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ABSTRACT 

This thesis explores the problem of natural initiation of interaction in human-robot 
interaction focused on the situation that robot encounter people. When robot encounter 
people, robot could initiate interaction by conversation or motion. 

Initiation of conversation might seem trivial for people, but it is not at all trivial 
for robots.  The appropriate timing and good position from which to make the initial 
greeting are almost unconsciously decided by human. Based on analysis of human 
interactions, this paper proposes a model for a natural way of initiating conversation. The 
model mainly involves the participation state and spatial formation. When a person 
prepares to participate in a conversation and a particular spatial formation occurs, he/she 
feels that he/she is participating in the conversation; once he/she perceives his/her 
participation, he/she maintains particular spatial formations. We proposes a participation 
state model for measuring communication participation and provided a clear set of 
guidelines for how to structure a robot’s behavior to start and maintain a conversation 
based on the model. Our model precisely describes the constraints and expected 
behaviors for the phase of initiating conversation. We implemented our proposed model 
in a humanoid robot and conducted both a system evaluation and a user evaluation in a 
shop scenario experiment. It was shown that good recognition accuracy of interaction 
state in a conversation was achieved with our proposed model, and the robot 
implemented with our proposed model was evaluated as best in terms of appropriateness 
of behaviors and interaction efficiency. 
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For initiation of interaction by motion, there is no need to go further into 
conversation. Instead, it is important to express the intention of interaction to the partner. 
In our daily life, it is very common to see people distribute objects such as flyers to 
pedestrians. The givers initiate interaction with passersby by their handing motions. It 
would be appropriate to assume that in the future these “distributing” works would be 
carried out by robots. We proposed a model for a robot distributing flyers to pedestrians. 
The difficulty is that potential receivers are pedestrians who are not necessarily 
cooperative; thus, the robot needs to appropriately plan its motion, making it is easy and 
non-obstructive for potential receivers to receive the flyers. We observed human 
interactions on distributional handing in the real world, analyzed and evaluated different 
handing methods that people perform, and established a model for a robot to perform 
natural handing. The proposed model is implemented into a humanoid robot and is 
confirmed as effective in a field experiment. 

Finally, we conducted a field study to investigate the expected use of such robot 
that initiate interaction with people by conversation or motion in the real world, 
particularly for attracting passersby which today’s robots can autonomously perform with 
our proposed models. From interviews with ten store managers, we identified two main 
reasons they want to employ such social robots in their stores: robots offer cheap labor 
and provide unique value that humans cannot. They believe that robots are good at 
attracting the attention of visitors without causing or receiving stress. We also conducted 
three case studies in which we observed how store managers employed social robots in 
their stores. Each store manager requested different designs in the preparation phase. 
After deployment, we found that the managers were generally satisfied with the services 
autonomously offered by the robots, which successfully encouraged people to stop. The 
store managers were satisfied with the results and expressed a desire to use the robots 
again. 
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1. INTRODUCTION 

1.1. INITIATION OF CONVERSATION INTERACTION 

How do you meet someone and start a conversation? Even though this might seem 
trivial for people, it is not at all trivial for robots. In a typical situation for humans, we 
stop at a certain position in relation to the target, greet the person, and find ourselves 
conversing. We do this almost unconsciously. As humans, we consciously think about the 
contents of the conversation after it has started. 

In contrast, it is difficult for a robot to replicate what humans unconsciously do. It 
needs to know every detail of the behavior, such as where and when it should stop and 
what should be said; however, since we do this unconsciously, intricately describing what 
we are doing is not easy. For instance, consider a shop situation (Figure 1.1), where a 
customer has an appointment with a sales-robot to get a product explanation. The 
customer might wait at the entrance while looking toward the direction from which the 
robot is coming (Figure 1.1-a). Or he/she might look at another product displayed in the 
shop (Figure 1.1-b). Apparently the expected behavior for the robot is different in each 
situation, but what is the basis for generating the expected behavior for each situation? 
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(a) Looking at robot                   (b) Looking at a product 

Figure 1.1 Situations in a shop 

In this study, we focus on the initiation of conversation in natural human-robot 
interaction. Clark modeled human communication based on the notion that people in a 
conversation share views of whether each of them is participating in the conversation or 
not and, furthermore, defined their activity roles [1], such as a speaker, hearer, or side 
participant. Kendon’s analysis on spatial formation, known as F-formation is in line with 
this view so that the participants in a conversation form a particular shape [2]. Even 
though HRI researchers clearly recognize the importance of the participation state and 
spatial formation [3-6], no study has revealed how a robot should behave in different 
kinds of conversation-initiation interactions depending on the situation we denote as the 
initiation of conversation. In short, the above examples of the problem in Figure 1.1 
remain unsolved. 

To cope with this problem, we analyzed human behavior during the initiation of 
conversation. We learned the importance of two functions in our model: 

 recognition of an interlocutor’s spatial formation; 

 constraints on a robot’s spatial formation used to maintain the 
participation state. 

Spatial formations that people establish in the interaction are used to model 
people’s participation in the conversation. Likewise, behaviors they perform during the 
conversation are used to derive guidelines for how a robot should use its knowledge and 
structure its behavior to initiate and maintain a conversation. By overcoming these 
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problems, we can realize our goal in this study, i.e., providing service through initiating a 
conversation on the robot’s own initiative, and move one step closer toward smooth 
integration of robots into society. 

We conducted a human observation experiment and provided the results of the 
data analysis. We created a model of initiation of conversation based on the observation 
results and implemented it on our humanoid robot. We firstly conducted a system 
evaluation and an objective evaluation to evaluate our model in an objective way, then 
conducted a subjective evaluation experiment to compare our model with two baseline 
models, and our proposed model was evaluated as the best. 
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1.2. INITIATION OF MOTION INTERACTION: 
DISTRIBUTIONAL HANDING 

A number of robots have been developed in research projects that serve people in 
daily public environments. For instance, Gross and his colleagues developed a robot for a 
shop that assists consumers [7]. In museums, robots provide information to visitors [8-10]. 
Other studies demonstrated the use of robots in such environments as cities [6], streets [7], 
offices [13], hospitals [14], senior citizen facilities [15, 16], and shopping malls [17]. We 
believe that robots will soon start to perform many real tasks in our daily environments.  

We believe that initiating motion interaction with people such as ‘distributing’ will 
be one future task for robots in daily environments. People commonly distribute such 
objects as flyers or free samples to pedestrians, for example, coupons to customers in a 
shopping mall, pamphlets to visitors in a museum, or a barbershop that gives advertising 
flyers to pedestrians in front of a crowded train station. We expect that in the future such 
distributing tasks will be carried out by robots. 

How can we make a robot that performs such distribution tasks? Even though this 
activity might seem trivial for people, it is not trivial for robots. If a robot behaves poorly, 
its distribution task will probably fail and disturb the activities of pedestrians. We need to 
identify the key factors that comprise successful distributions. In this study, we 
investigate the behavior of people who perform distribution tasks well. After identifying 
the key factors, we implement them in a humanoid robot.  

In this study, we define this distribution interaction as distributional handing and 
focus in natural Human-robot interaction. We first studied distributional handing in 
human-human interaction, and then implemented it into a humanoid robot (Figure 1.2). 

 
Figure 1.2 A robot distributing a flyer to a pedestrian  
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1.3. SOCIAL ROBOTS INITIATING INTERACTION WITH 
PEOPLE IN THE REAL WORLD 

Attracting passersby is one critical task for store workers, and many do it daily. For 
instance, some clerks talk to passersby who stop at their shops and invite them to visit and 
browse. Some loudly announce the features and characteristics of their stores (Figure 1.3, 
left). However, such tasks are difficult for human workers. For instance, in a shopping 
mall, we witnessed a young female clerk who kept announcing: 

“Hello, we have two kinds of pudding.” 

“Our products make delicious presents.” 

She robotically repeated her message all day even when few passersby were 
present. Even though we felt sorry for her, we did not buy anything from that store. A few 
weeks later, we heard that she had quit because the work was too stressful. 

As robotics technology matures, why don’t we use robots for such stressful tasks? 
They seem within the capacity of today’s autonomous robots. Robots do not need to 
engage in complex conversations or decision-making; they just need to react to the arrival 
of passersby. 

However, the required capabilities for attracting visitors remain largely unknown. 
Since it is also unknown whether autonomous robots with current technology can satisfy 
user expectations, we addressed them in a study. The following are our research aims: 

 To identify the expectations, requirements, and design decisions of store managers 
 To evaluate whether robots can autonomously serve in designed roles with our 

proposed models 

 
Figure 1.3 Enticing passersby to a store 
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2. RELATED LITERATURE 

It is assumed that social robots will eventually engage in “natural” interaction 

with humans, i.e., interaction like humans do with other humans. The use of human-like 

body properties for robots has been studied to provide greater naturalness in the 

interactions. Often, studies have focused on the interaction after the robot meets people. 

For instance, studies have been conducted on pointing gestures [18, 19] and gaze [20-23].  

Similar to the concept of initiation of conversation, researchers have studied the 
phenomenon of engagement. Engagement is a situation where people listen carefully to 
an interlocutor’s conversation. A model has been developed for using the gaze behavior 
of robots [6] and people to recognize the engagement state [24, 25]. 

The main difference between the initiation of conversation and engagement is that 

the latter addresses a phenomenon that occurs after the people and the robots have 

established a common belief that they are sharing a conversation. In contrast, the 

phenomenon of initiation of conversation, which our study addresses, concerns the 

situation before or just at the moment when they establish this common belief of mutually 

sharing a conversation. 
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Within the research on human communication, studies are sparse on how humans 
initiate conversation beyond the basic facts that they select interaction partners and 
recognize and approach each other [26], stop at a certain distance [27], start the 
conversation with a greeting [28, 29], share a recognition of each other’s state of 
participation [1], and arrange themselves in a suitable spatial formation [2]. Recent 
studies have started to reveal more detailed interaction, including the knowledge of 
detection of service initiation signals used in bars [30] and the finding that side 
participants stand close to the participants and often become the next participant [31]. But 
this new knowledge remains limited. 

 In HRI, spatial formation has been studied in relation to initiating conversation. 

Michalowski et al. revealed the relation between the robot’s environment and the 

person’s engagement toward the conversation, and they suggested that to improve the 

interaction it’s important to put a stronger emphasis on movement in the estimation of 

social engagement and to vary the timing of interactive behaviors [4]. Hüttenrauch et al. 

used a Wizard-of-Oz study and found that people follow an F-formation in their 

interactions with robots, just as with humans [32]. Kuzuoka et al. studied the effect of 

body orientation and gaze in controlling F-formation and found that with these 

movements, a robot could lead the interaction partner to adjust his/her position and 

orientation while considering the proper F-formation [3]. Studies have also generated 

more natural robot behavior, such as the approach direction and distances to a seated 

person [33, 34] and the path to approach and catch up with a walking person [35, 36], the 

standing position for presenting a product [37], the proper distances for passing behavior 

[38] and following behavior [39], and the selection criteria for choosing an interaction 

partner [40]. A few studies have attempted to promote people’s participation by 

encouraging behavior [5, 41] and detecting the requested behavior [42]. However, since 

these studies were aimed at encouraging people’s participation, they only showed the 

one-sided behavior of the robot, not how robots should behave while considering the 

people’s real-time status in the initiation of conversation. In our research, we proposed a 
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model that could make the robot recognize the participation state of the people and then 

act accordingly to make them both participate in a conversation and maintain it. 

Handing capability is built in a number of techniques in robotics. Recent progress 
in mobile manipulation [43, 44] is clearly relevant. Some studies have also investigated 
how to make ‘grasping’ socially acceptable [45]. 

Specific to handing interaction, early studies concentrated on generating natural 

handing motions that imitated humans [46-48]. Huber et al. showed that a minimum jerk 

model makes arm motions appear more natural and shortened the subjects’ response 

times [49]. Cakmak et al. designed a handing-over motion to convey the moment when 

the person accepts the object [50] and how to learn a preferable robot configuration for 

the task [51]. Sisbot et al. showed how to navigate a robot [52] and manipulate objects 

near humans [53]. Koay et al. presented their results from a human-robot interaction 

study that investigated the issues of participant preferences in terms of a robot-

approaching method and handing behavior in the context of a robot handing an object to a 

seated person [52]. The use of perspective for joint manipulation has also been addressed 

[54]. However, most of these researches focused on behaviors for handing an object to a 

specified person who was stopped at a fixed position. For handing objects to walking 

pedestrians, the following necessary knowledge is very different from conventional 

researches, such as choosing a pedestrian as the target, approaching the person, the timing 

of the approach, and how the robot should extend its arm to provide the object to the 

target. This knowledge remains unknown. 

In addition to the handing interaction, a few studies have also addressed the 
process of initiating interaction by considering proxemics [55] and inviting behavior [56]. 
These studies focused on ways for a robot to exhibit intention to initiate interaction, but in 
these cases the robots were stationary, which makes a quite different situation from our 
work: distribution to pedestrians. 

Some studies focused on how robots should approach humans. Dautenhahn et al. 

studied what kind of approaching behavior by a robot was preferred by users and 
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concluded that when they are seated, approaching from the side is better than from the 

front [57]. Satake et al. proposed an algorithm for proactive approaching in which a robot 

meets people from the front [58]. Shi et al. modeled people’s behavior to initiate 

conversation in shopping situations, where the mutual spatial configuration was modeled 

rather than the approaching direction [59]. These studies show that approach methods for 

robots are different across each different situation, i.e., the state of the target person, the 

robot’s interaction purpose, etc. This result suggests that we should specifically 

investigate a proper approaching method for distributing to pedestrians. 

Previous studies have identified the promising contexts (roles, tasks, and 
situations) in which social robots can successfully serve. For instance, in a museum a 
robot attracted visitors’ attention and explained exhibits [60]. Other robots were also 
successful in museum/exhibition contexts [61-64]. Some studies revealed that robots can 
perform other tasks, including receptionist [65], snack delivery [66], health management 
[67], and education [68, 69]. 

Some studies specifically addressed visitors or passersby of stores. A robot led 
visitors to request products/items in a store [70], and another robot improved the 
atmosphere of a transit area and a shopping space [71]. On the street, a robot successfully 
collected information from passersby [72]. In a shopping mall, a semi-autonomous robot 
successfully provided directions to stores and recommended stores [17] and distributed 
discount coupons [73]. 

Many research works have investigated social acceptance. For instance, Weiss et al. 
investigated the social acceptance of robots from the observations of people’s reactions 
[74]. Heerink et al. developed a model of social acceptance [75]. In their model, the 
perceived ease of use by people as well as their perceived enjoyment was considered the 
source of their intention to use robots. Acceptance is considered the consequence of the 
satisfaction of the diverse needs of users and their expectations [76]. Many established 
methods have evaluated social acceptance from the perspective of people who interacted 
with robots. 

Some studies explored factors beyond the perceptions of interlocutors. For instance, 
Salvini et al. argued that acceptability must be considered beyond user level and included 
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views from bystanders as well as legal and ethical perspectives [77]. Mutlu et al. identified 
the importance of organizational factors through an ethnological study [78]. 

For robots to work in such environments as stores, the perceptions of 

administrators (in our case, store managers) must also be addressed. They are the decision 

makers who will determine design choices. They will judge whether to employ robots. 

However, the perceptions of administrators has been overlooked in previous studies. Thus, 

our study is novel because it approaches social acceptance from a managerial perspective. 
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3. INITIATION OF 
CONVERSATION 
INTERACTION 

3.1. MODELING INITIATION OF CONVERSATION 

To find the regular patterns in people’s behavior at the moment of the initiation of 

conversation, we observed the interaction of two people when they started a conversation. 

We focused on their spatial formation and gaze, both of which have been discussed in the 

literature as important factors for human communication [79]. 

3.1.1. DATA COLLECTION 

We collected data in two different settings, shop and meeting scenarios, to find the 

consistencies and differences across different purposes and environments. In each 

scenario, one person initiated conversation with the other. We assumed that whether a 

participant plans to explain an object or lead another to a location in the store after the 
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initial greeting influences how that person behaves in the initiation of conversation. 

Based on this assumption, we divided each scenario into two situations. 

       
(a) Shop scenario 

       
(b) Meeting scenario 

Figure 3.1 Examples of initial positions in two scenarios 

Shop scenario: This interaction was conducted in a 5 x 5-m room in which four 
objects were placed (Figure 3.1-a). One person behaved as a visitor waiting in the shop, 
and the other person acted as a host (a clerk) who greets the visitor and either (1) offers a 
service or (2) explains products. 

Meeting scenario: This interaction was conducted in the lobby (4 x 10 m) of a 
research institute (Figure 3.1-b). One person acted as a visitor, and the other behaved as a 
host who meets the visitor and either (1) offers help or (2) leads the visitor to another 
location. 

We set the initial position of the host out of sight of the visitor, and then the host 
entered the environment to initiate conversation. The experimenter provided either of two 
plans: the host only needs to greet the visitor in without plan or explain a product (or lead 
the visitor) in with plan. With this setting, we observed how they behaved both verbally 
and non-verbally to initiate a conversation.  

Twenty Japanese undergraduate students (ten pairs, eleven men and nine women) 
were paid for their participation in this data collection. We had confirmed that the two 
participants in a pair did not know each other before the experiment. The participants 
could make sure about the environment (ex., the products put in the shop) before the 
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interaction so that they could provide information to the visitor easily. They repeated 
each scenario ten times (after five trials, they switched roles, so each acted in one role 
five times for each scenario). We asked the visitor to position himself/herself differently 
every time so that we could collect diverse data. Beyond these instructions, the 
participants were allowed to behave freely.  

Although we specified the roles that the participants acted, the behaviors in the 
whole interaction were done freely by the participants. We did not determine their 
detailed behaviors; we only planned their roles and asked them to behave while 
considering these roles (we asked participants to not repeat the most recent behavior). 
Thus, the situations that both the host and the visitor faced were often different. By 
analyzing the detailed behaviors that the participants had both unconsciously and 
consciously carried out, we wanted to find out the regular patterns of people’s interaction 
when initiating a conversation. 

The interaction data was collected with one video camera. We set the camera at the 
place from where its field of view could cover the whole interaction of the two people. We 
have put some marks on the floor to help with the data analysis such as retrieving distance 
and angle parameters. 

