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Introduction

For a pointed finite CWFpair (X, A), define as usual the ̂ -dimensional un-

oriented cobordism group Sίlk(X, A) of (X, A) by

3ί*(-Y, A) = lim [S"-"(XIA), M0(n)],
n

and denote Σ 1flh(X, A) by <3t*(X, A).

We identify the coeficient ring 31* with the unoriented bordism ring Sft* by

the Atiyah-Poincare duality [2]

D : yik -> 91-* .

Let PM be the w-dimensional real projective space and ??„ be the canonical

line bundle over Pn. Define

= lim
n

where W1= lim WJji^) is the cobordism first Stiefel-Whitney class [4]. On
n

account of the Kunneth formula, the homomorphism

induced by a continuous map μm „ satisfying μ%,nvm+n = π*Vm®π*VH gives

rise to the comultiplication

μ* :

Let

P = ^ 1 + ^ ί

be a primitive element in ?ί*(βθ(l)) with respect to this comultiplication. Such
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elements exist ([3]). Fix once and for all a primitive element P of such kind.
Following Novikov [8, appendix II], we define in section 1 a cobordism stable

operation ΦP which is a multiplicative projection characterised by the formula

ΦP(W1) = P.

The restriction of the natural transformation

μ I Image ΦP : Image ΦP -> H*(X, A Z2)

is a natural ring isomorphism in the category of finite CW pairs. And this induces
a natural Si*-algebra isomorphism

5ft*(X, A) » 91* ® H*(X, A;Z2).

Conversely, any such natural isomorphism, commuting with suspensions, is
induced by ΦP for some choice of a primitive element P.

In section 2, we study the relation between the operations Sω and Sω defined
in [8]. The result is applied in section 3 to prove that the coefficient z^ of a
primitive element P is the bordism class [P2k] °f the real projective space for
each k^O.

And the coefficient z4k+1 is shown to be the class [P(l, 2k)] of Dold manifold
[5] in section 4.

The coefficients z£ of dimensions i other than 2k and 4&+1 are expressed as
very complicated polynomials in the generators of Dold [5] or of Milnor [7].

The present paper is motivated by the following classification theorem stated
in the proof of Theorem 8.1 in [3].

Theorem. P. (Boardman [3])
For an arbitrary family of decomposable elements {jv'-i ί JV-i^^2f'-i> z'^1},

there exists one and the only one primitive element

in ^*(£O(1)), satisfying

The coefficients zk_x with k not a power of 2 are a set of polynomial generators

for 5ft*.

Moreover, if z2t_1=z/

2i_1for 1 fgz ^n for primitive elements

P = W1+z2W1

3+ztW*+z5W1

e+z6WS+z7W°+

and

P' =
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then zk-i=zk-i for k not a multiple of 2n+1.

The author wishes to thank Professors M. Nakaoka and F. Uchida for their
advices and encouragement.

1. Operation ΦP

Let e^*(0)= 2 ĉ WO) denote the ring of stable operations in the un-

oriented cobordism theory. There is an isomorphism of ϋft*-modules ([6], [8])

Ψ : oϊ*(0) - 5R* ® Z2[[Wl9 W2y ..., Wk9 •••]],

where 9Ϊ* is identified with Jί* by the duality and (g) denotes the complete tensor
product.

For a partition ω=(i19 i29 •••, ίr)> denote PFω the symmetrized monomial of
the Wk and the operation SωEΞ^?*(0) is defined by 5 β=Ψ" 1(PFω).

For a primitive element

P = W1+z2W1

3+ziW1

5+z5W*+zW+z7W*+-

in 9l*(.BO(l)) and for a partition ω = ( ί l f ί2, •••, ir), we denote the product
Z i 1 ' Z i 2 ' " Z i r

 a S Zω

Following the line of Novikov [8 appendix II], we define an operation

Φpeoί°(0) by

where the summation runs through all the partitions.

Lemma 1.1.

