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ABSTRACT 

 

Computational fluid dynamics (CFD) analysis has been extensively performed to 

investigate patient-specific blood flow fields and hemodynamics factors on the cerebral 

aneurysm. There are two key issues for the patient-specific CFD simulation; one is realistic 

vessel geometry, and the other is boundary condition. Meanwhile, the cerebral aneurysm often 

develops at the bifurcation of cerebral arteries, so the analysis of the model with multiple outlet 

boundaries remains a critical issue. On the other hand, according to the advancement in medical 

imaging technique, blood flow field is able to be obtained invasively using phase contrast 

magnetic resonance imaging (PC-MRI). Unfortunately, since the current spatial resolution of 

the PC-MRI is insufficient to reproduce the blood flow field in cerebral vessels with a diameter 

of a few millimeters, with directly using PC-MRI velocity profile.  In this regard, various 

approaches to combine the numerical simulation and measurement data, so-called data 

assimilation (DA) have been recently developed for blood flow problems. This thesis conducts 

a computational approach based data assimilation on reducing the velocity differences between 

the PC-MRI measurement and the CFD simulation on the patient-specific aneurysm.  

In the first part of the thesis, the effects of extracted patient-specific geometries with 

different threshold image intensities on flow solution were investigated by using CFD studies. 

The reconstruction of the vessel geometries was derived using the determination threshold 

coefficient (Cthres) method and the blood flow analyses were conducted by a pressure fixed (P-

fixed) approach and flow-rate control (Q-control) approach, where expresses the outlet 

boundary in CFD analysis as an ad hoc outlet pressure and adjustment the outlet pressure by 

modified the flow rate difference respectively. The results exhibited that the inlet area and 

volume of the vascular model decrease as the value Cthres increases, whereas the wall shear 
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stress (WSS) distribution increases as Cthres increases. The minimum velocity difference 

between PC-MRI measurement and CFD simulation was obtained at a Cthres value of 0.3. This 

relationship potentially gives the physically adequate realistic vessel geometry to achieve the 

minimum value of velocity difference on flow fields for each patient. 

Next, the study was focused to propose a basic framework for imposing a pressure 

condition on the outlet boundary in order to minimize the velocity differences between PC-

MRI measurement and CFD simulation. The velocity-field optimized (V-optimized) approach 

was proposed to couple velocity fields in the measurement and computation, in which a set of 

pressure values on outlet boundary is determined based on an optimization problem. This 

present approach solves the direct problem iteratively. To evaluate the effects of imposing the 

outlet pressure, this P-fixed approach, Q-control approach, and V-optimized approach (the 

present approach) were compared. The result showed that, the highest reduction in velocity 

difference occurs at the V-optimized approach, where the velocity difference (normalized by 

inlet velocity) is 19.3%. This present approach also confirmed that the differences in boundary 

treatments affect the WSS values in both local domains for an aneurysm and non-aneurysm 

region.  

           For the consideration of improvement on the exhaustive search to find the optimal 

solution in V-optimized approach, a novel data assimilation method for patient-specific blood 

flow analysis based on conventional feedback control theory called the physically consistent 

feedback control-based data assimilation (PFC-DA) method was proposed. In the PFC-DA 

method, the signal was attributed to a residual velocity difference between the numerical and 

measured velocities, which is cast as a source term in a Poisson equation for the potential scalar 

field that induces flow in a closed system. The pressure values at the inlet and outlet boundaries 

are recursively calculated by this potential scalar field. Through the feasibility study on the 

PFC-DA method demonstrated the flow was automatically separated into respective daughter 
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branches by determining the boundary pressure and the higher resolution in computational 

mesh provides the WSS profile. As compared with the proposed V-optimized approach, 

although this PFC-DA method does not guarantee the optimal solution, only one additional 

Poisson equation for the scalar potential is required, providing an improvement for such a small 

additional computational cost. These achievements clearly exhibit a huge potential of the new 

direction in patient-specific PC-MRI integrated blood flow analysis for a cerebral aneurysm. 
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Chapter 1 

Introduction 

 