 
  (a) initial setting       (b) without a subsequent plan   (c) with a subsequent plan 

Figure 3.2   Influence of subsequent plan in initiate position 

3.1.2. DATA ANALYSIS 

Participants took diverse spatial formations and behaviors when they initiated 

conversations. For example, the host sometimes directly approached and greeted the 

visitor, saying, “Welcome, may I help you?” in the central area (Figure 3.2-b); in other 
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cases the host moved to the side of the visitor and only spoke first when he/she reached a 

position near the visitor (Figure 3.2-c). To retrieve the systematic patterns in such 

initiations of conversation, we observed the position and timing of the host’s performance: 

(1) how to initiate conversation (initiation behavior), (2) where to initiate conversation 

(initiation position), (3) where to talk (talking position), and (4) how to talk (utterances). 

3.1.2.1. PATTERNS OF INITIATION BEHAVIOR 

In our preliminary analysis of how the hosts behaved, we found that their choice 

of initiation behavior was influenced by two factors: visibility and plan. For example, 

most hosts directly approached the visitors when the visitors noticed them or when the 

hosts did not have a plan. On the other hand, most hosts approached the place where both 

the visitor and the next target (e.g., product or a route to the next location) are visible 

when the hosts had a subsequent plan and the visitors did not notice the host. From these 

observations, we coded all situations to scrutinize the differences in the host’s behavior 

patterns. We used Cohen’s Kappa, an index of inter-rater reliability that is commonly 

used to measure the level of agreement between two sets of dichotomous ratings or scores 

[80]. We asked two coders who have no knowledge about robotics and HRI to analyze 

the collected data. They did not participate in the data collection experiment and did not 

know about the purpose of the collected data. They were only told to analyze the data 

based on their own cognition. First, the two coders classified visibility into two cases: the 

visitor noticed the host (noticed) and the visitor did not notice the host (unnoticed). 

Moreover, we analyzed the initiation behavior, which coders classified into two cases: 

approach to visitor and approach to a place where both visitor and target are visible. 
Cohen’s Kappa coefficient from the two coders’ classifications was 0.87 for 

visibility and 0.84 for initiation behavior, indicating that their classifications were highly 
consistent. After the classifications, to analyze the consistent trajectories for modeling, 
the two coders discussed and reached a consensus on their classification results for the 
entire coding process. 
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Table 3.1 Analysis of initiation behavior 

Scenario Plan Visibility 

Initiation behavior 

Approaching 

visitor 

Approach to a place where both 

visitor and target are visible 

Shop 

(100 cases) 

With plan Noticed      (18/50) 18 (100%) 0     (0%) 

(50 cases) Unnoticed    (32/50) 3 (9.3%) 29  (90.7%) 

Without plan Noticed      (16/50) 16 (100%) 0     (0%) 

(50 cases) Unnoticed    (34/50) 34 (100%) 0     (0%) 

Meeting 

(100 cases) 

With plan Noticed      (24/50) 21 (87.5%) 3  (12.5%) 

(50 cases) Unnoticed    (26/50) 8 (30.7%) 18  (69.3%) 

Without plan Noticed      (29/50) 29 (100%) 0     (0%) 

(50 cases) Unnoticed    (21/50) 21 (100%) 0     (0%) 

 
Figure 3.3   Choice of initiate timing and position 

The coding results are shown in Table 3.1, which confirms our observation. We 
found that when the visitor did not notice the host’s arrival when the host had a 
subsequent plan, most hosts tended to choose a behavior by considering their subsequent 
plans regardless of their scenario. In addition, at this time the host formed a spatial 
formation with the visitor while considering the target product, in a way similar to using 
O-space [37]. O-space is a convex empty space surrounded by the people involved in a 
social interaction, where every participant looks inward into it to share attention to the 
same product, and no external person is allowed in this region. The hosts always moved 
toward the visitors to greet them when they did not have subsequent plans in both 
scenarios; even if the hosts did have subsequent plans, most moved to the visitors when 
they were noticed by the visitors. As shown in Figure 3.3, in summary, we found that the 
choice of initiation behavior was influenced by whether the hosts had a further plan to 
explain something to the visitor. However, this choice is also influenced by visibility. If 
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the visitor noticed the host within a certain distance, the host moved to the visitor to 
initiate the conversation. 

3.1.2.2. INITIATION POSITION 

In our preliminary analysis of the timing of the initiation of the hosts, we found 

that their position was influenced by the greeting pattern and the position relationships. 

For example, when the visitors were noticed by the hosts, the hosts immediately greeted 

the visitors as they approached, but some hosts greeted the visitors after approaching the 

visitors when they were far away. Moreover, if the visitors were not noticed by the hosts, 

the hosts approached the visitors differently, depending on their initial position 

relationships. 

            
(a) Greet immediately               (b)  Greet after apporaching 

Figure 3.4   Detailed analysis of initiation position in notice category 

From these observations, we coded the host’s greeting patterns to scrutinize the 
differences in their behavior patterns. Again, the two coders classified the greeting 
patterns into two cases separately for both noticed and unnoticed case: the host greets 
visitors immediately (Figure 3.4-a), the host greets visitors after approaching them 
(Figure 3.4-b); the host approaches from the frontal direction and then greets, and the 
host approaches from the non-frontal direction and then greets. 

Cohen’s Kappa coefficient from the two coders’ classification was 0.93 for 
noticed and 0.84 for unnoticed for greeting patterns, indicating that their classification 
was highly consistent. After classification, to analyze the consistent trajectories for 
modeling, the two coders discussed and reached a consensus on their classification results 
for the entire coding process. 
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Figure 3.5  Initiation distance and initiation angle 

We further analyzed the position relationships between the host and visitor. First, 
we measured the distance (initiation distance) and angle (initiation angle) (Figure 3.5) 
when the host attracted the attention of the visitor by saying, “Excuse me” or “Welcome,” 
because the position relationship in this timing is essential to understanding how the host 
initiates participation. 

In the noticed category, we found that the initiation distance is different 
depending on the scenario and greeting patterns. In the shop scenario, the average for 
initiation distance was 2.2 +/- 0.2 m and 2.5 +/- 0.3 m for “greet immediately” and “greet 
after approaching.” In the meet scenario the average of initiation distance was 3.3 +/- 1.5 
m and 6.2 +/- 1.0 m for “greet immediately” and “greet after approaching.”  

Our interpretation is that the host immediately greets the visitor when the distance 
from the visitor is lower than a certain distance, but the host does not immediately greet 
the visitor when the distance from him/her is greater than a certain distance when the 
visitor notices the host. Note that the initiation angle is not measured in the noticed 
category because the visitor and the host face each other.  

On the other hand, in the unnoticed category, the initiation distance was not 
influenced by the scenario. In the shop scenario, the average of the initiation distance 
was 2.0 +/- 0.1 m and 1.5 +/- 0.3 m for “approach from frontal” and “approach from non-
frontal” directions, respectively, and in the meet scenario the average of the initiation 
distance was 2.0 +/- 0.6 m and 1.6 +/- 0.4 m for “approach from frontal” and “approach 
from non-frontal” directions, respectively.  

Since the initiation distances in “approach from frontal” and “approach from non-
frontal” directions were obviously different, we measured the initiation angle to find the 
extent of these two greeting patterns. In the “approach from frontal” category, the 
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maximum angle between the vector from the visitor to the host and the visitor’s 
orientation was 55° on the left and 60° on the right side in the shop scenario and 65° on 
the left and 50° on the right side in the meeting scenario. On the other hand, in the 
“approach from non-frontal” category, the ranges of minimum to maximum angle 
between the vector from the visitor to the host and the visitor’s orientation were 55~120° 
and 60~130° on the left and right sides in the shop scenario and 65~130° and 50~135° on 
the left and right sides in the meeting scenario. The minimum of this angle was the same 
as the maximum in the “approach from frontal” cases.  
Table 3.2 Analysis of initiate position (distance and angle) and distance to talk 

Scenario Visibility Greeting pattern 
Initiate 

distance 

Initiate angle 

(maximum) 

Talk 

distance 

Shop  

(100 

cases) 

Notice Greet immediately (16/34) 2.2 +/- 0.2 - 0.7 +/- 0.1 

(34 cases) Greet after approaching (18/34) 2.5 +/- 0.3 - 0.8 +/- 0.4 

Not notice Approach from frontal (18/66) 2.0 +/- 0.1 55~60 0.7 +/- 0.1 

(66 cases) Approach from non-frontal (48/66) 1.5 +/- 0.3 120~130 0.7 +/- 0.2 

Meeting 

(100 

cases) 

Notice Greet immediately (42/53) 3.3 +/- 1.5 - 0.7 +/- 0.2 

(53 cases) Greet after approaching (11/53) 6.2 +/- 1.0 - 1.2 +/- 0.5 

Not notice Approach from frontal (17/47) 2.0 +/- 0.6 65~50 0.8 +/- 0.4 

(47 cases) Approach from non-frontal (30/47) 1.6 +/- 0.4 130~135 0.6 +/- 0.1 

 
(a)  From front direction               (b)  From non-front direction 

Figure 3.6 Detailed analysis of initiation position in unnoticed category 

We conclude that the hosts chose their positions not only considering the distance 
but also the direction, depending on the position relationships. As shown in Figure 3.6-a, 
when the hosts came from the visitor’s frontal side, they always went straight toward the 
visitor. When the hosts came from behind the visitors (Figure 3.6-b), instead of going 
toward the visitors, the hosts went to their side to make sure that they were in the visitors’ 
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field of view before starting to talk. In addition, the distance at which they started to greet 
the visitor was influenced by whether the host came from the visitor’s frontal side. 

3.1.2.3. TALKING POSITION 

Next, we measured the position relationships between the hosts and the visitors 
when they started to talk (e.g., explaining products or leading movement) in each 
category. As a result, the host kept walking toward the visitor while greeting until the 
host was within a proper distance for talking to the visitor. We found that this distance, 
which averaged about 0.7 m, was common to both scenarios, except for the “greet after 
approaching” category in the meeting scenario. 

3.1.2.4. ANALYZING UTTERANCES 

Finally, we investigated how the host starts to talk with the visitor. We found that 

the utterances the host used to initiate the conversation were influenced by whether the 

visitor was considered to participate in the conversation or not. After the visitor noticed 

the host’s arrival, the host greeted the visitor with an expression like “Welcome.” It 

seemed to them as if they had already agreed to participate in a conversation. We called 

this mental agreement the participation state. When the host initiated the conversation 

from the side of the visitor without making eye contact, the host first needed to attract the 

visitor’s attention. This situation is called visitor not participating in the conversation. 

Consequently, when the host was noticed by the visitor or was coming from the frontal 

direction of the visitor within a certain distance, the visitor was considered to be 

participating in a conversation with the host, and thus the host needed to make an 

utterance immediately. When the host was coming from the non-frontal direction of the 

visitor within a certain distance (“Approach from non-frontal” case in Table 3.2, 48 trials 

in shop scenario and 30 trials in meeting scenario), only the host was considered to be 

participating in a conversation toward the visitor (but the visitor was not yet participating). 

It is not necessary for the host to utter something at once. However, to make the visitor 

participate in the conversation, the host first needs to either adjust the spatial formation 
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with the visitor or say a phrase like “Excuse me” to attract the visitor’s attention (31/48 

trials in shop scenario and 22/30 trials in meeting scenario). 

We found that the above phenomena were shared by both scenarios, except for the 

threshold distance when they started a conversation. We concluded that the basic 

phenomena in initiating conversation were common among scenarios and environments. 

3.1.2.5. SUMMARY 

In this data collection, we conducted our observation experiment in a simple lab 

situation. For meeting scenario, we consider that the environment is as the same as the 

real world and the situation is very common. While for the shop scenario, the decoration 

of our shop is simple and not all the participants had training or experience in how to 

behave as a shopkeeper in a shop. However, our purpose is to find common human 

behavior when initiating conversation instead of shopkeeper-specific behavior. We 

consider that it is appropriate to assume that the participants have the common sense 

needed to naturally initiate conversation with others. 

We found four key points for initiating conversations: patterns of initiation 

behavior, initiation position, talk distance, and utterance. Moreover, we found several 

factors that influence them: scenario, plan, visibility, and greeting pattern. Patterns of 

initiation behavior are influenced by plan and visibility (situation dependent); initiation 

position and talk distance are influenced by scenario, visibility, and greeting pattern 

(situation and environment dependent). Utterances are influenced by greeting pattern 

(situation dependent). 
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3.2. A ROBOT THAT ADDRESSES INITIATION PROCESS 

We implemented our model in a robot so that it appropriately addressed the 

initiation of conversation, i.e., choosing an appropriate position to start talking with 

appropriate timing. 

 
Figure 3.7   System configuration 

3.2.1. GENERAL FRAMEWORK 

We used a development framework that we had used successfully before to 

control the robot automatically [81]. Figure 3.7 shows an outline of our framework, 

which has three components: a humanoid robot, a motion capture system, and a robot 

controller (software). Control of the robot is carried out automatically without an operator. 

The spatial formation recognition function uses as input the position and orientation 

information of the robot, human and target from the motion capture system to recognize 

the spatial formation. The state controller receives the information from the spatial 

formation recognition and sends the state information to the spatial formation, utterance, 

and gesture controllers. The spatial formation controller calculates the target position for 
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the robot every 100 ms and then generates and sends commands that consist of forward 

velocity and rotation velocity to the robot automatically to control its movement. The 

developer writes commands in advance with a markup language that can both control the 

robot’s gesture and utterance, and the robot automatically uses them according to the 

information from the state controller [81]. 

 
Figure 3.8 Flow of initiating conversation 

Figure 3.8 shows the robot’s flow for initiation of conversation. There are two 

paths that can be taken until the conversation starts. In one case, the robot initiates 

participation. It approaches, stops at an appropriate position (proactive adjustment of 

spatial formation), and attracts the visitor to participate in the conversation with a 

drawing attention action. 

In the other case, the visitor initiates the conversation. While the robot is moving 

to a certain position (for proactive adjustment of spatial formation), the visitor prepares 

to initiate the conversation. Thus, the visitor’s participation state changes to participating 

first, and then the robot adjusts its spatial formation to be appropriate for the participation 

state. In this case, it performs a reactive adjustment of spatial formation. 

3.2.2. HARDWARE 

We used Robovie-II, a 1.2-m-tall humanoid robot with a 0.3-m radius that is 

characterized by its human-like body expressions. It has a 3-DOF head and 4-DOF arms. 
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Its mobile base is equipped with wheels. Its maximum speed is about 0.7 m/s. And in our 

experiment we set the maximum speed of the robot as 0.5m/s for security reasons. 

Since our research focus is to confirm our model’s validity, we used a motion 

capture system as the sensor input. The motion capture system acquires body motions and 

outputs the position data of markers to the system. It outputs the data in real time with a 

100-ms output cycle, and the error is less than 2 mm. Twenty-three markers were placed 

on the human and robot bodies, and four markers were attached to each product that was 

used for a subsequent plan. 

3.2.3. SPATIAL FORMATION RECOGNITION 

3.2.3.1. PARTICIPATION STATE 

We define the visitor’s and robot’s participation states to indicate whether the 

human and the robot are participating in a conversation. We define the participation 

states of the robot and the human as PSR and PSH. When the robot is participating in a 

conversation, PSR =1; otherwise, PSR =0. When the human is participating in a 

conversation, PSH =1; otherwise, PSH =0. 

We also define a joint participation state to show the relationship between the 
robot and the visitor in the conversation as PSJ (i.e., PSR, PSH). There are four state 
variables of the joint participation state in the implementation. 

 No one participating 

This state variable, which indicates a situation where neither the robot nor the 
visitor is participating in the conversation, is defined as PSJ= (0, 0).  

 Only robot participating 

This state variable indicates a situation where only the robot is participating in a 
conversation with the visitor, i.e., PSJ= (1, 0). Although the robot is considered to be 
participating in a conversation with the human, the human does not realize that the robot 
is approaching. In this case, the robot is allowed to greet the human, but it can also adjust 
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its position to a better place instead of talking immediately. In addition, in this state, the 
robot should say something like “Excuse me” to draw the human’s attention and initiate 
conversation. As the human starts to participate in the conversation, the robot begins to 
greet the human. 

 Only visitor participating 

This state variable indicates a situation where only the visitor is participating in a 
conversation with the robot, i.e., PSJ= (0, 1). This means that only the human is 
considered to be participating in a conversation with the robot. It is possible that the 
visitor recognizes the robot and wants to say something to the robot before the robot 
greets him/her. However, as we found in the observation experiment, implicit behaviors 
always come before the explicit ones. Meanwhile, before the explicit contact (like saying 
a word), implicit behaviors such as standing position, body orientation and gaze would be 
established first. Since in our model the participation state could be detected by 
analyzing the spatial formation, the robot would always realize the visitor’s intention and 
participate in the conversation at once. In this case, the robot must adjust the spatial 
formation to participate in the conversation and greet the human. 

 Both participating 

This state variable indicates a situation where both the robot and the visitor 
recognize the conversation possibility and are paying attention to each other. We record it 
as PSJ= (1, 1). This means that since both the robot and the human are participating in the 
conversation with each other, the robot should immediately greet the human. 

Dialogue act tags have been annotated for each phrase in a database of dialogue 

between several pair of speakers, according to the following set, based on the tags 

proposed in [40], taking into account dialogue acts such as affirmative or negative 

reaction, expression of emotions like surprise or unexpectedness, and turn-taking 

functions. 

3.2.3.2. PARTICIPATION ZONE 

Estimation of the participation state is a key component of this study. From our 

observations of human interaction, we found that people initiated conversation (a) when 
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their gaze met within a certain distance and (b) inside the visitor’s field of view within a 

certain distance when the visitor didn’t notice the other’s arrival. From these observations, 

we hypothetically developed a participation zone that consists of three parts: gaze, sight, 

and front zones. The gaze zone is the space established by one’s gaze; if two people are in 

each other’s gaze zone (their gazes meet), they perceive an obligation to participate in a 

conversation. The sight zone is a cone-shaped space established in front of a person to 

represent one’s sight; if one person wants to initiate participation with another, he must 

enter the visitor’s sight zone first (when their gaze does not meet). The front zone is an 

obtuse fan-shaped space established in front of a person to represent one’s frontal side; if 

a person enters the visitor’s sight zone and keeps the visitor in his own front zone, he 

perceives an obligation to participate in a conversation. When both people enter each 

other’s front zones, they both perceive an obligation to participate in a conversation. 

