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1.1 FLHIC

CREBESTLOEDICHVONIERIT, DO W DHEENSTITKIT 2 LR
e LTARARR D Th D, WHIL, i, E#., 258 b,
AR O EFEIT, —WICHEBREBICEBWD THEBROIE D 2N 2T 5 #A 5
D E S, WEXXGOME (BM) 2B L, BMOHR, &2 WILEHM
EEMMEBRN L CHEBESBZEV BB IS CEAT I HEEZ VIV, RiF
BTCHMY ETFA2EBTFE—LEHITIZO/MBEIEICEZYSYT 5,

BTE—LEEARITIERAOHT L VWEEEDO -S> THY, EHNHE S
NZDOIX1951FE LI TWVWD2  BTE—LABEBEOREE LTI, 747 X
VIO BBEBEINTEBETOEREEFMAL CEET L FETHYZY | LLFO X
Sl END, BEERT~YA T AOEBEMAEK2,800 KETMEART 5 & &
NOBTFEHMEINTHFEEEIYVRERZX AL —F2RHFOLONEL D,
A~ ENns, 2O, Y524 FRAOEMBICEHEE (150 KV
) BEIMENTnD &, MEBESNTZEFRLDOKNE3 %D EEIZMEI T
E— AR bd, TOE—LZEBEWMaANVITL> THRARTHEZLIO mmiEz (2,
ﬁw\‘ﬁm2mm&f®ﬁmxf/FiTW%LT@ﬁ% AT 25, 25
LEFVPEREERETLIRICEFORFROEH TR ALF—PHA TR LT — 2K
B, E— 20N BE SN E S IIBREICEBRT S,

2T, BTFE—LEHBIT—MNWICEERTIT) 2N EETHDL, €0
HlE, RKRFCETF2MEsEE6, BELEZRLRLEFOKRIP O N 11
WRTDHILICI D2 X AT —HELHEIZEY . E— L FAEFRNL O F #
RN ELS, E—AMEOHIEAREI RN THDH, £, EFE— L
WO HBE LTI, 7T—Z7EBICERXRTABREN NSV ZD, I
WEEEN /NS OB R EBbHEERN W B2 TFeonsd, 2. B
T = 32X — B PICLDEBERALEEN TR TCHY , HARKEEZ AT

JERICKH L THEIRNARWVWLEALARWARAETHEENRATE T D, I HIT,
HEPTORBLERDITEOBEHERFORE, B2 amEREHETHDL Z
EbLEMELTHAIF LN D,

1950 ER LA A SN EFE— 2 BT, KT E TIE., &0 &M
ARXAMRETHLERMT DT b, BEHICHBOD THEWLREOER I
HIRFNRFEBEER ORI HICBIT2EKRMM N E2E ARG E 2o



TWh, EZ2ADR, BFOETFE—L2EETIT., RWOM AT NITHED

%%@%&\957vay7@m%%ﬁﬁamiofMI%mﬁk@Kﬁﬁ
LT&EeZtbdy, BHHE -EXEE LEEKRR SO —KEEXEICHEN S
52 EHEZL o TS, BfE, EFE—LAEBEEIKENIZTHL - &b E M
PN TWDIOIXTHBEREE T, AT/MTEZREX T M., V—x7 2> 05
R —A Ty =Yy —HEOERERBICHEHA SN, SHIEINAATY Yy REOD
BHMEACLEHA IR R E RESFH STV D, B 8 #E DS T

FHEOFEAT 7T ARBELERBORA T LT T VOB E VS EHRE
3~15mm BEDOHERNOEBEFE—LEHELZEMA L TEHMICH~ND &I
W EWVREOHM I, BERMBEEOL RO THSBEAEHELE L THEHAIN
TWLHEH LB AZITOND, K% T, K OFEE % Tablel.1 2R
TEOIICHEL, WEROBEBFE—L2EETHLND Z DX > T2 RIE 50

mmU FOXIBRERTRAVLDEY BEFE—LBRBEICLE S TOEREESZ
tizL7 (Table1.1) .

Table 1.1 Classification by Thickness

Thickness t (mm) Type
t < 38 Extremely Thin Plate
3= t =15 Thin Plate
t >15 Thick Plate

COXIOICHEWKREOEHMIZLEFE —L2EEI IEH I N2 BT, LD
WMEICZE LLEENARICRDIZD ThD, BT E—LEEERFECET
INX—E—LPRBR L5 —VFEETHRE 3~15 mm & E O MM IC%
BT 52 EAETHLIND, BREEZRDONILGAICITETFE —LEED
BRENDLDZLEDZ WV, FICHMZE - FHER, BBHEERTET, AEPEN
ENHHEMA~BEBTFE—2EENPEBH I TS, BEMIIE, V- FEHEIZ
RAFTITbhrDiIZxt L, EFE—L2E#HITIEZEFT TITbhd e, B -
ElbrilEcE s, Fhh, EFE—LABRETCEHLV—FTEEOLIITY—IFR
HARKKIDBEAHLDOEBET RN, BT ALBEHEKFORR VT 4 O
BEZMA LI ENTE D, BEREBEREIZBW TIXEmMTO RNy ZRAEZ
XL TCEFE—LDEEPEMTHDL, RKEFEOZ WM IR L T, K
BHOBIE—L2FLEFERZE T LEBEIFE 22 BERICY TTESIC
TERTLHZENTE, Fh, EXZTF Yy U AN—NTHILEDIRERFEDIRL A
SHEMR TEANRAREE R D,



WOREOEERM ~0@HAME LT, BEHEO NI A v a v
XTRHEZER S TOXe —XEEEHIEFETND, PT U AI v ya iz
YU UTHRAELLEEE N A BRE S X OBy ~f5 2 5 EHE R TETIC
TRERIENDBDBOVBEBLAMIND T, F2, 2m AU EO KUY 7 2 HMK
NDANy B E@BOIRT XK F Yy o N—ICBITLIEER T D1 —
AEAMTHLHRVKRLELIEBEERIICL > TRAOBIERT 28 . 8T
LIV EICERNT 25 CHEBERVFAET 256, EHVREOKTER & &
LERBICH D HEZLRRET LI EEMOD CEETHD, BT — LTI
EoTHHSTIERY, L2rLR2RL, EFE—LEHEBOEYEN NICTET
HHFRBMEMIIH TV ZL R ZORFLTIERZRN G ELEZLD TH D 916,
Fo. T FEZTOLOICET L5 O OREOMEICK T D REMN R
11-12) R WEHESLELPRBRERE Vo EBE R T WnWED ., &
T E—AEEORFEISIREEICOWTHERM AL EZ CICEH T 5 Z S IXEHL W,
Thbb, EEMEREOZ L VERENIZLE LEEFE - LA BEEOKY
J DR PEICES L TR ii%%ﬂ:éhfn@w%MT%éo

AW TIE, EBRICITIEEBERANEZ SO OO0, RIEWHIEFEH O D
B THEHROEBEFE—LAEBICEIVAELDIERICREE] oW T, BHESL
HEOKEBEREOBMBEZHALNCL, % FTETHEMNTIEEZLLNT
WO DB T AL BHEAEZDHEER~OBEFE— LA BEHEOEH OO O EZER
ERERELTET L L ZAMET S, BEFE—L2EEIL, =L 7 hr=72x
HEiRoBBIZIOVE—2HIBIOMIED S EAENARICR - TEX2I L
FEEHME—L2 B VORENREALATHDZ ENDE, ZHILESNTZERESY
THERZ2EHILERBZHEFIATVWD, 4%, EFr—2EHLEHT 5/
FHRETHOBEOREHETEDL L), ABVESHME OB I ME &
BIGRME e 2D WA ICKRE L 2,

1.2 ARER (EFE—LBEOREBEE IREICETEICAETOHRR)
BFE—LBEEOEEICNICET 2 INETCONRIL, MITHIEZOL D
CETOIMACHEDORBEIIK T IMEM RFENZ o7 912 BIFICZ

NETOMBEEFMIZONVWTE &L D5,

1.2.1 EFE—LBEBOREE N
HFTICHRESNTEBEAFE—L2OBEICHIZOWVWTHELEZ EZ A X B
riz, OT A7 — Wik, AR %EZE (Finite Element Method., UL . FEM



fig#r) ZHEHA L TCHMENTZbDODRAZT NN, SFEELFRVON
Bk ThH D 918 0 Lab, TRNOLOMEIE., REMICHE., WE., BEHESME
SCTEHMINTLEI b TIERL, %ﬁﬁ%:omf@%%ﬁiﬁ%b

Bl X, MET Y OEMBEHS (= 7V EEE&TF X A548) OML
Kﬂ%éhf%é%%ﬁ—bmﬁﬂ:0%T%€£@®k@%ﬁ%mﬁﬁC
ODOWTHNT L EIRESIN T | BWHEHL %Ti%@ﬁﬁﬁ#ﬁ%%
I, WHEREAFMBEMBE-GIS e, BT vy 7Ty FSh
HEBIIE—RNIEREOHHANTOLL Z ENHALNMNIINT WD 11712 F o |
I RXABFE—LBEBICLI2AREATEEMFCE IS HERE o B &
LCERBIS N EZMIAIHBRETATTITHMTHILEICENTIALTWNDN IV, OF &
F—UOBELORKBOME, THBEZERWERE oD ETH D,
:ﬂaii&iﬁfﬁ'ﬂﬁﬁ& LTRYEHI>TEDICEROBE Z2BA T 528 &0

IERACIRAR S s R § 2720 &fmfTFonTnd, XA T7DRERE
@%Tﬁ\Uﬁﬁﬁ—V@m%C W R L ORI 6 O RIS )

@N%i@%%\W%k%K%%&@@@@é@%%i@%@k&@%%m
NERATONMED N O TP RKEL 2D ENTHo>TND 149,
WIENTTOERAIS IO THE WS O ERRINT WD, I
MENTWVWDLE X 100 mm @ SUS304 8D EE M FE2RE L, 2RILE
TOTCHEEMR EPFRICMEA I D BREEJE & U7 BRI L0 R L
TAER T, WER AN, BEREAGT N, WEFMIZE W T, BEHKRE
FR A TSR KGIBISHNEL TWD Z ERHEREINEZ 15, £/, FAEICE
B (50 mm) OEFNDICHAL, BAOTAHAETOREEZITo /R, WS
CHRRBIERBISHADEL TWVAZ LB INT VD 16,

UEDXHc, EFE—LEBICOVWTEREISDEZRE L WIZEKED D
LD, TDELLITMTIC I TrRINTebDTHY, ERMIZLDENTO
HLHLbDILTHEDVRWVWE D TH D,

1.2.2 BB AHAFEZOBELEFE—LBER~AOERAKO®E
WHERBEIE D O ERE TIE, BEE TR0 T AR = DUIW kA JE kA
EETEXBISAMMEERI KD —BEHWICHYORA TV ZERZ W, BT
E—AEEBICEHLTCHLO0T AT — DOk CEME L 10, XA PET
FER L DR HRESNTVD, bEAALUEREICHHEEIZIZ DAL S
HHv (Fig.1.1) . MIEARFIZ Lo THU R FEZERTLILENH L, &



