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Developing a framework for assessing climate change 

impacts on human health at local and regional levels 

Robert Macnee 

 

Abstract 

Climate change is complex phenomenon that is driven by variables at all scales. Its impacts can be felt 

at global, local and even individual levels. If we consider that there is now almost unanimous consensus 

among scientists that greenhouse gas accumulation in the atmosphere due to anthropogenic emissions 

is causing the climate to change (McMichael et al. 2006), the main remaining knowledge gaps concern 

the extent of this change and, specifically, the impacts that it will have on humans and the environment. 

This presents a problem when attempting to quantify the impact of climate change on specific health 

outcomes. Therefore, there is now a requirement to develop methodologies to project the impact of 

climate change at local levels, considering all potential risk factors and health outcomes (Field et al. 

2014). The complexity of climate systems means that results or outputs from an assessment of a risk 

factor or health outcome in one region are not necessarily applicable to other regions, which may have 

different environmental, social, economic and infrastructural characteristics. This wide range of spatial 

variety highlights the need for case based research into climate change impacts. However, as with all 

risk assessments, it is preferable to have a common framework or methodology upon which to base 

local studies. Another emerging requirement for climate change impact research is the need to place 

climate change related health risks in context with other sources of risk. All regions and individuals are 

faced by multiple risks from different sources. Quantifying the risk that climate risk factors pose to 

different human health outcomes in a unit that is directly comparable to risks from non-climate sources 

is, therefore, a useful tool for placing climate related health risks in a multiple risk context. This research 

aims to develop standardised approaches to quantifying the risk of human induced climate change on 

health at local and regional levels, using an evolutionary, case-based approach. The final outcome of 

the research is to provide a methodology which enables climate change related health risks to be 

quantified in a common risk unit, at a local and regional scale. 

A case-based approach is taken to analyse two specific risk factors, which are currently difficult to 

quantify - infectious diseases and heat waves. Building upon the findings of these two studies and the 

limitations of the quantification methods used, a framework is proposed to quantify the impact of 

climate change on health outcomes at a local level. Three main objectives are used to formulate the 

structure of the research, with a final objective developed to collate the findings into higher level 

implications for research and policy making in the field of climate change impacts on human health and 
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risk assessment in general. Chapter 1 provides some introduction to climate change and the ways in 

which it impacts human health. This chapter also describes the problems faced when analysing human 

health risks from climate change and identifies key research and knowledge gaps. The structure of the 

study is described and the research questions that it aims to address are explained. In context, this thesis 

aims to (1) understand the impact of the climate on infectious disease prevalence in two East Asian 

countries: Japan and the Republic of Korea, with a focus on malaria; (2) determine the variables 

affecting vulnerability to heat waves and combine and map this vulnerability with heat wave exposure 

data at a local level; (3) develop a framework that all risk factors and health outcomes can be quantified 

on the same scale, using Disability Adjusted Life Years (DALYs) as a common unit. 

Chapter 2 tackles the first specific objective of understanding the impact of climate on malaria 

prevalence in Japan and the Republic of Korea includes investigating and comparing past trends of 

incidence of malaria, the influence of climate, and developing a method to identify areas at risk of re-

emergence. The malaria situation in both countries is compared, with reasons for the differences 

investigated. The link between climatic factors (mean monthly minimum temperature, mean monthly 

maximum temperature, monthly precipitation and mean monthly relative humidity) and malaria 

incidence is statistically analysed in the Republic of Korea. Temperature is identified as the major 

climatic influence on malaria transmission rates at a monthly level for the study region. Based upon this 

finding, a biological, temperature dependent model - a base reproduction rate model - is combined with 

climate model outputs to plot current and future climatic suitability for stable malaria transmission in 

the study regions. This approach to modelling infectious disease risk under climate scenarios is critically 

assessed. 

The second objective is addressed in Chapter 3. This objective is to determine the variables affecting 

vulnerability to heat waves and to quantify and map these at a local level. The main aim of this Chapter 

is to produce an output that can be useful for identifying high-risk areas for policy makers and 

stakeholders. A key facet of this topic is combining a vulnerability assessment with spatial analysis of 

heat exposure, to provide information that can be used to prioritise countermeasure selection. The 

analysis is conducted in Osaka City, Japan, to provide real world context and to enable comparison to 

vulnerability studies in other locations. Principle Component Analysis (PCA) of vulnerability indicators 

is conducted to construct three principle components determining vulnerability to heat waves. These 

are (1) socioeconomic factors; (2) social isolation; (3) physical characteristics. The principle 

components are mapped individually, to identify differences in the spatial distribution of each. They 

are then weighted, based upon the PCA results, and combined to produce an overall vulnerability index 

score, which is divided into 8 risk categories, based upon standard deviation of the scores. The 

vulnerability index score is combined with outputs from a fine scale assessment of exposure to extreme 

heat across the city, based on observations from weather stations located around the city. The combined 

output enables the most vulnerable and exposed areas to be identified simultaneously. This method of 
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quantification and dual vulnerability and exposure assessment is useful for effective implementation of 

countermeasures to reduce the impact of heat waves at a local scale. 

Chapter 4 covers the third research objective. This objective has a broader scope, in that it develops a 

framework that all risk factors and health outcomes can be quantified on the same scale, using Disability 

Adjusted Life Years (DALYs) as a common unit. The framework is designed to be transferrable to 

different regions, which will aid understanding of the spatial differences in risk. Producing DALYs as 

an output unit also fulfils the requirement to place climate change risks in context with other risks. 

Cardiovascular disease and meteorological disaster related injuries in Osaka Prefecture, Japan are used 

as worked examples of how the framework can be used to assess climate change impacts on human 

health at both a regional and local scale, for two fundamentally different health outcomes. The example 

health outcomes were selected due to their importance to the study region and the strong differences in 

the nature of their impact on human health. The idea was to demonstrate the applicability of the 

suggested framework on a chronic and an acute health outcome, which would produce outputs 

quantifying the impact of climate change on each, on a common scale. This framework, therefore, 

provides a useful reference for producing standardised but transferrable human health impact 

assessments, as well as producing a result to allow for risk comparisons in a multiple risk environment. 

As a conclusion to the study, the limitations and key contributions of the methods and findings are 

discussed. Recommendations for the future direction of study are identified and explained in context. 

Recommendations for the use of the climate change human health impact quantification framework are 

provided, with a specific focus on the uses for policy makers. 

Chapter 5 addresses the final objective of the study. This chapter collates the findings, limitations and 

implications of the three subsidiary objectives and draws meaningful conclusions. The conclusions in 

this chapter aim to contribute to scientific advancement in the field of climate change impact assessment 

and provide direction to organisations and individuals who are required to take action and implement 

risk reduction policy related to climate change and human health. Recommendations are provided in 

how to improve the methodologies provided, with particular attention given to real world applicability. 

Future research pathways are also discussed, based upon the implications of the research conducted in 

the thesis. These two concepts formed the backbone of the study, as research in the field of risk analysis 

should be focused on advancing understanding and communicating this understanding in a transparent, 

clear and unbiased manner to stakeholders and policy makers alike.



 

 

  



iv 

 

Acknowledgements 

This thesis exists due to the help, guidance and support of several people and organisations. I would 

like to take the time to thank them here. 

Firstly, I express my great thanks to my supervisor, Professor Akihiro Tokai. His guidance throughout 

this study has been invaluable. His critical thinking and clear understanding of how to conduct 

meaningful and applicable research enabled me to continually focus my research on specific, 

meaningful goals and questions. The structure, content and conclusions of each study in this thesis 

would be inferior were it not for his contribution. I owe my understanding of the processes involved in 

producing research that contributes to science and society to him. 

I would like to acknowledge the insightful comments and suggestions from the two reviewers of this 

thesis: Professor Akira Kondo and Professor Yoshiyuki Shimoda. Their contributions helped to further 

my research. I would also like to thank Dr. Keiko Masumoto at the Osaka City Institute of Public Health 

and Environmental Sciences for providing invaluable meteorological data for Osaka City. 

Thanks must also be expressed to all the members of the Environmental Management Lab at Osaka 

University, particularly my fellow doctoral students and the staff researchers, who patiently listened to 

my monthly reports and rehearsal presentations. Their comments helped me to improve my research 

and focus my mind on important aspects of the studies undertaken. 

This dissertation would not have been possible without the financial support of the Ministry of 

Education, Culture, Sports, Science and Technology: MEXT. I would also like to acknowledge the 

APEC Climate Center, Busan, South Korea, for their funding, assistance and data sharing for the initial 

part of the first study in this thesis. 

Finally, I would like to thank my close friends and family members for their emotional support during 

my time in Japan. I wouldn’t have been able to achieve this without them.



 

 

 

 



v 

 

Table of Contents 

Abstract ................................................................................................................................................ i 

Acknowledgements ............................................................................................................................ iv 

List of Figures .................................................................................................................................... ix 

List of Tables ..................................................................................................................................... xi 

Definitions of relevant key words and acronyms .............................................................................. xii 

Chapter 1. Introduction ........................................................................................................................... 1 

1.1. Background ............................................................................................................................. 1 

1.1.1. Climate change overview – The global situation in 2016 ............................................... 1 

1.1.2. Climate change and human health – what are the nature of the risks? ........................... 2 

1.1.3. Specific threats to Japan .................................................................................................. 5 

1.2. Definition of the problem ........................................................................................................ 6 

1.2.1. Problem statement ........................................................................................................... 6 

1.2.2. Research question ........................................................................................................... 9 

1.2.3. Research objectives ......................................................................................................... 9 

1.2.4. Scope of the research .................................................................................................... 10 

1.3. Research framework ............................................................................................................. 10 

References ......................................................................................................................................... 13 

Chapter 2. A comparative analysis of malaria risk in Japan and the Republic of Korea: current trends 

and future risk in the context of climate change ................................................................................... 19 

2.1. Context setting ...................................................................................................................... 19 

2.2. Introduction ........................................................................................................................... 19 

2.3. Methods................................................................................................................................. 20 

2.3.1. Direct comparison ......................................................................................................... 21 

2.3.2. Quantitative assessment of cases and climatic factors .................................................. 21 

2.3.3. Base reproduction rate model risk projections .............................................................. 21 

2.4. Results ................................................................................................................................... 23 

2.4.1. Direct comparison ......................................................................................................... 23 

2.4.2. Quantitative assessment of cases and climatic factors .................................................. 25 

2.4.3. Base reproduction rate model risk projections .............................................................. 27 

2.5. Discussion ............................................................................................................................. 30 

2.5.1. Direct comparison ......................................................................................................... 30 

2.5.2. Quantitative assessment of climatic factors .................................................................. 30 

2.5.3. Base reproduction rate prediction model ...................................................................... 31 

2.6. Conclusion ............................................................................................................................ 32 

References ......................................................................................................................................... 33 

Chapter 3. Heat wave vulnerability and exposure mapping for Osaka City, Japan .............................. 37 



 

vi 

 

3.1. Context setting ...................................................................................................................... 37 

3.2. Introduction ........................................................................................................................... 38 

3.3. Methods................................................................................................................................. 40 

3.3.1. Development of a heat wave vulnerability index .......................................................... 40 

3.3.2. Mapping heat exposure data ......................................................................................... 41 

3.3.3. Combining exposure and sensitivity mapping .............................................................. 41 

3.4. Results ................................................................................................................................... 42 

3.4.1. Vulnerability index ....................................................................................................... 42 

3.4.2. Heat exposure distribution ............................................................................................ 46 

3.4.3. Combined vulnerability mapping .................................................................................. 46 

3.5. Discussion ............................................................................................................................. 48 

3.5.1. Characteristics of the heat wave vulnerability index .................................................... 49 

3.5.2. Heat exposure distribution ............................................................................................ 50 

3.5.3. Combined vulnerability and exposure analysis ............................................................. 51 

3.6. Conclusion ............................................................................................................................ 52 

References ......................................................................................................................................... 52 

Chapter 4. The development of a method to determine the burden of climate change on different 

health outcomes at a local scale: A case study in Osaka Prefecture, Japan .......................................... 56 

4.1. Context setting ...................................................................................................................... 56 

4.2. An introduction to DALY ..................................................................................................... 56 

4.3. Study introduction ................................................................................................................. 57 

4.4. Methods................................................................................................................................. 58 

4.4.1. Risk factor identification ............................................................................................... 59 

4.4.2. Degree of exposure ....................................................................................................... 59 

4.4.3. Current death rate .......................................................................................................... 60 

4.4.4. Future death rate............................................................................................................ 60 

4.4.5. Relative risk .................................................................................................................. 62 

4.4.6. Burden of climate .......................................................................................................... 62 

4.4.7. Study location ............................................................................................................... 62 

4.5. Results ................................................................................................................................... 63 

4.5.1. Degree of exposure ....................................................................................................... 63 

4.5.2. Current death rate .......................................................................................................... 65 

4.5.3. Future death rate and relative risk ................................................................................. 65 

4.5.4. Burden of climate change ............................................................................................. 66 

4.6. Discussion ............................................................................................................................. 69 

4.6.1. Degree of exposure ....................................................................................................... 69 

4.6.2. Death rate projections ................................................................................................... 70 

4.6.3. Burden of climate change ............................................................................................. 70 



 

vii 

 

4.7. Conclusion ............................................................................................................................ 72 

References ......................................................................................................................................... 73 

Chapter 5. Conclusion and future recommendations ............................................................................ 77 

5.1. Quantification of climate change impacts on infectious diseases ......................................... 78 

5.1.1. Climate as a driver of malaria transmission in a re-emerging risk area ........................ 78 

5.1.2. Base reproduction rate model ....................................................................................... 78 

5.1.3. Limitations and applicability ........................................................................................ 78 

5.1.4. Recommendations ......................................................................................................... 79 

5.2. Human vulnerability and exposure to heat waves ................................................................. 79 

5.2.1. Applicability of a heat wave vulnerability index to Japan ............................................ 79 

5.2.2. Fine scale heat exposure assessment ............................................................................. 80 

5.2.3. Combined exposure and vulnerability analysis ............................................................. 80 

5.2.4. Limitations and recommendations ................................................................................ 80 

5.3. Determining the burden of climate change on human health at a local scale ....................... 81 

5.3.1. A framework for quantifying the impact of climate change on health outcomes using a 

common unit. ................................................................................................................................ 81 

5.3.2. Consideration of vulnerability ...................................................................................... 82 

5.3.3. Local scale spatial analysis of climate change impacts................................................. 82 

5.3.4. Applicability of DALY to adaptation planning ............................................................ 83 

5.3.5. Limitations and recommendations ................................................................................ 84 

5.4. Concluding remarks and recommendations .......................................................................... 86 

5.4.1. Recommendations to address limitations at the current stage of research .................... 87 

5.4.2. Recommendations to expand the scope of this research ............................................... 90 

References ......................................................................................................................................... 92 

Appendix ............................................................................................................................................... 94 

Appendix 1.1. Average number of monthly malaria cases and average monthly climatic variables 

for each region in South Korea (2001-2011) .................................................................................... 94 

Appendix 1.2. Annual malaria cases per region in the Republic of Korea 2001-2011 ..................... 98 

Appendix 1.3. Annual malaria cases in the Republic of Korea 2001-2011 ...................................... 99 

Appendix 1.4. Monthly maximum temperature and malaria cases for all regions in the Republic of 

Korea (2001-2011) ............................................................................................................................ 99 

Appendix 1.5. Monthly minimum temperature and malaria cases for all regions in the Republic of 

Korea (2001-2011) .......................................................................................................................... 100 

Appendix 1.6. Monthly precipitation and malaria cases for all regions in the Republic of Korea 

(2001-2011)..................................................................................................................................... 100 

Appendix 1.6. Monthly relative humidity and malaria cases for all regions in the Republic of Korea 

(2001-2011)..................................................................................................................................... 101 

Appendix 2.1. Heat wave vulnerability index scores and vulnerability information for Chuo Ward, 

Osaka City, Japan............................................................................................................................ 102 



 

viii 

 

Appendix 2.2. Principle component analysis output for Osaka City, Japan ................................... 109 

Appendix 2.3. Heat wave vulnerability and exposure mapping for Osaka City, Japan: Supporting 

information ...................................................................................................................................... 111 

Appendix 3.1. Location of Osaka Prefecture, Japan ....................................................................... 114 

Appendix 3.2. Full study framework for Chapter 4 ........................................................................ 115 

Appendix 3.3. Osaka Prefecture Digital Elevation Map ................................................................. 116 

Appendix 3.4. 1km resolution interpolated observed temperatures for Osaka Prefecture 1980 – 

2000 ................................................................................................................................................ 117 

Appendix 3.5. 1km resolution climate model output temperatures for Osaka Prefecture 2050 ..... 118 

Appendix 3.6. Projected change in mean annual temperature per administrative zone 2000 – 2015, 

in Osaka Prefecture, Japan .............................................................................................................. 119 

Appendix 3.7. Population per administrative zone in Osaka Prefecture ......................................... 120 

Appendix 3.8. Population density per administrative zone in Osaka Prefecture ............................ 121 

Appendix 3.9. Regression analysis of observed annual Tmax and the number of days above 

designated CVD risk temperature thresholds for Osaka Prefecture 1985-2015 ............................. 122 

Appendix 3.10. Regression analysis of observed annual precipitation, the number of high intensity 

rainfall events and meteorological DRIs ......................................................................................... 123 

Appendix 3.11. A selected portion of the climate change influenced cardiovascular disease risk 

database for Osaka prefecture ......................................................................................................... 124 

Appendix 3.12. Flood and sediment risk zones in Osaka prefecture .............................................. 126 



ix 

 

List of Figures 

 

Figure 1.1.1: GMST temperature anomalies 1880-2015 with no smoothing (solid line) and a Lowess-5 

smoothing (dashed line) (Data accessed from GISS, 2016). .................................................................. 1 

Figure 1.1.2: Impact pathways from anthropogenic induced climate change to human health impacts. 

Human health endpoints can be categorised into direct, indirect, chronic and acute.............................. 4 

Figure 1.1.3: Conceptual diagram of the influence of climate and human changes on climate change 

related risks (adapted from Field et al. 2013). ........................................................................................ 5 

Figure 1.3.1: Thesis structure and flow of the research ........................................................................ 12 

Figure 2.4.1: Annual reported cases of malaria in Japan (solid line) South Korea (dashed line) and 

North Korea (dotted line, right axis) 1990-2010 (KCDC, 2014; IDSC, 2014; Pant et al, 2014). ......... 24 

Figure 2.4.2: Imported cases of malaria in Japan (solid line) and South Korea (dashed line) 1990-2010 

(KCDC, 2014; IDSC, 2014). ................................................................................................................. 24 

Figure 2.4.3: Average reported cases per month in South Korea 1993-2010 (KCDC, 2014). ............. 25 

Figure 2.4.4: Relationship between monthly cases of malaria and average minimum (a) and maximum 

temperatures (b), precipitation (c) and relative humidity (d) respectively for Gyeonggi Provence. .... 26 

Figure 2.4.5: Projected 2001-2010 malaria transmission climate suitability and 2005-2008 observed 

prevalence (KCDC, 2014). ................................................................................................................... 28 

Figure 2.4.6: Projections of the estimated number of months that malaria transmission can be 

supported in South Korea based upon monthly average temperature generated from an MM5 

downscaled climate model for 2001-2010, 2021-2030, 2041-2050, 2061-2070 and 2091-2100 

respectively. .......................................................................................................................................... 29 

Figure 2.4.7: Projections of the estimated number of months that malaria transmission can be 

supported in Japan and South Korea based upon monthly average temperature generated from the 

CCSM4 climate model for 2001-2010, 2021-2030, 2041-2050, 2061-2070 and 2091-2100 

respectively. .......................................................................................................................................... 29 

Figure 3.2.1: Annual number of > 30 and > 35°C days and linear regression for Osaka City [Itami 

Airport Meteorological Station (JMA 2015)]. ...................................................................................... 39 

Figure 3.4.1: Value distribution of the calculated Heat Vulnerability Index (HVI). ............................ 43 

Figure 3.4.2: Output from the vulnerability index calculation, showing low (white, green) to high 

(orange, red) vulnerability (a); Getis-Ord z score Hot Spot Analysis, showing clusters of high (red) 

and low (blue) vulnerability (b). ........................................................................................................... 44 

Figure 3.4.3: Spatial distribution of the three key components identified in the PCA; component 1: 

age, education and unemployment (a), component 2: social isolation (b) and component 3 density and 

lack of green space (c). The scales are unit-less, displayed as standard deviations from the mean. ..... 45 



 

x 

 

Figure 3.4.4: Interpolated observational data of the number of degree hours > 30°C (a) and the 

number of days where Tmin > 25°C (b) for Osaka City in summer 2007. The scale indicates the mean 

(yellow), and 2 SD from the mean (green −2 SD; red +2 SD). Black dots indicate the location of 

weather recording stations. ................................................................................................................... 47 

Figure 3.4.5: Overlay of census district HVI scores and heat exposure. Checked areas indicate > 50 

days with Tmin > 25°C (> 1 SD above the mean). Diagonal checked areas > 1370 degree hours above 

30°C for summer 2007 (> 1 SD above the mean). ................................................................................ 48 

Figure 4.4.1: Framework for calculating the burden of climate change on health outcomes. Dashed 

boxes indicate inputs and solid boxes indicate processes. The full framework for the two case studies 

in this topic is displayed in Appendix 3.2. ............................................................................................ 58 

Figure 4.5.1: Frequency distribution of Tmax degree days at the baseline climate (black)and that 

produced from CMIP5 2050 projections at RCP 4.5(White). ............................................................... 64 

Figure 4.5.2: Projections of the annual number of days with a Tmax > 28oC, averaged for each 

administrative zone in Osaka Prefecture for the baseline climate (a) and 2050 (b) Inset shows the 

location of Osaka Prefecture in Japan. .................................................................................................. 64 

Figure 4.5.3: Relative risk of climate change on CVD in Osaka Prefecture in 2050. .......................... 66 

Figure 4.5.4: Total DALY estimates for 2010 (a), and projected change in the rate of DALY /100,000 

in 2050 (b). ............................................................................................................................................ 67 

Figure 4.5.5: Urban area only visualisations of the degree of increased exposure to > 28 oC Tmax 

days (a), the baseline DALY rate of CVD (b). The projected change in DALY under climate change 

conditions (c), and a Getis-Ord cluster analysis of hot spots of high climate change impact (red) and 

low impact (Blue) areas within the Osaka Metropolitan Area (d). ....................................................... 68 

Figure 5.4.1: Schematic of the research flow and further areas of study that can build on the findings 

of this project (dashed boxes). .............................................................................................................. 87 

 



xi 

 

List of Tables 

 

Table 2.4.1: Multiple regression analysis of climatic variables and regional malaria prevalence (2001-

2010). .................................................................................................................................................... 27 

Table 3.3.1: Variables used as proxy indicators of heat wave vulnerability for Osaka City (data from 

E-Stat, 2015) ......................................................................................................................................... 40 

Table 3.4.1: PCA of the proxy measures used, including eigenvalues, % of variance and loadings .... 42 

Table 3.4.2: Loading numbers for sub-ward-level heat vulnerability variables for each principle 

component based on data from Chome districts ................................................................................... 42 

Table 4.5.1: Average annual frequency of excess mortality threshold Tmax days .............................. 63 

Table 4.5.2: Death rate of CVD (2000-2014) and meteorological DRIs (1989-2000). ........................ 65 

Table 4.5.3: Projected death rate of CVD and meteorological DRIs for Osaka Prefecture in 2050. .... 65 

Table 4.5.4: The burden of climate change on CVD and meteorological DRIs in Osaka Prefecture in 

2050. ..................................................................................................................................................... 67 



xii 

 

Definitions of relevant key words and acronyms 

Definitions and explanations of key words and acronyms found throughout the thesis are provided 

below. Most of the definitions are acronyms or technical terms, however definitions are provided for 

some general words that have a specific definition in relation to climate change impact research. 

 

Adaptation: The process of adjustment to changes in the climate and its effects 

(Cardona et al. 2012). 

Base reproduction rate model:  A method of modelling the number of cases of a disease that could be 

transmitted per incidence of the disease, based upon the biology of the 

disease parasite, the biology of the disease vector, and the ambient 

temperature. 

CVD:    Cardiovascular disease. 

DALY: Disability Adjusted Life Years: a measure of overall disease burden, 

expressed as the number of years lost due to ill-health, disability or 

early death (GBD, 2013). 

Disability Weight: Weight given to a particular disease or health outcome that reflects the 

severity of the disease on a scale from 0 (perfect health) to 1 

(equivalent to death) (GBD, 2013). 

DRR: Disaster Risk Reduction: An approach to risk management that 

focuses on hazardous events and reducing their impact (Füssel and 

Klein, 2006). 

Exposure: The nature and degree to which a system is exposed to significant 

climatic variations (Füssel and Klein, 2006). 

Getis-Ord Hotspot Analysis: A statistical method of quantifying spatial clustering of data. This 

method analyses the value of spatial features within the context of 

neighbouring features. The output, a z-score, determines whether each 

feature is in a cluster of high (+) or low (-) value features (Mitchell, 

2005). 

GIS: Geographic Information System - An information system that is 

designed to work with data referenced by spatial or geographic 

coordinates (Foote et al. 1996). 
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Gonotrophic cycle: A phase of malaria transmission – The interval between a malaria 

vector (mosquito) laying each egg-batch and each blood meal (Lindsay 

et al. 2010). 

GMST: Global Mean Surface Temperature: The average surface temperature 

for the earth, based upon observed values. 

Hazard: Possible, future occurrence of natural or human-induced physical 

events that may have adverse effects on vulnerable and exposed 

elements (Cardona et al. 2012). 

HVI: Heat vulnerability index: a measure of the vulnerability of a population 

to extreme ambient temperatures. It is a function of demographic, 

socioeconomic and physical factors. 

IPCC:    Intergovernmental Panel on Climate Change. 

Lowess smoothing: A Locally weighted regression scatter plot smoothing method (GISS, 

2016). 

Meteorological DRI: Disaster related injury - An injury caused as a direct result of a 

meteorological disaster. 

Optimum Temperature: A daily maximum temperature for a specific location that, based upon 

observed data, experiences the lowest death rate compared to other 

daily maximum temperatures in the same location (Honda et al. 2014). 

PTSD: Post-traumatic stress disorder. 

RCP: Representative Concentration Pathways - Emission pathways 

developed for the climate modelling community as a basis for long-

term and near-term modelling experiments (van Vuuren et al. 2011). 

They forecast different levels of human induced radiative forcing 

based on literature derived emission scenarios to account for 

uncertainty in climate model forecasts. 

Sporogonic cycle: A phase of malaria transmission – The period of (malaria) parasite 

development in adult mosquitoes, in days (Lindsay et al. 2010). 

Tmax (Tmin): Throughout the study, this refers to maximum (minimum) temperature. 

The temporal association can be annual, monthly or daily and is 

specified, where relevant, in each chapter. 
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UHI: Urban Heat Island: The phenomenon of higher air and surface 

temperatures in urban areas compared to the surrounding suburban and 

rural areas (Solecki et al. 2005). 

Vector: Any agent (animal, or microorganism) that carries and transmits an 

infectious pathogen into another living organism (Roberts et al. 2008). 

Vulnerability: The degree to which a system is susceptible to or unable to cope with 

the adverse effects of climate change, including climate variability and 

extremes (Füssel and Klein, 2006; Smith et al. 2013). In the context of 

climate change research, vulnerability is usually considered exclusive 

of external factors. 

WHO:    World Health Organisation. 

YLD: Years Lost due to Disability: A measure of the impact of a disease due 

to its length and the amount of disability that it causes (Murray et al. 

2013). 

YLL: Years of Life Lost: A measure of the impact of a disease on a 

population, accounting for demographics. It is a function of the 

number of deaths due to a selected health outcome and the standard 

life expectancy at the age of each death (GBD, 2013).
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Chapter 1. Introduction 

 

1.1. Background 

1.1.1. Climate change overview – The global situation in 2016 

The Intergovernmental Panel on Climate Change (IPCC) reports that it is certain that global mean 

surface temperatures (GMST) have been increasing since the 19th Century and that the past three 

decades have been the warmest since records began (Stocker et al. 2013). In fact, eight of the ten 

warmest years on record have occurred in the past ten years (Figure 1.1.1). There is almost universal 

consensus among scientists that anthropogenic influences, such as changing the composition of the 

atmosphere (through greenhouse gas emissions) and land use are drivers of this change (Cubasch et al. 

2013). Anthropogenic driven warming in GMST has profound impacts on the energy balance in the 

atmosphere and ocean, which, in turn, create alterations in energy circulation and variability (Stocker 

et al. 2013). Long-term impacts on the sea level (Church and White, 2011), ice sheet size (Nghiem et 

al. 2012) and ocean circulation are being observed (Stocker et al. 2013). Observations of the impact of 

climate change include an increase in the number of hot days and a decrease in the number of cold 

nights (Field et al. 2013), variation in precipitation regimes (Trenberth, 2011) and intensification of 

extreme events (Peterson et al. 2012). The magnitude of these observed impacts is projected to increase 

further due to future climate change (Stocker et al. 2013).  

 

Figure 1.1.1: GMST temperature anomalies 1880-2015 with no smoothing (solid line) and a Lowess-5 

smoothing (dashed line) (Data accessed from GISS, 2016). 
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As a means of projecting the extent of further climate change, the IPCC has developed four scenarios 

of future emissions, upon which all climate models are built. These scenarios are identified as 

Representative Concentration Pathways (RCP) and are based upon projections of future socio-economic 

change, technological change, energy and land use, and emissions of greenhouse gases and air 

pollutants (van Vuuren et al. 2011). The RCP scenarios are named according to the level of radiative 

forcing that each scenario projects in 2100, relative to pre-industrial levels (in W/m2). The scenarios 

project low (RCP 2.5), medium (RCP 4.5 and 6.0) and high (RCP 8.5) emission scenarios, although the 

divergence in the pathways is small until 2030-2050 (van Vuuren et al. 2011). The names of each RCP 

scenario refer to the amount of radiative forcing that each scenario predicts will be attributable to 

anthropogenic emissions of greenhouse gases (GHG) The scenarios produce projections in temperature 

increase by 2100 of 0.3 oC to 4.8 oC, with mean projections of 1.0, 1.8, 2.2 and 3.7 oC for RCP 2.5, 4.5, 

6.0 and 8.5 respectively (IPCC, 2013). This indicates that the climate will continue to change throughout 

the century and that only the most drastic emission reduction scenario could limit temperature rise below 

1 oC. The projected changes in temperature will continue to impact other aspects of the climate, many 

of which have impacts on human and environmental health. 