 
(a)   gaze zone 

     
(b) sight zone                    (c) front zone 

Figure 3.9 Participation zone 

With the three participation zones defined above, it is possible to estimate 

whether a person is participating in a conversation with another, and thus to determine the 

proper initiation pattern, initiation position and utterance. 
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Next, we report the method of estimating participation zones. In addition, 

estimation of the visitor’s focus of attention is also needed when the host has a 

subsequent plan. The parameters we use below are derived from our observation 

experiment or models that were used successfully in previous research efforts. As 

reported in Section 3.1.2.5, parameters for gaze zone are situation- and environment-

dependent. Even though the front zone and the sight zone are independent of the situation 

and the environment, it may also be necessary to adjust their parameters to position the 

robot. 

 Estimation of participation zone  

 Since it is not easy to detect a person’s gaze accurately, we used a simple 
technique that analyzes the person’s head orientation instead. Figure 3.9-a illustrates the 
gaze zone, which is set as a 30° cone-shaped area (parameter was adjusted according to 
the accuracy of our motion capture sensor) in front of a person’s (or robot’s) head within 
a changeable distance. When the robot is in the human’s gaze zone, we assume that the 
human is looking at the robot and realizes the robot is approaching. 

We use Eq. 1 to calculate whether the robot is in the human’s gaze zone: 
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              (1)        

where PR is the position of the robot in the environment near the person and PH is 
the position of the person. Angle(θPH,PR, θG) is a function that indicates the constraint of 
the human’s gaze orientation. We used InitiateDistancegaze, which we analyzed in Section 
3.1.2.2, as the length of the gaze zone and set it to 2.5 m in the evaluation experiment 
based on our observations (initiation distance of Greet after approaching in shop scenario 
in Table 3.1). θG is the human’s gaze direction. Parameter Dist(PH, PR) is in the x-y 
coordinate, and Angle(θPH,PR, θG,) is in the x-y-z coordinate. If the value of the position of 
robot PR is not 0, the robot is in the human’s gaze zone. 

We set up precise parameters to define the sight zone from our observation results 
(initiation distance and initiation angle of Approach from non-frontal direction in Table 
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3.1), and thus the zone was set to a 270° fan-shaped area in front of the body of a person 
(or robot) within a 1.5-m distance (Figure 3.9-b).  

We defined Eq. 2 to calculate whether the robot is in the human’s sight zone: 
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where we use InitiateDistanceSight (1.5 m) and InitiateAngleSight (270°), which we 
analyzed in Section 3.1.2.2, as the length and angular region of the sight zone. All of the 
parameters here are in the x-y coordinate. 

 We set-up precise parameters to define the front zone from the social distance 
[27], observations reported in Section 3.1.2 (initiate distance and initiate angle of 
Approach from frontal in Table 3.1), and the preliminary tests. Accordingly, the zone was 
set to a 120° fan-shaped area in front of the body of a person (or robot) within a 2.0-m 
distance (Figure 3.9-c). 

We defined Eq. 3 to calculate whether the robot is in the human’s front zone: 
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where we use InitiateDistanceFront (2.0 m) and InitiateAngleFront (120°), which 
were analyzed in Section 3.1.2.2, as the length and angular region of the front zone. All of 
the parameters here are in the x-y coordinate. 

 When these conditions are satisfied, the participation state changes from not 
participating to participating. However, the opposite is not true; since the transition of 
the participation state from participating to not participating needs verbal interaction, it 
is not controlled in this estimation module. 

3.2.3.3. VISITOR’S FOCUS OF ATTENTION 

As reported in Section 3.1.1, whether the visitor is paying attention to the target 

product, which the robot would explain as a subsequent plan, influences the robot’s 

standing position. Therefore, we need to recognize the visitor’s focus of attention. 
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We used a previously reported method [37] that identifies an object in 

transactional segments as the focus of implicit attention. A person’s transactional 

segment is defined as the space in front of him/her when there is no obstacle between the 

person and the object. When the angle between the forward direction of the person’s body 

and the vector from his/her body center to an object is less than 90° and the distance 

between him/her and the object is less than 2 m, the object is identified as the person’s 

implicit attentional target (Figure 3.10). 

 
Figure 3.10    Transactional segment 

If an object is in a person’s transactional segment, we assume that the person is 

paying attention to it. We used Eq. 1 to calculate whether an object is in the person’s 

transactional segment: 
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Here, PO is the position of an object in the environment, PH is the person’s 

position, θPH,PO is the vector from the person’s body center to PO, and θH is the person’s 

body orientation. Dist(PH, PO) is the distance between the object and the person. 

Angle(θPH,PO, θH,) is the angle between the vector from PH to PO and the person’s body 

orientation. All of the parameters here are in the x-y coordinate. If the value of the 

position of object PO is not 0, the object is in the human’s transactional segment and the 

human is paying attention to it. Here, we only used this simple method to estimate the 

person’s focus of attention due to our sensor and experimental setting. This model gives 

the robot the basic ability to provide services according to the visitor’s focus of attention. 
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In some environments where objects are placed tightly, the recognition precision is one 

limitation of the model. However, one could easily use other methods for the task, since 

many researchers have already addressed this issue. 

3.2.3.4. RECOGNITION OF THE PARTICIPATION STATE 

We recorded the situation where the robot is in the human’s gaze, front, and sight 

zones as H_Gaze, H_Front, and H_Sight, and the situation where the human is in the 

robot’s gaze as R_Gaze, R_Front, and R_Sight. Table 3.3 shows the relationship among 

joint participation state PSJ and the three participation zones. 
Table 3.3 Definitions of Joint Participation State 

 
 
 
 

 

3.2.4. SPATIAL FORMATION CONTROL 

A conversation is always carried out when both people perceive themselves to be 

participating in it. When a robot attempts to initiate a conversation with a visitor, the most 

important thing is to ensure that both the visitor’s and its own participation state are set 

to participating. We created a spatial formation controller to control the robot’s position 

and orientation to achieve this. 

This unit controls the robot’s standing position with a motion capture system. The 

system seeks the optimal standing position for the robot in a search area. A cell 

establishing a 20 x 20-cm standing position divides the search area (Figure 3.11). This 

module estimates the values of all cells in the search area and selects the one with the 

highest value as the optimal standing position. Then the robot goes directly toward the 

position, stops and adjusts its orientation. The position is updated every 100 ms. 

 H_Gaze H_Front H_Sight Else 

R_Gaze (1,1) (1,1) (1,0) (0,0) 

R_Front (1,1) (1,1) (1,0) (0,0) 

R_Sight (0,1) (0,1) (0,0) (0,0) 

Else (0,0) (0,0) (0,0) (0,0) 
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Figure 3.11 Searching grid        Figure 3.12 Reactive adjustment of spatial formation 

From our observations of human-human interaction, we found the following: (a) 

The host kept facing the visitor and gazing at him/her within a certain distance when the 

visitor was participating; (b) when the visitor was not participating in the conversation, 

people always went to the position from where they could easily explain the target 

product or direction to the visitor if necessary. Thus, we created two models to control the 

spatial formation. 

 Reactive adjustment of spatial formation 

When the visitor is participating in the conversation, the robot needs to not only 
immediately participate in it but also get closer to the visitor and turn to him/her. We 
define this adjusting of position and orientation as the reactive adjustment of spatial 
formation. When the visitor is participating in the conversation, the robot should 
immediately start this adjustment, even if it has a previously made plan. We identified 
three rules for the reactive adjustment of spatial formation (Figure 3.12): 

1) The robot should be at a position that allows itself to remain in the sight 
zone of the visitor. 

2) Our observation on human-human interaction in Section 3.1.2.2 showed 
that the proper talking position is about 0.7 m, which ranges from 0.5 to 1.2 m. However, 
it is risky to place the robot too close to the visitor. Thus, in our implementation, we set 
the robot at a position that maintains a distance of about 1.1 to 1.5 m to the visitor (used 
successfully earlier [37]). 

3) The robot should not turn to other orientations. It must keep facing the 
visitor to keep participating. 
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We calculated the distance between the robot position and each cell so that the 
robot could choose the nearest cell as its target position. 

 
Figure 3.13 Proactive adjustment of spatial formation 

We calculated the values of each cell for reactive adjustment using Eq. (5): 
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where PT is the position of each cell, as shown in Figure 3.9. PR is the temporal 

position of the robot. All of the parameters are in the x-y coordinate. 

Position PT of the cell with a maximum value must be chosen as the approaching 

target position to which the robot directly moves. 

 Proactive adjustment of spatial formation 

When neither the visitor nor the robot is participating in the conversation, the 
robot should approach the visitor first. Through our observations we found that the host 
tended to approach the visitor while considering whether he had a subsequent plan (29/32 
trials in shop scenario, 18/26 trials in meeting scenario, as shown in Table 3.1).  Since at 
this time the robot has the freedom to choose the location, we define this approach as the 
proactive adjustment of spatial formation, which has two rules (Figure 3.13): 

1) When the robot only needs to greet the human without referencing an 
object or a place (without plan), it can simply go to the visitor’s front zone when 
approaching from the front. Otherwise, it needs to enter the visitor’s sight zone and keep 
a certain distance (1.1-1.5 m).  

We defined proactive adjustment in the without plan cases by Eq. 6: 
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where all of the parameters are in the x-y coordinate.  

Position PT with maximum value must be chosen as the approaching-target 
position. 

2) When the robot needs to introduce some objects or places (with plan), it 
should choose the greet position that will keep the target object (or direction) visible to 
both the visitor and itself after the conversation has started. In this paper, we set this 
target in the field of view (270° from our observations) of both the visitor and the robot. 

We defined Proactive adjustment in the with plan cases by Eq. 7: 
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where PO is the position of the target object. θRB is the robot’s body orientation. 
All of the parameters here are in the x-y coordinate. 

Position PT with maximum value must be chosen as the approaching-target 
position. 

3.2.5. UTTERANCE AND GESTURE CONTROL 

We controlled the robot’s utterances with a simple utterance controller that 

manages four functions: greeting, drawing attention, guiding, and explaining. A human 

developer pre-wrote the sentences, and the robot automatically uses them based on 

information from the state controller. The robot greets visitors when both of their 

participation states are participating and draws attention when only the visitor is not 

participating. When both are participating in the conversation, if the visitor is paying 

attention to the target product, the robot first explains it or guides the visitor to it. 
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The gesture controller accepts two types of input. One is from the state. When the 

state is participating, this controller makes the robot maintain eye contact or joint 

attention with the visitor. As the other type, it also receives input from the utterance 

controller to synchronize pointing gestures with utterances. 
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3.3. EXPERIMENT 

We conducted an experiment that included both system and user evaluations to 

verify that our proposed model is useful for a robot to initiate conversation. From the 

viewpoint of our model, the two scenarios share the same patterns for initiating 

conversation, and thus either of them would be sufficient for this evaluation. In the shop 

scenario, the environment and the situation were more complex than that in the meeting 

scenario, making it possible to test the model with more varied situations. Accordingly, 

we decided to use the shop scenario as our evaluation experiment. The experiment was 

conducted in a lab room, under the assumption that it was a small computer shop with 

three products (Figure 1.1). A visitor visits this shop by appointment with a sales-robot to 

receive an explanation of one of the products. When he visits the shop, he waits for the 

sales-robot. When the robot arrives, they meet and initiate conversation. Finally, the robot 

explains the product. This setting places the focus of the evaluation on the interaction for 

initiating conversation. As we explained in Section 3.1.2.5 and Section 3.2.3, the 

parameters of the model we used in this experiment may need to be adjusted when using 

it in some other situations and environments. However, the knowledge of participation 

zone and initiation of conversation remains the same. The aim of the experiments is to 

investigate the validity of an initiation model that considers such regular patterns rather 

than the specific situation-dependent parameters. In this regard, we believe that using this 

simplified typical shop scenario is sufficient to show the effectiveness of the model. 

3.3.1. HYPOTHESIS AND PREDICTION 

From our observations, we found that people’s behaviors during the initiation of 

conversation are influenced by such factors as the interlocutor’s participation state. 

Therefore, we developed this hypothesis: 
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Hypothesis: Robot implemented with the participation state models would 

provide a better impression of interaction behaviors and make the participants prefer it 

better than robots that not implemented with the participation state models. 

When using the proposed model, we assume that the robot can maintain its 

participation state effectively by adjusting its positions and timings as it greets and 

explains things to participants. We use appropriateness of the standing position when the 

robot greets the visitor, and appropriateness of the standing position when the robot 

explains the target product to evaluate the robot’s behavior in the conversation. On the 

contrary, a robot using alternative methods that fail to consider the participation state 

might fail to adjust these positions and timings. Therefore, our hypothesis argues that if a 

robot considers the constraints for maintaining the participation state, as our proposal 

does, it can provide better impressions than alternative methods. 

For comparison, we prepared two alternative methods: guide and best-location. 

The former method makes the robot initiate the conversation as quickly as possible by 

approaching a target within a certain distance. The latter method makes the robot stand at 

an appropriate location for explaining a product as quickly as possible before initiating 

the conversation. The details of the alternative methods are described in Section 3.3.2. 

Based on the above idea, we made this prediction: 

Prediction 1: The proposed model for initiating conversation will outperform the 

alternative methods in the following areas: feeling of appropriateness of the standing 

position when the robot greets the visitor, appropriateness of the standing position when 

the robot explains the target product, and overall evaluation. 

In the data collection, the timing of the first utterances by people to initiate 

conversations depended on situations such as visibility; for example, they start to greet 

when the target notices them even if the distance between them seems far (“Greet 

immediately” case in Table 3.2, 16/34 trials in shop scenario, 42/53 trials in meeting 
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scenario), although they approached before greeting when the target did not notice them. 

The proposed model considers such visibility to control the robot behaviors. If we 

successfully implement our ideas, our proposed method will make the robot behave as 

people do. On the contrary, the alternative methods that fail to consider such visibility 

will require more time to prepare the robot to speak first because they only consider the 

positions of the robot and the target, not visibility, in initiating conversation. This means 

that the robot would not greet the participant even the participant had already paid 

attention to it until it gets to a position closer to the participant. This may make the 

participant wait for the robot, which can obviously be seen as a waste of time. This may 

influence the participant’s impression on the robot’s appropriateness of greet position. 

Accordingly, we predict that: 

Prediction 2: Our proposed model of initiating conversation will decrease the 

time from the beginning to the first utterance compared to the alternative methods. 

In the data collection, the timing of explaining or guiding also depends on the 

situation; they started explaining or guiding after approaching the target if they were far 

away. The proposed model considers such spatial settings to control the robot behaviors. 

If we successfully implement our ideas, our proposed method will make the robot behave 

as people do. On the contrary, the alternative methods will create different spatial settings, 

so the explaining or guiding timing will be different. In the best-location method, since 

the robot speaks first after reaching the proper position for explaining the product, we 

predict that such timing will closely follow the timing of the greeting. On the other hand, 

in the guide method, since the robot speaks first after reaching the target, sometimes the 

greeting position is far from the proper position for explaining the product. Such timing 

will be far from acceptable greeting timing. Thus, this time can partially and indirectly 

indicate the appropriateness of the choice of the explaining position and may influence 

the participant’s impression of the robot. We predict that: 



Experiment 
 

  43 

Prediction 3: The proposed model of initiating conversation will decrease the 
time from the end of greetings to explanations compared to the alternative methods. 

If predictions 2 and 3 hold, the total interaction time with the robot that uses the 

proposed model will be less than the total interaction time with the robots that use the 

alternative methods. Based on these two predictions, we further predict that: 

Prediction 4: The proposed model for initiating conversation will decrease the 

total time compared to the alternative methods. 

3.3.2. CONDITIONS 

The proposed model is compared with two alternative methods, which do not use 

the knowledge proposed in the paper but exploit other existing knowledge to provide the 

best interaction in the scenario. 

a) Proposed method (proposed): The robot behaves based on our proposed 
model. It first approaches the visitor while considering the subsequent plan, and initiate 
conversation with the visitor at the proper timing according to the participation state of 
both of itself and the visitor. The robot would then judge if it is necessary to guide the 
visitor to pay attention to the target product by analyzing the visitor’s focus of attention 
and then behave accordingly. At last, it explains the target product to the visitor from a 
proper position and orientation. 

b) Always greet and guide (guide): In this strategy, although the robot does 
not have a complicated model for conversation initiation, it behaves as politely as 
possible and initiates the conversation as quickly as possible. It first goes directly toward 
the visitor. When the distance between them is reduced to 2 m, the robot stops, greets the 
visitor, and asks the visitor to look at the product. As the visitor approaches the product 
and looks at it, the robot goes to the best location for explaining the product, i.e., the 
location based on O-space, and explains it. 

c) Always start the interaction at the best location for explaining (best-
location): In this strategy, the interaction is designed to be as simple and quick as 
possible. When the robot finds a visitor, it immediately stands at an appropriate location 
for explaining the product, i.e., the location based on O-space, and starts to talk.  



Measuring Communication Participation 
 

44 

In the guide and best-location conditions, we used a previous model [37] in which 
the robot chooses a position near the human and the product, while keeping the product 
visible to both the robot and the human. We use the following model for the robot to 
appropriately control its position: 
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In advance, the experimenter wrote the text for the robot’s utterances in five 
categories: (1) drawing attention, (2) greeting, (3) guiding, (4) explaining, and (5) epilog. 
In the guide and best-location conditions, the robot says the texts from the greeting, 
guiding, explaining, and epilog categories. In our proposed method, the robot always says 
the texts in the greeting, explaining, and epilog categories because the decision to say the 
texts in drawing attention and guiding are dependent on the visitor’s participating state 
and focus of attention. If the visitor is participating in a conversation with the robot 
(focusing attention on the target product), the robot doesn’t say the texts in the drawing 
attention (guide) category. Otherwise, it says those texts. 