FE—LAEHEMETFOREISDFEHRICETI®EMNTIE, 20 250 %0 Fik
2 HWIiIE FEMIT TORBNDRETH D,
UTICHEHEFEOMEL R,

Penetration depth in steel, mm

0.001 0.01 0.1 1 10 100
1 1 1 1
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Fig.1.1 Residual stress measuring methods

(a) X#EEHiE 1718

XAEPEIZ, ISDICE AT OOT A2z XHBEEHFAHAOELE L THREY
L. BEICNHDICHAET 20 Ths, BIEFEEL L TIE sin2¢ ERKR D EH
LTW%, sin2¢p {ETIEX, BFrmERERABEERO T A Z2ELLSE, &
QIR T oEFBMESMEZELEERET 52 LICEoTIENERET D, %
7o, LTl cosadEDbHWOEND L O T&E7, cosaiETIE,. 12D X
MARAEIZOWTHONLEERTER (T ALV 7)) Dol hERET D,
EHEEOMEZLEEL LW, MERFMZELS T2 ERTE D,
WHEOEBRECTHEM TR XHEIFTIETIE., SREMBEEZFLE LELG A
JHEMECRERE 10 um BEORIETCOERZIENNPMECTCED, /2. X &K
BHEERDZENTEDLED, 0.l mm2~% mm2 BB E O /TR ERE I
BAHRDZEBAREER S TEBY, K<HEHENATWVS,

(b) > B8 b0 YaRREER 192D

vrsm byl vz abry (HBEROMESR) 2k,
Wb CEFVMBICEVEHE CHER EL ITBEES T L L I THHIN
LEBBEOZLETHDL, Yo bur UL ITZ 2= 0.3 keV
25 300 keV (P& 4.1 7705 0.0041 nm) OXH\EARAKHEIND, ZO#HE» L
TEOKREOXHBHBEWMYV BT ERAET, HEED (o Lb¥—0) X
MAEMHT WX, MEBRNBOISHRES RS RD, M E5 L LI
BARICBTDIEREZHAVWEEZERELANILVOEBE TCIIXBREARINVK KT
210 um THDIDN, MEXXBEZA VAL EE mBEEE TRBASESL Z LN



T&E5, WIERHE L LTIE, (O TBEXL sin¢EBHOLATWD R, A
WRE—EE, "M 7V y FEBXROTHAF v = ZERE D BAHOEX K
ZHWEMERGELHOYLNLTWD,

vrezua bu UHEEIE., BARENTIE S RV X — 0 058
Spring=8 L Wo i CTOFMHICIR LA TEY , It bmBETH DL Z &
MmhH, FMESTEEBRET — 22 WET20FBEN TR,

(c) *HhikF[E ik 2229

HYEFIEXBEED MBI A~AELS, MM B2 4R E LEBEICIERRK
T100 mm FEE DRI ETRAT D, XBIEIRFEOEMICHFEMET HE T LM
HEH T2 Z I ko THEL I N DR, HMETIXZEME 2R W OM B
MTEFEOHMAEERAN VD TH D, EEICHORERE L, M1
MAEFHT D7D XBEFIEEFERKIC, BHFErmEROLE»63FE I
Do PHEFEOBEIIO TV EL WD, DMBENK 1~10 nn® 2 FE % A
EHALE T HMEND D,

mEFEIFTES 7 e b e U ORI E & R E N T o R A AT e i
RIL. J-PARCR AR+ M EHEEEOT AT 5FEREBICROAL TV D
T Fh, WMEEBNES 2o TLEIIENDL, EIROE T E— AIEH
MFELFLLELEREORABRHEIZIONWTIEANE TH D,

(d) BKUVT &% 2429

PRAAA B D KO R BBEMEIRICIE I PIER T2 EMBOMKHEE TH 5%
WRuy NETHIBIBEDIRZFH L O THD, Bt &2,
EARZT 2 28OS NEEFHRT 5, KHUEETIEZ, REEICBT 2 25RO
SN EEEIRDFTRMBARD OGN, RETEEIAASAT T4 RPHED L —
N7 EOBEMIZRICHWOE A TW D,

(e) #EEF KK 2627

BRREICNICE s THE LR NFHEGHICL s THEEROBHEEREE N LT
L2 xFMBLIEBMERETHD, CHREEICHAL TIMEEKOEES %
To7eH, GONTEEIZOWTEREIS D EMMOCEZ ST 272D F v
VU7 —va B BETHL, ZTOFETITBIOT 2L RKITIEZESE
ERNDFRBRD SN D1E0, WEFHOFEHIEIRKRDLND Z L5,



(f) VI AT — UMK 2829

OFTHT7—=VHWEE, MIEFRICHEELLOT RS — 2 0z W4
52 ETHBENLIHEOTHZFHL, REISHICHBE TS FIETH D,
— R REEOOCT AT — U, BOBIEOESIMEAK LK FROSREHE
7 Py FU T THELSIHR T2, =YV —FRAROFT NS
DTHD, MEREIZ, OFTHF =V TEETo T AHEE ®RE
DEPUE O LA L L THRHE L., REISHICHBE ST 5, OF AT — VI3 RE X
RLETOMERCHBRICITEZHoOBELPTIRSNATEY, ZMHTHD72D
MEJR < A S TWvw D,

o, EXRTHBRBOERBEIC N ZHNET 26D TH L0, BaEfkFi
EOHMBIRTEREBICHD B AM M Ebo2LEZELONL L5 EGE. UIKIH
FeeUIWr T2 BB T 52 L THRHEERZIS D ZNET 2 FELREZSATO
2o

(g) BHZE 30
BHBEREAOSWMEL Y — V2 AW RO HEOEREIS NI E TE D,
ASTM THHEILEINTWVWD — KRB RZELTST—VIEHET, ZO0FLICEREN
2mmé . W3 mmEBEZELL, TNICLIMBKEOT A%, BILEETED
ElhE2zHWTEEICNDICHREST 2, F—YoHR LI ERICHELT L Z &,
MIEOFT B Mb RN EEROLNDTD, HHOTLTELZRALIEE %
HT 20 ENOLEINT WD,

L, BHLEHOSF =X/ E N0 TH 10mme Y, SHEOETE—
AR AR L LI MEIZIZ WD TR0,

(h) Ring core & 31
ZHELERULSERHOF =Y EH WD, 7F—IIXETE LB T, PLEIC
CRBREN T 4T INTVWHIAEBIYASA 7DD THDL, TOH, Hi
oL TR, F=YEBAEZAERIC N L N=0 7 L TEYIS T &R
T5, BHIBICHANRHROT AP REVWEZDHERBERGVE SN TV D,
Ring core tECHAT 27— 10 mo BEDHDHL-H, E— FIEOHEWE
T B — AW OGN IE WD TV R,



(i) avse—ik s

FFE 22 ER CTIE R, U L2 ARG & FEM@r oM A2 a8 TISh %
BHT2FETHL, 7. WIELEVEZEADNAR IRV X S e Tk
THUW 32 (VA VHEMNMLTITOND Z ENZW) o REBRK D G W AT
HEUNDO FEICERIENEL> TWEEA., UmICERRIEL S, UK
HIZALCEEROFRIZIZ. 3R T —F Ay VEBEBIAVWLND, £ DI,
EREZLOVEHIZRERT ELESAOIRT (FBEIE D) BDRETICE > TRD
bivd, UIWmBHROBREIS N 3 MOFMBAIETHL ZER/RETH D,
L, Ul FESOMEOANY | FFAKBEREICOVWTASEZR I LD KRG
MLBERERED XS TH D,

(J) BRINFEHZEK 3335

RN HFLIE (DHD ¥5) O M EIX Fig. 1.2 ® FIETIT o, HEEEIC KU N
LTEAIT> THMEREMEBLEZZ, BIEREZFLE L THBERIZHY L (F
LRX=v 7)) MERBELDOERIC MRS 5, FEIR DI, JE &R
DEAENOR|EST S, ZODHDIEIL., 4 F U XD Bristol K5 D HEXFIZ
FVBHRBEINEZFET, RKENDIRELESMEPBEFES KT THEA
THE—REL TWie, ok, BERAE¥(2E0., KEE»6 ONEEEIC
ORERFN Z OEFE~EF L T T,

— T, DHDEEZ BB IE R BB E R ZE L1E (MIRS &) NEN THXE I
IWTWD, MIRSIEDB FEERD FNEAZ B2 A, I L O E D KEICm EL T
WD RICFHEMP D 5, BERMIZE., AbiT LRO—HICEEE TR 285E EIiC
BEXERRNOREHEYVET TS AV IAMTEZRY A, EESICES T
LZEME (Hok KWNEHO¥REL, R RKAZEHOEEDE) L HEHEE (K
DAREHADOMETN) TEHLVRXLVORBEMNMLAZERL TWVDH, KL
HRBEICIELDEEELS T T T~A 707 — DK 5 &M % we
TE, ARBERIMCERD, £, BAEANCTERAZHLELZE R TEDH 2
ETL RHM X MR, AWM EERLEIELHETREIATH D,

Air Trepanning
Drill micrometer tool '
Test |
component | |
| |
@Drill reference (@1st measurement @ Trepanning (DRe-measurement

hole

Fig. 1.2 DHD method procedure
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ST, BIEY—LAEEBTIE—FRERIRN D, RFTWRIENEET
ERRDODOLND, LN ->T, 10 mme BEORAEFERF— V2 HEHT 5%
fLiE . Ring Core VED W M IFHEH LW, 72 KO T AiER L OB FIKIE TIX
BELEFMOBEICOMSEZRGTCERy, £2 T, XHBREHFE. O
THT—DUME, BARELEZARNREORRFEL L TRE L, ZHIZ
B ik L TCoORENRFTETH D FEMMNT 2 N 2 7R E IS )1 ¥t % 5
fili 9~ % o

kB, ML OREBET X ORBEEMNEL TSI EnE, HEAEHE
FMAT 20 BEDOH L7 v o B ERINE B KO H M7 [\ 47 6 13 Al

L4 L TW5,

1.3 XHFR D #EL

ARk, b0 X REmisxic, 2ETEFEAERF ST LD
RINOTHERDOETFTE—LEHEHICET 2GSRI NT, WEEME
FEOXMEREORAMKREZH LML, ABOBEFBEORIEHZ TE D X
IRBMNLTCCHEDIELDOTHY, 6 EBTHRSIND, KD 7 1 —F ¥ — b
Z Fig 1l 32T & &b, KX OHEBEITUTO XI5,

Bl BT, BTE—L2BHBICB T8I IREEICET 2 2 E ToOMF
HOREMBEZR, R XONEEBENZHfMIZL T,

2 ETIIEELRFZREMICERL, BREISOOMAEED & &b ICKiHE
72 FEAM UL O ST B R A T, BRI 1T A Ao B bR S O R RIS xE LB T
E—LDOMNBIORNERLZHE L, ANBROEEBLTRIELL, FRICHOVWT
X, REAERESNDTET TR, WENTOSALED TELL I,