1.1.2. Climate change and human health – what are the nature of the risks? 

Climate change presents a number of risk factors that can impact human health. The key large-scale 

risk factors that climate change presents are temperature rise, precipitation fluctuations and a change in 

the frequency and intensity of extreme events (Field et al. 2014). These macroscale risk factors impact 

other aspects of the climate system, environment and ecosystems (Figure 1.1.2). For example, higher 

temperatures mean that there is increased evaporation and a greater capacity for the atmosphere to store 

water vapour (Stocker et al. 2013). Water vapour and its associated latent heat is a driver of atmospheric 

circulation, from small events such as thunderstorms to global circulation (Stocker et al. 2013). 

Therefore, we can understand how a rise in GMST can have an impact on precipitation patterns at all 

scales. When assessing the impact of climate change on human health, it is important to identify risk 

pathways, such as this, that link an increase in GMST with smaller scale risk factors that have a direct 

impact on humans.  

Essentially, impacts can be categorised as direct or indirect. Examples of direct health impacts include 

injuries and deaths from flooding and heat waves (McMichael et al. 2006). Indirect impacts include 

infectious disease spread due to climate change and malnutrition, from climatic influences on 

agriculture production. Understanding of the impact of climate change on direct hazardous events has 

developed in the scientific community fairly recently and intensified since the publication of the IPCC 

Special report on Extreme Events (SREX; IPCC, 2012). It is now possible to quantify the connection 

between climate change and extreme events through probability calculations (Herring et al. 2014). 

Extreme heat events are more easily attributable, due to the fact that they are more directly linked to 
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average global temperatures (Trenberth et al. 2015). Individual thermodynamically created events such 

as typhoons and storms cannot directly be attributed to climate change, however the probability of such 

events occurring can be (Trenberth et al. 2015). Two major approaches to attribution exist. The first is 

a dynamic based approach which considers the underlying atmospheric conditions at the time that a 

particular event occurred and analyses the impact that climate change has had on these conditions 

(Trenberth et al. 2015). The second is a statistical approach, based upon observations. The probability 

of an event occurring at a particular climatic state can be predicted based upon past observations and 

this can be used to predict the change in the probability of similar events occurring under climate change 

(Herring et al. 2014). Both approaches are subject to uncertainties, but they provide quantification for 

the risk of such events occurring in future climate scenarios compared to the present day and past 

climates. The impact of climate change on indirect health risk factors such as infectious disease, and 

malnutrition is based largely on changes in average climate conditions over a longer period of time 

(McMichael et al. 2006). For instance, an increase in average temperatures under climate change will 

cause alterations to the habitat extent of infectious disease vectors and the growing season length of 

crops. Through projecting these changes, it is possible to project climate change impacts to indirectly 

linked health outcomes (McMichael et al. 2006). Figure 1.1.2 identifies pathways linking GMST rise 

to major human health outcomes, although to fully understand the impacts we must also consider non-

climatic factors such as socioeconomics, adaptation and mitigation, and governance (Field et al. 2013). 

The traditional approach to tackling climate related risks is through disaster risk reduction (DRR) (IPCC, 

2013). This approach focuses on specific hazards and exposed populations and is applicable to event-

based risk management (Füssel and Klein, 2006). As understanding of climate change impacts has 

increased, other risk pathways have been discovered. These include indirect impacts, such as infectious 

diseases and malnutrition (Smith et al. 2013). Indirect impacts have more complex risk pathways and 

their impact on a specific population depends heavily on anthropogenic factors. Two health impacts 

that illustrate the ambiguousness between climate and socioeconomic risks are dengue fever (Bhatt et 

al. 2013) and malaria (Gething et al. 2010). Trends between climate and dengue (Herrera-Martinez et 

al. 2010) and malaria (Stern et al. 2011) have been identified; however, anthropogenic influences on 

both are very strong, meaning that it is often difficult to isolate and quantify the impact of climate 

related risk factors (Gething et al. 2010). These developments led to the emergence of a new 

consideration for climate change risk analysis, which included the concept of vulnerability (Füssel and 

Klein, 2006). The inclusion of vulnerability in climate change risk assessment is an important step 

forward in developing effective adaptation strategies, as it expands the options available to decision 

makers. As identified in Figure 1.1.3, the risk for a particular region, population or time is dependent 

on the exposure, hazard type and underlying vulnerability. Therefore, it is vital to conduct human health 

impact assessments for different risk pathways and health incomes at regional and local scale, to account 

for significant variations in exposure and vulnerability.
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Figure 1.1.2: Impact pathways from anthropogenic induced climate change to human health impacts. Human health endpoints can be categorised into direct, 

indirect, chronic and acute.
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Figure 1.1.3: Conceptual diagram of the influence of climate and human changes on climate change 

related risks (adapted from Field et al. 2013). 

1.1.3. Specific threats to Japan 

As a developed country, the most significant climate change risk factors for Japan are increasing mean 

temperatures, and changes in the frequency and magnitude of extreme events (Campbell-Lendrum et al. 

2007). Increasing temperatures will have implications for agriculture (Tanaka et al. 2014), infectious 

disease prevalence (Bitoh et al. 2011) and heat related illnesses (Honda et al. 2014) in Japan. Extreme 

events, such as heavy precipitation, tropical storms and typhoons impact Japan several times each year. 

Under climate change scenarios, the frequency and magnitude of these events is expected to be altered, 

which has implications for public health and environmental management in Japan. 

The mean annual temperature in Japan has increased by 1.15oC throughout the past century (1898-2010; 

JMA, 2011). The frequency of > 35oC days and > 25oC nights has also increased, and is projected to 

continue increasing (MEXT et al. 2009). In terms of human health impacts, these risk factors pose two 

major health impacts to Japan. Increasing mean annual temperature causes an expansion of the habitats 

of infectious disease transmitting vectors, such as anopheles albopictus (dengue fever), and an 

expansion of the active season of vectors including anopheles sinensis (malaria) (Kobayashi et al. 2008). 

These changes increase the likelihood of imported cases of vector borne diseases being transmitted 

within Japan (MEXT et al. 2009). Projected increases in the frequency of extremely hot days and nights 

pose a threat to the health of a large portion of the population of Japan. Takahashi et al. (2007) and 
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Honda et al. (2014) investigated the concept of an Optimum Temperature for human health (a daily 

maximum temperature value). The concept of the optimum temperature is that this is the temperature 

at which the minimum number of daily deaths occur (Honda et al. 2014). Once this temperature is 

exceeded, the death rate due to heat related illnesses increases exponentially. Temperatures below the 

optimum temperature also experience an increase in the death rate, but at a much slower rate. Empirical 

evidence supports the finding that a greater frequency of days above this optimum temperature exposes 

the population to more dangerous temperatures and increases the risk of succumbing to heat related 

illnesses (Honda et al. 2014). 

The Japan Meteorological Agency defines an extreme heavy precipitation event as an incident of 

rainfall above 50 mm/hr (JMA, 2016). The frequency of heavy precipitation events (> 50 mm/hr) has 

increased since the latter half of the 19th Century (JMA, 2016). Iizumi et al (2012) projected that this 

trend will increase under future climate scenarios. An increase in the number of heavy precipitation 

events increases the risk of inland flooding and landslides. This has strong implications for Japan, as 

the population is highly concentrated in many areas that are at risk of flooding (Emori et al. 2005). 

Tezuka et al. (2014) investigated the relationship between annual precipitation, extreme precipitation 

events and flood damage costs. Precipitation was found to have a linear relationship with the number 

of extreme precipitation events. A similar linear relationship was determined to exist between the 

intensity of an extreme event and the economic cost (Tezuka et al. 2014). This trend was projected to 

continue beyond 2050 in the study area and provides one way of quantifying the impact of the extreme 

events risk factor. There is less conclusive evidence of the impact of climate change on the frequency 

and intensity of tropical storms and typhoons in Japan; however, Mei et al. (2015) projected that climate 

change is impacting the peak intensity of tropical storms and typhoons. They projected an increase in 

the frequency of very intense storms and that the actual intensity of the most damaging storms will also 

exceed current levels. This has the potential to have damaging consequences for Japan, as most of the 

urban areas are low lying and close to the coast, leaving them vulnerable to strong typhoons and 

accompanying storm surges. 

1.2. Definition of the problem 

1.2.1. Problem statement 

Climate change is complex phenomenon that is driven a number of variables. Its impacts can also be 

felt at scales ranging from global to regional, local and even individual levels. This presents a problem 

in how to quantify the impact of climate change on specific health outcomes. As outlined in Figure 

1.1.3.1, there are a complex number of pathways leading from anthropogenic influenced climate change 

to individual health outcomes. If we consider that there is now almost unanimous consensus among 

scientists that greenhouse gas accumulation in the atmosphere due to anthropogenic emissions is 
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causing the climate to change (McMichael et al. 2006), the main uncertainty remains about the extent 

of this change and the impacts that it will have. Uncertainty in the projected extent of climate change 

was addressed by the IPCC with the advent of the Special Report of Emissions Scenarios (Nakicenovic 

and Swart, 2000). This was replaced by the current Representative Concentration Pathways (RCP) in 

the IPCC Fifth Assessment Report (van Vuuren et al. 2011). The RCPs represent four different 

emissions scenarios that utilise 95% of the scientific literature on radiative forcing and emissions and 

include high (RCP 8.5), low (RCP2.5) and two intermediate scenarios (RCP4.5 and RCP6.0). 

Projections using climate models can be run with all of these scenarios to account for uncertainty, 

although the variation between the scenarios only becomes significant from between 2030-2050 (van 

Vuuren (2011). Thus, the main, unaddressed quantification of climate change is the physical impact on 

the environment and human health. Quantification of this requires an understanding of the pathways 

with which climate change impacts human health. Identification of the risk factors and their impact on 

human health outcomes is needed in order to produce meaningful quantifications that have real world 

uses.  

The scientific consensus about global climate change is clear (Ebi et al. 2007). However, differences in 

local climate, topography, land use, and infrastructure result in different climate change impacts at the 

regional and local scales. (Ebi et al. 2007). For this reason, general, global scale climate models and 

projections are inadequate to base adaptation strategies on at a local and regional scale. Due to the 

complex nature of climate change impact pathways and the wide range of spatially unique influences 

at different scales, it is important that all methodologies seeking to understand climate change impact 

are built around real world case studies. The variety of impacts range from direct to indirect and acute 

to chronic, meaning that generalisations of large scale climate change are inappropriate for basing 

effective adaptation strategies on. There is a requirement to develop methodologies to project the impact 

of climate change at local levels, considering all potential risk factors and health outcomes for each 

location (Field et al. 2014). Results or outputs from an assessment of a risk factor or health outcome in 

one region are not necessarily applicable to other regions which may have different environmental, 

social, economic and infrastructural characteristics. This phenomenon highlights the need for case based 

research into climate change impacts. This, however, does not mean that methodologies of assessments 

cannot be transferrable to different regions or locations. The whole world is exposed to large scale 

changes in atmospheric composition and circulation, meaning that generalised global climate models 

can provide a foundation for local and regional scale assessments (Cubasch et al. 2013). The difficulty 

arises in converting macroscale projections into something that is applicable to a local environment. 

Sophisticated downscaling techniques now exist, which can take outputs from global climate models 

and use them as parameters that drive high resolution regional climate models (RCMs). RCMs can be 

created by statistical downscaling or dynamic downscaling. As of 2016, dynamically downscaled 

models are generally perceived to be preferable, as they are based on complex atmospheric physics, 
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which can replicate microscale and mesoscale atmospheric circulation such as tropical cyclone 

formation (Knutson et al. 2010). So, downscaling provides a solution to account for differences in local 

climate and topography, but there is still a requirement to address regional differences in land-use, 

ecology, social systems, economics and infrastructure. This is where local case study methodology 

becomes important. Local case studies into climate change are abundant (Basu and Samet, 2002; IPCC, 

2014), but there is a lack of cohesion about the end point output of these studies. Different 

methodologies and units are used as indicators of climate change impacts, which means that decision 

makers are faced with a difficult task of selecting methodologies and outputs that are applicable to their 

area of interest and that are comparable to other studies or risk factors. There is a requirement for a 

universal framework to be developed to assess the impact of different climatic risk factors on different 

health outcomes at different scales. This would provide organisation and structure to climate change 

impact studies and increase our understanding of what drives regional differences in impacts. 

Further to the development of transferrable frameworks, a common unit that can be used for comparing, 

combining and contextualising climate change impacts on human health is required. If all regional and 

local scale studies produced results from a structured and transferable method, that generates a 

standardised output unit, a much deeper understanding of the nature and spatial components of climate 

change health impacts would be generated. It would also be much easier to compare the results of 

different studies, in different locations; an important benefit due to the spatial variety of climate change 

impacts. Often, poor communication of a risk is a barrier to successful risk reduction policy 

implementation (Laboy-Nieves et al. 2010). We have seen this in the context of climate change, where, 

perhaps more than any other global risk, perceptions of the risk and potential impacts have hindered 

effective mitigation and adaptive action more than any other risk (Weber, 2010). Providing clear, 

concise and transparent information is a key aspect of influencing peoples’ perception of risk. Providing 

a standardised methodology for assessing climate change risk factors on human health outcomes would 

be an important step towards improving communication of the nature of risk that people face from 

climate change in their location. With improved communication would come improved understanding 

and cooperation, and an increased capacity for providing effective solutions to the risks posed. 

Decision makers need knowledge that helps them make informed decisions at the appropriate scale, 

with the appropriate course of action. This requires them to be able to prioritise allocation of resources 

to the most pressing risks for each spatial area. In the context of climate change, a decision maker 

requires knowledge about both the nature and extent of the impact upon a health outcome. 

Understanding the nature and extent of the impact can help to identify which health outcomes are most 

affected by climate change and also identify the impact that a climate risk factor has compared to other 

risk factors (dietary, genetic or chemical, for example). Quantifying the impact of climate change on 

health outcomes on a comparable scale and using a common unit would provide a solution to this. 
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1.2.2. Research question 

Although climate change is a global phenomenon, its impacts are felt at local and regional scales. This 

research aims to understand how climate change impacts different health outcomes at a regional and 

local scale. The pressing question is:  

Can the impact of climate change on different health outcomes be quantified using a common unit at a 

local and regional scale? 

From a risk management perspective, it is important to develop a system that enables disparate and 

dissimilar health outcomes to be quantified and compared on a common scale, in order to increase the 

understanding of impact pathways of climate change and to place the current and projected impacts in 

context with other risks. For instance, if we look at cardiovascular disease (CVD) as a health outcome; 

the risk of suffering from this disease is dependent on a number of risk factors. These risk factors include 

environmental, physiological, dietary and behavioural risks (GHDx, 2016). In order to prioritise 

countermeasures, we must consider the impact of each risk factor on the disease separately and also 

inclusively. By quantifying the impact of the climate and climate change on the disease, using a 

common unit, we can understand the risk that this poses to CVD in context with the other risks. 

Furthermore, quantifying the impact of different climatic risk factors on different health outcomes will 

aid decision from an adaptation perspective. The uses of such a methodology are therefore applicable 

to public health services, targeting specific health outcomes, as well as to risk management services 

looking to pursue effective climate change adaptation strategies. As climate change will affect different 

regions and populations differently, a methodology to provide a clear quantification at a local and 

regional scale is required. Once developed, the framework can provide a tool to promote targeted and 

well informed actions, based upon empirical projections of risk on a common scale.  

1.2.3. Research objectives 

In order to address the research question, this research undertakes investigations into climate change 

impact pathways at a local and regional scale that currently pose a problem to quantification. A case-

based approach is taken to analyse two specific risk factors, which are currently difficult to quantify 

(infectious diseases and heat waves). Building upon the findings of these two studies and the limitations 

of the quantification methods used, a method is proposed to quantify the impact of climate change on 

health outcomes at a local level. The study objectives are as follows: 

 Understand the impact of climate on infectious disease prevalence in two East Asian countries: 

Japan and the Republic of Korea. This aim includes investigating and comparing past trends of 

incidence of malaria, the influence of climate, and developing a method to identify areas at risk 

of re-emergence. 
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 Determine the variables affecting vulnerability to heat waves and map these at a local level. 

This objective attempts to quantify vulnerability to a risk factor and produce an output that can 

be useful for identifying high-risk areas. The vulnerability assessment is combined with a 

spatial analysis of exposure to provide information that can be used to prioritise countermeasure 

selection. 

 Develop a transferrable framework to quantify the impact of climate change on health outcomes 

at a local and regional scale, using a common unit. The common unit selected is Disability 

Adjusted Life Years (DALY), which will produce a quantified value of the impact of climate 

change that can be directly compared to other risks. 

 Provide recommendations for policy makers and researchers in this field and suggest future 

research advancement requirements and direction. The recommendations will be based upon 

limitations in the research and the findings that open up new research pathways. 

1.2.4. Scope of the research 

This research is confined geographically to Japan and the Republic of Korea, with a particular focus on 

the urbanised prefecture of Osaka. The frameworks and methodologies employed are designed to be 

transferrable to other regions and scales. Thus, discussion and conclusions drawn from the 

methodologies are universally applicable unless stated otherwise. However, specific interpretations of 

the results are limited to the study regions in question and do not necessarily apply to other regions. 

These implications are discussed where applicable in the studies conducted, with any broader ranging 

conclusions highlighted where necessary. Regarding the use of climate models; the data heavy nature 

of climate model outputs, particularly at high resolution, required a narrowed scope to be applied to the 

scenarios studied. For this reason, one climate scenario was employed for each investigation. The 

scenario selection process is justified where applicable in the text of each study and was selected to 

represent the most probable scenario in each case.  

1.3. Research framework 

This study is composed of three main areas of focus, which aim to target specific research areas that 

require further investigation. A more generalised and higher level information provided as an 

introduction and in a concluding section to summarise the implications and scope of the research 

conducted and to place the implications in scientific and policy implementation contexts.  

Chapter 1 introduces a background to climate change and the ways in which it impacts human health. 

This chapter also highlights past research and current research gaps. The problem that this study seeks 

to address is identified and an outline of steps taken to address this problem is presented. 

Chapter 2 presents the findings of a study into the impact of the climate and climate change on malaria 

(an infectious disease) in Japan and the Republic of Korea. This topic was selected as an example of an 
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emerging climate related health risk that is difficult to quantify. The topic initially investigates regional 

differences and the observed impact of climate on malaria transmission, before developing a prediction 

model to identify the areas that are climatically the most at risk to malaria transmission under climate 

change. 

Chapter 3 provides an assessment of heat waves in Osaka City, Japan. This topic was selected to 

highlight the differences in assessing a direct impact risk factor to an indirect one (infectious diseases). 

The chapter develops a method to quantify risk at a local level based upon the concepts of vulnerability 

and exposure to a direct climate related risk factor. The assessment is undertaken at a very fine scale 

(neighbourhood level) in order to demonstrate the applicability of climate change health risk 

quantification at a community level. A novel approach of combining a vulnerability assessment with 

fine temporal and spatial scale exposure observations is pursued and the implications of such an 

approach are discussed. 

Chapter 4 builds upon the findings of the two previous chapters to develop a framework for quantifying 

all types of climate change health impacts in a common unit. The chapter demonstrates this method at 

a local and regional scale for a chronic (cardiovascular disease) and acute (meteorological disaster 

related injuries) health impact, with Osaka Prefecture used as a case study site. The two health outcomes 

are selected due to their importance in the study area and their fundamental differences. Selecting two 

dissimilar health outcomes as case studies highlights the adaptability of the climate change risk 

quantification framework that is discussed in this chapter. Conclusions are drawn on the methodology, 

including the limitations and implications. Location specific observations and conclusions are also 

drawn, indicating some of the applicable uses of this framework method to local level studies of climate 

change health risks. 

Chapter 5 summarises the results from the thesis and combines the findings into a broader, high level 

conclusion. The main contributions of the whole study are discussed and recommendations are proposed 

to both policy makers and researchers. The thesis structure, identifying the flow of research, is indicated 

in Figure 1.3.1.
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Figure 1.3.1: Thesis structure and flow of the research
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Chapter 2. A comparative analysis of malaria risk in 

Japan and the Republic of Korea: current trends and 

future risk in the context of climate change 
 

2.1. Context setting 

In the context of climate change health impacts research, infectious diseases such as malaria and dengue 

fever pose a complex issue. Malaria and dengue are pressing health issues in many developing countries, 

where sanitary and health system conditions are lower (McMichael et al. 2006). However, they have 

largely been eradicated in developed countries (WHO, 2014). Studies have indicated that in some 

developing countries the area where malaria is endemic has expanded, due to climate change (Siraj et 

al. 2014). Research has also shown that the area of vector habitation has increased in developed 

countries, including Japan (Kobayashi et al. 2008). In these countries, the season of vector activity is 

also expanding. Thus, there is an increased risk of an imported case from an endemic region being 

transmitted within a current malaria-free area. Such cases have been identified in countries including 

France (Poncon et al. 2008), Greece (Danis et al. 2011) and the Republic of Korea (Feigner et al. 1998). 

This presents a problem in quantifying the impact that climate change may pose to infectious disease 

prevalence in developed countries.   The risk of imported cases being transmitted is increasing, but it is 

difficult to quantify by exactly how much, due to the fact that these incidences are currently sporadic. 

Add to this the increase in the number of antimalarial drug resistant strains of malaria (Park et al. 2009), 

and medical professionals’ unfamiliarity with the disease in countries like Japan (Kano and Kimura, 

2004), and it becomes clear that some quantification of the risk is required. This chapter compares the 

current situation Japan and the Republic of Korea, analyses reasons for the differences, determines the 

main climatological parameters controlling malaria prevalence and makes predictions of the climatic 

suitability of further re-emergence in the region as a result of climate change. Future projections of risk 

are made using a climatically sensitive base-reproduction rate model for malaria. 

2.2. Introduction 

Malaria is the most prevalent parasitic vector borne disease in the world, with an estimated 207 million 

reported cases per year (WHO, 2014). Despite increased global spending, there has not been a 

significant decrease in cases annually. In addition to this, the influence of the climate on a number of 

the parameters controlling transmission means that there is potential for malaria to spread to previously 

malaria free regions (Lieshout et al., 2004). For this reason, it is important to investigate malaria trends 

in areas on the periphery of the current endemic region and determine the risk of re-emergence in these 

areas. Indigenous malaria was eradicated from Japan in 1961 and from South Korea in 1979. However, 
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malaria (Plasmodium vivax strain) re-emerged in South Korea in 1993 (Feigner et al. 1998). The 

incidence of malaria outbreaks in South Korea has fluctuated since re-emergence, suggesting that re-

emergence in similar geographic areas is possible (Feigner et al. 1998; Han et al. 2006). Research 

comparing reasons for differences in prevalence between countries is important for understanding the 

variables that control malaria prevalence, and has not been undertaken between South Korea and Japan. 

Several studies that propose that there is a strong link between the climate and the distribution of malaria 

(Lieshout et al. 2004; Jones and Morse, 2010; Parham and Michael, 2010).  This is particularly true in 

terms of temperature, monthly rainfall and humidity (Kleinschmidt et al. 2000). Changes to the climate 

are most likely to have an impact on the spatio-temporal distribution of malaria in areas at the fringes 

of current endemic regions (Lindsay and Birley, 1996; Martens et al. 1999). These are areas where 

climatic conditions are seasonally suitable for malaria outbreaks (Guerra et al. 2006), where malaria 

transmission vectors are present.  With an anticipated increase of global temperatures of between 1.1-

2.9oC and 2.4-6.4oC by 2100 (Representative Concentration Pathway (RCP) climate scenarios), the area 

of the world at risk from re-emerging malaria is expected to increase. Therefore, it is important to 

understand the relationship between malaria and the climate to identify areas at the pole-ward and 

altitudinal limit of malaria distribution which could be at risk to future epidemics.  

Malaria can be controlled by anthropogenic factors, including medical treatments, vaccinations and 

control of potential vector populations (Han et al. 2006; Emert et al. 2011). These all have financial 

costs. Therefore, being able to identify areas at different risk levels is vital in ensuring that financial 

resources are allocated to malaria control efficiently (Guerra et al. 2006). This is particularly relevant 

to South Korea and Japan, where increased international travel and the presence of malaria vectors 

(Anopheles sinensis mosquito) makes re-emergence through imported malaria a potential threat (Kano 

and Kimura, 2004).            

The aim of this research is to compare the malaria situation in Japan and South Korea, and to analyse 

the risk of re-emergence occurring in Japan under climate change. The potential risk of malaria re-

emergence in an area can be estimated by calculating the base-reproduction rate model (Lindsay et al. 

2010). This model simulates the effect of temperature on the transmission rate of malaria (Lindsay and 

Birley, 1996). Therefore, it is an indicator of which areas could support transmission of malaria if 

subjected to an imported case, assuming the vector is present. A number of the parameters (human 

biting rate, gonotropic cycle and sporogonic cycle) are temperature dependent. Thus, climate can be 

used as a predictor of risk. 

2.3. Methods 

A research framework was developed to compare and explain the differences between malaria 

transmission trends in Japan and South Korea and to project the future risk of outbreaks occurring in 
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these areas as a result of climate change. An initial comparative analysis was conducted, including a 

quantitative analysis of the relationship between temperature and malaria transmission. Based upon this 

analysis, it was deemed appropriate to produce risk projections by combining a malaria transmission 

model with climate model outputs to identify changes in future risk from climate change. Finally, to 

identify the key uncertainties and focus future model improvement research, a full literature review of 

the sensitivity of the malaria transmission model components was conducted. 

2.3.1. Direct comparison 

Observational data of reported malaria cases were collated from the Korean Center for Disease Control 

(KCDC, 2014) and the Japanese Infectious Disease Surveillance Center (IDSC, 2014). A comparison 

of annual trends in Japan and South Korea was made to determine the differences in occurrence of 

malaria in both countries. In order to attempt to explain the differences, statistical analysis and a 

literature review were conducted. 

2.3.2. Quantitative assessment of cases and climatic factors 

The initial comparison revealed the need for a more detailed analysis of annual and monthly trends of 

reported malaria cases in South Korea to be conducted. Particular focus was placed on the trend of 

malaria cases in relation to known factors in malaria transmission: near surface air temperature; 

precipitation; and relative humidity. Monthly values for minimum temperature, maximum temperature, 

precipitation and relative humidity (KMA, 2011) were obtained for each region for the period 

corresponding with the available malaria records (2001-2010). The relationship between each of these 

values and the number of malaria cases was then statistically analysed using regression analysis at a 

monthly and early level to assess the correlation between each variable and the number of malaria cases. 

2.3.3. Base reproduction rate model risk projections 

The statistical analysis revealed that it was appropriate to use a process-based malaria transmission 

model to project future risk of re-emergence in the region based upon monthly temperature projections. 

The principal theory behind the process-based method is the concept of the basic reproduction rate of 

malaria (R0) (Lindsay and Thomas, 2001; Anderson and May, 1991) R0 is calculated using an equation 

to represent the temperature dependent cycles in the process of malaria transmission. The value of R0 

represents the average number of infections that are produced from the introduction of a single infected 

individual into a potential host population (van Lieshout et al, 2004). Any R0 value that is greater than 

1 means that malaria can proliferate indefinitely. If the value of R0 is less than 1 then the disease will 

die out without further external introductions (Parham and Michael, 2010). 

The formula used to calculate the basic reproduction rate (R0) is explained below (derived from 

Lindsay and Birley, 1996; Lindsay et al. 2010; Lindsay and Thomas, 2001): 
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𝑅0 =

𝑚𝑎2𝑏𝑝𝑛

− 𝑙𝑛(𝑝) 𝑟
 

 

(1)   

Where 𝑚 is the number of vectors per person and 𝑎 represents the number of mosquito bites per person 

per day (Lindsay and Birley, 1996). When the population of mosquitoes is unknown then 𝑚𝑎  is 

assumed to be one17). When 𝑚𝑎 is assumed to be one, the female mosquito feeding rate (𝑎) must be 

calculated. In this study, 𝑚𝑎 is assumed to be 1, due to the lack of available mosquito population data 

and to enable comparison with previous studies (Lindsay and Birley, 1996, Lindsay and Thomas, 2001). 

The feeding rate is calculated by using the following equation: 

    
  𝑎 =

ℎ

𝑢
 

 

(2)   

In this equation, ℎ represents the proportion of female mosquito feeding incidences (blood meal) that 

are taken from humans. An accepted constant value for this is 0.42 (Lindsay et al. 2010). 𝑢 is the length 

of time in days that it takes for a mosquito to complete the gonotrophic cycle (time between taking a 

blood meal, laying eggs and taking the next blood meal (Lindsay and Birley, 1996). The gonotrophic 

cycle length is calculated by using the following formula: 

    
𝑢 =

𝑓1

𝑇 − 𝑔1
 

 

(3)   

Here, 𝑓1 is a thermal sum, measured in degree days, representing the accumulation of temperature units 

over time that is required for the gonotrophic cycle to be completed (36.5oC (Lindsay and Thomas, 

2001)). 𝑇  represents the ambient temperature and 𝑔1  is a temperature threshold below which 

development ceases (9.9oC) (Lindsay et al. 2010). In the R0 formula, b is the proportion of female 

mosquitoes that develop parasites after taking an infective blood meal (0.19). 𝑝 is the daily survival 

probability for adult mosquitoes which, for this model, is calculated by a formula using the ambient 

temperature as a factor (Lindsay and Birley, 1996): 

    
𝑝 = 𝑒𝑥𝑝 (

−1

−4.4 + 1.31𝑇
− 0.03𝑇2) 

 

(4)   

In the initial equation, 𝑛 represents the sporogonic cycle (the length, in days, of the period of parasite 

development in adult mosquitoes) and is given by: 

    
𝑛 =

𝑓2

𝑇 − 𝑔2
 

 

(5)   
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Where 𝑓2 is a thermal sum representing the accumulation of temperature units over time to complete 

the sporogonic cycle (105 degree days) (Lindsay et al. 2010), 𝑇 is the ambient temperature and 𝑔2 is a 

temperature threshold below which the cycle cannot be completed (14.5oC). 𝑟 is the average recovery 

rate of humans once they have been infected with malaria (0.0167 recovery per day). 