(1) ΦP(χ.y) = ΦP(x

(2) φp(z0) = z0 for zo^3lo and

ΦP(y) = 0 for y^% ( i>0) .

(3) (ΦP) 2 = Φ P .

Proof.
(1). By the definition of ΦP and from the Cartan formula for Sω ([6], [8]),

part (1) is easily derived.
(2). It is obvious by definition that φP(z0)=zQ for zo^yio.
It is known that Sω(ίF1)= W,k+1 if ω=(k) for some k^O and that S β (ϊF 1 )=0

otherwise ([6], [8]). Thus Φ ^ H ^ ^ P . By the naturality of Φ P , {ΦP)\Wλ)
=ΦP(P) is also a primitive element with the leading term Wλ. So it follows
from Theorem P in the introduction together with the fact that ^ ^ ^ ^ { O }
that
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for some decomposable elementsy^j-

On the other hand,

Comparing both formulas, we see that φp{zk_^)=Q for Λ^7. So Φp(#8_i)

= 0 since ar7 is decomposable. So 3>7=0 and it follows Theorem P that j 1 6 y + 7 = 0

for ally ^ 0. Repeting this procedure, we can inductively deduce that ΦP(zk_1)=0

for all k^3. At the same time we have proved that (ΦP)
2(W1)=ΦP(W1).

Now (Φp)2 is also a multiplicative operation. As in the weakly complex case

([8]), a multiplicative operation of the unoriented cobordism theory is easily seen

to be uniquely determined by its value on W\. Therefore ( Φ P ) 2 = Φ p . This

completes the proof of Lemma 1.1.

Notation. For a partition ω=(ily i2y •• ,ir)> ^ e t llωll—zΊ+^H \-irbeits

degree and | ω | =r its length. And we call ω non-dyadic if none of the component

ik of ω is of the form 2m — 1.

Theorem 1.2. On the category of finite pointed CW pairs and continuous

maps, there is a natural direct sum splitting as a graded Z2-vector space

W*(X, A)= e * Γ Φ P ( S J Ϊ * ( X , A)),
ω; non-dyadic

where (1) the restriction

μ I Image ΦP : ΦP(^(X, A)) -> H*(X, A Z2)

is a natural Z2-algebra isomorphism, and (2) the scalar multiplication

* Γ ^ : ΦP($ft*(X, A)) -> ^ p ) Φ P (? i*(X, A))

is a graded Z2-module isomorphism of degree — | |ω| | if ω is non-dyadic.

Therefore we obtain a natural equivalence of graded Ήl*-algebras

3l*(X, A) - ^ f t * ® H*(X, A Z2)

eϋAzVA commutes with suspension. (Suspension S and a bordism element x act on the

π^/tf iy *Sf(jy®β)=3;®'S'(α) and x(y®a)=x y®a, respectively.)

Moreover, the converse holds such an equivalence is induced by © #ί,P)Φp
ω; non-dyadic

for some choice of a primitive element P.

For the proof of the above theorem, we need the following operations which
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are just the unoriented analogue of those defined in [8].

Lemma 1.3.
For an indecomposable element y ^ ^ , define an operation Ay.= Σ ,?«*""Σ

((/)*= (ί, i9 ..., i) the k copies of ΐ)
Then

Ayi(a*b) = Ayi(a).b+a.Ayi(b)+yrAyi(a).Ayi(b)

and, in particular,

The proof of the lemma is straightforward from the definition of Δ^. and
the fact that SQO(yt)=\<=Z2.

Proof of Theorem 1.2.
First we prove property (1). By (2) of Lemma 1.1, property (1) holds for

(X, A)=(S°, P). Since Φ P commutes with suspensions, (1) also holds for (X, A)
=(Sn

y P) for n^l. Since ΦP is a projection, ΦF(5Jl*(,)) is also a cohomology
theory. So the general cases are proved by induction on the number of cells in
X—A, using the five lemma.