H3ETIX, NMERIE NI DAORIEEIToT2, OFT AT —VUWE, 3
NARFLE, XBEHEE W - 23 & FEM 8 TRk AL & B R L 72 &
RERLE,

BABETIT. AEMBICB T S2EBICNFMBEREZE LD, 7274 b
~ VT U A RNREBEWMETZ T TR, AT FT A FRAT UL A
SUS304, 7 V=0 LAAE4 AG02IC oW THER L, W E1T - 7=,

FBHETIE, BEAIL N L REOEBRE KR T 57201217 o 12 5 B
DFEREEZEREL -,

KEICHE 6 ETHABILTHLALERESZORBEIZONWTE LD,
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2.1 &8
ERETIIAEBEAREITVDEI DD, REWCHERERG O DRV [EF
E—AEHEICEII2EBEHROREGEHEE LR VICHBEIALBEEMEF) ITE L T,
AKETIH, 7. ZOBRETOEREZISTBLOERE/REICOWTHET S Z
LWL, 20D, BELEHEEZELLIE TEREOBEE TV, WERE -
RIS WE - AERERNEZIT) 2 & T, ZORESMARE - IS HOT A
Bz L, £, MEMSROBEHR L ZoZ Y AR T L2201, A
[REREMAT 2 FE L Tl &2l - et L=,

2.2 BBAE

2.2.1 & #

SEIOMEAM E L TiL, EFRHETOHDBEALBEF L —2EBEMKEFITLH
W BTV D BRI AS (SS40044) A H W, HERM O A4 XIIHIE9.5 mm X
fH50 mmX¥E &£100 mmé L 7= (Fig. 2.1) ., BF UV — LIE O 5 IA B IE
BPIZEHSINLTWD2ZEDODZWIRIE L LT i?ﬁ(mmf\’lO?ﬁ(mm&)ﬁf‘%éﬁi\
BETE—20MNEHFEZERE L TCHLHDERALEZH/T L, POoALEREOIE

WD R T WHREE L T9.5 mm4a @R L7, #alA o # k1%, Table
210 LBV THD, HHMOXEREBIZBREZDOEETH 501, BHEE O AN
MIBAZBETREREEDZHELI OIS, ZEEREOMHFORT I La

Clamp for restraint (Unit : mm)
® : Top side
O: Back side
50 - - -
Welding direction Welding bead 20
2 T 5
Temperature
megsurmg 10 20
50 point L
50 |

k 100

A

Clamp for restraint

Fig. 2.1 Size of test piece and measuring point of
temperature
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KRB HDLETCEEOHELZITo TWD, -, BT 5FE i HE T
BN EZRZET D0, Mgk TH 2 EBEEE2RET S EWR CHENME DI
BT HIT o T2,

Table 2.1 Material characterization of test piece

Chemical component (wt.% ) Mechanical property
Young’s Poisson’s
Yield stress
C Si Mn P S modulus ratio
(MPa)
(GPa) (=)
0.09 0.23 0.75 | 0.017 | 0.007 302 219 0.28

2.2.2 BEARE

—EBHEHRE KWE v — LA EBM-6HB-1VLR-C200130-2 (Fig.
22) ZHOWTRAEEEZIT o0, WEEMHFET., -2, E—LRIZHE
H L. Table 2.2IC/m 55K & L7z, No.l, 2, it —2a i Hic kb EL,
No.2, 4, bt —2RBICL2EEZMAT LD OREBRTHL, T2 TE— L
RITEREREEEBERMIPORODTEERMTHY | 1/e®E (E—2HDOK3T %)
FTOE—LLELE, 72, No2TITESZHMEETRICEDLDE TWDE RN,
No.4, 5CIE7 #— 7 AEi 220 mA, 40 mAJ 5 3 2 & T, £ S HEEEZ 806K
FHE»H20 mm, 40 mmAEANTMICT ST L TE—L2RBELT L,

Erectron—beam

Welding
direction
“L‘f-'-‘—:::'

Weld metal

‘
li"ﬁ‘ﬁ'ﬁ:l-nm-- --

Ra

Fig. 2.2 Device of electron beam welding
Table 2.2 Welding condition

Cross section

No.1 No.2 No.3 No.4 No.5
Accelerating 60 kV
voltage
Beam power 600 W 1200 W 1800 W 1200 W 1200 W
'Beam. 0.49 mm [ 0.49 mm | 0.49 mm | 1.04 mm | 1.53 mm
diameter
Welding 500 mm/min
speed
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WTNOEME MR L E2E U CREERBR A I L7z, SRBK O W3 IZ R
DRI EEAH6EFHT DOV 7 7 THI2DHEELE, ¥ o 3—0KKM
ICHMA 2052650, ABRIROM T ITEERLE»OLIDBRERICHL
oo WA TEEIT, BRERWEZICAZ — MMl N2 70 Z 37O R b5 58S
LRI VEERE (b mmfEE) TiTo/, WA TEEL TH»rL300RER
HL7®%, MRITZOEETORETCARKEELZIT- 2,

BB, 7707 ICL MR N EmER Y THMELLZEZ A, IEHTTOLY
390 NFREE TH I A TRV MK (RABRK & o EAlmAE3000 mm2) %3
AT CHI X TWVWDZ ENDL, 3X390 N/3000 mm?2 = 0.39 MPa<T® - 7=,
B, RBRKOMERN 2N T VWD I EERIET D70, HHEZ ORI
BEOVEHE% O W R R E IS #%i#~y%@ofﬁﬁﬁ~§%ﬁﬁmﬁ%
ENRRN L EMRL TWVDH,

2.2.3 REDBAIERE

WHERORESMEZEETLIE LI, BT O2ARBREREMITICET D
ANBEM O L 3 5~ R o 8RR m iR E N E 21T o 72, B E N
T Fig. 2. 112328, FmITZALHwmAT 255 mm, 10 mmf{r & T, 2w ik L
WA 52 mmfiiECTHDH, WEIX, AEERHRRAEY M a2 —4F 88418
iUﬁﬁ&U%nm@K@%ﬁ(ﬁ7XWﬁW%)%%W 4T O R K
(kL EME L 7o, BNEE b oo e i 1 AR B oo IR RS E T IS IR B B Ak O e
L., b7 Wik, BEETF Y A N—RNICEBELEm FEC#ERLEZ, W&
BEF Y U N—DHAIZLHY, EZEZF ¥ U AN—NOHFHEEEN > TWVD T
O, ZINOLAERNOERGEFAE N T L2IENRTELLITR > TV D,
T RN =DM FENPLAETY A a3 —FF TIIKEEX HHEZREH
WTERM L, WEMMBIIZI0O ey b/ BE L, BERKROEBER /A4 XL X
RN D ) A X 2B T DD, AEI AN a—FHBEDOL —/NAT 4
LA —%5 HzANT-, B, FY o A—NA2BIBMFEMITAER & B2
HZMBETHLITED, WP A CORBNDRAEACILIMERZNBES SN DB,
EFENTORECTHEHEENDRVEDIZIEEHE X D LWL,

2.2.4 BB HDOAE A &

RIS A OWETIEE LT, XmBEdrsE, P FRfE, 0T ik,
BEWIES, OFT AT —VHUIMEREZHEESRICHFAET D8, 4ENITE—F
ESERE D < R\EIEHBEOERBIC N ZMY ol 2 &b, XERIEHTIE % B
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Fig. 2.3 X-ray residual stress
analyzer

WL, 220, BY F 27 WXEIS N R E%PSPC-MSF3M (Fig.2.3) %
T, BEZOEREIL D ENE L,

BIEFMIZ, TNEREERTN (ox) CHEEHREAFN (oy) D2H
EL7z, MEIX, No20BEHE o+ ICHENT=BMTICE T 5 o0yé o xIZ
DOWNWTHIRLEZ2L LTHELELEZ A, KE25MPal +43ICKER < £
TETWERED, £F5MFoRLEE1E L, HEMEIX. Fig. 2.4 7
EOICEETRE — FIESH 2~ 50.5~6.5 mmE T% 1.0 mmlAE CTFH 78 & L
oo MIERIZ 1.0 mmTod D, Tz, M EmICILA TEME (TR EH
100 um) ATV, REMBREOMNMLOTAORELZREL TWVD, EHEIL
JTOWPEFEZ, BRI HARAM B2 OXHIE NP EEEEIZSH 520 -sin?
QIFBICHER I TV DH910, F2bh  XOAFAEKEIZL X208 6R EHC
AL, B2 0RFTXBORIFTAE (20) ZRD ., I HIZ X 2D F i H
ol E R TWD, E2MESRMN%. Table 2.3l127%, 22T, ¢ AEIX
REHERERTTHERORTAETHY  XFEORE~D NG A I XHE LT
WD, ¢ AER ORI A EITEMED RETRD ., RIS NI1E20 — sin2iR X
D XIS D EBEZN T TEEBELTWS, k., HE®RICE D ICEMRIEQR

100 (Unit: mm)
° Stress e
50 ® . . 1
:: measuring point 1*‘0
100 ® \ X e
/ o Le
I 1) o
Welding bead 0.5
Measured stress -
direction Enlarged figure

Fig. 2.4 Measuring point of

residual stress
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HEMEZBRKRL, 100 p mOEBEMFBFELHEATH ML OT HRERET
TTCVWL 2 LzERLTVD,

Table 2.3 Measuring condition of X-ray stress

measurement
Measured method Q -Diffractometer
method
Characteristic X-ray Cr-Ka
Tube voltage
(kV) 30
Tube current
(mA) 10
Diffractive plane (211)
lefractlxge angle 26 156.4
(°)
¢ angle
) 0,15,22,28,32,37,41,45
Oscillatioon angle ¢ 43
(%)
X-ray stress constant — 318
(Mpa/deg)
Measurement time
(sec/ ¢ ) 120
Diameter of
measurement 1

area (mm)

2.2.5 AERMEDRE S &

BWHEZXOAETE &2, A4 YV —V 2 HWTHIE L 7=, &N E
B @ HEX., Rk Z2 %

2.5\,

(CEE . BB T O 11E

MSAOT RO, KAMmEMoFEs LAY E (&S Z1k)

k., MtV EBRITEEL TR o T,

50

(Unit:mm)

Welding direction

Distortion measuring point

Welding bead

X, Fig.
AT % E M 1T
ZHE LT,
EIX 2 TORBRMKICH LIRBRAEAL 2 L2 FE KL, Z0FHEL & o7,

Reference point (fixed)

Fig. 2.5 Measuring point of angular distortion
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2.2.6 % IR E %k B
REISNE L OAERROREL LT, ARERERE Y 7 b &AW T
it 5

Wrzdt o7, B IZ., MERBT I a2l —va vy 7u 77 5TH5HH
Nt o2 —8 o TQuick Welder|
NS W TR E IS
CEHEBREMZ N ORABBHERT ZITH) T T LATH DY,

R LD — i B 7 BN G B PR Gy

p={{{

- BN 21T o 72, Quick Welderid. A% 4 B

I RE W B Us H

GTRANLAFROTAEZZE LEARBEEO HOHE WU EN—Z2DT
XLELTWVWD, WIFRBARERELZ VT, iR 0E L & SEAM 2 RHK

& LTHEB{fEL TWD,
PEMEHIZ KR T & 5, fEATE T VI,
REFFHFM20 mm, EHEEHLHITITA
g X OVR IS 1 O FE Al kF 5%
RBRELFLETFHFMI00mmD EF IV THLEN 24T o 7228, IiE -

b LT,
T, KB D
ERHEIZEFHFM20mmD ET V5L D EEILT
BTE—LBEOEA.
OO THRVHEHIEDS N FREMIBEEICZST 22 2R 57D, 20 nmE T

Wb AR

AN

L2100 mmE T IV TRED R

S ALANICHE LT TR,

TE A AR R R — ik A 7 S
FEE WM O 72 O Fig. 2.61IC 71T X 9
Uy a2 b 2EL1/ 2% D3RILET
WP A m T D, 22
A 7 [ Nl N = SR AN /AN
— W T — T R L B

RITAEM RN BEONT LB R D, BT &FT.

