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ABSTRACT

This thesis explores the problem of natural initiation of interaction in human-robot
interaction focused on the situation that robot encounter people. When robot encounter

people, robot could initiate interaction by conversation or motion.

Initiation of conversation might seem trivial for people, but it is not at all trivial
for robots. The appropriate timing and good position from which to make the initial
greeting are almost unconsciously decided by human. Based on analysis of human
interactions, this paper proposes a model for a natural way of initiating conversation. The
model mainly involves the participation state and spatial formation. When a person
prepares to participate in a conversation and a particular spatial formation occurs, he/she
feels that he/she is participating in the conversation; once he/she perceives his/her
participation, he/she maintains particular spatial formations. We proposes a participation
state model for measuring communication participation and provided a clear set of
guidelines for how to structure a robot’s behavior to start and maintain a conversation
based on the model. Our model precisely describes the constraints and expected
behaviors for the phase of initiating conversation. We implemented our proposed model
in a humanoid robot and conducted both a system evaluation and a user evaluation in a
shop scenario experiment. It was shown that good recognition accuracy of interaction
state in a conversation was achieved with our proposed model, and the robot
implemented with our proposed model was evaluated as best in terms of appropriateness

of behaviors and interaction efficiency.
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Abstract

For initiation of interaction by motion, there is no need to go further into
conversation. Instead, it is important to express the intention of interaction to the partner.
In our daily life, it is very common to see people distribute objects such as flyers to
pedestrians. The givers initiate interaction with passersby by their handing motions. It
would be appropriate to assume that in the future these “distributing” works would be
carried out by robots. We proposed a model for a robot distributing flyers to pedestrians.
The difficulty is that potential receivers are pedestrians who are not necessarily
cooperative; thus, the robot needs to appropriately plan its motion, making it is easy and
non-obstructive for potential receivers to receive the flyers. We observed human
interactions on distributional handing in the real world, analyzed and evaluated different
handing methods that people perform, and established a model for a robot to perform
natural handing. The proposed model is implemented into a humanoid robot and is

confirmed as effective in a field experiment.

Finally, we conducted a field study to investigate the expected use of such robot
that initiate interaction with people by conversation or motion in the real world,
particularly for attracting passersby which today’s robots can autonomously perform with
our proposed models. From interviews with ten store managers, we identified two main
reasons they want to employ such social robots in their stores: robots offer cheap labor
and provide unique value that humans cannot. They believe that robots are good at
attracting the attention of visitors without causing or receiving stress. We also conducted
three case studies in which we observed how store managers employed social robots in
their stores. Each store manager requested different designs in the preparation phase.
After deployment, we found that the managers were generally satisfied with the services
autonomously offered by the robots, which successfully encouraged people to stop. The
store managers were satisfied with the results and expressed a desire to use the robots

again.
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1. INTRODUCTION

1.1.INITIATION OF CONVERSATION INTERACTION

How do you meet someone and start a conversation? Even though this might seem
trivial for people, it is not at all trivial for robots. In a typical situation for humans, we
stop at a certain position in relation to the target, greet the person, and find ourselves
conversing. We do this almost unconsciously. As humans, we consciously think about the
contents of the conversation after it has started.

In contrast, it is difficult for a robot to replicate what humans unconsciously do. It
needs to know every detail of the behavior, such as where and when it should stop and
what should be said; however, since we do this unconsciously, intricately describing what
we are doing is not easy. For instance, consider a shop situation (Figure 1.1), where a
customer has an appointment with a sales-robot to get a product explanation. The
customer might wait at the entrance while looking toward the direction from which the
robot is coming (Figure 1.1-a). Or he/she might look at another product displayed in the
shop (Figure 1.1-b). Apparently the expected behavior for the robot is different in each

situation, but what is the basis for generating the expected behavior for each situation?



Introduction

(a) Looking at robot (b) Looking at a product

Figure 1.1 Situations in a shop

In this study, we focus on the initiation of conversation in natural human-robot
interaction. Clark modeled human communication based on the notion that people in a
conversation share views of whether each of them is participating in the conversation or
not and, furthermore, defined their activity roles [1], such as a speaker, hearer, or side
participant. Kendon’s analysis on spatial formation, known as F-formation is in line with
this view so that the participants in a conversation form a particular shape [2]. Even
though HRI researchers clearly recognize the importance of the participation state and
spatial formation [3-6], no study has revealed how a robot should behave in different
kinds of conversation-initiation interactions depending on the situation we denote as the
initiation of conversation. In short, the above examples of the problem in Figure 1.1

remain unsolved.

To cope with this problem, we analyzed human behavior during the initiation of

conversation. We learned the importance of two functions in our model:
. recognition of an interlocutor’s spatial formation;

. constraints on a robot’s spatial formation used to maintain the

participation state.

Spatial formations that people establish in the interaction are used to model
people’s participation in the conversation. Likewise, behaviors they perform during the
conversation are used to derive guidelines for how a robot should use its knowledge and

structure its behavior to initiate and maintain a conversation. By overcoming these




Initiation of Conversation in Human-Robot Interaction

problems, we can realize our goal in this study, i.e., providing service through initiating a
conversation on the robot’s own initiative, and move one step closer toward smooth

integration of robots into society.

We conducted a human observation experiment and provided the results of the
data analysis. We created a model of initiation of conversation based on the observation
results and implemented it on our humanoid robot. We firstly conducted a system
evaluation and an objective evaluation to evaluate our model in an objective way, then
conducted a subjective evaluation experiment to compare our model with two baseline

models, and our proposed model was evaluated as the best.
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1.2.INITIATION OF MOTION INTERACTION:
DISTRIBUTIONAL HANDING

A number of robots have been developed in research projects that serve people in
daily public environments. For instance, Gross and his colleagues developed a robot for a
shop that assists consumers [7]. In museums, robots provide information to visitors [8-10].
Other studies demonstrated the use of robots in such environments as cities [6], streets [7],
offices [13], hospitals [14], senior citizen facilities [15, 16], and shopping malls [17]. We

believe that robots will soon start to perform many real tasks in our daily environments.

We believe that initiating motion interaction with people such as ‘distributing” will
be one future task for robots in daily environments. People commonly distribute such
objects as flyers or free samples to pedestrians, for example, coupons to customers in a
shopping mall, pamphlets to visitors in a museum, or a barbershop that gives advertising
flyers to pedestrians in front of a crowded train station. We expect that in the future such

distributing tasks will be carried out by robots.

How can we make a robot that performs such distribution tasks? Even though this
activity might seem trivial for people, it is not trivial for robots. If a robot behaves poorly,
its distribution task will probably fail and disturb the activities of pedestrians. We need to
identify the key factors that comprise successful distributions. In this study, we
investigate the behavior of people who perform distribution tasks well. After identifying

the key factors, we implement them in a humanoid robot.

In this study, we define this distribution interaction as distributional handing and
focus in natural Human-robot interaction. We first studied distributional handing in

human-human interaction, and then implemented it into a humanoid robot (Figure 1.2).

Figure 1.2 A robot distributing a flyer to a pedestrian
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Model of Distributional Handing for a Mobile Robot

1.3.SOCIAL ROBOTS INITIATING INTERACTION WITH
PEOPLE IN THE REAL WORLD

Attracting passersby is one critical task for store workers, and many do it daily. For
instance, some clerks talk to passersby who stop at their shops and invite them to visit and
browse. Some loudly announce the features and characteristics of their stores (Figure 1.3,
left). However, such tasks are difficult for human workers. For instance, in a shopping
mall, we witnessed a young female clerk who kept announcing:

“Hello, we have two kinds of pudding.”
“Our products make delicious presents.”

She robotically repeated her message all day even when few passersby were
present. Even though we felt sorry for her, we did not buy anything from that store. A few
weeks later, we heard that she had quit because the work was too stressful.

As robotics technology matures, why don’t we use robots for such stressful tasks?
They seem within the capacity of today’s autonomous robots. Robots do not need to
engage in complex conversations or decision-making; they just need to react to the arrival
of passersby.

However, the required capabilities for attracting visitors remain largely unknown.
Since it is also unknown whether autonomous robots with current technology can satisfy
user expectations, we addressed them in a study. The following are our research aims:
® To identify the expectations, requirements, and design decisions of store managers

® To evaluate whether robots can autonomously serve in designed roles with our
proposed models

12 L [l
‘ ‘.v(. i s“,

Figure 1.3 Enticing passersby to a store
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2. RELATED LITERATURE

It is assumed that social robots will eventually engage in “natural” interaction
with humans, i.e., interaction like humans do with other humans. The use of human-like
body properties for robots has been studied to provide greater naturalness in the
interactions. Often, studies have focused on the interaction after the robot meets people.

For instance, studies have been conducted on pointing gestures [18, 19] and gaze [20-23].

Similar to the concept of initiation of conversation, researchers have studied the
phenomenon of engagement. Engagement is a situation where people listen carefully to
an interlocutor’s conversation. A model has been developed for using the gaze behavior

of robots [6] and people to recognize the engagement state [24, 25].

The main difference between the initiation of conversation and engagement is that
the latter addresses a phenomenon that occurs after the people and the robots have
established a common belief that they are sharing a conversation. In contrast, the
phenomenon of initiation of conversation, which our study addresses, concerns the

situation before or just at the moment when they establish this common belief of mutually

sharing a conversation.

12



Related Literature

Within the research on human communication, studies are sparse on how humans
initiate conversation beyond the basic facts that they select interaction partners and
recognize and approach each other [26], stop at a certain distance [27], start the
conversation with a greeting [28, 29], share a recognition of each other’s state of
participation [1], and arrange themselves in a suitable spatial formation [2]. Recent
studies have started to reveal more detailed interaction, including the knowledge of
detection of service initiation signals used in bars [30] and the finding that side
participants stand close to the participants and often become the next participant [31]. But

this new knowledge remains limited.

In HRI, spatial formation has been studied in relation to initiating conversation.
Michalowski et al. revealed the relation between the robot’s environment and the
person’s engagement toward the conversation, and they suggested that to improve the
interaction it’s important to put a stronger emphasis on movement in the estimation of
social engagement and to vary the timing of interactive behaviors [4]. Hiittenrauch et al.
used a Wizard-of-Oz study and found that people follow an F-formation in their
interactions with robots, just as with humans [32]. Kuzuoka et al. studied the effect of
body orientation and gaze in controlling F-formation and found that with these
movements, a robot could lead the interaction partner to adjust his/her position and
orientation while considering the proper F-formation [3]. Studies have also generated
more natural robot behavior, such as the approach direction and distances to a seated
person [33, 34] and the path to approach and catch up with a walking person [35, 36], the
standing position for presenting a product [37], the proper distances for passing behavior
[38] and following behavior [39], and the selection criteria for choosing an interaction
partner [40]. A few studies have attempted to promote people’s participation by
encouraging behavior [5, 41] and detecting the requested behavior [42]. However, since
these studies were aimed at encouraging people’s participation, they only showed the
one-sided behavior of the robot, not how robots should behave while considering the

people’s real-time status in the initiation of conversation. In our research, we proposed a
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Related Literature

model that could make the robot recognize the participation state of the people and then

act accordingly to make them both participate in a conversation and maintain it.

Handing capability is built in a number of techniques in robotics. Recent progress
in mobile manipulation [43, 44] is clearly relevant. Some studies have also investigated

how to make ‘grasping’ socially acceptable [45].

Specific to handing interaction, early studies concentrated on generating natural
handing motions that imitated humans [46-48]. Huber et al. showed that a minimum jerk
model makes arm motions appear more natural and shortened the subjects’ response
times [49]. Cakmak et al. designed a handing-over motion to convey the moment when
the person accepts the object [50] and how to learn a preferable robot configuration for
the task [51]. Sisbot et al. showed how to navigate a robot [52] and manipulate objects
near humans [53]. Koay et al. presented their results from a human-robot interaction
study that investigated the issues of participant preferences in terms of a robot-
approaching method and handing behavior in the context of a robot handing an object to a
seated person [52]. The use of perspective for joint manipulation has also been addressed
[54]. However, most of these researches focused on behaviors for handing an object to a
specified person who was stopped at a fixed position. For handing objects to walking
pedestrians, the following necessary knowledge is very different from conventional
researches, such as choosing a pedestrian as the target, approaching the person, the timing
of the approach, and how the robot should extend its arm to provide the object to the

target. This knowledge remains unknown.

In addition to the handing interaction, a few studies have also addressed the
process of initiating interaction by considering proxemics [55] and inviting behavior [56].
These studies focused on ways for a robot to exhibit intention to initiate interaction, but in
these cases the robots were stationary, which makes a quite different situation from our

work: distribution to pedestrians.

Some studies focused on how robots should approach humans. Dautenhahn et al.

studied what kind of approaching behavior by a robot was preferred by users and

14
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concluded that when they are seated, approaching from the side is better than from the
front [57]. Satake et al. proposed an algorithm for proactive approaching in which a robot
meets people from the front [58]. Shi et al. modeled people’s behavior to initiate
conversation in shopping situations, where the mutual spatial configuration was modeled
rather than the approaching direction [59]. These studies show that approach methods for
robots are different across each different situation, i.e., the state of the target person, the
robot’s interaction purpose, etc. This result suggests that we should specifically

investigate a proper approaching method for distributing to pedestrians.

Previous studies have identified the promising contexts (roles, tasks, and
situations) in which social robots can successfully serve. For instance, in a museum a
robot attracted visitors’ attention and explained exhibits [60]. Other robots were also
successful in museum/exhibition contexts [61-64]. Some studies revealed that robots can
perform other tasks, including receptionist [65], snack delivery [66], health management
[67], and education [68, 69].

Some studies specifically addressed visitors or passersby of stores. A robot led
visitors to request products/items in a store [70], and another robot improved the
atmosphere of a transit area and a shopping space [71]. On the street, a robot successfully
collected information from passersby [72]. In a shopping mall, a semi-autonomous robot
successfully provided directions to stores and recommended stores [17] and distributed

discount coupons [73].

Many research works have investigated social acceptance. For instance, Weiss et al.
investigated the social acceptance of robots from the observations of people’s reactions
[74]. Heerink et al. developed a model of social acceptance [75]. In their model, the
perceived ease of use by people as well as their perceived enjoyment was considered the
source of their intention to use robots. Acceptance is considered the consequence of the
satisfaction of the diverse needs of users and their expectations [76]. Many established
methods have evaluated social acceptance from the perspective of people who interacted

with robots.

Some studies explored factors beyond the perceptions of interlocutors. For instance,

Salvini et al. argued that acceptability must be considered beyond user level and included

15
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views from bystanders as well as legal and ethical perspectives [77]. Mutlu et al. identified

the importance of organizational factors through an ethnological study [78].

For robots to work in such environments as stores, the perceptions of
administrators (in our case, store managers) must also be addressed. They are the decision
makers who will determine design choices. They will judge whether to employ robots.
However, the perceptions of administrators has been overlooked in previous studies. Thus,

our study is novel because it approaches social acceptance from a managerial perspective.
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3. INITIATION OF
CONVERSATION
INTERACTION

3.1.MODELING INITIATION OF CONVERSATION

To find the regular patterns in people’s behavior at the moment of the initiation of
conversation, we observed the interaction of two people when they started a conversation.
We focused on their spatial formation and gaze, both of which have been discussed in the

literature as important factors for human communication [79].

3.1.1. DATA COLLECTION

We collected data in two different settings, shop and meeting scenarios, to find the
consistencies and differences across different purposes and environments. In each
scenario, one person initiated conversation with the other. We assumed that whether a

participant plans to explain an object or lead another to a location in the store after the

17



Measuring Communication Participation

initial greeting influences how that person behaves in the initiation of conversation.

Based on this assumption, we divided each scenario into two situations.

(b) Meeting scenario

Figure 3.1 Examples of initial positions in two scenarios
Shop scenario: This interaction was conducted in a 5 x 5-m room in which four
objects were placed (Figure 3.1-a). One person behaved as a visitor waiting in the shop,
and the other person acted as a /ost (a clerk) who greets the visitor and either (1) offers a

service or (2) explains products.

Meeting scenario: This interaction was conducted in the lobby (4 x 10 m) of a
research institute (Figure 3.1-b). One person acted as a visifor, and the other behaved as a
host who meets the visitor and either (1) offers help or (2) leads the visitor to another

location.

We set the initial position of the kost out of sight of the visitor, and then the host
entered the environment to initiate conversation. The experimenter provided either of two
plans: the host only needs to greet the visitor in without plan or explain a product (or lead
the visitor) in with plan. With this setting, we observed how they behaved both verbally

and non-verbally to initiate a conversation.

Twenty Japanese undergraduate students (ten pairs, eleven men and nine women)
were paid for their participation in this data collection. We had confirmed that the two
participants in a pair did not know each other before the experiment. The participants
could make sure about the environment (ex., the products put in the shop) before the

18



Modeling Initiation of Conversation

interaction so that they could provide information to the visitor easily. They repeated
each scenario ten times (after five trials, they switched roles, so each acted in one role
five times for each scenario). We asked the visitor to position himself/herself differently
every time so that we could collect diverse data. Beyond these instructions, the

participants were allowed to behave freely.

Although we specified the roles that the participants acted, the behaviors in the
whole interaction were done freely by the participants. We did not determine their
detailed behaviors; we only planned their roles and asked them to behave while
considering these roles (we asked participants to not repeat the most recent behavior).
Thus, the situations that both the host and the visitor faced were often different. By
analyzing the detailed behaviors that the participants had both unconsciously and
consciously carried out, we wanted to find out the regular patterns of people’s interaction

when initiating a conversation.

The interaction data was collected with one video camera. We set the camera at the
place from where its field of view could cover the whole interaction of the two people. We
have put some marks on the floor to help with the data analysis such as retrieving distance

and angle parameters.

Host @
! 1.3 Host o },,
| e
Q @ [v O
Visitor Visitor Visitor
P3 P3 P3

(a) initial setting (b) without a subsequent plan  (c) with a subsequent plan

Figure 3.2  Influence of subsequent plan in initiate position

3.1.2. DATA ANALYSIS

Participants took diverse spatial formations and behaviors when they initiated
conversations. For example, the host sometimes directly approached and greeted the

visitor, saying, “Welcome, may I help you?” in the central area (Figure 3.2-b); in other

19



Measuring Communication Participation

cases the host moved to the side of the visitor and only spoke first when he/she reached a
position near the visitor (Figure 3.2-c). To retrieve the systematic patterns in such
initiations of conversation, we observed the position and timing of the kost’s performance:
(1) how to initiate conversation (initiation behavior), (2) where to initiate conversation

(initiation position), (3) where to talk (talking position), and (4) how to talk (utterances).