For the risk map projections, climate model outputs (monthly average temperature) from the Korean 

Meteorological Agency (MM5 Regional Climate Model (RCM) (Koo et al. 2009)), for South Korea, 

and the CMIP5 CCSM4 model run for RCP 8.5, to show maximum potential comparative risk (for the 

comparative maps of Japan and Korea) were incorporated into the temperature dependent parameters 

in the formulae to represent the temperature components of the model. Once run, time-slices of malaria 

risk were generated. The measure of risk was designated as the number of months that malaria 

transmission could be supported (R0 > 1), if a case of malaria was imported into the study area. The 

high resolution projections of South Korea were produced from a RCM using dynamical downscaling 

for South Korea (full methodology in Koo et al. 2009). The larger scale comparative projections, 

displaying Japan and South Korea on the same map were run from a global Climate Model (GCM): 

CMIP5 CCSM4. This separate, comparative projection, was produced in a larger scale to ensure that 

the results for both countries could be directly compared on a projection using the same climate 

projection methodology for both areas at the same scale. 

2.4. Results 

2.4.1. Direct comparison 

Annual reported cases of malaria in Japan and South Korea differ greatly, with Japan averaging 99 cases 

per year and South Korea averaging 1,575 cases per year (Figure 2.4.1). In addition to this, the annual 

variation between cases in South Korea is much greater than in Japan (Standard deviation: 1239.5 and 

23.4 respectively). Further analysis was undertaken to understand the nature of malaria cases in both 

countries. This revealed that 100% of the cases of malaria reported in Japan since 1990 were imported 

cases. When compared to imported cases in South Korea, it becomes clear that a vast majority of cases 

reported in South Korea are indigenous cases (Figure 2.4.2). Only 2.9% of cases reported in South 

Korea in 2010 were recorded as imported cases. Previous studies (Yeom et al, 2012; Jun et al. 2009) 

propose that the initial re-emergence of malaria in South Korea was caused by transmission from the 

Democratic Peoples’ Republic of Korea (North Korea). The cause of the outbreak in North Korea, 

which triggered the re-emergence in South Korea cannot be quantitatively attributed to a single cause 

due to the lack of data, though it has been proposed that it was a combination of a collapse of the medical 

care system, poor sanitation and a number of floods 1993-1996 (Feigner et al. 1998). These events 

produced more breeding sites for mosquito vectors in the vicinity of the border, which enabled the 

transfer of infected vectors into South Korea (Feigner et al. 1998). In order to understand the difference 
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in malaria transmission patterns between Japan and South Korea, comparisons of other known malaria 

transmission parameters were made between both countries. This revealed that the land-use in both 

countries is distributed similarly, with the only significant difference being the percentage of the 

population living in urban areas - a poor land-use classification for malaria transmission. (92% in Japan, 

compared to 83% in South Korea (CIA World Factbook, 2014)). 

 

Figure 2.4.1: Annual reported cases of malaria in Japan (solid line) South Korea (dashed line) and 

North Korea (dotted line, right axis) 1990-2010 (KCDC, 2014; IDSC, 2014; Pant et al, 2014). 

 

Figure 2.4.2: Imported cases of malaria in Japan (solid line) and South Korea (dashed line) 1990-2010 

(KCDC, 2014; IDSC, 2014). 
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2.4.2. Quantitative assessment of cases and climatic factors 

A strong seasonal trend in the number of reported cases of malaria was found in all provinces. July and 

August were found to be the most prevalent months for malaria, with an average of 390.8 and 404.5 

cases respectively (Figure 2.4.3). Multiple regression analysis was undertaken to determine the 

relationships between monthly reported malaria cases and the corresponding monthly average values 

of four climatic variables: Minimum and maximum temperature; precipitation; relative humidity. The 

variables statistically significantly predicted 11.1% (R2) of the variation in malaria cases. The low R2 

values can be explained by the vast regional differences in the number of cases recorded each month. 

Multiple regression analysis was re-run with the regions selected as nominal value variables. The 

statistically significant regression (R2 = 13.1%) identified the region variable as the most significantly 

significant predictor of cases (β = -0.159). To investigate the climatic impact at a regional level, multiple 

regression analysis was performed for each region. This identified a stronger relationship between the 

four climate variables and malaria prevalence (Table 2.4.1). A strong relationship was found between 

average monthly minimum and maximum temperature and malaria prevalence, particularly in Gyeonggi 

province (R2 68.7% and 61.2% respectively; Figure 2.4.4). Other provinces showed similar trends, though 

with lower R2 values. Regression analysis of precipitation and relative humidity and malaria prevalence 

showed that a significant relationship existed, although it was weaker than the relationship with temperature 

variables. This provided the foundation for producing a prediction model based upon temperature. 

 

Figure 2.4.3: Average reported cases per month in South Korea 1993-2010 (KCDC, 2014).
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Figure 2.4.4: Relationship between monthly cases of malaria and average minimum (a) and maximum temperatures (b), precipitation (c) and relative humidity 

(d) respectively for Gyeonggi Provence.

0

50

100

150

200

250

300

-15 -5 5 15 25

M
al

ar
ia

 c
as

es

Average minimum  daily temperature (oC)

0

50

100

150

200

250

300

-5 5 15 25 35

M
al

ar
ia

 c
as

es

Average maximum daily temperature (oC)

0

50

100

150

200

250

300

0 200 400 600 800

M
al

ar
ia

 c
as

es

Monthly Precipitation (mm)

0

50

100

150

200

250

300

45 55 65 75 85
M

al
ar

ia
 c

as
es

Relative Humidity (%)



27 

 

Table 2.4.1: Multiple regression analysis of climatic variables and regional malaria prevalence (2001-

2010). 

Region R2 % Total malaria cases 

Gyeonggi 76.2 7423 

Incheon 56.4 2693 

Seoul 66.5 2444 

Gangwon 36.9 1827 

Busan 51.6 420 

South Gyeongsang 41.7 304 

North Gyeongsang 17.6 285 

North Jeolla 53.3 240 

Daegu 57.3 232 

South ChungChong 51.7 221 

South Jeolla 51.1 210 

North Chungcheong 47.7 196 

Daejon 47.2 175 

Ulsan 39.7 163 

Gwangju 35.5 145 

 

2.4.3. Base reproduction rate model risk projections 

The projections show the number of months per year that malaria transmission can be sustained based 

upon monthly average temperature. The projections were initially computed for South Korea for the 

time slice 2001-2010 by combining the base-reproduction rate model with a Regional Climate Model 

output, MM5 (Koo et al. 2009). When 2001-2010 projections are compared with observations of 

malaria cases it can be seen that temperature is not currently the limiting factor for malaria prevalence 

in South Korea. The projection indicates that there is more malaria transmission potential in the South 

and West, whereas observations show that most cases occur in the North and North-west.  However, 

when analysing the most prevalent areas (37-38o North), the trend is represented well in the projections 

(Figure 2.4.5). 
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Figure 2.4.5: Projected 2001-2010 malaria transmission climate suitability and 2005-2008 observed 

prevalence (KCDC, 2014). 

 

The number of months that the R0 value is greater than 1 was computed as an average for ten-year time 

slices 2001-2010 to 2091-2100 (Figure 2.4.6). The projections indicate that South Korea will become 

more suitable for supporting malaria transmission in the future. Areas that are most suitable for 

transmission appear to be located more towards the South and West of the country and in low-lying 

regions. To further compare the risk of an outbreak of malaria arising from an imported case, projections 

of Japan and South Korea as a whole were made at a larger scale from the CMIP5 CCSM4 model. The 

resulting projections show similar trends of a lengthening transmission season based on the climate in 

both countries, with a greater extension of the season being projected in Southern and Western Japan 

(Figure 2.4.7).
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Figure 2.4.6: Projections of the estimated number of months that malaria transmission can be supported in South Korea based upon monthly average 

temperature generated from an MM5 downscaled climate model for 2001-2010, 2021-2030, 2041-2050, 2061-2070 and 2091-2100 respectively.  

 

 

 

Figure 2.4.7: Projections of the estimated number of months that malaria transmission can be supported in Japan and South Korea based upon monthly average 

temperature generated from the CCSM4 climate model for 2001-2010, 2021-2030, 2041-2050, 2061-2070 and 2091-2100 respectively.
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2.5. Discussion 

2.5.1. Direct comparison 

South Korea has substantially more cases of malaria reported each year. Almost all of these are 

indigenous cases of malaria (Park, 2011). Due to the similar environmental, climatic and demographic 

conditions between Japan and South Korea, South Korea’s proximity to North Korea can be identified 

as the main cause of the variation between Japan and South Korea (Yeom et al. 2012; Park et al. 2009). 

Due to the similar climatic and environmental conditions in Japan and South Korea, Japan is potentially 

vulnerable to an outbreak of malaria from imported cases (Kano and Kimura, 2004). The distribution 

of mosquito vectors in has not been mapped, although evidence of mosquito vectors has been discovered 

in both countries (Kano and Kimura, 2004; Park, 2011; Rueda et al. 2006) and is evidenced in South 

Korea by the fact that 97.1% of reported cases were classified as internal transmission cases.  

The nature of reported cases in South Korea has changed since it re-emerged (Park, 2011), with over 

60% of cases in 2010 being civilian (compared to 100% of cases initially being in the military). This 

indicates that conditions in South Korea are suitable for sustaining malaria transmission. The pattern of 

malaria transmission in South Korea is heavily influenced by the conditions in North Korea; however, 

there is evidence of local transmission, as the pattern of cases in 2009 was different between the two 

countries (Yeom et al. 2012). Therefore, the occurrence of malaria in South Korea is influenced by both 

local transmission and the malaria situation in North Korea (Yeom et al. 2012). Two studies (Park, 

2011; Yeom et al. 2012) reported that the transmission season in South Korea extended annually 1993-

2010, meaning that the length of time that malaria transmission can be supported is extending as a result 

of climate change. Japan is also experiencing climate change, suggesting that it could become more at 

risk from malaria outbreaks in the future, as the mosquito vector species is widespread and abundant in 

both Japan and Korea (Rueda et al. 2006).  However, vector population density needs to be fully 

analysed in order to comprehensively determine the risk of malaria re-emergence in Japan and 

transmission in South Korea. An assessment of climatic suitability can be used as the first stage of 

analysis, to target areas for more detailed analysis of vector density, environmental conditions and 

medical care status. 

2.5.2. Quantitative assessment of climatic factors 

A statistically significant relationship between monthly minimum and maximum temperatures and the 

number of malaria cases exists at a regional level in South Korea. This is supported in the literature 

through statistical studies (Kleinschmidt et al. 2000) and biological studies (Rúa et al. 2005; Bayoh and 

Lindsay, 2004). The sensitivity of both the mosquito vector and the malaria parasite to temperature is 

strong, meaning that small temperature increases can extend the transmission season of the parasite 

(van Lieshout et al. 2004; Zhou et al, 2004). The climate of South Korea currently does not support 
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year-round transmission of malaria, meaning that it is climatically vulnerable to an extended 

transmission season (Park et al. 2009). A significant relationship between temperature and the number 

of malaria cases found in this study also suggests that the distribution of malaria could spread to areas 

where it is currently limited by temperature (Kovats et al, 2001). There appears to be a significant trend 

between both relative humidity and malaria prevalence at a seasonal level (Table 2.4.2). This trend can 

be explained by the link between increased humidity and precipitation and the amount of standing 

water on the ground surface (Lindsay and Birley, 2008). The relationship between precipitation and 

malaria prevalence is less clear due to the uncertainty of the impact of heavy rain on transmission rates 

(Singh and Sharma, 2002). The transmission rate of malaria is dependent on a wide variety of factors, 

including the level of medical controls, vector density, and the environmental characteristics. Annual 

trends indicate that temperature is not the main factor in determining the prevalence of malaria in the 

studied region (Figure 2.4.1.1). However, the analysis of climatic factors and malaria in South Korea 

displayed that prevalence is linked to climate, particularly temperature at a monthly level. Therefore, it 

is possible to use the temperature dependent base reproduction rate model as an indicator of the climatic 

suitability of a region to malaria transmission, if separated from the other variables. 

2.5.3. Base reproduction rate prediction model 

The model identifies areas that are climatically vulnerable to malaria outbreaks if other conditions are 

met. Potential risk areas are identified easily, enabling a preliminary assessment of malaria transmission 

potential. The main practical use of the model is as the initial component of a vulnerability assessment 

of an area to a vector borne disease (van Lieshout et al. 2004). In this study, an assumption was made 

to calculate 𝑚𝑎, due to the lack of available data on the population distribution of the Anopheles 

mosquito.  The resulting map projections should be taken as a guide depicting relative climatic 

suitability (Figure 2.4.3.1). With this caveat taken into account, the model projections provide a useful 

overview and highlight the relative suitability of each location for malaria transmission based on 

temperature projections.  

In order to address model uncertainty, a review of the biological components of the model was 

conducted (Rúa et al. 2005; Lindsay et al. 2004; Chitnis et al. 2008; Poncon et al. 2008). The human 

biting rate is the most sensitive parameter. This indicates that the suitability of the model is highly 

dependent on this calculation. Future improvements to this model would be to include human and 

mosquito population density data in order to more accurately depict ma. This would greatly improve 

the ability of the model to predict malaria risk. This data would also enable projections of actual 

prevalence to be made, rather than transmission potential. Identifying the human biting rate as the most 

sensitive parameter also identifies this as a key parameter to target for potential countermeasures, such 

as those that limit human-mosquito contacts (Chitnis et al. 2008, Sharma et al. 2005). 
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Despite temperature not being identified as the principle controlling variable, it is important to analyse 

trends in potential transmissivity due to the risk of imported cases of malaria transmitting locally (Danis 

et al. 2011). There is evidence of independent transmission within South Korea and other temperate, 

developed countries, including Greece (Danis et al. 2011), France and Germany (Zoller et al. 2009). These 

factors highlight the importance of modelling malaria risk and the base reproduction rate model provides an 

important first step towards comprehensive risk assessments of malaria. Future studies should focus on 

improving the validity of ma, as this is the most influential variable and is highly dependent on data 

limitations. Vector and human population distribution data is required to improve the applicability of 

the model to real world scenarios that rely on robust models. Once this function is developed, the model 

can be more comprehensively validated. 

2.6. Conclusion 

This research compared malaria transmission in South Korea and Japan and analysed reasons for the 

differences. The results showed that South Korea experiences significantly more annual cases of malaria 

than Japan. Temperature was not identified as the main variable affecting annual trends in malaria 

prevalence, indicating that other factors have a greater impact. The proximity of South Korea to North 

Korea was identified as a cause of the initial re-emergence of malaria in 1993 (Yeom et al. 2012). The 

differences between the other known variables of malaria transmission were small.  Temperature was 

not shown to be a major factor in annual trends of malaria; however, multiple regression analysis 

indicated that climatic factors have a significant influence on the monthly trends in South Korea (R2 = 

11.1%) and the individual regions (R2 = 17.3-76.4%). The differences in prevalence between regions 

indicates that although the climate has an impact, it is not the limiting factor. The base reproduction rate 

model projected that the length of the potential transmission season would increase by up to two months 

annually by 2100. Sensitivity studies have identified the limitations of the prediction model used in this study, 

particularly regarding the assumptions made in calculating 𝑚𝑎.  Future studies should focus on improving 

the robustness of this parameter and conducting site specific model sensitivity analyses. The model provides 

an important insight into impact of climate on malaria transmission. This is the first step towards 

assessing malaria risk, which can be followed up by collecting vector mosquito population and habitat 

data to investigate other controls on transmission. 
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Chapter 3. Heat wave vulnerability and exposure 

mapping for Osaka City, Japan 

 

3.1. Context setting 

Chapter 2 investigated a method of quantifying the risk to human health posed by malaria, a climate 

influenced infectious disease. The problems of quantifying this indirect risk factor were addressed and 

solutions suggested. Heat waves pose a different health impact. They are direct consequences of 

atmospheric circulation, which is controlled by the climate. This risk factor is a mesoscale event that, 

when it occurs, causes excess mortality and morbidity in exposed areas (Bai et al. 1995). Thus, the 

impact pathway and health outcomes are different. The major health impact is early death or morbidity 

due to the stress of heat on the body (Wolf and McGregor, 2013). More so than infectious disease in 

developed countries, heat wave risk to an individual or area is highly dependent on underlying 

vulnerability. Vulnerability to heat waves is itself dependent on sociodemographic characteristics (age, 

gender and wealth), physiological characteristics (susceptibility to illness, underlying health conditions), 

access to support and information, and mobility (Wolf and McGregor, 2013). For this reason, we can 

use demographic data to determine the vulnerability of a particular region and quantify this. This chapter 

combines an empirical vulnerability assessment with exposure data to produce a comprehensive 

assessment of the impact of a heat wave on a particular area: Osaka City, Japan. The study region is 

selected as a densely populated city, in a country where a study of vulnerability to heat waves using a 

heat wave index has not previously been conducted. Again, the purpose of such a quantification is to 

provide information to policy makers and risk management organisations as to what type of 

countermeasures to employ and to which areas.  

This study investigates heat wave exposure and vulnerability in an urban area. The scope is not 

specifically related to investigating the impact of climate change on heat waves, rather the spatial 

distribution of vulnerability and exposure to heat wave events. The exposure analysis seeks to develop 

a temperature profile of Osaka City to identify areas that are most impacted by heat, exacerbated by the 

Urban Heat Island (UHI) effect. Past research has identified that the UHI effect exacerbates warming 

due to climate change (Fujibe, 2011). Fujibe (2011) identified that in addition to warming from climate 

change, meteorological monitoring stations in urban areas experienced further warming of 0.03-

0.05 °C/decade. Therefore, urban areas are more exposed to climate change induced warming and 

contain much larger populations than urban areas. For this reason, it is important to understand the 

spatial distribution of both exposure and social vulnerability within a large urban area. Developing a 

method to concurrently analyse the distribution of fine scale exposure and vulnerability is an important 
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step towards the identification of areas within a city that are suitable for urban planning and social 

vulnerability reduction adaptation strategies. Areas with the highest exposure to UHI effect are likely 

to be more affected by climate change induced warming, meaning that they should be prioritised for 

adaptation planning. 

3.2. Introduction 

Globally, exposure to extreme heat is a major source of mortality and morbidity (Chestnut et al. 1998). 

The Intergovernmental Panel on Climate Change (IPCC) has reported an increase in the number of heat 

waves since the end of the twentieth century and projects that this trend will increase throughout the 

twenty-first century (IPCC 2014). In Japan, studies have shown that excess deaths during heat wave 

events can amount to 1.5 times the average mortality rate in urban areas such as Tokyo and Osaka (Bai 

et al. 1995). Given that Japan has several large metropolitan areas and an ageing population, it is 

imperative that research into heat wave vulnerability and preparedness be conducted. Furthermore, 

observations indicate that heat wave events in the Osaka region have become increasingly frequent 

since 1980 (Figure 3.2.1). 

Heat-related excess mortality is primarily caused by cardiovascular and respiratory disorders and heat 

stroke (Reid et al. 2009). This is of particular concern in large urban areas, where there are large 

population concentrations and where the urban heat island (UHI) effect exacerbates temperatures (Wolf 

and McGregor 2013). Epidemiological studies have identified a link between certain demographic 

characteristics and vulnerability to extreme heat events in the USA (Cutter et al. 2003; Reid et al. 2009), 

Europe (Huisman et al. 2004) and South Korea (Kim and Joh 2006). Continuities in the findings of 

these studies enable us to identify key proxy variables that are consistently found to increase sensitivity 

and, therefore, vulnerability to heat waves. Among the most important characteristics influencing 

spatial variability are population density (Vescovi et al. 2005), social isolation (Fouillet et al. 2006), 

age (Hajat et al. 2010), economic status (Kim and Joh 2006) and having an underlying health condition 

(Reid et al. 2009). Studies have shown that these characteristics are often intrinsically linked and 

spatially clustered (Vescovi et al. 2005), which means that they can be used to map vulnerability within 

urban environments. This is an important action to take, because, due to the heterogenic distribution of 

health risks from heat, identifying the locations of the most vulnerable populations enables city 

administrations to effectively target appropriate countermeasures to the areas that are most in need. 
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Figure 3.2.1: Annual number of > 30 and > 35°C days and linear regression for Osaka City [Itami 

Airport Meteorological Station (JMA 2015)]. 

The existing literature on this topic is focussed on population vulnerability in terms of underlying 

sensitivity to extreme heat exposure. This is useful, but the exposure of particular areas to heat extremes 

must also be taken into consideration when developing effective countermeasures. This study maps 

population vulnerability based on intra-city-scale proxy measures and overlays climate information in 

order to give a comprehensive indication of the areas of Osaka City that are vulnerable in both 

sensitivity and exposure. This combined approach has had little coverage in the literature, but provides 

additional observed exposure information to enhance plot social vulnerability to heat waves more 

comprehensively. 

Two major approaches to adapting to heat wave impacts and the UHI effect exist: increasing 

preparedness and resilience (Reid et al. 2009) and reducing exposure to extreme temperatures through 

urban environmental engineering (Han and Huh 2008; Song et al. 2015). The first approach includes 

public health measures such as preparing emergency action plans, providing education for how the 

population can protect itself and developing policies to reduce social vulnerability (Ebi et al. 2004). The 

second approach is urban planning, focussed on reducing the exposure of the population to extreme 

temperatures and involves engineering the urban environment in order to reduce the impact of the UHI 

effect. This can include developing green areas within the city, using different less absorptive building 

materials and creating architecture that improves ground-level ventilation (Song et al. 2015). By 

examining heat wave sensitivity and exposure, the areas in which these different approaches to 

adaptation planning should be adopted can be identified clearly. Under acknowledgement of the 

preceding research above, the purpose of this study is to estimate the heat vulnerability of Osaka City 

through the practical application of a heat wave vulnerability method that utilises fine-scale temperature 

observations to identify the most vulnerable areas to heat waves within the city boundary. 
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3.3. Methods 

3.3.1. Development of a heat wave vulnerability index 

Epidemiological (Braga et al. 2002; Curriero et al. 2002; Mastrangelo et al. 2007) and demographic 

studies (Kim and Joh 2006; Vescovi et al. 2005; Wolf and McGregor 2013) have identified key 

indicators of population vulnerability to extreme temperatures in urban areas. This enables demographic 

statistics that represent vulnerability to be selected and used as indicators of the vulnerability of a 

particular area. In this study, we employ this inductive approach, using proxy measures of vulnerability 

to develop a vulnerability index for Osaka City. 

The literature identifies seven main classes of vulnerability indicators (Table 3.3.1). Within these 

classes, intra-city data can be used as proxy values for each risk class. Census data for the number of 

households without working air conditioners were not available for this study. However, this is likely 

to be an insignificant indicator in Osaka City, as the average household in the city contains 3.6 air 

conditioning units (Matsumoto 2015). Furthermore, a study in Phoenix, Arizona, concluded that the 

presence of air conditioning units was an insignificant predictor of heat-related illness due to the high 

prevalence of air conditioning units in the city (Chuang and Gober 2015). 

Table 3.3.1: Variables used as proxy indicators of heat wave vulnerability for Osaka City (data from 

E-Stat, 2015) 

Class Data indicator variables (%) Scale 

Population Population density (pax/ha) Chome (Sub-ward) 

Age Population over 65 years old Chome (Sub-ward) 

Economic Population unemployed Chome (Sub-ward) 

Education 
Population who didn’t graduate high 

school 
Chome (Sub-ward) 

Social isolation Single person households, Chome (Sub-ward) 

 Over 65 single households Chome (Sub-ward) 

Health Population receiving home care Ward 

Environment Green space / open water Chome (Sub-ward) 

Suitable proxy values were extracted from 2010 census data and the National Land Numerical 

Information download service (NLNI 2016) at the smallest administrative level. The resulting database 

was subjected to a principle component analysis (PCA). For the PCA, Chome (census) administrative 

areas were used as fixed parameters and the heat risk factors were considered as variables. Direct health 

data were not available at a Chome level, so were excluded from the finest scale PCA, as in Harlan et 
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al. (2013). Some of the input variables had different units of measurements, so a correlation matrix was 

used as the basis for the PCA, which standardised the data. As in Wolf and McGregor (2013), an 

orthogonal (Varimax) rotation was used to maximise the dispersion of the variables once loaded into 

the PCA. The PCA identified key components. The percentage of variance explained by each of these 

components was used as a weight. Values for each Chome were then combined, with the weights, to 

calculate a unit-less vulnerability index score. The distribution of the index scores per Chome was 

analysed and then categorised based on standard deviation from the mean score, producing an index of 

eight categories of heat vulnerability, from low risk (1) to high risk (8). Eight categories of vulnerability 

were selected to allow comparisons to studies in other locations. To statistically analyse evidence of 

clustering in the distribution of the vulnerability index, a Getis-Ord Hot Spot Analysis was conducted 

in ArcGIS 10.2.2 software. 

3.3.2. Mapping heat exposure data 

Daily temperature observations at 35 sites in Osaka City were recorded by the Osaka City Institute of 

Public Health and Environmental Sciences in July, August and September, 2007 (the months defined 

as summer in Osaka City). The monitoring network of weather stations was established in elementary 

school playgrounds around the city (Fig. 3.4.2), and temperatures were recorded hourly throughout July, 

August and September. The year 2007 was selected for this study because this was the year with the 

most complete database of temperature recordings available for Osaka City. In order to represent 

different levels of heat exposure, temperature classes defined by the Japan Meteorological Agency 

(JMA) were used. These classes are defined as ‘hot days’ [maximum temperature (Tmax) ≥ 30°C], 

‘extremely hot days’ (Tmax ≥ 35°C) and ‘hot nights’ [minimum temperature (Tmin) ≥ 25°C] 

(Masumoto et al. 2006). The most appropriate measures of heat exposure were determined to be the 

cumulative degree hours (DHs) above the 30 and 35oC thresholds and the number of nights exceeding 

the 25°C threshold. DH was chosen as a measure for daytime thresholds because this index quantifies 

the duration and intensity of heat. DH calculated for the entire summer period also helps to account for 

different micro-meteorological phenomena which may impact local exposure values. The number of 

nights where Tmin exceeded 25°C was used because this more fully represents night-time temperature 

exposure. Selecting night-time and daytime thresholds also enables diurnal spatial exposure to be 

analysed. The selected exposure measures at each site were plotted as point values, using GIS software, 

and then interpolated, using the inverse distance weighting method, to depict the spatial pattern of 

exposure for the whole study area. 

3.3.3. Combining exposure and sensitivity mapping 

In order to maximise risk management applicability of the study, vulnerability and exposure were 

plotted together on a map of the administrative zones of Osaka City. The vulnerability index was 

calculated and categorised for each administrative district in Osaka City. This output was then compiled 
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in GIS software to produce a map displaying the vulnerability index class of each district (1–8). This 

then enabled relative daytime and night-time heat exposure and the vulnerability index scores to be 

analysed on the same map. The resulting map can be further manipulated to display all or selected 

relative risk classes and different temperature thresholds to identify the most vulnerable areas in the 

city, providing a flexible tool for vulnerability and exposure assessments. 

3.4. Results 

3.4.1. Vulnerability index 

The PCA determined the most influential variable combinations. Three key components, with 

eigenvalues > 1, were identified from the sub-ward level data. For the purposes of this study they are 

described as age, education and unemployment (component 1), social isolation (component 2) and 

density and lack of green space (component 3) (Table 3.4.1). The vulnerability index was developed 

from weighted sums of the components in the PCA, based upon the variance explained by each (Table 

3.4.1). The variable loading numbers for each component are displayed in (Table 3.4.2). 

Table 3.4.1: PCA of the proxy measures used, including eigenvalues, % of variance and loadings 

Component Eigenvalue % of Variance Cumulative % 

1 2.122 30.309 30.309 

2 1.855 26.504 56.813 

3 1.137 20.326 77.139 

 

Table 3.4.2: Loading numbers for sub-ward-level heat vulnerability variables for each principle 

component based on data from Chome districts 

Proxy variable 

Component 1 (Age, 

education, 

unemployment) 

Component 2 

(Social 

isolation) 

Component 3 

(density, lack of 

green space) 

Age > 65 0.871 0.120 0.052 

Did not graduate from high school 0.909 -0.062 -0.003 

Unemployment 0.699 0.446 0.282 

Living alone 0.010 0.916 0.109 

Age > 65 and living alone 0.164 0.884 0.081 

Density 0.145 0.099 0.805 

Percentage built up -0.009 0.083 0.821 
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The resulting vulnerability index scores ranged from 0 to 106.13, with a mean of 53.40, a median of 

55.64 and a standard deviation of 13.92 (Figure 3.4.1). The data for the 1904 districts were normally 

distributed (p > 0.05). 

 

Figure 3.4.1: Value distribution of the calculated Heat Vulnerability Index (HVI). 

The spatial distribution of heat vulnerability in Osaka City is uneven and shows clustering of 

vulnerability in certain areas. A Getis-Ord Hot Spot Analysis revealed clustering of areas with high and 

low vulnerability. Statistically significant clusters of high (low) vulnerability are identified as areas with 

a Gi* statistic z score > 2 (< −2) (Figure 3.4.2). The area just south of the Central Business District 

(CBD) (Nishinari ward) shows the largest cluster of high vulnerability districts in the city. Another 

small area, east of the CBD, also shows clustering of high vulnerability. The CBD, itself, (particularly 

in Kita ward) scores low on the vulnerability index. A large cluster of low vulnerability exists along the 

western boundary of the city. A secondary cluster also appears to the north and north-east of the CBD, 

with small clusters identified in the far east and far south of the city.
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Figure 3.4.2: Output from the vulnerability index calculation, showing low (white, green) to high (orange, red) vulnerability (a); Getis-Ord z score Hot Spot 

Analysis, showing clusters of high (red) and low (blue) vulnerability (b).
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Figure 3.4.3: Spatial distribution of the three key components identified in the PCA; component 1: age, education and unemployment (a), component 2: social 

isolation (b) and component 3 density and lack of green space (c). The scales are unit-less, displayed as standard deviations from the mean.
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In order to investigate the influence of each component on the spatial distribution of the final 

vulnerability index, the three key components were plotted individually for comparison (Figure 3.4.3). 