1.1 Cerebral aneurysm 

Cerebrovascular disease is a vascular disease of the cerebral circulation. Most 

commonly this is a stroke or mini-stroke and sometimes can be a hemorrhagic stroke. The 

number of deaths for cerebrovascular disease has decreased at the peak of the 1960s due to 

advances in medical technology, and it is the fourth largest after a brain tumor, heart disease, 

and pneumonia in statistics of 2012 [1]. Since cerebrovascular diseases are directly related to 

injury or necrosis of brain tissue, many cases died immediately after rupture; it is known as a 

disease that causes serious sequelae even if it survives, which causes a long-term care condition 

(Ministry of Health, Labor and Welfare 2013). Subarachnoid hemorrhage, a major 

cerebrovascular disease, is one of the cerebral hemorrhages occurring at the bottom of the brain, 

and 75% of this disease is caused by rupture of a cerebral aneurysm [1]. A cerebral aneurysm 

is a common vascular disease characterized by local ballooning of a cerebral artery and usually 

occurs at the bifurcations and branches of the large arteries, typically in the circle of Willis, as 

shown in Fig. 1.1 [2]. Approximately 85% of the aneurysms develop in the anterior part of the 

circle of Willis and involve the internal carotid arteries and their major branches that supply 

the anterior and middle sections of the brain. About 1.5% to 5% of the general population had 

developed a cerebral aneurysm and recorded about 3 to 5 million people in the United States 

have cerebral aneurysms, but most are not producing any symptoms [3]. Between 0.5% and 

3% of people with a brain aneurysm may suffer from bleeding. The risk of rupture varies 

depending on the aneurysm location and size. Recent epidemiological analyses show that the 
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overall prevalence of a cerebral aneurysm is 3.2% in a population without the comorbidity [3]. 

Even in cases of survived patients, 1:3 ratio of survivors remain dependent [4], and then their 

quality of life seems to be significantly reduced.  

 

  

Figure 1.1 Schematic representation of the Circle of Willis by [2]. CT angiography of cerebral 

arteries (left) and the cerebral aneurysms in the circle of Willis (right) 

  

Furthermore, the treatment method to prevent the aneurysm rupture is limited to the surgical 

method, and thus the treatment of cerebral aneurysms includes the severe risk of the internal 

bleeding. Whereas, the risk of the aneurysm rupture is not substantially high. Reported by [4], 

for the five-year risk of the aneurysm rupture was 3.4% but in one-year risk was only 1.4%. As 

a result of the review, the annual rupture rate of a cerebral aneurysm in the Japanese population 

is 2.7% [5]. 
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1.2 Computational fluid dynamics (CFD) analysis on 

cerebral aneurysm 

In order to acquire blood flow velocity and pressure distribution in cerebral blood 

vessels, CFD analysis is broadly performed using a vascular model constructed from images 

captured by measuring devices such as PC-MRI, CT, and ultrasonic measurement. By CFD 

analysis, it becomes possible to acquire blood flow dynamics and mechanical field in the blood 

vessel which cannot be obtained by measurement. The relationship between wall shear stress 

(WSS) and viscosity of the blood is influenced by the growth and rupture process of a cerebral 

aneurysm [6]. There are extensive studies on the shear stress applied to the surface. However, 

in a previous study investigating the rupture factor by CFD analysis, it was reported that locally 

high shear stress [7] applied to the aneurysm wall contributes to rupture, and relatively low 

shear stress [8] has been reported to be involved in rupture. Different factors such as 

assumptions, model shapes and boundary conditions in mathematical models can be considered 

as causes of different report results. In particular, since the blood flow velocity obtained from 

a healthy subject as a boundary condition and the value obtained from the past literature are set 

as the boundary condition in the existing study, the primary cause is considered to be a uniform 

setting of the boundary condition. By [9] reported, there are changed the velocity at the inlet 

boundary condition based on parameters such as Reynolds number using a model that 

developed a cerebral aneurysm in the arterial bifurcation, perform by CFD analysis.  As a result, 

the flow distribution after branching depends on the value of velocity inlet boundary and it is 

affected where the wall shear stress is low. Thus, the boundary condition setting is important 

when considering hemodynamics individual patient-specific aneurysm.  
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1.3 Phase contrast magnetic resonance imaging (PC-MRI) 

measurement and blood flow information 

Magnetic resonance imaging is widely accepted by clinicians as a valuable tool for 

diagnosing cardiac and vascular diseases, measuring disease severity and assessing patient 

response to medical and surgical therapy. The technique has been further developed over the 

last few decades to provide not only morphological information on cardiovascular anatomy, 

but also functional information on cardiac perfusion, myocardial viability, and blood flow. 