3.1.2.1. PATTERNS OF INITIATION BEHAVIOR

In our preliminary analysis of how the Aosts behaved, we found that their choice
of initiation behavior was influenced by two factors: visibility and plan. For example,
most hosts directly approached the visitors when the visitors noticed them or when the
hosts did not have a plan. On the other hand, most hosts approached the place where both
the visitor and the next target (e.g., product or a route to the next location) are visible
when the hosts had a subsequent plan and the visitors did not notice the host. From these
observations, we coded all situations to scrutinize the differences in the host’s behavior
patterns. We used Cohen’s Kappa, an index of inter-rater reliability that is commonly
used to measure the level of agreement between two sets of dichotomous ratings or scores
[80]. We asked two coders who have no knowledge about robotics and HRI to analyze
the collected data. They did not participate in the data collection experiment and did not
know about the purpose of the collected data. They were only told to analyze the data
based on their own cognition. First, the two coders classified visibility into two cases: the
visitor noticed the host (noticed) and the visitor did not notice the host (unnoticed).
Moreover, we analyzed the initiation behavior, which coders classified into two cases:

approach to visitor and approach to a place where both visitor and target are visible.
Cohen’s Kappa coefficient from the two coders’ classifications was 0.87 for
visibility and 0.84 for initiation behavior, indicating that their classifications were highly
consistent. After the classifications, to analyze the consistent trajectories for modeling,
the two coders discussed and reached a consensus on their classification results for the

entire coding process.
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Modeling Initiation of Conversation

Table 3.1 Analysis of initiation behavior

Initiation behavior
Scenario Plan Visibility Approaching | Approach to a place where both
visitor visitor and target are visible
With plan Noticed (18/50) 18 (100%) 0 (0%)
Shop (50 cases) Unnoticed (32/50) 3(9.3%) 29 (90.7%)
(100 cases) | Without plan | Noticed (16/50) 16 (100%) 0 (0%)
(50 cases) Unnoticed (34/50) 34 (100%) 0 (0%)
With plan Noticed (24/50) 21 (87.5%) 3 (12.5%)
Meeting (50 cases) Unnoticed (26/50) 8 (30.7%) 18 (69.3%)
(100 cases) | Without plan | Noticed (29/50) 29 (100%) 0 (0%)
(50 cases) Unnoticed (21/50) 21 (100%) 0 (0%)
@ ] Notice? N—0> sub‘szzfllent : &h Approach and
7 plan? greet
l,Yes l Yes
Greet immediately Form O-Space and greet
I I
End

Figure 3.3  Choice of initiate timing and position

The coding results are shown in Table 3.1, which confirms our observation. We
found that when the visitor did not notice the host’s arrival when the host had a
subsequent plan, most hosts tended to choose a behavior by considering their subsequent
plans regardless of their scenario. In addition, at this time the host formed a spatial
formation with the visitor while considering the target product, in a way similar to using
O-space [37]. O-space is a convex empty space surrounded by the people involved in a
social interaction, where every participant looks inward into it to share attention to the
same product, and no external person is allowed in this region. The Aosts always moved
toward the visitors to greet them when they did not have subsequent plans in both
scenarios; even if the hosts did have subsequent plans, most moved to the visitors when
they were noticed by the visifors. As shown in Figure 3.3, in summary, we found that the
choice of initiation behavior was influenced by whether the hosts had a further plan to

explain something to the visitor. However, this choice is also influenced by visibility. 1f
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the visitor noticed the host within a certain distance, the host moved to the visitor to

initiate the conversation.
3.1.2.2. INITIATION POSITION

In our preliminary analysis of the timing of the initiation of the Aosts, we found
that their position was influenced by the greeting pattern and the position relationships.
For example, when the visitors were noticed by the hosts, the hosts immediately greeted
the visitors as they approached, but some hosts greeted the visitors after approaching the
visitors when they were far away. Moreover, if the visitors were not noticed by the hosts,
the hosts approached the visitors differently, depending on their initial position

relationships.
Host g‘l"""\‘

Visitor OViSitOl‘

(a) Greet immediately (b) Greet after apporaching

Figure 3.4  Detailed analysis of initiation position in notice category
From these observations, we coded the host’s greeting patterns to scrutinize the
differences in their behavior patterns. Again, the two coders classified the greeting
patterns into two cases separately for both noticed and unnoticed case: the host greets
visitors immediately (Figure 3.4-a), the host greets visitors after approaching them
(Figure 3.4-b); the host approaches from the frontal direction and then greets, and the

host approaches from the non-frontal direction and then greets.

Cohen’s Kappa coefficient from the two coders’ classification was 0.93 for
noticed and 0.84 for unnoticed for greeting patterns, indicating that their classification
was highly consistent. After classification, to analyze the consistent trajectories for
modeling, the two coders discussed and reached a consensus on their classification results

for the entire coding process.
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Initiation
distance

Visitor

Figure 3.5 Initiation distance and initiation angle
We further analyzed the position relationships between the host and visitor. First,
we measured the distance (initiation distance) and angle (initiation angle) (Figure 3.5)
when the host attracted the attention of the visitor by saying, “Excuse me” or “Welcome,”
because the position relationship in this timing is essential to understanding how the host

initiates participation.

In the noticed category, we found that the initiation distance is different
depending on the scenario and greeting patterns. In the shop scenario, the average for
initiation distance was 2.2 +/- 0.2 m and 2.5 +/- 0.3 m for “greet immediately” and “greet
after approaching.” In the meet scenario the average of initiation distance was 3.3 +/- 1.5

m and 6.2 +/- 1.0 m for “greet immediately” and “greet after approaching.”

Our interpretation is that the sost immediately greets the visitor when the distance
from the visitor is lower than a certain distance, but the 4ost does not immediately greet
the visitor when the distance from him/her is greater than a certain distance when the
visitor notices the host. Note that the initiation angle is not measured in the noticed

category because the visifor and the host face each other.

On the other hand, in the unnoticed category, the initiation distance was not
influenced by the scenario. In the shop scenario, the average of the initiation distance
was 2.0 +/- 0.1 m and 1.5 +/- 0.3 m for “approach from frontal” and “approach from non-
frontal” directions, respectively, and in the meet scenario the average of the initiation
distance was 2.0 +/- 0.6 m and 1.6 +/- 0.4 m for “approach from frontal” and “approach

from non-frontal” directions, respectively.

Since the initiation distances in “approach from frontal” and “approach from non-
frontal” directions were obviously different, we measured the initiation angle to find the

extent of these two greeting patterns. In the “approach from frontal” category, the
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maximum angle between the vector from the visitor to the host and the visitor’s
orientation was 55° on the left and 60° on the right side in the shop scenario and 65° on
the left and 50° on the right side in the meeting scenario. On the other hand, in the
“approach from non-frontal” category, the ranges of minimum to maximum angle
between the vector from the visifor to the host and the visitor’s orientation were 55~120°
and 60~130° on the left and right sides in the shop scenario and 65~130° and 50~135° on
the left and right sides in the meeting scenario. The minimum of this angle was the same
as the maximum in the “approach from frontal” cases.

Table 3.2 Analysis of initiate position (distance and angle) and distance to talk

Initiate Initiate angle Talk
Scenario | Visibility Greeting pattern
distance (maximum) distance
Notice Greet immediately (16/34) | 2.2 +/-0.2 -1 0.7+4/-0.1
(34 cases) Greet after approaching (18/34) | 2.5+/-0.3 -| 0.8+4/-0.4
| Not notice Approach from frontal (18/66) | 2.0 +/- 0.1 55~60 | 0.7 +/-0.1
cases
(66 cases) | Approach from non-frontal (48/66) | 1.5+/-0.3 120~130 | 0.7 +/-0.2
Notice Greet immediately (42/53) | 3.3 +/-1.5 -1 0.7+4/-0.2
Meeting
(53 cases) Greet after approaching (11/53) | 6.2 +/- 1.0 -1 1.2+4/-0.5
(100
| Not notice Approach from frontal (17/47) | 2.0 +/- 0.6 65~50 | 0.8+/-0.4
cases
(47 cases) | Approach from non-frontal (30/47) | 1.6 +/-0.4 130~135 | 0.6 +/-0.1
Host Host
Host @ ost
Host @
e Host

G

Visitor

(a) From front direction (b) From non-front direction

Figure 3.6 Detailed analysis of initiation position in unnoticed category
We conclude that the /osts chose their positions not only considering the distance
but also the direction, depending on the position relationships. As shown in Figure 3.6-a,
when the hosts came from the visitor’s frontal side, they always went straight toward the
visitor. When the hosts came from behind the visitors (Figure 3.6-b), instead of going

toward the visitors, the hosts went to their side to make sure that they were in the visitors’
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field of view before starting to talk. In addition, the distance at which they started to greet

the visitor was influenced by whether the /ost came from the visitor’s frontal side.

3.1.2.3. TALKING POSITION

Next, we measured the position relationships between the hosts and the visitors
when they started to talk (e.g., explaining products or leading movement) in each
category. As a result, the host kept walking toward the visitor while greeting until the
host was within a proper distance for talking to the visitor. We found that this distance,
which averaged about 0.7 m, was common to both scenarios, except for the “greet after

approaching” category in the meeting scenario.
3.1.2.4. ANALYZING UTTERANCES

Finally, we investigated how the host starts to talk with the visitor. We found that
the utterances the host used to initiate the conversation were influenced by whether the
visitor was considered to participate in the conversation or not. After the visitor noticed
the host’s arrival, the host greeted the visitor with an expression like “Welcome.” It
seemed to them as if they had already agreed to participate in a conversation. We called
this mental agreement the participation state. When the host initiated the conversation
from the side of the visitor without making eye contact, the /ost first needed to attract the
visitor’s attention. This situation is called visitor not participating in the conversation.
Consequently, when the host was noticed by the visifor or was coming from the frontal
direction of the visitor within a certain distance, the visitor was considered to be
participating in a conversation with the host, and thus the host needed to make an
utterance immediately. When the host was coming from the non-frontal direction of the
visitor within a certain distance (“Approach from non-frontal” case in Table 3.2, 48 trials
in shop scenario and 30 trials in meeting scenario), only the /ost was considered to be
participating in a conversation toward the visitor (but the visitor was not yet participating).
It is not necessary for the host to utter something at once. However, to make the visitor

participate in the conversation, the host first needs to either adjust the spatial formation
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with the visitor or say a phrase like “Excuse me” to attract the visitor’s attention (31/48
trials in shop scenario and 22/30 trials in meeting scenario).

We found that the above phenomena were shared by both scenarios, except for the
threshold distance when they started a conversation. We concluded that the basic

phenomena in initiating conversation were common among scenarios and environments.
3.1.2.5.SUMMARY

In this data collection, we conducted our observation experiment in a simple lab
situation. For meeting scenario, we consider that the environment is as the same as the
real world and the situation is very common. While for the shop scenario, the decoration
of our shop is simple and not all the participants had training or experience in how to
behave as a shopkeeper in a shop. However, our purpose is to find common human
behavior when initiating conversation instead of shopkeeper-specific behavior. We
consider that it is appropriate to assume that the participants have the common sense
needed to naturally initiate conversation with others.

We found four key points for initiating conversations: patterns of initiation
behavior, initiation position, talk distance, and utterance. Moreover, we found several
factors that influence them: scenario, plan, visibility, and greeting pattern. Patterns of
initiation behavior are influenced by plan and visibility (situation dependent); initiation
position and talk distance are influenced by scenario, visibility, and greeting pattern
(situation and environment dependent). Utterances are influenced by greeting pattern

(situation dependent).
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3.2.A ROBOT THAT ADDRESSES INITIATION PROCESS

We implemented our model in a robot so that it appropriately addressed the
initiation of conversation, i.e., choosing an appropriate position to start talking with

appropriate timing.

Motion Capturing System
K
Robot Controller
_Spatial Formation Recognition
v
"State Controller
Robot’s Partner’s Partner’s
Participation Participation focus of
L State State /. attention
v v
Spatial Formation Utterance Gesture
Controller ’ Controller J Controller J
3
Robot

Figure 3.7  System configuration

3.2.1. GENERAL FRAMEWORK

We used a development framework that we had used successfully before to
control the robot automatically [81]. Figure 3.7 shows an outline of our framework,
which has three components: a humanoid robot, a motion capture system, and a robot
controller (software). Control of the robot is carried out automatically without an operator.
The spatial formation recognition function uses as input the position and orientation
information of the robot, human and target from the motion capture system to recognize
the spatial formation. The state controller receives the information from the spatial
formation recognition and sends the state information to the spatial formation, utterance,

and gesture controllers. The spatial formation controller calculates the target position for
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the robot every 100 ms and then generates and sends commands that consist of forward
velocity and rotation velocity to the robot automatically to control its movement. The
developer writes commands in advance with a markup language that can both control the
robot’s gesture and utterance, and the robot automatically uses them according to the

information from the state controller [81].

7 S
Only Partner Only Robot
participating participating

: l
Reactive
- - adjustment of Draw
) Proactive spatial formation attention
Not adjustment _|
participating of spatial
L formation

Both participating

-
Figure 3.8 Flow of initiating conversation
Figure 3.8 shows the robot’s flow for initiation of conversation. There are two
paths that can be taken until the conversation starts. In one case, the robot initiates
participation. It approaches, stops at an appropriate position (proactive adjustment of
spatial formation), and attracts the visitor to participate in the conversation with a

drawing attention action.

In the other case, the visitor initiates the conversation. While the robot is moving
to a certain position (for proactive adjustment of spatial formation), the visitor prepares
to initiate the conversation. Thus, the visitor’s participation state changes to participating
first, and then the robot adjusts its spatial formation to be appropriate for the participation

state. In this case, it performs a reactive adjustment of spatial formation.

3.2.2. HARDWARE

We used Robovie-II, a 1.2-m-tall humanoid robot with a 0.3-m radius that is

characterized by its human-like body expressions. It has a 3-DOF head and 4-DOF arms.
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Its mobile base is equipped with wheels. Its maximum speed is about 0.7 m/s. And in our

experiment we set the maximum speed of the robot as 0.5m/s for security reasons.

Since our research focus is to confirm our model’s validity, we used a motion
capture system as the sensor input. The motion capture system acquires body motions and
outputs the position data of markers to the system. It outputs the data in real time with a
100-ms output cycle, and the error is less than 2 mm. Twenty-three markers were placed
on the human and robot bodies, and four markers were attached to each product that was

used for a subsequent plan.

3.2.3. SPATIAL FORMATION RECOGNITION

3.2.3.1. PARTICIPATION STATE

We define the visitor’s and robot’s participation states to indicate whether the
human and the robot are participating in a conversation. We define the participation
states of the robot and the human as PSg and PSu. When the robot is participating in a
conversation, PSr =1; otherwise, PSk =0. When the human is participating in a

conversation, PSg =1; otherwise, PSy =0.

We also define a joint participation state to show the relationship between the
robot and the visitor in the conversation as PS; (i.e., PSr, PSu). There are four state

variables of the joint participation state in the implementation.
° No one participating

This state variable, which indicates a situation where neither the robot nor the

visitor is participating in the conversation, is defined as PS;= (0, 0).
. Only robot participating

This state variable indicates a situation where only the robot is participating in a
conversation with the visitor, i.e., PS;= (1, 0). Although the robot is considered to be
participating in a conversation with the human, the human does not realize that the robot

is approaching. In this case, the robot is allowed to greet the human, but it can also adjust
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its position to a better place instead of talking immediately. In addition, in this state, the
robot should say something like “Excuse me” to draw the human’s attention and initiate
conversation. As the human starts to participate in the conversation, the robot begins to

greet the human.
. Only visitor participating

This state variable indicates a situation where only the visitor is participating in a
conversation with the robot, i.e., PS;= (0, 1). This means that only the human is
considered to be participating in a conversation with the robot. It is possible that the
visitor recognizes the robot and wants to say something to the robot before the robot
greets him/her. However, as we found in the observation experiment, implicit behaviors
always come before the explicit ones. Meanwhile, before the explicit contact (like saying
a word), implicit behaviors such as standing position, body orientation and gaze would be
established first. Since in our model the participation state could be detected by
analyzing the spatial formation, the robot would always realize the visifor’s intention and
participate in the conversation at once. In this case, the robot must adjust the spatial

formation to participate in the conversation and greet the human.
. Both participating

This state variable indicates a situation where both the robot and the visitor
recognize the conversation possibility and are paying attention to each other. We record it
as PS;= (1, 1). This means that since both the robot and the human are participating in the

conversation with each other, the robot should immediately greet the human.

Dialogue act tags have been annotated for each phrase in a database of dialogue
between several pair of speakers, according to the following set, based on the tags
proposed in [40], taking into account dialogue acts such as affirmative or negative
reaction, expression of emotions like surprise or unexpectedness, and turn-taking

functions.
3.2.3.2. PARTICIPATION ZONE

Estimation of the participation state is a key component of this study. From our

observations of human interaction, we found that people initiated conversation (a) when
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their gaze met within a certain distance and (b) inside the visitor’s field of view within a
certain distance when the visitor didn’t notice the other’s arrival. From these observations,
we hypothetically developed a participation zone that consists of three parts: gaze, sight,
and front zones. The gaze zone is the space established by one’s gaze; if two people are in
each other’s gaze zone (their gazes meet), they perceive an obligation to participate in a
conversation. The sight zone is a cone-shaped space established in front of a person to
represent one’s sight; if one person wants to initiate participation with another, he must
enter the visitor’s sight zone first (when their gaze does not meet). The front zone is an
obtuse fan-shaped space established in front of a person to represent one’s frontal side; if
a person enters the visitor’s sight zone and keeps the visitor in his own front zone, he
perceives an obligation to participate in a conversation. When both people enter each

other’s front zones, they both perceive an obligation to participate in a conversation.