Table 2.4 Analysis condition

Materia
1
data

Density (kg/m3)

7800

Specific heat (J/(kg-K))

468.9 at 0C, 594.5 at 400°C, 954.6 at 800°C, 644.8 at
900°C, 686.6 at 1300°C

Conductivity (W/(m:K))

34.9 at 20°C, 34.9 at 1500°C, 116.3 at 2000 C

Coefficient of thermal
expansion (106 /C)

12.2 at 100°C, 13.1 at 300°C, 13.9 at 500°C, 14.9 at
700°C

Young's modulus (GPa)

205.9 at 0C, 166.7 at 600°C, 98.1 at 1000°C 9.807 at
1500°C

Yield stress (MPa)

294 at 0°C, 294 at 300°C, 98.1 at 600°C, 19.6 at 800°C,
9.8 at 1500C

Poisson’s ratio

0.28

Room temperature (C)

30

Boundar

Atmosphere

Emissivity 0.2 as radiant heat transfer

Metal touch (W/(m2-K))

3489 as heat transfer coefficient

y ;
conditio Restra.lnt at Horizontal direction only penetration area
n symmetrical face
Restraint Same position with welding test
Surface: Beam power has gaussian distribution with
1/e attenuation diameter which is same as bead width.
Heat Heat transfer type Ipter.nal gf thi.cknessi Heaif source has an e.xponential
source distribution with attenuation depth which is same as

penetration.

Internal calorific type

Heat source is inputted into penetration area which is
defined by cross sectional photo.

Efficiency of heat input (%)

70~ 88

Number of element

About 15,000
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Fig. 2.772 & \"iZTable 2.4 & B Y Th 5, Quick Welder TlI, i & L T
. EESOWE~ 7 o BER bR EERTELEERL X IR ZEXDTH
AR L BRREICHEEREIARE L L TH Y X0 ERIET MO BEEK
b OB EE XL BV ER ] O2MBEZERT LN TE D, 4
FERBIS T OB RO THEHELERETER LLELAOET VOMFERITEIT 59
NEETNVOMTKE - ZUME2HBT 2B, THEEAM) 07
NEAER L, TERZEMN] o7 v EeElBEFTLE, k. [T 5B
TlEwEEseRTOomE (KH) Z2EXRTLHLEND L0, ZHIEEARED
Wi~/ BEZzEICRELL, WA~ 7 e BEORRICE S L IS
TL2HEFELZARN FH01l mmANAlE Lz, TERER) BT —28%OD
E# (X, Table 2.2 Tid 72 < ERRICHE L 72 v — Fig (Fig. 2.8) 22 bR E
L7,

Fig. 2.6 Analytical

model
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Fig. 2.7 Temperature dependence of material property
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2.3 BEBIUSE

2.3.1 REACRRLABRERZIBIBROLE

EBICE LA BELE TR EETSONmE~ 7 v 5 HE %, Fig. 2.8l127 7,
IhbooWmE~ 7 e EBENPLEMLIEEAARI LXK E— NE%, Table
25T, Fo, BB E L THREOHERME A, Fig. 2.9 (a) IZo7-7, #
WBLUEAE2L LEEERMEITHBENTILDE DR BOWBERZ2HELZ &0
TEEN, ZMNs mmiEXESBZREICENELDZZENDL -T2, 21T,
DO RIZHE_XTE—=FEMICEIBREAREOARER TCH LD, DT MR
BESORMITMEBOENTRERENELDIEZDEEZLOND, EEICKE

Table 2.5 Size of cross section bead (mm)

No.1 | No.2 | No.3 | No.4 | No.5

Penetration 3.34 7.25 10.0 4.84 3.32

Bead width 1.30 1.62 1.73 | 2.01 | 2.77

(a)No.1 (b)No.2
(600 W, beam dia.0.49 mm) (1200 W, beam dia.0.49 mm)

(¢)No.3 (d)No.4 (e)No.5

(1800 W, beam dia.0.49 mm) (1200 W, beam dia.1.04 mm) (1200 W, beam dia.1.53 mm)

Fig. 2.8 Photograph of cross section bead

250 - 250
— 5mm(Top S'd_e) A — 5mm(Internal type)
-~ - 10mm(Top s!de) . — - 10mm(Internal type)
200 — - 2mm(Back side) | 200 H: - - - 2mmnternal type)
O ;(3 \ — 5mm(transfer type)
“E’ 150 3 150 ---10mm(transfer type)
3 \ 5 \ - 2mm(transfer type)
s s \
2100 H—— 2 100
g R g g \\
= ; - ﬁ ~
50 50 SSe—
0 0 L L L L
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)
(a)Measured val.ue of No.2 (b)Analytical value of No.2
(1200 W, beam dia.0.49 mm)
Fig. 2.9

Example of measurement and analysis of temperature
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BT HREATLHHERR R o7, BRI TZ7 A4 OIRE (EBEOEIARE
WeERUCICR2EEB) ZRHE, R— ABETH 5 No.228 AL HE80% T
K945 CTH L DIZx L, NobIZT ABZEZT0%IC L THK1235C L K b IR
EREW, 2 TINEBEAA | CIRE--HEE (BEERMEERLL
ﬁﬁ)K@%@Zéﬁ&@&é:&ﬁg\ﬁuﬂﬁgﬁ%ﬁzéﬁmﬁ&w
EHAMAEBELY VO ABRENES R, BRABELHI LI EABEBHTE D,
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T, HMomAEBERDE . KREBALBIREFA CERMZ A 131500 C
BRELRLIRXRXTTHDHIN, Fig. 21012 B8 W TH Z X No. 1 TE&ER T 4 > X
1180 CeEnRVEWREOCLD b H -7, 22 T, #l 2 IENo. LITEB W T AE
BAEZ100% & LTANTDE W7 42131360 CE T EA L7, AEKIC
BECTIER<EELLTI500 CxhH5x5 L, é%m%74VﬁMMJCk
Mol LnL, ZHUH20D AJHNE CTIXEAESHEME RE B2 DHER
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Fig. 2.10 Cross sectional distribution of
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Bead-on-plate welding

Restraining jig

©Bottom-surface temp.
@ measuring point
Top-surface temp. measuring

Welding direction \ye|d metal

A |

-

100

10| (Unit: mm)

Fig.3.1 Dimensions of testing plate and temperature measuring points
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3.22 BEAFE

6 kWilE FE—2m#EE LW TR LE—-RFF T — FiEEHEL
iTolo, WESLMIT, Table 3. LI T 54 L Lz, BRKkROMAE T, HIR
DR R EELE6EFT D7 7 7 THIZDHEE LE, Ty o A—DKRR
BAICREM 22 2 &b, BRI OM R ITHEHER BN O35 RERIC
gL 7=,

B, V7T ICLIME N EMEY Y THELEZE A, 1ETH -
D390 NFRJE T I 2 TR, MEKIKL (R L o il FE3000 mm®) %
SEHAHT T EZ TWAZ &5, 390 NX3,3000 mm®> = 0.39 MPaT & » 7-,
RE.RBIROWENR S5V T WD ZEERAET D 72, K% O % #§i
BXOBEZOMEBRERICTEE S/~ (0.05 mm) & o CTilBr & %
EAEMICTEERLRWVWI LZHRL TWD,

Table 3.1 Welding conditions

Type of metal SS400
Accelerating voltage 60 kV
Beam power 1200 W
Beam diameter 0.49 mm
Welding speed 500 mm/min

3.2.3 REAE
AIRBERIEMT BT D2 ANBEMEOERE L 52 X RO KRR IR
FEHEZITo Tz, WEAMEBEIZFig. 3. i T B, w53 mm, 8
mof & T, HEILT R 2mmfi@EE Lz, WEIE, AEU NS 2 —FE X
O FMBRAE0. 32 mmDKEVE Xt (T ABAMEE) & iz, BGEX O 5%k b i3k
MM OEENEHITICEREEECTEEL, A€V A3 —FFETEKEE
SHMEERZ AW TEMRA L, BMIEMKREIZI0 ey b B L LTk,

3.24 WBRERERNREAEZICXIRBIEHAE
e BRI R N ZE FL1E (MIRSYE @ Modified Internal Residual Stress) TW
RIS o FER A AT o 7=, MIRSEE X DHD (Deep Hole Drilling) % ~9%
B L7-b DT, Fig. 3.2l " T FIETIT >, MEBBICELEAIT > THE
LEERLEE, WELZPLE L THBERIZEYHL (P X=27)
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Air

Drill micrometer
Test
component

MDrilling a @1st measurement
reference hole

Deformation
by stress release
probe

i WI

@Trepanning (@®Re—measurement

Trepanning

tool Measuring

Fig.3.2 MIRS method procedure

WELBEDOBRREIS N EZMET2E WS Fikxd L b, FEEIS T, b Lox
=V HIBEOWMELROEMAEBLOCHABOMO - HE HOHE T H, MIRS
EAIT N ERERLE M T 58 /0 BIT & - T3EBE O L~ /L (MIRS-1~3)
Nd % (Table 3.2) . A lEIE. MIRS-3 ¥ & AW /=, MIRS-3d i %, =
WL TR EL RN L R= TRHEOBEERERZEZEE LI bOEHERL TE
D, AHTEDIR MRS b6 T EZ W, x, v, zFAOEEINT) (ox, o
vy, oz) . xyF¥i, yzFi, zxFi (oxy, oyz, ozx) OFAWEKEIET]
NWEHAETH 2, MOV TIL EREEZX—RE L TEML TS,
HOWS tBLORxFMEDOKT MO BT D E @M EREz0), d(z0)