Component 1 (age, education & unemployment) highlights a large area of high vulnerability to the 

south of the CBD, in Nishinari Ward, with the CBD itself showing low vulnerability. There are small 

clusters of vulnerability around the periphery of the CBD, although the most pronounced is to the south. 

Component 2 (social isolation) displays a high concentration of vulnerability in the CBD and, again, in 

the area to the south of the CBD, which also scored highly in component 1. The east and west of the 

city show low vulnerability in the social isolation component. Component 3 (density & lack of green 

space) identifies vulnerability hot spots less clearly than the other two components. However, what is 

noticeable on this map is the location of the vegetated and low-density areas of the city. The large band 

of low vulnerability in the north of the city indicates the location of a large river (Yodo River). Other 

low-scoring areas are situated around the north of the CBD (Osaka Castle Park and the Okawa River). 

The west of the city also scores low in vulnerability indicated by component 3. 

3.4.2. Heat exposure distribution 

The spatial distribution of the DH of ‘hot days’ is displayed in Figure 3.4.2. The eastern and south-

eastern areas of the city show the highest DH for temperatures exceeding 30°C, whereas the western, 

seaward side of the city shows the lowest. The central, CBD area shows a low level of exposure to 

hourly temperatures above 30°C, relative to the eastern areas of the city. A small pocket of low exposure 

is identified in the north-east of the city, originating from one particular monitoring station. The number 

of ‘hot nights’ shows a more centralised distribution, with the northern and southern CBD districts 

showing the highest relative exposure (Figure 3.4.4). The area with the lowest exposure to hot nights is 

in the north-east of the city. Eastern areas of the city generally display lower night-time exposure 

relative to daytime DH exposure. There is a very pronounced difference in the pattern of exposure to 

daytime and night-time exposure in the city, which highlights Osaka City’s diurnal thermal regime. 

3.4.3. Combined vulnerability mapping 

Spatial distribution of population vulnerability and spatial exposure were plotted, to enable 

identification of areas that show high vulnerability and high heat exposure (Figure 3.4.5). Areas that 

experience the highest exposure to daytime temperatures are concentrated in the east of the city, with a 

small pocket in the CBD. These areas tend to score lower in the vulnerability index, but there are certain 

districts located in this high-exposure zone. Areas exposed to high night-time temperatures are 

concentrated in the CBD and immediate surrounding areas. The cluster of high-scoring vulnerability 

districts to the south of the CBD is located within one of these zones. This co-occurrence of high 

vulnerability and high night-time exposure is clearly identified in Figure 3.4.5.
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Figure 3.4.4: Interpolated observational data of the number of degree hours > 30°C (a) and the number of days where Tmin > 25°C (b) for Osaka City in 

summer 2007. The scale indicates the mean (yellow), and 2 SD from the mean (green −2 SD; red +2 SD). Black dots indicate the location of weather recording 

stations.
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Figure 3.4.5: Overlay of census district HVI scores and heat exposure. Checked areas indicate > 50 

days with Tmin > 25°C (> 1 SD above the mean). Diagonal checked areas > 1370 degree hours above 

30°C for summer 2007 (> 1 SD above the mean). 

3.5. Discussion 

This study combines an inductive human vulnerability assessment with an exposure assessment, based 

on observations from an entire summer season at a daily and hourly scale. Previous studies have looked 

at single time slice temperatures for a specific hour on a particular day (Wolf and McGregor 2013), and 

mean temperatures for a summer month (Chow et al. 2012). This study used ground-level observations 

from a network of meteorological stations to build up a fine temporal scale seasonal profile of 

temperature variability. Exposure analysis was conducted based upon cumulative hourly exposure to 

hot temperatures (degree hours of exposure) and the number of nights that residents are exposed to hot 
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temperatures (Tmin > 25oC). Based on the results of this, we can more strongly identify the areas of the 

city that are more frequently exposed to heat wave conditions. 

3.5.1. Characteristics of the heat wave vulnerability index 

Based on this index, the heat vulnerability for Osaka City varies spatially and is clustered in several 

areas around the CBD area (Figure 3.4.5). Corresponding studies in the USA and UK identified similar 

spatial distributions of vulnerability (Reid et al. 2009; Wolf and McGregor 2013). In the analysed cities 

in these regions, the CBD area was found to be the largest cluster of vulnerability, with other, smaller 

clusters distributed around the central area. The cluster distribution is comparable; however, the largest 

cluster in Osaka City is just south of the CBD, with the CBD itself scoring lowly on the scale. A key 

factor in the difference is the population density within the compared cities. In contrast to most of the 

cities in the USA and UK very few people permanently reside in the most central areas of Osaka City, 

particularly in Kita ward, where several of the most central districts have no permanent population. As 

population density in census data is recorded by permanent address, the density of these zones appears 

to be very low, hence the low vulnerability scores. Access to daytime population data at a sub-ward 

scale is not currently available, but given that the most vulnerable time for heat wave-related illness is 

at night-time (Reid et al. 2009), it can be said that the night-time population density used is an 

appropriate measure of vulnerability. 

A further differentiation between this study and most previous studies is the large area of low 

vulnerability identified in the west of the city. The explanation for this is that this area is predominantly 

utilised as an industrial port, with some zones designated as recreation (theme parks and museums) and 

administrative districts. Therefore, there is a low population density in this area, which is reflected in 

the vulnerability map. Despite the anomaly of CBD vulnerability, the results show similar clustering to 

previous studies of vulnerability and indicate that proxy indicators based on epidemiological knowledge 

are a strong indicator of the sensitivity of a population to heat waves in Osaka City. 

Further conclusions can be drawn from analysis of the individual components of the vulnerability index. 

Component 1 (age, education and unemployment) highlights one particular area, to the south of the 

CBD, with high social vulnerability (Figure 3.4.3). The CBD itself shows low social vulnerability. This 

contrasts somewhat with several studies in the USA (Harlan et al. 2013; Johnson et al. 2012; Reid et al. 

2009), where social vulnerability was found to concentrate more centrally. The finding is, however, 

similar to a study in the UK (Wolf and McGregor 2013). The very central districts of Osaka City (Kita 

and Chuo Wards) are relatively affluent areas compared to their surrounding neighbourhoods and, 

although being highly developed, are not as densely populated as other parts of the city (Figure 3.4.2). 

The population of elderly in Chuo and Kita wards is also lower than surrounding areas (16.79 and 

18.15 %, respectively, compared to a city average of 22.16 %). This finding highlights a difference in 

the social vulnerability of a Japanese city, compared to cities in the USA. Another contrast between 
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urban areas in the USA and Osaka is identified by component 2 (social isolation). The population of 

Osaka City is more socially isolated than the urban US population. Within Osaka City, 46.92 % of 

people live alone, compared to 10.28 %, for urban populations in the USA (Reid et al. 2009). This can 

partly be explained by the fact that Osaka City as an administrative zone is not an entire urban area in 

itself (there are very few suburban areas within the city boundaries), but is still a distinct difference. 

Comparing Figure 3.4.2 with Figure 3.4.3 enables the strong influence of social isolation to overall heat 

vulnerability in Osaka City to be visualised. Component 3 (density and lack of green space) enables 

environmental vulnerabilities to be visualised (Figure 3.4.3). Chomes adjacent to rivers and including 

parks score low in this component (Appendix 2.3). This component highlights areas of the city that, 

physically, are more (less) vulnerable to heat waves. Small areas of very high vulnerability exist in 

central areas. These could be targeted for investigation into potential physical interventions such as 

urban greening (Declet-Barreto et al. 2013). Individually mapping each component allows hot spots of 

particular types of vulnerability to be identified and helps to highlight particular areas that could be 

targeted for investigations into reducing different aspects of heat vulnerability. The three individual 

components in this study indicate a level of heterogeneity in the distribution of environmental-based 

vulnerability (component 3) and socioeconomic vulnerability (components 1 and 2) (Figure 3.4.3). 

Buscail et al. (2012) concluded that exposure and vulnerability to heat require different prevention 

strategies. Environmental vulnerability is linked more closely to exposure, whereas socioeconomic 

vulnerability is related to population sensitivity. This study highlights the distributions of 

environmental- and socioeconomic-based vulnerability, which can raise awareness about the locations 

in the city which are suitable for different prevention strategies. 

3.5.2. Heat exposure distribution 

The difference in spatial distribution of ‘hot days’ and ‘hot nights’ is indicative of the strong UHI effect 

of Osaka City. The UHI effect is more evident at night, primarily due to the absorption and subsequent 

storing and radiation of heat from buildings and dense infrastructure (Han and Huh 2008). The bias of 

hot daytime temperatures to the east of the city can be explained by the moderating impact of sea breezes 

on the western areas of the city during the day (Masumoto 2009). The sea breeze dissipates at night, 

which can explain why the highest night-time exposure to heat is concentrated in the central area of the 

city, where the UHI effect is strongest. The small area in the north-east of the city experiencing a large 

number of ‘hot nights’ was investigated further using satellite imagery Landsat 8 Thermal Infrared 

Sensor (TIRS) (Appendix 2.3; USGS 2016) and elevation data (Jarvis et al. 2008). No specific causes 

could be identified for the hot spot. However, the satellite image indicated that the area had a relatively 

high land surface temperature and is low lying compared to the wider area. It must also be added that 

the city boundary of Osaka City doesn’t mark the end of the urban area, so this area is under the 

influence of the UHI effect. Further investigation into the station recording the lowest number of ‘hot 

nights’ revealed that this station is located adjacent to a large, vegetated park (Osaka Castle Park; 



 

51 

 

Appendix 2.3), and is close to a river. This finding is supported in the literature, relating to effect of 

vegetation on temperatures in their vicinity (Buscail et al. 2012; Harlan et al. 2013; Song et al. 2015). 

This result indicates that the effect of urban green areas may impact the spatial distribution of ambient 

temperature exposure in Osaka City. However, none of the monitoring sites were located within 

vegetated areas (all were located in school playgrounds). To investigate the impact of vegetated areas 

on ambient temperatures within the city, future studies should locate monitoring stations in a greater 

variety of locations, including within parks, beside bodies of water and in highly developed areas. This 

would also enable the relationship between remote-sensed land surface temperature and observed air 

temperature to be analysed in more detail. 

The heat exposure mapping results highlight two key points about exposure distribution in Osaka City. 

The first is that there is a significant influence of sea breezes on daytime summer temperatures (Figure 

3.4.4). The second is that the UHI effect is very pronounced at night-time, with the CBD and 

surrounding areas experiencing the most ‘hot nights’. This finding raises awareness about the daily 

temperature regime of Osaka City, a coastal urban area, which could provide direction to considerations 

of physical intervention measures. The difference in spatial distribution between daytime and night-

time exposures also highlights the requirement to assess exposure in cities at a fine temporal scale over 

a period of time. A single snapshot is not adequate for understanding the full temperature regime of a 

city. 

3.5.3. Combined vulnerability and exposure analysis 

A key analysis to draw from the combined vulnerability and exposure analysis for Osaka City is that 

the largest cluster of social vulnerability is located in an area of high exposure to night-time heat (Figure 

3.4.5). This indicates that on both measures of vulnerability (social and environmental), this area scores 

highly and is clearly highlighted as the most vulnerable area. This area, in Nishinari Ward, is well 

documented as one of the most highly deprived areas in Japan (Tabuchi et al. 2012). Therefore, the 

findings support the theory that vulnerability to heat is concentrated in inner city neighbourhoods that 

have low income, education and social mobility (Harlan et al. 2013; Reid et al. 2009). 

Combined analyses of exposure and social vulnerability, such as the method employed in this study, 

can be used to prioritise areas that require public health measures and/or urban planning initiatives to 

reduce vulnerability and exposure (Milan and Creuzig 2015). Public health measures are low-cost, 

targeted and rapid responses to reduce vulnerability. Urban planning initiatives are costlier (time and 

capital) and result in larger changes to the urban environment. They are currently infrequently used; 

however, they have been proven to be more effective at reducing exposure on a larger scale and are 

effective for a longer time period (Milan and Creuzig 2015). The combined vulnerability map (Figure 

3.4.2) can be used as a guideline to identify the areas of Osaka City that could be effectively targeted 
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with each approach, enabling decision-makers to determine which areas are suitable for further 

investigation for either measure. 

This study is limited by the availability of health data at the smallest scale and could be improved by 

the inclusion of such data when available. Due to this limitation, the vulnerability map is most suitable 

for awareness raising and identifying areas of potential vulnerability. The vulnerability index map can 

be validated in future studies by using local-level ambulance call-out and mortality data for heat wave 

events (Wolf and McGregor 2013). After more conclusive validation, the map could provide a basis for 

decision-making. A caveat for the temperature interpolation map is that its accuracy is limited by the 

number of monitoring stations in the city. Data were recorded from 35 monitoring stations; however, 

for a more accurate assessment of the temperature regime of the city, more observation sites could be 

used. Temperature data from the 35 sites were only available for 1 year: 2007. Future studies should 

aim to develop a heat profile for the target city over a number of years and at a finer scale, to account 

more strongly for any anomalous results. A further improvement would be to assess the entire 

Keihanshin urban area (including Kyoto and Kobe cities). This would enable a more thorough 

investigation into the spatial distribution of vulnerability throughout a wider urban area, a megacity, 

and would indicate the influence of UHI more strongly. 

3.6. Conclusion 

This study developed and mapped a heat wave vulnerability index derived from a principle component 

analysis of key variables influencing heat wave vulnerability in Osaka City, Japan. Census data and 

environmental variables were included in the analysis, and three principle components determining 

vulnerability were identified as explaining > 77 % of the variance in the eight original variables (age, 

employment and education; social isolation; density and lack of green space). The vulnerability index 

was combined with interpolated fine-scale observational air temperature observations. The output 

identifies the distribution of population vulnerability and exposure simultaneously, highlighting the 

spatial distribution of vulnerability and exposure in Osaka City. This assessment of vulnerability, 

combining fine-scale exposure and sensitivity components, can provide precedent for efficient, targeted 

action to be taken to reduce the impact of heat waves at present and under climate change. 
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Chapter 4. The development of a method to 

determine the burden of climate change on different 

health outcomes at a local scale: A case study in 

Osaka Prefecture, Japan 

 

4.1. Context setting 

The case studies presented in chapters 2 and 3 provide in depth research into two different risk factors 

with distinct health outcomes. Both provide potential solutions in quantifying the risk of climate change 

on each factor. However, the quantified scales are disparate and cannot be directly compared. There is 

no way for us to determine which is the greater risk of the two, or which is influenced more strongly by 

climate change. This chapter outlines a framework whereby the current risk of health outcomes can be 

calculated, the impact of climate determined and the burden of climate change quantified in a common 

unit (Disability Adjusted Life Years: DALY). This chapter builds on the issues identified in the findings 

of the previous two chapters and sets out a framework to address the issues with quantifying, comparing 

and prioritising climate change related risks at a local level. The study in this chapter uses two major 

health outcomes related to climate and climate change in Osaka Prefecture: cardiovascular disease and 

meteorological disaster related injuries. These were selected due to their importance to the region in 

question; however, the framework presented can be adapted to assess climate change impact on any 

health outcome, provided the data is available. An additional benefit of the methodology presented in 

this chapter is that the output of different health outcomes can be combined, using the same unit. This 

means that the analysis can be extended to isolate specific risk factors and quantify their impact in terms 

of DALY. 

4.2. An introduction to DALY 

DALY is a measure of overall disease burden, expressed as the number of years lost due to ill-health, 

disability or early death (GBD, 2013a). It was developed by the World Health Organisation as a way of 

comparing the overall health and life expectancy of different countries, but has uses in comparing the 

burden of health outcome and risk factors at all scales. DALY combines estimates of the number of 

years of life lost due to premature death (YLL) and the value of life lost due to disability, expressed in 

years lived with disability (YLD) (Murray et al. 2010). YLL is calculated based upon the number of 

deaths due to a selected health outcome and the standard life expectancy at the age of each death: 
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 𝑌𝐿𝐿 = 𝑁 ∗ 𝐿  (1)   

Where 𝑁 is the number of deaths and 𝐿 is the life expectancy at death, based on life tables for the study 

region. YLD is calculated using the following equation: 

 𝑌𝐿𝐷 = 𝑃 ∗ 𝐷𝑊  (2)   

Where 𝑃 is the prevalence of the disease or health outcome and 𝐷𝑊 is the disability weight given to 

the disease. The disability weight is based upon a study involving clinical physicians, in which diseases 

were given a weighting from 0 (full health) to 1 (death), based upon their impact on the quality of life 

and the duration of the illness (Salomon et al. 2010). YLL and YLD are then combined to quantify the 

burden of the health outcome in question: 

 𝐷𝐴𝐿𝑌 = 𝑌𝐿𝐿 + 𝑌𝐿𝐷  (3)   

DALY of different health outcomes can be combined and compared with each other. The proportion of 

a disease’s total burden caused by specific risk factors can also be calculated, to determine the main 

contributing factors to a particular health outcome’s burden. It is this point that makes DALY applicable 

to climate change health impact research, as in order to implement effective adaptation strategies, the 

contribution of climate change to particular health outcomes needs to be quantified. 

4.3. Study introduction 

From a human health perspective, climate change contributes to increases in a range of health outcomes 

(IPCC, 2014; World Health Organisation, 2012). The impacts can be categorised by risk factors and 

health impact endpoints. Risk factors are the physical changes to the earth’s atmosphere and circulatory 

system, including rising temperatures, changes in precipitation regimes, sea level rise and altered 

frequency and intensity of natural disasters (Ezzati et al. 2002). Health outcomes are diseases or human 

damage influenced by climate change. These include, but are not limited to, cardiovascular disease 

(CVD), injuries caused by extreme events, infectious diseases and malnutrition (De Schryver et al. 

2008). The existence of different risk factors and endpoints presents a problem for comparing the 

relative risk of each. It also makes it difficult to compare the impact of climate change with other risk 

factors on particular health outcomes. A solution is provided by the concept of Disability Adjusted Life 

Years (DALYs) (Murray et al. 2013). This enables different risk factors and health outcomes to be 

compared on a common scale. The World Health Organisation (WHO) provided an assessment on how 

to quantify the health impact of climate change (Campbell-Lendrum et al. 2007); however, this does 

not produce results on a common, fully comparable scale for individual health outcomes. It is vitally 

important to quantify the impact of climate change on different health outcomes on a common scale 

that can be combined and compared to the impact of other risk factors. The development of a 
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transferrable method to calculate the impact of climate change on health outcomes at a local scale will 

be of great benefit to local authorities and risk management. This study presents a method to calculate 

the impact of climate change on CVD and meteorological disaster related injuries (DRI), using DALYs 

as a common unit at a local scale, in Osaka Prefecture, Japan. CVD and DRI were selected as endpoints 

to demonstrate the method due to their importance to the study area and their fundamental differences: 

CVD is a chronic illness, whereas DRIs are acute. The results provide a demonstration of the method 

and show the importance of identifying the impact of climate change at a local scale, to identify hot 

spots of vulnerability and exposure in populations. 

4.4. Methods 

The general method for quantifying both CVD and meteorological DRI impacts from climate change 

in this study, followed the framework identified in Figure 4.4.1. Initially, the exposed population was 

calculated. This involved identifying the specific climate risk factor that impacts the health outcome 

concerned. As all areas will be exposed to climate change, the entire population was considered to be 

exposed. The degree of exposure of populations in different areas was calculated by using the output 

from a climate model. The current death rate from each health outcome was derived from observed 

records. The future death rate was projected by calculating the climate-response value. This determined 

the relationship between the climatic risk factor and the number of deaths for the target health outcomes. 

This value was combined with the climate model output and the current death rate to produce the 

projected future death rate. The difference between the current and future death rate was determined as 

the Relative Risk. This value was then used to calculate the change in DALYs from present values to 

future estimates, thus deducing the burden of climate change. 

 

Figure 4.4.1: Framework for calculating the burden of climate change on health outcomes. Dashed 

boxes indicate inputs and solid boxes indicate processes. The full framework for the two case studies 

in this topic is displayed in Appendix 3.2. 
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4.4.1. Risk factor identification 

The risk factor for each health outcome was identified through a review of past studies. Temperature 

was identified as the major risk factor for CVD (Basu & Samet, 2002; McMichael et al. 2006; Patz et 

al. 2005) and meteorological natural disasters, linked to precipitation, as the risk factor for acute injuries 

(Campbell-Lendrum et al. 2007). For the purposes of this study, only the negative impacts of climate 

change on CVD are considered. We propose this approach for two reasons. Firstly, although climate 

change will reduce exposure to cold temperatures, which will modulate the overall impact of climate 

change on CVD mortality, this does not impact on the fact that populations will be exposed to higher 

risk of heat related CVD (McMichael et al, 2006). Heat and cold related CVD have different risk 

pathways and countermeasures, thus must be considered separately to maximise understanding of the 

risk of increasing exposure to high temperatures. Secondly, most excess deaths during heat wave events 

are related to CVD (Haines et al. 2006), meaning that understanding the increased risk under climate 

change due to higher exposure to heat is of vital importance. 

4.4.2. Degree of exposure 

Outputs from interpolated observation data at a 1km resolution were used to plot current mean annual 

temperature, derived from monthly mean temperature for Osaka Prefecture. Administrative zones at the 

smallest scale for the study area were overlaid on this projection, and the values averaged for each zone. 

Future temperature projections were calculated in the same manner, using 1km resolution downscaled 

projection outputs from the Coupled Model Intercomparison Project, Phase 5 (CMIP5) climate model 

ensemble for 2050, under the four Representative Concentration Pathways (RCP 2.6 (optimistic), 4.5 

and 6.0 (most probable) and 8.5 (pessimistic)) (Hijmens, 2005). The model output for this study was 

produced at 1km resolution but using statistical downscaling of a GCM (full methodology in Hijmens 

et al. 2005). These outputs were selected due to the extremely high resolution, robust parent GCM 

ensemble and the high density of observation points in Japan, from which the statistical downscaling 

was derived (Hijmens et al. 2005). RCP 4.5 was selected for the local scale assessment projections, in 

this timeframe, as it is a medium stabilisation pathway, within the range of the majority of IPCC 

scenarios (van Vuuren et al. 2011). The change in average temperature between the current conditions 

and the 2050 projections was identified as the relative level of exposure for each administrative zone. 

For exposure to meteorological natural disasters, the whole region was determined to have the same 

level of exposure, due to the relatively small area of the Osaka Prefecture (1,899km2; NLNI, 2016) and 

the mesoscale nature of events such as typhoons and extreme precipitation related to frontal systems 

(Sugimoto & Ueno, 2012). 
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4.4.3. Current death rate 

The death rate of CVD varies strongly by age and sex, thus, when projecting the death rate, age and sex 

demographics must be considered (Campbell-Lendrum, 2007). The current death rate of CVD (per 

100,000 population) by sex and five-year age group was deduced from a WHO Global Burden of 

Disease study (GBD, 2013b). Population demographic data for each zone were accessed from the portal 

site for the Official Statistics of Japan (e-Stat, 2016). The whole Japan CVD death rate was statistically 

downscaled to project the death rate in Osaka Prefecture administrative zones by using the death rate 

of CVD for each five-year age group and sex for Japan, coupled with the population of each age group 

and sex in each administrative zone. First, the number of deaths per sex and age group in each zone are 

calculated:  

 
𝐷 = 𝑃 ∗ (

𝐷𝑅

100,000
) (1) 

Where 𝐷𝑅 is the whole Japan death rate for the age group and sex and 𝑃 is the population of the age 

group and sex in the administrative zone. The total number of deaths for each age group and sex was 

calculated and summed for each administrative zone. The total death rate for each zone was then 

calculated by: 

 
𝐷𝑅 = (

𝐷

𝑃
) ∗ 100,000 (2) 

Where 𝐷 is the total projected deaths per administrative zone and 𝑃 is the total population of each zone. 

The death rate from meteorological DRIs is less related to demographics than CVD, therefore the values 

were calculated without consideration of age group and sex. Deaths and injuries from meteorological 

events were accessed from the Japan Meteorological Administration (JMA, 2016a). The record of 

deaths from DRIs is not continuous for Osaka Prefecture, so the Whole Japan total was used, and the 

ratio of hospitilisations from DRIs in 2002, 2005 and 2008 (the only available years) was used to 

calculate the annual death rate for Osaka Prefecture: 

 
𝐷𝑅 = (

𝐷

𝑃
∗ 100,000) ∗ 𝑅𝑅 (3) 

Where 𝐷 is the number of deaths from meteorological DRIs in Japan, 𝑃 is the Population of Japan and 

𝑅𝑅 is the risk ratio between Japan and Osaka Prefecture. 

4.4.4. Future death rate 

In order to calculate the future death rate, under climate change, the climate-response value must be 

calculated (Campbell-Lendrum, 2007). The climate-response value differs by risk factor, health 
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outcome and location. It is calculated using observed data, to determine the relationship between a risk 

factor and a health outcome at each location.  

Research into the relationship between CVD deaths and temperature is divided into studies which look 

at specific events (heat waves), those that consider climate change as a binary event and those that 

calculate a response in the daily number of deaths per degree above a certain threshold (Basu & Samet, 

2002; McMichael et al. 2006; Patz et al. 2005). This study employed a threshold approach, with 

reference to Campbell-Lendrum et al. (2007). Threshold temperature values and a temperature-

mortality function were employed from Takahashi et al. (2007). This approach was taken to combine a 

methodology, originating from the WHO, which is applicable to a local scale (Campbell-Lendrum et al. 

2007), with a climate-response function based on observed data from all 47 Prefectures in Japan, 1972-

2008 (Takahashi et al. 2007). 

The ratio between annual mean temperature and the number of days with a maximum temperature 

(Tmax) at each degree was calculated, based on observed daily Tmax at a weather station in Osaka City, 

1985-2015 (JMA, 2016c). Average annual daily Tmax from the high resolution climate model output 

was combined with the observed ratio from 1985-2015 data to project the frequency of days at each 

Tmax degree. This enabled the number of days with a Tmax registering above the designated risk 

thresholds to be calculated. Takahashi et al. (2007) deduced that the risk ratio between deaths and 

temperature beyond this threshold was exponential, so suggested a categorical risk function for 

locations in Japan. This function attributes a relative risk of excess mortality of 1.02 to days with a 

Tmax of between 0-5oC above the threshold and a relative risk of 1.10 to days with a Tmax > 5oC above 

the threshold. In this study, the relative risk ratio was applied to temperature values above the threshold 

of 28oC and 32oC. For each daily Tmax value (in degrees), the number of CVD deaths was calculated 

by: 

 𝐷𝑡𝑜𝑡𝑎𝑙 = (𝐷𝑎𝑣𝑔 ∗ 𝑅𝑅) ∗ 𝑛 (4) 

Where 𝐷𝑎𝑣𝑔 is the average daily number of CVD deaths, 𝑅𝑅 is the relative risk for the Tmax value. 

Totals for each Tmax value were summed, to project the annual number of CVD deaths. The difference 

in the number of days above each threshold between 2000-2010 values and 2050 values was used to 

project the number of excess deaths attributable to climate change. To single out the climate risk 

function, no changes in population, or adaptation capacity were considered. 

The Death rate for meteorological DRIs was calculated based upon the relationship between the annual 

precipitation, the number of extreme precipitation events and the number of annual deaths, similar to 

Campbell-Lendrum et al. (2007). The JMA records the number of times extreme rainfall (> 50 mm/hr) 

occurs in Japan each year, from over 1000 recording stations. This study identified a linear relationship 

of annual average precipitation (derived from the 46 prefectures in the four main islands of Japan) with 
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the number of extreme rainfall events, 1985-2015 (JMA, 2016b). This ratio was combined with climate 

projections of annual average precipitation in 2050 (calculated from point data at the site of each of the 

46 prefectural meteorological stations), to project the number of extreme rainfall events that will occur 

annually based on the climate in 2050. The linear relationship between the annual number of deaths and 

the number of events was calculated and combined with this output to estimate the number of 

meteorological DRIs in 2050 for Japan. This output was downscaled to represent the projected death 

rate for Osaka Prefecture by the same method identified in equation 3. 

4.4.5. Relative risk 

The relative risk was calculated from the difference between the current and future death rate for CVD 

and meteorological DRIs: 

 
𝑃𝐴𝐹 =

∑ 𝐷𝑅𝑝

∑ 𝐷𝑅𝑐
 (5) 

Where 𝐷𝑅𝑝 is the projected death rate and 𝐷𝑅𝑐 is the current death rate. 

4.4.6. Burden of climate 

The burden of climate on CVD and meteorological DRIs was calculated in disability adjusted life years 

(DALYs). DALY is a unit that accounts for the years of life lost due to early death and disability (Lim 

et al. 2012). DALY is used in this study to enable the results to be compared with each other and with 

risk factors and health outcomes from other studies. DALY values for Japan were accessed from Global 

Health Data Exchange (GHDx, 2016). The burden of the climate on each health outcome in this study 

is calculated by using the relative risk: 

 𝐵𝑡𝑜𝑡𝑎𝑙 =  (𝑅𝑅 ∗ 𝐷𝐴𝐿𝑌𝑖) − 𝐷𝐴𝐿𝑌𝑖 (6) 

Where 𝐷𝐴𝐿𝑌𝑖 is the current number of DALYs in each administrative zone and 𝑅𝑅 is the relative risk. 

As detailed in section 2.2, DALY for meteorological DRIs was calculated only for the whole prefecture 

due to data limitations and the difficulty of projecting mesoscale events at a micro scale. 

4.4.7. Study location 

Osaka Prefecture is located in Western Japan (34-35oN, 135oE). Its land area of 1,905 km2 consists 

mainly of the Osaka-Kobe metropolitan area (NLNI, 2016). As of 2015, the population is 8,838,908, 

making it the third most populous prefecture in Japan, and the second most densely populated (4,640 

pax/km2). The majority of the prefecture is a low lying basin, enclosed by forested uplands to the North, 

East and South, and by Osaka Bay to the West. The basin area is almost entirely developed and densely 

populated (11,952 pax/km2 in Osaka City) (OPG, 2016). The prefecture is an industrial hub, with the 

second largest economy in Japan. Per capita, the economy ranks seventh (Cabinet Office, 2016). This 
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is a suitable study region due to the large population, dense urban structure and high resolution 

topographical variations. The area is subject to intense heat in summer and experiences extreme 

precipitation events and typhoons annually (JMA, 2016c). The hazards faced and the situational 

characteristics of the prefecture make it a useful study site to apply climate change impact assessment 

methodologies. 