The exact utterances the robot spoke are as follows: 

Drawing attention: Excuse me. 

Greeting: Welcome, my name is Robovie and I’m in charge of PC sales. 
(Welcome would be omitted when the robot perform drawing attention first) 

Guiding: We have got a new laptop PC over there, please just take a look. 

Explaining: Let me show you this laptop PC. We just got it last week, and it is 
very popular now. The memory of this PC is 4GB, and its battery life is about 6 hours. In 
addition, the price is 100,000 yen normally but it is now on a campaign and only cost 
80,000 yen.  

Epilog: The introduction of this PC is over. Please just look around in our store at 
pleasure. 

3.3.3. PROCEDURE 
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Fifteen native Japanese-speaking people (seven men, eight women, average age: 

27 +/- 11, range from 18 to 56) were paid for their participation in our experiment that 

was conducted in a 6 x 10-m room. Due to the visibility limitations of the motion capture 

system, the experiment area was restricted to a 3 x 4.5-m area. We used the robot and 

motion capture system described in Section 3.2.2. 

First, the participants put on the markers of the motion capture system, which was 

then calibrated by the experimenter. Then, the scenario and instructions were provided to 

the participants, instructing them to evaluate the interaction of the robot from the 

standpoint of a shop owner who needed to choose one robot from the candidates. They 

played a visitor in various ways so that they could completely judge the appropriateness 

of the behavior of each robot. They evaluated three types of robots from the shop owner’s 

perspective to let them judge various spatial formations for initiating conversations, since 

each method has strengths and weaknesses. 

They simulated the behaviors of five types of visitors that decided all by 

themselves (as a result, the five types of visitors played by each participants are not all 

the same), such as someone waiting in front of the product or someone at the store 

entrance, and interacted five times under each condition. In each condition, after 

interacting with the robot five times and pretending to be a different visitor in each 

interaction, they filled out a questionnaire to rate their impressions. The experiment used 

a within-subject design and the order of conditions was counterbalanced. 

The experiments were recorded on video together with the motion capture system 

(recording the coordinates of the markers). In addition, the recognition results of the 

states and the detailed parameters such as positions, distances and angles of both the 

robot and the participant were also recorded by the robot system every 100 ms. 

3.3.4. MEASUREMENT 
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3.3.4.1. SYSTEM EVALUATION 

First, we confirmed the recognition accuracy of the participation state of our 

system for both the robot and the visitor using the recorded experimental data. The 

system recorded all of the participation states of both the robot and the visitors in each 

trial. Thus, the joint participation states were also recorded. To confirm whether the 

recognition of the joint participation state was correct, two coders classified the joint 

participation states into the four state variables explained in Section 3.2.3 for all of the 

trials. The two coders that analyzed the data are two people who have no knowledge 

about robotics and HRI, but not the same people who coded the data collection (human 

observation experiment in Section 3.1) results. And they did not know about the purpose 

of the data and the model proposed in our research. We then compared the coding and 

system recognition results. 

Second, we confirmed the appropriateness of the robot’s initiating behavior. 

Based on the joint participation state, the robot moved and spoke first to the visitor in 

each trial. Since the robot spoke first, its visitor quickly realized that the robot wanted to 

talk to him/her and thus listened to the robot. Here, it is important to determine whether 

the robot spoke first at the proper position and timing. 

We asked the two coders who classified all 75 trials whether the robot spoke first 

to the visitor at the proper position and timing. For each trial, they classified the position 

and timing at which the robot first spoke into two cases: proper and improper. 

Third, we evaluated whether maintaining of the participation state was achieved. 

As discussed above, after starting the conversation, the robot should continue it until the 

end of its presentation. However, sometimes the visitor moved to another place, 

disrupting the conversation. For example, the robot showed the visitor the product 

(Figure 3.14-a in joint participation state PSJ = (1, 1)), but then the visitor moved toward 

the target product and disrupted the conversation (Figure 3.14-b, PSJ = (0, 0)). In this 
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case, the robot must reposition itself to adjust the spatial formation (Figure 3.14-c) so that 

both are participating in the conversation again (Figure 3.14-d, PSJ = (1, 1)). 

    
(a)              (b)              (c)                    (d) 

Figure 3.14 Discontinuing and re-establishing the conversation 

We used the coding results for the participation state to determine whether the 

conversation was discontinued in each trial. The coders again classified whether the 

conversation was disrupted by the robot or the visitor. We also calculated how long it 

took for the robot to re-establish the conversation with its visitor. 

3.3.4.2. USER EVALUATION 

The user evaluations included both subjective and objective assessments. 

 Subjective evaluation 

Participants completed a questionnaire for each condition after five interactions 
on a simple Likert scale of 1 to 7 that higher ratings are considered to be better. The 
questionnaire had the following items: appropriateness of the standing position when the 
robot greeted the visitor, appropriateness of the standing position when the robot 
explained the target product, and overall evaluation. 

 Objective evaluation 

In addition to the questionnaire, we focused on the following timings: (1) How 
much time does the robot take to initiate the conversation with the visitor? (2) After 
greeting, how much time does the robot take to prepare to explain the product? (3) How 
much time does the robot take to complete the entire scenario? The system recorded the 
time from the beginning to the first utterance, which is the time from the beginning of the 
experiment (the time of starting the robot system) to the time when the robot says the first 
word to the participant, the time from the end of the greeting to the explanations, which is 
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the time from the end of the greeting utterance to the start of the explanation utterance, 
and the total time, which is the time cost in a whole trial. 

3.3.5. RESULT OF SYSTEM EVALUATION 

3.3.5.1. RECOGNITION ACCURACY OF PARTICIPATION STATE 

Cohen’s Kappa coefficient from the two coders’ classification was 0.83, 

indicating highly consistent classification results. After the classification, to analyze the 

consistent trajectories for modeling, the two coders discussed and reached a consensus on 

their classification results for the entire coding process. Then we compared their coding 

results with the system recognition results. We compared the recognition result of the 

system and the coding result of the coders and recorded the time of the two result 

matches as Tright. Accordingly, we define the rate of system accuracy as 

/right entireRecognitionAccuracy T T                               (9) 

The system’s recognition accuracy of the joint participation state was 90.2% of 

the coder’s coding results, proving that with our system, the robot can accurately 

recognize its relationship with its visitor. 

We analyzed the 10% difference and found that the system correctly recognized 

the changes in the participation state; the only difference was the timing of the changes 

(Figure 3.15). In the two results, the changing of the joint participation state was the 

same, e.g., from (0, 0) to (1, 1). As the joint participation state changes, the timings of 

the changes in the two results were sometimes different. We calculated the difference in 

the time from its occurrence to its end, and the average was 1.210 +/- 0.399 sec (range 

from 0.067 to1.747 sec). 
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Figure 3.15    Difference between coding and system recognition result 

3.3.5.2. APPROPRIATENESS OF ROBOT’S INITIATING BEHAVIOR 

Cohen’s Kappa coefficient from the two coders’ classification was 0.91, 

indicating that their classification results were highly consistent. After the classification, 

the two coders discussed and reached a consensus on their classification results. Their 

coding result shows that in 69 trials (92.1%), the robot behaved appropriately. 

 
(a) From non-front   (b) moment of both participating  (c)  greeting the visitor 

Figure 3.16 Inappropriate cases of robot’s initiating behavior 

In the six trials in which they thought the robot failed to behave appropriately, the 

robot first approached from the non-frontal direction (Figure 3.16-a). As the robot came 

nearer, the visitor suddenly turned around and passed and ignored it (unnoticed). There 

was a moment during which both the robot and the visitor were in each other’s frontal 

zone (Figure 3.16-b). However, since the visitor moved very quickly, there was a system 
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delay before the robot spoke. When the robot finally greeted the visitor, it was a little too 

late (Figure 3.16-c). 

3.3.5.3. MAINTAINING THE PARTICIPATION STATE 

The classification results of the two coders for the participation state showed that 

in 62 of 75 trials the conversation was disrupted, i.e., the joint participation state PSJ 

changed from (1, 1) to (0, 0). The coders also classified whether the conversation was 

disrupted by the robot or by the visitor. The coding results of the two coders were 

identical, showing that in all 62 trials, the visitor moved and interrupted the conversation. 

When its visitor moves, the robot should follow him/her to readjust the spatial 

formation and thus re-establish the conversation as soon as the visitor stops. We 

calculated the time from when the visitor stopped to when both the robot and the visitor 

began to participate in the conversation again. The average of this re-establishing time 

was 4.613 +/- 1.267 sec (range from 1.500 to 9.800 sec). 

3.3.6. RESULT OF USER EVALUATION 

We used a Shapiro-Wilk test to preliminary analyze the experiment data, and 

confirmed that each set of data is normally distributed (p >.05 in all the data sets) before 

conducting further analysis. 

3.3.6.1. VERIFICATION OF PREDICTION 1 

Our first prediction was that the proposed model for initiating conversation will 

outperform the alternative methods in the following areas: feeling of appropriateness of 

the standing position when the robot greets the visitor, appropriateness of the standing 

position when the robot explains the target product, and overall evaluation. 

For the “overall evaluation” score (Figure 3.17), we conducted a repeated 

measures ANOVA and found a significant main effect (F(2,28)=9.125, p=.001, partial η2 
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= .395). A multiple-comparison by the Bonferroni method revealed that the score for the 

proposed condition was significantly higher than that for both the guide (p=.021) and 

best-location (p=.002) conditions. No significant difference was found between the guide 

and best-location conditions (p=.5). Therefore, our first prediction was supported. 

 
Figure 3.17 Overall evaluation 

   
Figure 3.18 Appropriateness of              Figure 3.19 Appropriateness of 

   standing position when it greeted       standing position when it explained 

For “appropriateness of standing position when it greeted” (Figure 3.18), a 

repeated measures analysis of variance revealed a significant main effect (F(2,28)=4.697, 

p=.017, partial η2=.251), but a multiple-comparison by the Bonferroni method showed 

only non-significant differences (proposed vs. guide: p=.706, proposed vs. best-location: 

p=.058, and guide vs. best-location: p=.199). 

For “appropriateness of standing position when it explains the target product” 

(Figure 3.19), a repeated measures analysis of variance revealed a significant main effect 

(F(2,28)=9.126, p=.001, partial η2=.395). The Bonferroni method showed a significant 

difference between the proposed and best-location methods (p=.003), but other 
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comparisons were not significant (proposed vs. guide: p=.209 and guide vs. best-

location: p=.111). 

3.3.6.2. VERIFICATION OF PREDICTION 2 

Our second prediction was that our proposed model of initiating conversation will 

decrease the time from the beginning to the first utterance (Tinitiate) compared to the 

alternative methods. 

 
Figure 3.20 Average of Tinitiate            Figure 3.21 Average of Tprepare 

 
Figure 3.22 Average of Tentire 

For our second prediction (Figure 3.20), Tinitiate averaged 6.333 sec in the 

proposed condition, 8.037 sec in the guide condition, and 15.363 sec in the best-location 

condition. We conducted a repeated measures ANOVA and found a significant main 

effect (F(2,148)=108.252, p<0.001, partial η2 = .594). A multiple-comparison by the 
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Bonferroni method revealed that the Tinitiate of the proposed condition was significantly 

less than that of both the guide (p<.001) and best-location (p<.001) conditions and that it 

was significantly less for the guide condition than for the best-location condition 

(p=.021). Thus, our second prediction was supported. 

3.3.6.3. VERIFICATION OF PREDICTION 3 

Our third prediction was that the proposed model of initiating conversation will 

decrease the time from the end of greetings to explanations (Tprepare) compared to the 

alternative methods. 

For our third prediction (Figure 3.21), Tprepare averaged 18.345 sec in the proposed 

condition, 23.209 sec in the guide condition, and 14.568 sec in the best-location condition. 

We conducted a repeated measures ANOVA and found a significant main effect 

(F(2,148)=38.160, p<0.001, partial η2 = .340). A multiple-comparison by the Bonferroni 

method revealed that the Tinitiate levels of both the proposed and best-location conditions 

were significantly less than that of the guide (p<.001) condition and that it was 

significantly less for the best-location condition than for the proposed condition (p=.001). 

Thus, our third prediction was partially supported. 

3.3.6.4. VERIFICATION OF PREDICTION 4 

Our fourth prediction was that the proposed model for initiating conversation will 

decrease the total time (Tentire) compared to the alternative methods. 

For our fourth prediction (Figure 3.22), Tentire averaged 56.459 sec in the proposed 

condition, 62.747 sec in the guide condition, and 61.431 sec in the best-location condition. 

We conducted a repeated measures ANOVA and found a significant main effect 

(F(2,148)=22.464, p<0.001, partial η2 = .233). A multiple-comparison by the Bonferroni 

method revealed that the Tentire of the proposed condition was significantly less than both 

the guide (p<.001) and best-location (p<.001) conditions. But the comparison between 
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guide and best-location was not significant (p=.708). Thus, our fourth prediction was 

supported. 

3.3.6.5. SUMMARY 

In summary, our proposed system was evaluated as the best method overall 

among those compared. Its effect in the overall evaluation can partially be explained by 

the difference between the proposed and best-location conditions in the appropriateness 

of the standing position when the robot explained the target product. However, this does 

not account for the difference between the proposed and guide conditions. And for the 

appropriateness of the standing position when the robot greeted the participant, only an 

almost significant result (p=.058) between the proposed and best-location conditions 

could be found. The results for Tinitiate, Tprepare, and Tentire show that with the 

proposed system, a robot can initiate conversation much more quickly than in the other 

two conditions and that, moreover, the guide condition outperforms the best-location 

condition. In addition, using the proposed system the robot completed the interaction 

with the visitor much more quickly than with the other two methods. This may also 

partially explain the results of the overall evaluation. We consider that prompt reaction 

behaviors from the robot, depending on the participation state, have a strong positive 

impact on an interaction. 

Thus, our proposed model was evaluated as the best approach. 
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3.4. DISCUSSION 

3.4.1. WHEN WILL THIS CAPABILITY BE USED? 

We believe that the capability of a robot to naturally initiate conversation is a 

major function to be implemented in future social robots. Although many other research 

projects have assumed that people and robots have already met and started interaction, 

this is generally not the case in the real world. Perhaps at an early deployment phase 

robots might not need to initiate interaction by themselves, since people would be 

interested in their novelty and approach them. In such cases, robots do not need to deal 

with the constraints of spatial configuration in order to initiate interaction. 

However, when robots actually do start to work in the real world without 

attracting so much attention, people will often not initiate interaction by themselves. In 

such cases, robots will often fail to initiate interaction 35]. This problem will be more 

serious when the robot has a concrete role, e.g., shopkeeper. The shopkeeper scenario 

used in this study is one future situation where a robot is expected to play such a role. 

There are many other situations that involve a first meeting, such as a tour guide in a 

museum, a shopping assistant, and nursing care in a hospital, all of which have been 

considered applications of social robots in past research. 

In our observations, we have found that the front and sight zones were stable in 

different environments and situations. That means it is possible to use these models for 

social robots working in many situations, as mentioned above. As for the gaze zone, 

although its parameters are dependent on the environment, we can also easily use it by 

first identifying the proper parameters for each situation. 

3.4.2. LIMITATIONS 
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First, in our experiment, there was only one visitor in the shop, while in a real 

shop there might be multiple customers at any given time. A greater number of people in 

the environment would create several difficulties, such as obstacles for a moving robot, 

determining the target visitor among several people, and interruptions by other visitor 

when the robot is approaching the target visitor. In this paper, we did not provide models 

to solve this problem. This is certainly a limitation of our model. However, it would be 

possible to extend our model by adding several functions provided by other researchers. 

For example, when a person becomes an obstacle for the robot that is approaching a 

target visitor, the robot would be able to avoid the person by simply using a path-

planning or collision-avoidance mechanism. In such a situation, the robot might need to 

keep a distance from other persons as it talks to the target visitor. Overcoming such 

limitations would be necessary before adapting our system to more crowded situations. 

As for decision making, we need to create a high-layer controller to find the appropriate 

target among people. This is out of this research’s scope, but some past research works 

such as estimating visitors’ state would be useful for this kind of mechanism. How to deal 

with an interruption by other visitors would depend on the robot’s applications; if the 

robot is working as a shop employee, it would be better to change the target to the person 

and immediately start conversation. If the robot is working in a special service such as 

welcoming a VIP, the robot should not change the target. Actually, in the meeting 

scenario, when the host started approaching the visitor, staff members of the research 

institute sometimes walked through the lobby and passed by. As future work, by further 

analyzing these data or conducting additional experiments, we could create such a high-

layer controller to help the robot make decisions when multiple people are in the situation. 

Second, the decoration of our shop is very simple and there were only three 
products arranged separately. Such situations are commonly found in the real world. For 
example, when a robot works as a staff member in a gallery to explain individual 
artworks hanging on the wall to the visitors, our model can help the robot to recognize the 
focus of the visitor’s attention correctly. On the other hand, there are certainly many 
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environments in which several objects exist within the view of a single visitor 
simultaneously. For example, in a real shop, the goods might be placed more compactly, 
e.g., four laptop PCs on the same desk or dozens of displays hanging on the wall close to 
each other. In this case, there might be multiple products in a person’s transactional 
segment simultaneously, making the detection of the person’s focus of attention more 
complicated. We believe it is not always necessary for the robot to recognize the one 
specific object the visitor is looking at; recognizing the aggregation that the visitor is 
paying attention to is enough for the robot to provide basic service. Actually, in our daily 
life, in many cases it is not necessary for the clerk to know the customer’s focus of 
attention at such a precise level. Based on our model, the use of gaze detection would 
help the robot to further improve the recognition accuracy of the visitor’s focus of 
attention. Even if stable gaze detection is still difficult, such a function enables the robot 
to limit the candidates of objects to which the person pays attention. For example, with 
such a function the robot might be able to recognize whether the visitor is paying 
attention to the apples or oranges, and this could help the robot to provide services more 
appropriately. 

Third, since our proposed model was tested in a specific scenario, its 
generalizability is limited. Perhaps the context affects the preferences for a robot’s 
behavior. For example, in a busy business scenario, the always starting interaction at the 
best location to explain condition might work better than the proposed model. We believe 
that our shopkeeper scenario is rather neutral, so it probably reflects interaction in many 
daily scenarios, but this needs verification.  