Gaze

H . . Human Robot
uman orientation Robot ‘ 30 deg .
j> Gaze
30 deg orientation
(a) gaze zone
Human
2m
60 deg} Body
\_ orientation 270 deg orientation /
Sight zon v f ront 70 ne
(b) sight zone (c¢) front zone

Figure 3.9 Participation zone
With the three participation zones defined above, it is possible to estimate
whether a person is participating in a conversation with another, and thus to determine the

proper initiation pattern, initiation position and utterance.
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Next, we report the method of estimating participation zones. In addition,
estimation of the visitor’s focus of attention is also needed when the host has a
subsequent plan. The parameters we use below are derived from our observation
experiment or models that were used successfully in previous research efforts. As
reported in Section 3.1.2.5, parameters for gaze zone are situation- and environment-
dependent. Even though the front zone and the sight zone are independent of the situation
and the environment, it may also be necessary to adjust their parameters to position the
robot.

e [Estimation of participation zone

Since it is not easy to detect a person’s gaze accurately, we used a simple
technique that analyzes the person’s head orientation instead. Figure 3.9-a illustrates the
gaze zone, which is set as a 30° cone-shaped area (parameter was adjusted according to
the accuracy of our motion capture sensor) in front of a person’s (or robot’s) head within
a changeable distance. When the robot is in the human’s gaze zone, we assume that the

human is looking at the robot and realizes the robot is approaching.

We use Eq. 1 to calculate whether the robot is in the human’s gaze zone:
IsInGazeZone(P,, P, ,0,;) =
{1 Dist(P,, P,) < InitiateDistancecez and| Angle(6, , ,66)|<30deg (1

0 (otherwise)

where Pris the position of the robot in the environment near the person and Py is
the position of the person. Angle(6r.,p:, Oc) is a function that indicates the constraint of
the human’s gaze orientation. We used /nitiateDistanceg.., which we analyzed in Section
3.1.2.2, as the length of the gaze zone and set it to 2.5 m in the evaluation experiment
based on our observations (initiation distance of Greet after approaching in shop scenario
in Table 3.1). O is the human’s gaze direction. Parameter Dist(Py, Pg) is in the x-y
coordinate, and Angle(@p,p:, OG,) is in the x-y-z coordinate. If the value of the position of

robot Pris not 0, the robot is in the human’s gaze zone.

We set up precise parameters to define the sight zone from our observation results

(initiation distance and initiation angle of Approach from non-frontal direction in Table
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3.1), and thus the zone was set to a 270° fan-shaped area in front of the body of a person

(or robot) within a 1.5-m distance (Figure 3.9-b).

We defined Eq. 2 to calculate whether the robot is in the human’s sight zone:

IsInSightZone(P, , P, .0, )=
{l Dist(Py , Py) < InitiateDistancesign and | Angle(0,, , ,6) |< (InitiateArglesign | 2)

2

0 (otherwise)

where we use InitiateDistancesign: (1.5 m) and InitiateAnglesign: (270°), which we
analyzed in Section 3.1.2.2, as the length and angular region of the sight zone. All of the

parameters here are in the x-y coordinate.

We set-up precise parameters to define the front zone from the social distance
[27], observations reported in Section 3.1.2 (initiate distance and initiate angle of
Approach from frontal in Table 3.1), and the preliminary tests. Accordingly, the zone was
set to a 120° fan-shaped area in front of the body of a person (or robot) within a 2.0-m
distance (Figure 3.9-c).

We defined Eq. 3 to calculate whether the robot is in the human’s front zone:
IsInFrontZone(P,,P,,6,) =
1 Dist(F,, Fy) < InitiateDistancerron and| Angle(6, , ,6n)|< (InitiateAnglerron/2)
{0 (otherwise)
3)
where we use InitiateDistanceryon: (2.0 m) and InitiateAnglerion (120°), which
were analyzed in Section 3.1.2.2, as the length and angular region of the fiont zone. All of

the parameters here are in the x-y coordinate.

When these conditions are satisfied, the participation state changes from not
participating to participating. However, the opposite is not true; since the transition of
the participation state from participating to not participating needs verbal interaction, it

is not controlled in this estimation module.

3.2.3.3.VISITOR’S FOCUS OF ATTENTION

As reported in Section 3.1.1, whether the visitor is paying attention to the target
product, which the robot would explain as a subsequent plan, influences the robot’s

standing position. Therefore, we need to recognize the visitor’s focus of attention.
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We used a previously reported method [37] that identifies an object in
transactional segments as the focus of implicit attention. A person’s transactional
segment is defined as the space in front of him/her when there is no obstacle between the
person and the object. When the angle between the forward direction of the person’s body
and the vector from his/her body center to an object is less than 90° and the distance
between him/her and the object is less than 2 m, the object is identified as the person’s

implicit attentional target (Figure 3.10).

Humannz'\_| 2m

s"‘-\‘Product 90 deg Body

I:I orientation /

. transactional
T segment

Figure 3.10 Transactional segment
If an object is in a person’s transactional segment, we assume that the person is
paying attention to it. We used Eq. 1 to calculate whether an object is in the person’s

transactional segment:

IsInTransactionalSegment(P, , P, ,0,, ) =
{1 Dist(P,, P,) < 2000mm and | Angld@,, , ,6,)I<90deg 4)

0 (otherwise)

Here, Po is the position of an object in the environment, Py is the person’s
position, 6p, p,is the vector from the person’s body center to Po, and 6y is the person’s
body orientation. Dist(Puy, Po) is the distance between the object and the person.
Angle(@p.,p,, 1) 1s the angle between the vector from Py to Po and the person’s body
orientation. All of the parameters here are in the x-y coordinate. If the value of the
position of object Pois not 0, the object is in the human’s transactional segment and the
human is paying attention to it. Here, we only used this simple method to estimate the
person’s focus of attention due to our sensor and experimental setting. This model gives

the robot the basic ability to provide services according to the visitor’s focus of attention.
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In some environments where objects are placed tightly, the recognition precision is one
limitation of the model. However, one could easily use other methods for the task, since

many researchers have already addressed this issue.

3.2.3.4. RECOGNITION OF THE PARTICIPATION STATE

We recorded the situation where the robot is in the human’s gaze, front, and sight
zones as H_Gaze, H Front, and H_Sight, and the situation where the human is in the
robot’s gaze as R_Gaze, R_Front, and R_Sight. Table 3.3 shows the relationship among

Jjoint participation state PS; and the three participation zones.
Table 3.3 Definitions of Joint Participation State

H Gaze | H Front | H_Sight Else

R_Gaze (1,1) (1,1) (1,0) (0,0

R _Front (1,1) (1,1) (1,0) (0,0)

R_Sight 0,1) (0,1) (0,0) (0,0)

Else (0,0 (0,0 (0,0 (0,0
3.24. SPATIAL FORMATION CONTROL

A conversation is always carried out when both people perceive themselves to be
participating in it. When a robot attempts to initiate a conversation with a visitor, the most
important thing is to ensure that both the visitor’s and its own participation state are set
to participating. We created a spatial formation controller to control the robot’s position

and orientation to achieve this.

This unit controls the robot’s standing position with a motion capture system. The
system seeks the optimal standing position for the robot in a search area. A cell
establishing a 20 x 20-cm standing position divides the search area (Figure 3.11). This
module estimates the values of all cells in the search area and selects the one with the
highest value as the optimal standing position. Then the robot goes directly toward the

position, stops and adjusts its orientation. The position is updated every 100 ms.
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Figure 3.11 Searching grid Figure 3.12 Reactive adjustment of spatial formation

From our observations of human-human interaction, we found the following: (a)
The host kept facing the visifor and gazing at him/her within a certain distance when the
visitor was participating; (b) when the visitor was not participating in the conversation,
people always went to the position from where they could easily explain the target
product or direction to the visifor if necessary. Thus, we created two models to control the
spatial formation.

e Reactive adjustment of spatial formation

When the visitor is participating in the conversation, the robot needs to not only
immediately participate in it but also get closer to the visifor and turn to him/her. We
define this adjusting of position and orientation as the reactive adjustment of spatial
formation. When the visitor is participating in the conversation, the robot should
immediately start this adjustment, even if it has a previously made plan. We identified

three rules for the reactive adjustment of spatial formation (Figure 3.12):

1) The robot should be at a position that allows itself to remain in the sight

zone of the visitor.

2) Our observation on human-human interaction in Section 3.1.2.2 showed
that the proper talking position is about 0.7 m, which ranges from 0.5 to 1.2 m. However,
it is risky to place the robot too close to the visitor. Thus, in our implementation, we set
the robot at a position that maintains a distance of about 1.1 to 1.5 m to the visitor (used

successfully earlier [37]).

3) The robot should not turn to other orientations. It must keep facing the

visitor to keep participating.
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We calculated the distance between the robot position and each cell so that the

robot could choose the nearest cell as its target position.
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Figure 3.13 Proactive adjustment of spatial formation

We calculated the values of each cell for reactive adjustment using Eq. (5):
ValueReactiveAg'ustment (PH > PR > PT s HH) =
{1 IDist(P,,P,) Dist(P,, P,)<1500and | Angle(6,, , ,6,,) |< 60deg ()

0 (otherwise)

where Pr is the position of each cell, as shown in Figure 3.9. Pr is the temporal

position of the robot. All of the parameters are in the x-y coordinate.

Position Pr of the cell with a maximum value must be chosen as the approaching
target position to which the robot directly moves.

e  Proactive adjustment of spatial formation

When neither the visitor nor the robot is participating in the conversation, the
robot should approach the visitor first. Through our observations we found that the host
tended to approach the visitor while considering whether he had a subsequent plan (29/32
trials in shop scenario, 18/26 trials in meeting scenario, as shown in Table 3.1). Since at
this time the robot has the freedom to choose the location, we define this approach as the

proactive adjustment of spatial formation, which has two rules (Figure 3.13):

1) When the robot only needs to greet the human without referencing an
object or a place (without plan), it can simply go to the visitor’s front zone when
approaching from the front. Otherwise, it needs to enter the visitor’s sight zone and keep

a certain distance (1.1-1.5 m).

We defined proactive adjustment in the without plan cases by Eq. 6:
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ValueracziveM’juszmem,Wilhauzp[an (PH H PR H PT > eH) =
1 /Dist(Py,P;) (Dist(Py, F,) <2000 and | Angld0,, , ,0,)|< 60deg) (6)
or (1100 < Dist(Py , ;) <1500 and | Angl«0, , ,0,)[>60deg)

0 (otherwise)

where all of the parameters are in the x-y coordinate.

Position Pr with maximum value must be chosen as the approaching-target
position.

2) When the robot needs to introduce some objects or places (with plan), it
should choose the greet position that will keep the target object (or direction) visible to
both the visitor and itself after the conversation has started. In this paper, we set this

target in the field of view (270° from our observations) of both the visitor and the robot.

We defined Proactive adjustment in the with plan cases by Eq. 7:
ValueProactiveﬂd/’ustmem,Withplan (PH H PR H PT > HH s 0[? ) =

ValueProactiveAd/’usrment,Withoutp/an (I)II H PR H PT H gII ) (7)
| Angld6,,,0,, , )l<135degand| Angld6,,0, , )|<130deg

0 (otherwise)

where Po is the position of the target object. Gzp is the robot’s body orientation.

All of the parameters here are in the x-y coordinate.

Position Pr with maximum value must be chosen as the approaching-target

position.
3.2.5. UTTERANCE AND GESTURE CONTROL

We controlled the robot’s utterances with a simple utterance controller that
manages four functions: greeting, drawing attention, guiding, and explaining. A human
developer pre-wrote the sentences, and the robot automatically uses them based on
information from the state controller. The robot greets visitors when both of their
participation states are participating and draws attention when only the visitor is not
participating. When both are participating in the conversation, if the visitor is paying

attention to the target product, the robot first explains it or guides the visitor to it.
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The gesture controller accepts two types of input. One is from the state. When the

state is participating, this controller makes the robot maintain eye contact or joint

attention with the visitor. As the other type, it also receives input from the utterance

controller to synchronize pointing gestures with utterances.
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3.3. EXPERIMENT

We conducted an experiment that included both system and user evaluations to
verify that our proposed model is useful for a robot to initiate conversation. From the
viewpoint of our model, the two scenarios share the same patterns for initiating
conversation, and thus either of them would be sufficient for this evaluation. In the shop
scenario, the environment and the situation were more complex than that in the meeting
scenario, making it possible to test the model with more varied situations. Accordingly,
we decided to use the shop scenario as our evaluation experiment. The experiment was
conducted in a lab room, under the assumption that it was a small computer shop with
three products (Figure 1.1). A visitor visits this shop by appointment with a sales-robot to
receive an explanation of one of the products. When he visits the shop, he waits for the
sales-robot. When the robot arrives, they meet and initiate conversation. Finally, the robot
explains the product. This setting places the focus of the evaluation on the interaction for
initiating conversation. As we explained in Section 3.1.2.5 and Section 3.2.3, the
parameters of the model we used in this experiment may need to be adjusted when using
it in some other situations and environments. However, the knowledge of participation
zone and initiation of conversation remains the same. The aim of the experiments is to
investigate the validity of an initiation model that considers such regular patterns rather
than the specific situation-dependent parameters. In this regard, we believe that using this

simplified typical shop scenario is sufficient to show the effectiveness of the model.

3.3.1. HYPOTHESIS AND PREDICTION

From our observations, we found that people’s behaviors during the initiation of
conversation are influenced by such factors as the interlocutor’s participation state.

Therefore, we developed this hypothesis:
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Hypothesis: Robot implemented with the participation state models would
provide a better impression of interaction behaviors and make the participants prefer it

better than robots that not implemented with the participation state models.

When using the proposed model, we assume that the robot can maintain its
participation state effectively by adjusting its positions and timings as it greets and
explains things to participants. We use appropriateness of the standing position when the
robot greets the visitor, and appropriateness of the standing position when the robot
explains the target product to evaluate the robot’s behavior in the conversation. On the
contrary, a robot using alternative methods that fail to consider the participation state
might fail to adjust these positions and timings. Therefore, our hypothesis argues that if a
robot considers the constraints for maintaining the participation state, as our proposal

does, it can provide better impressions than alternative methods.

For comparison, we prepared two alternative methods: guide and best-location.
The former method makes the robot initiate the conversation as quickly as possible by
approaching a target within a certain distance. The latter method makes the robot stand at
an appropriate location for explaining a product as quickly as possible before initiating
the conversation. The details of the alternative methods are described in Section 3.3.2.

Based on the above idea, we made this prediction:

Prediction 1: The proposed model for initiating conversation will outperform the
alternative methods in the following areas: feeling of appropriateness of the standing
position when the robot greets the visitor, appropriateness of the standing position when

the robot explains the target product, and overall evaluation.

In the data collection, the timing of the first utterances by people to initiate
conversations depended on situations such as visibility; for example, they start to greet
when the target notices them even if the distance between them seems far (“Greet

immediately” case in Table 3.2, 16/34 trials in shop scenario, 42/53 trials in meeting
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scenario), although they approached before greeting when the target did not notice them.
The proposed model considers such visibility to control the robot behaviors. If we
successfully implement our ideas, our proposed method will make the robot behave as
people do. On the contrary, the alternative methods that fail to consider such visibility
will require more time to prepare the robot to speak first because they only consider the
positions of the robot and the target, not visibility, in initiating conversation. This means
that the robot would not greet the participant even the participant had already paid
attention to it until it gets to a position closer to the participant. This may make the
participant wait for the robot, which can obviously be seen as a waste of time. This may
influence the participant’s impression on the robot’s appropriateness of greet position.

Accordingly, we predict that:

Prediction 2: Our proposed model of initiating conversation will decrease the

time from the beginning to the first utterance compared to the alternative methods.

In the data collection, the timing of explaining or guiding also depends on the
situation; they started explaining or guiding after approaching the target if they were far
away. The proposed model considers such spatial settings to control the robot behaviors.
If we successfully implement our ideas, our proposed method will make the robot behave
as people do. On the contrary, the alternative methods will create different spatial settings,
so the explaining or guiding timing will be different. In the best-location method, since
the robot speaks first after reaching the proper position for explaining the product, we
predict that such timing will closely follow the timing of the greeting. On the other hand,
in the guide method, since the robot speaks first after reaching the target, sometimes the
greeting position is far from the proper position for explaining the product. Such timing
will be far from acceptable greeting timing. Thus, this time can partially and indirectly
indicate the appropriateness of the choice of the explaining position and may influence

the participant’s impression of the robot. We predict that:
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Prediction 3: The proposed model of initiating conversation will decrease the

time from the end of greetings to explanations compared to the alternative methods.

If predictions 2 and 3 hold, the total interaction time with the robot that uses the
proposed model will be less than the total interaction time with the robots that use the

alternative methods. Based on these two predictions, we further predict that:

Prediction 4: The proposed model for initiating conversation will decrease the

total time compared to the alternative methods.

3.3.2. CONDITIONS

The proposed model is compared with two alternative methods, which do not use
the knowledge proposed in the paper but exploit other existing knowledge to provide the
best interaction in the scenario.

a) Proposed method (proposed): The robot behaves based on our proposed
model. It first approaches the visitor while considering the subsequent plan, and initiate
conversation with the visitor at the proper timing according to the participation state of
both of itself and the visitor. The robot would then judge if it is necessary to guide the
visitor to pay attention to the target product by analyzing the visitor’s focus of attention
and then behave accordingly. At last, it explains the target product to the visitor from a

proper position and orientation.

b) Always greet and guide (guide): In this strategy, although the robot does
not have a complicated model for conversation initiation, it behaves as politely as
possible and initiates the conversation as quickly as possible. It first goes directly toward
the visitor. When the distance between them is reduced to 2 m, the robot stops, greets the
visitor, and asks the visitor to look at the product. As the visitor approaches the product
and looks at it, the robot goes to the best location for explaining the product, i.e., the

location based on O-space, and explains it.

c) Always start the interaction at the best location for explaining (best-
location): In this strategy, the interaction is designed to be as simple and quick as
possible. When the robot finds a visitor, it immediately stands at an appropriate location

for explaining the product, i.e., the location based on O-space, and starts to talk.