4.5. Results 

This study provides a framework for calculating the impact of climate on different health outcomes, 

using a common unit: DALY. The results of the key steps in the methodology are detailed below, to 

illustrate the development of the projection model. 

4.5.1. Degree of exposure 

The frequency distribution of daily Tmax values, averaged for the entire prefecture, for the baseline 

climate and 2050 was projected to determine the degree of exposure to days with a Tmax above the 

excess mortality thresholds identified by Takahashi et al. (2007). The regression model was validated 

against observed frequencies for overall frequency (R2 = 0.66), Tmax > 28oC frequency (R2 = 0.74) and 

Tmax > 32oC frequency (R2 = 0.51). Based on this linear regression, a shift to a higher frequency of 

hotter days and lower frequency of cold days is projected in Osaka Prefecture (Figure 4.5.1). The 

number of days above the lower threshold of 28oC, was projected to increase by 23.67 days annually, 

and the frequency of days above 32oC was projected to increase by 19.55 days (Table 4.5.1).Baseline 

and future frequencies of days above both thresholds were calculated for each administrative zone in 

Osaka Prefecture. This provided the basis for a spatial analysis of the degree of exposure in the baseline 

and future climate scenario (Figure 4.5.2). Exposure to meteorological extreme events was determined 

by the number of occurrences of extreme rainfall (> 50 mm/hr). Regression analysis deduced that the 

number of > 50 mm/hr events in Japan is a function of the annual average rainfall total for Japan (R2 = 

0.39). The recorded number of extreme rainfall events in Osaka Prefecture was not available, so 

downscaling was performed at the next stage of the analysis. 

Table 4.5.1: Average annual frequency of excess mortality threshold Tmax days 

Time Period 

> 28oC Tmax days     

(RCP range) 

> 32oC Tmax days     

(RCP range) 

28-32oC Tmax days 

(RCP range) 

Baseline 101.16 50.16 50.10 

2050 
124.83                           

(119.98 – 135.64) 

69.71                                   

(65.70 – 78.63) 

55.12                                  

(54.28 – 57.01) 
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Figure 4.5.1: Frequency distribution of Tmax degree days at the baseline climate (blue) and that 

produced from CMIP5 2050 projections at RCP 4.5(green). 

 

 

Figure 4.5.2: Projections of the annual number of days with a Tmax > 28oC, averaged for each 

administrative zone in Osaka Prefecture for the baseline climate (a) and 2050 (b) Inset shows the 

location of Osaka Prefecture in Japan. 
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4.5.2. Current death rate 

The annual number of deaths caused by CVD for Japan and Osaka Prefecture were accessed from Vital 

Statistics of Japan (VSJ, 2016). The death rate for each administrative zone in Osaka Prefecture was 

calculated from the death rate by five-year age groups and sex in Japan. The resulting calculations were 

summed and validated against Osaka prefecture totals, and were found to overestimate the death rate 

for the whole prefecture by 13.41%. 

The death rate from meteorological DRIs was available for Japan 1989-2013 (JMA, 2016a). The death 

rate in Osaka Prefecture was estimated from the average ratio of hospitilisations from DRIs in Osaka 

Prefecture and Japan (1:0.499) (Table 4.5.2). 

Table 4.5.2: Death rate of CVD (2000-2014) and meteorological DRIs (1989-2000). 

Health Outcome Japan death rate /100,000 Osaka Prefecture death rate /100,000 

CVD 271.471 232.607 

Meteorological DRI 0.043 0.021 

4.5.3. Future death rate and relative risk 

The future death rate of CVD in Osaka Prefecture was calculated from the baseline annual number of 

deaths and the change in the number of days above the 28oC and 32oC thresholds (Table 4.5.3). The 

death rate from meteorological DRIs was calculated from the estimated baseline death rate and the 

projected number of > 50 mm/hr events in 2050 (Table 4.5.3). The relative risk of climate change on 

CVD is projected to be lower than that of meteorological DRIs in Osaka Prefecture, although the actual 

impact is far greater (Table 4.5.3). 

Table 4.5.3: Projected death rate of CVD and meteorological DRIs for Osaka Prefecture in 2050. 

Health Outcome 
Baseline 

Deaths 

 2050 Excess deaths 

(RCP range) 

2050 Death rate 

(RCP range) 

Relative Risk 

(RCP range) 

CVD 
20,594 114.938                       

(91.389 – 167.418) 
233.456                         

(233.638 – 234.497) 
1.006                    

(1.004 – 1.008) 

Meteorological DRI 1.863 0.489                             
(0.467 – 0.536) 

0.027                                
(0.026 – 0.027) 

1.263                    
(1.251 – 1.288) 

Local scale analysis of the change in the death rate identified the relative risk of climate change in 2050 

on CVD in each administrative zone in Osaka Prefecture (Figure 4.5.3). This map identifies the most 
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vulnerable areas to climate change impacts on CVD, based upon the population demographics and the 

projected changes in temperature. 

 

Figure 4.5.3: Relative risk of climate change on CVD in Osaka Prefecture in 2050. 

4.5.4. Burden of climate change 

The burden of climate was calculated from the change in the DALY /100,000 population rate (DALY 

rate). For Osaka Prefecture, the burden of CVD due to climate change was projected to increase by an 

average of 16.87 DALY/100,000 by 2050. The burden of meteorological DRIs due to climate change 

was projected to increase by an average of 0.65 DALY/100,000 by 2050 (Table 4.5.4). 
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Table 4.5.4: The burden of climate change on CVD and meteorological DRIs in Osaka Prefecture in 

2050. 

Health Outcome 
Baseline DALY 

/100,000 

2050 DALY /100,000          

(RCP range) 

Burden of climate change 

(DALY /100,000)           

(RCP Range) 

CVD 3,024.21         3,041.08                       
(3037.62 – 3048.78) 

16.866                      
(13.408 – 24.573) 

Meteorological DRI 
2.554 3.199                                 

(3.169 – 3.264) 
0.645                          

(0.615 – 0.710) 

The burden of climate change on CVD was estimated for each administrative zone in Osaka Prefecture. 

The range was 0-114.29 DALY/100,000, with a mean value of 16.10 DALY/100,000 and a standard 

deviation of 8.46. Areas in the extreme North, East and South of the region were projected to have the 

largest increase in the DALY rate, due to climate change (Figure 4.5.4).  Due to the low population 

and rural location of the peripheral administrative zones in Osaka Prefecture, the maps were 

reproduced for the areas defined by the Ministry of Land, Infrastructure, Transport and Tourism 

(MILT) as urban (NLNI, 2016). This gave a more representative projection of the variations in CVD 

and the impact of climate change on the metropolitan area of Osaka Prefecture ( 

Figure 4.5.5).    To further investigate the spatial variety in the impact of climate change on CVD in the 

Osaka metropolitan area, a Getis-Ord cluster analysis was performed, which identified hot spots of high 

and lower impact areas in the area (Figure 4.5.5). 

 

Figure 4.5.4: Total DALY estimates for 2010 (a), and projected change in the rate of DALY /100,000 

in 2050 (b).



 

68 

 

 

 

 

 

 

Figure 4.5.5: Urban area only visualisations of the degree of increased exposure to > 28 oC Tmax days 

(a), the baseline DALY rate of CVD (b). The projected change in DALY under climate change conditions 

(c) and a Getis-Ord cluster analysis of hot spots of high climate change impact (red) and low impact 

(Blue) areas within the Osaka Metropolitan Area (d).
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4.6. Discussion 

This study presents a methodology to calculate the impact of climate change on different human health 

outcomes. The study combines a method to calculate the relative risk of climate risk factors and the use 

of DALY, to provide an output on a common scale, which enables comparisons between risk factors 

and health outcomes and with other, non-climate related risks. The investigation into CVD risk due to 

climate change at a fine scale is a novel approach to assessing climate change health risks at a local 

level; combining demographics and climate outputs. The results indicate some of the uses and 

limitations of this approach. 

4.6.1. Degree of exposure 

The degree of exposure to the climatic risk factor influencing CVD prevalence (Tmax), is calculated 

based upon observations between average annual daily Tmax and the number of days above CVD Tmax 

risk thresholds (also based upon observations, in Takahashi et al. (2007)). The linear relationship is 

strong (R2 = 0.74 for Tmax > 28oC), but the robustness of this exposure is dependent on the accuracy 

of climate models and the continuation of such a trend. Currently the frequency of days at the high end 

of the scale (Tmax > 37oC) is very low, so it is difficult to predict whether the increase will continue to 

be linear. The findings do, however, project an increasing trend in exposure to temperatures above the 

risk threshold for the region (Figure 4.5.1.2). The highest current and future exposures are situated in a 

low-lying, inland, urban areas, within the Osaka metropolitan area, which would indicate the influence 

of the Urban Heat Island (UHI) effect (Macnee and Tokai, 2016). The shift of the highest exposure to 

the North East, could be explained by changes in atmospheric circulation projected by the climate model. 

The temperature in Osaka City is influenced by sea-breezes (Masumoto, 2009), so a change in the 

pattern of these could cause a shift in the exposure to high temperatures. 

A relationship between annual precipitation and the number of > 50 mm/hr events in Japan was 

identified (R2 = 0.39), which was used as an extrapolation method for the projections. This method of 

predicting future extreme events from observed trends was proposed by Campbell-Lendrum et al. 

(2007). The difficulty in linking the physics of extreme precipitation events to climate change (Cutter 

et al. 2012) means that this statistical extrapolation method is applicable, as it is based on observed 

values. Data availability of extreme precipitation events for this study was limited to the whole of Japan 

(JMA, 2016b). Statistical downscaling of national values to Osaka Prefecture, therefore, increased the 

uncertainty of the exposure projection. The lack of data at a local level for extreme events has been 

listed as a major issue for climate change risk management (Cutter et al. 2012), and is further highlighted 

in this study. 
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4.6.2. Death rate projections 

The death rate due to CVD in 2050 was projected based on the expected increase in the frequency days 

above two threshold Tmax values (28oC and 32oC). The relative risk (1.006) due to climate change 

between the baseline and future climate is comparable to previous studies that have been conducted at 

a larger scale (1.01 for developed countries: Campbell-Lendrum et al. 2007; McMichael et al. 2003). A 

caveat to the relative risk projection is that this study does not account for human adaptation to 

increasing temperatures. The fact that different regions are found to have different excess death 

thresholds (Campbell-Lendrum et al. 2007) and relative risk ratios (Basu et al. 2003), suggests that 

humans have an adaptive capacity to changing climates. However, this capacity has not been 

conclusively quantified, meaning further research is required to account for adaptation. One method is 

proposed by Honda et al. (2013), which suggests using the 84th percentile Tmax as the threshold above 

which excess deaths occur. This approach could be incorporated into the framework presented in this 

study to provide projections that account for natural adaptation to climate change. 

The death rate due to CVD is slightly below the average CVD death rate for Japan (Table 4.5.2), which 

means that the death rate estimates for the combined total of the administrative zones in Osaka 

Prefecture is overestimated by a factor of 1.13. This is a limitation due to data availability of CVD 

deaths by age group and sex at the smallest scale. The assumption had to be made that the death rate by 

age group and sex was the same for Osaka Prefecture as Japan. The death rate of each zone is based on 

the demographics from which CVD mortality is calculated, so the resulting maps provide a visualisation 

of the relative vulnerability. Figure 4.5.3 indicates that the relative risk is higher in the North East of 

the prefecture. The distribution is different to the exposure distribution in Figure 4.5.2, because it 

accounts for the population demographics and estimated baseline death rate. The relative low risk area 

in the central southern area of the prefecture can be attributed to the shift, projected by the climate 

model, of the highest exposure areas to the north east. The low risk area, therefore, is projected to 

experience a smaller relative increase in exposure to Tmax values above current levels. 

The relative risk of meteorological DRIs is estimated to be 1.263. This shows a larger relative increase 

than climate change associated CVD risk, although the actual death rate is much lower. This estimate 

falls within the range predicted for developed countries by McMichael et al. (2003). The caveat for this 

projection is that the death rate is statistically downscaled to Osaka Prefecture based upon the ratio of 

the number of DRI hospitilisations in 2002, 2005 and 2008 between Osaka Prefecture and Japan. 

4.6.3. Burden of climate change 

The burden of climate on CVD in 2050 (16.866 DALY/100,000) is projected to be much larger than 

that of meteorological DRIs (0.654 DALY/100,000), despite the relative risk being higher. This is due 

to the larger baseline impact (Table 4.5.4). Based on the projections made in this model, the impact of 

climate change on CVD will be very small compared to the current DALY rate. However, these 
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projections do not include changes in the population structure by 2050. The proportion of people > 65 

years old is projected to continue increasing (NIPSSR, 2002), meaning that more people will be 

vulnerable to climate change induced CVD in the future (Campbell-Lendrum et al. 2007). The purpose 

of this study was solely to isolate the change in climate, however, projected changes in population could 

be incorporated into the methodology. The burden of climate on Meteorological DRIs is projected to 

remain small, but the relative risk is higher than that for CVD in Osaka Prefecture (Table 4.5.4). 

Assumptions had to be made, due to the lack of prefecture and sub-prefecture level data. Estimates of 

the impact of extreme events could be improved with continuous fine scale recording of event 

occurrence, severity and health impacts (Cutter et al. 2012). 

Regarding the administrative zone projections of climate change related CVD risk, the projections 

indicate that in terms of DALY rate, the peripheral areas of the prefecture will experience the largest 

impact (Figure 4.5.4). It must be noted that these areas generally have a much lower actual burden of 

CVD than the central areas of the prefecture, due to their rural setting and much smaller population (E-

Stat, 2016; Figure 4.5.4). These zones also have a higher percentage of elderly people (e-Stat, 2016), 

meaning that their vulnerability to CVD is higher than the more central, urban zones. Due to the low 

population of the peripheral areas, an analysis of the MLIT defined metropolitan area was conducted. 

When the results are mapped for the urban area of Osaka Prefecture only, the Getis-Ord cluster analysis 

identified hotspots with the strongest burden from climate change. These hotspots are concentrated 

towards the North East of the urban area, with smaller concentrations in the west and immediately south 

of the city centre (Figure 4.5.5). These areas generally correspond to the locations with the highest 

projected increase in exposure to temperatures above the risk thresholds (Figure 4.5.1; Figure 4.5.5). 

The differences in the distribution of the burden hotspots and the exposure maps indicate that although 

the exposure factor contributes highly to the spatial variation of the impact of climate change on CVD, 

the underlying vulnerability to CVD also influences the burden (Figure 4.5.5). For instance, the area to 

the south of the city centre (Nishinari Ward) is acknowledged as the most socially vulnerable area in 

Osaka Prefecture (Tabuchi et al. 2012). These results underline the comprehension that climate change 

impacts are dictated by both exposure and vulnerability (Field et al. 2014), as this particular area of the 

city is not projected to have a large increase in exposure compared to areas to the north and east of the 

urban area. It also highlights the requirement of impact assessments to be carried out at a high resolution, 

because these features, influencing distribution, only become apparent when analysed at a very small 

scale. This study is limited by data availability at the smallest scale. The accuracy of the results depends 

on assumptions made in downscaling data and in the calculation of the climate-response variables. 

Basing future estimates on robust observed relationships is important for applicability to real world 

situations. 
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4.7. Conclusion 

This study proposes a novel approach to projecting the impact of climate change on health outcomes, 

by combining the relative risk of climate change with DALYs at a fine scale. The impact of climate 

change on two different health outcomes (CVD and meteorological DRIs) was assessed for Osaka 

Prefecture, with a finer scale assessment of CVD conducted. The burden of climate change in 2050 was 

calculated to be 16.866 DALY/100,000 population for CVD and 0.645 DALY/100,000 for 

meteorological DRIs. Therefore, the actual impact of climate change on CVD is judged to be higher, 

although the relative risk is lower (1.006, compared to 1.263 for meteorological DRIs). The mean 

impact of climate change on CVD for each administrative zone was calculated to be 16.10 

DALY/100,000, with a maximum value of 114.29 DALY/100,000. The results were affected by a lack 

of data at the smallest scale, meaning that assumptions had to be made in downscaling data. The lack 

of any sub-prefectural level data about extreme precipitation events and meteorological DRIs also 

limited the local scale climate impact assessment to CVD. The results, therefore, provide an overview 

of the framework and highlight the relative risks of climate change on two health outcomes and of CVD 

at a very fine scale. The availability of continuous, accurate and fine scale data is important in generating 

robust results from this method. Acknowledging the caveat of data availability, the framework 

presented in this study is a logical and transferable approach to comparing climate change health 

impacts at a local level, on a common scale. 
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Chapter 5. Conclusion and future recommendations 

 

Quantification of climate change impacts on human health is an important assessment method that 

enables the identification of key risks and conclusions to be drawn on the effectiveness of different 

responses (Campbell-Lendrum et al. 2007). The global span of climate change and the large variety of 

risk factors that is possesses makes quantification extremely important, but also poses difficulties. This 

study was designed to investigate current issues, propose solutions to these issues and develop a 

framework to quantify climate change impacts on health at a local scale, using a common unit.  

At the beginning of this thesis, four key objectives were formulated to address the research question 

surrounding quantification of climate change on human health: (1) understand the impact of climate on 

infectious disease prevalence in two East Asian countries: Japan and the Republic of Korea; (2) 

determine the variables affecting vulnerability to heat waves and map these at a local level; (3) develop 

a transferrable framework to quantify the impact of climate change on health outcomes at a local and 

regional scale, using a common unit; (4) provide recommendations for policy makers and researchers 

in this field and suggest future research advancement requirements and direction. The thesis structure 

is formulated around these objectives with each one forming a chapter, following on from the 

introductory Chapter 1. 

Chapter 1 reviews the impacts of climate change on human health and the pathways that these impacts 

follow. An overview of climate change on a global scale is provided, followed by a more specific review 

of the potential impacts faced by Japan. This overview chapter provides basis for the requirements of 

this research and introduces the structure of the study. Chapter 2 explores the impact pathway from 

anthropogenic induced climate change to an infectious disease outcome (malaria). This chapter provides 

information on the issues with modelling the impact of climate change on infectious diseases and 

provides a quantification method to analyse comparative risk between regions. Chapter 3 introduces a 

methodology to assess human health risk from heat waves at a local scale, combining vulnerability and 

exposure. The results produced a quantified risk ranking specific to the study region, using a 

transferrable methodology. Chapter 4 provides a framework for quantifying local and regional scale 

human health impacts of climate change, using a common unit (DALY). This chapter will discuss the 

contributions of the whole study to the scientific and policy making sectors and outline the current 

limitations to quantification at a local scale. The three chapters that form the body of this research aim 

to provide risk assessment frameworks for different risk factors relating to climate change. The 

limitations and difficulties identified in Chapters 2 and 3 are somewhat addressed in Chapter 4. The 

final chapter, Chapter 5, coalesces the findings of the previous chapters and draws conclusions from 
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each chapter and the combined findings of the three study chapters. Research and policy 

recommendations are discussed as a final conclusion to the study. 

5.1. Quantification of climate change impacts on infectious 

diseases 

5.1.1. Climate as a driver of malaria transmission in a re-emerging risk area 

A comprehensive assessment of malaria transmission and climatic factors was conducted in the 

Republic of Korea, a country where malaria has re-emerged in the past 25 years. No significant trend 

was found between the climate and malaria prevalence at an annual level. However, when investigated 

at a country-wide monthly scale, minimum and maximum temperature, precipitation and relative 

humidity combined described 11.1% of the variance in malaria transmission. This trend became more 

pronounced at a regional scale, ranging from 35.5-76.2%. This study therefore indicates that currently 

annual climate is not a limiting factor of malaria transmission in the region. It did, however, highlight 

the highly seasonal nature of malaria transmission, meaning that the region is climatically vulnerable 

to a climate induced extension of the transmission season. Differences in transmission between the 

Republic of Korea, Democratic Republic of Korea and Japan identified health care and proximity to 

endemic regions as the main limiting factors of malaria transmission in the region 

5.1.2. Base reproduction rate model 

Based upon the identified risk of increased malaria transmission in a warmer climate, but a lack of data 

at an annual level, this study proposed the use of a biological model to predict the change in the length 

of the transmission season in the study region. The model projected an increase in the number of months 

that the climate was suitable for malaria transmission in all areas. When added to the findings of the 

quantitative study, this provides an insight into the potential for malaria transmission under climate 

change scenarios. This model provides a cost effective tool to comparatively assess the climatic 

suitability of an area for malaria transmission. 

5.1.3. Limitations and applicability 

The model proposed in this study should be considered as the first step towards assessing malaria risk 

due to climate change. The output is an indicator of the climatic suitability of an area to malaria 

transmission, but it is not equitable to a real world quantified risk. Other factors, such as the population 

density of vectors and susceptibility of the human population to transmission must be considered to 

develop a physical quantification of risk. Currently, information concerning vector density is not 

available in most regions, which suggests that this should be considered as a future direction of study. 

The model does, however, have two useful outcomes. Firstly, it provides an overview of climatic 

suitability for malaria transmission, which can be used to identify how the risk season from imported 
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cases of malaria may be extended. Secondly, the uncertainty identified in the model gives us a clear 

idea of which factors in the model are the most influential. This helps guide the direction of future study 

towards developing modelling techniques that enable the uncertain variables to be quantified more 

robustly. 

5.1.4. Recommendations 

This study highlighted the requirement for two key areas of further study. The first is in improving the 

accuracy of the biting rate of malaria vectors (𝑚𝑎) in the base reproduction rate model. This can be 

done by researching vector population density, specifically for different habitats. This would enable 

population, habitat and climate to be combined, to produce a more comprehensive risk projection. The 

second area is into the other risk factors associated with malaria. This includes vector habitat (as 

mentioned above) and health care risk factors. Addressing these two areas would greatly advance 

understanding in this topic. As is, the model could be recommended for use by authorities concerned 

about re-emerging malaria (incidences of which have occurred in several countries). It quickly and 

easily identifies the most climatically suitable areas for transmission, which can provide the basis for a 

full investigation that includes the other risk factors. 

5.2. Human vulnerability and exposure to heat waves 

5.2.1. Applicability of a heat wave vulnerability index to Japan 

This was the first study to investigate vulnerability to heat waves in Japan at a local scale. The 

composition of such an index was adjusted to account for unique demographic characteristics of Japan. 

The methodology, adapted to Osaka City, Japan, identified three key indicators of heat wave 

vulnerability: (1) socioeconomic – age, employment and education; (2) social isolation – percentage of 

people living alone and percentage of > 65-year-old people living alone; (3) physical conditions – 

population density and lack of green space. The inclusion of density and lack of green space as 

indicators contributes to the usefulness of the output, as these specific vulnerability factors require 

different counteractions to the other two indicators (urban planning as opposed to public health 

measures). Mapping this indicator separately provides a clear indication of where urban planning 

initiatives could be targeted to counteract the impact of heat waves (Chapter 3: Figure 3.1.4.1) The 

result is useful in comparing vulnerability distribution in a Japanese city (Osaka City) to cities in other 

countries. A low risk area identified in the CBD area is a unique feature of the vulnerability distribution 

of Osaka City compared to previous vulnerability studies, which highlights the requirement for location 

specific studies to be conducted.  
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5.2.2. Fine scale heat exposure assessment 

An assessment of heat exposure for an entire summer season at a local scale was conducted. Previous 

heat wave studies have utilised satellite derived land surface temperatures or monthly level temperature 

assessments. This study used daily and hourly recordings to map the level of exposure to extreme 

temperatures at a very fine temporal scale. The benefit of this method is that the actual time that a 

particular area is exposed to temperatures above a heat wave threshold can be identified accurately. It 

also enables the diurnal pattern of exposure distribution to be mapped. The key contribution of this 

assessment is that it highlights the shift in exposure to heat between daylight hours and night-time. 

Studies using Monthly totals and satellite images fail to identify this change. This study identified a 

pronounced diurnal shift in exposure in the study area, which highlights the need for fine temporal scale 

assessments to be conducted to maximise heat wave risk assessments. 

5.2.3. Combined exposure and vulnerability analysis 

This assessment indicated that in the study region, the most vulnerable area was located in an area of 

high night time exposure to ambient heat. This finding became apparent after combining the 

vulnerability distribution with the exposure distribution. The apparent risk hot-spot would not have been 

as clearly identified had a courser (temporal or spatial) assessment been conducted. This emphasises 

the usefulness of conducting vulnerability and exposure assessments at a fine scale. As vulnerability 

and exposure to heat waves have different countermeasure approaches (public health measures and 

urban planning respectively; Milan and Creuzig, 2015), a combined study provides information that can 

help to identify which type of countermeasure would be most effective in each area. 

5.2.4. Limitations and recommendations 

This study is limited by the availability of health information at the smallest scale. Records of 

hospitilisations and underlying health incidences at a neighbourhood scale would add to the 

vulnerability index applicability and enable it to be more robustly verified. Data such as ambulance 

call-outs and mortality could be used in future studies to strengthen the vulnerability index (Wolf and 

McGregor, 2013). A further limitation of this study is that it focuses on a risk factor rather than specific 

health outcomes. This makes it difficult to compare the results to other health end points. This limitation 

is in part due to the difficulty of attributing many specific deaths to heat waves, as there are a number 

of end point deaths that may be triggered by heat waves (Reid et al. 2009). This limitation is in part 

addressed in Chapter 4, by providing a method to calculate the impact of hot days on a specific health 

outcome.  

Utilising this method of combining vulnerability assessments and exposure assessments would be 

recommended to policy makers, as it is a cost effective method of clearly identifying risk areas and 

exposure hot spots. The output can be used in conjunction with field studies to determine the most 
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effective control measures against heat wave risks to pursue. Recommendations for further study are to 

include fine scale health data in the vulnerability assessment, which will also enable full validation. It 

will also be useful to quantify the impact of heat waves in climate change scenarios, by investigating 

the impact pathways from climate to heat waves and specific health outcomes. One particular 

methodology is proposed in Chapter 4. 

5.3. Determining the burden of climate change on human health 

at a local scale 

5.3.1. A framework for quantifying the impact of climate change on health outcomes 

using a common unit. 

This study presents a worked framework for quantifying the impact of climate change on different 

health outcomes at different scales, using DALY as a common unit. The whole world is exposed to 

climate change; however, the level of exposure to different climate related risk factors and the 

underlying vulnerability of a population is determined by various local and regional scale factors 

(McMichael et al. 2006). For this reason, there is a requirement for frameworks to be developed to 

provide a methodology for quantifying human health impacts at a local scale, but with the possibility 

to directly compare the results. This study developed a framework for local scale quantification of health 

impacts by building on previous work (Campbell-Lendrum et al. 2007) and adding further steps to 

produce an output that quantifies different health risks in DALYs, a common unit. The importance of 

such a unit is paramount to effective climate change risk analysis, due to the complex impact pathways, 

different risk factors and varied underlying vulnerability. Decision makers are required to prioritise 

adaptation to and mitigation of health outcomes, such as cardiovascular disease and infectious disease. 

They may also be required to prioritise specific risk factors. The framework presented in this study 

enables risk factors and health outcomes to be assessed together as well as independently, providing a 

methodology that suits the requirements of two different approaches to risk assessment using the same 

methodology.  

This study takes assessment of the impact of climate change to human health end points and considers 

the total baseline impact of each health impact from all risk factors. The additional benefit of this is that 

the portion of each health impact that is attributable to climatic factors and climate change is quantified 

in the context of the total risk. Not only can the impact of climate change be attributed, but this impact 

can be directly compared to all other risk factors contributing to certain health outcomes. 

Contextualising the risks of climate change is vital in informing policy decisions and also the perception 

of risk. Producing outputs that are directly comparable to other risk factors improves understanding of 

climate change risk in the context of general risk assessment. All policy decisions require justification. 
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Producing quantified values of risk in context provides clear justification for action and improves 

transparency in the decision making process. 

5.3.2. Consideration of vulnerability 

The framework developed in Chapter 4 is important in that it considers population vulnerability in 

addition to exposure. Let us consider heat related morbidity and mortality as an example. When 

considering future risk under climate change scenarios, it is important that the change in the frequency 

of high temperature days is projected. This provides us with information about how the exposure to 

potentially dangerous temperatures will change. However, unless we consider vulnerability, this 

information is limited in value. Different populations are adapted at different levels to heat (Campbell-

Lendrum et al. 2007; Ezzati et al. 2002; Honda et al. 2014). The vulnerability of a population also 

depends on the demographics. For instance, people over the age of 65 are at greater risk to extreme heat 

than other age groups (Wolf and McGregor, 2013). Therefore, to calculate the actual health endpoint 

impact of climate change on heat related illness, such as cardiovascular disease, we need to know the 

baseline vulnerability. This study provides a method of including vulnerability in the form of an 

empirically identified threshold temperature, above which, heat related deaths increase. Underlying 

vulnerability is also included by considering the baseline death rate (specifically for this study, of 

cardiovascular disease deaths). By including these two factors affecting vulnerability, we can then 

project how future changes in exposure to climate risk factors will impact the population in a specific 

region. Continuing the example of heat related illness; by considering local scale vulnerability, we can 

project the actual impact of a climate change scenario on health. Furthermore, as vulnerability and 

exposure often have different adaptation approaches, including both in a quantified risk assessment can 

give indications as to which approach is likely to me more effective in each area of concern. 