DEZMMOMALED LV ERLELLEbLDOZU(,0)E T 5 & ERERIC

B DB ERICH T HHEMEICEOY, u(z,0) & F@ Lok o BRI

TROE R D,
Table 3.2 Differences between three variants of the MIRS measurement
method
Measuring method MIRS-1 MIRS-2 MIRS-3
Stress components Ox, Oy, Oxy Ox, Oy, Oxy, Oz Ox, Oy, Oxy, Oz, Ozx, Oyz
Measure hole 3 or more 3 or more 5 or more directions
diameter directions directions
Trepanning Through complete Repetition of Repetition of
process thickness at once trepanging and trepanging and
measuring measuring
Measurement item Hole diameter Hole dia., Height Hole dia., Height and
of trepanned core Lean of trepanned
core
Feature Simple method? Considering Considering Three
(Equation) Plastic dimensional stress
deformation Field & Plastic
easily? deformation®
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d'(z,0)-d(z,6)
d(z,0)

ulz.0)= = —é[ax(1+ 200526)+ 0, (L-2c0s 20)+ o, (4sin 20)] -+ @

PERFEIT., FRERS BV C3HBEL LD 9z >0 Tul(z,0) @8l E %475

tET, ROEHV. ROTFAIERERIEHRD Th D o, 0, o,% R

y\

ELTWDL, RBROEILREIT, =7 ~A 78X =4 —%2H 52 LT, &£
EZLOEREREICHM TE L, BEEOFMUIE, XO%E b LI =%t
BPERRIC RS WlE Z ks IR IS o aBE LN 2EH L, LS
=K AR ENICER L TALLIZMHELEROEBELEBLEZL O~
CEBBELEbOTHDEY, T, oMK EFATLIED, MTHEEDL K
EZm ESETnsd, BEERMICIE, RbTFIZ~V D AVMTERY AL, B
HIcEME (Mo KNEHORELE RRAEMOYREDE) Tlun, B
HE (ROARDLHOOMESTNL) TounDHEM T 2ZERLTWSEY,

RIS W EAE 2 Fig. 3.3 - T, e b, WS B LI 22 5 0.5
mmfi7 B2 W E L, WOEALIF2.5 am, P AR=2 2kl HEHE
DOAFIT6 mmTHIEE EhE L 7=,

- — = Close-up

Weld metal
ol b gme—1 ||

X :Stress measuring

position
' 10
100 —
(Unit: mm)
Fig. 3.3 Location of residual stress measurement

2.5 OFHT—CUMEKICLIIBREBLHAE

MIRSIE CTOEMAE R L BT -0, 0T AT — DUk ToNERKRY
IS HPE ZAT - 70, WEFIEIL, Fig. 3. 42" T X O 220 BEN S T
TNEERT M EEEREATICEREZOH L, ZORICHBRINDIET
EHRICE S TWDIROfME L TERGDEZRD D FIETH LYY, #
Bz G H R ISR i S AL 2 S A1 E . AR B O & 05 1A O R O A A8
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WEIWCH > TEBRSATHZEEZREL TRD DL, EHRITE > TW DL,
Wri o REICHRIE T IS > COT ATy =Y 280 S5 ICU B (ff k)

<==>: Strain gauge : Cutting

position

Fig. 3.4 Cutting method with a strain gauge

T2 TRD D, WECEHOTHEE M, WIS O, b
Fo2k & B0,

o, = E[{Ang + (Ang — At )Z/h}+v '{AgyB + (AgyT —Agp )Z/h}]/(l—vz)

+(GxR +ve O'yR)/(l—Vz) """" il

o, = E[{A{;‘yB + (AgyT —Agg )Z/h}+v '{Ang +(AexT —Ang)Z/h}]/(l—vz)
+&WR+V'Umy@_Vﬁ ....... 2

ox . ZTOWEFRIICEBT D@EERT M OERILT)
oy . TOWERIICET DEEMREMTT M OKEIRT

E . ¥/
N . BT VUK
H . HRE
Z . EE»SOWRES WO
Aeyr » By Y HMICUYHTEEOROERBICH T H2EER ST A O
0T AENE
Aeg @+ BUYTVEFRICUYVHT EEORDOEmICE T DIWEER T IO
0T AENE

Aeyr © 7R AFMIZYUOHTEZOKROERRICEIT HIEEREA S
O OT HEA &

degg : ZOAFMICYYHT EEOROERIZB T L2REREAS
MO OT HAEA &

oxR . BEHEBRIMICUODVHLEERIZES T DEER T OGN

oyr - WHEBEMAGTMICH O E LEEERICE S TWDIEERE M
H] D Jis 77
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PRI T EALE 1L, MIRSEE E [RIAEDFig. 3.3 /R T E & L7z, B
TJAYHEMTCEML, YUKMEIES~10 nmm& L 7=,

3.2.6 XBEWEKICLIBRESHAE
WIS OB ET, XHBREPTIECTER L, BIEAME X, Mk
ERARICFig. 3.3 R T E— RILEE 2~ 50.5 mafi & & Lo, HIERITL.0
mm¢ T D, WEFMIT, BHEHRFM (o) EEHEREATM (0,) D2
FHme Ui, BEISDOREFEZ., aiE & RERIC B AM B2 OXBIS
W EEEEICHERL L T DY, XBROAFAZHEEELSE 22 REHC
S L, B bR XBOEFTME (20) 2RO, IS NI 2% FH
MR O ZlE AL Tnad, JWESEMEIL, Table 3.3l 7T B0 & LT,
kB, o AMEITHEBmIEREETEHERORTAETHY . XH 0K B
S~SOANRFAITKIEL TWD, ¢ A EMEOE ST AT g RETRD,
FREE G 1120 —sin® ¢ OB SIS N EHEE T THIBELTWS,

Table 3.3 X-ray stress measurement conditions

Type of metal SS400
Measuring method Q-Diffractometer method
Characteristic X-ray Cr-Ka
Tube voltage 30 kV
Tube current 10 mA
Diffractive plane (211)
Diffractive angle, 260 156.4 °
Angle of y 11 angles between 0~45 °
Stress constant —-318 MPa/deg.
X-ray exposure area I mmd

3.27T EREREMH

NEERE IS DR H 072 §i32= [F R ICFEMBENT &2 1T - 7=, fRATE 7 L IL,
AR R AN O 72 OFig. 3.5 R T XY REFFHFM20mm, B L E X
RETDH1L/20BO3%kTETNVE LI, 22T, EEORABRKLEFELET
FI100 mmD €T )V THLMIT 2T o720, ARIGEE - BSICE T J5120
mmDET IV ERERENRNIEEZHBERLTCND, BEFE—L2EEHOLS.
— AT — VR R OO THRVEEAN N FORMIBEICET D
LIRS EY, 20 mET L1000 mET L TRKREDORWVWHEMELNE S
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NIeEBERXD, MREFHEZT, EEOBEHZICALE T, AMEZEE®RIDTML
Hm (AEETM) oW TRERKE L, WESEEDL., EEOBER LW
CTable 3. LIZ R T HRMFEL L TWD, ZOMDMEN KX, Table 3.4D & B
D CThd, MEEIZOWTIE, Fig. 3.6l T X O ICIREKEEEZBEL -
LOEROoTWVWEIN, BERBIORT Y U HITIREKRGFEELZER L, —EH
Lz,

a w00

(mm)

Fig. 3.5 Analytical model (Redescription)

Table 3.4 Analysis conditions

Atmosphere ) o
Radiant heat transfer at an emissivity of 0.2
(Vacuum)
Boundary - -
o Restrained at the same location for the same
condition ) _
Restraint time
as taken in the welding test
Heat Internal calorific Heat source is input into the penetration area
source type defined with cross-sectional macrograph
Efficiency of heat input 70~80%
Number of elements Approx. 15,000
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25

800 =

P
[

600 —=1 5
- - —l- Yield stress
—A— Young's modulus
—{J- Specific heat

_____ —O. —O— Conductivity
t N —o— Coefficient of thermal expansion
200 =

Yield stress(MPa) Young's modulus (GPa)
Specific heat(J/kg*K) Conductivity (W/(m-K))
\
Coefficient of thermal expantion(1046)

0 500 1000 1500
Temperature (°C)

Fig.3.6 Physical and mechanical properties

3.3 BWRBLUEER
3.3.1 BERRBRAOHEMHAR
WEHOMBE~ 7 0 GH%Z, Fig.3.6lC 77, WIALEET7.0 mn, B — K
iE1.6 mMmTXRMb R BiF e — NGO, 2O~ 7 rEBEHE%LY LT,
fENTET VEAER L, WERFOREREMS R EMITHBREZ. Fig. 3. TICR
T, WEMBEMITHERIIREN—FKE R LI, AKX, MITET VOB LY
%%#5%émm\mo%&£®£wﬁﬂ%5:kﬁ%ibwﬁ\%mﬁ
m B ERE30 CRETChH-, BAEN L4 E— NIZ#HET 22 & b
HTD, BAEXSOT T AWBORBETCHEEE - FNREITLTLE D D
Fm3, 8 mm, Em2 mofiEN XK EHK LA, UL, B }4—75%&
m:&u%\/4f%ﬁ<§w%%%%5:&ﬁ@%ko

Fig. 3.6 Cross—-sectional macrograph
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3.3.2 WBERENRFEAZICLIINHBRBLHAETKER

MIRSIEIC X 2 M EH B4, Fig.3. 9127779, 1 mmt v FT6% (ox, o
y, 0z, 0Xy, 06Vz, 0zx) DT — X EWHE LI, B, =7~ nr—
VoS a—T7 L TRHLAOOEBOMMAE T, REHL mmh b O T —
ZITWE TE R,

APEMBRERLD EEHRAFMOEREIST (o x) DIEHEBREAT N (o) .
WIETGW (0z) WCHRXTRENWI L, xyEFHOFEAKBKS (oxy) BIFIE
e Thh., 2xFHEHOEAWK S (ozx) bEERLFM (ox) ITHXT/AH
SWNZEnDbL, ZREWICR THEER AR EIC N M TH D Z LR
ARPEPSHBL -,

WE T, AR EVE & O SR A R T, fth I i T E RTRE 2R IR BE AR T 1)
(ox) CWHEMREATM (oy) OEBISTHERICONTHEZIT o 72,

500

— Measure (Face, 3 mm)
---Measure (Face, 8 mm)
Measure (Back, 2 mm)
Analysis (Face, 3 mm)
Analysis (Face, 8 mm) ||
Analysis (Back, 2 mm)

S
()
()

[m}

Temperature (°C)
w
()
(e)
b > o
!
1
i
1
1

Time (s)

Fig. 3.7 Comparison of temperature transitions between measurement and analysis

3.3.3 TDOMARETCOREIE NS M

OFTHT7—VOMETIE, RBREAEm/HAS® 1, 3, 5, 7, 9 mufii & & &
HHOBREIC N 23R L7, X#EHETIE., ABRIEEEOERE IS )% 531
L 72, MIRSIE & OGRS Rl 2 FEMfEHT O 5 R b & o TFig.3.10,Fig. 3.11
IR,