Since the original description in the 1980s [10], [11], [12], phase contrast magnetic resonance 

imaging (PC-MRI) has seen broad clinical acceptance for the visualization and quantitative 

evaluation of blood flow in the heart, aorta and large vessels [13]. Further development of PC-

MRI techniques has allowed for the acquisition of a time-resolved (CINE), three-dimensional 

(3D) PC-MRI with three-directional velocity encoding which is often referred to as “4D flow 

MRI. The combination of 3D blood flow visualization with flow quantification enables a new 

and previously unfeasible comprehensive evaluation of the impact of cardiovascular 

pathologies on global and local changes in cardiac or vascular hemodynamics [14], [15]. An 

important PC-MRI parameter is the VENC, which represents the maximum flow velocity that 

can be acquired. It is important to note, that velocity noise is directly related to the VENC [16]. 

Therefore, selecting a high VENC may alleviate the issue of velocity aliasing but will also 

increase the level of velocity noise in flow velocity images. The VENC should ideally select as 

high as needed to avoid aliasing but as low as possible to reduce velocity noise. As a general 

rule, to capture the best image quality, the chosen VENC should represent the physiological 

velocity of the vessel of interest and be adapted to the measurement of interest and present 

hemodynamic conditions. 
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1.4 PC-MRI measurement integrated CFD simulation 

based data assimilation (DA) method 

The integration between PC-MRI and CFD simulation has been shown in [17]-[20], 

and the details explanation about the blood movement inside intracranial aneurysms were 

introduced. By [20], [21] shows the good understanding on hemodynamic studies in the 

prediction of the flow field problems through internal carotid arteries. However, little 

information is available in the literature about the accuracy of the approach and quantitative 

differences between PC-MRI measurement and CFD simulation, especially on configuration 

[21] and boundary condition. The authors of [22], [23] did the same observation but practically 

focus on carotid bifurcation arteries (CBA).  

Integration analyses coupling the numerical simulation with PC-MRI measurements have 

been attempted, using techniques from control theory [24] and data assimilation (DA) [25]. 

Ultrasonic-measurement-integrated (UMI) simulations [26] were also carried out, where a 

body force derived from differences in the velocity fields between the ultrasonic measurement 

and simulation is incorporated into the momentum equation based on feedback control theory. 

These UMI simulations were first applied for a two-dimensional model [24], then extended to 

a three-dimensional model [26] for blood flow in an aorta with an aneurysm. Although the 

UMI simulations have been widely applied for practical blood flow problems, it is questionable 

whether the body force is physically correct; in addition, a modification technique is required 

to obtain a consistent pressure field. A data assimilation (DA) technique was used for 

integration analysis based on a variational method (or 3D adjoint method) [25] or Bayesian 

inference [27]. In the variational method, a cost function related to the velocity difference 

between the measurement and simulation is minimized by the least-squares method with 

respect to boundary conditions such as the stress vectors on the inlet/outlet boundary, where 
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the governing equations are used as constraints. Thus, it becomes an inverse problem to obtain 

the boundary conditions, minimizing the cost function. The resulting velocity field is physically 

consistent because the boundary condition is estimated. However, because the problem is ill-

posed, a Tikhonov regularization term is added to the system with an arbitrary parameter; this 

creates a huge discrete system that is time-consuming and expensive to solve. 

 

1.5 Motivation and aim of the thesis 

The main motivation of this thesis is to develop a new concept of data assimilation 

method for reproducing an exact flow field by reducing the velocity difference between PC-

MRI measurement and CFD simulation with using all the PC-MRI velocity data for patient-

specific cerebral aneurysm. Currently, the clinical assessment of the cerebral aneurysm mainly 

focuses on the anatomical features of the patients observed by the medical imaging techniques. 

However, the data assimilation (DA) method has been extensively developed to investigate the 

patient-specific blood flow and hemodynamics factor on cerebral aneurysms by combining the 

measurement and simulation. Thus, the quantitative evaluation of blood flow field considering 

the real patient-specific geometry is strongly dependent on vessel configuration and boundary 

condition setup.  