5.3.3. Local scale spatial analysis of climate change impacts 

Impacts from climate change are felt most strongly at a local level (Tran et al. 2009). Despite this, the 

perception of climate change risk held by most lay people is that it is a global risk that will affect distant 

populations more than themselves (Leiserowitz, 2006). Risk mapping of climate change impacts is a 

useful tool for providing information about the spatial distribution of the impacts of climate change on 

people at a local level, that can help alter peoples’ perception of the risk and encourage proactive 

countermeasures to the health risks. The complexity of climate related risks also requires spatial and 

local knowledge to be incorporated into climate change health risk assessments (Aalst and Burton, 

2002). Attempts to map climate change impacts have been made at a local scale (McMichael et al. 2006; 

Tran et al. 2009). However, the human health impact of specific outcomes at a local scale has not been 

mapped. Chapter 4 demonstrates a method of using GIS to map climate change impacts on a specific 

health outcome (cardiovascular disease), using DALYs as a unit of measurement. This mapping 

technique provides valuable spatial information about climate change risk, and highlights the variations 
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in vulnerability, exposure and overall risk. Mapping climate change risks enables quick and easily 

identification of risk areas, and the integration of local knowledge to greater understand the nature of 

the risk. This provides an additional aspect to risk assessment and means that decision makers can 

investigate risks quantitatively and integrate this with their knowledge of local areas, by pinpointing 

risk hot spots (Tran et al. 2009). Chapter 4 Demonstrates how even the risk of chronic illnesses impacted 

by climate change is highly spatially variable at a local level. This has implications for the application 

of control measures at a local scale, as spatial variety suggests that targeted action will likely be an 

efficient form of countermeasure. As this is the first study to map the impact of climate change on 

cardiovascular disease at this scale, it is not currently possible to draw comparative conclusions from 

other studies about the distribution of impacts in an urban area. After future studies on this scale are 

conducted, direct comparisons in both the overall projected impact and the local level spatial 

distribution will shed light upon the local scale variations between locations in different climatic and 

topographical zones, which will provide insights into which countermeasures will be most effective in 

different regions. 

5.3.4. Applicability of DALY to adaptation planning 

The concept of DALY is highly applicable to climate change adaptation planning, because it has the 

capacity to calculate minor and major individual health impacts, using the same unit. Many of the 

impacts felt by humans are negative, but not fatal. For instance, an increase in the spread of infectious 

disease will impact human health, but not all cases result in deaths. DALY also enables different risk 

factors to be compared. Extreme events such as storms and floods cause sometimes fatal human health 

impacts on a large scale, however, they are relatively infrequent. Rising average summer temperatures 

have initially less obvious health impacts, however, evidence exists of the large impact on health that 

rising summer temperatures has (Ezzati et al. 2002; Honda et al. 2013; Takahashi et al. 2007). In terms 

of adaptation planning, DALY enables local, national or regional authorities to calculate the current and 

projected impact of climate on human health of fundamentally different risk factors such as extreme 

events and rising summer temperatures in a comparative context (McMichael et al. 2006). This 

comparative aspect is important in enabling authorities to designate resources to adaptive measures that 

are appropriate for each individual area. A further benefit of using DALY is the fact that it can be used 

to compare climate specific risk factor impacts on human health with risk factors from other sources, 

such as chemical exposure, lifestyle, physiology and other environmental impacts. Therefore, DALY 

provides a tool to not only prioritise adaptation planning within the sphere of climate change research, 

but in the context of risk research in general. If applied correctly, with robust data, DALY can provide 

a unit by which climate change adaptation planning measures can be prioritised internally (i.e. which 

climate change adaptation measures are the most important for a specific region or locality) and 

externally (i.e. how important are climate change adaptation measures compared to other risk 

management measures). 
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As identified by the research conducted in Chapter 4, there are limitations of the application of DALY 

to adaptation planning, particularly regarding data availability and collation. The limitations are centred 

around the requirement for assumptions to be made, when calculating DALY. The largest area of 

uncertainty in the method is currently in the determination of disability weights for the calculation of 

Years Lost due to Disability (YLD). Disability weights were initially calculated from value judgements 

of medical professionals on the comparative severity of individual diseases or injuries, with values 

ranging from 0 (no negative impact) to 1 (equivalent to death). This leaves some degree of subjectivity 

to the weightings, although the WHO conducted a large scale empirical study in 2010 to further quantify 

the weightings (Solomon et al. 2013). Future research in this area will continue to quantify the disability 

weightings and remove subjectivity, but it is an ongoing process, and one that should be acknowledged 

when using DALY. Another limitation of DALY in climate change studies is the calculation of relative 

risk ratios for climate scenarios and health impacts. Data availability limits the number of empirical 

studies into climate change and human health impacts (Campbell-Lendrum et al. 2007). Furthermore, 

relative risk ratios calculated from past data generally produce linear or simplistic relationships between 

climate and health outcomes. As climate change progresses, there is the possibility of currently 

unknown thresholds being reached, which may undermine relative risk ratios calculated from past data 

(Costello et al. 2009). The uncertainty around future climate projections can be somewhat mitigated by 

the IPCC approved RCP scenarios and by using ensemble modelling, but no objective threshold has 

been defined as when a dangerous global climate change threshold will be reached (Collins et al. 2013). 

Therefore, research in this area is limited to the current capabilities of climate modelling. This caveat, 

however, applies to all climate change impact research, not just that involving DALY. 

5.3.5. Limitations and recommendations 

The key limitation of the method of climate change human health impact quantification proposed in 

Chapter 4 is the availability of data at the smallest scale. The method for calculating the climate-

response values is based upon observed values. Thus, any data gaps influence the reliability of the 

climate-response value. In addition to this, data on incidence of climate related diseases at a baseline 

level and suitable spatial scale is required to build an accurate understanding of the current risks. The 

accuracy of current risk assessments also influences the uncertainty surrounding future impact 

projections (Campbell-Lendrum et al. 2007). Currently, the application of such a methodology to policy 

making should be advisory, due to the data gaps and uncertainties. However, the framework itself 

enables policy makers and researchers to build up an inventory of the relevant available data. This is 

useful, as data gaps are identified and can be incorporated into the methodology as explicitly quantified 

uncertainties, as recommended by Smith et al. (2014).  

Specifically, for the case examples used in Chapter 4, data at the smallest administrative level for 

cardiovascular disease incidence and mortality would greatly improve the applicability of the fine scale 
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spatial analysis to formal policy making practice. To address the issue with uncertainty about the level 

of adaptation that a population will undergo to warmer temperatures, different adaptation scenarios can 

be developed. An example that can be easily added to the model framework is suggested by Honda et 

al. (2014), where percentage adaptation to climate change scenario temperatures is used as a base for 

adaptation scenarios. For example, Honda et al. suggested 0%, 50% and 100% adaptation as scenarios 

to account for uncertainty. A further, more detailed assessment of the risk of disaster related injuries 

related to flooding events could be conducted by utilising GIS flood risk mapping to identify zones at 

risk of flooding from specific rainfall events (Appendix 3.12). This, in addition to higher resolution data 

on the location of injuries from flooding would improve the local level applicability of the assessment.  

For all projects utilising this method, it is recommended that the maximum amount of available data at 

the smallest available scale be used to calculate the climate-response function and the baseline impact 

value. The climate-response function is highly dependent on local vulnerability and exposure. For 

example, Basu and Samet (2002) reviewed the literature on heat related mortality and found 98 separate 

studies (1970-2002) with a range of different exposure-response functions, in different locations around 

the world. For this reason, it is imperative that the climate-response function for a particular area be 

based on observed data in that specific region. The framework presented in Chapter 4 outlines the 

structure that studies should follow, but recommends that the values used must be specific to the study 

region. Another finding from Basu and Samet (2002), that this study addressed is that the endpoint that 

previous studies used and the specific risk factor analysed was not uniform, so comparisons between 

studies are difficult. This method proposes daily maximum temperature as the most applicable method 

in terms of determining an exposure-response function and converting climate model outputs into a 

useable output. It is a straightforward process to convert future mean temperature outputs into daily 

frequency based on present day observations. Additionally, the availability of daily maximum 

temperature values is widely available in most populated areas, meaning that it is likely that an 

exposure-response variable can be established in more areas.  For studies that aim to project the impact 

of climate change on health impacts for a time period beyond 2050, it is strongly recommended to run 

the future projections using different RCP scenarios, to account for the increased uncertainty in climate 

model projections and divergence in the scenarios beyond this time period (van Vuuren et al. 2011).  

Regarding disaster related injuries, it would be beneficial to have a standardised approach to recording 

the event type, location, cause of death/injury and age/sex of victims of meteorological disasters. This 

would improve understanding of how and when disaster related injuries occur and may shed some light 

on the characteristics of more vulnerable population types and locations. The assessment in Chapter 4 

relied solely on the number of deaths and injuries per event in Japan. More information about the 

circumstances and location of each event would enable more detailed projections about the climate-

event-health impact relationship and would help to reduce uncertainty. 
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5.4. Concluding remarks and recommendations 

This research pursued a case based assessment of methods for quantifying the impact of climate change 

on human health at a local and regional scale. The major research problem that it combatted was the 

lack of a transferrable framework for assessing human health impacts of climate change at a local scale, 

allowing for comparisons between risk factors and health outcomes. The research also sought to 

produce a quantified output of risk that could be placed in the context of risk assessment in general. 

Two methodologies for assessing widely different climate change risk factors were proposed, enacted 

and reviewed. The findings of these two methodologies were considered and an additional methodology, 

that tackled the full research question, was presented. Worked examples of two different health 

outcomes from two separate climate risk factors were used to demonstrate the methodology and a 

standard, transferrable, framework was proposed. The findings of the studies produced two concurrent 

categories of findings. The first category of findings related to the applicability of each method to real 

world scenarios and provided insight into the limitations. The second category of findings was based 

on the outputs of the three methods proposed and drew localised conclusions about what the results 

showed for each projection. The concurrent findings demonstrate the flexibility of the approaches 

proposed, as they provide insight into the implications of the outputs as well as reviewing the methods 

employed. 

The process of determining a framework to quantify climate change health impacts at a local level on a 

common scale was evolutionary, with each research chapter building on discoveries and limitations 

from the previous ones. This approach leaves several pathways open for further research to improve the 

methodologies presented in this research (Figure 5.4). These pathways have been opened up in equal 

part due to findings from the studies and limitations with the approaches used. The recommended 

further research pathways identified in Figure 5.4 are not exclusive, but they encompass three major 

areas that the author sees as open to further study that would address the limitations of this research and 

also develop the findings further into aiding and informing policy decisions and academic research. The 

recommendations of future research direction are addressed below. The first selection of 

recommendations are derived from the limitations of the research and aim to combat these. Specific 

reference is made to a number of recommendations that apply specifically to Japan, based upon the 

findings of the three studies conducted in this region. The recommendations provide guidance on how 

to reduce uncertainty and improve empirical based studies into climate change impacts on human health. 

The second group of recommendations build upon the findings of the research and detail new areas that 

this research exposes in the context of climate change risk assessment. The aim of these 

recommendations is to direct future study with the aim of advancing understanding in this field and 

developing highly applicable methodologies for climate change risk assessment. 
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Figure 5.4.1: Schematic of the research flow and further areas of study that can build on the findings 

of this project (dashed boxes). 

5.4.1. Recommendations to address limitations at the current stage of research 

A key issue with all risk research is uncertainty, and how it is addressed (Morgan and Henrion, 1990). 

In order to be fully incorporated into effective risk policy, assessments should explicitly acknowledge 

uncertainty, and quantify it where possible. The studies in this research are exposed to uncertainty, and 

while this has been acknowledged and addressed in most cases, there is room for improvement. The 

following, are recommended areas for future research to tackle the remaining areas of uncertainty: 

 The function determining vector biting rate in the malaria base reproduction rate model needs 

to be more explicitly linked to external factors, including land use, vector and human population 

density and health care capacity. Addressing this will enable the projection of the actual number 

of cases of malaria in a study area to be calculated (rather than the climatic suitability alone). 

Such a projection can then be verified against observed values, to produce a quantification of 

uncertainty. 

 Vulnerability areas identified in the heat wave vulnerability study can be verified against 

incidences of heat related illness and mortality at a local scale. This requires access to daily 

medical/hospital data at a local level. Alternatively, data from ambulance callouts can be used 

to calculate the number of excess call outs on specific heat wave days. 

 Development of a unified system of recording and storing health data at a local level, 

specifically relating to natural disasters would enable more detailed exposure-response 

functions to be developed. The more data that is available at the highest resolution and detail, 
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the easier it is to analyse and identify response variables. Some of the most difficult aspects of 

this study were presented by a lack of data, meaning more difficult methodological solutions 

had to be sought and larger assumptions made. Exposure-response variables are currently the 

most uncertain aspect of climate change health impact studies, so an increase in the availability 

of detailed standardised data will greatly advance the development of these key variables. 

 Specifically, for Japan, steps should be made to record deaths and mortality linked to climatic 

factors in a single database at the finest scale possible. This should relate to all health endpoints 

that are affected by the climate, even if the link for a specific case cannot be identified. 

Information regarding the patient cause of death or diagnosis should be clearly documented 

alongside the categorised data to enable in depth investigations into climatic risk factors and 

health to be conducted. Such a database would provide an invaluable tool for conducting future 

climate change health impact studies. Ideally, all climate change health impact studies require 

accurate health and climate data on the same scale so that links via observed data can be 

established with the maximum robustness. A specific database storing information on mortality, 

morbidity, location, date and patient demographic data would be a major advancement in terms 

of how climate change and health is analysed in Japan and would enable it to be established as 

a world leader in this field of research. An amalgamated database, detailing census data down 

to the smallest administrative level, currently exists in Japan; organised by the Statistics Bureau, 

Ministry of Internal Affairs and Communication. This database is accessed through a portal site 

(E-Stat, 2016), which acts as a central access point for census and GIS data. This portal site 

could be used as a model for development of a similar system relating to climate change impacts 

and human health risks. The existence of a database and portal for climate change human health 

risks would advance research capabilities and greatly improve the communication of risks 

posed by climate change. Research and communication are key aspects of risk management, so 

investment in such a facility would prove invaluable to improving knowledge about climate 

change and human health impacts.  

 Further to recordings of mortality and morbidity from climate change influenced health 

outcomes in Japan, additional investigations should be conducted into the climatic risk factors 

themselves. For example, the density of infectious disease vectors (namely dengue fever and 

malaria transmitting mosquitos) in different regions and habitats should be analysed. For 

instance, studies have discovered the existence of the malaria vector, Anopheles sinensis, in all 

prefectures of Japan (Rueda et al. 2005). However, these studies were conducted at point 

locations and a full picture of the density of vectors in different locations and habitats is not 

fully known. This would help to build up knowledge of areas at risk of imported disease 

transmission and could be combined with climate projections and observations to identify areas 

that are a priority for targeted countermeasure action such as vector control or disease control. 

http://www.stat.go.jp/english/
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 Currently, in Japan recordings of extreme events are controlled by disparate agencies in 

different regions, meaning that there is a lack of coordination in past observed events. There 

needs to be a greater integration of data regarding extreme events such as storms, typhoons and 

heat waves. This study recommends a centrally controlled database, where all reports of 

extreme events and the impact on structural, human and environmental aspects can be recorded 

and collated into a unified directory. The intensity, scale and location of extreme events should 

be recorded at a prefectural and even city level and stored in one database. The creation of such 

a database would allow for detailed empirical studies to be conducted at a much smaller scale 

than is currently possible. As demonstrated by this Study, particularly in Chapter 4, the 

importance of studying climate change impacts at a very small scale cannot be underestimated 

and should provide the basis for future impact studies. A single database of all extreme events 

and their impacts in Japan would enable studies at the most appropriate scale to be conducted 

and would further improve understanding of the spatial variations in risk throughout Japan. An 

emerging solution to the lack of detailed data at a local level is the concept of Big Data. This 

would provide up to date and extremely fine scale data of underlying health issues, which could 

be used to identify spatial vulnerability, as well as enabling real time monitoring of health 

during particular climate events such as heat waves and tropical storms. Incorporating big data 

into methodologies such as this would greatly reduce the limitations imposed by access to 

traditional data sources (Jee and Kim, 2013). The framework in this paper enables the use of 

Big Data to be included in the methodology, so future studies should look to utilise available 

Big Data sources where they exist. 

 There are uncertainties with all climate models, and these uncertainties increase and diverge 

after 2050. When considering climate change health risks after this time, it is advisable to run 

risk simulations using different climate scenarios to account for uncertainties in the general 

science behind climate models. Standardised emissions scenarios are provided by the 

Intergovernmental Panel on Climate Change (IPCC) in the form of the Representative 

Concentration Pathways (RCP). In the interests of standardised research practice, it is 

recommended that these scenario outputs are used to account for emissions scenario uncertainty. 

 This research provides quantification of human health impacts of climate change. There are, 

however, other types of impacts to consider. Ecosystem damage and financial costs, for 

example, are two examples of different endpoint losses due to climate change (de Schryver et 

al. 2008). The framework from this study provides an output detailing the human health risks 

from climate change, but a truly comprehensive climate impact study should also include 

outputs for alternative types of impact. Ecosystem health can be quantified in terms of the 

Potentially Disappeared Fraction (PDF; de Schryver et al. 2008), whereas financial damage due 

to crop viability change and extreme events can be quantified in monetary values. Of the three 
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facets of climate change impacts, only monetary values have the potential to be transferrable 

across all impacts, although the moral consequences of monetising human health and ecosystem 

damage leave the appropriateness of such an approach ambiguous. Perhaps the most 

appropriate course of action based on our current knowledge is to investigate the three impact 

types using individual quantification scales. The result of such an assessment will provide 

decision makers with quantified impact values in each sector, from which prioritisations can be 

made using the empirical data and expert judgement.   

5.4.2. Recommendations to expand the scope of this research 

This research presents a method to evaluate climate change impacts on human health using a common 

unit, which enables the risk of climate change on health outcomes to be placed in the context of the 

wider field of risk research. With this in mind, several recommendations are made regarding the future 

direction of study that can build on the findings of this research: 

 Regarding the use of the methodologies and key framework produced by this research, it is 

recommended that policy makers and researchers consider communication of risk as a central 

theme for their work and research. This research provides a framework and an output unit that 

is transferrable, transparent and contextual. These three attributes are important for all aspects 

of risk assessment as they greatly improve risk communication. Improved communication, 

based upon transparent studies, encourages greater cooperation between stakeholders and 

policy makers, which in turn aids effective implementation of risk reduction measures. This 

study provided evidence that it is possible to model climate change risk on intrinsically different 

human health outcomes at a local scale, using a common unit. If the limitations of the 

methodology are addressed, then this could provide a useful framework that could improve 

understanding within policy making sectors and improve communication of risk to the public 

from these sectors. 

 Although out of the scope of this research, the studies shed some light on countermeasure 

options for the topics covered. The resulting outputs also provide a strong basis for investigating 

the potential impact of different countermeasure approaches. The topic in Chapter 4, in 

particular, provides this option. It describes a method of projecting climate change health 

impacts at a local scale, using DALY. Future research could run the projections while 

accounting for different adaptation and countermeasure options. If we take the projection of the 

impact of climate change on cardiovascular disease as an example, the case study output in 

Chapter 4 can be used as a Business as Usual (BAU) scenario. Countermeasure options, such 

as reducing vulnerability through public health measures or reducing exposure through urban 

planning can then be tested against the BAU scenario and compared with each other for 
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effectiveness. This is a particularly important area of expansion for local level policymakers, 

who have to prioritise risk reduction actions. 

 Following on from the previous recommendation, the effectiveness of potential 

countermeasures can be assessed and combined with a Cost Benefit Analysis (CBA). Again, 

the method presented in this research can be used as a BAU scenario. The effectiveness of the 

target countermeasures can then be offset against their costs and trade-offs, to incorporate 

economics and finances into climate change health impact assessments. All authorities have 

finite resources, so combining the framework in this research with economic considerations 

would provide invaluable information to policy makers. The framework presented in this study 

is designed to facilitate CBA studies by providing authorities and decision makers with a 

foundation from which they can develop regional and locally applicable scenarios.  

 Climate change risk research must be contextual. Decision makers need to prioritise both 

countermeasures and risks (Laboy-Nieves et al. 2010). The fact that the output from Chapter 4 

is in a unit that can be used to determine human health risk from various health outcomes and 

risk factors, means that risks from different sources can be compared on the same scale. It also 

enables the impact of climate risk factors on a particular health outcome to be isolated and 

therefore compared to the impact of other risk factors on the same health outcome. Cross-sector 

and even cross-field (scientific) studies can therefore be conducted to determine the most 

important risk factors to different health outcomes. The total impact of specific risk factors can 

also be calculated and compared. The benefit of pursuing research in this direction is that risks 

can be prioritised based upon assessments placing them in a multi-criteria risk context. 

 The final recommendation from this study is that future research could investigate the value of 

information related to determining the risk of climate change on human health. This concept 

enables quantification of the importance of information relating to a decision (Morgan and 

Henrion, 1990). In the context of climate change health impact research, this means identifying 

which pieces of information are the most important to know in order to make an effective 

decision, such as implementing a countermeasure. The frameworks developed in this research 

provide a platform for such research to be conducted, which would benefit prioritisation of 

measures to reduce risks to human health.
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Appendix 

Appendix 1.1. Average number of monthly malaria cases and average monthly climatic variables for 

each region in South Korea (2001-2011) 

    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Seoul 

Malaria 1.8 1.4 2.2 3.8 10.5 26.2 56.4 56.2 37.9 17.7 6.4 2.5 

Daily min -5.7 -2.4 1.7 8.1 13.7 18.6 22.0 22.7 17.9 11.0 3.6 -3.3 

Daily max 1.4 5.5 10.1 17.4 23.4 27.0 28.2 29.5 26.1 20.1 11.7 4.0 

Precip 20.2 29.5 42.6 77.0 101.2 157.6 545.4 342.1 181.3 40.9 37.6 16.9 

Humidity 57.1 54.8 54.1 53.4 59.7 65.6 76.9 73.2 66.1 60.8 59.0 56.6 

Busan 

Malaria 0.6 0.0 0.4 0.4 1.8 5.2 10.6 10.6 5.6 1.8 0.9 0.3 

Daily min -0.4 2.1 5.0 10.0 14.3 18.2 21.6 23.4 20.0 14.6 8.1 2.0 

Daily max 7.6 10.5 13.5 18.1 21.6 24.6 27.1 29.2 26.4 22.5 16.3 10.1 

Precip 27.7 58.4 72.9 149.7 188.5 183.8 385.1 227.6 124.2 68.5 26.8 26.7 

Humidity 45.4 49.6 54.0 60.3 69.2 74.7 83.0 77.3 71.7 61.3 52.8 46.1 

Daegu 

Malaria 0.0 0.0 0.0 0.3 0.8 3.0 5.7 7.1 2.6 1.1 0.5 0.0 

Daily min -3.1 -0.7 3.3 8.9 14.2 18.9 22.6 23.1 18.3 11.5 4.5 -1.2 

Daily max 5.5 9.2 13.9 20.6 25.2 28.7 30.3 30.9 27.0 22.0 14.7 7.7 

Precip 17.4 32.7 33.8 63.3 100.9 142.5 265.8 260.0 125.5 34.7 19.5 19.3 

Humidity 48.5 48.3 46.2 47.6 55.4 61.2 72.6 71.0 69.0 61.0 54.4 50.7 

Inchon Malaria 1.7 0.6 1.5 3.7 12.8 30.4 57.4 62.3 46.2 22.5 4.5 1.8 
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Daily min -5.0 -2.0 2.1 8.1 13.3 17.9 21.5 22.6 18.2 11.8 4.4 -2.5 

Daily max 2.2 5.7 10.1 16.4 22.1 25.5 27.3 28.8 26.0 20.2 12.3 4.9 

Precip 18.1 24.9 35.9 68.4 100.5 135.0 447.6 266.4 149.4 43.2 38.5 15.5 

Humidity 60.4 61.1 61.1 61.9 68.2 74.1 82.9 78.3 70.5 64.5 61.6 59.3 

Gwangju 

Malaria 0.1 0.2 0.1 0.0 0.5 2.6 3.6 3.4 1.7 0.6 0.3 0.1 

Daily min -3.1 -1.1 2.3 7.7 13.7 18.8 22.7 23.0 18.5 11.4 4.7 -0.7 

Daily max 4.7 8.8 13.3 19.7 24.7 27.9 29.6 30.5 27.4 22.1 14.8 7.8 

Precip 34.7 60.1 49.3 92.2 115.1 160.6 353.3 341.6 143.0 35.7 31.2 42.0 

Humidity 65.6 61.3 58.2 58.6 64.2 69.9 79.0 77.1 72.2 65.7 64.2 66.3 

Daejon 

Malaria 0.0 0.2 0.1 0.2 1.0 2.2 4.2 4.7 1.8 1.4 0.2 0.0 

Daily min -5.6 -2.9 1.0 7.0 12.9 18.0 22.0 22.3 17.3 9.6 2.6 -3.3 

Daily max 3.6 7.2 12.2 19.1 24.2 27.6 28.7 29.6 26.2 20.8 13.3 6.0 

Precip 30.7 40.9 50.0 78.7 105.7 184.2 368.2 302.4 156.2 34.7 27.8 28.4 

Humidity 63.5 59.0 55.1 53.7 60.9 66.2 77.6 76.3 72.9 69.0 65.2 65.8 

Ulsan 

Malaria 0.2 0.2 0.2 0.3 0.3 2.5 3.5 5.1 1.7 0.6 0.3 0.1 

Daily min -1.9 0.2 3.4 8.5 13.4 17.8 21.8 22.6 18.3 12.2 5.5 0.2 

Daily max 7.2 10.0 13.7 19.5 23.3 26.7 29.0 30.0 26.1 22.1 16.0 9.6 

Precip 29.9 47.7 51.2 86.5 130.5 159.2 287.6 201.4 160.2 47.0 30.7 23.1 

Humidity 46.8 51.0 53.5 57.1 65.5 70.4 77.7 75.5 74.6 65.9 56.1 48.7 

Gyeonggi 

Malaria 2.8 3.2 4.3 13.5 48.2 100.8 157.5 168.0 101.8 59.2 14.4 2.7 

Daily min -7.1 -4.1 0.3 6.4 12.4 17.8 21.8 22.5 17.4 9.8 2.3 -4.4 

Daily max 2.0 5.7 10.6 17.7 23.3 27.0 28.7 29.9 26.4 20.4 12.0 4.7 
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Precip 19.6 30.1 43.5 83.0 94.6 162.3 457.8 264.9 151.9 40.0 40.8 18.5 

Humidity 62.1 61.5 60.4 60.0 64.3 70.0 80.4 77.1 71.3 67.6 64.5 61.4 

Gangwon 

Malaria 0.6 0.5 1.4 6.3 20.5 31.7 40.2 36.1 19.8 7.1 1.9 0.2 

Daily min -10.1 -6.1 -1.3 4.6 11.4 16.8 21.2 21.1 15.5 7.7 0.1 -6.7 

Daily max 1.4 6.1 11.2 18.7 24.3 27.7 28.8 29.7 25.7 19.9 11.3 3.6 

Precip 20.5 26.6 40.0 77.6 99.7 155.1 494.1 325.8 155.2 40.3 34.6 19.8 

Humidity 45.3 50.1 53.1 56.7 67.5 75.0 81.8 79.9 76.1 62.6 50.9 43.5 

North ChungChong 

Malaria 0.2 0.1 0.2 0.5 0.8 1.8 5.4 4.2 3.4 0.7 0.5 0.2 

Daily min -6.2 -3.2 0.8 7.0 13.3 18.4 22.2 22.5 17.3 9.6 2.3 -3.8 

Daily max 3.0 6.9 12.2 19.4 24.6 27.9 29.4 30.1 26.5 20.9 12.9 5.4 

Precip 24.5 32.3 45.4 75.3 97.5 167.5 336.0 276.0 154.6 36.5 27.9 24.7 

Humidity 62.9 58.2 53.7 50.8 57.1 63.8 75.2 73.8 70.4 66.2 62.8 63.9 

South ChungChong 

Malaria 0.2 0.1 0.1 0.4 0.7 2.4 5.9 5.7 2.4 2.1 0.1 0.6 

Daily min -8.2 -4.8 -1.0 4.8 11.9 17.0 21.2 21.2 15.5 7.3 0.5 -5.2 

Daily max 2.5 6.2 11.4 18.6 24.0 27.3 28.9 29.8 26.2 20.7 12.7 5.1 

Precip 21.8 27.9 40.5 73.9 88.0 154.4 332.5 280.1 169.6 37.8 31.3 27.0 

Humidity 69.8 66.2 61.4 58.3 63.5 69.2 78.5 77.9 75.2 71.8 69.1 69.8 

North Jeolla 

Malaria 0.0 0.1 0.4 0.2 0.8 3.4 5.3 6.2 4.5 0.9 0.1 0.1 

Daily min -4.5 -2.3 1.1 6.8 12.9 18.2 22.6 22.8 17.9 10.2 3.7 -2.1 

Daily max 4.5 7.9 12.7 19.6 24.9 28.6 30.2 31.0 27.7 21.9 14.3 7.0 

Precip 28.9 43.1 45.7 80.0 94.9 145.4 353.5 325.5 118.3 36.2 28.8 36.0 

Humidity 66.0 62.7 59.0 56.8 62.5 67.4 76.2 75.1 71.6 67.1 64.0 66.0 
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South Jeolla 