TP, BWERIFM (ox) OFEFRE (Fig.3.10) Z®w+2 & . WEH kAt
EABIEERY REHEMA~E 2T EEMHAICT 7 NI 5 &0 H 24
KT—FHLTWD, MIRSIE, OFT AT — Tk, XHFERIFEIC O TIE,
ML EHIFIE KL TWD, FEMERMICOWTHMR KL TEBY ., K
Erh NS EEREIC N E R EOMBAEFHL T\ p P
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WIT, WHEREA TR (oy) OFFR (Fig.3.11) Z T 5., WHMH TN
(2 H R RS ) O e B I AR VD S B R T I & TR AR T MROE T A T A8 5] R
ER REBHEMAMLIIFEEMUMICE T FTDHEWV I EBIEEE T
LTWd, MIRSYE, OFT A7 — U UllriE, XBEHEIZ K D ER T, B
M OFEREFRBFICHESMEL SO TR %L TW\Wb, FEMBATICE L T
LN THlE, RER CTEME W OMBMIZ—FL TWD A, WHEREA T W
DRI TS E TR D 100 MPall ER A2 L2585, Z DR —
HICEAL T, BREROFEOIR NABENRKRE W ERRKE LB X5, Fig.
3.12 (a) 1, RBRAREOBEEREA LT M OKEIS T, BH#EeE 1L I
PH0.5~TmmE CHENTEMEDT — % T 5, MIRSIETOREFLELIL2.5 mm
672D T, Fig.3.12 (a) OF — & TIXIEWHHEH 22 50.5 mofiZ & 2> 5 1. 75 mm
MEETHRELTIICHEZD2N, TO&BENE T TL00 MPall =0 B # 2 &
DT ENGPDL BR, EBEIRELE T TR ATORI5HGH L LD
O, Z#AHHTCET IV RERICNENLLZELEEZ 2 BbNLDH, Fig.3.12 (b)
[XFEMMEAT CTLlhuw 2> 5 0.5 mofi & (ZEALP ) & 2.1 mofi @& (HfHAEF
) EZNENMRSIEORFE LK LIEFHERTH DL, MIRSIEORE R £ 2.1 nn
MEDOBTERIIMR L TWEI RN D, E 18— NIRESDO RS
FREA T MO T, IS AE™H LS, ¢2.5mmdD 2 fL Z1T 9 MIRSIE T
T HEARIOECEHEA TCOREIS O EEZBET 22 LI md TEEL
WZEN, Hold THMETE -,

CEEYLOO, S EEERHOCEZERISABEN DL, NEER IS 5
DEMMPHERTELLEEZID. E—FNIROKRKVWE T E—LEEMFICBT D
W R OBRBISTIEWM L WARZ b 272D B OMIRSIERL O T A 7 —
Uk TR A FER T D O EE L < . FEMMENT O %0 e iE AL E & 7
HITENGho T,
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3.3.4 EFE—LBEBORNBRYEIE N

MG (ox) CWHEMREALN (oy) T2V TIiE, KEF KA
IR IS NI N ML TR KREMICH2IIEFEEEMM~ 7 F LT
R ZRLTWD, 2L, FH2ETHE LB OMRE —HT 5, £z,
JEWR DR AREZICHE T 2B EOMIE., > F 0 RFEE@ICIEMIS . K
E¢%%Kﬁ%ﬁﬁﬁ$@ék%9ﬂﬁk%i<*ﬁbTW6”“mo@ﬁ

L2722 23 2 DIk J1 45 A K & ErE—LEBEUMFIIRARLOTH D,
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Fig.3.13 Comparison of temperature transitions in surface,

backside surface and interior (Measurement)

EHEBENAGFET D b, LERN-, T, WKEFRRAMIIIXE — FEHICKL
NRTHHPELS | WMEREND ZETHRICINVAELD EHEIND, 20
AD=AL RN TDLT—2E LT, mam%®Mfﬂ*#%%Mg3w
WWoRdT, WENHOREIX, v —AABEXTHE L, £H»d O E
CHRERRAAEICEGBREEERBE IR TN D BT RICOWVWT
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Fig. 4.1 Shape and dimensions of testing plate and

temperature measuring points (Redescription)
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4.2.2 BEARE

CEBHKMNE KWE v —2BERKLIH YT —-RFRAF 7L — MNE#EE
Tolm, BEESMMIZ., HBOEZEBIZHOWTHET S 720, Table 4. LIZR T
Eolcafi-—TofRFE L, Err—20BREIMEKERRICADYE -,
E—ARICOVWTEHHEBETHY . 1/efBE (E—Z7EOK3T %) £ TOIME
ZE—ARELTWVWD,

Table 4.1 Welding conditions

Test No. 1 2 3 4 5 6
Type of metal S$S400 S50C HT60 |SCM440 | SUS304 | A5052
Accelerating voltage 60 kV
Beam power 1200 W
Beam diameter 0.49 mm
Welding speed 500 mm/min

WTNDOFEMELHMY IR LH2E L THEERBR L I L 72, UK O # 3R IX
Wk OW KRR ELELA6EFT O 70 7 THE2DHEELE, Fxy o —0
REBBACHFFRI N 22200 2 b H 0, RO W R ITWEH G D35 RE
®“iza Lz,

ek, V7 AMER N EMERECYTHMELEEZ A, IETH
D39O NFRECTH I X Thh, MAEEIKL (RBRKE OBEMTE3000 nn*) %
ST CH I 2 TWAHAZ &b, 390 NX3,73000 mm?> = 0.39 MPa<Tdh - 7~
B RBRRKOWEN ST WDEZ EERIET D720, HH% OEER
BXORGBEEZOWMKRERICT EES —Y (0.05 mm) Zfo THEBR A & &
EAEHEICTEER 2N L ZERLTWVD,

4.2.3 REDRMERS &

ARBERIEMITICB T 2 ARG REAE L 5 2 BB RO R miR
JERE 2T -2, BEOWPEN EIXFig. 4. LIZAT B0 % m ik Bl oo
72253 mm, 8 mm{if & T, EmEIIMAEmRIMAL2 mmfiLiE TH D, HIEIT., HIE
B AEY N a2 — & 84238 L OVFEME0.32 mmOKEEX (7 A K
Mepe ) 2V, 2 ToEERBRIEICR UER L2, BVE S o %o id gl
@me*“% BPLEEECTCHEHEL, 9 —WiX. EZF ¥ o X—RNIZE
& L 7 b IR L, WM TR EEETy o N—DHIZ LY, BEZET v
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DIFIFTEMH TE D LML,
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FHmmeE L, £, MERICITEMIELE (ERBIAK100 um) ATV, K
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TDHETH DL, BEI D ERE L WET 2120, EEIFEm M, LT
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Fig.4.2 Locations and directions of residual stress measurement
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Electrochemically polished depth
(nm)

MEFE S OXERIE DI EEEECERL T2 Y XBO NS A % HE
EzRhNoREICEBHE L, RELS0EFTXBOEIFTAHAE (20) 2Rk,
SN XD THBROLZ{LE A TS, WIELMEIET, Table 4. 21" F &
BOTH S,

BB, oAEITHBEEREENEERO LT AE THY | XHOKE~
DANE I IE LT WD, ¢ O R T A I EME S Sk ok, R
JE 11E20 —sin* ¢ MEOME IR N EH EZ 2T CTHEB L TWD,

50 = 50
0 \ E 0 - ““\
-50 é/\ -50
58 \ /\/\/
T3
-150 g -150 Ve
~900 W -200
0 1000 2000 3000 0 1000 2000 3000
Megsuring Iength‘('pm)v Measuring Iengthr (um)

(a) Example of smoothly polished surface (b) Example of roughly polished surface

Fig. 4.3 Conditions of electrochemically polished surfaces (SS400)

Table 4.2 X-ray stress measurement conditions

Type of metal 55400, 850€, HTO, SUS304 A5052
SCM440
Measuring method Q-Diffractometer method
Characteristic X-ray Cr-Ka Cr-K§pB Cr-Ka
Tube voltage 30 kV
Tube current 10 mA
Diffractive plane (211) (311)
Diffractive angle, 26 156.4 ° 148.5 ° 139.3 °
Angle of vy 11 angles between 0~45 °
Oscillation angle of y +3 °
Stress constant -318 MPa/deg. -366 MPa/deg. | -166 MPa/deg.
X-ray exposure time 120 sec/vy 300 sec/y
X-ray exposure area 1 mmo
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4.2.5 AERREFREMEI

RIS DOMFED T2 HRBERIEMT Y 7 M2 W TR 21T - 72, f#
fra—REX.2hETCLRRICEEBRBTI I 2L —3 37077 45Th
DR ST v ¥ — 8 D Quick WelderZ ff fl L 7=, Quick Welderix.
WECRLEBHEARALTMA BN OB BYRTEZITO 70 7 7 5THD | — I
72 BN Ve fig iy 7' m 7 T L AR EFAGCE TR LA RO T %
ZERLERHBEERO HTOoHGWRERX—20 R LTWD,

RN F VI, BFEKRMER O - OFig. 4.4 1073 X 95 2 E F H1M20 mm,
BHEPRLENBERLETH1L/28HBO3R CETFTILE LI, 22T, EBEO
ARAELEFELCEFFMAMI00mmD ET NV THMFTZIT o722, TiLE TEFEER
WCIRE - BERSICEFHM20 mOETFT /L ERERENRNI L EZMHER LT
WD, RS MHIE, REOREICADLYE T, FAMEZEERIDEZGM (A
ERFHM) IZOoOWTHmEMEE L, WHEEMEL., EEOBEHE L L Table
4R TERELELTWVWS, 2RI VWT, £UERN—ETH LD, HiE
KRR ENTETE D, ZOMOEN KL, Table 4. 30D LB Y Th 5,
MPEMEIZ DWW TIX, Fig. 4.5l 7 T X O WCHREKRGFHEZZEBLELD & o
TWVWLIR, BEBIORT Y VIEFREKRFEEZEGE L, —EME Lk,

[leo

(mm)

Table 4.4 Analytical model (Redescription)

Table 4.3 Analysis conditions

Atmosphere (Vacuum) Radiant heat transfer at an emissivity of 0.2
Boundary ] Restrained at the same location for the same time
o Restraint ) )
condition as taken in the welding test
Metal touch (W/m?-K) 3489 as heat transfer coefficient
Heat o Heat source is input into the penetration area
Internal calorific type ) ) )
source defined with cross-sectional macrograph
Efficiency of heat input 70~80%
Number of elements Approx. 15,000
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Fig.4.5 Example of physical properties
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Fig.4.5 Example of physical properties
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Fig.4.5 Example of physical properties
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4.3. WEBLUEE
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(a)SS400

(b) S50C

(c)HT60

(d) SCM440

(f)A5052

Cross—sectional
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Table 4.4 Measurements of weld metal dimensions

Test No. 1 2 3 4 5 6
SCM44
Type of metal SS400 S50C HT60 0 SUS304 | A5052
Penetration depth
7.0 7.0 7.1 6.8 7.4 7.3
(mm)
Bead width (mm) 1.6 1.8 1.8 1.8 2.1 1.8
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Fig. 4.7 Comparison of temperature transitions between measurement and analysis
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Fig.4.8 Temperature transition vs. thermocouple’ s position
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Fig.4.11 Correlation diagram of residual stresses by measurement and analysis
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Fig. 4.15 Analysis results with or without consideration of transformation

(Transverse residual stress at weld toe (oy))
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4.3.3 LEBEHDOERBIC T

w2, 7294 %, v~V T Y%A N REMMAHE (SS400, HT60, S50C,
SCM440) L DA ITH 7. T— AT A F A4 FNRATFT 2 L 24 (SUS304)