Next we prove property (2). The multiplication

z^v. φp($l*(Xy A)) -> z™ΦpCSl*(X9 A))

is obviously a graded Z2-module epimorphism of degree — | |ω| |.
Suppose z(J) a=0 for aGΦp(ϊί*(Z, ^4)) and for a non-dyadic ω. Order the

components of ω=(/1, ί2y •••, ir)
 a s h^h= %"^kK a n < i define the operation A^ by

Δ . Γ = Δ.,oΔ, |o...oΔ,, .
Ί *2 r

Then a=A2

ζJ\zlFκa)=Azl
P\0)=0 by Lemma 1.3. This proves property

(2)
Totally order the set of all non-dyadic partitions by ω'<ω if (a) | |a/| |<||a>||

or(b) | |ω' | | = | |ω|| and ir=js9 ~,ir-m+i=js-m+i> K-m>U-m ̂ r some m^O, where
<»'=(ii, i2y ~ >ir) and ω=(jlyj2, —,;,) with iλ<,i2^ — <,ir and y ^ j ^ . - ^ / , .

We show that

Φ P Δ Z £ > ( * Γ Φ P ( y)) = 0

for any homogeneous element 3; if ω'<ω. In case | |ω ' | |< | |ω | | , Lemma 1.3
implies that

for some elements u^W* and j y ^ Φ p ^ * ^ , ^4)) with dimtt f.^| |ω| | — | |ω' | |>0.
Thus, by Lemma 1.1 (1), (2),
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<M Σ M. J . ) = Σ ΦΛ«i)

In case | |ω' | | = | |ω|| and ir=js, —, ir-m>js_m,

- 0 .

The last equality follows from the preceding case.
Let Σ ztPΦP(pi*(X, A)) be the graded vector space spanned by all

z^Φp^^X, A)) with ω'<ω.
It follows from the above fact that

Σ z$>ΦP(yt*X, A))A^P)ΦP(9fϊ*(X, A)) = 0

for each ω, so that there is a direct sum splitting

ω ; non-dyadic ω; non-dyadic

Since it can be proved similarly as above that Image (ΦPoΔ^P ))
= Image Φ P for each non-dyadic ω, we have proved that there is a natural linear
endomorphism of degree zero

ω; non-dyadic ω; non-dyadic

It is clearly an automorphism for (X7 A)=(S°, P) and therefore an automor-
phism for every finite CWpair by the effect of suspensions and of the five lemma.
Thus

0 #1P)ΦP($TC*(X, A)) = 9ί*(-Y, A).
*«>; non-dyadic

Since z^ΦP(y)'Z^ΦP(yr) = z^Φp(ymy'), we have obtained a natural
equivalence of graded 31*-algebras

, A) β 9ί* ® //*(X, ^ Z2)

which commutes with suspension.
Conversely, each such equivalence Θ induces a natural monomorphism of

a graded Z2-algebra

λ = Θ"11 H*(X, A;Z2): H*(X, A;Z2)-> 9l*(X, A).

Then the composition \oμ is a stable miltiplicative operation in cJ?*(0) and
\oμ{W1)=\(w1)=P is a primitive element in 9i*(fiO(l)). And the element P
has the leading term W1 since



BOARDMAN'S GENERATING SETS 225

is an ϊi*-algebra isomorphism. Therefore

θ = θ {1 ® (μ I Image ΦP)} :
ω; non-dyadic / \

yt*(X, A)= φ z^ΦP{Vl*{X, A)) -> φ K P ) ® H*{X, A Z2)}
ω; non-dyadic ω; non-dyadic

This completes the proof of Theorem 1.2.

2. Operations Sω

Let Wω denote the symmetrized monomial of the cobordism normal charac-

teristic classes Wk. (Wω(ξ)=Wω(—ξ) for every stable vector bundle ξ.) The

operation Sω is defined in [8] by Sω=Ψ~1(Wω)y where Ψ is the additive isomor-

phism mentioned in section 1.