Malaria 0.2 0.1 0.1 0.3 0.6 2.4 4.8 5.9 3.4 0.8 0.2 0.4 

Daily min -1.7 -0.5 2.6 8.0 13.7 18.4 22.4 23.3 19.1 12.7 6.3 0.7 

Daily max 5.0 7.5 11.3 17.0 22.1 25.6 28.0 29.5 26.4 21.3 14.4 7.8 

Precip 30.1 46.6 50.6 82.9 113.0 159.8 267.5 220.4 120.4 40.7 30.4 36.7 

Humidity 72.8 72.0 69.7 70.6 76.3 80.8 87.2 83.2 77.8 70.8 69.7 72.0 

North Gyeongsang 

Malaria 0.3 0.4 0.2 0.6 5.9 3.9 5.6 7.7 2.7 1.9 0.8 0.5 

Daily min -7.7 -4.8 -0.5 5.1 11.2 16.3 20.8 20.9 15.7 8.1 0.5 -5.3 

Daily max 6.2 9.3 13.1 19.1 22.8 26.2 28.5 29.4 25.5 21.5 15.3 8.7 

Precip 36.8 42.5 45.0 72.9 117.1 145.9 239.7 218.5 183.8 46.8 35.5 24.9 

Humidity 48.1 50.9 52.8 55.6 66.2 72.4 79.5 78.7 76.3 65.1 55.1 48.8 

South Gyeongsang 

Malaria 0.4 0.2 0.2 0.3 0.9 3.2 7.9 7.7 4.6 1.6 0.9 0.2 

Daily min -6.0 -3.4 0.4 5.9 12.0 17.3 22.0 22.3 17.3 9.0 1.5 -3.8 

Daily max 6.8 10.1 14.1 20.0 24.6 27.8 29.6 30.7 27.5 22.7 15.8 9.3 

Precip 69.7 65.5 76.3 82.4 110.0 184.9 217.6 262.7 231.7 71.6 59.3 65.8 

Humidity 56.9 57.5 56.1 60.6 67.4 72.4 80.3 78.3 75.4 70.5 66.2 60.9 

Jeju 

Malaria 0.1 0.0 0.0 0.1 0.3 0.3 0.7 2.9 0.4 0.4 0.0 0.1 

Daily min 3.5 4.2 6.3 10.4 14.8 19.1 23.5 24.5 21.1 15.7 10.0 5.5 

Daily max 7.8 10.3 13.2 17.8 21.7 24.9 29.2 29.9 26.1 21.7 16.1 10.8 

Precip 69.7 65.5 76.3 82.4 110.0 184.9 217.6 262.7 231.7 71.6 59.3 65.8 

Humidity 61.8 61.1 58.4 60.4 66.7 73.9 75.0 73.3 72.0 62.9 59.9 61.7 
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Appendix 1.2. Annual malaria cases per region in the Republic of Korea 2001-2011 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Busan 68 49 27 16 28 62 41 27 33 43 26 

Daegu 30 25 13 13 16 25 36 15 25 19 16 

Daejon 32 18 9 12 12 14 23 10 21 15 9 

Gangwon 545 216 132 65 78 123 125 109 154 184 96 

Gwangju 32 17 17 16 8 15 7 8 10 9 6 

Gyeonggi 909 756 518 399 660 869 1,007 490 611 818 387 

Inchon 275 267 166 107 222 465 484 164 164 256 123 

Jeju 7 2 2 1 4 4 2 5 1 7 4 

North ChungChong 25 22 9 12 10 25 30 11 18 23 11 

North Gyeongsang 43 29 24 16 26 32 35 17 32 19 12 

North Jeolla 40 27 12 17 25 30 23 14 18 22 12 

Seoul 370 285 170 136 213 272 314 126 178 289 93 

South ChungChong 35 22 16 17 11 23 23 21 27 14 12 

South Gyeongsang 64 32 13 12 22 40 41 17 26 24 13 

South Jeolla 37 19 20 11 20 29 20 11 11 21 11 

Ulsan 32 10 18 13 13 23 16 7 16 8 7 

Other 12 3 5 1 1 0 0 0 0 0 0 

TOTAL 2,556 1,799 1,171 864 1,369 2,051 2,227 1,052 1,345 1,771 838 
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Appendix 1.3. Annual malaria cases in the Republic of Korea 

2001-2011 

 

Appendix 1.4. Monthly maximum temperature and malaria cases 

for all regions in the Republic of Korea (2001-2011) 
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Appendix 1.5. Monthly minimum temperature and malaria cases 

for all regions in the Republic of Korea (2001-2011) 

 

Appendix 1.6. Monthly precipitation and malaria cases for all 

regions in the Republic of Korea (2001-2011)  
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Appendix 1.6. Monthly relative humidity and malaria cases for all 

regions in the Republic of Korea (2001-2011)  
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Appendix 2.1. Heat wave vulnerability index scores and vulnerability information for Chuo Ward, 

Osaka City, Japan 

KEY_CODE Ku Ward Chome Households Population DENSITY /he pop >65 % >65 Pop living alone % living alone Employed % not in work lone >65 % lone >65 % built up HVI score 

27128002001 中央区 Chuo 上本町西１丁目 435 742 21.64 86 11.59 276 63.45 384 48.25 34 39.53 100.00 58.90 

27128002002 中央区 Chuo 上本町西２丁目 616 1021 26.57 235 23.02 396 64.29 534 47.7 91 38.72 100.00 63.63 

27128002003 中央区 Chuo 上本町西３丁目 338 694 20.21 164 23.63 151 44.67 350 49.57 31 18.90 70.88 49.04 

27128002004 中央区 Chuo 上本町西４丁目 202 426 22.19 50 11.74 82 40.59 213 50 14 28.00 100.00 51.50 

27128002005 中央区 Chuo 上本町西５丁目 395 755 26.55 79 10.46 190 48.1 387 48.74 34 43.04 100.00 56.81 

27128004001 中央区 Chuo 上汐１丁目 231 425 19.65 82 19.29 129 55.84 218 48.71 20 24.39 100.00 56.46 

27128004002 中央区 Chuo 上汐２丁目 387 608 19.56 152 25 246 63.57 314 48.36 51 33.55 100.00 61.81 

271280610 中央区 Chuo 上町 217 289 15.39 48 16.61 172 79.26 161 44.29 19 39.58 46.74 53.59 

271280710 中央区 Chuo 上町１丁目 1150 2167 14.16 496 22.89 613 53.3 1029 52.51 188 37.90 80.40 55.71 

27128005001 中央区 Chuo 中寺１丁目 174 388 10.19 45 11.6 71 40.8 199 48.71 13 28.89 100.00 49.62 

27128005002 中央区 Chuo 中寺２丁目 173 266 7.40 62 23.31 128 73.99 132 50.38 32 51.61 100.00 66.52 

27128033001 中央区 Chuo 久太郎町１丁目 350 417 7.33 12 2.88 306 87.43 213 48.92 6 50.00 100.00 62.43 

27128033002 中央区 Chuo 久太郎町２丁目 52 64 1.72 12 18.75 44 84.62 25 60.94 6 50.00 100.00 67.09 

27128033003 中央区 Chuo 久太郎町３丁目 40 45 1.19 8 17.78 34 85 29 35.56 2 25.00 100.00 55.60 

27128033004 中央区 Chuo 久太郎町４丁目 9 15 0.40 9 60 5 55.56 9 40 1 11.11 100.00 60.83 

27128021001 中央区 Chuo 今橋１丁目 139 219 10.04 33 15.07 90 64.75 125 42.92 5 15.15 100.00 50.81 

27128021002 中央区 Chuo 今橋２丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128021003 中央区 Chuo 今橋３丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128021004 中央区 Chuo 今橋４丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128023001 中央区 Chuo 伏見町１丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128023002 中央区 Chuo 伏見町２丁目 12 16 1.31 4 25 8 66.67 6 62.5 2 50.00 100.00 64.64 

27128023003 中央区 Chuo 伏見町３丁目 184 278 15.43 36 12.95 115 62.5 149 46.4 14 38.89 100.00 57.37 

27128023004 中央区 Chuo 伏見町４丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128028001 中央区 Chuo 備後町１丁目 152 226 8.74 14 6.19 110 72.37 103 54.42 3 21.43 100.00 54.26 
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27128028002 中央区 Chuo 備後町２丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128028003 中央区 Chuo 備後町３丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128028004 中央区 Chuo 備後町４丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128059001 中央区 Chuo 内久宝寺町１丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128059002 中央区 Chuo 内久宝寺町２丁目 388 744 24.69 103 13.84 188 48.45 406 45.43 24 23.30 100.00 52.22 

27128059003 中央区 Chuo 内久宝寺町３丁目 286 373 21.27 25 6.7 232 81.12 226 39.41 4 16.00 100.00 54.04 

27128059004 中央区 Chuo 内久宝寺町４丁目 275 382 23.02 54 14.14 213 77.45 221 42.15 21 38.89 100.00 61.87 

27128044001 中央区 Chuo 内平野町１丁目 202 296 26.12 38 12.84 144 71.29 163 44.93 17 44.74 100.00 61.96 

27128044002 中央区 Chuo 内平野町２丁目 327 486 31.16 47 9.67 238 72.78 291 40.12 16 34.04 100.00 59.23 

27128044003 中央区 Chuo 内平野町３丁目 39 53 6.01 4 7.55 32 82.05 40 24.53 0 0.00 100.00 45.33 

27128051001 中央区 Chuo 内本町１丁目 290 516 25.67 72 13.95 160 55.17 268 48.06 19 26.39 100.00 55.14 

27128051002 中央区 Chuo 内本町２丁目 216 322 13.30 62 19.25 148 68.52 172 46.58 31 50.00 100.00 63.95 

27128045001 中央区 Chuo 内淡路町１丁目 267 356 29.59 44 12.36 213 79.78 212 40.45 15 34.09 100.00 61.52 

27128045002 中央区 Chuo 内淡路町２丁目 200 338 21.05 46 13.61 115 57.5 187 44.67 8 17.39 100.00 51.92 

27128045003 中央区 Chuo 内淡路町３丁目 111 167 16.49 14 8.38 85 76.58 98 41.32 4 28.57 100.00 56.16 

27128034001 中央区 Chuo 北久宝寺町１丁目 231 293 8.94 37 12.63 192 83.12 152 48.12 16 43.24 100.00 62.97 

27128034002 中央区 Chuo 北久宝寺町２丁目 38 51 2.14 7 13.73 31 81.58 23 54.9 4 57.14 100.00 66.07 

27128034003 中央区 Chuo 北久宝寺町３丁目 29 44 1.96 10 22.73 20 68.97 18 59.09 3 30.00 100.00 59.30 

27128034004 中央区 Chuo 北久宝寺町４丁目 24 32 2.22 7 21.88 18 75 14 56.25 2 28.57 100.00 62.23 

271280480 中央区 Chuo 北新町 70 136 15.72 25 18.38 29 41.43 56 58.82 8 32.00 100.00 54.13 

27128020001 中央区 Chuo 北浜１丁目 7 13 0.33 3 23.08 4 57.14 6 53.85 2 66.67 0.00 47.05 

27128020002 中央区 Chuo 北浜２丁目 73 83 1.76 12 14.46 67 91.78 53 36.14 7 58.33 0.00 48.05 

27128020003 中央区 Chuo 北浜３丁目 23 47 0.93 18 38.3 12 52.17 21 55.32 8 44.44 21.03 51.70 

27128020004 中央区 Chuo 北浜４丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 41.33 6.90 

271280380 中央区 Chuo 北浜東 21 27 0.37 5 18.52 16 76.19 18 33.33 1 20.00 0.00 36.21 

271280630 中央区 Chuo 十二軒町 482 792 27.99 129 16.29 295 61.2 411 48.11 46 35.66 100.00 60.13 

27128012001 中央区 Chuo 千日前１丁目 173 241 6.72 75 31.12 138 79.77 116 51.87 38 50.67 100.00 70.58 

27128012002 中央区 Chuo 千日前２丁目 117 175 3.89 50 28.57 81 69.23 71 59.43 23 46.00 100.00 67.05 

27128035001 中央区 Chuo 南久宝寺町１丁目 429 509 14.31 41 8.06 380 88.58 302 40.67 11 26.83 100.00 58.00 

27128035002 中央区 Chuo 南久宝寺町２丁目 229 318 13.35 26 8.18 175 76.42 179 43.71 13 50.00 100.00 60.84 
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27128035003 中央区 Chuo 南久宝寺町３丁目 26 40 1.50 13 32.5 18 69.23 22 45 3 23.08 100.00 58.64 

27128035004 中央区 Chuo 南久宝寺町４丁目 140 203 8.56 21 10.34 103 73.57 90 55.67 6 28.57 100.00 57.77 

27128049001 中央区 Chuo 南新町１丁目 76 110 9.59 11 10 55 72.37 66 40 3 27.27 100.00 53.33 

27128049002 中央区 Chuo 南新町２丁目 123 180 11.97 20 11.11 92 74.8 115 36.11 8 40.00 100.00 57.73 

27128031001 中央区 Chuo 南本町１丁目 84 100 2.72 12 12 75 89.29 69 31 7 58.33 100.00 62.49 

27128031002 中央区 Chuo 南本町２丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128031003 中央区 Chuo 南本町３丁目 105 143 4.73 18 12.59 76 72.38 64 55.24 11 61.11 100.00 65.17 

27128031004 中央区 Chuo 南本町４丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128009001 中央区 Chuo 南船場１丁目 1297 1928 14.01 216 11.2 888 68.47 963 50.05 60 27.78 100.00 56.51 

27128009002 中央区 Chuo 南船場２丁目 293 415 4.57 67 16.14 215 73.38 198 52.29 27 40.30 100.00 60.66 

27128009003 中央区 Chuo 南船場３丁目 97 133 1.40 31 23.31 72 74.23 72 45.86 8 25.81 100.00 57.69 

27128009004 中央区 Chuo 南船場４丁目 134 201 2.52 43 21.39 95 70.9 94 53.23 16 37.21 100.00 60.67 

27128036001 中央区 Chuo 博労町１丁目 251 319 8.93 33 10.34 205 81.67 158 50.47 10 30.30 100.00 59.12 

27128036002 中央区 Chuo 博労町２丁目 145 168 6.98 9 5.36 128 88.28 96 42.86 6 66.67 100.00 66.05 

27128036003 中央区 Chuo 博労町３丁目 118 154 6.89 11 7.14 96 81.36 81 47.4 2 18.18 100.00 54.31 

27128036004 中央区 Chuo 博労町４丁目 64 82 3.65 11 13.41 53 82.81 40 51.22 5 45.45 100.00 62.77 

27128058001 中央区 Chuo 和泉町１丁目 132 188 9.96 24 12.77 97 73.48 94 50 5 20.83 100.00 55.47 

27128058002 中央区 Chuo 和泉町２丁目 112 188 10.87 21 11.17 68 60.71 91 51.6 6 28.57 100.00 54.26 

27128067001 中央区 Chuo 城見１丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 19.33 3.22 

27128067002 中央区 Chuo 城見２丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 29.16 4.87 

27128056001 中央区 Chuo 大手前１丁目 129 197 1.46 44 22.34 79 61.24 115 41.62 9 20.45 18.68 38.73 

27128056002 中央区 Chuo 大手前２丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 46.22 7.71 

27128056003 中央区 Chuo 大手前３丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 61.90 10.33 

27128056004 中央区 Chuo 大手前４丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 24.17 4.03 

27128046001 中央区 Chuo 大手通１丁目 204 379 26.93 39 10.29 106 51.96 188 50.4 15 38.46 100.00 56.70 

27128046002 中央区 Chuo 大手通２丁目 214 377 23.35 53 14.06 119 55.61 204 45.89 11 20.75 38.05 42.95 

27128046003 中央区 Chuo 大手通３丁目 100 187 12.42 32 17.11 49 49 96 48.66 7 21.88 100.00 51.83 

271280680 中央区 Chuo 大阪城 0 0 0.00 0 0 0 0 0 0 0 0.00 0.00 0.00 

271280370 中央区 Chuo 天満橋京町 76 151 3.31 24 15.89 30 39.47 79 47.68 9 37.50 34.22 39.53 

27128029001 中央区 Chuo 安土町１丁目 78 141 5.31 44 31.21 43 55.13 51 63.83 20 45.45 100.00 64.41 
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27128029002 中央区 Chuo 安土町２丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128029003 中央区 Chuo 安土町３丁目 70 118 4.44 16 13.56 36 51.43 61 48.31 6 37.50 100.00 53.55 

27128001001 中央区 Chuo 安堂寺町１丁目 367 583 22.90 92 15.78 239 65.12 307 47.34 17 18.48 100.00 55.74 

27128001002 中央区 Chuo 安堂寺町２丁目 986 1616 35.59 192 11.88 607 61.56 838 48.14 73 38.02 100.00 60.42 

271280190 中央区 Chuo 宗右衛門町 79 103 1.91 30 29.13 62 78.48 42 59.22 11 36.67 100.00 66.53 

27128010001 中央区 Chuo 島之内１丁目 1437 1864 13.05 226 12.12 1151 80.1 807 56.71 88 38.94 100.00 63.57 

27128010002 中央区 Chuo 島之内２丁目 2750 3693 27.52 530 14.35 2126 77.31 1173 68.24 250 47.17 100.00 70.81 

27128040001 中央区 Chuo 島町１丁目 143 250 18.92 19 7.6 85 59.44 135 46 3 15.79 100.00 49.92 

27128040002 中央区 Chuo 島町２丁目 258 325 16.52 25 7.69 212 82.17 201 38.15 11 44.00 100.00 59.94 

27128053001 中央区 Chuo 常盤町１丁目 162 231 11.03 53 22.94 119 73.46 71 69.26 31 58.49 100.00 73.82 

27128053002 中央区 Chuo 常盤町２丁目 305 366 15.38 14 3.83 264 86.56 212 42.08 4 28.57 100.00 57.45 

27128025001 中央区 Chuo 平野町１丁目 118 153 5.82 30 19.61 90 76.27 81 47.06 14 46.67 100.00 62.80 

27128025002 中央区 Chuo 平野町２丁目 20 26 1.09 5 19.23 15 75 14 46.15 0 0.00 100.00 52.05 

27128025003 中央区 Chuo 平野町３丁目 46 85 3.54 24 28.24 29 63.04 42 50.59 4 16.67 100.00 56.03 

27128025004 中央区 Chuo 平野町４丁目 104 112 4.61 15 13.39 98 94.23 42 62.5 9 60.00 100.00 71.89 

27128050001 中央区 Chuo 徳井町１丁目 132 213 18.09 28 13.15 78 59.09 92 56.81 7 25.00 100.00 55.77 

27128050002 中央区 Chuo 徳井町２丁目 387 497 33.35 23 4.63 309 79.84 303 39.03 10 43.48 100.00 61.98 

27128017001 中央区 Chuo 心斎橋筋１丁目 50 89 1.42 31 34.83 30 60 39 56.18 16 51.61 100.00 65.68 

27128017002 中央区 Chuo 心斎橋筋２丁目 36 67 1.20 34 50.75 18 50 39 41.79 10 29.41 100.00 58.17 

27128015001 中央区 Chuo 日本橋１丁目 771 1134 10.67 287 25.31 553 71.73 506 55.38 123 42.86 100.00 66.46 

27128015002 中央区 Chuo 日本橋２丁目 1426 2195 23.99 552 25.15 941 65.99 803 63.42 246 44.57 100.00 69.16 

27128030001 中央区 Chuo 本町１丁目 13 24 0.84 11 45.83 6 46.15 12 50 2 18.18 100.00 54.98 

27128030002 中央区 Chuo 本町２丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128030003 中央区 Chuo 本町３丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128030004 中央区 Chuo 本町４丁目 45 53 0.90 10 18.87 38 84.44 31 41.51 7 70.00 100.00 68.03 

271280540 中央区 Chuo 本町橋 466 766 10.79 86 11.23 275 59.01 414 45.95 13 15.12 100.00 49.76 

271280600 中央区 Chuo 材木町 384 438 24.73 21 4.79 342 89.06 241 44.98 4 19.05 100.00 57.93 

27128003001 中央区 Chuo 東平１丁目 550 1179 52.61 181 15.35 207 37.64 579 50.89 49 27.07 55.38 49.60 

27128003002 中央区 Chuo 東平２丁目 370 567 23.19 90 15.87 254 68.65 264 53.44 18 20.00 100.00 58.28 

27128016001 中央区 Chuo 東心斎橋１丁目 603 912 7.58 214 23.46 416 68.99 478 47.59 70 32.71 100.00 59.78 
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27128016002 中央区 Chuo 東心斎橋２丁目 106 164 2.55 61 37.2 72 67.92 74 54.88 23 37.70 100.00 64.56 

271280430 中央区 Chuo 東高麗橋 704 936 22.54 91 9.72 567 80.54 547 41.56 28 30.77 100.00 59.13 

271280060 中央区 Chuo 松屋町 815 1260 25.02 96 7.62 554 67.98 617 51.03 26 27.08 100.00 57.15 

271280660 中央区 Chuo 松屋町住吉 548 715 21.88 48 6.71 447 81.57 386 46.01 7 14.58 100.00 55.65 

27128072001 中央区 Chuo 森ノ宮中央１丁目 711 1251 12.07 238 19.02 425 59.77 635 49.24 84 35.29 100.00 58.45 

27128072002 中央区 Chuo 森ノ宮中央２丁目 372 642 6.34 144 22.43 238 63.98 305 52.49 56 38.89 60.48 54.40 

27128070001 中央区 Chuo 法円坂１丁目 518 978 5.76 383 39.16 230 44.4 453 53.68 117 30.55 23.42 47.34 

27128070002 中央区 Chuo 法円坂２丁目 151 184 2.47 10 5.43 140 92.72 156 15.22 1 10.00 100.00 46.91 

27128026001 中央区 Chuo 淡路町１丁目 91 147 6.06 17 11.56 55 60.44 59 59.86 8 47.06 100.00 59.71 

27128026002 中央区 Chuo 淡路町２丁目 75 126 5.06 25 19.84 43 57.33 62 50.79 13 52.00 100.00 60.79 

27128026003 中央区 Chuo 淡路町３丁目 80 139 5.65 14 10.07 36 45 83 40.29 5 35.71 100.00 48.10 

27128026004 中央区 Chuo 淡路町４丁目 12 18 0.91 2 11.11 9 75 8 55.56 0 0.00 100.00 49.75 

27128073001 中央区 Chuo 玉造１丁目 1048 2226 19.13 406 18.24 435 41.51 1037 53.41 98 24.14 100.00 53.13 

27128073002 中央区 Chuo 玉造２丁目 1143 2167 10.98 429 19.8 633 55.38 1093 49.56 124 28.90 74.66 51.85 

27128007001 中央区 Chuo 瓦屋町１丁目 753 1290 22.08 196 15.19 444 58.96 585 54.65 54 27.55 100.00 57.79 

27128007002 中央区 Chuo 瓦屋町２丁目 1089 1909 25.43 296 15.51 582 53.44 760 60.19 109 36.82 73.35 56.06 

27128007003 中央区 Chuo 瓦屋町３丁目 640 1073 27.11 158 14.73 384 60 383 64.31 48 30.38 100.00 61.46 

27128027001 中央区 Chuo 瓦町１丁目 556 821 28.24 80 9.74 381 68.53 433 47.26 25 31.25 100.00 58.00 

27128027002 中央区 Chuo 瓦町２丁目 13 22 0.90 8 36.36 8 61.54 9 59.09 2 25.00 100.00 59.75 

27128027003 中央区 Chuo 瓦町３丁目 29 35 1.37 4 11.43 27 93.1 18 48.57 3 75.00 100.00 70.39 

27128027004 中央区 Chuo 瓦町４丁目 37 44 1.66 7 15.91 33 89.19 23 47.73 5 71.43 100.00 70.94 

27128039001 中央区 Chuo 石町１丁目 152 238 19.60 61 25.63 101 66.45 133 44.12 31 50.82 100.00 65.17 

27128039002 中央区 Chuo 石町２丁目 222 319 23.77 68 21.32 159 71.62 180 43.57 28 41.18 100.00 62.93 

271280650 中央区 Chuo 神崎町 241 453 21.12 60 13.25 113 46.89 238 47.46 20 33.33 100.00 54.14 

271280640 中央区 Chuo 粉川町 666 1191 43.81 223 18.72 363 54.5 565 52.56 61 27.35 100.00 60.51 

27128047001 中央区 Chuo 糸屋町１丁目 369 758 65.27 68 8.97 157 42.55 372 50.92 14 20.59 100.00 55.85 

27128047002 中央区 Chuo 糸屋町２丁目 90 168 6.31 20 11.9 41 45.56 91 45.83 3 15.00 62.45 39.80 

27128032001 中央区 Chuo 船場中央１丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128032002 中央区 Chuo 船場中央２丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128032003 中央区 Chuo 船場中央３丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 
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27128032004 中央区 Chuo 船場中央４丁目 0 0 0.00 0 0 0 0 154 0 0 0.00 100.00 16.69 

27128042001 中央区 Chuo 船越町１丁目 164 263 23.44 33 12.55 102 62.2 170 35.36 8 24.24 100.00 52.22 

27128042002 中央区 Chuo 船越町２丁目 211 292 18.55 28 9.59 163 77.25 151 48.29 7 25.00 100.00 57.40 

27128018001 中央区 Chuo 西心斎橋１丁目 222 301 3.57 60 19.93 166 74.77 169 43.85 20 33.33 100.00 58.81 

27128018002 中央区 Chuo 西心斎橋２丁目 327 434 4.42 86 19.82 257 78.59 57 86.87 27 31.40 100.00 68.53 

27128055001 中央区 Chuo 谷町１丁目 54 94 3.63 34 36.17 32 59.26 138 0 15 44.12 100.00 51.86 

27128055002 中央区 Chuo 谷町２丁目 174 270 7.05 32 11.85 115 66.09 144 46.67 15 46.88 100.00 58.11 

27128055003 中央区 Chuo 谷町３丁目 212 294 9.12 22 7.48 163 76.89 502 0 8 36.36 68.99 42.46 

27128055004 中央区 Chuo 谷町４丁目 528 1009 21.14 141 13.97 253 47.92 544 46.09 47 33.33 100.00 53.96 

27128055005 中央区 Chuo 谷町５丁目 625 1166 47.23 181 15.52 306 48.96 1414 0 52 28.73 100.00 48.27 

27128055006 中央区 Chuo 谷町６丁目 1523 2878 20.62 761 26.44 757 49.7 881 69.39 173 22.73 100.00 61.65 

27128055007 中央区 Chuo 谷町７丁目 870 1652 23.26 362 21.91 420 48.28 294 82.2 92 25.41 100.00 63.39 

27128055008 中央区 Chuo 谷町８丁目 290 585 17.39 144 24.62 130 44.83 462 21.03 50 34.72 100.00 50.97 

27128055009 中央区 Chuo 谷町９丁目 554 943 20.59 194 20.57 334 60.29 540 42.74 90 46.39 100.00 61.18 

27128057001 中央区 Chuo 農人橋１丁目 545 1124 29.96 220 19.57 286 52.48 294 73.84 25 11.36 100.00 60.12 

27128057002 中央区 Chuo 農人橋２丁目 306 558 14.35 88 15.77 163 53.27 65 88.35 28 31.82 100.00 63.14 

27128057003 中央区 Chuo 農人橋３丁目 102 107 7.06 3 2.8 97 95.1 6 94.39 3 100.00 100.00 86.13 

27128024001 中央区 Chuo 道修町１丁目 11 16 0.60 11 68.75 8 72.73 18 0 5 45.45 100.00 64.96 

27128024002 中央区 Chuo 道修町２丁目 30 34 1.43 3 8.82 27 90 45 0 2 66.67 100.00 56.72 

27128024003 中央区 Chuo 道修町３丁目 39 90 3.86 5 5.56 10 25.64 7 92.22 2 40.00 100.00 53.92 

27128024004 中央区 Chuo 道修町４丁目 15 17 0.67 8 47.06 13 86.67 150 0 5 62.50 100.00 64.91 

27128011001 中央区 Chuo 道頓堀１丁目 276 422 5.30 111 26.3 192 69.57 36 91.47 59 53.15 100.00 74.81 

27128011002 中央区 Chuo 道頓堀２丁目 30 53 2.01 16 30.19 14 46.67 152 0 4 25.00 100.00 43.80 

27128041001 中央区 Chuo 釣鐘町１丁目 164 259 20.05 38 14.67 110 67.07 172 33.59 12 31.58 100.00 55.56 

27128041002 中央区 Chuo 釣鐘町２丁目 206 254 16.59 15 5.91 173 83.98 275 0 7 46.67 100.00 52.73 

27128052001 中央区 Chuo 鎗屋町１丁目 129 267 23.80 31 11.61 55 42.64 128 52.06 8 25.81 100.00 52.02 

27128052002 中央区 Chuo 鎗屋町２丁目 195 257 22.64 8 3.11 151 77.44 147 42.8 3 37.50 100.00 58.44 

27128014001 中央区 Chuo 難波１丁目 23 57 1.67 16 28.07 10 43.48 19 66.67 4 25.00 100.00 54.91 

27128014002 中央区 Chuo 難波２丁目 19 26 0.95 7 26.92 14 73.68 8 69.23 5 71.43 100.00 74.44 

27128014003 中央区 Chuo 難波３丁目 23 40 1.08 15 37.5 12 52.17 17 57.5 5 33.33 100.00 59.42 
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27128014004 中央区 Chuo 難波４丁目 62 112 3.92 45 40.18 32 51.61 48 57.14 10 22.22 100.00 59.05 

27128014005 中央区 Chuo 難波５丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

271280130 中央区 Chuo 難波千日前 407 676 9.80 213 31.51 263 64.62 300 55.62 78 36.62 100.00 64.28 

271280690 中央区 Chuo 馬場町 133 136 2.26 0 0 130 97.74 102 25 0 0.00 0.00 29.80 

27128008001 中央区 Chuo 高津１丁目 611 915 15.22 152 16.61 424 69.39 326 64.37 63 41.45 100.00 64.93 

27128008002 中央区 Chuo 高津２丁目 669 851 27.32 80 9.4 552 82.51 315 62.98 47 58.75 100.00 72.70 

27128008003 中央区 Chuo 高津３丁目 1437 2271 24.25 430 18.93 899 62.56 969 57.33 170 39.53 100.00 64.33 

27128022001 中央区 Chuo 高麗橋１丁目 394 620 20.90 68 10.97 252 63.96 354 42.9 22 32.35 100.00 55.68 

27128022002 中央区 Chuo 高麗橋２丁目 123 133 5.68 11 8.27 116 94.31 99 25.56 6 54.55 100.00 61.94 

27128022003 中央区 Chuo 高麗橋３丁目 0 0 0.00 0 0 0 0 0 0 0 0.00 100.00 16.69 

27128022004 中央区 Chuo 高麗橋４丁目 7 8 0.26 4 50 6 85.71 4 50 2 50.00 100.00 73.05 

271280620 中央区 Chuo 龍造寺町 238 427 18.94 106 24.82 135 56.72 223 47.78 44 41.51 100.00 62.25 
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Appendix 2.2. Principle component analysis output for Osaka 

City, Japan 

Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings 

Total 

% of 

Variance Cumulative % Total 

% of 

Variance Cumulative % Total 

% of 

Variance Cumulative % 

1 2.771 39.585 39.585 2.771 39.585 39.585 2.122 30.309 30.309 

2 1.491 21.305 60.890 1.491 21.305 60.890 1.855 26.504 56.813 

3 1.137 16.249 77.139 1.137 16.249 77.139 1.423 20.326 77.139 

4 .667 9.528 86.667             

5 .363 5.185 91.852             

6 .311 4.443 96.295             

7 .259 3.705 100.000             

Extraction Method: Principal Component Analysis. 
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Rotated Component Matrixa 

  

Component 

1 2 3 

Age .871 .120 .052 

Unemployment .699 .446 .282 

Education .909 -.062 -.003 

Isolation .010 .916 .109 

Age_and_Isolation .164 .884 .081 

Density .145 .099 .805 

Lack_of_Green_Space -.009 .083 .821 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Varimax with Kaiser Normalization. 
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Appendix 2.3. Heat wave vulnerability and exposure mapping for 

Osaka City, Japan: Supporting information 

 

 

Figure 1: Location of parks, waterways and the coastline in Osaka City. Data accessed from: 

www.openstreetmap.org. 

http://www.openstreetmap.org/
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Figure 2: Landsat 8 Thermal Infrared Sensor (TIRS) image, with estimated land surface temperature 

(LST) at 30m2 resolution. The image was taken at 10:34 AM on 26th July 2015. This image was selected 

as a representative of LST for Osaka City as it is the only ‘hot day’ image with zero cloud cover 

available from Landsat 8 (TIRS) for the study area. Data accessed from: http://earthexplorer.usgs.gov/.   