DOWNWT, BRI TTHAEEZIT- 7=, X4.16 (a)
(ZSUS304D Ak % . X4.16 (b) IZAB0520 R %2, Th E 1, SUS304
DFRERIZHONTIE, EFBREMITTELRRETWVWADS H D, FEBRMHE O G FEHR AR
+T50MPall L& REWHRN L L BWHEEBR» DR 72 B4 i THERR L 72 &
F ML RRL RO 2R A ML FToTERERTLODNWTWVWDL EEZX D Z
EMNTE D AB052D 5 RAZ DWW T FEBRME & M EIIHMR - L TWnwD,
SUS304 & A5052 & & IZMEMNTIE TR 2 & | ks & O WIS J 1T B MR 7 M2 b

CREREA T ROMENEMRERICH D N a0, T, AifiE T
D FE R (SS400, HT60, S50C, SCM440DFER) & — %+ 5, £/, 4. 17D
W E A M OFREIS Wi o a2 & Cb R EmICEMS . K=
HIEIZHI BRI I BALTEBY, 7274 b, ~T U A bREHME &
F U N oA TW0Wbd I Ennyhnbd, SUS304L A50520 IE i &6 D 7%
BISHICOWT, 724 b, v~V T ¥ A4 bREMME TR LZEZN
NEBRISTTO 7T 727 ay hLiebDO a4 18IZ7-F, 7274 b&
v T YA NSRBI OMNRMEAEE L T, TSRS M TR
MRENIIFEIZESIEIS S ERD ) 28, £, THEEREAS N TIEHBER
JENBREVIHIFEIZEEMIS N ERD) 2N and, 2D OMIZDOND
TiE, A, ZBREMBITTHLN R oD, SHBOEMRE L THITZ X —

LTI =9 LAE4 (A5052) |
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Fig. 4.16

0 1 2 3 4 5 6
Distance from weld toe (mm)

7

73

0

CRERISNDOEEIZOWVWTIVFEMICHEL TV ZEET 5,
600 300
——Transverse (Analysis) —— Transverse (Analysis)
— —o—Transverse (Measurement) —~ —o—Transverse (Measurement)
OCS 400 ——Long%tudinal (Analysis) H DCS 200~ — —Longitudinal (Analysis)
= —m— Longitudinal (Measurement) = = Longitudinal (Measurement)
o 200 A o
5 - 2
1% // %)
th 0 7 = = —
= / T~ g
= S~ o
2 -200 E
2 / 2 =200
=400 ‘ =300

1 2 3 4 5 6
Distance from weld toe (mm)

7

Measured and analyzed residual stresses of supplementary materials



Compress——_ . —=Tension
-650 -500 -350 -150 0 150 350

®® & oo ® ® & (MPa

Weld metal

, Tensile stress

Compressive stress

(a) SUS304 (b) A5052

Fig. 4.17 Cross-sectional distributions of transverse residual stresses (oy) of

supplementary materials
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Fig. 4.18
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(1) REOKEZIS T, XBEFIEIC LD FERIESL FEMBETREWY
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— AR LT, 7277 L. SUS304Ic oW TIE., EBRMEOITS - X 28 kX
n o7

B T7 R R & S BAR T D i M E A ST M o 1k b B 00 Bk R E T
X, 4% fE (SS400, HT60, S50C, SCM440) +E A4 (SUS304, A5052)
ETCTHEMISDERDZERNhoTlz, £, WKIZB T 2EEIEN

SATIREE S . M EHZ R W THREREm TEMIC . RENE THl R
IS e E RN o T,

1k S 5B D FR IS SIS DN T R T M TR BRARIS Y R E v i
FIZLEHIERIN D ERD N yholn, T2, IBHEREM B TIX
BERICAADREVEFEIZIEEMIC I ERD I ENahoTc, THIC
WTIE. 72T A4 w7 A FREHMMELTZ T T < SUS304,
AS062IC > W T H A U A THEHTE L2 L bR LI,

(4) WHEREA T M TO, BRISDDRE WHMEIZEEMIC T &R 2B

WOWTIEZ.EER MO BEEISNDICEDZRT Y MY S 0E
M T DOEHEENRBEFIZENTWDL ERDEZZENTE D,
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BOE
REGSHERFBREDERF

5.1 #E
B2® ClX, RRFH (SS400) Z2xR L L. E—2aii, E— 2% %M
MTTHAELLE, TOMEK, HITBEICRKESE @#5@@ J& 1k i
BWT, BHREAFTRAOEREIC O RPME, WAHAERSICEET S 2L
EHOMNIC LT, £, BIETIE, ExOMEHICE T 2EERE A FHIC

B DAk O RIS &2 R L. BRI A K& WE R & E M S ) L&
b Mo l, THICOWTIE, 7274 MR, AT YA MR
AR A OB 720 TR < ymw4Amwmowf%ﬁD%ﬁﬁf%ﬁf%5:
EbRLle, TZTAETIER, ERCETRABRZE ML, A LOHMME
BNT A= L LRI RS o BR %23 5,

5.2 HRERA &
5.2.1 #t&E#

B A 1L, SHM5FE (SS400, SUS304, S50C, HT60, SCM440) THh 5, ik
MOV A ZIERE10 mm X HE 100 mm X £ X100 mmé& L 7= (Fig.5.1) ., 8+ b —
AEHEOH AR BEICEHA T AHEL LTI Eom~108mfEE TbH 5

BFE—2OHNEHZEZEELTHLHEDPERAAZHBLTVIRIELE L TI0
mm% @R L 72,

Bead-on-plate Restraining jig
welding

©Bottom-surface temp.
@ Mmeasuring point
Top-surface temp. measuring

elding
direction

[Top-surface temp. measuring
points]

Conditions A-1~A-5: 5 and 10 mm
from center

Conditions B-1~B-5: 3 and 8 mm

10| (Unit: mm)

Fig. 5.1 Dimensions of testing plate and temperature measuring points
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5.2.2 B¥AF&*

6 kWi v — AEE#KEHAHWTE—RRAF U 7L — NEEZITo T2, AELOD
WEAEPAE L CBEEEMFT, -2l ), E—AFRIZEH L, Table 5. 1IT7R
THEMfE LT,

Table 5.1 Welding conditions for studying the effect of heat input
Test No. A-1 A-2 A-3 A-4 A-5
Steel type SS400

Accelerating voltage 60 kV

Beam power 600 W | 1200 W | 1800 W | 1200 W | 1200 W
) 0.49 0.49 0.49 1.04 1.53
Beam diameter
mm mm mm mm mm
72 144 216
Heat input <144 J/mm
J/mm J/mm J/mm
Welding speed 500 mm/min

Table 5.2 Welding conditions for studying the effect of steel type
Test No. B-1 B-2 B-3 B-4 B-5
Steel type SS400 | SUS304 | S50C HT60 |SCM440

Accelerating voltage 60 kV

Beam power 1200 W
Beam diameter 0.49 mm

Heat input 144 J/mm
Welding speed 500 mm/min

FMEA-1, 2. 3l FE—2 AT KD ELE. FMFA-2, 4, 5FE—LRIZLD
EZERPTHIEOORBRTHS, 22 TE—LAREFHBMETHY 1,/ R JE
(E—Z7fEOR3T%) TOE—LRE LI, £, FMFA-4, 5TIE 7+ —F
ABF A LMEA-2L0 L Z R Z 20 mA, 40 mAB S L. M SEEHEA 20 mm, 40
mmY 5T TE—LABELEE L, ZMHEA-1~A-5TABEOLELEZ A T
D, SOFELFE LEEESLSMEIZ. HEOEBIZOVWTHET I,
Table 5. 2IC R T X O ICAMME —EDOEKMHEE L, BRikKoMwATIZ, KK
WMERELA6ET O 7 T THExFEELE, Fx o N —0KRKH
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FACHRERI 3 225 2 & b 0 BB O W AT B 4s 0 © 34 12 B 1% 1 4
L7z,

B, V7T IMR D EMEE Y TRHELELEZ A, IFEFTH
D390 NFEFE CHI & 2 TRV . MK AL (RERK & O # Ak fE3000 mn®) %
SEAHT T E A TWAZ &5, 390 NX3,3000 mm®> = 0.39 MPaT & » 7=,
B, RBREKOBMENR DI NTNWD I EERIET D20, MR %ZOREBER
BIOBEZOMER EGICT EE S/ —Y (0.05 mm) Zfo TR & &
BEMICTEERN RV LE2HEL WD,

(mm)

Fig. 5.2 Analytical model for FEM (Redescription)

5.2.3 REAE
AREREMITICEB T 2 ARKMEOREAE L T2 X EHERO SRR EIR
FERE ZAT > 72, WEN B IXFig. 5. LW/RT BV, RETH RS 3mm, 8
mm{iZ & T, BEIIPTREAL2mIESE Lz, BT, AU AN a3 —FEBX
O FMBRAE0. 32 mmDKEE Xt (T ABAMEE) & iz, BGEX O 5%k b i34k
MM ORERE&ETICEFBE#EE CEEL, AE IV N, a3 —FFETEKEE
SHAMESHEEHCCERLEL, IIEMBEIEZI0 Y2y /B Lk,

5.2.4 ARBREREHEMN

RIS HEMH O, Quick Welder & W CTFEMf#MT 2 1T » 7=, fi##r €5
Vi, FHEEEMEMR O OFig 5.2l " T X O AR EFTHM20mm, BEHEFLE
MHBERET DL 20BO3RTET NV E L, 22T, ZEORBIK & H
CEFHFMIOOMDOET VT UM ZITon, ZAE TERERICIEE - £
FBEICEFHFM2 mmOET VL EREREN RN LEZHBL TS, WK
FfFx, EBEOEBEICADLDE T, RMEZEEERISBZTR (AEF 5 H)
ICOWTRHEREWRE L, BESMES., EEOBEH LR CTables. 1, 5. 21
AT EMEE LTS, £ DN SEMFIL, Table 5.3 &80 ThbH, Mk
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EIZOWTIE, MIETRHRLEBDEREDOLDEZH VT WD, Rk, EEIL
NBEFIZETF2EBLOFAROR R Z AW, 2 DD ABO ZEFEICE
J AT CIE, HAEMTEBBLENRSKMEE R TWD, WEKD 7 T
v EEERRE LD B = RA T L — OB A L ITIFESEOERIS
hERrLTWDL EEZLND,

Table 5.3 Analytical conditions in FEM
Atmosphere | Radiant heat transfer at an emissivity of
Boundary | (Vacuum) 0.2
condition - -
Restrained at the same location for the
Restraint same time
as taken in the welding test
Heat Internal Heat source is input into the penetration
area defined with cross-sectional
source calorific type macrograph
Efficiency of heat input 70~80 %

Number of elements

Approx. 15,000

5.2.5 ZRMITRY SR

W 57 BRI

Fig.5.1D &

— KA o7 —bEERBREOF LS 20 mm

BT HLERABRAFZHW T, AMENZE = 5 dh 17 TI1T - 72, 9 97 sl B 4t
WX 2 . Fig. 5.3 ¢, slBRAM T, MEMME G L L, W01, Mk

LIEE 15 Hz ToT » =

(Table 5.4) .