The aim of this thesis is to conduct a computational approach based data assimilation 

method. We want to obtain an exact flow field by reducing the velocity differences between 

CFD simulation and PC-MRI measurement (with noise). In the first part of this thesis, the 

effects of extracted patient-specific geometries with difference threshold image intensities on 

flow solution were investigated by using CFD studies. Next, the study was focused to propose 

a basic framework for imposing a pressure condition on the outlet boundary using velocity-

field optimized (V-optimized) approach, in order to minimize the velocity differences between 
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PC-MRI measurement and CFD simulation. Finally, the feasibility study on a novel data 

assimilation method for patient-specific blood flow analysis based on conventional feedback 

control theory called the physically consistent feedback control-based data assimilation (PFC-

DA) method was investigated. 

 

1.6 Outline of the thesis 

Chapter 2 describes the CFD studies to investigate the effect of extracted patient-

specific geometries with a different coefficient of threshold image intensities on flow solution. 

Chapter 3 focuses on proposing a basic framework for imposing a pressure condition on the 

outlet boundary to minimize the velocity differences between PC-MRI measurement and CFD 

simulation where we compare three different CFD approaches namely, pressure fixed (P-fixed) 

approach, flow-rate control (Q-control) approach and velocity-field optimized (V-optimized) 

approach. Chapter 4 presents a feasibility study on a novel physically consistent feedback 

control-based data assimilation (PFC-DA) method for patient-specific blood flow analysis. 

Chapter 5 concludes the thesis by summarizing the major findings and describes the future 

work.    
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Chapter 2 

Influence of extracted geometries on velocity 

difference between PC-MRI measurement and CFD 

simulation for patient-specific blood flow fields 

 

2.1 Introduction 

Early studies investigated hemodynamics in idealized arterial geometries; the current 

trend is to use the realistic patient-specific geometry of vivo arteries. It is required to implement 

realistic geometrical models on individual basis, since individual configurations is the rule 

rather than the exception, and blood flow characteristics strongly depend on vessel 

configuration [28], [34].  

Computational fluid dynamics (CFD) study would be a powerful tool to investigate the 

blood flow characteristics for a patient-specific aneurysm. In previous studies [29], [30], 

validation of CFD simulation is extremely important to solve the flow field in hemodynamic 

problems. Conversely, a combined PC-MRI measurement and CFD simulation introduced the 

good understanding on hemodynamic studies in the prediction of the flow field problems 

through internal carotid arteries. However, little information is available in the literature about 

the accuracy of the approach and quantitative differences between PC-MRI measurement and 

CFD simulation, especially on the configuration of vessel geometry [21], [31]. As for the blood 

flow simulation in a cerebral aneurysm, the computational result depends on the vessel 

configuration, and that simplification of the geometry may possibly observe the effect on flow 

field [32]. Since we assumed that the blood vessel configuration was accurately reconstructed, 

the effect of deviance on blood vessel geometry from real one remains to be investigated.  
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In recent years, remarkable progress has been made in simulating blood flow 

constructed between computational simulation and medical imaging measurement. It had 

reported that when the blood vessel configuration close to the upstream, boundary condition 

was moderate, and the application of idealized velocity profile was valid [33]. Therefore, in 

this chapter, it is importance to investigate the effect of reconstructed geometries on velocity 

difference between PC-MRI measurements and CFD simulation. 

The aim of this chapter was to investigate the effects of extracted patient-specific 

geometries with difference threshold coefficient (Cthres) and estimate the velocity difference of 

the blood flow field in PC-MRI measurement and CFD simulation with using the CFD studies.  

 

 

2.2   Methodology 

2.2.1  Clinical data 

There are ten patient-specific aneurysms with different sexes acquired from clinical 

digital subtraction angiology (DSA) at Osaka University hospital. These ten patients underwent 

open surgery between August 2010 and October 2012. Table 2.1 shows the clinical 

characteristics of the side-location, gender, number of outlet branches and diameter of 

aneurysm size. The measurement of aneurysm diameter was conducted, and the medical 

images used for surface reconstruction were obtained using 3D rotational angiography (3D-

RA). The 512 corresponding projection images were reconstructed into a 3D data set of 512 x 

512 x 512 voxels with a resolution from 0.1 to 0.17 mm. 
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Table 2.1 Clinical characteristics. 