As we mentioned in the paper, the parameters in our model dealt with Japanese 

people and our own robots. But when they are adapted, adaptation parameters must be 

considered. For instance, factors such as cultures, type of robots and environment would 

influence parameters. 

One may need to adjust the parameters when using robot for people from other 

cultures. For example, when the model is to be used in the countries such as The 

Netherlands and Denmark, the average height of people is much taller than Japan. John et 

al., suggested that height is a significant determinant of personal space [82], thus we 

consider that distance parameters retrieved from our study might need to be adjusted 
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when using to interact with people of significant different height to make sure the 

interlocutors feel comfortable. 

We only evaluated the model with our own humanoid robot, while others may use 

other type robots to interact with people. Different appearance could influence people’ 

feeling and attitudes towards the robots [83, 84]. It is proper to imagine that a robot 

which has a lovely appearance of a famous cartoon character such as Mickey Mouse 

might easily attract many people to interact with it with joy. While a robot with a horrible 

appearance might sometimes frighten some people or make them feel uncomfortable. We 

suppose that these different feelings and attitudes caused by the different appearance of 

robots might also influence some parameters of the model. For example, we expect that it 

might be better to set the talking distance parameter for a horrible robot bigger than that 

for a lovely robot, but more evidences are required when one consider adjusting 

parameters. 

The environment might also have influence on the parameters that used in the 

models. For example, when using the models in environments that everyone need to keep 

quiet, such as in a museum, library or a gallery, even there are not many people around, 

apparently it is not proper for the robot to greet a person from a long distance. It would 

also be better to reduce the distances in the models so that the robot could greet and then 

talk to other people in a low voice. 
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4. INITIATION OF MOTION 
INTERACTION:  
DISTRIBUTIONAL HANDING  

4.1. MODELING DISTRIBUTION BEHAVIOR 

In many countries, clerks from shops or companies distribute flyers, coupons, or 

pamphlets in shopping malls, museums, or on outdoor streets. The giver initiate 

interaction with passersby with his/her handing motion. We modeled the distributing 

behavior based on our observations of the handing behavior of people who distribute 

flyers in real environments. 

People distribute things in various ways. For instance, some passively wait for 

pedestrians to take a flyer, and others actively approach pedestrians and offer them flyers. 

These different behaviors might have different effects on persuading pedestrians to accept 

the objects. In fact, we found that the success rate of the givers’ handing performance 

widely diverged between 12.5% and 77.5%. Our main goal is to identify effective 

distributing behavior. 
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4.1.1. DATA COLLECTION 

We collected scenes of flyer-distributing behaviors (a person offers flyers to 

pedestrians) by observations in a shopping mall in Osaka, Japan. The area includes a 3-6 

m wide corridor that is approximately 70 m long with four shops nearby and one big hall 

about 300 m2 that connects to a corridor that links the hall to a busy train station. 

We collected video and position data of all the people in the area (video data for 
our observation and position data for calculating the detailed parameters). Both the 
corridor and the hall were covered with our people-tracking infrastructure using 49 3D-
range sensors attached to the ceiling (a combination of Panasonic D-Imager, ASUS Xtion, 
and Velodyne HDL-32E) to estimate pedestrian locations every 33 ms [85].  

Among the data collected over one year [86], we analyzed the pedestrian data 

from 10 am to 8 pm on six Sundays. We manually searched for scenes where givers 

distributed flyers to pedestrians. We identified ten givers who distributed more than 40 

times and analyzed the first 40 distribution behaviors of each giver. 

4.1.2. ANALYSIS OF DISTRIBUTIONAL BEHAVIOR 

4.1.2.1. HOW DID THESE GIVERS APPROACH THEIR TARGETS AND HAND OVER THEIR 

ITEMS 

To determine an effective distributional handing method, we analyzed and 
evaluated the different methods exhibited by the givers. We categorized their behaviors 
with a focus on three behavioral elements: gaze, approach, and arm motions. All the 
givers’ gaze behaviors were similar. When a pedestrian was chosen as the handing target, 
the givers kept gazing at the pedestrian to maintain eye contact until the handing was 
finished. 

On the other hand, we found differences in the approach and arm motions. We 
categorized the distributional handing of the givers into the following four patterns:  
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(a)                 (b)                  (c) 

(1) Extend arm first and wait for pedestrian 

 
(a)                 (b)                  (c) 

(2) Wait for pedestrian and extend arm nearby 

 
(a)                 (b)                  (c) 

(3) Extend arm first and approach pedestrian 

 
         (a)                 (b)                  (c) 

(4) Approach pedestrian and extend arm nearby 

Figure 4.1 Four types of distributional handing behaviors 

 Extend arm first and wait for pedestrians: The giver stayed at a certain 
place to wait for the arrival of pedestrians. She noticed a pedestrian, gazed at him 
(Figure 4.1-a), and then began to extend her arm to hand him a flyer (Figure 4.1-1-
b). When she fully extended her arm and completed the handing motion, the 
pedestrian remained slightly away from her (Figure 4.1-1-c).  

Pedestrian

Giver

Pedestrian

Giver

Pedestrian

Giver

Pedestrian

Giver
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 Wait for pedestrian and extend arm nearby: The giver waited for the 
pedestrians to arrive while continuing to hold the flyer at waist-height (Figure 4.1-
2-a). She did not start to extend her arm until the pedestrian came close (Figure 
4.1-2-b). When she completed her arm-extending motion, the distance between the 
giver and the pedestrian was acceptable for the pedestrian to take the flyer (Figure 
4.1-2-c). 

 Extend arm first and approach pedestrian: The giver waited for 
pedestrians and noticed a pair of them (Figure 4.1-3-a). After choosing the 
pedestrian in black as her handing target, she extended her hand that held the flyer 
and approached the pedestrian (Figure 4.1-3-b). Instead of just moving to the side 
of the pedestrian and waiting, she kept approaching the pedestrian. The giver did 
not stop walking until she reached a place at which the pedestrian could easily 
accept the flyer. 

 Approach pedestrian and extend arm nearby: The giver noticed a 
pedestrian approaching from the right side and moved toward him (Figure 4.1-4-a). 
As the distance between the pedestrian and the giver shrunk, the giver started to 
extend her arm to distribute the flyer while simultaneously approaching him 
(Figure 4.1-4-b). Finally, the giver simultaneously stopped near the pedestrian and 
completed her arm-extending motion. 

Based on our observations, two coders who were not informed about our research 
hypothesis analyzed the collected data and separately classified all 400 handing trials from 
the ten givers. Cohen’s kappa coefficient from the two coder’s classifications was 0.873, 
indicating that their evaluations were highly consistent. They discussed disagreements to 
reach a consensus about their classification results. 
Table 4.1 Successful ratios based on behavior type 

Behavior type Successful ratio 

Extend arm first and wait for pedestrian 21.2% (21/99) 

Wait for pedestrian and extend arm nearby 33.0% (58/176) 

Extend arm first and approach pedestrian 25.0%  (5/20) 

Approach pedestrian and extend arm nearby 72.4% (76/105) 

Total 40.0% (160/400) 
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The coding result is shown in Table 4.1. The distribution style largely influences 
the successful ratios. The givers achieved the highest successful ratio when they 
distributed in the approach pedestrian and extend arm nearby type (72.4%). Therefore, 
we modeled close approach and handing behaviors for distributional handing. 

4.1.2.2. DETAILED MODELING OF DISTRIBUTIONAL HANDING 

To create approach pedestrian and extend arm nearby behavior, we further 

analyzed the details of each behavior and the timing.  

 
(a)                  (b)                 (c)               (d) 

Figure 4.2 Details of behaviors and timing 

Timing: Figure 4.2 shows a typical example of the timing of the gaze, 
approaching, and arm behaviors. As the giver looked around her environment, she started 
gazing when she chose a distribution target, then she started approaching, and finally she 
started an arm behavior when she got closer to the pedestrian. The most important 
constraint on the timing is that the giver completed her arm behavior (hereinafter tarmReady) 
just as she completed the approaching behavior (tapproachReady) (max error = 0.7s): 

.                    (1) 

Thus, we can compute the timing of arm behavior tarmStart to satisfy this constraint 
after establishing an approach plan. 

Approaching: We analyzed the detailed trajectories of the approaching behaviors 
of the givers. When offering objects, givers typically keep approaching pedestrians until 
they are close to the giver’s front right/left side. In 12 out of 105 trials where the 

tgazestart

0s 0.8s 1.7s 2.3s
tapproachstart tarmstart tarmready / 

tapproachready
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pedestrian directly approached the giver’s initial position, the giver avoided the 
pedestrian’s route and approached the pedestrian from the side (Figure 4.3). Overall, we 
can model a situation where a giver approaches pedestrians from the front left/right side 
but not directly from the front (Figure 4.1-4). As shown in Figure 4.4, we denote the giver 
position and the pedestrian when the giver stopped approaching (i.e., t=tapproachReady) as 
Gready and Pready. We decomposed the distance between Pready and Gready into frontal 
(element of distance in the direction of the pedestrian’s motion) and horizontal (direction 
orthogonal to the pedestrian’s motion). The location of Gready can be computed using two 
parameters, Dfrontal and Dhorizontal. To identify precise parameters, we conducted further 
analysis. Three givers performed distributional handing in our lab. They performed the 
approach pedestrian and extend arm nearby method. We collected the data with a motion 
capture system that tracks the position data in 100 Hz with error less than 2 mm. From the 
data, we computed Dhorizontal to be 0.7 m and Dfrontal to be 1.3 m and used these values for 
our system.  

 

Figure 4.3 Avoid and handing 

 
Figure 4.4 Candidates of Gready at future moment t1 

Giver

Pedestrian
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Arm: We further analyzed the data collected with a motion capture system. In the 
collected data, the givers typically held the flyer at their waist-height from the beginning 
to tarmStart. As she got closer to the pedestrian, she started to extend her arm at about the 
same height as the pedestrian’s waist-height (defined as h, illustrated on the right in Figure 
4.2-d). We found that the height of the giver’s hand was adjusted based on the pedestrian’s 
height (defined as H) so that a pedestrian can easily take the flyer. We set k as the ratio of 
the height of the giver’s hand to the pedestrian’s height and formulated the following 
constraint for the hand’s height:  

.                                (2) 

For our system, we used the average of k, which was 0.632 and ranged from 0.617 

to 0.676. 

4.1.3. INFLUENCE FROM PREVIOUS PEDESTRIANS 

 
(a)                     (b)                          (c) 

Figure 4.5 Continuous handing scene: after pedestrian A accepted a flyer, subsequent pedestrians B 

and C also took flyers. 
We noticed that whether a pedestrian takes a flyer is influenced by the behavior of 

the previous pedestrians. That is, pedestrians tended to accept flyers if those who 

preceded them also took flyers. Figure 4.5 shows one such scene where pedestrians 

continuously accepted flyers from the giver. We scrutinized this phenomenon and 

categorized the giver’s handing into two categories based on whether the handing trial is 

related to the other handing trials: 

 Individual: Before the giver handed the flyer to the pedestrian, he had not 
noticed that the giver was handing out flyers to other pedestrians.  

Pedestrian B

Pedestrian C

Pedestrian A

Pedestrian C

Pedestrian B

Pedestrian C
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 Former one not accepted: Before the giver handed the flyer to the 
pedestrian, he had already noticed that the former pedestrian refused it from the 
giver.  

 Continuous (former one accepted): Before the giver handed the flyer to the 
pedestrian, he had already noticed that the previous pedestrian accepted it from the 
giver. 

Two coders analyzed the collected data and classified all the 400 handing trials 
analyzed in Section 3.1.2. Cohen’s kappa coefficient from their classifications was 0.914, 
indicating that their evaluations were highly consistent. They discussed disagreements to 
reach a consensus in their classification results. 
Table 4.2 Influence from previous pedestrians 

Previous influence Successful ratio 
Individual 35.5% (55/155) 

Former one not accepted 31.6% (42/133) 
Continuous (former one accepted) 56.3% (63/112) 

All 40.0% (160/400) 

The result is shown in Table 4.2. The successful handing ratio was 35.5% (55/155) 
for individual, 31.6% (42/133) for former one not accepted and 56.3% (63/112) for the 
continuous type. A Chi-square test revealed that the successful ratio of continuous 
handing was significantly higher than that for both individual ( 2 (1) = 10.542, p<.01, 
φ=0.198) and former one not accepted ( 2 (1) = 14.120, p<.01, φ=0.239). This means that 
if a previous pedestrian took a flyer, the next pedestrian is also more likely to accept a 
flyer. 

Since there were no significant differences between individual and former one not 
accepted ( 2 (1) = 0.329, p=.566, φ=0.060), for simplicity, we treated these two as a 
single category: independent distributing. This means that regardless whether a target 
pedestrian saw that a previous pedestrian declined or just did not see anyone, a pedestrian 
would behave roughly the same. 

In summary, this analysis informs our planning framework based on the following: 

 When handing is successful to previous pedestrians, we anticipate a higher 
success rate among subsequent pedestrians. 
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 The robot should plan to continuously distribute to a series of pedestrians. 
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4.2. SYSTEM 

4.2.1. ARCHITECTURE 

Based on our analysis in Section 4.1, we learned the following: 1) our robot must 

try to continuously distribute to a series of pedestrians, and 2) it must approach them 

from the front and only extend its arm near the target pedestrian. Our system is designed 

to satisfy these requirements. 

 
Figure 4.6 System overview 

Figure 4.6 illustrates our software architecture. The main module is the planner in 

which the system plans paths for approaching pedestrians based on the above 

requirements. This planning is enabled by the information provided from the people-

tracking and localization modules. The flyer manager controls the robot and prints flyers 

to be held in its hands. 

Once a target is selected, precise timings are controlled by the behavior controller 

module  that manages the locomotion and motion of the arms and the head direction of 

the robot. We explain these modules below. 

4.2.2. HARDWARE AND BASIC INFRASTRUCTURES 

4.2.2.1. ROBOT 
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We used a human-like robot, Robovie [87] (Figure 4.7), which is 1.2 m tall with a 

0.3 m radius and is characterized by its human-like body expressions. It has a 3-DOF 

head and 4-DOF arms with 2-DOF hands. Its locomotion platform is a wheeled Pioneer3 

DX. Two 30-m range laser sensors (Hokuyo UTM-30LX) were attached and used for 

localization and safety stop. It moved at a velocity of 500 mm/sec (1.8 km/h) forward and 

45 degree/sec for rotations. Its forward and rotation accelerations are 400 mm/sec and 30 

degree/sec, respectively. 

 
Figure 4.7 Robot picked up flyer from mobile printer 

4.2.2.2. HAND AND FLYER MANAGER 

The robot can hold a flyer in each of its hands. The flyer-manager module 

executes print commands and the robot picks up the flyer with its left hand and passes it 

to its right hand for distribution. 

For use in later explanations, we define the state of the flyer at the printer (FSP), 

the left hand (FSL), and the right hand (FSR). Each variable is 1 if a flyer is there, and 0 if 

not. We set the robot so that it is always distributing flyers with its right hand, and thus 

the robot is ready for distributing when FSR = 1; otherwise, it waits for the flyer to be 

prepared. 

Figure 4.8 shows the framework of the flyer manager. The flyer is sent from the 

printer to the left hand and then to the right hand. Figure 4.7 shows an example of the 
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robot’s motion. When the printer has finished printing a flyer and the robot’s left hand is 

empty (FSP = 1, FSL = 0), the flyer manager controls the robot to take the flyer from the 

printer (FSL=1 and FSP=0). Then the printer prints another flyer, which the robot passes 

its right hand (FSR = 1, FSL = 0) so that it is ready for handing. The robot picks up the 

flyer from the printer when the printer has finished printing it (FSP = 1). 

 
Figure 4.8 Flyer manager 

4.2.2.3. LOCALIZATION AND PEOPLE-TRACKING 

For robot localization, we used a particle filter with a ray-tracing approach on a 

grid map, which was built from odometry and laser scanner data. This module is called 

every 30 msec and updates the robot’s position within 10-cm accuracy. People-tracking 

was done with its on-board laser range sensors, but to cover a large area, we used the 

people-tracking infrastructure explained in Section 4.1.1. 

4.2.3. PLANNER 

4.2.3.1. BASIC FRAMEWORK 

Figure 4.9 illustrates the framework of our planner. When a flyer is ready (FSR=1), 

the robot plans an approach to distribute flyers to each pedestrian in the area by 
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calculating whether pedestrian i (pi) is accessible from its current position c. Hereinafter, 

we refer to a plan to approach pi from location c as c pi. Then for each plan, the system 

evaluated utility U(c pi). 

 
Figure 4.9 Processing in planner 

The system also plans for the near future by estimating whether it is possible to 

continuously access the next pedestrian after the first pedestrian. It calculates whether 

pedestrian j is accessible from the location at which it gave a flyer to pedestrian i. This 

plan is referred to as pi pj. Finally, for each plan, the system evaluates utility U(c pi

pj), compares the utility with a threshold to eliminate unfeasible plans, and finally 

executes the plan with the highest utility. 

If not all the pedestrians are accessible to the robot (or the utility of each plan fails 

to reach the threshold) or a flyer is not ready (FSR=0), the robot transits to the wait mode 

and moves to a suitable location to wait, which is computed based on a waiting location 

map. 
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This module calculates the utility for each plan c pi by considering two factors: 

(1) the expected gain from distribution (E(c pi)), and (2) the disturbance of other 

pedestrians (D(c pi)). We define the utility of plan c pi as: 
           (3) 

where E(c pi,tpred) represents the expected utility of the distribution when the 

robot distributes a flyer after tpred seconds, D(c pi,tpred) represents the disturbance of 

other pedestrians around robot r after tpred seconds, and k1 is a coefficient parameter 

between two utilities, which was empirically set to 10.5. We set tmax as 15.0 sec for 

computational economy. 

Below are the three computation steps for these utilities. The expected utility of 

the distribution is computed by considering two factors: time margin and continuous 

handing. 