43



Measuring Communication Participation

In the guide and best-location conditions, we used a previous model [37] in which
the robot chooses a position near the human and the product, while keeping the product
visible to both the robot and the human. We use the following model for the robot to

appropriately control its position:

Valuesesiocaion( Py , Py, Py, Py, 0,,) =
1 /Dist(Py,P;) (1100< Dist(P,,Py)<1300 or1100 < Dist(Pr, Po) <1200
and | Angle(0,,,0;, 5 )|<90degand | Angle6, 0, , )|<150deg

0 (otherwise)

®)

In advance, the experimenter wrote the text for the robot’s utterances in five
categories: (1) drawing attention, (2) greeting, (3) guiding, (4) explaining, and (5) epilog.
In the guide and best-location conditions, the robot says the texts from the greeting,
guiding, explaining, and epilog categories. In our proposed method, the robot always says
the texts in the greeting, explaining, and epilog categories because the decision to say the
texts in drawing attention and guiding are dependent on the visitor’s participating state
and focus of attention. If the visitor is participating in a conversation with the robot
(focusing attention on the target product), the robot doesn’t say the texts in the drawing

attention (guide) category. Otherwise, it says those texts.
The exact utterances the robot spoke are as follows:
Drawing attention: Excuse me.

Greeting: Welcome, my name is Robovie and I'm in charge of PC sales.

(Welcome would be omitted when the robot perform drawing attention first)
Guiding: We have got a new laptop PC over there, please just take a look.

Explaining: Let me show you this laptop PC. We just got it last week, and it is
very popular now. The memory of this PC is 4GB, and its battery life is about 6 hours. In
addition, the price is 100,000 yen normally but it is now on a campaign and only cost
80,000 yen.

Epilog: The introduction of this PC is over. Please just look around in our store at

pleasure.

3.3.3. PROCEDURE
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Fifteen native Japanese-speaking people (seven men, eight women, average age:
27 +/- 11, range from 18 to 56) were paid for their participation in our experiment that
was conducted in a 6 x 10-m room. Due to the visibility limitations of the motion capture
system, the experiment area was restricted to a 3 x 4.5-m area. We used the robot and

motion capture system described in Section 3.2.2.

First, the participants put on the markers of the motion capture system, which was
then calibrated by the experimenter. Then, the scenario and instructions were provided to
the participants, instructing them to evaluate the interaction of the robot from the
standpoint of a shop owner who needed to choose one robot from the candidates. They
played a visitor in various ways so that they could completely judge the appropriateness
of the behavior of each robot. They evaluated three types of robots from the shop owner’s
perspective to let them judge various spatial formations for initiating conversations, since

each method has strengths and weaknesses.

They simulated the behaviors of five types of visitors that decided all by
themselves (as a result, the five types of visitors played by each participants are not all
the same), such as someone waiting in front of the product or someone at the store
entrance, and interacted five times under each condition. In each condition, after
interacting with the robot five times and pretending to be a different visitor in each
interaction, they filled out a questionnaire to rate their impressions. The experiment used

a within-subject design and the order of conditions was counterbalanced.

The experiments were recorded on video together with the motion capture system
(recording the coordinates of the markers). In addition, the recognition results of the
states and the detailed parameters such as positions, distances and angles of both the

robot and the participant were also recorded by the robot system every 100 ms.

3.34. MEASUREMENT
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3.3.4.1.SYSTEM EVALUATION

First, we confirmed the recognition accuracy of the participation state of our
system for both the robot and the visitor using the recorded experimental data. The
system recorded all of the participation states of both the robot and the visitors in each
trial. Thus, the joint participation states were also recorded. To confirm whether the
recognition of the joint participation state was correct, two coders classified the joint
participation states into the four state variables explained in Section 3.2.3 for all of the
trials. The two coders that analyzed the data are two people who have no knowledge
about robotics and HRI, but not the same people who coded the data collection (human
observation experiment in Section 3.1) results. And they did not know about the purpose
of the data and the model proposed in our research. We then compared the coding and

system recognition results.

Second, we confirmed the appropriateness of the robot’s initiating behavior.
Based on the joint participation state, the robot moved and spoke first to the visitor in
each trial. Since the robot spoke first, its visitor quickly realized that the robot wanted to
talk to him/her and thus listened to the robot. Here, it is important to determine whether

the robot spoke first at the proper position and timing.

We asked the two coders who classified all 75 trials whether the robot spoke first
to the visitor at the proper position and timing. For each trial, they classified the position

and timing at which the robot first spoke into two cases: proper and improper.

Third, we evaluated whether maintaining of the participation state was achieved.
As discussed above, after starting the conversation, the robot should continue it until the
end of its presentation. However, sometimes the visitor moved to another place,
disrupting the conversation. For example, the robot showed the visitor the product
(Figure 3.14-a in joint participation state PSJ = (1, 1)), but then the visitor moved toward

the target product and disrupted the conversation (Figure 3.14-b, PSJ = (0, 0)). In this

46



Experiment

case, the robot must reposition itself to adjust the spatial formation (Figure 3.14-c) so that

both are participating in the conversation again (Figure 3.14-d, PSJ = (1, 1)).

Sl

—— 4

Figure 3.14 Discontinuing and re-establishing the conversation
We used the coding results for the participation state to determine whether the
conversation was discontinued in each trial. The coders again classified whether the
conversation was disrupted by the robot or the visitor. We also calculated how long it

took for the robot to re-establish the conversation with its visitor.

3.3.4.2. USER EVALUATION

The user evaluations included both subjective and objective assessments.
° Subjective evaluation

Participants completed a questionnaire for each condition after five interactions
on a simple Likert scale of 1 to 7 that higher ratings are considered to be better. The
questionnaire had the following items: appropriateness of the standing position when the
robot greeted the visitor, appropriateness of the standing position when the robot

explained the target product, and overall evaluation.
° Objective evaluation

In addition to the questionnaire, we focused on the following timings: (1) How
much time does the robot take to initiate the conversation with the visitor? (2) After
greeting, how much time does the robot take to prepare to explain the product? (3) How
much time does the robot take to complete the entire scenario? The system recorded the
time from the beginning to the first utterance, which is the time from the beginning of the
experiment (the time of starting the robot system) to the time when the robot says the first

word to the participant, the time from the end of the greeting to the explanations, which is
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the time from the end of the greeting utterance to the start of the explanation utterance,

and the fotal time, which is the time cost in a whole trial.

3.3.5. RESULT OF SYSTEM EVALUATION
3.3.5.1. RECOGNITION ACCURACY OF PARTICIPATION STATE

Cohen’s Kappa coefficient from the two coders’ classification was 0.83,
indicating highly consistent classification results. After the classification, to analyze the
consistent trajectories for modeling, the two coders discussed and reached a consensus on
their classification results for the entire coding process. Then we compared their coding
results with the system recognition results. We compared the recognition result of the
system and the coding result of the coders and recorded the time of the two result
matches as Tign. Accordingly, we define the rate of system accuracy as

RecognitionAccuracy = Tright [ Tentire 9)

The system’s recognition accuracy of the joint participation state was 90.2% of
the coder’s coding results, proving that with our system, the robot can accurately

recognize its relationship with its visitor.

We analyzed the 10% difference and found that the system correctly recognized
the changes in the participation state; the only difference was the timing of the changes
(Figure 3.15). In the two results, the changing of the joint participation state was the
same, e.g., from (0, 0) to (1, 1). As the joint participation state changes, the timings of
the changes in the two results were sometimes different. We calculated the difference in
the time from its occurrence to its end, and the average was 1.210 +/- 0.399 sec (range

from 0.067 to1.747 sec).
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Coding Result Non participating Only human Both |
System Recognition R |
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Figure 3.15 Difference between coding and system recognition result

3.3.5.2. APPROPRIATENESS OF ROBOT 'S INITIATING BEHAVIOR

Cohen’s Kappa coefficient from the two coders’ classification was 0.91,
indicating that their classification results were highly consistent. After the classification,
the two coders discussed and reached a consensus on their classification results. Their

coding result shows that in 69 trials (92.1%), the robot behaved appropriately.

Eﬁ&@

Robot
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Visitor Visitor Visitor ™
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(a) From non-front  (b) moment of both participating (c) greeting the visitor
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Figure 3.16 Inappropriate cases of robot’s initiating behavior
In the six trials in which they thought the robot failed to behave appropriately, the
robot first approached from the non-frontal direction (Figure 3.16-a). As the robot came
nearer, the visitor suddenly turned around and passed and ignored it (unnoticed). There
was a moment during which both the robot and the visitor were in each other’s frontal

zone (Figure 3.16-b). However, since the visitor moved very quickly, there was a system
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delay before the robot spoke. When the robot finally greeted the visitor, it was a little too
late (Figure 3.16-c).

3.3.5.3. MAINTAINING THE PARTICIPATION STATE

The classification results of the two coders for the participation state showed that
in 62 of 75 trials the conversation was disrupted, i.e., the joint participation state PS;
changed from (1, 1) to (0, 0). The coders also classified whether the conversation was
disrupted by the robot or by the visitor. The coding results of the two coders were

identical, showing that in all 62 trials, the visitor moved and interrupted the conversation.

When its visitor moves, the robot should follow him/her to readjust the spatial
formation and thus re-establish the conversation as soon as the visitor stops. We
calculated the time from when the visitor stopped to when both the robot and the visitor
began to participate in the conversation again. The average of this re-establishing time

was 4.613 +/- 1.267 sec (range from 1.500 to 9.800 sec).

3.3.6. RESULT OF USER EVALUATION

We used a Shapiro-Wilk test to preliminary analyze the experiment data, and
confirmed that each set of data is normally distributed (p >.05 in all the data sets) before

conducting further analysis.
3.3.6. 1. VERIFICATION OF PREDICTION 1

Our first prediction was that the proposed model for initiating conversation will
outperform the alternative methods in the following areas: feeling of appropriateness of
the standing position when the robot greets the visitor, appropriateness of the standing

position when the robot explains the target product, and overall evaluation.

For the “overall evaluation” score (Figure 3.17), we conducted a repeated

measures ANOVA and found a significant main effect (F(2,28)=9.125, p=.001, partial n2
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=.395). A multiple-comparison by the Bonferroni method revealed that the score for the
proposed condition was significantly higher than that for both the guide (p=.021) and
best-location (p=.002) conditions. No significant difference was found between the guide

and best-location conditions (p=.5). Therefore, our first prediction was supported.
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Figure 3.17 Overall evaluation
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Figure 3.18 Appropriateness of Figure 3.19 Appropriateness of
standing position when it greeted standing position when it explained

For “appropriateness of standing position when it greeted” (Figure 3.18), a
repeated measures analysis of variance revealed a significant main effect (F(2,28)=4.697,
p=.017, partial n2=.251), but a multiple-comparison by the Bonferroni method showed
only non-significant differences (proposed vs. guide: p=.706, proposed vs. best-location:

p=.058, and guide vs. best-location: p=.199).

For “appropriateness of standing position when it explains the target product”
(Figure 3.19), a repeated measures analysis of variance revealed a significant main effect
(F(2,28)=9.126, p=.001, partial 12=.395). The Bonferroni method showed a significant

difference between the proposed and best-location methods (p=.003), but other
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comparisons were not significant (proposed vs. guide: p=209 and guide vs. best-

location: p=.111).
3.3.6.2. VERIFICATION OF PREDICTION 2

Our second prediction was that our proposed model of initiating conversation will
decrease the time from the beginning to the first utterance (Tinitiae) compared to the

alternative methods.
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Figure 3.22 Average of Tenire
For our second prediction (Figure 3.20), Tiniiae averaged 6.333 sec in the
proposed condition, 8.037 sec in the guide condition, and 15.363 sec in the best-location
condition. We conducted a repeated measures ANOVA and found a significant main

effect (F(2,148)=108.252, p<0.001, partial 12 = .594). A multiple-comparison by the
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Bonferroni method revealed that the Tiuiiae of the proposed condition was significantly
less than that of both the guide (p<.001) and best-location (p<.001) conditions and that it
was significantly less for the guide condition than for the best-location condition

(p=-021). Thus, our second prediction was supported.
3.3.6.3. VERIFICATION OF PREDICTION 3

Our third prediction was that the proposed model of initiating conversation will
decrease the time from the end of greetings to explanations (Tprepare) compared to the

alternative methods.

For our third prediction (Figure 3.21), Tprepare averaged 18.345 sec in the proposed
condition, 23.209 sec in the guide condition, and 14.568 sec in the best-location condition.
We conducted a repeated measures ANOVA and found a significant main effect
(F(2,148)=38.160, p<0.001, partial n2 = .340). A multiple-comparison by the Bonferroni
method revealed that the Tiniiare levels of both the proposed and best-location conditions
were significantly less than that of the guide (p<.001) condition and that it was
significantly less for the best-location condition than for the proposed condition (p=.001).

Thus, our third prediction was partially supported.
3.3.6.4. VERIFICATION OF PREDICTION 4

Our fourth prediction was that the proposed model for initiating conversation will

decrease the fotal time (Tenire) compared to the alternative methods.

For our fourth prediction (Figure 3.22), Tenire averaged 56.459 sec in the proposed
condition, 62.747 sec in the guide condition, and 61.431 sec in the best-location condition.
We conducted a repeated measures ANOVA and found a significant main effect
(F(2,148)=22.464, p<0.001, partial n2 = .233). A multiple-comparison by the Bonferroni
method revealed that the Tenire Of the proposed condition was significantly less than both

the guide (p<.001) and best-location (p<.001) conditions. But the comparison between
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guide and best-location was not significant (p=.708). Thus, our fourth prediction was

supported.

3.3.6.5. SUMMARY

In summary, our proposed system was evaluated as the best method overall
among those compared. Its effect in the overall evaluation can partially be explained by
the difference between the proposed and best-location conditions in the appropriateness
of the standing position when the robot explained the target product. However, this does
not account for the difference between the proposed and guide conditions. And for the
appropriateness of the standing position when the robot greeted the participant, only an
almost significant result (p=.058) between the proposed and best-location conditions
could be found. The results for Tinitiate, Tprepare, and Tentire show that with the
proposed system, a robot can initiate conversation much more quickly than in the other
two conditions and that, moreover, the guide condition outperforms the best-location
condition. In addition, using the proposed system the robot completed the interaction
with the visitor much more quickly than with the other two methods. This may also
partially explain the results of the overall evaluation. We consider that prompt reaction
behaviors from the robot, depending on the participation state, have a strong positive

impact on an interaction.

Thus, our proposed model was evaluated as the best approach.

54



Discussion

3.4.DISCUSSION
34.1. WHEN WILL THIS CAPABILITY BE USED?

We believe that the capability of a robot to naturally initiate conversation is a
major function to be implemented in future social robots. Although many other research
projects have assumed that people and robots have already met and started interaction,
this is generally not the case in the real world. Perhaps at an early deployment phase
robots might not need to initiate interaction by themselves, since people would be
interested in their novelty and approach them. In such cases, robots do not need to deal

with the constraints of spatial configuration in order to initiate interaction.

However, when robots actually do start to work in the real world without
attracting so much attention, people will often not initiate interaction by themselves. In
such cases, robots will often fail to initiate interaction 35]. This problem will be more
serious when the robot has a concrete role, e.g., shopkeeper. The shopkeeper scenario
used in this study is one future situation where a robot is expected to play such a role.
There are many other situations that involve a first meeting, such as a tour guide in a
museum, a shopping assistant, and nursing care in a hospital, all of which have been

considered applications of social robots in past research.

In our observations, we have found that the front and sight zones were stable in
different environments and situations. That means it is possible to use these models for
social robots working in many situations, as mentioned above. As for the gaze zone,
although its parameters are dependent on the environment, we can also easily use it by

first identifying the proper parameters for each situation.

3.4.2. LIMITATIONS
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First, in our experiment, there was only one visitor in the shop, while in a real
shop there might be multiple customers at any given time. A greater number of people in
the environment would create several difficulties, such as obstacles for a moving robot,
determining the target visitor among several people, and interruptions by other visitor
when the robot is approaching the target visitor. In this paper, we did not provide models
to solve this problem. This is certainly a limitation of our model. However, it would be
possible to extend our model by adding several functions provided by other researchers.
For example, when a person becomes an obstacle for the robot that is approaching a
target visitor, the robot would be able to avoid the person by simply using a path-
planning or collision-avoidance mechanism. In such a situation, the robot might need to
keep a distance from other persons as it talks to the target visitor. Overcoming such
limitations would be necessary before adapting our system to more crowded situations.
As for decision making, we need to create a high-layer controller to find the appropriate
target among people. This is out of this research’s scope, but some past research works
such as estimating visitors’ state would be useful for this kind of mechanism. How to deal
with an interruption by other visitors would depend on the robot’s applications; if the
robot is working as a shop employee, it would be better to change the target to the person
and immediately start conversation. If the robot is working in a special service such as
welcoming a VIP, the robot should not change the target. Actually, in the meeting
scenario, when the host started approaching the visitor, staff members of the research
institute sometimes walked through the lobby and passed by. As future work, by further
analyzing these data or conducting additional experiments, we could create such a high-

layer controller to help the robot make decisions when multiple people are in the situation.

Second, the decoration of our shop is very simple and there were only three
products arranged separately. Such situations are commonly found in the real world. For
example, when a robot works as a staff member in a gallery to explain individual
artworks hanging on the wall to the visitors, our model can help the robot to recognize the
focus of the visitor’s attention correctly. On the other hand, there are certainly many
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environments in which several objects exist within the view of a single visitor
simultaneously. For example, in a real shop, the goods might be placed more compactly,
e.g., four laptop PCs on the same desk or dozens of displays hanging on the wall close to
each other. In this case, there might be multiple products in a person’s transactional
segment simultaneously, making the detection of the person’s focus of attention more
complicated. We believe it is not always necessary for the robot to recognize the one
specific object the visitor is looking at; recognizing the aggregation that the visitor is
paying attention to is enough for the robot to provide basic service. Actually, in our daily
life, in many cases it is not necessary for the clerk to know the customer’s focus of
attention at such a precise level. Based on our model, the use of gaze detection would
help the robot to further improve the recognition accuracy of the visitor’s focus of
attention. Even if stable gaze detection is still difficult, such a function enables the robot
to limit the candidates of objects to which the person pays attention. For example, with
such a function the robot might be able to recognize whether the visitor is paying
attention to the apples or oranges, and this could help the robot to provide services more

appropriately.