Fig. 5.3 Outline of three-point bending fatigue
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Table 5.4 Fatigue test conditions

Loading mode 3-point bending
Control method Load control
Stress ratio R=0.1
Loading frequency 15 Hz

Span 64 mm

526 EvHh—RAESHR

By - A SRR, RBRARRE 250 2mmdD L& IZOW T, &
P B RIS T TIE 24T - 7. BRI, 300gf ThH 2, WEME
Fig.5. 41277,

RY 3

0.2 mm |

—

0.25 mm interval

& Vickers Hardness
Measurement positions

Fig. 5.4 Vickers hardness measuring positions

5. BRBIUEE
5.3.1 AROEE

(a) BB R

Vs MR A T O PR RS )RR R &2 . Fig.5.512”" 7, Fig.5.5 (a) I
E— A OB EE Fig.5.5() I —2AROEBEEK L=V T 7L ko
TV, WTFhORED E— RIESBE TG CIX0O~EMIG N TH Y | Ik 5
MWOHBEEND EBIEIG M~ 7 P LTS, 22T, KyMEICREL R
ZRIETE— NIk EsoKE s 1ICER T 5, Fig.5.5 (a) BLV
Fig.5.5 (b) »"H, E—2AHINRKEWVWIEFEE, TEE—LEBB/NHINIE LI
G FEME IS IR o TWDH T ER gD, Kb.6lL, TR ENDSEMEIZ
BUOOWH~ /70 E5HTHD, Fig. 550K RIX. BWIALRES THEA TS
HZEMGNDH EAHRESIVDERLSRDIFIETEMBEREISTINBLS 2o TV D,
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E— M AODBRREWVWIEFE, 720, E—2 80N/ WIE E IR o k" s
MIEMERL2HEBIT, F2EBILUOFAETHEMIBLEZL WL LI, %
PR P il IR RS B 2 B D A e L BRI D AF RIS K o TURIE N ER 0 i K 51 ok 7% &
IS OB A RELSRY KAHELTE—RFRBMICHRWEMKEE IS H2ELT
Lo ThnEMESND,

< 200 ~ 200 -
g [a
2 100 7?% S 100
3 A
z 0 £ o0
= / / ~No (600W) || Z / /‘
3 -100 +No.2 (1200W) 3 -100 |
@ / = No.3 (1800W) B -+ No.2 (Beam dia.: 0.49mm)
® _o00 & 200 = No 4 (Beam dia.: 1.04mm)

[1 £ e No 5 (Beam dia.: 1.53mm)

-300 : ‘ -300 | ! !
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Distance from weld toe (mm) Distance from weld toe (mm)
(a) Effect of beam power (b) Effect of beam diameter

Fig. 5.5 Analysis results of transverse residual stresses (Effect of heat input)

(Redescription)

(b) i hEEh

Fig. b T2 " w7 v BFBZrbmBREZAEL., 77 7 A X0 R
R EROE, SHICTFRFig.5.6) "2 HW TS HEFHREKtE R D /-,
W H %A . Table 5.5lT/R7,

Kt =1+ f(8)e, -1)
a, =1+C[1/(2.8A,-2)-h/r} e

1-exp(-0.90,/4, |
t(0)=

1-exp(-0.457./A, ) .
B =0.65-0.1exp(—0.63B/t)
C =1-0.48exp(-0.74B/1)
A, =(2h+t)/t
A, =A, 12

Frank angle (° )

Weld Metal

t : Thickness (mm)

h : Excessive convexity (mm)
B : Bead width (mm) Y
0 : 180° — Frank angle (° )

r : Curvature radius (mm)

Fig. 5.6 Stress concentration factor for weld toe
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(a) A-1 (600 W, 0.49 mm)

(c) A-3 (1800 W, 0.49 mm) (d) A-4 (1200 W, 1.04 mm)

(e) A-5 (1200 W, 1.53 mm)

Fig. 5.7 Cross-sectional macrographs (Effect of heat input) (Redescription)
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Table 5.5 Shape of weld toe (Effect of heat input)

. Stress
Test Beam d Radius of Flank angle concentration
No. | Power an curvature (degree) factor
diameter (mm)
(Kt)
A-1 | 600 W, 0.49
0.97 167 1.3
mm
A-2 1200 W,
0.27 144 2.0
0.49 mm
A-3 1800 W,
0.19 120 2.6
0.49 mm
A-4 1200 W,
0.73 158 1.6
1.04 mm
A-5 1200 W,
1.21 161 1.3
1.53 mm

A1 ~5 T e HEPAAEIT . 1.3~2. 6L LI o THENEL D Z LM

T o T,

(c) = mehITHFHER

R TRBROMEE L, Fig. 5.8 "7, Fig.5.8 (a) T &— A H T
DB Fig.5.8 (b) BE—2BOEELIZHK LT T 7 Lo TWD,
feEh OIS T1E, 2SS TIE R E—FERZMK LEZRBBIG D ELE, B
S IE . AR DI kS oIS W E R RBEER L, 2, TS OEHR
ThH Do, JSSCHE 7 RFHEH Y ITHEV4/6F L TV D,

E— LM DXEAE D LRI ) H850 MPaT 1200 W& 1800 W il 2R
WEBTE D, I DEPTREP . EMERE IS O K E 1800 WA31200 W
IR BEMERSTWNDLIERN D, E—LROEEL L DL L /TG
FI#PAS550 MPa T E — A £1.53 mm& 1.04 mmOFE RN T&x 5, Jn S E
BENE L, JEMBERIE DO RKRE WV E — AL 04 mmAS 1. 53 nmil b~ & F
MERSOTWNDBIERIND, 2D OREFIT— W 720 5 3B & [F
CEWx D, ABMORBIZONTIE, EMERISHOREWEREEGFmE D
R Lo TEBY, WHBREIZEEIC NP EETIARERS D Z &N 0
o Tz,
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Effect of beam power Effect of beam diameter
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Fig. 5.8 Results of three-point bending fatigue test (Effect of heat input)

5.3.2 fiBEORE
(a) BB L1

Fig.5.91C k2 &, MBRHWICBT H2EEREAFRIST (oy) 1T, WTh
OMBEOEEIE NS E— NIESIHE CIEEMIG I TH O LSS » oL 5
EEBIES DM~ T P L, B~ B2 RTZER”IND, 2
niE, ABO R BREOKRE —H T 5, Fig. 5. 101, MHrE 7 L 0 Wi m X
Thbh., BEISH M EZR L TWD, SO EREICITEMRS . RKE g
TICIERKRBIEIE IR ML T WD, £, EROZEREALBEEICHEHT S
WEOHIE, DEVRREEICEMIS . REFREBICSIRSDBEL D &
WIHYHREL IS —H LT,

LR, REBEICOVWTHEELZHENS —ETHLI O, KRIAATESI KO E—FK
ERAFRBEOMEL>TEY EHICNEOEZZTOETEMEOEEL 1D
LM TED (Fig.5.11) , S HIZ, Fig. 5. 12Ic 7T X H 12, R TOBEAR
RN T, BMEO LT OKREIC T2 B TX L ER3oholc, WHEMRE
AHE T, BIRISE DD REVWEEIEEEMIS D ERoTm, ZOWREREA
T DRI S — RIS EFEEIC O W T ETERIEEIC X D EMIS O
HEORBEEEZ L EREZBLEZGALEELRVWEAS THITEZIT-> -
fERAZ, Fig. 5. 13l 7T, PEABCOBEREE NIEICIZEET RS, £EODO
BT ETRNWZ B hoTlc, ANBWOZEBPFAE T, BWESRE LI o
FRBEISIE, WEOBIRISTORIEHRE WS BT, WAL ERIIZHEILZE
WIS B EESNDZ 2N LEN, 4R 2HE CHEIARES IR
ETHDH, T2 T, IWHEBREATHOIESRSERS DT, BRRISDBKE W
PRFEIE SRR T MICBIEFEEIS INAELDL LN NS, TE— FIED
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L= RA

PRV T B — AP TR R RS BIAR T D W B E A T o Ik b O 6
DI IS ST BRI O G RIRE IS IS X DR T Y A 5 O JEAE I
NoFmEZBHEIIZIT TWDL] LHERELTWD,

P2
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Distance from weld toe (mm)
Fig. 5.9 Analysis results of transverse residual stresses (Effect of steel type)

(Redescription)

Compress———_ —
-650-500 -350 -150 0 150 350 500 650
® ® 606 ® ® & (MPy
=S8~ <N
Weld metal
Tensile stress
Compression stress
(a) SS400 (b) SUS304 (c) S50C (d) HT60 (e) SCM440

Fig. 5.10 Cross-sectional distributions of transverse residual stress

(Redescription)
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(a) B-1 (SS400) (b) B-2 (SUS304)

(c) B-3 (S50C) (d) B-4 (HT60)

() B-5 (SCM440)

Fig. 5.11 Cross-sectional macrographs (Effect of steel type) (Redescription)

88



5
S -200
2 SUS304
2 ss400 ¢
2 -400
s S50C
g HT60 ©
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Yield strength (MPa)

Fig. 5.12 Room-temp. yield strength vs. residual stress at weld toe (Redescription)

0
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8 SUS304
s ss400 ¥
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Fig. 5.13 Analysis results with or without consideration of transformation expansion

(Transverse direction, Residual stress at weld toe) (Redescription)
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(b) EAHEF

Fig. 5. 11" T~/ v FENLEmEBRZHEL. 77 7 Ak L O
PREERDLE, S IHOXZH TS NERFEEKtERD 7=, R
% . Table 5.6(Z/R7,

SLPEB-1~5TIR HETREIT., 2. 1~2. 50 TH »>7-, NEDEE
(5.3.181) 2B LKA 1~5CB T DI HEFREOLEBHHEIH L b
INESWNWZ D ETRE~NEELEGZDDTFERNICHEF TR EN
TRENDN, RE THRBEIT O,

Table 5.6 Shape of weld toe (Effect of steel type)

. Stress
Radius of :
Test Flank angle concentration
No. Steel type cu(rr\%a:]gl;re (degree) factor
(Ki)
A-1 SS400 0.24 145 2.2
A-2 SUS304 0.23 137 2.5
A-3 HT60 0.24 143 2.3
A-4 S50C 0.27 145 2.1
A-5 SCM440 0.22 142 2.3

(c) = pmehITH % RER

“HHBTETRBROMRE L, Fig. 5. 1412733, AR O REFE & 7 EEICHE
DM IIE . AR TIE RS E— RBRA MK LI /EIS e L, ik
MEIX, @ CRESEBERT Tho7Tm, T, EWEHOEEIETOMEM & L
T, Fig. 5. 92 AT 2 L. BRIGIBRKE WM IZ EEMIS S & 78> T
Do IEFRBOMP LR T D& LMW OEMERGIS A KE WM
WTREN S WEMICH D Z ERERTEDH, 272 L, S50CIETRELS E DM
Mz sD Ny hol-Fig. 5. 15X T IE TR % 2 MMS50C
D2. 1M —L TR LEMTH D2, JuOFig. 5. 14D #5 ] & 45 W TR O I 77 F
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