LST is calculated from Band 10 wavelengths (thermal energy) in a two-step process: 

Step one involves converting the unscaled data into Top of Atmosphere (TOA) radiance using the 

following formula: 

𝐿𝜆  =  𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿 

Where 𝐿𝜆  is the TOA radiance (Watts/(m2 * srad * µm)), 𝑀𝐿  is the band-specific multiplicative 

rescaling factor, 𝑄𝑐𝑎𝑙 is the unscaled data value and 𝐴𝐿 is the band-specific additive rescaling factor.  

http://earthexplorer.usgs.gov/
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Step two involves converting TOA radiance into at-satellite brightness temperature (an estimate of LST: 

𝑇 =  
𝐾2

ln (
𝐾1
𝐿𝜆

 + 1)
     

Where 𝑇 is the at-satellite brightness temperature (Kelvin), 𝐾1 is the band-specific thermal conversion 

constant and 𝐾2 is a second band-specific thermal conversion constant. Further details available at: 

http://landsat.usgs.gov/Landsat8_Using_Product.php. 

LST is obtained by converting degrees K into degrees C (Buscail et al. 2012) (C = K – 272.15). 

 

Figure 3: Terrain elevation at 25m2 resolution in Osaka City. Data accessed from: 

http://nlftp.mlit.go.jp/ksj-e/gml/gml_datalist.html. 

http://landsat.usgs.gov/Landsat8_Using_Product.php
http://nlftp.mlit.go.jp/ksj-e/gml/gml_datalist.html
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Appendix 3.1. Location of Osaka Prefecture, Japan 
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Appendix 3.2. Full study framework for Chapter 4 
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Appendix 3.3. Osaka Prefecture Digital Elevation Map 
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Appendix 3.4. 1km resolution interpolated observed temperatures 

for Osaka Prefecture 1980 – 2000 

 

Source data from Hijmens et al. (2005) (Chapter 4 references) 
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Appendix 3.5. 1km resolution climate model output temperatures 

for Osaka Prefecture 2050 

 

Source data from Hijmens et al. (2005) (Chapter 4 references) 
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Appendix 3.6. Projected change in mean annual temperature per 

administrative zone 2000 – 2015, in Osaka Prefecture, Japan 
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Appendix 3.7. Population per administrative zone in Osaka 

Prefecture 
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Appendix 3.8. Population density per administrative zone in 

Osaka Prefecture 

 

Figure 1: Population Density per km2 for each administrative zone in Osaka Prefecture. 
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Appendix 3.9. Regression analysis of observed annual Tmax and 

the number of days above designated CVD risk temperature 

thresholds for Osaka Prefecture 1985-2015 

 

Figure 1: Average annual Tmax and the number of days above 28oC 

 

Figure 2: Average annual Tmax and the number of days above 28oC 
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Appendix 3.10. Regression analysis of observed annual 

precipitation, the number of high intensity rainfall events and 

meteorological DRIs 

 

Figure 1: Annual precipitation and the number of > 50 mm/hr precipitation events in Japan 1989-2015 

 

Figure 1: Annual number of > 50 mm/hr precipitation events and number of meteorological DRI deaths 

in Japan 1989-2015
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Appendix 3.11. A selected portion of the climate change influenced cardiovascular disease risk 

database for Osaka prefecture 

In total there are 8838 administrative zones in Osaka Prefecture. This table shows a portion of the total zones. The zones are identified by their individual 

Keycodes. The number of days above each threshold (Tmax > 28oC and Tmax > 32oC) are calculated Based upon the ratios observed in Appendix 3.6. 

KEY_CO

D E 

Total 

p o p 

O b s 

Tmax 

2 0 5 0 

T m a x 

2 0 1 0 

>28 DD 

2010 28-

3 2  D D 

2 0 1 0 

>32 DD 

2 0 5 0 

>28 DD 

2050 28-

3 2  D D 

2 0 5 0 

>32 DD 

C V D 

D e a t h s 

2 0 1 0  

CVD DR 

2 0 1 0 

Daily 

D R 

2 0 50   >2 8 

exc es s  DD 

HA D 2 8- 32 

e x c e s s  D D 

2 0 50   >3 2 

exc es s  DD 

2 8 - 3 2  D D 

excess deaths 

3 2  D D 

e x c e s s 

d e a t h s 

2 0 5 0 

e x c e s s 

d e a t h s 

2050 TOTAL 

D E A T H S 

2050 

D R 

2050 RISK 

R A T I O 

C V D 

DA L Y 

CVD DALY 

/ 1 0 0 k 

2 0 5 0 

D A L Y 

2 0 5 0 

D A L Y 

/ 1 0 0 k 

C ha ng e i n 

DA L Y  r a t e 

271020

1 4 0 0 3 2 2 5 3 21.39 2 2 .61 103.50 5 1 . 4 1 5 2 . 1 0 123.80 5 4 . 9 4 6 8 . 8 6 6 . 5 5 3 

290.83

7 

0.01

8 2 0 . 3 0 3 . 5 4 1 6 . 7 6 0 . 0 0 0 . 0 3 0 . 0 3 1 6 . 5 8 4 

292.

2 2 9 1 . 0 0 5 

89.28

3 3962.834 

89.71

0 3981.799 1 8 . 9 6 5 

271020

1 5 0 0 5 1 4 3 3 21.38 2 2 .59 103.21 5 1 . 3 5 5 1 . 8 6 123.37 5 4 . 8 7 6 8 . 5 0 5 . 6 0 2 

390.95

6 

0.01

5 2 0 . 1 6 3 . 5 1 1 6 . 6 4 0 . 0 0 0 . 0 3 0 . 0 2 7 5 . 6 2 9 

392.

8 1 4 1 . 0 0 5 

64.71

6 4516.112 

65.02

3 4537.575 2 1 . 4 6 3 

271020

1 5 0 0 4 1 6 8 8 21.36 2 2 .58 102.97 5 1 . 3 1 5 1 . 6 6 123.17 5 4 . 8 3 6 8 . 3 4 4 . 7 6 1 

282.05

2 

0.01

3 2 0 . 2 0 3 . 5 2 1 6 . 6 8 0 . 0 0 0 . 0 2 0 . 0 2 3 4 . 7 8 4 

283.

3 9 5 1 . 0 0 5 

61.68

7 3654.430 

61.98

1 3671.835 1 7 . 4 0 6 

271020

1 4 0 0 2 1 7 5 8 21.36 2 2 .58 103.02 5 1 . 3 2 5 1 . 7 0 123.22 5 4 . 8 4 6 8 . 3 8 6 . 4 2 8 

365.62

3 

0.01

8 2 0 . 1 9 3 . 5 2 1 6 . 6 7 0 . 0 0 0 . 0 3 0 . 0 3 1 6 . 4 5 8 

367.

3 6 4 1 . 0 0 5 

75.77

0 4310.019 

76.13

1 4330.539 2 0 . 5 2 0 

271020

1 4 0 0 1 1 8 3 1 21.36 2 2 .58 102.94 5 1 . 3 1 5 1 . 6 3 123.17 5 4 . 8 3 6 8 . 3 3 6 . 1 3 5 

335.08

4 

0.01

7 2 0 . 2 3 3 . 5 2 1 6 . 7 0 0 . 0 0 0 . 0 3 0 . 0 2 9 6 . 1 6 5 

336.

6 8 1 1 . 0 0 5 

79.09

1 4319.567 

79.46

8 4340.165 2 0 . 5 9 8 

271020

1 5 0 0 2 4 8 3 9 21.37 2 2 .58 103.08 5 1 . 3 3 5 1 . 7 5 123.25 5 4 . 8 5 6 8 . 4 0 1 3 . 0 7 1 

270.11

9 

0.03

6 2 0 . 1 7 3 . 5 2 1 6 . 6 6 0 . 0 0 0 . 0 6 0 . 0 6 2 1 3 . 1 3 3 

271.

4 0 3 1 . 0 0 5 

179.5

0 7 3709.584 

180.3

6 0 3727.226 1 7 . 6 4 2 

271020

1 5 0 0 3 1 2 4 9 21.35 2 2 .57 102.84 5 1 . 2 9 5 1 . 5 5 123.02 5 4 . 8 1 6 8 . 2 1 2 . 1 2 0 

169.72

6 

0.00

6 2 0 . 1 8 3 . 5 2 1 6 . 6 6 0 . 0 0 0 . 0 1 0 . 0 1 0 2 . 1 3 0 

170.

5 3 3 1 . 0 0 5 

31.83

1 2548.523 

31.98

2 2560.647 1 2 . 1 2 4 

271020

1 3 0 0 3 1 9 9 1 21.36 2 2 .58 102.94 5 1 . 3 1 5 1 . 6 3 123.17 5 4 . 8 3 6 8 . 3 3 3 . 7 2 2 

186.94

9 

0.01

0 2 0 . 2 3 3 . 5 2 1 6 . 7 0 0 . 0 0 0 . 0 2 0 . 0 1 8 3 . 7 4 0 

187.

8 4 0 1 . 0 0 5 

53.88

3 2706.319 

54.14

0 2719.224 1 2 . 9 0 5 

271020

1 3 0 0 1 

1 7 0 2

1 21.37 2 2 .58 103.08 5 1 . 3 3 5 1 . 7 5 123.25 5 4 . 8 5 6 8 . 4 0 3 1 . 3 4 1 

184.13

2 

0.08

6 2 0 . 1 7 3 . 5 2 1 6 . 6 5 0 . 0 1 0 . 1 4 0 . 1 4 9 3 1 . 4 9 0 

185.

0 0 8 1 . 0 0 5 

509.7

2 6 2994.688 

512.1

5 0 3008.929 1 4 . 2 4 1 

271020

1 0 0 0 3 1 6 4 4 21.39 2 2 .59 103.54 5 1 . 4 1 5 2 . 1 3 123.49 5 4 . 8 9 6 8 . 6 0 4 . 1 1 4 

250.25

9 

0.01

1 1 9 . 9 5 3 . 4 8 1 6 . 4 7 0 . 0 0 0 . 0 2 0 . 0 1 9 4 . 1 3 4 

251.

4 3 6 1 . 0 0 5 

49.99

8 3041.237 

50.23

3 3055.544 1 4 . 3 0 7 

271020

1 5 0 0 1 1 4 1 2 21.34 2 2 .54 102.56 5 1 . 2 4 5 1 . 3 2 122.60 5 4 . 7 3 6 7 . 8 7 5 . 6 5 0 

400.12

6 

0.01

5 2 0 . 0 4 3 . 4 9 1 6 . 5 5 0 . 0 0 0 . 0 3 0 . 0 2 7 5 . 6 7 6 

402.

0 1 7 1 . 0 0 5 

67.04

1 4747.923 

67.35

8 4770.361 2 2 . 4 3 9 

271020

1 1 0 0 2 1 5 6 3 21.42 2 2 .60 103.98 5 1 . 4 9 5 2 . 4 9 123.52 5 4 . 8 9 6 8 . 6 2 5 . 1 2 2 

327.69

2 

0.01

4 1 9 . 5 4 3 . 4 1 1 6 . 1 4 0 . 0 0 0 . 0 2 0 . 0 2 4 5 . 1 4 5 

329.

2 0 2 1 . 0 0 5 

67.55

0 4321.817 

67.86

1 4341.730 1 9 . 9 1 3 

271020

1 3 0 0 2 1 2 1 9 21.32 2 2 .56 102.37 5 1 . 2 1 5 1 . 1 6 122.92 5 4 . 7 9 6 8 . 1 3 3 . 1 8 0 

260.90

9 

0.00

9 2 0 . 5 5 3 . 5 8 1 6 . 9 7 0 . 0 0 0 . 0 1 0 . 0 1 5 3 . 1 9 6 

262.

1 7 3 1 . 0 0 5 

43.47

2 3566.170 

43.68

2 3583.448 1 7 . 2 7 8 

271020

1 0 0 0 2 1 0 6 7 21.33 2 2 .56 102.52 5 1 . 2 3 5 1 . 2 9 122.99 5 4 . 8 0 6 8 . 1 9 3 . 0 9 6 

290.19

8 

0.00

8 2 0 . 4 6 3 . 5 7 1 6 . 9 0 0 . 0 0 0 . 0 1 0 . 0 1 5 3 . 1 1 1 

291.

5 9 8 1 . 0 0 5 

38.78

4 3634.874 

38.97

1 3652.412 1 7 . 5 3 8 

271020

1 2 0 0 4 7 7 1 21.38 2 2 .58 103.36 5 1 . 3 8 5 1 . 9 8 123.32 5 4 . 8 6 6 8 . 4 6 3 . 2 7 7 

424.97

9 

0.00

9 1 9 . 9 6 3 . 4 8 1 6 . 4 8 0 . 0 0 0 . 0 1 0 . 0 1 5 3 . 2 9 2 

426.

9 7 9 1 . 0 0 5 

38.29

8 4967.357 

38.47

9 4990.732 2 3 . 3 7 5 

271020

1 0 0 0 1 2 3 6 6 21.32 2 2 .56 102.30 5 1 . 2 0 5 1 . 1 0 122.89 5 4 . 7 8 6 8 . 1 1 4 . 7 6 1 

201.21

9 

0.01

3 2 0 . 5 9 3 . 5 9 1 7 . 0 0 0 . 0 0 0 . 0 2 0 . 0 2 3 4 . 7 8 4 

202.

1 9 6 1 . 0 0 5 

67.81

3 2866.145 

68.14

2 2880.060 1 3 . 9 1 5 

271020

1 1 0 0 1 1 3 6 3 21.41 2 2 .59 103.82 5 1 . 4 6 5 2 . 3 6 123.40 5 4 . 8 7 6 8 . 5 3 3 . 9 4 8 

289.67

3 

0.01

1 1 9 . 5 8 3 . 4 1 1 6 . 1 7 0 . 0 0 0 . 0 2 0 . 0 1 8 3 . 9 6 6 

291.

0 1 0 1 . 0 0 5 

50.79

2 3726.485 

51.02

6 3743.689 1 7 . 2 0 4 

271020

1 2 0 0 3 9 4 9 21.38 2 2 .58 103.35 5 1 . 3 8 5 1 . 9 8 123.31 5 4 . 8 6 6 8 . 4 5 2 . 8 2 4 

297.60

4 

0.00

8 1 9 . 9 5 3 . 4 8 1 6 . 4 7 0 . 0 0 0 . 0 1 0 . 0 1 3 2 . 8 3 8 

299.

0 0 4 1 . 0 0 5 

34.46

3 3631.518 

34.62

5 3648.600 1 7 . 0 8 2 

271020

0 9 0 0 2 5 0 4 4 21.36 2 2 .57 102.90 5 1 . 3 0 5 1 . 6 0 123.13 5 4 . 8 3 6 8 . 3 0 6 . 0 0 1 

118.97

9 

0.01

6 2 0 . 2 3 3 . 5 2 1 6 . 7 0 0 . 0 0 0 . 0 3 0 . 0 2 9 6 . 0 3 0 

119.

5 4 7 1 . 0 0 5 

94.62

6 1876.016 

95.07

7 1884.962 8 . 9 4 6 

271020

1 2 0 0 2 2 1 0 4 21.38 2 2 .58 103.35 5 1 . 3 8 5 1 . 9 8 123.31 5 4 . 8 6 6 8 . 4 5 7 . 4 4 9 

354.06

0 

0.02

0 1 9 . 9 5 3 . 4 8 1 6 . 4 7 0 . 0 0 0 . 0 3 0 . 0 3 5 7 . 4 8 4 

355.

7 2 5 1 . 0 0 5 

89.67

0 4261.894 

90.09

2 4281.942 2 0 . 0 4 8 

271020

0 9 0 0 1 8 2 8 21.34 2 2 .57 102.64 5 1 . 2 5 5 1 . 3 8 123.02 5 4 . 8 1 6 8 . 2 2 2 . 9 7 9 

359.78

5 

0.00

8 2 0 . 3 9 3 . 5 5 1 6 . 8 3 0 . 0 0 0 . 0 1 0 . 0 1 4 2 . 9 9 3 

361.

5 1 4 1 . 0 0 5 

36.19

5 4371.395 

36.36

9 4392.405 2 1 . 0 1 0 
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271020

0 8 0 0 1 2 4 5 4 21.32 2 2 .56 102.30 5 1 . 2 0 5 1 . 1 0 122.89 5 4 . 7 8 6 8 . 1 1 6 . 2 2 0 

253.47

5 

0.01

7 2 0 . 5 9 3 . 5 9 1 7 . 0 0 0 . 0 0 0 . 0 3 0 . 0 3 0 6 . 2 5 0 

254.

7 0 6 1 . 0 0 5 

79.70

5 3247.967 

80.09

2 3263.735 1 5 . 7 6 9 

271020

0 8 0 0 2 4 5 9 1 21.40 2 2 .59 103.59 5 1 . 4 2 5 2 . 1 7 123.35 5 4 . 8 6 6 8 . 4 9 1 0 . 4 1 8 

226.93

1 

0.02

9 1 9 . 7 6 3 . 4 4 1 6 . 3 2 0 . 0 0 0 . 0 5 0 . 0 4 9 1 0 . 4 6 7 

227.

9 8 8 1 . 0 0 5 

140.1

8 6 3053.493 

140.8

3 9 3067.722 1 4 . 2 2 8 

271020

0 7 0 0 1 1 4 6 6 21.32 2 2 .56 102.31 5 1 . 2 0 5 1 . 1 1 122.87 5 4 . 7 8 6 8 . 0 9 4 . 3 1 8 

294.57

7 

0.01

2 2 0 . 5 7 3 . 5 8 1 6 . 9 8 0 . 0 0 0 . 0 2 0 . 0 2 1 4 . 3 3 9 

296.

0 0 5 1 . 0 0 5 

54.56

2 3721.798 

54.82

6 3739.846 1 8 . 0 4 8 

271020

1 2 0 0 1 2 0 9 4 21.38 2 2 .58 103.35 5 1 . 3 8 5 1 . 9 8 123.31 5 4 . 8 6 6 8 . 4 5 4 . 8 0 8 

229.61

8 

0.01

3 1 9 . 9 5 3 . 4 8 1 6 . 4 7 0 . 0 0 0 . 0 2 0 . 0 2 3 4 . 8 3 1 

230.

6 9 8 1 . 0 0 5 

64.99

3 3103.757 

65.29

8 3118.357 1 4 . 6 0 0 

271020

0 7 0 0 3 2 2 2 3 21.29 2 2 .53 101.83 5 1 . 1 1 5 0 . 7 2 122.35 5 4 . 6 9 6 7 . 6 6 6 . 6 0 4 

297.08

6 

0.01

8 2 0 . 5 2 3 . 5 8 1 6 . 9 4 0 . 0 0 0 . 0 3 0 . 0 3 2 6 . 6 3 6 

298.

5 2 3 1 . 0 0 5 

84.38

4 3795.971 

84.79

3 3814.336 1 8 . 3 6 5 

271020

0 7 0 0 2 9 3 2 21.32 2 2 .54 102.28 5 1 . 1 9 5 1 . 0 9 122.61 5 4 . 7 4 6 7 . 8 8 2 . 1 6 3 

232.05

4 

0.00

6 2 0 . 3 3 3 . 5 4 1 6 . 7 9 0 . 0 0 0 . 0 1 0 . 0 1 0 2 . 1 7 3 

233.

1 6 6 1 . 0 0 5 

30.50

9 3273.518 

30.65

5 3289.208 1 5 . 6 8 9 

271020

0 7 0 0 4 2 0 7 1 21.37 2 2 .56 103.12 5 1 . 3 4 5 1 . 7 8 122.95 5 4 . 8 0 6 8 . 1 6 7 . 8 6 6 

379.81

6 

0.02

2 1 9 . 8 4 3 . 4 6 1 6 . 3 8 0 . 0 0 0 . 0 4 0 . 0 3 7 7 . 9 0 3 

381.

5 9 2 1 . 0 0 5 

92.42

6 4462.852 

92.85

8 4483.726 2 0 . 8 7 4 

271020

0 7 0 0 5 1 3 2 4 21.35 2 2 .56 102.78 5 1 . 2 8 5 1 . 5 0 122.91 5 4 . 7 9 6 8 . 1 2 4 . 0 4 5 

305.52

0 

0.01

1 2 0 . 1 3 3 . 5 1 1 6 . 6 2 0 . 0 0 0 . 0 2 0 . 0 1 9 4 . 0 6 4 

306.

9 6 9 1 . 0 0 5 

47.95

1 3621.672 

48.17

8 3638.857 1 7 . 1 8 5 

271020

0 4 0 0 5 3 0 3 8 21.28 2 2 .52 101.71 5 1 . 0 9 5 0 . 6 2 122.21 5 4 . 6 6 6 7 . 5 4 1 0 . 7 7 4 

354.63

6 

0.03

0 2 0 . 5 0 3 . 5 7 1 6 . 9 2 0 . 0 0 0 . 0 5 0 . 0 5 2 1 0 . 8 2 6 

356.

3 5 0 1 . 0 0 5 

133.4

9 0 4394.010 

134.1

3 5 4415.245 2 1 . 2 3 5 

271020

0 6 0 0 1 1 2 4 7 21.28 2 2 .52 101.70 5 1 . 0 9 5 0 . 6 1 122.20 5 4 . 6 6 6 7 . 5 3 6 . 2 9 3 

504.67

0 

0.01

7 2 0 . 5 0 3 . 5 7 1 6 . 9 3 0 . 0 0 0 . 0 3 0 . 0 3 0 6 . 3 2 4 

507.

1 0 9 1 . 0 0 5 

63.81

7 5117.644 

64.12

5 5142.379 2 4 . 7 3 5 

271020

0 5 0 0 1 3 2 6 5 21.34 2 2 .55 102.61 5 1 . 2 5 5 1 . 3 6 122.79 5 4 . 7 7 6 8 . 0 3 6 . 3 2 8 

193.82

2 

0.01

7 2 0 . 1 8 3 . 5 2 1 6 . 6 7 0 . 0 0 0 . 0 3 0 . 0 3 0 6 . 3 5 8 

194.

7 4 5 1 . 0 0 5 

91.17

2 2792.399 

91.60

6 2805.688 1 3 . 2 8 9 

271020

0 6 0 0 2 2 0 9 5 21.36 2 2 .56 102.96 5 1 . 3 1 5 1 . 6 5 122.89 5 4 . 7 8 6 8 . 1 1 8 . 4 6 7 

404.16

7 

0.02

3 1 9 . 9 3 3 . 4 7 1 6 . 4 6 0 . 0 0 0 . 0 4 0 . 0 4 0 8 . 5 0 7 

406.

0 6 6 1 . 0 0 5 

103.5

9 3 4944.764 

104.0

8 0 4968.000 2 3 . 2 3 6 

271020

0 6 0 0 3 2 6 9 4 21.35 2 2 .56 102.76 5 1 . 2 8 5 1 . 4 8 122.89 5 4 . 7 8 6 8 . 1 1 9 . 3 9 2 

348.64

0 

0.02

6 2 0 . 1 3 3 . 5 1 1 6 . 6 2 0 . 0 0 0 . 0 4 0 . 0 4 5 9 . 4 3 7 

350.

2 9 5 1 . 0 0 5 

113.3

2 2 4206.461 

113.8

6 0 4226.430 1 9 . 9 6 8 

271020

0 4 0 0 4 2 4 1 5 21.24 2 2 .49 101.01 5 0 . 9 7 5 0 . 0 4 121.78 5 4 . 5 9 6 7 . 1 9 7 . 2 1 1 

298.57

4 

0.02

0 2 0 . 7 7 3 . 6 2 1 7 . 1 5 0 . 0 0 0 . 0 3 0 . 0 3 5 7 . 2 4 6 

300.

0 3 6 1 . 0 0 5 

90.51

2 3747.927 

90.95

6 3766.284 1 8 . 3 5 8 

271020

0 4 0 0 3 1 0 2 1 21.32 2 2 .54 102.35 5 1 . 2 0 5 1 . 1 4 122.62 5 4 . 7 4 6 7 . 8 8 3 . 0 7 2 

300.90

3 

0.00

8 2 0 . 2 8 3 . 5 3 1 6 . 7 4 0 . 0 0 0 . 0 1 0 . 0 1 5 3 . 0 8 7 

302.

3 4 1 1 . 0 0 5 

39.13

0 3832.470 

39.31

7 3850.791 1 8 . 3 2 1 

271020

0 5 0 0 2 4 6 1 1 21.37 2 2 .56 103.07 5 1 . 3 3 5 1 . 7 4 122.89 5 4 . 7 8 6 8 . 1 1 1 2 . 4 3 7 

269.72

7 

0.03

4 1 9 . 8 2 3 . 4 5 1 6 . 3 7 0 . 0 0 0 . 0 6 0 . 0 5 8 1 2 . 4 9 5 

270.

9 8 8 1 . 0 0 5 

176.3

2 3 3823.959 

177.1

4 7 3841.831 1 7 . 8 7 2 

271020

0 3 0 0 5 1 2 4 3 21.41 2 2 .55 103.73 5 1 . 4 4 5 2 . 2 8 122.79 5 4 . 7 7 6 8 . 0 2 3 . 2 2 0 

259.07

2 

0.00

9 1 9 . 0 6 3 . 3 2 1 5 . 7 4 0 . 0 0 0 . 0 1 0 . 0 1 4 3 . 2 3 5 

260.

2 3 7 1 . 0 0 4 

45.72

9 3678.886 

45.93

4 3695.419 1 6 . 5 3 3 

271020

0 4 0 0 1 9 7 1 21.28 2 2 .51 101.68 5 1 . 0 9 5 0 . 5 9 122.08 5 4 . 6 4 6 7 . 4 4 3 . 4 4 4 

354.66

2 

0.00

9 2 0 . 4 0 3 . 5 6 1 6 . 8 5 0 . 0 0 0 . 0 2 0 . 0 1 7 3 . 4 6 0 

356.

3 6 8 1 . 0 0 5 

38.08

1 3921.819 

38.26

4 3940.684 1 8 . 8 6 4 

271020

0 4 0 0 2 1 7 6 4 21.34 2 2 .54 102.62 5 1 . 2 5 5 1 . 3 7 122.66 5 4 . 7 4 6 7 . 9 2 3 . 9 1 9 

222.18

1 

0.01

1 2 0 . 0 4 3 . 4 9 1 6 . 5 5 0 . 0 0 0 . 0 2 0 . 0 1 9 3 . 9 3 8 

223.

2 3 1 1 . 0 0 5 

58.62

9 3323.653 

58.90

6 3339.356 1 5 . 7 0 2 

271020

0 3 0 0 4 1 3 1 9 21.27 2 2 .50 101.49 5 1 . 0 5 5 0 . 4 4 121.99 5 4 . 6 3 6 7 . 3 6 4 . 7 1 2 

357.23

8 

0.01

3 2 0 . 5 0 3 . 5 7 1 6 . 9 3 0 . 0 0 0 . 0 2 0 . 0 2 3 4 . 7 3 5 

358.

9 6 5 1 . 0 0 5 

54.16

4 4106.445 

54.42

6 4126.293 1 9 . 8 4 8 

271020

0 3 0 0 3 4 0 6 21.43 2 2 .55 104.05 5 1 . 5 0 5 2 . 5 5 122.74 5 4 . 7 6 6 7 . 9 8 1 . 5 4 7 

381.02

4 

0.00

4 1 8 . 6 9 3 . 2 6 1 5 . 4 4 0 . 0 0 0 . 0 1 0 . 0 0 7 1 . 5 5 4 

382.

7 0 3 1 . 0 0 4 

20.63

2 5081.727 

20.72

3 5104.125 2 2 . 3 9 8 

271020

0 3 0 0 2 3 3 2 21.34 2 2 .53 102.62 5 1 . 2 5 5 1 . 3 7 122.35 5 4 . 6 9 6 7 . 6 6 0 . 8 3 4 

251.26

2 

0.00

2 1 9 . 7 3 3 . 4 4 1 6 . 2 9 0 . 0 0 0 . 0 0 0 . 0 0 4 0 . 8 3 8 

252.

4 3 1 1 . 0 0 5 

10.44

3 3145.580 

10.49

2 3160.214 1 4 . 6 3 3 

271020

0 3 0 0 1 1 3 9 9 21.27 2 2 .50 101.42 5 1 . 0 4 5 0 . 3 8 121.92 5 4 . 6 2 6 7 . 3 1 1 . 9 1 2 

136.66

8 

0.00

5 2 0 . 5 0 3 . 5 7 1 6 . 9 3 0 . 0 0 0 . 0 1 0 . 0 0 9 1 . 9 2 1 

137.

3 2 8 1 . 0 0 5 

32.43

5 2318.457 

32.59

2 2329.663 1 1 . 2 0 6 
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Appendix 3.12. Flood and sediment risk zones in Osaka 

prefecture 

 

Data source: NLNI, 2016. National Land Numerical Information download service, Accessed online 

at: http://nlftp.mlit.go.jp/ksj/jpgis/jpgis_datalist.html [Japanese]. 

http://nlftp.mlit.go.jp/ksj/jpgis/jpgis_datalist.html

