Scattering Problem

Determining the solution V (T,Z) from the scattering parameters which were obtained in the
previous subsection is referred as inverse scattering problem. The linear integral equation is
derived first to find eigenfunctions from the scattering parameters as follows.

When both sides of the first equation of Eq. (B.29) are divided by a (ξ) (ξ − ζ) and then are
inversely Fourier transformed, the following equation is obtained.

∫ ∞

−∞

1

a(ξ)

ϕ(ξ, T )

(ξ − ζ)
exp (iξT )dξ =

∫ ∞

−∞

χ(ξ, T )

ξ − ζ
exp (iξT )dξ +

∫ ∞

−∞
r(ξ)

χ(ξ, T )

ξ − ζ
exp (iξT )dξ . (B.43)

Then, a(ζ ′) = 0 when ζ ′ = ζn. Performing complex integration onto the left hand side yields the
following equation:∫ ∞

−∞

1

a(ξ)

ϕ(ξ, T )

(ξ − ζ)
exp (iξT )dξ = i2π

N∑
n=1

γn
χn(T )

ζn − ζ
exp (iζnT )− iπ

(
1

0

)
. (B.44)

On the other hand, the integration of the first term on the right hand side becomes∫ ∞

−∞

χ(ξ, T )

ξ − ζ
exp (iξT )dξ = −i2πχ(ζ, T ) exp (iζT ) + iπ

(
1

0

)
. (B.45)

By substituting Eq. (B.44) and Eq. (B.45) into Eq. (B.43),

χ(ζ, T ) exp (iζT ) =

(
1

0

)
− i

2π

∫ ∞

−∞
r(ξ)

χ(ξ, T )

ξ − ζ
exp (iξT )dξ −

N∑
n=1

γn
χn(T )

ζn − ζ
exp (iζnT ) (B.46)

can be obtained. Then, the following integral equation is obtainable from Eq. (B.46):

χ1(ζ, T, Z) exp (−iζT ) = − i

2π

∫ ∞

−∞

r∗(ξ, Z)χ∗
2(ξ, T, Z)

ξ − ζ
exp (−iξT )dξ

+
N∑

n=1

γ∗n(Z)χ
∗
n2(T,Z)

ζ∗n − ζ
exp (−iζ∗nT ) ,

χ2(ζ, T, Z) exp (−iζT ) = 1 +
i

2π

∫ ∞

−∞

r∗(ξ, Z)χ∗
1(ξ, T, Z)

ξ − ζ
exp (−iξT )dξ

−
N∑

n=1

γ∗n(Z)χ
∗
n1(T,Z)

ζ∗n − ζ
exp (−iζ∗nT ) .

(B.47)

The above equations show that eigenfunctions χ1 and χ2 can be calculated for a given discrete
eigenvalue ζn and scattering parameters r(ξ, Z) and γn(Z).

Here, eigenfunction (χ1, χ2)
T is assumed to be expressed asχ1 = f1 exp (iζT ) ,

χ2 = f2 exp (iζT ) .
(B.48)

According to Eq. (B.17),
(
∂f1
∂T

+ iζf1

)
exp (iζT ) = (−iζf1 + iV f2) exp (iζT ) ,(

∂f2
∂T

+ iζf2

)
exp (iζT ) = (iV ∗f1 + iζf2) exp (iζT )

(B.49)
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can be obtained. By arranging these equations in proper order,
∂f1
∂T

= −i2ζf1 + iV f2 ,

∂f2
∂T

= iV ∗f1

(B.50)

can be derived. For T → ∞, (χ1, χ2)
T → (0, exp (iζT ))T as given in Eq. (B.28). Therefore, (f1, f2)T

tends to (0, 1)T in Eq. (B.48). When f1 and f2 are expanded by ζ for |ζ| ≫ 1, f1 and f2 respectively
becomes

f1 =
f
(1)
1

ζ
+
f
(2)
1

ζ2
+ · · · ,

f2 = 1 +
f
(1)
2

ζ
+
f
(2)
2

ζ2
+ · · · .

(B.51)

Substitute Eq. (B.51) into Eq. (B.50),
f
(1)
1 =

V

2
,

f
(1)
2 = − i

2

∫ ∞

T
|V (T ′, Z)|2dT ′

(B.52)

can be obtained. Using Eq. (B.48) and Eq. (B.51),

χ exp (−iζT ) =

(
χ1

χ2

)
exp (−iζT ) =

(
f1

f2

)
=

(
0

1

)
− i

2ζ

 iV (T,Z)∫ ∞

T
|V (T ′, Z)|2dT ′

+ · · · . (B.53)

Substituting Eq. (B.47) into Eq. (B.53), we have

V (T,Z) =
i

π

∫ ∞

−∞
r∗(ξ, Z)χ∗

2(ξ, T, Z) exp (−iξT )dξ − 2
N∑

n=1

γ∗n(Z)χ
∗
n2(T,Z) exp (−iζ∗nT ) ,

∫ ∞

T
|V (T ′, Z)|2dT ′ =

1

π

∫ ∞

−∞
r(ξ, Z)χ1(ξ, T, Z) exp (iξT )dξ

−i2
N∑

n=1

γn(Z)χn1(T,Z) exp (−iζnT ) .

(B.54)

From the first equation of Eq. (B.54), potential V (T,Z) can be ascertained using scattering pa-
rameters r(ξ, Z)，γn(Z) and eigenfunctions χ2(ξ, T, Z)，χn2(T,Z).
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Acronyms

AB Akhmediev breather
CCDF complementary cumulative distribution function
CW continuous wave
DSF dispersion shifted fiber
EDF erbium doped fiber
GVD group velocity dispersion
HNLSE higher-order nonlinear Schrödinger equation
IOS intensive optical isolator
MI modulational instability
MLL mode locked laser
NLSE nonlinear Schrödinger equation
OC output coupler
PBS polarization beam splitter
PC polarization controller
PD photo detector
PDF probability density function
SC supercontinuum
SMF single mode fiber
SPM self-phase modulation
SSFM split-step Fourier method
SWH significant wave height
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