Third, since our proposed model was tested in a specific scenario, its
generalizability is limited. Perhaps the context affects the preferences for a robot’s
behavior. For example, in a busy business scenario, the always starting interaction at the
best location to explain condition might work better than the proposed model. We believe
that our shopkeeper scenario is rather neutral, so it probably reflects interaction in many

daily scenarios, but this needs verification.

As we mentioned in the paper, the parameters in our model dealt with Japanese
people and our own robots. But when they are adapted, adaptation parameters must be
considered. For instance, factors such as cultures, type of robots and environment would

influence parameters.

One may need to adjust the parameters when using robot for people from other
cultures. For example, when the model is to be used in the countries such as The
Netherlands and Denmark, the average height of people is much taller than Japan. John et
al., suggested that height is a significant determinant of personal space [82], thus we

consider that distance parameters retrieved from our study might need to be adjusted
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when using to interact with people of significant different height to make sure the

interlocutors feel comfortable.

We only evaluated the model with our own humanoid robot, while others may use
other type robots to interact with people. Different appearance could influence people’
feeling and attitudes towards the robots [83, 84]. It is proper to imagine that a robot
which has a lovely appearance of a famous cartoon character such as Mickey Mouse
might easily attract many people to interact with it with joy. While a robot with a horrible
appearance might sometimes frighten some people or make them feel uncomfortable. We
suppose that these different feelings and attitudes caused by the different appearance of
robots might also influence some parameters of the model. For example, we expect that it
might be better to set the talking distance parameter for a horrible robot bigger than that
for a lovely robot, but more evidences are required when one consider adjusting

parameters.

The environment might also have influence on the parameters that used in the
models. For example, when using the models in environments that everyone need to keep
quiet, such as in a museum, library or a gallery, even there are not many people around,
apparently it is not proper for the robot to greet a person from a long distance. It would
also be better to reduce the distances in the models so that the robot could greet and then

talk to other people in a low voice.
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4. INITIATION OF MOTION
INTERACTION:
DISTRIBUTIONAL HANDING

4.1. MODELING DISTRIBUTION BEHAVIOR

In many countries, clerks from shops or companies distribute flyers, coupons, or
pamphlets in shopping malls, museums, or on outdoor streets. The giver initiate
interaction with passersby with his/her handing motion. We modeled the distributing
behavior based on our observations of the handing behavior of people who distribute

flyers in real environments.

People distribute things in various ways. For instance, some passively wait for
pedestrians to take a flyer, and others actively approach pedestrians and offer them flyers.
These different behaviors might have different effects on persuading pedestrians to accept
the objects. In fact, we found that the success rate of the givers’ handing performance
widely diverged between 12.5% and 77.5%. Our main goal is to identify effective

distributing behavior.
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4.1.1. DATA COLLECTION

We collected scenes of flyer-distributing behaviors (a person offers flyers to
pedestrians) by observations in a shopping mall in Osaka, Japan. The area includes a 3-6
m wide corridor that is approximately 70 m long with four shops nearby and one big hall

about 300 m? that connects to a corridor that links the hall to a busy train station.

We collected video and position data of all the people in the area (video data for
our observation and position data for calculating the detailed parameters). Both the
corridor and the hall were covered with our people-tracking infrastructure using 49 3D-
range sensors attached to the ceiling (a combination of Panasonic D-Imager, ASUS Xtion,
and Velodyne HDL-32E) to estimate pedestrian locations every 33 ms [85].

Among the data collected over one year [86], we analyzed the pedestrian data
from 10 am to 8 pm on six Sundays. We manually searched for scenes where givers
distributed flyers to pedestrians. We identified ten givers who distributed more than 40

times and analyzed the first 40 distribution behaviors of each giver.

4.1.2. ANALYSIS OF DISTRIBUTIONAL BEHAVIOR

4.1.2.1.HOw DID THESE GIVERS APPROACH THEIR TARGETS AND HAND OVER THEIR
ITEMS

To determine an effective distributional handing method, we analyzed and
evaluated the different methods exhibited by the givers. We categorized their behaviors
with a focus on three behavioral elements: gaze, approach, and arm motions. All the
givers’ gaze behaviors were similar. When a pedestrian was chosen as the handing target,
the givers kept gazing at the pedestrian to maintain eye contact until the handing was
finished.

On the other hand, we found differences in the approach and arm motions. We

categorized the distributional handing of the givers into the following four patterns:
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(1) Extend arm first and wait for pedestrian
Bl 1
Pedestrian

R

@) ) ©

(4) Approach pedestrian and extend arm nearby

Figure 4.1 Four types of distributional handing behaviors
. Extend arm first and wait for pedestrians: The giver stayed at a certain
place to wait for the arrival of pedestrians. She noticed a pedestrian, gazed at him
(Figure 4.1-a), and then began to extend her arm to hand him a flyer (Figure 4.1-1-
b). When she fully extended her arm and completed the handing motion, the
pedestrian remained slightly away from her (Figure 4.1-1-c).
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. Wait for pedestrian and extend arm nearby: The giver waited for the
pedestrians to arrive while continuing to hold the flyer at waist-height (Figure 4.1-
2-a). She did not start to extend her arm until the pedestrian came close (Figure
4.1-2-b). When she completed her arm-extending motion, the distance between the
giver and the pedestrian was acceptable for the pedestrian to take the flyer (Figure
4.1-2-¢).

. Extend arm first and approach pedestrian: The giver waited for
pedestrians and noticed a pair of them (Figure 4.1-3-a). After choosing the
pedestrian in black as her handing target, she extended her hand that held the flyer
and approached the pedestrian (Figure 4.1-3-b). Instead of just moving to the side
of the pedestrian and waiting, she kept approaching the pedestrian. The giver did
not stop walking until she reached a place at which the pedestrian could easily

accept the flyer.

. Approach pedestrian and extend arm nearby: The giver noticed a
pedestrian approaching from the right side and moved toward him (Figure 4.1-4-a).
As the distance between the pedestrian and the giver shrunk, the giver started to
extend her arm to distribute the flyer while simultaneously approaching him
(Figure 4.1-4-b). Finally, the giver simultaneously stopped near the pedestrian and

completed her arm-extending motion.

Based on our observations, two coders who were not informed about our research

hypothesis analyzed the collected data and separately classified all 400 handing trials from

the ten givers. Cohen’s kappa coefficient from the two coder’s classifications was 0.873,

indicating that their evaluations were highly consistent. They discussed disagreements to

reach a consensus about their classification results.

Table 4.1 Successful ratios based on behavior type

Behavior type Successful ratio
Extend arm first and wait for pedestrian 21.2% (21/99)
Wait for pedestrian and extend arm nearby 33.0% (58/176)
Extend arm first and approach pedestrian 25.0% (5/20)
Approach pedestrian and extend arm nearby 72.4% (76/105)
Total 40.0% (160/400)
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The coding result is shown in Table 4.1. The distribution style largely influences
the successful ratios. The givers achieved the highest successful ratio when they
distributed in the approach pedestrian and extend arm nearby type (72.4%). Therefore,

we modeled close approach and handing behaviors for distributional handing.

4.1.2.2. DETAILED MODELING OF DISTRIBUTIONAL HANDING

To create approach pedestrian and extend arm nearby behavior, we further

analyzed the details of each behavior and the timing.

1 0s 0.8s, 1.7s, 2.3s,

tgazestart tapproachstart tarmstart tarmready /

tapproachready

(@ (b) (©) (d)
Figure 4.2 Details of behaviors and timing
Timing: Figure 4.2 shows a typical example of the timing of the gaze,
approaching, and arm behaviors. As the giver looked around her environment, she started
gazing when she chose a distribution target, then she started approaching, and finally she
started an arm behavior when she got closer to the pedestrian. The most important
constraint on the timing is that the giver completed her arm behavior (hereinafter umready)

just as she completed the approaching behavior (¢approachready) (max error = 0.7s):
tarmReady = tapproachReady- (1)

Thus, we can compute the timing of arm behavior tu-msw to satisfy this constraint

after establishing an approach plan.

Approaching: We analyzed the detailed trajectories of the approaching behaviors
of the givers. When offering objects, givers typically keep approaching pedestrians until
they are close to the giver’s front right/left side. In 12 out of 105 trials where the
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pedestrian directly approached the giver’s initial position, the giver avoided the
pedestrian’s route and approached the pedestrian from the side (Figure 4.3). Overall, we
can model a situation where a giver approaches pedestrians from the front left/right side
but not directly from the front (Figure 4.1-4). As shown in Figure 4.4, we denote the giver
position and the pedestrian when the giver stopped approaching (i.e., t=tapproachReady) as
Gready and Presay. We decomposed the distance between Preaqy and Greaqy into frontal
(element of distance in the direction of the pedestrian’s motion) and horizontal (direction
orthogonal to the pedestrian’s motion). The location of Greaqy can be computed using two
parameters, Dfiontai and Diorizonta. TO identify precise parameters, we conducted further
analysis. Three givers performed distributional handing in our lab. They performed the
approach pedestrian and extend arm nearby method. We collected the data with a motion
capture system that tracks the position data in 100 Hz with error less than 2 mm. From the
data, we computed Djorizontar to be 0.7 m and Djonar to be 1.3 m and used these values for

our system.
' "% Pedestr

ian

Figure 4.3 Avoid and handing

Deroneat(13m) g o (11, left)

< 3
Pedestrian Diorizonear(0. 7)
G —C :
¥
Pit) EP;(t1)

Fiver

o
Gready i, t1.Right) @

Figure 4.4 Candidates of Gyewqy at future moment t1

64



Modeling Distributional behavior

Arm: We further analyzed the data collected with a motion capture system. In the
collected data, the givers typically held the flyer at their waist-height from the beginning
to tumswr. As she got closer to the pedestrian, she started to extend her arm at about the
same height as the pedestrian’s waist-height (defined as 4, illustrated on the right in Figure
4.2-d). We found that the height of the giver’s hand was adjusted based on the pedestrian’s
height (defined as H) so that a pedestrian can easily take the flyer. We set & as the ratio of
the height of the giver’s hand to the pedestrian’s height and formulated the following
constraint for the hand’s height:

h=k-H. )

For our system, we used the average of &, which was 0.632 and ranged from 0.617

to 0.676.

4.1.3. INFLUENCE FROM PREVIOUS PEDESTRIANS
Pedestrian C C A Weas
\& | \&

L
Pedestrian C
Pedestrian A Pedestllan C -

Pedestrian B

Pedestrian B

(@ (b) (0
Figure 4.5 Continuous handing scene: after pedestrian A accepted a flyer, subsequent pedestrians B

and C also took flyers.

We noticed that whether a pedestrian takes a flyer is influenced by the behavior of
the previous pedestrians. That is, pedestrians tended to accept flyers if those who
preceded them also took flyers. Figure 4.5 shows one such scene where pedestrians
continuously accepted flyers from the giver. We scrutinized this phenomenon and
categorized the giver’s handing into two categories based on whether the handing trial is

related to the other handing trials:

. Individual: Before the giver handed the flyer to the pedestrian, he had not
noticed that the giver was handing out flyers to other pedestrians.
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. Former one not accepted: Before the giver handed the flyer to the
pedestrian, he had already noticed that the former pedestrian refused it from the

giver.

. Continuous (former one accepted): Before the giver handed the flyer to the
pedestrian, he had already noticed that the previous pedestrian accepted it from the

giver.

Two coders analyzed the collected data and classified all the 400 handing trials
analyzed in Section 3.1.2. Cohen’s kappa coefficient from their classifications was 0.914,
indicating that their evaluations were highly consistent. They discussed disagreements to
reach a consensus in their classification results.

Table 4.2 Influence from previous pedestrians

Previous influence Successful ratio
Individual 35.5% (55/155)
Former one not accepted 31.6% (42/133)
Continuous (former one accepted) 56.3% (63/112)
All 40.0% (160/400)

The result is shown in Table 4.2. The successful handing ratio was 35.5% (55/155)
for individual, 31.6% (42/133) for former one not accepted and 56.3% (63/112) for the
continuous type. A Chi-square test revealed that the successful ratio of continuous
handing was significantly higher than that for both individual (x2 (1) = 10.542, p<.01,
¢=0.198) and former one not accepted (y2 (1) = 14.120, p<.01, ¢=0.239). This means that
if a previous pedestrian took a flyer, the next pedestrian is also more likely to accept a

flyer.

Since there were no significant differences between individual and former one not
accepted (32 (1) = 0.329, p=.566, ¢=0.060), for simplicity, we treated these two as a
single category: independent distributing. This means that regardless whether a target
pedestrian saw that a previous pedestrian declined or just did not see anyone, a pedestrian

would behave roughly the same.
In summary, this analysis informs our planning framework based on the following:

o When handing is successful to previous pedestrians, we anticipate a higher

success rate among subsequent pedestrians.
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The robot should plan to continuously distribute to a series of pedestrians.
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4.2.SYSTEM

4.2.1. ARCHITECTURE

Based on our analysis in Section 4.1, we learned the following: 1) our robot must
try to continuously distribute to a series of pedestrians, and 2) it must approach them
from the front and only extend its arm near the target pedestrian. Our system is designed

to satisfy these requirements.

3D range People- |/  Planner Behavior Robot
Sensors tracking controller
Distributing Locomotion | :
Odometry 'ﬁ controller ~ Locomotion
L Localization
aser range
finders Distributing *  Head
\ Gesture |/ Arms
t controller "’
Touch Flyer . Flyer
—_—
sensors recognition manager > Utterance

Figure 4.6 System overview

Figure 4.6 illustrates our software architecture. The main module is the planner in
which the system plans paths for approaching pedestrians based on the above
requirements. This planning is enabled by the information provided from the people-
tracking and localization modules. The flyer manager controls the robot and prints flyers

to be held in its hands.

Once a target is selected, precise timings are controlled by the behavior controller
module that manages the locomotion and motion of the arms and the head direction of

the robot. We explain these modules below.
4.2.2. HARDWARE AND BASIC INFRASTRUCTURES

4.2.2.1. RoBoT
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We used a human-like robot, Robovie [87] (Figure 4.7), which is 1.2 m tall with a
0.3 m radius and is characterized by its human-like body expressions. It has a 3-DOF
head and 4-DOF arms with 2-DOF hands. Its locomotion platform is a wheeled Pioneer3
DX. Two 30-m range laser sensors (Hokuyo UTM-30LX) were attached and used for
localization and safety stop. It moved at a velocity of 500 mm/sec (1.8 km/h) forward and
45 degree/sec for rotations. Its forward and rotation accelerations are 400 mm/sec and 30

degree/sec, respectively.

Pass to Pick up
right hand again

Figure 4.7 Robot picked up flyer from mobile printer

4.2.2.2.HAND AND FLYER MANAGER

The robot can hold a flyer in each of its hands. The flyer-manager module
executes print commands and the robot picks up the flyer with its left hand and passes it

to its right hand for distribution.

For use in later explanations, we define the state of the flyer at the printer (FSp),
the left hand (FSr), and the right hand (FSr). Each variable is 1 if a flyer is there, and 0 if
not. We set the robot so that it is always distributing flyers with its right hand, and thus
the robot is ready for distributing when FSg = 1; otherwise, it waits for the flyer to be

prepared.

Figure 4.8 shows the framework of the flyer manager. The flyer is sent from the

printer to the left hand and then to the right hand. Figure 4.7 shows an example of the
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robot’s motion. When the printer has finished printing a flyer and the robot’s left hand is
empty (FSp = 1, FS. = 0), the flyer manager controls the robot to take the flyer from the
printer (FS;=1 and FSp=0). Then the printer prints another flyer, which the robot passes
its right hand (FSr = 1, FSL= 0) so that it is ready for handing. The robot picks up the
flyer from the printer when the printer has finished printing it (FSp = 1).

Print command

pick up

. Right
Printer hand
request request
— Print: Executed when FSp=0. Set FSp=1 when printing is
finished

Request: Executed when current entity’s flyer state is 0

—* Serve: Executed when (1) current entity’s flyer state is 1,
(2) received request; executing serving behavior,
and set current entity’s flyer state as 0, target entity’s
flyer state as 1 when serving behavior is complete.

Figure 4.8 Flyer manager

4.2.2.3.LOCALIZATION AND PEOPLE-TRACKING

For robot localization, we used a particle filter with a ray-tracing approach on a
grid map, which was built from odometry and laser scanner data. This module is called
every 30 msec and updates the robot’s position within 10-cm accuracy. People-tracking
was done with its on-board laser range sensors, but to cover a large area, we used the

people-tracking infrastructure explained in Section 4.1.1.

4.2.3. PLANNER

4.2.3.1. BASIC FRAMEWORK

Figure 4.9 illustrates the framework of our planner. When a flyer is ready (FSg=1),

the robot plans an approach to distribute flyers to each pedestrian in the area by
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calculating whether pedestrian i (p;) is accessible from its current position c. Hereinafter,
we refer to a plan to approach p; from location ¢ as ¢ =p;. Then for each plan, the system

evaluated utility U(c —p;).

Planner
-
GalEiaG Calculate Calculate a Evaluate
current plan utility of follow-up plan utility of
L (c—pi) (pi —pj) whole plan
t Distributing

=P

Plan to move to
waiting location

Wait

/
Waiting
location map
\

Figure 4.9 Processing in planner
The system also plans for the near future by estimating whether it is possible to
continuously access the next pedestrian after the first pedestrian. It calculates whether
pedestrian j is accessible from the location at which it gave a flyer to pedestrian i. This
plan is referred to as p; —p;. Finally, for each plan, the system evaluates utility U(c —=p;—
pj), compares the utility with a threshold to eliminate unfeasible plans, and finally

executes the plan with the highest utility.

If not all the pedestrians are accessible to the robot (or the utility of each plan fails
to reach the threshold) or a flyer is not ready (FSg=0), the robot transits to the wait mode
and moves to a suitable location to wait, which is computed based on a waiting location

map.
4.2.3.2. PLANNING DISTRIBUTION TO PEDESTRIANS

a) Calculating utility of each plan(c—p;)
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This module calculates the utility for each plan ¢ —p; by considering two factors:
(1) the expected gain from distribution (E(c—p;)), and (2) the disturbance of other
pedestrians (D(c —p;)). We define the utility of plan c—p; as:

U(C - pi) = max ](E(C - Pi tpred) - kl D(C - Di, tpred))l (3)

tpred€l0,tmax

where E(c—pityeq) represents the expected utility of the distribution when the
robot distributes a flyer after .4 seconds, D(c —=pityeq) represents the disturbance of
other pedestrians around robot r after #,.« seconds, and k; is a coefficient parameter
between two utilities, which was empirically set to 10.5. We set fuax as 15.0 sec for

computational economy.

