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In a recent paper, K. Uchida [3] has established by specific methods of
algebraic number theory the following nice characterization:

Theorem. Let R be a Dedekind domain, K its quotient field, .S an integral
domain with RC.S, and €S an integral element over R. Then R[a] 15 a
Dedekind domain if and only if gp& M? for every maximal ideal M of R[X],
where @ is the minimal polynomial of « over K.

In the present paper, we show that Uchida’s result can be generelized
to arbitrary Noetherian regular domains. Our proof is very simple and natural,
and is based on standard facts about regular rings which can be found for instance
in Kaplansky’s book [1]. From our generalization it may be derived im-
mediately a global version of a result of Maury [2] concerning simple finite
extensions of regular local rings; this result was established by him in a more
complicated manner.

1. Terminology and notations

Throughout this paper, R will denote a commutative ring with unit element,
R[X] the polynomial ring in X with coefficients in R, dim (R) the Krull dimension
of R, Spec (R) the set of all prime ideals of R, and Max (R) the set of all maximal
ideals of R.

Let K be a commutative field and U a K-algebra, not necessarily commuta-
tive. If uU is an algebraic element (i.e. an integral element) over K, then
{feK[X]|f(v)=0} is an ideal of K[X], which is generated by a unique monic
polynomial with coefficients in K; this polynomial is called the minimal poly-
nomial of u over K and is denoted by Irr (z, K).

We recall that a Noetherian local ring R with maximal ideal M is regular if
M can be generated by n elements, where n=dim (R), and a Noetherian ring
R is regular if for each M €Max (R), the local ring R, is regular. The Noe-
therian regular domains R with dim (R)<1 are exactly the Dedekind domains.
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2. Three lemmas

The following three simple facts will be used to prove the main result of
this paper:

Lemma 1. Let R be an integrally closed domain, K its quotient field, U a K-
algebra (not necessarily commutative), ucU an integral element over R, and
f=Irr (u, K). Then fER[X], and the R-algebras R[X]/fR[X] and R[u] are

naturally isomorphic.

Lemma 2. Let R be a commutative ring, P Spec (R), P+0, x€P, x=0,
T=R|xR, and Q=P|xR. Then the rings T and Rp|xR are naturally isomorphic.

Lemma 3. Let R be a regular local ring with maximal ideal M. For a non-
zero element x of R, the following two statements are equivalent:

(1) xeM\M?

(2) R/xR is a regular (non-zero) ring.

Proof. The lemma follows from [4], Theorem 26, p. 303.

3. The main result

Theorem Let R be a Noetherian regular domain, K its quotient field, U a
K-algebra (not mecessarily commutative) ucU an integral element cver R and
f=1Irr (u, K). The following two statements are equivalent:

(1) R[u] is a regular ring,

(2) fe&M:? for every M &Max (R[X]).

Proof. Weabbreviate R[X]to.S. Since Risregular,sois S. On the other
hand, R is integrally closed, so R[u]=R[X]/fR[X]=S|fS by Lemma 1.

(1) implies (2). Suppose that fe M? for some M e Max(S); then
Ty=S8uy/fSy, where T=S[fS and N=M|fS, by Lemma 2. Since f&M?S,, it
follows by Lemma 3 that S,/fS, is not a regular ring, i.e. T, is not a regular
ring, contradiction.

(2) implies (1). Let NeMax (T), where T=S[fS; then N=MJfS for
some M & Max(S) with feM. We have f &£ M2S,,, for otherwise f & M2S,, N S=
M?, M? being a M-primary ideal of S. By Lemma 3, S,/fS) is a regular ring,
hence T'y=S8),/fS), is regular, i.e. T is regular.

Corollary 1. Let R be a Noetherian regular domain, K its quotient field, L a
finite separable field extension of K, R’ the integral closure of Rin L, ucR’ an
element such that L=K(u), and f=Irr (u, K). If f & M? for all M € Max (R[X]),
then R'=R[u].

Proof. By the previous Theorem, R[u] is a regular ring, hence R[] is in-
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tegrally closed, and so R'=R][u].

ReMark. The condition feM? for all M eMax (R[X]) is sufficient for
R’=R[u], but is not necessary; for instance let k be a commutative field,
R=k[Y, Z], K=k(Y, Z), L=K(u), where u is a root (in an algebraic closure of
K) of the polynomial X*—YZ&K[X]. Then R[u] is the integral closure of R
in L, but f=Irr (u, K)=X*—-YZ&(X, Y, Z) and (X, Y, Z)=Max (R[X]).

The next corollary contains Uchida’s result [3]:

Corollary 2. Let R be a Dedekind ring, K its quotient field, L a field extension
of K, uc L an integral element over R, and f=Irr (u, K). The following statements
are equivalent :

(1) R[u] is a regular ring,

(2)  R[u] is a Dedekind ring,

(3) R[u] is integrally closed,

(4) The integral closure of R in K(u) is R[u],

(5) fe&M:? for all M eMax (R[X]).

Now we shall give an equivalent form of condition (2) of the previous
Theorem, which is sometimes more adequate for applications. The following
simple result, which is proved in [3], will be used:

Lemma 4 [3]. Let R be a commutative ring, and N=Max (R[X]). If N
contains a monic polynomial g = R[ X, then N is of the form

N = MRIX]+RIX],

where M &Max (R) and f € R[X] is a monic polynomial which is irreducible modulo
M.