Step 1: Estimation of time margin ( ) 

For each pedestrian , it tests whether future moment tpred, at which pedestrian 

 will be at expected position EPi(tpred) is a good position for distributing. In other 

words, it tests whether there is a distributing position of robot Gready that is suitable for 

pedestrian’s position Pready (= EPi(tpred)), given the robot’s current position Gcurrent (=c). It 

computes the time required to move from c to Gready with the path shown in Figure 4.10. 

 

Figure 4.10 Planning a path to distribute to target pedestrian  at EPi(tpred) at future moment of tpred. 

To do so, robot plans to move to Gready by WayPoint. 
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As a simple implementation, EPi(tpred) is estimated by a linear interpolation with 

the past speed information of pedestrian i (Figure 4.4): 

.                (4) 

Gready, which corresponds to EPi(tpred), is calculated accordingly, and next we 

compute  as the time the robot takes from current location  to reach Gready by 

WayPoint, which is a position on the line from Gready to EPi(tpred) 1 m from Gready (Figure  

11). WayPoint is prepared to let the robot approach from the front of the target person. In 

this computation, to consider the robot’s acceleration capability, we simulated its 

movements in small time steps of 0.1 sec and updated the velocity with the acceleration 

and angular acceleration capability. 

As reported in Section 4.1.2, a productive giver does not stop to wait for the 

pedestrian, but keeps walking until she meets her pedestrian target. Thus, we evaluated a 

plan based on the timing when the robot meets a target pedestrian. Perhaps the best 

timing is when the giver reaches distributing position Gready when the pedestrian reaches 

EPi(tpred); i.e.,  equals . 

 
Figure 4.11 Calculation of Utiming 

However, predictions are not always accurate. For instance, since people do not 

necessarily walk as predicted, it is better to choose a plan with a small margin time so 

that a robot can catch up from unexpected aspects in the prediction. Thus, we used the 

function shown in Figure 4.11 and designed a utility function to let the robot reach Gready 

at tbest seconds earlier than the targeted person reached EPi(tpred), if possible: 

 (5) 

tbest

tbest

tlimit

Utility

Margin time



Model of Distributional handing for a Mobile Robot 
 

74 

where 

           (6) 

We empirically set tbest to 1.6 sec and tlimit to 5.0. 

We also tested whether the robot has enough time to extend its arm before 

arriving at Gready, based on the constraint in Section 4.1.2: 

 (7) 

where ArmTime estimates the moving time for each arm joint of the robot to reach 

the final position. The handing posture is calculated by the gesture controller, which is 

described below. If  returns false,  

returns negative infinity. 

Step 2: Expected utility of distribution ( ) 

 
Figure 4.12 Estimation of continuous distribution 

In addition, as we reported in Section 4.1.3, the successful ratio of distributing in 

continuous distributing is significantly higher than in independent distribution. Thus, we 

expect higher gain from continuous distribution. As shown in Figure 4.12, when a giver 

successfully distributed a flyer to pedestrian A, the system then evaluated the spatial 

formation between the giver and all the other pedestrians in the area to estimate whether 

they noticed the successful distribution. If pedestrian B seemed to notice that former 

pedestrian A accepted a flyer, distributing a flyer to pedestrian B is then considered a 

continuous distribution and is calculated below: 
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         (8) 

where PG is the position of the giver at which she successfully completed a 

distribution to pedestrian A and PP is the position of another pedestrian B. Ang(θPP,PG, θP) 

is a function that indicates the angle (in degrees) between the pedestrian B’s direction and 

the giver. θP is the pedestrian B’s walking direction. We used NoticeDist as the distance 

where the pedestrian noticed the former distribution and empirically set it to 5.0 m, based 

on our experiment environment. 

Overall, we defined the expected gain of a plan (c pi) as: 

 

  (9) 

 ,         (10) 

where  is a parameter that represents the expected gain from the continuous 

distributing and was set to 0.6 based on the result in Table 4.2. Certain(t) is a function 

that represents the decay over time. This represents the effect where the future estimates 

of disturbances are uncertain because the prediction accuracy of the future behavior of 

pedestrians decreases with time. As a result, distributing plans which the robot could 

access pedestrian faster would have higher priority. We empirically set Teffect to 40.0 sec. 

Step 3: Disturbance of other pedestrians ( ) 

 
(a)                             (b) 

Figure 4.13 Disturbing other pedestrian when handing 
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When there are multiple pedestrians in the area, a robot approaching one 

pedestrian might disturb other pedestrians. Figure 4.12 shows an example where 

pedestrians A and B are walking in the area, and both are accessible to the robot. Since 

approaching pedestrian A costs less estimatedTime than pedestrian B, if no disturbance is 

considered, the robot would choose pedestrian A as a distributional target (Figure 4.13-a). 

However, when the robot approaches, it disturbs pedestrian B’s walking (Figure 4.13-b). 

To solve this problem, we used a distance-based comfort model [88]. The idea behind 

this model is that it is more comfortable for pedestrians if the distances to nearby persons 

are larger. Based on this model, pedestrian j’s discomfort during c pi is defined as: 

        (11) 

where dist(r,j,t) is the distance between robot r and pedestrian j’ s body center at 

time moment t. a and b, which are the parameters for the distance-based comfort model, 

were imported from a previous work [88] to be 1017.76 and 1.180. Certain(t) is as the 

same as which in Eq. 10. 

Finally, the total discomfort of all the pedestrians except distributing target 

pedestrian i in the area is calculated as below: 

            (12) 

where S represents a set of pedestrians around robot r except target pedestrian i. 

With the above three steps, Eqs. 9 and 12 are derived from which utility U(c pi) 

of plan (c pi) can be calculated as defined in Eq. 3. 

b) Calculating utility of entire distributing plan 

After calculating a plan to approach pedestrian i (c pi), the planner then 

calculates whether the robot can conduct a follow-up distribution to another pedestrian j 

(pi pj). We can similarly calculate U(pi pj), the utility of plan pi pj from Eqs. 3-12 by 

replacing c by pi, which represents the robot’s location after approaching pedestrian i. 
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The utility of the entire distributing plan is calculated below: 

       (13) 

If plan pi pj does not exist, U(pi pj) returns 0. 

Finally, among all the candidates of distributing plans, the system chooses the 

candidate plan with the highest utility as the next distributing plan to be executed: 

                 (14) 

To prevent excessive switching of the target among multiple pedestrians (like 

oscillation), the target in the previous computation round is prioritized in the choice of 

target in the current round (the system doubled the utility). The plan is updated every 200 

msec. 

4.2.3.3. ALTERNATIVE: PLANNING TO WAIT 

This module provided a waiting location map, which is used by the robot to obtain 

its waiting position and orientation when there is no distributional target. A good waiting 

location is the place from which the robot can frequently approach many pedestrians, not 

simply the location where many pedestrians pass. 

 
Figure 4.14 Example of grid map of average person density, values are in person/m2 



Model of Distributional handing for a Mobile Robot 
 

78 

As we explained in Section 4.1.1, we collected pedestrian data in the area for a 

year. The data indicate that the density of the pedestrians changes over time; hence to 

reflect such temporal dynamics, we created grid maps of average person density for every 

30 minutes. In this research, we used the hallway to conduct a robot distributing 

experiment and created a grid map with a 50 x 50 cm cell that divided the area. Figure 

4.14 shows an example of the grid map of average person density, where the values are in 

person/m2. 

Next we created a map of candidates of waiting positions. The robot can move 

and approach pedestrians nearby from its waiting position. To incorporate this idea, we 

used the time needed by the robot to move from one grid to another. We also considered 

the robot’s orientation. For each grid, 12 orientation candidates were set every 30 degrees. 

We calculated the value of each pair of position Pw and orientation θW candidates as 

follows: 

             (15) 

where PGi is the position of grid i of the pedestrian density map, Vmove and Vrot are 

the moving and rotating speeds of the robot, and ValueGi is the value of the pedestrian 

density in grid i. We chose the Pw and θW pair that yields the highest value as the waiting 

position and the orientation. 

4.2.4. BEHAVIOR CONTROLLER 

After a plan is selected by the planner, the behavior controller navigates the robot 

and manages its gaze and arm motions. 

It controls the robot to reach the WayPoint first, and then it follows a line that 

connects EPi(tpred) and Gready (Figure 4.8). Each position is updated every 100 msec. To 

make the robot reach the Gready position at appropriate timing, we dynamically adjusted 
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its velocity and controlled the robot to move at high speed first; to adjust the arrival 

timing, it starts to decrease its speed when it gets close to Gready: 

         (16) 

where vmax is the robot’s maximum speed, RemainingDist is the summation of the 

distances from c to WayPoint and WayPoint to Gready, i.e., D1 + D2 in Figure  11, and 

RemainingTime is the remaining time to tarrive by considering the current time and the 

required time for rotating. 

When the pedestrian accepts the flyer from the robot, the sensor attached to the 

robot’s hand detects whether the flyer was taken and sets FSR = 0. Otherwise, the robot 

waits for the target pedestrian to take the flyer; i.e., it continues to orient itself toward the 

target until the pedestrian passes the robot. We define δ as the angle between the 

pedestrian’s moving direction and the vector from the position of the pedestrian to the 

robot.  When δ > = 90 degrees or the distance between robot and the target pedestrian 

exceeds 5 m, we consider the pedestrian to have passed the robot. 

The gaze behavior is started from the very beginning, as explained in Section 

4.1.2.1. The robot keeps directing its head direction toward the pedestrian until the 

distributing has finished. 

For the arm motion, the gesture controller generates a handing motion. As 

illustrated in Figure 4.6, the height of the robot’s hand was calculated using the target 

height information in Eq. 2. In addition, the robot said, “Please have a flyer” to the 

pedestrians at tarmstart time. 

4.2.5. EXAMPLE 

Figure 4.15 shows a successful handing scene with our developed system. Two 

pedestrians came from the left, and another was standing on the right side (Figure 4.15-a), 
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and two more were walking toward the hallway from the left (Figure 4.15-b). The robot 

calculated the utility of each candidate of the distributing plan and accessed the two 

pedestrians on the left because it anticipated a chance for a continuous handing. The robot 

chose one of the two nearby pedestrians to avoid disturbing the other pedestrians. It gave 

a flyer to the woman who took it, and at that moment, other pedestrians noticed that she 

had taken it (Figure 4.15-b). Then two more pedestrians (one in a white coat and another 

in red) approached the robot (Figure 4.15-c). Because the plan to hand a flyer to the 

pedestrian in white had the highest utility, the robot gave her a flyer, and she took it 

(Figure 4.15-d). The pedestrian in red came close to the robot, too. The robot gave a flyer 

to her, which she accepted (Figure 4.15-d). 

(a)               (b)               (c)             (d)              (e) 

Figure 4.15 Example of distributional handing robot 
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4.3. EVALUATION OF OUR DISTRIBUTIONAL HANDING 
METHOD 

We evaluated our distributional handing model in a field trial and compared our 

proposed method with a simple alternative method. Our evaluation criteria are the 

number of flyers successfully distributed by the robot. We also compared the developed 

robot with human givers to provide insight about the extent to which the robot’s 

performance with these two models compares to the human performance. 

4.3.1. HYPOTHESIS AND PREDICTION 

We compared our proposed model with an alternative method to evaluate its 

effectiveness. Since no commonly available method exists for distributional handing, we 

implemented a very simple wait-and-handing method. The robot stopped at its waiting 

position and handed flyers to pedestrians who passed nearby. This is the wait for 

pedestrian and extend arm nearby method explained in Section 4.1.2. Since we know that 

our approach pedestrian and extend arm nearby method outperformed the human givers, 

if it is implemented appropriately, it will probably also outperform this simple method. 

If our proposed model is designed properly, we expect that the robot using it will 

perform more efficiently than the wait-and-handing method robot. First, since the robot 

with our proposed model can move around the environment and approach pedestrians, if 

target pedestrians are appropriately chosen, it should access more pedestrians than the 

robot that stopped and waited at a certain place. Accordingly, we made the following 

prediction: 

Prediction 1 (access efficiency): With our proposed model, the robot will more 

efficiently access pedestrians than the wait-and-handing method robot. 
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Second, the robot in our proposed method plans for a distributing behavior that 

imitates the way productive human givers perform. According to the analysis in Section 

4.1, it should yield more success than the other methods. Our proposed method’s robot 

also plans to perform continuous handing, which should also yield more success. By 

combining both expected effects with prediction 1, if these calculations are appropriate, it 

will have a higher successful ratio of distributional handing than the wait-and-handing 

method robot: 

Prediction 2 (flyer-distributing efficiency): With the proposed method, the robot 

will successfully give more flyers than the wait-and-handing method robot. 

If the distributional handing models are proposed and implemented well, we also 

expect that the robot with our proposed model will be able to distribute flyers efficiently 

like a human giver. Thus, we also compare its performance with that of the humans. 

4.3.2. METHOD 

4.3.2.1. SETTINGS 

The evaluation was conducted in the same shopping mall where we conducted the 

data collection and our first evaluation experiment. The robot was placed in a large 8 x 12 

m hallway (Figure 17), which connects to an event hall and a train station, and there are 

restaurants and shops nearby. 

4.3.2.2. COMPARISON 

We compared the following two methods. 

Proposed: The robot is controlled by the proposed model. When pedestrians 

arrive, the target decider (Section 4.2) chooses the handing target and the behavior 

controller manages the robot’s local behavior (Section 4.2); otherwise the robot waits at 

the waiting location. 
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Wait-and-handing: The robot stops and waits at its waiting position, which was 

calculated with the same method used for the proposed condition. The robot does not 

move around but only extends its arm to pedestrians who pass nearby. As a pedestrian 

approaches within 3.0 m of the robot, the robot chooses her as the handing target and 

starts to look at her. It starts the handing motion when she is within 1.0 m so that she can 

comfortably accept the flyer. These distance parameters were empirically decided. 

We prepared three afternoon time slots (2:00, 3:00, and 4:00) that more customers 

came to the shopping mall relatively, assigned each condition to the time slots with 

counter-balancing, and collected 200 minutes of data for each condition. We ensured that 

the time lengths of the collected data of each condition are identical in each time slot. 

Human giver: For comparison, we sought human data from the previously 

collected data. As shown in Table 4.1, the average successful ratio of the ten givers we 

analyzed was 40%. To avoid outliers (too good or too bad givers), we used those human 

givers who provided average successful ratios that resembled the average level of 40%. 

We found three human givers who engaged in distributional handing around the time 

similar to our time slots and averaged their performances. We retrieved 200 minutes of 

data for analysis; the time lengths of the data in each time slot are identical to the robot 

experiment data. 

4.3.2.3. MEASUREMENT 

We counted the number of times the robot/person offered flyers (#Handing). 

However, since such a number is largely affected by the number of pedestrians, we 

normalized it by dividing by the number of pedestrians who passed through the 

experiment area (#Pedestrians). We defined the following evaluation criteria: 

.          (17) 
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We also counted the number of times the robot/person successfully gave flyers 

(#DistributedFlyers) and defined the following criteria: 

 (18) 

4.3.3. RESULTS 

4.3.3.1. DATA ANALYSIS 

There were 200 minutes of data for each condition. We measured the number of 

pedestrians using people-tracking infrastructure. We checked the average number of 

pedestrians in all time slots for each condition and confirmed that they are reasonably 

similar (ANOVA shows no significant difference (F(2,117)=2.548, p=.184)). Two people 

independently counted the number of pedestrians accessed by the robot/person, and the 

numbers of pedestrians to whom they successfully gave flyers. The results of the two 

coders were exactly the same, showing that the coding result is highly reliable. 

4.3.3.2. VERIFICATION OF PREDICTION 1 

Table 4.3 shows the results. The access and flyer-distributing efficiencies were 

counted for each five-minute time slot. The average access efficiency was 0.21 (s.d. 0.07) 

for the proposed method, 0.17 (s.d. 0.07) for the wait-and-handing method, and 0.25 (s.d. 

0.11) for the three human givers. 

An ANOVA revealed a significant main effect (F(2,117)=8.399, p<.001). A 

multiple-comparison with the Bonferroni method revealed that the access efficiency for 

the human givers was significantly higher than that for the wait-and-handing method (p 

<.001). No significant difference was found between the proposed and wait-and-handing 

methods (p=.160) or between the proposed method and the human givers (p =.102). 

Thus, our first prediction was supported; the proposed method yielded higher 

access efficiency than the wait-and-handing method. 
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Table 4.3 Evaluation Results 

 Access efficiency Flyer-distributing efficiency Person density (num./min.) 

Proposed 0.21 (s.d. 0.07) 0.18 (s.d. 0.05) 5.7 

Wait-and-handing 0.17 (s.d. 0.07) 0.12 (s.d. 0.05) 6.1 

Human giver 0.25 (s.d. 0.11) 0.10 (s.d. 0.04) 5.7 

Bold face indicates values significantly higher than others. 

4.3.3.3. VERIFICATION OF PREDICTION 2 

The average flyer-distributing efficiency was 0.18 (s.d. 0.05) for the proposed 

method, 0.12 (s.d. 0.05) for the wait-and-handing method, and 0.10 (s.d. 0.04) for the 

three human givers. 

An ANOVA revealed a significant main effect (F(2,117)=31.093, p<.001). A 

multiple-comparison with the Bonferroni method revealed that the distributing efficiency 

for the proposed condition was significantly higher than that for both the wait-and-

handing method (p<.001) and the human givers (p<.001). No significant difference was 

found between the wait-and-handing method and the human givers (p=.104). 

Our second prediction was supported; our proposed method yielded higher flyer-

distributing efficiency than the wait-and-handing method. 

4.3.3.4. ADDITIONAL ANALYSIS 

We further analyzed the details to determine why our proposed condition yielded 

higher flyer-distributing efficiency than the others. Since we expected that the robot in 

the proposed condition would appropriately access pedestrians to yield a higher 

successful handing ratio and would also plan to more frequently perform continuous 

handing, we analyzed whether all of these effects were visible. Two people classified 

each of the handings as either individual or continuous, which we described in Section 

4.2. Cohen’s kappa coefficients from their classifications were 0.832, 0.874, and 0.910 
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for the two conditions and the human giver, indicating that their evaluations were highly 

consistent. 
Table 4.4 Detailed results 

 Individual handing Continuous handing Ratio of continuous handing 

Proposed 77% (86/112) 99% (111/112) 0.500 

Wait-and-handing 51% (63/123) 99% (90/91) 0.425 

Human giver 24% (46/189) 68% (67/98) 0.341 

Bold face indicates values significantly higher than others. 