Below are the three computation steps for these utilities. The expected utility of
the distribution is computed by considering two factors: time margin and continuous

handing.

Step 1: Estimation of time margin (Usimemargin)

For each pedestrian p;, it tests whether future moment 7,4, at which pedestrian
p; will be at expected position EPi(tyq) 1s a good position for distributing. In other
words, it tests whether there is a distributing position of robot Greaqy that is suitable for
pedestrian’s position Pready (= EPi(tpreq)), given the robot’s current position Geurrens (=¢). It

computes the time required to move from c to Gyeqay With the path shown in Figure 4.10.

Figure 4.10 Planning a path to distribute to target pedestrian p; at EPi(ty.q) at future moment of #rea.

To do so, robot plans to move to Greaay by WayPoint.

72



System

As a simple implementation, EP;(t,r.q) 1s estimated by a linear interpolation with

the past speed information of pedestrian i (Figure 4.4):
EP(tprea) = Pi(0) +vP - ¢. 4)

Gready, Which corresponds to EPj(tyreq), 1s calculated accordingly, and next we
compute t,iye as the time the robot takes from current location ¢ to reach Greaqy by
WayPoint, which is a position on the line from Gyeaqy t0 EPi(tpreq) 1 m from Gieaay (Figure
11). WayPoint is prepared to let the robot approach from the front of the target person. In
this computation, to consider the robot’s acceleration capability, we simulated its
movements in small time steps of 0.1 sec and updated the velocity with the acceleration

and angular acceleration capability.

As reported in Section 4.1.2, a productive giver does not stop to wait for the
pedestrian, but keeps walking until she meets her pedestrian target. Thus, we evaluated a
plan based on the timing when the robot meets a target pedestrian. Perhaps the best
timing is when the giver reaches distributing position Gr..qy When the pedestrian reaches

EPi(tprea); 1.€., tarrive €quals tpreq.

Utility

tbest

t\imit

t
/ best \nargin time

Figure 4.11 Calculation of Usiming

However, predictions are not always accurate. For instance, since people do not
necessarily walk as predicted, it is better to choose a plan with a small margin time so
that a robot can catch up from unexpected aspects in the prediction. Thus, we used the
function shown in Figure 4.11 and designed a utility function to let the robot reach Gyeaay

at tpesr seconds earlier than the targeted person reached EP;(%)cq), if possible:

timeMargin (timeMargin < tpes)
; . - p; = t , . thest tlimi , . 5
UtheMargm(C Pi tpred) ___thest timeMargin + Lhest tlimit ( timeMargin > tbest)’ ( )
thest —tlimit tlimit —thest
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where
timeMargin = ftolerance ) tarrive - tpred- (6)
We empirically set pes: to 1.6 sec and #imic to 5.0.

We also tested whether the robot has enough time to extend its arm before

arriving at Gyeadqy, based on the constraint in Section 4.1.2:

true  (ArmTime < tpyeq)
false (otherwise)

ArmReady(tpyeq) = { , (7

where ArmTime estimates the moving time for each arm joint of the robot to reach
the final position. The handing posture is calculated by the gesture controller, which is

described below. If ArmReady(tp,eq) returns false, UtimeMargin(tarrwe, tpred)

returns negative infinity.

Step 2: Expected utility of distribution (E (c - D, tpred))

Pedestrian B

Pedestrian A

Figure 4.12 Estimation of continuous distribution

In addition, as we reported in Section 4.1.3, the successful ratio of distributing in
continuous distributing is significantly higher than in independent distribution. Thus, we
expect higher gain from continuous distribution. As shown in Figure 4.12, when a giver
successfully distributed a flyer to pedestrian 4, the system then evaluated the spatial
formation between the giver and all the other pedestrians in the area to estimate whether
they noticed the successful distribution. If pedestrian B seemed to notice that former
pedestrian 4 accepted a flyer, distributing a flyer to pedestrian B is then considered a

continuous distribution and is calculated below:
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{1 Dist(Pp, Pc) < NoticeDist and |Ang(9PP,PG,9P)| <90 )
0 otherwise

where Pg is the position of the giver at which she successfully completed a
distribution to pedestrian 4 and Pp is the position of another pedestrian B. Ang(@p;r., Op)
is a function that indicates the angle (in degrees) between the pedestrian B’s direction and
the giver. 6p is the pedestrian B’s walking direction. We used NoficeDist as the distance

where the pedestrian noticed the former distribution and empirically set it to 5.0 m, based

on our experiment environment.

Overall, we defined the expected gain of a plan (c—p;) as:

E(c = pityrea) = {Uﬁme’””ﬂin(c = P tprea) - Certain(t) (independent)
vipred UtimeMargin (C - Pi tpred) ’ Certain(t) ' (1 + 6) (continuous)'
_ 1—t/T ift<T
Certain(t) = { /0 effect if h effect (10)
other

where s is a parameter that represents the expected gain from the continuous
distributing and was set to 0.6 based on the result in Table 4.2. Certain(t) is a function
that represents the decay over time. This represents the effect where the future estimates
of disturbances are uncertain because the prediction accuracy of the future behavior of
pedestrians decreases with time. As a result, distributing plans which the robot could

access pedestrian faster would have higher priority. We empirically set Tegecr to 40.0 sec.

Step 3: Disturbance of other pedestrians (D (c — p;, tpreq))

Pedestrian A . Pedestrian A
,/'\:
— ~ -t -
@ ( N
~— < Robot
Robot U
Pedestrian B
@ Pedestnan B
(a) (b)

Figure 4.13 Disturbing other pedestrian when handing
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When there are multiple pedestrians in the area, a robot approaching one
pedestrian might disturb other pedestrians. Figure 4.12 shows an example where
pedestrians 4 and B are walking in the area, and both are accessible to the robot. Since
approaching pedestrian A costs less estimatedTime than pedestrian B, if no disturbance is
considered, the robot would choose pedestrian A as a distributional target (Figure 4.13-a).
However, when the robot approaches, it disturbs pedestrian B’s walking (Figure 4.13-b).
To solve this problem, we used a distance-based comfort model [88]. The idea behind
this model is that it is more comfortable for pedestrians if the distances to nearby persons

are larger. Based on this model, pedestrian j’s discomfort during ¢ —p; is defined as:

Dj( c- i tpred) =  max (1 + Certain(t) ( 2 + b)) (11)

te[0,tpredl dist(r,j,t)

where dist(r,j,¢) is the distance between robot » and pedestrian j* s body center at
time moment ¢. @ and b, which are the parameters for the distance-based comfort model,
were imported from a previous work [88] to be 1017.76 and 1.180. Certain(t) is as the

same as which in Eq. 10.

Finally, the total discomfort of all the pedestrians except distributing target

pedestrian 7 in the area is calculated as below:
D(C - Di tpred) = ZjES Dj (c = ps tpred)r (12)
where S represents a set of pedestrians around robot  except target pedestrian i.

With the above three steps, Eqs. 9 and 12 are derived from which utility U(c —p;)
of plan (c —p;) can be calculated as defined in Eq. 3.

b) Calculating utility of entire distributing plan

After calculating a plan to approach pedestrian i (c—p;), the planner then
calculates whether the robot can conduct a follow-up distribution to another pedestrian j
(pi—pj)- We can similarly calculate U(p; —p;), the utility of plan p,/—~p; from Egs. 3-12 by

replacing ¢ by p;, which represents the robot’s location after approaching pedestrian i.
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The utility of the entire distributing plan is calculated below:

U(c-p; > p;) =Ulc—p)+U(p: - p)) (13)

If plan p;—p; does not exist, U(p; —p;) returns 0.

Finally, among all the candidates of distributing plans, the system chooses the
candidate plan with the highest utility as the next distributing plan to be executed:

Udecision = Max (U(C - p o Pj))- (14)

To prevent excessive switching of the target among multiple pedestrians (like

oscillation), the target in the previous computation round is prioritized in the choice of

target in the current round (the system doubled the utility). The plan is updated every 200

msec.

4.2.3.3. ALTERNATIVE.: PLANNING TO WAIT

This module provided a waiting location map, which is used by the robot to obtain
its waiting position and orientation when there is no distributional target. A good waiting
location is the place from which the robot can frequently approach many pedestrians, not

simply the location where many pedestrians pass.

- ——

50- 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50

Figure 4.14 Example of grid map of average person density, values are in person/m?
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As we explained in Section 4.1.1, we collected pedestrian data in the area for a
year. The data indicate that the density of the pedestrians changes over time; hence to
reflect such temporal dynamics, we created grid maps of average person density for every
30 minutes. In this research, we used the hallway to conduct a robot distributing
experiment and created a grid map with a 50 x 50 cm cell that divided the area. Figure
4.14 shows an example of the grid map of average person density, where the values are in

person/m?>.

Next we created a map of candidates of waiting positions. The robot can move
and approach pedestrians nearby from its waiting position. To incorporate this idea, we
used the time needed by the robot to move from one grid to another. We also considered
the robot’s orientation. For each grid, 12 orientation candidates were set every 30 degrees.
We calculated the value of each pair of position Pw and orientation #y candidates as

follows:

ValueGl.

Value = ¥

Dist(Py.Pgy)  Anglepy, pri.0w) ||’ (15)
VMove VRot

where Pg; is the position of grid i of the pedestrian density map, Viove and Vo, are
the moving and rotating speeds of the robot, and Valueg; is the value of the pedestrian
density in grid i. We chose the Pw and @ pair that yields the highest value as the waiting

position and the orientation.

424, BEHAVIOR CONTROLLER

After a plan is selected by the planner, the behavior controller navigates the robot

and manages its gaze and arm motions.

It controls the robot to reach the WayPoint first, and then it follows a line that
connects EPi(tyreq) and Greaqy (Figure 4.8). Each position is updated every 100 msec. To

make the robot reach the Geqqy position at appropriate timing, we dynamically adjusted
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its velocity and controlled the robot to move at high speed first; to adjust the arrival

timing, it starts to decrease its speed when it gets close to Greaaqy:

. » RemainingDist
v, (l - >V, )
max f RemainingTime ftolerance max (]6)
RemainingDist f (otherwise)’
RemainingTime tolerance

where viar 1s the robot’s maximum speed, RemainingDist is the summation of the
distances from c¢ to WayPoint and WayPoint to Gready, 1.€., D1 + D2 in Figure 11, and
RemainingTime is the remaining time to furive by considering the current time and the

required time for rotating.

When the pedestrian accepts the flyer from the robot, the sensor attached to the
robot’s hand detects whether the flyer was taken and sets FSg = 0. Otherwise, the robot
waits for the target pedestrian to take the flyer; i.e., it continues to orient itself toward the
target until the pedestrian passes the robot. We define J as the angle between the
pedestrian’s moving direction and the vector from the position of the pedestrian to the
robot. When 6 > = 90 degrees or the distance between robot and the target pedestrian

exceeds 5 m, we consider the pedestrian to have passed the robot.

The gaze behavior is started from the very beginning, as explained in Section
4.1.2.1. The robot keeps directing its head direction toward the pedestrian until the

distributing has finished.

For the arm motion, the gesture controller generates a handing motion. As
illustrated in Figure 4.6, the height of the robot’s hand was calculated using the target
height information in Eq. 2. In addition, the robot said, “Please have a flyer” to the

pedestrians at Zumsiare time.

4.2.5. EXAMPLE

Figure 4.15 shows a successful handing scene with our developed system. Two

pedestrians came from the left, and another was standing on the right side (Figure 4.15-a),
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and two more were walking toward the hallway from the left (Figure 4.15-b). The robot
calculated the utility of each candidate of the distributing plan and accessed the two
pedestrians on the left because it anticipated a chance for a continuous handing. The robot
chose one of the two nearby pedestrians to avoid disturbing the other pedestrians. It gave
a flyer to the woman who took it, and at that moment, other pedestrians noticed that she
had taken it (Figure 4.15-b). Then two more pedestrians (one in a white coat and another
in red) approached the robot (Figure 4.15-c). Because the plan to hand a flyer to the
pedestrian in white had the highest utility, the robot gave her a flyer, and she took it
(Figure 4.15-d). The pedestrian in red came close to the robot, too. The robot gave a flyer
e 4.15-d).

g

to her, which she accepted (Figur

o - 4 -

(@) (b) (© (@) (e)
Figure 4.15 Example of distributional handing robot
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4.3. EVALUATION OF OUR DISTRIBUTIONAL HANDING
METHOD

We evaluated our distributional handing model in a field trial and compared our
proposed method with a simple alternative method. Our evaluation criteria are the
number of flyers successfully distributed by the robot. We also compared the developed
robot with human givers to provide insight about the extent to which the robot’s

performance with these two models compares to the human performance.

4.3.1. HYPOTHESIS AND PREDICTION

We compared our proposed model with an alternative method to evaluate its
effectiveness. Since no commonly available method exists for distributional handing, we
implemented a very simple wait-and-handing method. The robot stopped at its waiting
position and handed flyers to pedestrians who passed nearby. This is the wait for
pedestrian and extend arm nearby method explained in Section 4.1.2. Since we know that
our approach pedestrian and extend arm nearby method outperformed the human givers,

if it is implemented appropriately, it will probably also outperform this simple method.

If our proposed model is designed properly, we expect that the robot using it will
perform more efficiently than the wait-and-handing method robot. First, since the robot
with our proposed model can move around the environment and approach pedestrians, if
target pedestrians are appropriately chosen, it should access more pedestrians than the
robot that stopped and waited at a certain place. Accordingly, we made the following

prediction:

Prediction 1 (access efficiency): With our proposed model, the robot will more

efficiently access pedestrians than the wait-and-handing method robot.
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Second, the robot in our proposed method plans for a distributing behavior that
imitates the way productive human givers perform. According to the analysis in Section
4.1, it should yield more success than the other methods. Our proposed method’s robot
also plans to perform continuous handing, which should also yield more success. By
combining both expected effects with prediction 1, if these calculations are appropriate, it
will have a higher successful ratio of distributional handing than the wait-and-handing

method robot:

Prediction 2 (flyer-distributing efficiency): With the proposed method, the robot

will successfully give more flyers than the wait-and-handing method robot.

If the distributional handing models are proposed and implemented well, we also
expect that the robot with our proposed model will be able to distribute flyers efficiently

like a human giver. Thus, we also compare its performance with that of the humans.

4.3.2. METHOD
4.3.2.1.SETTINGS

The evaluation was conducted in the same shopping mall where we conducted the
data collection and our first evaluation experiment. The robot was placed in a large 8 x 12
m hallway (Figure 17), which connects to an event hall and a train station, and there are

restaurants and shops nearby.
4.3.2.2. COMPARISON

We compared the following two methods.

Proposed: The robot is controlled by the proposed model. When pedestrians
arrive, the target decider (Section 4.2) chooses the handing target and the behavior
controller manages the robot’s local behavior (Section 4.2); otherwise the robot waits at

the waiting location.
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Wait-and-handing: The robot stops and waits at its waiting position, which was
calculated with the same method used for the proposed condition. The robot does not
move around but only extends its arm to pedestrians who pass nearby. As a pedestrian
approaches within 3.0 m of the robot, the robot chooses her as the handing target and
starts to look at her. It starts the handing motion when she is within 1.0 m so that she can

comfortably accept the flyer. These distance parameters were empirically decided.

We prepared three afternoon time slots (2:00, 3:00, and 4:00) that more customers
came to the shopping mall relatively, assigned each condition to the time slots with
counter-balancing, and collected 200 minutes of data for each condition. We ensured that

the time lengths of the collected data of each condition are identical in each time slot.

Human giver: For comparison, we sought human data from the previously
collected data. As shown in Table 4.1, the average successful ratio of the ten givers we
analyzed was 40%. To avoid outliers (too good or too bad givers), we used those human
givers who provided average successful ratios that resembled the average level of 40%.
We found three human givers who engaged in distributional handing around the time
similar to our time slots and averaged their performances. We retrieved 200 minutes of
data for analysis; the time lengths of the data in each time slot are identical to the robot

experiment data.

4.3.2.3. MEASUREMENT

We counted the number of times the robot/person offered flyers (#Handing).
However, since such a number is largely affected by the number of pedestrians, we
normalized it by dividing by the number of pedestrians who passed through the

experiment area (#Pedestrians). We defined the following evaluation criteria:
AccessEfficiency = _tHanding (17)

#Pedestrians’
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We also counted the number of times the robot/person successfully gave flyers

(#DistributedFlyers) and defined the following criteria:

#DistributedFlyers
#Pedestrians

FlyerDistributingEf ficiency = (18)

4.3.3. RESULTS

4.3.3.1.DATA ANALYSIS

There were 200 minutes of data for each condition. We measured the number of
pedestrians using people-tracking infrastructure. We checked the average number of
pedestrians in all time slots for each condition and confirmed that they are reasonably
similar (ANOVA shows no significant difference (F(2,117)=2.548, p=.184)). Two people
independently counted the number of pedestrians accessed by the robot/person, and the
numbers of pedestrians to whom they successfully gave flyers. The results of the two

coders were exactly the same, showing that the coding result is highly reliable.
4.3.3.2. VERIFICATION OF PREDICTION 1

Table 4.3 shows the results. The access and flyer-distributing efficiencies were
counted for each five-minute time slot. The average access efficiency was 0.21 (s.d. 0.07)
for the proposed method, 0.17 (s.d. 0.07) for the wait-and-handing method, and 0.25 (s.d.

0.11) for the three human givers.

An ANOVA revealed a significant main effect (F(2,117)=8.399, p<.001). A
multiple-comparison with the Bonferroni method revealed that the access efficiency for
the human givers was significantly higher than that for the wait-and-handing method (p
<.001). No significant difference was found between the proposed and wait-and-handing

methods (p=.160) or between the proposed method and the human givers (p =.102).