If R is an arbitrary commutative ring, for each A€ R[X] and M &Max (R)
we denote throughout the remainder of this paper by %, &(R/M)[X] (or some-
times, more simple by 7, if no confusion can occur) the polynomial obtained
from & by reducing the coefficients of # modulo M.

Proposition. Let R be a commutative ring, and f = R[X] a monic polynomial.
For each M &Max (R), let

T = Pt it itk
be the expression of f; as a product of monic irreducible, mutually distinct poly-
nomials @y, & (RIM)[X]. For each M &Max (R) and 1<i<ky, let g); ER[X] be
a monic polynomial with (g,,)y=pPu:. Then the following two statements are equi-
valent:

(1) fe&N? for each N eMax (R[X]),
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(2) For each M eMax (R) and each 1<i<ky, with ey, >2, the remainder of
the euclidean division of f by g, has not all its coefficients in M?.

Proof. (1) implies (2). Let M &Max(R), and 1<i<k, with ¢,,>2. We
denote for brevity g,,=g, e,;—e and f,,=f. Assume that,

f:g4+r’

where ¢, re R[X], and deg(r) <deg(g) with r&M*R[X]. By reduction modulo
M, we obtain f=gg+7=gg=g'h, where h=1] gi#"/. Hence g'h—gqe MR[X],
iti

so0 (g—gs)gE€MR[X], where s=g°%h. Since g is a monic polynomial and MR[X]
&€ Spec (R[X])), it follows g—gse MR[X]. Hence g= MR[X]+gR[X], that is

f = 84+rSg'RIX]+gMR[X]+M°R[X] = (MR[X]+gR[X])",

and MR[X]4gR[X]&Max(R[X]), contradiction.

(2) implies (1). Suppose that f € N? for some N & Max(R[X]). By Lemma
4, N=MR[X]+gR[X] for some M =Max(R) and g R[X]irreducible modulo
M, hence f e M?R[X|+gMR[X]+¢°R[X]. By reduction modulo M, we have
JF=2 for some t& R[X], hence g=g,,; for some ¢ with 1 <i<k,,; it follows that
g—8&wi€MR[X], and so, we can suppose that g=g,,;. From feM*R[X]+
gMR[X]+g¢°R[X], we have f=gq+r, for some ¢g=R[X] and reM*R[X]. If
r=0 and deg(r) >deg(g), we can write r=gq,+r,, with ¢, r,€R[X], and r,=0
or deg(r;)<deg(g). Let

g = X’"+a"l_1Xm—l+_,_+a0
¢ = b X by X*F -4 bg
Then
r=gq+r = kak'g+(bk—1X"'l+"'+bo)g+7‘1€M2R[X] .

But b, M?, hence (b, X* '+ -+ +bo)g+r, €M?R[X], so b,_,&M? etc. There-
fore r,& M*R[X], and then, we have

f=(q+q)g+n
with 7,=0 or deg(r,) <deg(r), and also r,& M*R[X], contradiction.

Corollary 3 (Maury [2]). Let R be a regular local ring with maximal ideal
M, K its quotient field, U a K-algebra (not necessarily commutative), ucU an
integral element over R and f=Irr (u, K). The following two statements are equi-
valent :

(1)  R[u] is a regular local ring,

(2) The reduction f of f modulo M has the form f=¢° with p=(R/M)[X] a
monic trreducible polynomial, and if e>2, the remainder of the euclidean division of
f by g has not all its coefficients in M?, g R[X] being a monic polynomial with
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2=9.

Proof. The condition f=¢* with @ &(R/M)[X] irreducible is equivalent by
[2], Theorem, p. 35, with the condition that R[] is a local ring.

Corollary 4. Let R be a Dedekind domain, K its quotient field, L a finite
separable field extension of K, R’ the integral closure of R in L, u=R’ a primitive
element of the extension LOK (i.e. L=K(u)), and f=Irr(u, K). Let §(f) be the
discriminant of f and M,, M, -+, M, the distinct non zero prime divisors of 8(f) in
R (possibly r=0). For each 1<i<r, let

foy = pit -l @il
be the expression of fy, as a product of monic irreducible, mutually distinct poly-
nomials @,;&(R/M,)[X]. For each 1<i<r and 1<j<k;, let g, ER[X] be a
monic polynomial with @ w;=P.;- The following two statements are equivalent:

(1) R'=R[u],

(2) For each 1<i<r and 1 <j<R, uithe,;>2, theremainder of the euclidean
division of f by g, has not all its coefficients in M.

Proof. It suffices to prove only (2) implies (1). If feN? for some
N eMax(R[X]) then we obtain in the same way as in the proof of the previous
Proposition that f),=g°h, for some M &Max(R), that is f), has multiple roots.
Since the discriminant §(f,)=0 is the residue class of §(f) modualo M, we have
8(f)=0 (mod M) and therefore M=M, for some 1<i<r and g=o,; for some
1< j<k;; by the proof of the previous Proposition, this is a contradiction.

The author is indebted to the referee for some useful suggestions which led
to the present version of this paper.
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