Notation 2.1. (Landweber [6])

For a partition ω=(ι1,
 β ,i r) l e t rJJ) denote the occurrences of the integer i

in ω. And define

. v ίO if ^ < | ω | = r

lω/~ ^

ω

— j if

The modulo 2 reduction of ( n ) is denoted by ( n ) .
\ ω / \ ω /2

Similarly to the weakly complex case [8], we can easily determine the value

Lemma 2.2.

(1) Sω[Pk] =

(2) Su[Pk] = (2P~k~l) [p ] forp such that 2*>&+l.
v ω /2

Proof. By the geometric interpretation of the action of ^?*(0) on 31* given

in [6], [8], Sω[Pk]=SWω(τP)=s(k+ί) ί F 1

l l ω | l = f*+1\ [Pk_UωU] Part (2)
\ CO /2 \ CO ' 2 .

is proved similarly. Now we give some relations between Sω and Sω.

Lemma 2.3.

(1) If the occurrence rω(i)<^l in ω for all i, then Sω=Sω.
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(2) Sζi* = Σ S,.. and dually
l l ω l l = *

= Σ
llω !l

where ί*ω w meant a partition (i j 1 9 i'j2> •••> i'jr)for ω=(ji>J2y "*>jr)'

After Landweber [6] we denote the partition .(/)* by AΔX and the totality of
linear combinations of the Sω by ^4*(0). ^4*(0) is proved a Hopf algebra over

Theorem 2.4. (Landweber [6])
The set {S2*Δ1> S ^ ^^0} provides a minimal set of generators of A*(0).

Corollary 2.5.
The set {S2*Δ1, S2*Δ2 £ ^ 0 } provides a minimal set of generators of A*(0).

Proof of Lemma 2.3.
By the Whitney product formula, it follows that Σ W Wω = 0 ifωΦ (0).

ω = s ω i ω 2

Therefore H Ĉfo=Wi:ί) f° r all ί ^ l and we see by induction on the lengths of
partitions that Wω=Wω if rω(i)<^l for all /. Part (1) follows from this and
from the definition of Sω and Sω.

Put

for a sufficiently large s.
Then part (2) of the lemma is proved by induction on k as follows

w^= Σ wiOiW^->= Σ ( Σ w^yw^-,

= Σ { Σ (Σ(«ί)y («i)M}{Σ(«i) («ί-ι)}

= Σ (Σ(«ί)'ι-(«i)'-)( Σ ( *. ) )

ιιωιι=* V 0

Part (2) follows from this.

Proof of Corollary 2.5.
It follows from Lemma 2.3 and Theorem 2.4 that

S2*Δj = S2*Δl+£2*-iΔ2+decomposables in -4*(0), and

S2*Δ2 = 52*Δ2+decomposables in ^4*(0).

Thus the corollary follows from Theorem 2.4.
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3. Even dimensional coefficients

Following suit of Novikov [8, appendix I], we obtain the following. We omit
the proof.

Lemma 3.1.
For a partition ω and for a positive integer k=2p(2q-\~l) (/>^0, #=^1), the

following formula holds if 11 ω 11 ^ 2P

2

2

') = 0 '

z{ denote the coefficients of a fixed primitive element P as in the introduc-

tion.

Now we prove the following theorem.

Theorem 3.2.
The coefficient z2k of a primitive element

4

P = wi+z2W1'+ziW1

5+z5W1

G+z6W1

7+z7W1

8+-'

in 9i*(5O(l)) is equal to the bordism class [P2k]for all k^l.

Proof. For k—1, the theorem is clear since z2 is indecomposable from
Theorem P in the introduction.

Assume that the theorem holds up to dimension 2(&—-1)^2.
In order to show that Sω{z2k^r[P2k])=Wω{z2k+[P2k])=Q for all ω with | |ω||

=2ky it saffices from Theorem 2.4 to prove

S s (z 1.4-1 P J} — 0 (i — 1 2^

To prove this, we see from Lemma 3.1 and the induction assumption that it
is sufficient to show

Σ Sm^i[P2k_ni](2k+ί-ni) = 0 ( ί = 1,2).