Thus, our first prediction was supported; the proposed method yielded higher

access efficiency than the wait-and-handing method.
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Table 4.3 Evaluation Results

Access efficiency | Flyer-distributing efficiency | Person density (num./min.)
Proposed 0.21 (s.d. 0.07) 0.18 (s.d. 0.05) 5.7
Wait-and-handing 0.17 (s.d. 0.07) 0.12 (s.d. 0.05) 6.1
Human giver 0.25 (s.d. 0.11) 0.10 (s.d. 0.04) 5.7

Bold face indicates values significantly higher than others.

4.3.3.3. VERIFICATION OF PREDICTION 2

The average flyer-distributing efficiency was 0.18 (s.d. 0.05) for the proposed
method, 0.12 (s.d. 0.05) for the wait-and-handing method, and 0.10 (s.d. 0.04) for the

three human givers.

An ANOVA revealed a significant main effect (F(2,117)=31.093, p<.001). A
multiple-comparison with the Bonferroni method revealed that the distributing efficiency
for the proposed condition was significantly higher than that for both the wait-and-
handing method (p<.001) and the human givers (p<.001). No significant difference was

found between the wait-and-handing method and the human givers (p=.104).

Our second prediction was supported; our proposed method yielded higher flyer-

distributing efficiency than the wait-and-handing method.
4.3.3.4.ADDITIONAL ANALYSIS

We further analyzed the details to determine why our proposed condition yielded
higher flyer-distributing efficiency than the others. Since we expected that the robot in
the proposed condition would appropriately access pedestrians to yield a higher
successful handing ratio and would also plan to more frequently perform continuous
handing, we analyzed whether all of these effects were visible. Two people classified
each of the handings as either individual or continuous, which we described in Section

4.2. Cohen’s kappa coefficients from their classifications were 0.832, 0.874, and 0.910
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for the two conditions and the human giver, indicating that their evaluations were highly

consistent.
Table 4.4 Detailed results
Individual handing Continuous handing | Ratio of continuous handing
Proposed 77% (86/112) 99% (111/112) 0.500
Wait-and-handing 51% (63/123) 99% (90/91) 0.425
Human giver 24% (46/189) 68% (67/98) 0.341

Bold face indicates values significantly higher than others.

Table 4.4 shows the analysis result. During individual handing, the successful
ratios (whether pedestrian took the flyer) significantly differed across the conditions. The
successful handing ratio was 77% for the proposed condition, 51% for the wait-and-
handing condition, and 24% for the human giver condition. A Chi-square test revealed
significant differences among them (y? (2) = 79.786, p<.01). Residual analysis revealed
that the successful ratio in the proposed condition is significantly higher than the others
(p<.05), and the one in the human giver condition is significantly lower than the others

(p<.05).

When the handing was continuous, the successful ratio was 99% for the proposed
condition, 99% for the wait-and-handing condition, and 68% for the human giver
condition. A Chi-square test revealed a significant difference between them (2 (2) =
63.598, p<.01). Residual analysis revealed that both the proposed and wait-and-handing

conditions are significantly higher than the human giver condition (p<.05).

To analyze whether more frequent continuous handings were performed, we
calculated the continuous handing ratios from all handings. The continuous handing
ratios for the proposed, wait-and-handing, and human giver conditions were 0.500, 0.425,
and 0.341. A Chi-square test revealed significant differences among them (3> (2) =
13.150, p<.01). Residual analysis revealed that the continuous handing ratio in the
proposed condition is significantly higher than the others (p<.05), and in the human giver

condition, it was significantly lower than the others (p<.05).
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434, INTERVIEW

We were surprised that the proposed method outperformed the human givers. To
better understand this result when the robot operated with our proposed model, we
interviewed 17 pedestrians (16 who accepted flyers, and 1 who did not) and asked them

why they took the flyers. The interviews were recorded and transcribed for analysis.

First, we systematically analyzed the answers from the 16 pedestrians who
accepted flyers and classified their answers into four categories. The classification was
confirmed by two human coders who did not know the research purpose. Their coding

results were identical.

Table 4.5 shows the analysis result. The answers of six pedestrians were classified

as natural handing behavior. We gathered the following comments from them:
Table 4.5 The Reason Why Pedestrians Took Flyers

Ratio
Behavior-oriented reasons
Handing behavior was natural 37.5% (6/16)
Influenced by precedent pedestrians 25.0% (4/16)

Robot-oriented reasons

The robot was interesting 25.0% (4/16)

Handing behavior was impressive 12.5% (2/16)

“There was no particular reason. The robot slowly came to me and stuck out its

arm. It behaved smoothly. So I just reached out and took it.”
“It timely and quickly offered me a flyer. I thought, ok, I’ll take it.”
We classified the answers of four pedestrians as influenced by other pedestrians:

“I saw that the person before me took the flyer from the robot. So I thought, I’ll

take it too.”
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These two categories are behavior-oriented reasons, which might also occur if a

person nicely distributes flyers.

On the other hand, the two other categories are considered robot-oriented reasons,
which were caused by the fact that the robot distributed the flyers. The answers of four

pedestrians were classified as the robot was interesting. One of them said:
“I took it basically because I was interested. I wanted to see how it would react.”
The answers of two pedestrians were classified as impressive handing behavior:

“I was very impressed by the robot. It clearly said ‘please take a flyer.” It even

made eye contact with me. I felt that it really wanted me to take it.”

We categorized them separately from the natural handing behavior category,

because they would not consider it impressive if a person distributed the flyer.

One pedestrian did not accept the flyer from the robot for the following reasons:
“I looked at the flyer and realized that it was just a map of this shopping mall. Since I've

worked here for more than ten years, I didn’t need it.”
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4.4.DISCUSSION
4.4.1. INTERPRETATION OF FIELD EVALUATION RESULTS

As hypothesized, our proposed condition performed the best in successfully
handing flyers. It was also the best in terms of a successful handing ratio in individual
handing, which indicates that it appropriately imitates a good giver’s behavior. Because it
was the best in terms of continuous handing ratio, we also believe that our proposed
method successfully planned appropriate handing behaviors so that it performed
continuous handing more frequently. Overall, we successfully implemented key factors

identified from the analysis of human behavior.

We observed some differences between the proposed method and the human
givers. The human givers yielded higher accessing efficiency than the robot with the
proposed model. This is not surprising since the robot’s motion is not as swift as the
humans. However, overall, the proposed method yielded higher flyer-distributing
efficiency. This was because it yielded a much higher successful handing ratio both in
individual and continuous handing, because it conducted continuous handing more

frequently.

Our interview results explain part of the reason why the robot yielded a higher
successful handing ratio. Six out of 16 pedestrians gave robot-oriented explanations why
they took flyers. They were either interested in the robot or impressed by its behavior.
Although recently robots are often seen on television or the Internet, few people have

really interacted with them. Thus, the robot’s success was partly due to its novelty.

4472, FOR FUTURE USE OF FINDINGS FROM THIS STUDY

Future robots that serve distributional handing services might be implemented

with our method reported in this paper, although some of the situations when our study
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was conducted will change over time; this issue must be carefully addressed. First,
although our study showed that our robot provided better flyer-distributing efficiency than
the human givers, as more and more robots are introduced into actual environments, such
novelty will fade. On the other hand, such robot capabilities as locomotion speed and
flexibility will eventually improve. Currently, since the robot we used had poorer
capability than the humans, it is not known whether robots will overall yield more or less

success than humans.

4473, LIMITATIONS AND FUTURE WORKS

In our field trial, we used sensors attached to the environment. But attaching
sensors to environments might not be simple. Even though we believe that we can easily
build a similar robot system that only uses sensors attached to the robot, we have not
tested such a configuration yet. One requirement for such a system is that target detection
needs to be done at a range from several to 10 m. One possible future work will confirm
whether our developed method will work with on-board sensors. In addition, the
parameters in our method were analyzed from or calibrated for Japanese people and our
four robots. When our proposed method is used elsewhere, the parameters must be

adapted.
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5. SOCIAL ROBOTS
ATTRACTING PASSERSBY

5.1. UNDERSTANDING MANAGERIAL PERSPECTIVES

We interviewed store managers to identify their expectations and requirements.
5.1.1. PROCEDURE

5.1.1.1. CONTEXT

Our study was conducted in a suburban shopping mall that has 114
stores/restaurants. Most of the stores sell such common items as clothes, shoes, sporting
equipment, or equipment for outdoor activities. The shopping mall is usually busy on
weekends, and on weekdays it is used more by people from the nearby offices.

5.1.1.2. PARTICIPANTS

We contacted the store managers in one area of the mall through the mall
administrators. We requested interviews with them to gather their thoughts on the use of

social robots in their stores. 10 of 13 stores accepted our request.
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5.1.1.3.PROTOCOL

To explain and describe the current capabilities of autonomous robots, we showed
videos in which robots engaged in three common store tasks: announcement (a robot
periodically talks about advertisements without responding to individuals), invitation
(whenever passersby approach, a robot looks at them and announces an advertisement),
and distribution (a robot extends its arm to an approaching passerby to give her a flyer).
We did not limit the options to these tasks; the managers were free to suggest other tasks
they were interested in. Then we conducted semi-structured interviews about the

following topics:

1) Intention to use: We asked whether they would like to use robots in
their stores as well as their reasons for wanting to use a robot (e.g., what they
expected the robot).

2)  Design requirements: We asked them more specifically how they would
like to use the robot by focusing on desired tasks and other design requirements (e.g.,

behaviors and appearances).

3) Concerns: We asked them what behaviors the robot must avoid if they
are going to use them as well as the behaviors they are concerned about when others

use a robot.

The interviews, which lasted an average of about 30 minutes, were recorded and
transcribed. We classified their responses into categories based on their answers. Some
answers were classified into multiple categories. Two independent coders classified them
into categories. Their judgment matched reasonably well and yielded Cohen's kappa

coefficient of 0.67 on average.
5.1.2. INTERVIEW RESULTS

5.1.2.1.INTENTION TO USE

Eight of the managers expressed that they wanted to use the robot, and two
wanted to try and see whether it was effective. Table 5.1 shows the categorized results of

the coding of their reasons for their intention to use.
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Table 5.1 Reasons for intention to use

Inexpensive labor Total 7
Information value 7

Inexpensive human-like labor 5

Uniqueness of robots Total .
Efficiently attracts passersby 9

Relieves stress 3

We identified two main ideas about their reasons for wanting to use a robot.

Seven managers mentioned inexpensive labor:

“Robots might be useful for sales promotions because they could tell people about

our store.” (information value)

“Finding and hiring new employees is difficult. Too many people don’t want to

work in the service industry.” (inexpensive human-like labor)

“I don’t afford enough employees to deal with a sudden large number of visitors. |
don’t want customers to wait too long. A robot could ease such busy situations.”

(inexpensive human-like labor)
Nine managers addressed the uniqueness of robots:

“Not very many people have actually seen a real robot. If a passerby sees a real
one, children will approach it, and adults might stop. If it were used for a sales
promotion, I’d expect a large effect.” (efficiently attracts passersby)

“A robot is different from a high-pressure salesman. With a person, a customer is
probably cautious. Once engaged, a person might not stop explaining until he gets
a sale. For a robot, people wouldn’t be so concerned. They might listen more to a

robot’s explanation than if I greet them.” (Relieves stress)

“Greeting passersby is stressful. Employees are often reluctant to do it. A robot

would greatly reduce stress.” (Relieves stress)

5.1.2.2. DESIGN REQUIREMENTS
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Table 5.2 shows the categorized result for the desired tasks. Since each store has
different characteristics, each one requested a different type of task for the robot. Among
the three tasks for which we showed examples, eight managers expressed interest in
invitation because they want passersby to stop and pay attention to their stores. Seven
expected robots to perform distribution tasks and provide discount coupons or flyers with
store information that is too complicated for signboards. No one had any interest in

announcement tasks. One manager specifically commented on this:

“It’s better for the robot to respond to people. In that case, people will perceive it

as a robot.”

Relevant to these tasks, four managers mentioned enjoyment. They expect a robot
to provide entertainment, particularly for children, so that visitors will stay in their stores

longer and create a positive atmosphere to increase sales.

Table 5.2 Expected tasks

Invitation

Distribution

Enjoyment

Greeting and chatting

Cashier

N W R |

Cleaning and refilling

Translating 2

They also mentioned a couple of other tasks in addition to our examples. Four
managers wanted robots to greet and briefly distract customers when clerks are too busy.
Three managers wanted robots to serve as cashiers, and two wanted robots for such
cleaning and replenishment tasks as wiping tables and refilling drinks in a restaurant
because such tasks are time-consuming and onerous. Two wanted robots to serve as

translators.

Table 5.3 shows the categorized results for the design requirements. Store

managers made the following comments:
“A bigger robot is better, because it will attract more attention.” (noticeable)

“I want it to wear a white coat. That way, people will recognize that it is associated

with my store.” (indicate relationship with stores)
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“I prefer a round one that can walk around. It’s cute and moonfaced and looks

charming.” (familiarity)

“On weekends, let it offer balloons to children, who are the primary targets of
inviting services. During weekdays, let it attract adult passersby.” (context

dependency)

“People will clearly realize that it is a robot, a machine. That is good for attracting

passersby.” (robot-likeness)

Since each store manager has his/her own design preferences, no single design

works for all.

Table 5.3 Design requirements

Noticeable

Indicates relationship with stores

Familiarity

Context dependency

W (W [ [ (O

Robot-likeness

5.1.2.3. CONCERNS
Table 5.4 shows the categorized results for behaviors to avoid when they use a
robot. Four managers mentioned bothering visitors, and four mentioned safety risks:

“It should not obstruct people who want to enter the store or walk past. A robot

can’t bother people.” (bothering visitors)

“Since it is a machine, it might fail and cause an injury. For example, its arm
might jerk and hit a child. Adults would probably be able to avoid such risks. But
small children might get too close to it.” (safety risk)

Table 5.4 Behaviros robots must avoid

Bothering visitors 4

Causing safety risks 4

Table 5.5 shows the categorized results for their concern when other stores use

robots. Their opinions were split. Five managers were not concerned and actually
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encouraged other stores to use robots, but five were concerned about robots being used by

other stores:

“If visitors stop around here, they might enter the store across from mine, or the
store next door as well as mine. If the robot attracts visitors to this area, even if

they go to another store, I’m still happy.” (no concern)

“If a store has a robot that sells similar items as my shop, I’d want them to
operate it at a distance away from my store, so that I don’t have to see or hear it.”

(do not want competitors to use a robot around their stores)

“It’s hard to predict how often others would use the robots. If everyone uses
them, their effect will be diminished. A visitor can see robots in too many

different places if every store uses them at the same time.” (do not want to be used

by others at all)
Table 5.5 Concerns about use by other stores
No concern (expecting ripple effect) 5
Do not want competitors to use around their stores 4
Do not want to be used by others at all 1
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5.2.FIELD TRIAL

We conducted three case studies in actual stores to observe how the robots were

employed.
5.2.1. PROCEDURE

We invited stores that responded to our interviews (Section 5.1) to deploy a social
robot as a research trial. We offered two hours of use for four days to each store. All
stores wanted to use it, and so far we served three stores in first-come first-served
principle (we plan to serve to other stores too). Within the limitations of our autonomous
robot’s capabilities, we consulted with them about how they would like to use the robot.
They could choose hardware from three robots (only one robot was capable of
distributing flyers). We implemented services based on their requests and sought
feedback from the managers about how to improve it. We documented these processes.

The study was approved by our institutional review boards.

5.2.2. MEASUREMENTS AND BASELINE

For each store, we evaluated how frequently passersby stopped at and visited the

store as follows:

® Stop: Determined whether a passerby stopped near the store. This includes

cases where people stopped around the robot.

® Visit: This only includes cases where people visited the store and excludes
cases where they only interacted with the robot. For instance, if a person bought
something from a store or stopped and apparently observed its products
(Figures 5.4-c and d), it was judged as a visit. If a person only stopped for the
robot (Figure 5.3) or just glanced at the products, it was judged as not a visit.

Stopped and visited were coded from videos by two coders who did not know the
research hypothesis. If they found the same person appeared again to stop/visit, only the
first one was evaluated. The first coder coded all the data, and the second did

confirmatory coding for 10% of the data.

We compared these ratios in two situations as follows:
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® Robot present: ratio of people who stopped/visited the store among those who
passed by while the robot was being operated during the eight-hour observation

period.

® Baseline: ratio of people who stopped/visited the store among those who passed
by during an eight-hour observation period. We selected the observation period

with the same time and the same day of week as the robot present situation.

Finally, we interviewed the managers to determine whether they were satisfied

and had an intention to use the robot again.

5.2.3. IMPLEMENTATION: ROBOT SYSTEM AND SERVICES

The managers wanted to use invitation and distribution services. We implemented
a fully autonomous system for these services and consulted with each manager to adjust
the services to suit ecach store. We limited the service to be non-mobile, where the robot
rotates its body orientation without moving around. Based on current levels of autonomy,
if a robot moves around, it is relatively difficult to prevent it from bothering visitors and
causing safety risks. Our intention was to keep the implemented services rather simple so

that the robots could robustly operate autonomously and be feasible for actual use.
Robot hardware and infrastructure

Managers so far choose only one robot. It is characterized by its human-like
physical expressions. It is 120-cm high with a 40-cm diameter on a mobile platform. It
has a 3-DOF head and 4-DOF arms (Figure 1.3, right). We used a technique for a people-
tracking system [85] for detecting passersby.

@ —_ ‘Welcome, @

our cakes are

@ delicious //: §><Q

Robot Robot

Figure 5.1 Invitation service Figure 5.2 Distribution service

Invitation service
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We modeled the shopkeeper behaviors when they greet passersby. They typically
look at them and greet them with such advertisement utterances as “welcome, our shop
sells. . . ” The robot obtains the positions of potential visitors within 5 m from its people-
tracking system and chooses as a target one who is approaching the closest to the robot
(Figure 5.1). It orients its body and head direction to the target and periodically makes

advertisement utterances.
Distribution service

We adapted a technique for distributing flyers reported in [89]. The system
predicts the future locations of passersby and selects the person who will soon pass near
the robot. Then it looks in her direction, and when she comes close, it extends its arm to
give her a flyer, and says “please take it” (Figure 5.2). Its hand has a touch sensor, which
detects whether the flyer was taken. When it detects that a flyer was taken, it says “thank
you.” The robot is equipped with a printer and prepares subsequent flyers by itself.