Table 4.4 shows the analysis result. During individual handing, the successful 

ratios (whether pedestrian took the flyer) significantly differed across the conditions. The 

successful handing ratio was 77% for the proposed condition, 51% for the wait-and-

handing condition, and 24% for the human giver condition. A Chi-square test revealed 

significant differences among them ( 2 (2) = 79.786, p<.01). Residual analysis revealed 

that the successful ratio in the proposed condition is significantly higher than the others 

(p<.05), and the one in the human giver condition is significantly lower than the others 

(p<.05). 

When the handing was continuous, the successful ratio was 99% for the proposed 

condition, 99% for the wait-and-handing condition, and 68% for the human giver 

condition. A Chi-square test revealed a significant difference between them ( 2 (2) = 

63.598, p<.01). Residual analysis revealed that both the proposed and wait-and-handing 

conditions are significantly higher than the human giver condition (p<.05). 

To analyze whether more frequent continuous handings were performed, we 

calculated the continuous handing ratios from all handings. The continuous handing 

ratios for the proposed, wait-and-handing, and human giver conditions were 0.500, 0.425, 

and 0.341. A Chi-square test revealed significant differences among them ( 2 (2) = 

13.150, p<.01). Residual analysis revealed that the continuous handing ratio in the 

proposed condition is significantly higher than the others (p<.05), and in the human giver 

condition, it was significantly lower than the others (p<.05). 
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4.3.4. INTERVIEW 

We were surprised that the proposed method outperformed the human givers. To 

better understand this result when the robot operated with our proposed model, we 

interviewed 17 pedestrians (16 who accepted flyers, and 1 who did not) and asked them 

why they took the flyers. The interviews were recorded and transcribed for analysis. 

First, we systematically analyzed the answers from the 16 pedestrians who 

accepted flyers and classified their answers into four categories. The classification was 

confirmed by two human coders who did not know the research purpose. Their coding 

results were identical. 

Table 4.5 shows the analysis result. The answers of six pedestrians were classified 

as natural handing behavior. We gathered the following comments from them: 
Table 4.5  The Reason Why Pedestrians Took Flyers 

 Ratio 

Behavior-oriented reasons 

Handing behavior was natural 37.5% (6/16) 

Influenced by precedent pedestrians 25.0% (4/16) 

Robot-oriented reasons 

The robot was interesting 25.0% (4/16) 

Handing behavior was impressive 12.5% (2/16) 

“There was no particular reason. The robot slowly came to me and stuck out its 

arm. It behaved smoothly. So I just reached out and took it.” 

“It timely and quickly offered me a flyer. I thought, ok, I’ll take it.” 

We classified the answers of four pedestrians as influenced by other pedestrians: 

“I saw that the person before me took the flyer from the robot. So I thought, I’ll 

take it too.” 
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These two categories are behavior-oriented reasons, which might also occur if a 

person nicely distributes flyers. 

On the other hand, the two other categories are considered robot-oriented reasons, 

which were caused by the fact that the robot distributed the flyers. The answers of four 

pedestrians were classified as the robot was interesting. One of them said: 

“I took it basically because I was interested. I wanted to see how it would react.” 

The answers of two pedestrians were classified as impressive handing behavior: 

“I was very impressed by the robot. It clearly said ‘please take a flyer.’ It even 

made eye contact with me. I felt that it really wanted me to take it.” 

We categorized them separately from the natural handing behavior category, 

because they would not consider it impressive if a person distributed the flyer. 

One pedestrian did not accept the flyer from the robot for the following reasons: 

“I looked at the flyer and realized that it was just a map of this shopping mall. Since I’ve 

worked here for more than ten years, I didn’t need it.” 
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4.4. DISCUSSION 

4.4.1. INTERPRETATION OF FIELD EVALUATION RESULTS 

As hypothesized, our proposed condition performed the best in successfully 

handing flyers. It was also the best in terms of a successful handing ratio in individual 

handing, which indicates that it appropriately imitates a good giver’s behavior. Because it 

was the best in terms of continuous handing ratio, we also believe that our proposed 

method successfully planned appropriate handing behaviors so that it performed 

continuous handing more frequently. Overall, we successfully implemented key factors 

identified from the analysis of human behavior. 

We observed some differences between the proposed method and the human 

givers. The human givers yielded higher accessing efficiency than the robot with the 

proposed model. This is not surprising since the robot’s motion is not as swift as the 

humans. However, overall, the proposed method yielded higher flyer-distributing 

efficiency. This was because it yielded a much higher successful handing ratio both in 

individual and continuous handing, because it conducted continuous handing more 

frequently. 

Our interview results explain part of the reason why the robot yielded a higher 

successful handing ratio. Six out of 16 pedestrians gave robot-oriented explanations why 

they took flyers. They were either interested in the robot or impressed by its behavior. 

Although recently robots are often seen on television or the Internet, few people have 

really interacted with them. Thus, the robot’s success was partly due to its novelty. 

4.4.2. FOR FUTURE USE OF FINDINGS FROM THIS STUDY 

Future robots that serve distributional handing services might be implemented 

with our method reported in this paper, although some of the situations when our study 
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was conducted will change over time; this issue must be carefully addressed. First, 

although our study showed that our robot provided better flyer-distributing efficiency than 

the human givers, as more and more robots are introduced into actual environments, such 

novelty will fade. On the other hand, such robot capabilities as locomotion speed and 

flexibility will eventually improve. Currently, since the robot we used had poorer 

capability than the humans, it is not known whether robots will overall yield more or less 

success than humans. 

4.4.3. LIMITATIONS AND FUTURE WORKS 

In our field trial, we used sensors attached to the environment. But attaching 

sensors to environments might not be simple. Even though we believe that we can easily 

build a similar robot system that only uses sensors attached to the robot, we have not 

tested such a configuration yet. One requirement for such a system is that target detection 

needs to be done at a range from several to 10 m. One possible future work will confirm 

whether our developed method will work with on-board sensors. In addition, the 

parameters in our method were analyzed from or calibrated for Japanese people and our 

four robots. When our proposed method is used elsewhere, the parameters must be 

adapted. 
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5. SOCIAL ROBOTS 
ATTRACTING PASSERSBY 

5.1. UNDERSTANDING MANAGERIAL PERSPECTIVES 

We interviewed store managers to identify their expectations and requirements. 

5.1.1. PROCEDURE 

5.1.1.1. CONTEXT 

Our study was conducted in a suburban shopping mall that has 114 
stores/restaurants. Most of the stores sell such common items as clothes, shoes, sporting 
equipment, or equipment for outdoor activities. The shopping mall is usually busy on 
weekends, and on weekdays it is used more by people from the nearby offices. 

5.1.1.2. PARTICIPANTS 

We contacted the store managers in one area of the mall through the mall 
administrators. We requested interviews with them to gather their thoughts on the use of 
social robots in their stores. 10 of 13 stores accepted our request. 
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5.1.1.3. PROTOCOL 

To explain and describe the current capabilities of autonomous robots, we showed 
videos in which robots engaged in three common store tasks: announcement (a robot 
periodically talks about advertisements without responding to individuals), invitation 
(whenever passersby approach, a robot looks at them and announces an advertisement), 
and distribution (a robot extends its arm to an approaching passerby to give her a flyer). 
We did not limit the options to these tasks; the managers were free to suggest other tasks 
they were interested in. Then we conducted semi-structured interviews about the 
following topics: 

1)  Intention to use We asked whether they would like to use robots in 
their stores as well as their reasons for wanting to use a robot  (e.g., what they 
expected the robot). 

2)  Design requirements: We asked them more specifically how they would 
like to use the robot by focusing on desired tasks and other design requirements (e.g., 
behaviors and appearances). 

3)  Concerns: We asked them what behaviors the robot must avoid if they 
are going to use them as well as the behaviors they are concerned about when others 
use a robot. 

The interviews, which lasted an average of about 30 minutes, were recorded and 
transcribed. We classified their responses into categories based on their answers. Some 
answers were classified into multiple categories. Two independent coders classified them 
into categories. Their judgment matched reasonably well and yielded Cohen's kappa 
coefficient of  0.67 on average. 

5.1.2. INTERVIEW RESULTS 

5.1.2.1. INTENTION TO USE 

Eight of the managers expressed that they wanted to use the robot, and two 
wanted to try and see whether it was effective. Table 5.1 shows the categorized results of 
the coding of their reasons for their intention to use. 
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Table 5.1 Reasons for intention to use 

Inexpensive labor Total 7 

Information value 7 

Inexpensive human-like labor 5 

Uniqueness of robots Total 9 

Efficiently attracts passersby 9 

Relieves stress 3 

We identified two main ideas about their reasons for wanting to use a robot. 
Seven managers mentioned inexpensive labor: 

“Robots might be useful for sales promotions because they could tell people about 
our store.” (information value) 

“Finding and hiring new employees is difficult. Too many people don’t want to 
work in the service industry.” (inexpensive human-like labor) 

“I don’t afford enough employees to deal with a sudden large number of visitors. I 
don’t want customers to wait too long. A robot could ease such busy situations.” 
(inexpensive human-like labor) 

Nine managers addressed the uniqueness of robots: 

“Not very many people have actually seen a real robot. If a passerby sees a real 
one, children will approach it, and adults might stop. If it were used for a sales 
promotion, I’d expect a large effect.” (efficiently attracts passersby) 

“A robot is different from a high-pressure salesman. With a person, a customer is 
probably cautious. Once engaged, a person might not stop explaining until he gets 
a sale. For a robot, people wouldn’t be so concerned. They might listen more to a 
robot’s explanation than if I greet them.” (Relieves stress) 

“Greeting passersby is stressful. Employees are often reluctant to do it. A robot 
would greatly reduce stress.” (Relieves stress) 

5.1.2.2. DESIGN REQUIREMENTS 
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Table 5.2 shows the categorized result for the desired tasks. Since each store has 
different characteristics, each one requested a different type of task for the robot. Among 
the three tasks for which we showed examples, eight managers expressed interest in 
invitation because they want passersby to stop and pay attention to their stores. Seven 
expected robots to perform distribution tasks and provide discount coupons or flyers with 
store information that is too complicated for signboards. No one had any interest in 
announcement tasks. One manager specifically commented on this: 

“It’s better for the robot to respond to people. In that case, people will perceive it 
as a robot.” 

Relevant to these tasks, four managers mentioned enjoyment. They expect a robot 
to provide entertainment, particularly for children, so that visitors will stay in their stores 
longer and create a positive atmosphere to increase sales. 

Table 5.2 Expected tasks 

Invitation 8 

Distribution 7 

Enjoyment 4 

Greeting and chatting 4 

Cashier 3 

Cleaning and refilling 2 

Translating 2 

They also mentioned a couple of other tasks in addition to our examples. Four 
managers wanted robots to greet and briefly distract customers when clerks are too busy. 
Three managers wanted robots to serve as cashiers, and two wanted robots for such 
cleaning and replenishment tasks as wiping tables and refilling drinks in a restaurant 
because such tasks are time-consuming and onerous. Two wanted robots to serve as 
translators. 

Table 5.3 shows the categorized results for the design requirements. Store 
managers made the following comments: 

“A bigger robot is better, because it will attract more attention.” (noticeable) 

“I want it to wear a white coat. That way, people will recognize that it is associated 
with my store.” (indicate relationship with stores) 
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“I prefer a round one that can walk around. It’s cute and moonfaced and looks 
charming.” (familiarity) 

“On weekends, let it offer balloons to children, who are the primary targets of 
inviting services. During weekdays, let it attract adult passersby.” (context 
dependency) 

“People will clearly realize that it is a robot, a machine. That is good for attracting 
passersby.” (robot-likeness) 

Since each store manager has his/her own design preferences, no single design 
works for all. 

Table 5.3 Design requirements 

Noticeable 6 

Indicates relationship with stores 5 

Familiarity 4 

Context dependency 3 

Robot-likeness 3 

5.1.2.3. CONCERNS 

Table 5.4 shows the categorized results for behaviors to avoid when they use a 
robot. Four managers mentioned bothering visitors, and four mentioned safety risks: 

“It should not obstruct people who want to enter the store or walk past. A robot 
can’t bother people.” (bothering visitors) 

“Since it is a machine, it might fail and cause an injury. For example, its arm 
might jerk and hit a child. Adults would probably be able to avoid such risks. But 
small children might get too close to it.” (safety risk) 

Table 5.4 Behaviros robots must avoid 

Bothering visitors 4 

Causing safety risks 4 

Table 5.5 shows the categorized results for their concern when other stores use 
robots. Their opinions were split. Five managers were not concerned and actually 
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encouraged other stores to use robots, but five were concerned about robots being used by 
other stores: 

“If visitors stop around here, they might enter the store across from mine, or the 
store next door as well as mine. If the robot attracts visitors to this area, even if 
they go to another store, I’m still happy.” (no concern) 

 “If a store has a robot that sells similar items as my shop, I’d want them to 
operate it at a distance away from my store, so that I don’t have to see or hear it.” 
(do not want competitors to use a robot around their stores) 

 “It’s hard to predict how often others would use the robots. If everyone uses 
them, their effect will be diminished. A visitor can see robots in too many 
different places if every store uses them at the same time.” (do not want to be used 
by others at all) 

Table 5.5 Concerns about use by other stores 

No concern (expecting ripple effect) 5 

Do not want competitors to use around their stores 4 

Do not want to be used by others at all 1 
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5.2. FIELD TRIAL 

We conducted three case studies in actual stores to observe how the robots were 
employed. 

5.2.1. PROCEDURE 

We invited stores that responded to our interviews (Section 5.1) to deploy a social 
robot as a research trial. We offered two hours of use for four days to each store. All 
stores wanted to use it, and so far we served three stores in first-come first-served 
principle (we plan to serve to other stores too). Within the limitations of our autonomous 
robot’s capabilities, we consulted with them about how they would like to use the robot. 
They could choose hardware from three robots (only one robot was capable of 
distributing flyers). We implemented services based on their requests and sought 
feedback from the managers about how to improve it. We documented these processes. 
The study was approved by our institutional review boards. 

5.2.2. MEASUREMENTS AND BASELINE 

For each store, we evaluated how frequently passersby stopped at and visited the 
store as follows: 

 Stop:  Determined whether a passerby stopped near the store. This includes 
cases where people stopped around the robot. 

 Visit:  This only includes cases where people visited the store and excludes 
cases where they only interacted with the robot. For instance, if a person bought 
something from a store or stopped and apparently observed its products 
(Figures 5.4-c and d), it was judged as a visit. If a person only stopped for the 
robot (Figure 5.3) or just glanced at the products, it was judged as not a visit. 

Stopped and visited were coded from videos by two coders who did not know the 
research hypothesis. If they found the same person appeared again to stop/visit, only the 
first one was evaluated. The first coder coded all the data, and the second did 
confirmatory coding for 10% of the data. 

We compared these ratios in two situations as follows: 
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 Robot present: ratio of people who stopped/visited the store among those who 
passed by while the robot was being operated during the eight-hour observation 
period. 

 Baseline: ratio of people who stopped/visited the store among those who passed 
by during an eight-hour observation period. We selected the observation period 
with the same time and the same day of week as the robot present situation. 

Finally, we interviewed the managers to determine whether they were satisfied 
and had an intention to use the robot again. 

5.2.3. IMPLEMENTATION: ROBOT SYSTEM AND SERVICES 

The managers wanted to use invitation and distribution services. We implemented 
a fully autonomous system for these services and consulted with each manager to adjust 
the services to suit each store. We limited the service to be non-mobile, where the robot 
rotates its body orientation without moving around. Based on current levels of autonomy, 
if a robot moves around, it is relatively difficult to prevent it from bothering visitors and 
causing safety risks. Our intention was to keep the implemented services rather simple so 
that the robots could robustly operate autonomously and be feasible for actual use. 

Robot hardware and infrastructure 

Managers so far choose only one robot. It is characterized by its human-like 
physical expressions. It is 120-cm high with a 40-cm diameter on a mobile platform. It 
has a 3-DOF head and 4-DOF arms (Figure 1.3, right). We used a technique for a people-
tracking system [85] for detecting passersby. 

 
Figure 5.1 Invitation service       Figure 5.2 Distribution service 

Invitation service 

Robot

Welcome, 
our cakes are 

delicious

Robot

Please



Field Trial 
 

  99 

We modeled the shopkeeper behaviors when they greet passersby. They typically 
look at them and greet them with such advertisement utterances as “welcome, our shop 
sells. . . ” The robot obtains the positions of potential visitors within 5 m from its people-
tracking system and chooses as a target one who is approaching the closest to the robot 
(Figure 5.1). It orients its body and head direction to the target and periodically makes 
advertisement utterances. 

Distribution service 

We adapted a technique for distributing flyers reported in [89]. The system 
predicts the future locations of passersby and selects the person who will soon pass near 
the robot. Then it looks in her direction, and when she comes close, it extends its arm to 
give her a flyer, and says “please take it” (Figure 5.2). Its hand has a touch sensor, which 
detects whether the flyer was taken. When it detects that a flyer was taken, it says “thank 
you.” The robot is equipped with a printer and prepares subsequent flyers by itself. 

In both services, we followed the requests from managers and let the robot 
periodically give advertisement utterances if no target person was selected so that people 
far from the robot might hear such utterances and approach the robot. 

5.2.4. CASE 1: INVITATION SERVICE AT A CAKE SHOP 

5.2.4.1. STORE CHARACTERISTICS 

The shop (Figure 1.3) faces a corridor of the mall. Inside its showcase, cakes and 
puddings are displayed. In the booth one clerk wears a baker’s costume and tends to the 
store. On the weekends, they attract passersby by loudly greeting them. 