This is obvious in case 2si>2k or s=0 since

by Lemmas 2.2 (1) and 2.3 (2).
For the remaining cases, it suffices to prove the following lemma.

Lemma 3.3.

(1) Σ ( Σ (k-n))(k~n) = 0 (mod 2) f
m + «=>Λ||ω||=,w\ ω / / \ ^ /

or
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(2) Σ ( Σ (k-2n))(k-2n) Ξ 0 {mod 2) fo

Proof.

(1) Put

A(ky s) = w Σ Γ Σ ^~"nW*"""n) (k^O, s^O), and

5(ft, s) =mΣia(uΊlu(
k^

Then it holds in general that

/A_w\ /b — tj 1\ /fe_w_1N
//v ' ^ \ / / v #* J. I i / /v ' * A

( n ) = ( M ) + ( „ - ! ,

ι|Σm(*~M) = o ί Σj A ~^~ 1 ) .
So we obtain that ^

(*) ^(A, j )= Σ A(k-1, s')+ Σ -4(^-2, s") and

/ψ ψ \ Tί̂ ίί Λ V* TMb 1 c^_J_ SΠ

Part (1) clearly holds when k=s=2.
Assume, by induction, that (1) holds for such (k9 s) that ko>k*t2 and

Thus, for (koy s0) with

o) = Σ A(ko-h s')+ Σ A(ko-2, s") = 0 (mod 2)

by the induction hypothesis and by the fact that A(k, s) = \ for k^s and ί = 0 , 1.
And for (k0, ko)> the iterated application of (*) shows that

K) = A{ko-h ko)+A(ko-2, fto-l)

= A(l, ko)+ Σ -4(0, s") = 0 (mod 2).

Part (2) of the lemma is proved similarly, using the formula (**) repeatedly.
This completes the proof of Lemma 3.3 and Theorem 3.2.

REMARK 3.4. Theorem 3.2 has been proved independently by F. Uchida
[9] by a geometric method.

4. The coefficients of dimensions

A. Dold has defined in [5] manifolds P(m, n) which are the identification
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spaces of SmxCPn with (#,*)=(—#, *). He proved that, for 2p(2q+l) — l
(pi^l, #2^1), the bordism class [P(2p—l, 2pq)] provides a polynomial generator
of Ji* in the corresponding dimension.

Theorem 4.1.

The coefficient z4k+1 of a primitive element

P = W1+z2W*+zJV*+z5W*+zJV1

1+z1W1

s+--

in 9t*(BO(l)) is equal to the bordism class [P(l, 2k)] for all k^l.

For the proof of this theorem, we need the following notations.

Notation 4.2.

(1) Let cp(m) denote the coefficient of 2P in the dyadic expansion of the in-

teger m

m = ro(w)+^(m).2+c2(m).22+..., Ci(tn) = 0, 1 .

(2) For a partition ω, we denote by ω(cp) the partition determined by
rωC , (i)=cp(rω(i)) for all i ^ l . Thus ω= Π (ω(cp))2p. For brevity,

Tl(ω(cp))2p~2 and ω ^ ^ ω^o) are denoted as w and 5, respectively;

ω=(ώ)4ώ.

Lemma 4.3.

(n\ =ΐί(Cβ{n)\ Ύhu/n\ /n-φ)-2-co(n)\ fφ) 2+φ)\ ^
V ω /2 o$Aa)(^)/2 V a) /2 ( 4 IV ω A

\ ω ' z

Proof. By definition,

In- Σ rω(i)\

. ( — )

Then, by Lucus' theorem [1],

(n Σ r.(0\ / /^(« Σ rβ(0)\ \

π is<st-1 = π π iSi£ί-1

'<n)- ^ - η
This completes the proof.

Now we calculate all the normal Stiefel-Whitney numbers of P(l, 2k). It is
easily seen that the cobordism Stiefel-Whitney numbers of manifolds agree with
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the cohomological ones ([6], [8]). So, by abuse of a notation, we denote both
Stiefel-Whitney numbers by Wω (and the normal ones by Wω).