In both services, we followed the requests from managers and let the robot
periodically give advertisement utterances if no target person was selected so that people

far from the robot might hear such utterances and approach the robot.
5.2.4. CASE : INVITATION SERVICE AT A CAKE SHOP

5.2.4.1.STORE CHARACTERISTICS

The shop (Figure 1.3) faces a corridor of the mall. Inside its showcase, cakes and
puddings are displayed. In the booth one clerk wears a baker’s costume and tends to the

store. On the weekends, they attract passersby by loudly greeting them.

5.2.4.2. MANAGER’S DESIGN DECISION

She chose a robot to perform an invitation service. She did not have a strong
preference about the robot’s appearance, and she chose one she had seen before. She
wanted the robot to explain two types of information: 1) the unique features of her
products, e.g., no additives, no artificial colors, and 2) advertisement of store items. She
wanted it to wear a baker’s costume that resembled that worn by the clerk. But since we
couldn’t find a costume that appropriately fit the robot, instead we put the shop’s logo on

its chest.
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We implemented the invitation service, in which the robot randomly announces
one advertisement utterance from three (no additives and no artificial colors, roll cakes,
and pudding). After showing the initial implementation, she asked us to adjust the

intervals between the utterances; we changed them to two seconds.

5.2.4.3. RESULTS

Figure 5.3 People stopped around the robot, although this was not coded as a visit

Many passersby glanced at the robot or the store. Some stopped around the robot
to interact with it (Figure 5.3, left). Families with children often interacted with it. We
sometimes observed that while their children were interacting with the robot (Figure 5.4-

a), parents visited the store (Figure 5.4-b and c¢) and bought something (Figure 5.4-d).

Two coders’ judgments for stop and visit matched well and yielded a Cohen's
kappa coefficient of .784. We applied a Chi-square test for the stop and visit ratios. It
revealed that passersby stopped significantly more frequently around the store in the robot
present situation (13.73%) than in the baseline (2.71%) ((1)= 915.023, p<.01, ¢=.20).
Further, as illustrated in Figure 5.5, passersby visited the store significantly more
frequently in the robot present situation (3.22%) than in the baseline (2.40%)
(A(1)=13.646, p<.01, p=.025).
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(c) (d)
Figure 5.4 Robot successfully enticed passersby to visit
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Figure 5.5 Ratio of visited passersby for cake shop

5.2.4.4. MANAGER 'S FEEDBACK AFTER USE

She wanted to use it again. When we discussed the cost she was willing to pay,
she said that she would use it if it cost less per hour than a human worker. She also

expressed interest in buying the robot to avoid paying an hourly wage. She mentioned
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three benefits: 1) the robot nicely attracted passersby on weekends; 2) it increased sales;
and 3) it reduced the workload of the shopkeepers by talking about promotions instead of
the shopkeeper.

In contrast, she was less eager to use it again on weekdays. She felt that during
weekdays, generally children approached the robot, and thus she didn’t think it
contributed to sales. She also felt embarrassment operating the store while surrounded by
children (Figure 5.3, right).

5.2.5. CASE 2: INVITATION SERVICE AT A DRUGSTORE

5.2.5.1.STORE CHARACTERISTICS

The store (Figures 5.6 and 5.7), which is operated by the manager in a white coat,
sells medicines and bottled drinks. No other clerk is employed. He does not actively
attract passersby; when a customer stops, he explains medicines that are appropriate for

customers.
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Figure 5.6 Passersby around drugstore
5.2.5.2. MANAGER S DESIGN DECISION

He wanted the robot to move around and attract passersby and promote drinks
instead of medicines. If visitors need medicine, he knew they would visit the store with or
without special promotions. Moreover, a shopkeeper needs to determine very quickly
which medicine is appropriate for each customer, which is not possible for a robot.
Instead, he wanted the robot to attract children to buy juice and other drinks.
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He chose an invitation service using the same robot (Figures 5.6 and 5.7) because
it has a robot-like appearance and he had seen it before. He wanted it to wear a white coat,
but we were unable to prepare a white coat for the robot, so he placed an emblem of the
drugstore on its chest instead. We consulted with him and determined the interval
between utterances to be two seconds. During the preparation, he wanted to increase the
variation of the robot’s advertisement utterances. Initially, it only mentioned juice for
children, but we also added a comment for adults: “If you are tired, how about an energy
drink?”

5.2.5.3.RESULTS

Many passersby glanced at the robot (Figure 5.6, left), and some interacted with it
(Figure 5.6, right). For example, they waved their hands and talked to it. We observed
cases where the robot successfully attracted passersby. Figure 5.7 shows one such scene.
A mother and her daughter stopped in front of the robot (Figure 5.7-a) and heard that the
store sells juice (Figure 5.7-b). She bought some juice while talking with the manager
about the robot (Figure 5.7-c) and took a picture it with her daughter (Figure 5.7-d).

(b) | © )

Figure 5.7 Passersby who listened to robot and visited drugstore

The two coders’ judgments for stop and visit matched well and yielded a Cohen's
kappa coefficient of .848. We applied a Chi-square test for the stop and visit ratios. It
revealed that passersby stopped more frequently around the store in the robot present
situation (14.84%) than in the baseline (1.36%) (*(1)= 1504.145, p<.01, ¢=242).
However, their frequency of visits in the robot present situation (1.13%) did not differ
significantly with that in the baseline (1.03%) (*(1)=.447, p=.504, ¢=.005).

5.2.5.4. MANAGER S FEEDBACK

103



Social Robots Attracting Passersby

The manager wanted to use the robot again. He plans to move his store and asked
whether the robot could come to his next location, too. Even though he admitted that the
robot probably did not really contribute much to sales, yet he deemed it useful because it
attracted browsers and advertised the store. When we asked how much he would pay, he

said that he would pay as much as a human worker.

Although he expressed interest in using the same robot again, he wanted to
improve its interactivity, e.g., saying “thank you” to customers, even if it were
teleoperated by a shopkeeper. He believed that visitors wanted to interact with the robot,

and such reactions from it would encourage visitors to make more purchases.

5.2.6. CASE 3: DISTRIBUTING DISCOUNT COUPONS FOR A
DONUT SHOP

5.2.6.1.STORE CHARACTERISTICS

This store sells donuts. A single shopkeeper wears an orange-color T-shirt, hat,
and an apron and runs the store. When passersby are around the store, she promotes her

products by loudly making such utterances as, “how about some donuts?”

5.2.6.2. MANAGER’S DESIGN DECISION

The manager wanted to use the robot to distribute discount coupons (get a free
donut with a purchase over 500 yen) that lasted until the end of the next month. Since he
also wanted it to announce advertisements, he put ads in a coupon leaflet about relatively

unknown donuts.

We implemented a distribution service. When it estimates that it can give a
coupon to a passerby within three seconds, it starts the distribution service. Otherwise, it
repeats its advertisement information from three candidates, such as “Hello, we have
many kinds of delicious donuts.” In communication with the manager, we adjusted the

time intervals between utterances to three seconds.

He wanted it to wear the same uniform as the shopkeeper. We put the store’s hat
on the robot’s head and attached a T-shirt to the front side of its body (Figure 5.8).

Though he initially wanted a cute voice for the robot, after he observed its use in another
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store, he decided to use its default synthesized voice because passersby seemed to react

positively to it. During the trial, he changed the robot’s location to increase its visibility.

P n

Figure 5.8 Scene at donut shop

5.2.6.3.RESULTS

Many passersby noticed the robot and passed through the corridor while looking
at it. Some took the coupon (Figure 5.8), and others visited the store. They typically
stopped to accept a coupon (Figure 5.9, left), listened to the robot, looked at the coupon
(Figure 5.9, center), and glanced at the store’s shelf on which the donuts were displayed
(Figure 5.9, right). Some then bought donuts with the coupons. It distributed 413 coupons

during an eight-hour trial.

Figure 5.9 Passersby received coupons and visited donut shop

Two coders’ judgments for stop and visit matched well and yielded a Cohen's

kappa coefficient of .794. We applied a Chi-square test for the stop and visit ratios. It
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revealed a significance that passersby more frequently stopped around the store in the
robot present situation (7.39%) than in the baseline (3.28%) (x*(1)= 356.679, p<.01,
¢»=.091). Further, as illustrated in Figure 5.10, passersby visited the store more frequently
in the robot present situation (3.35%) than in the baseline (2.94%) (x*(1)= 6.006,
p=014, p=011).
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Figure 5.10 Ratio of visited passersby for donut shop
5.2.6.4. MANAGER 'S FEEDBACK

The manager wanted to use the robot again. While he was not sure whether the
robot contributed to the sales, he admitted that it attracted many passersby and advertised
his shop. Since hundreds of coupons were distributed, he expected that some customers
would return to buy donuts with them. When we asked how much he would pay, he said

that he would pay as much as a human worker is paid.

He also mentioned a couple of possible improvements. He wanted the robot to
have better interactivity to answer easy questions from visitors. According to him,
recently many young people do not want to work in the service industry because they are
required to communicate with visitors in a face-to-face manner. He wants a robot to be
the store’s main clerk and handle all communications; the human clerk will only provide
such easy support as replenishing supplies. He also wants the robot to express itself more
so that visitors will perceive it to be more than just a machine.
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5.3.DISCUSSION

Regarding the problem that participants could not get proper distance cue during
sound sources changed its range in previous experiment, a possible reason could be that
HRTFs we used was measured in a fixed range (1.4m). When the sound sources moved,
the amplitude of HRTFs is recalculated to fall off in inverse proportion to the distances,
and ITD (interaural time difference) remains the same based on plane wave assumption.
However, the fact is when the range of sound source changed, both ILD (interaural level
difference) and ITD will change as well (ILD increased with decreasing distance because
of the decreasing of head scattering effect, ITD decreased with decreasing distance),

especially at close distance that curvature of the wave front become significant.

5.3.1. IMPLICATIONS

Our study revealed that store managers have serious interest in using robots in
their stores. Even after seeing the limitations of the capability of today’s autonomous
robots, they expressed their desire for future use. In fact, for two stores, the robot
increased passerby’s frequency of visit. Frequency increased from 2.40% to 3.22% for
the cake store, 2.94% to 3.35% for the donut store. This is rather impressive. Even though
we expected that the robot would increase the number of people who stopped around the
robot (in fact, people who stopped around stores largely increased for all the stores),
persuading people to pay attention to something other than the robot itself (in our case,
store products) is more difficult. One would concern that the amounts of increase are
small; but, we consider this impactful to the stores, as the ratio of visit in the baseline is
also not so large. We also believe that the store managers are already doing their best to
attract passersby, e.g., signboards, music, and the labor of employees. Since robots
undoubtedly add new value to such efforts on their current business, they found them

useful.

We were also impressed to learn that the store managers expressed a willingness
to pay a considerable amount for a robot’s services, perhaps equal to that of a human
worker. The services we prepared were all autonomous. The invitation service can be
done with many commercially available robots. Distribution services need some

improvements from such robots, but they could be done rather easily. Thus, as the price
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of robot hardware becomes more affordable, we predict that such a robot will widely

spread in the near future.

We learned the following design implications from our case studies. First, the
store managers were very interested in indicating the relationship between the robot and
their stores. They wanted it to wear costumes. Unfortunately, our robot was not well
prepared for this, but a future robot could be designed for easily changing its clothing or
appearance. Second, the managers made a rather small number of requests, mostly about
the contents and the timing of utterances. Perhaps we could prepare a robot that can be
customized by the store managers themselves. Interactivity is one avenue for potential

improvements.

5.3.2. SOCIAL ACCEPTANCE FROM ADMINISTRATORS

Regarding perceptions related to social acceptance from managers, we made some
interesting observations. Their acceptance can be different from that by interlocutors
especially when children are involved. The robot often attracted children to interact with
it, and thus families often stopped near the stores. Some managers welcomed it; the
drugstore manager was happy because it created an opportunity to attract attention to his
store. But one manager worried that the presence of a crowd of children might change her
store’s atmosphere, and so she was discouraged from using the robot, although the

children are willing to come.

We observed a kind of a ripple effect, i.e., decisions on acceptance were
transmitted across society. Managers see other stores that use robots, and we also noticed
that they communicate about the robot among themselves, which influenced their
decisions about how to choose appearances and voices. In addition, we were contacted by
another manager who wanted to use the robot for his store after seeing it used at another
store. This ripple affect suggests that acceptance will be quickly shared, and once some

stores start to use robots, others will quickly follow and employ them, too.

5.3.3. NOVELTY EFFECT

Novelty remains one major reason why managers want to use robots. But novelty
is ephemeral. Will they continue to use them for many weeks and months? This open

question is beyond the focus of a single study. However, we speculate that strategies exist
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for keeping their robot attractive; a store that creates its own character like Mickey
Mouse might attract visitors for a long time. Further, with robots that express themselves
more, people might start to form a kind of relationship with the robots over a long-term

use, which would also compensate the loss of novelty.

5.34. COMPARISONS WITH HUMAN

Since our robot successfully attracted passersby, comparing its effect with humans
seems logical. Perhaps if we replaced it with a person, a similar effect would occur.
However, note that although such an effect might be obtained with human workers, the
store managers did not make this choice. This is probably relevant to their interview
answers that argued for the uniqueness of the robot’s value. For instance, they believed
that robots attract the attention of customers well without causing/receiving stress. Some
managers complained about the difficulty of finding people who are willing to do such
services. Thus, while it is possible that humans may cause similar effect in attracting

passerby, in reality humans were not alternative choice for the store managers.

5.3.5. CONTEXT DEPENDENCY

Although the frequency of sfop increased in all three stores, the store visitors
increased only for the cake and donut shops but not for the drugstore. We consider that
this result is due to the difference of the nature of their stores. These two stores are
designed for incidental visits, where a passerby just drops in without any previous
intention to visit or buy. In contrast, as the manager himself mentioned, since drugstores
are mainly for people who aim to visit, passersby might less incidentally visit even
though the robot tried to attract them. Further investigation might improve our knowledge

about designing robots for various contexts, €.g., a large store or a restaurant.

5.3.6. LIMITATIONS

Our observations are mostly from case studies that only involve a specific robot,
stores, and people. Comparisons include factors beyond the presence of robots. For
instance, in the case of the donut shop, although the store visitors increased, that was
partly due to the fact that they discounted their product. We did not ask them not to do so

because we wanted to observe how they would naturally use the robot. Regarding social
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acceptance, it would be also important to study how interlocutors perceived; however, we
did not interview passerby and visitors, because we did not want to influence their
behavior due to the presence of interviewers around the store. As far as we observe,
people seemed happy and we did not hear any complaint. We relied on interviews with
the managers. But the opinions in the interviews before the case studies (e.g., some were
tolerant of use by others) would change after active usages. Their feedback after the trial
use might be positively biased (e.g., how much they would pay) because perhaps they
were being polite. Nevertheless, it was not our intention to accurately measure their
attitudes; we wanted to roughly understand their views. Also, we don’t believe that they
consciously distorted their opinions out of a misplaced sense of kindness. Although a
majority responded, since the participating managers were self-selected, their positive
views do not mean all of the remaining managers are positive. Perhaps the people who

did not respond experienced hesitation, reluctance, or negative attitudes.
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6. CONCLUSIONS

The present work explored the problem of natural initiation of interaction in
human-robot interaction focused on initiating conversation and distributional handing

behaviors.

For initiation of conversation, the contribution that makes this possible is a clear
set of guidelines for how to structure a robot’s behavior to start and maintain a
conversation. This knowledge can be used by designers to create robots capable of
engaging in a conversation with a person, possibly toward integrating robots into

domestic and public environments.

More specifically, we first studied natural interaction at the moment of initiating
conversation. In a shopkeeper scenario where a salesperson meets a customer, we then
modeled natural human interaction. Our model was implemented in a humanoid robot
and tested in an evaluation experiment. We compared our proposed model with two
baseline models. The experimental results verified our proposed model as the best with
respect to its more appropriate behaviors and the smallest time delay. The recognition
accuracy of the participation state in the system evaluation was high, showing that the

model can be used to recognize an individual’s participation state in a conversation.

For distributional handing, we studied this behavior in which a giver distributes
flyers to pedestrians in an actual shopping mall environment. Our approach developed a

behavior model from the natural interaction of humans. We found that a person who
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distribute flyers well approaches pedestrians from their front side and only extends
his/her arm when they are near. We also found that pedestrians more frequently accepted
flyers when the handing was continuous, meaning that the distribution targeted a
pedestrian who noticed that a previous pedestrian took the flyer. We modeled and
implemented these two factors in our humanoid robot and conducted an evaluation
experiment a real shopping mall, where the developed robot autonomously distributed
flyers. This demonstrated that our developed robot successfully performed a flyer-
distributing service. The flyer-distributing efficiency reached 0.18, meaning that it
successfully gave flyers to 18% of the pedestrians, which was significantly better than a
simple robot that waits for pedestrians to take flyers. We believe that this ratio is
reasonably high. The pedestrians in this study were going through a shopping mall and
are typically busy with other purposes. Flyer-distribution service is one possible future
role in which a robot might serve. It is important that developed robots can successfully

operate in real world environments autonomously and with real pedestrians.

Furthermore, we conducted a field study to investigate the social acceptance of
social robots by stores, particularly for attracting passersby, which today’s robot can
autonomously perform. From interviews with ten store managers, we identified two main

reasons they want to employ such social robots in their stores:
1. Robots offer cheap labor and provide unique value that humans cannot.

2. They believe that robots are good at attracting the attention of visitors without

causing or receiving stress.

We also conducted three case studies in which we observed how store managers

employed social robots in their store and found:

1. Social acceptance: Each store manager requested different designs and services.
But all of them want to show the connection between the robot and their shop such as

dressing the robot with their shop’s clothes.

2. Robot could autonomously perform as managers designed: In all the three
shops, the managers were satisfied with the result that much more passersby stopped by

their stores thanks to the robot.

3. For two out of three stores the robot successfully encouraged visitors to visit.
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4. The store managers were satisfied with the results and expressed a desire to use
the robots again. In addition, two store managers mentioned that they would like to
employ such robots with same wage with human clerks. One mentioned that she would
consider to employ such robots with cheaper wage than human clerks.
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