5.2.4.2. MANAGER’S DESIGN DECISION 

She chose a robot to perform an invitation service. She did not have a strong 
preference about the robot’s appearance, and she chose one she had seen before. She 
wanted the robot to explain two types of information: 1) the unique features of her 
products, e.g., no additives, no artificial colors, and 2) advertisement of store items. She 
wanted it to wear a baker’s costume that resembled that worn by the clerk. But since we 
couldn’t find a costume that appropriately fit the robot, instead we put the shop’s logo on 
its chest. 
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We implemented the invitation service, in which the robot randomly announces 
one advertisement utterance from three (no additives and no artificial colors, roll cakes, 
and pudding). After showing the initial implementation, she asked us to adjust the 
intervals between the utterances; we changed them to two seconds. 

5.2.4.3. RESULTS 

Figure 5.3 People stopped around the robot, although this was not coded as a visit 

Many passersby glanced at the robot or the store. Some stopped around the robot 
to interact with it (Figure 5.3, left). Families with children often interacted with it. We 
sometimes observed that while their children were interacting with the robot (Figure 5.4-
a), parents visited the store (Figure 5.4-b and c) and bought something (Figure 5.4-d). 

Two coders’ judgments for stop and visit matched well and yielded a Cohen's 
kappa coefficient of .784. We applied a Chi-square test for the stop and visit ratios. It 
revealed that passersby stopped significantly more frequently around the store in the robot 
present situation (13.73%) than in the baseline (2.71%) (χ2(1)= 915.023, p<.01, φ=.20). 
Further, as illustrated in Figure 5.5, passersby visited the store significantly more 
frequently in the robot present situation (3.22%) than in the baseline (2.40%)  
(χ2(1)=13.646, p<.01, φ=.025). 
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(a)                             (b) 

  

(c)                             (d) 

Figure 5.4 Robot successfully enticed passersby to visit 

 

Figure 5.5 Ratio of visited passersby for cake shop 

5.2.4.4. MANAGER’S FEEDBACK AFTER USE 

She wanted to use it again. When we discussed the cost she was willing to pay, 
she said that she would use it if it cost less per hour than a human worker. She also 
expressed interest in buying the robot to avoid paying an hourly wage. She mentioned 
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three benefits: 1) the robot nicely attracted passersby on weekends; 2) it increased sales; 
and 3) it reduced the workload of the shopkeepers by talking about promotions instead of 
the shopkeeper. 

In contrast, she was less eager to use it again on weekdays. She felt that during 
weekdays, generally children approached the robot, and thus she didn’t think it 
contributed to sales. She also felt embarrassment operating the store while surrounded by 
children (Figure 5.3, right). 

5.2.5. CASE 2: INVITATION SERVICE AT A DRUGSTORE 

5.2.5.1. STORE CHARACTERISTICS 

The store (Figures 5.6 and 5.7), which is operated by the manager in a white coat, 
sells medicines and bottled drinks. No other clerk is employed. He does not actively 
attract passersby; when a customer stops, he explains medicines that are appropriate for 
customers. 

  

Figure 5.6 Passersby around drugstore 

5.2.5.2. MANAGER’S DESIGN DECISION 

He wanted the robot to move around and attract passersby and promote drinks 
instead of medicines. If visitors need medicine, he knew they would visit the store with or 
without special promotions. Moreover, a shopkeeper needs to determine very quickly 
which medicine is appropriate for each customer, which is not possible for a robot. 
Instead, he wanted the robot to attract children to buy juice and other drinks. 
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He chose an invitation service using the same robot (Figures 5.6 and 5.7) because 
it has a robot-like appearance and he had seen it before. He wanted it to wear a white coat, 
but we were unable to prepare a white coat for the robot, so he placed an emblem of the 
drugstore on its chest instead. We consulted with him and determined the interval 
between utterances to be two seconds. During the preparation, he wanted to increase the 
variation of the robot’s advertisement utterances. Initially, it only mentioned juice for 
children, but we also added a comment for adults: “If you are tired, how about an energy 
drink?” 

5.2.5.3. RESULTS 

Many passersby glanced at the robot (Figure 5.6, left), and some interacted with it 
(Figure 5.6, right). For example, they waved their hands and talked to it. We observed 
cases where the robot successfully attracted passersby. Figure 5.7 shows one such scene. 
A mother and her daughter stopped in front of the robot (Figure 5.7-a) and heard that the 
store sells juice (Figure 5.7-b). She bought some juice while talking with the manager 
about the robot (Figure 5.7-c) and took a picture it with her daughter (Figure 5.7-d). 

    
(a)                  (b)                   (c)                 (d) 

Figure 5.7  Passersby who listened to robot and visited drugstore 

The two coders’ judgments for stop and visit matched well and yielded a Cohen's 
kappa coefficient of .848.  We applied a Chi-square test for the stop and visit ratios. It 
revealed that passersby stopped more frequently around the store in the robot present 
situation (14.84%) than in the baseline (1.36%) (χ2(1)= 1504.145, p<.01, φ=.242). 
However, their frequency of visits in the robot present situation (1.13%) did not differ 
significantly with that in the baseline (1.03%) (χ2(1)=.447, p=.504, φ=.005). 

5.2.5.4. MANAGER’S FEEDBACK 



Social Robots Attracting Passersby 
 

104 

The manager wanted to use the robot again. He plans to move his store and asked 
whether the robot could come to his next location, too. Even though he admitted that the 
robot probably did not really contribute much to sales, yet he deemed it useful because it 
attracted browsers and advertised the store. When we asked how much he would pay, he 
said that he would pay as much as a human worker. 

Although he expressed interest in using the same robot again, he wanted to 
improve its interactivity, e.g., saying “thank you” to customers, even if it were 
teleoperated by a shopkeeper. He believed that visitors wanted to interact with the robot, 
and such reactions from it would encourage visitors to make more purchases. 

5.2.6. CASE 3: DISTRIBUTING DISCOUNT COUPONS FOR A 

DONUT SHOP  

5.2.6.1. STORE CHARACTERISTICS 

This store sells donuts. A single shopkeeper wears an orange-color T-shirt, hat, 
and an apron and runs the store. When passersby are around the store, she promotes her 

products by loudly making such utterances as, “how about some donuts?” 

5.2.6.2. MANAGER’S DESIGN DECISION 

The manager wanted to use the robot to distribute discount coupons (get a free 
donut with a purchase over 500 yen) that lasted until the end of the next month. Since he 
also wanted it to announce advertisements, he put ads in a coupon leaflet about relatively 
unknown donuts. 

We implemented a distribution service. When it estimates that it can give a 
coupon to a passerby within three seconds, it starts the distribution service. Otherwise, it 
repeats its advertisement information from three candidates, such as “Hello, we have 
many kinds of delicious donuts.” In communication with the manager, we adjusted the 
time intervals between utterances to three seconds. 

He wanted it to wear the same uniform as the shopkeeper. We put the store’s hat 
on the robot’s head and attached a T-shirt to the front side of its body (Figure 5.8). 
Though he initially wanted a cute voice for the robot, after he observed its use in another 
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store, he decided to use its default synthesized voice because passersby seemed to react 
positively to it. During the trial, he changed the robot’s location to increase its visibility. 

 

Figure 5.8 Scene at donut shop 

5.2.6.3. RESULTS 

Many passersby noticed the robot and passed through the corridor while looking 
at it. Some took the coupon (Figure 5.8), and others visited the store. They typically 
stopped to accept a coupon (Figure 5.9, left), listened to the robot, looked at the coupon 
(Figure 5.9, center), and glanced at the store’s shelf on which the donuts were displayed 
(Figure 5.9, right). Some then bought donuts with the coupons. It distributed 413 coupons 
during an eight-hour trial. 

   
Figure 5.9  Passersby received coupons and visited donut shop 

Two coders’ judgments for stop and visit matched well and yielded a Cohen's 
kappa coefficient of .794. We applied a Chi-square test for the stop and visit ratios. It 
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revealed a significance that passersby more frequently stopped around the store in the 
robot present situation (7.39%) than in the baseline (3.28%) (χ2(1)= 356.679, p<.01, 
φ=.091). Further, as illustrated in Figure 5.10, passersby visited the store more frequently 
in the robot present situation (3.35%) than in the baseline (2.94%)  (χ2(1)= 6.006, 
p=.014, φ=.011). 

 
Figure 5.10 Ratio of visited passersby for donut shop 

5.2.6.4. MANAGER’S FEEDBACK 

The manager wanted to use the robot again. While he was not sure whether the 
robot contributed to the sales, he admitted that it attracted many passersby and advertised 
his shop. Since hundreds of coupons were distributed, he expected that some customers 
would return to buy donuts with them. When we asked how much he would pay, he said 
that he would pay as much as a human worker is paid. 

He also mentioned a couple of possible improvements. He wanted the robot to 
have better interactivity to answer easy questions from visitors. According to him, 
recently many young people do not want to work in the service industry because they are 
required to communicate with visitors in a face-to-face manner. He wants a robot to be 
the store’s main clerk and handle all communications; the human clerk will only provide 
such easy support as replenishing supplies. He also wants the robot to express itself more 
so that visitors will perceive it to be more than just a machine. 
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5.3. DISCUSSION 

Regarding the problem that participants could not get proper distance cue during 
sound sources changed its range in previous experiment, a possible reason could be that 
HRTFs we used was measured in a fixed range (1.4m). When the sound sources moved, 
the amplitude of HRTFs is recalculated to fall off in inverse proportion to the distances, 
and ITD (interaural time difference) remains the same based on plane wave assumption. 
However, the fact is when the range of sound source changed, both ILD (interaural level 
difference) and ITD will change as well (ILD increased with decreasing distance because 
of the decreasing of head scattering effect, ITD decreased with decreasing distance), 
especially at close distance that curvature of the wave front become significant. 

5.3.1. IMPLICATIONS 

Our study revealed that store managers have serious interest in using robots in 
their stores. Even after seeing the limitations of the capability of today’s autonomous 
robots, they expressed their desire for future use. In fact, for two stores, the robot 
increased passerby’s frequency of visit. Frequency increased from 2.40% to 3.22% for 
the cake store, 2.94% to 3.35% for the donut store. This is rather impressive. Even though 
we expected that the robot would increase the number of people who stopped around the 
robot (in fact, people who stopped around stores largely increased for all the stores), 
persuading people to pay attention to something other than the robot itself (in our case, 
store products) is more difficult. One would concern that the amounts of increase are 
small; but, we consider this impactful to the stores, as the ratio of visit in the baseline is 
also not so large. We also believe that the store managers are already doing their best to 
attract passersby, e.g., signboards, music, and the labor of employees. Since robots 
undoubtedly add new value to such efforts on their current business, they found them 
useful. 

We were also impressed to learn that the store managers expressed a willingness 
to pay a considerable amount for a robot’s services, perhaps equal to that of a human 
worker. The services we prepared were all autonomous. The invitation service can be 
done with many commercially available robots. Distribution services need some 
improvements from such robots, but they could be done rather easily. Thus, as the price 
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of robot hardware becomes more affordable, we predict that such a robot will widely 
spread in the near future. 

We learned the following design implications from our case studies. First, the 
store managers were very interested in indicating the relationship between the robot and 
their stores. They wanted it to wear costumes. Unfortunately, our robot was not well 
prepared for this, but a future robot could be designed for easily changing its clothing or 
appearance. Second, the managers made a rather small number of requests, mostly about 
the contents and the timing of utterances. Perhaps we could prepare a robot that can be 
customized by the store managers themselves. Interactivity is one avenue for potential 
improvements. 

5.3.2. SOCIAL ACCEPTANCE FROM ADMINISTRATORS 

Regarding perceptions related to social acceptance from managers, we made some 
interesting observations. Their acceptance can be different from that by interlocutors 
especially when children are involved. The robot often attracted children to interact with 
it, and thus families often stopped near the stores. Some managers welcomed it; the 
drugstore manager was happy because it created an opportunity to attract attention to his 
store. But one manager worried that the presence of a crowd of children might change her 
store’s atmosphere, and so she was discouraged from using the robot, although the 
children are willing to come. 

We observed a kind of a ripple effect, i.e., decisions on acceptance were 
transmitted across society. Managers see other stores that use robots, and we also noticed 
that they communicate about the robot among themselves, which influenced their 
decisions about how to choose appearances and voices. In addition, we were contacted by 
another manager who wanted to use the robot for his store after seeing it used at another 
store. This ripple affect suggests that acceptance will be quickly shared, and once some 
stores start to use robots, others will quickly follow and employ them, too. 

5.3.3. NOVELTY EFFECT 

Novelty remains one major reason why managers want to use robots. But novelty 
is ephemeral. Will they continue to use them for many weeks and months? This open 
question is beyond the focus of a single study. However, we speculate that strategies exist 
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for keeping their robot attractive; a store that creates its own character like Mickey 
Mouse might attract visitors for a long time. Further, with robots that express themselves 
more, people might start to form a kind of relationship with the robots over a long-term 
use, which would also compensate the loss of novelty. 

5.3.4. COMPARISONS WITH HUMAN 

Since our robot successfully attracted passersby, comparing its effect with humans 
seems logical. Perhaps if we replaced it with a person, a similar effect would occur. 
However, note that although such an effect might be obtained with human workers, the 
store managers did not make this choice. This is probably relevant to their interview 
answers that argued for the uniqueness of the robot’s value. For instance, they believed 
that robots attract the attention of customers well without causing/receiving stress. Some 
managers complained about the difficulty of finding people who are willing to do such 
services. Thus, while it is possible that humans may cause similar effect in attracting 
passerby, in reality humans were not alternative choice for the store managers. 

5.3.5. CONTEXT DEPENDENCY 

Although the frequency of stop increased in all three stores, the store visitors 
increased only for the cake and donut shops but not for the drugstore. We consider that 
this result is due to the difference of the nature of their stores. These two stores are 
designed for incidental visits, where a passerby just drops in without any previous 
intention to visit or buy. In contrast, as the manager himself mentioned, since drugstores 
are mainly for people who aim to visit, passersby might less incidentally visit even 
though the robot tried to attract them. Further investigation might improve our knowledge 
about designing robots for various contexts, e.g., a large store or a restaurant. 

5.3.6. LIMITATIONS 

Our observations are mostly from case studies that only involve a specific robot, 
stores, and people. Comparisons include factors beyond the presence of robots. For 
instance, in the case of the donut shop, although the store visitors increased, that was 
partly due to the fact that they discounted their product. We did not ask them not to do so 
because we wanted to observe how they would naturally use the robot. Regarding social 
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acceptance, it would be also important to study how interlocutors perceived; however, we 
did not interview passerby and visitors, because we did not want to influence their 
behavior due to the presence of interviewers around the store. As far as we observe, 
people seemed happy and we did not hear any complaint. We relied on interviews with 
the managers. But the opinions in the interviews before the case studies (e.g., some were 
tolerant of use by others) would change after active usages. Their feedback after the trial 
use might be positively biased (e.g., how much they would pay) because perhaps they 
were being polite. Nevertheless, it was not our intention to accurately measure their 
attitudes; we wanted to roughly understand their views. Also, we don’t believe that they 
consciously distorted their opinions out of a misplaced sense of kindness. Although a 
majority responded, since the participating managers were self-selected, their positive 
views do not mean all of the remaining managers are positive. Perhaps the people who 
did not respond experienced hesitation, reluctance, or negative attitudes. 
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6. CONCLUSIONS 

The present work explored the problem of natural initiation of interaction in 
human-robot interaction focused on initiating conversation and distributional handing 
behaviors. 

For initiation of conversation, the contribution that makes this possible is a clear 
set of guidelines for how to structure a robot’s behavior to start and maintain a 
conversation. This knowledge can be used by designers to create robots capable of 
engaging in a conversation with a person, possibly toward integrating robots into 
domestic and public environments.  

More specifically, we first studied natural interaction at the moment of initiating 
conversation. In a shopkeeper scenario where a salesperson meets a customer, we then 
modeled natural human interaction. Our model was implemented in a humanoid robot 
and tested in an evaluation experiment. We compared our proposed model with two 
baseline models. The experimental results verified our proposed model as the best with 
respect to its more appropriate behaviors and the smallest time delay. The recognition 
accuracy of the participation state in the system evaluation was high, showing that the 
model can be used to recognize an individual’s participation state in a conversation. 

For distributional handing, we studied this behavior in which a giver distributes 
flyers to pedestrians in an actual shopping mall environment. Our approach developed a 
behavior model from the natural interaction of humans. We found that a person who 
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distribute flyers well approaches pedestrians from their front side and only extends 
his/her arm when they are near. We also found that pedestrians more frequently accepted 
flyers when the handing was continuous, meaning that the distribution targeted a 
pedestrian who noticed that a previous pedestrian took the flyer. We modeled and 
implemented these two factors in our humanoid robot and conducted an evaluation 
experiment a real shopping mall, where the developed robot autonomously distributed 
flyers. This demonstrated that our developed robot successfully performed a flyer-
distributing service. The flyer-distributing efficiency reached 0.18, meaning that it 
successfully gave flyers to 18% of the pedestrians, which was significantly better than a 
simple robot that waits for pedestrians to take flyers. We believe that this ratio is 
reasonably high. The pedestrians in this study were going through a shopping mall and 
are typically busy with other purposes. Flyer-distribution service is one possible future 
role in which a robot might serve. It is important that developed robots can successfully 
operate in real world environments autonomously and with real pedestrians. 

Furthermore, we conducted a field study to investigate the social acceptance of 
social robots by stores, particularly for attracting passersby, which today’s robot can 
autonomously perform. From interviews with ten store managers, we identified two main 
reasons they want to employ such social robots in their stores: 

1. Robots offer cheap labor and provide unique value that humans cannot. 

2. They believe that robots are good at attracting the attention of visitors without 
causing or receiving stress. 

We also conducted three case studies in which we observed how store managers 
employed social robots in their store and found: 

1. Social acceptance: Each store manager requested different designs and services. 
But all of them want to show the connection between the robot and their shop such as 
dressing the robot with their shop’s clothes. 

2. Robot could autonomously perform as managers designed: In all the three 
shops, the managers were satisfied with the result that much more passersby stopped by 
their stores thanks to the robot.  

3. For two out of three stores the robot successfully encouraged visitors to visit.  
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4. The store managers were satisfied with the results and expressed a desire to use 
the robots again. In addition, two store managers mentioned that they would like to 
employ such robots with same wage with human clerks. One mentioned that she would 
consider to employ such robots with cheaper wage than human clerks. 
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