Wa[P(ί, 2k)] =

Lemma 4.4.

0 if \ώ\^3 and ώφ3Δ x or ^ = (1),

) if ω = 3Δi or

2 ^ | ώ | ^ l and δ φ ( l ) ,

where p is any integer with 2 / >>Λ+l.

Proof.
According to Dold [5].

H*(P(\, 2k) Z2) « J / * ( P l X C P r t Z,)

as a ring. Let ί: and rf denote the 1- and 2-dimensional generators of
#*(P(1, 2A) Z2). The total Whitney class is given in [5] by

and thus

l, 2A) =

where/) is any integer with 2 / >>&+l and t2=t1 t2=d and ί i + t ^ c .
By formula (26) in [5],

f ϊ '+f i^O and t\t+1+tlt+1 = cd*.

The lemma follows from these facts and the preceding lemma.

Proof of Theorem 4.1.

Theorem P in the introduction asserts that # 4 + 1 =[P(l, 2)]. Assume, by
induction, that #4ife/+1=[P(l, 2k')] for k'^k—1.

By Lemma 3.1 and Theorem 3.2, together with Lemma 2.2 (2), 4.3 and 4.4,

( ω 2 ) 4 ω 2

for ω such that | |ω | |—4^+1. (The terms with | |ω 2 | |=2 vanish by Lemma 4.3.)

Therefore, by the induction hypothesis and by Lemma 4.3, together with the

fact that I &t \ + | ώ2\ = | ώ \ +4/ (/^0), it can be shown that

S ω ( W > = Σ 0 + Σ 0 = 0 if \&\ϊ>5.
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In case 5=(2t, 2», 4/, 4(k-\\ω\\-i-j)+l),

= Σ {(^-l-(*-IWI-O)(*-IWI
ω»ω1ω2l\ δJj / 2 \ ω2

by the induction hypothesis and by Lemma 4.3.

Suppose (2pf— 1 — (k— | |ω 2 | | — i)\ ίk— | |ω 2 | | — A = 1 for some separation
V ω1 / 2 \ ω2 /2

ω1ω2 of ω.

Since cp(2p/— \ — {k— \\w2\\ — t))^cp(k— \\ω2\\ — i) for eachp9 there is at most
one i£>l such that cp{rJJ)) Φ 0. Let r be the number of such odd integers
2z'+l ^>1 that satisfy r s (2z+l)>0. Then, by Lemma 4.3, the numbers of such
separations ω1ω2=ω and ω1'ω2'=ω that satisfy

/2>'-l-(k-\\m2\\-i)\/k-\\m2\\-i\ = 1 a n d

V 6)i / 2 \ Wo / 2

M " " κ = 1 ,

respectively, are both 2r.
The situation is the same if we suppose

s2P'-l-(\\π\\+j+k-\\ω2\\)\n\ω\\+j+k-\\m2\\\ = ί

V ω1 s?\ ω2 ' 2

for some separation ω1 ω2=δ>.
Therefore 5 ω (^ 4 A f + 1 )=0+0=0 or = 1 + 1=0 if ώ=(2j,2j,4k,

4(s-\\ω\\-j-k)+l).
We can prove analogously in other cases when ώ=(l) or | ώ | ^ 3 and ώΦ 3Δj

that Sω(z4k+1)=0.
When I ώ| =2, from dimensional reasons, ώ=(2j, 4(ί— ||ω|Q — 2/+1) for

some y ̂  1. In this case

ώ2φ(0)

+ Σ

= Σ
δ=»ώ co

_(2p-\-k\
~\ m A
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as required.

When 5=3AX or ώ=Ain+1 (w^l), analogous arguments show that Sω(z4k+1)

\ ω I

Comparing these facts with Lemma 4.4, we deduce that Sω(z4k+1)

= Wω(z4k+1)=Wω(P(l, 2k)) for allω with | |ω | |=4Λ+l. This completes the

proof of Theorem 4.1.
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