Patient Side Sex Outlet branch Location Aneurysm diameter (mm) 

1 Right M 3 ICA  2.81 - 3.52 

2 - M 3 ACA  1.81 - 2.39 

3 Left M 3 MCA  5.68 - 6.52 

4 - F 3 BA  4.35 - 5.13 

5 Left M 3 ICA  7.91 - 6.80 

6 Left M 3 MCA  6.05 - 6.65 

7 Left M 3 ICA  8.12 - 9.13 

8 - F 2 ACA  1.92 - 2.61 

9 - M 2 ACA  4.52 - 5.32 

10 - M 2 BA  3.86 - 4.60 

M: Male. F: Female. ICA: Internal carotid artery. ACA: Anterior cerebral artery. MCA: Middle 

cerebral artery. BA: Basilar artery. The aneurysm diameter is measured in the vascular model 

reconstructed by threshold coefficient value of 0.3. 
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Fig 2.1. The location of aneurysms 1-10 in the typical cerebral vasculature. Note, the image 

is generated from Phase contrast-MRI using AMIRATM 5.4.2 software. 

 

 

 

 

 

Aneurysm 1 

Aneurysm 2,8,9 

Aneurysm 3,6 

Aneurysm 5,7 

Aneurysm 4,10 
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2.2.2 Image segmentation using a determination  

 threshold coefficient method 

The medical imaging data were acquired from ten different patients featuring two or three 

branches of internal carotid artery (ICA). The image segmentation and surface reconstruction 

of the vessel were performed from DSA images in AMIRA 5.4.2 (Visage Imaging, Berlin, 

Germany). The threshold coefficient method [34] was introduced to extract the vessel geometry 

adequately. We selected a representative cross-section, where the blood vessel was distinct 

with a large diameter, and set a straight line in the cross-section across the blood vessel shown 

in Fig. 2.2(a). Then, the minimal and maximal values of the image intensity along the line, Imin 

and Imax, were obtained and calculated the threshold image intensity, Ithres, by using a threshold 

coefficient defined as: 

min

max min

thres

thres

I I
C

I I

 
  

 
 

(2.1) 

In this investigation, five different threshold coefficients (Cthres = 0.2, 0.3, 0.4, 0.5, and 0.6) 

values were employed as shown in Fig. 2.2(b). Consequently, 50 segmented vascular models 

were created in total for ten patients.  

The 3D reconstruction of the cerebral aneurysm geometry was done using AMIRA 

5.4.2. The cerebral aneurysm surface was given by 3D triangle meshes based on the 

unconstrained smoothing function of AMIRA 5.4.2 (see Fig. 2.3(a)). To reduce the remains of 

spatial irregularity of the obtained surface meshes, a physical-based surface (spring network 

model) smoothing process was carried out (see Fig. 2.3(b)), which the stretching and bending 

were applied to each edge of the mesh and pair of the adjacent meshes, respectively. Details 

are described in Appendix 1.   
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Fig. 2.2 Schematic of the threshold coefficient method of vascular reconstruction. (a) DSA 

image. A red line is set as an axis of the evaluation. (b) Image intensity profile along the 

evaluation axis in (a) and the respective threshold levels defined in (2.1). 

 

 

Fig. 2.3 Process of the construction of the cerebral aneurysms geometry from clinical DSA 

images. (a) The patient-specific geometry of the aneurysm is extracted using AMIRA 5.4.2 from 

medical DSA images, and surface meshes are constructed. (b) The surface smoothing is done 

by the physics-based surface smoothing process using a spring network model. 
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2.2.3  PC-MRI acquisition 

The PC-MRI examinations were performed on a 3.0T MRI scanner (Philips Achieva 

TX) using a standard head coil. 4D-flow provides us with time-resolved 3D voxel data, each 

of which has three-directional flow velocity components. A gradient echo phase contrast 

imaging sequence was applied using retrospective cardiac gating using peripheral pulse unit, 

resulting in 15 frames/phases over the cardiac cycle. The imaging parameters for 4D-flow were 

as follows; echo time (TE) 3.8 ms, repetition time (TR) 8.1 ms, 150 flip angle (FA), 1 mm slice 

thickness, 250 x 180 mm field of view (FOV), scan matrix 256 x 192 pixels, voxel size 0.7 x 

0.7 x 0.5 mm, 56 number of slices and a velocity sensitivity (VENC) of 120 cm/s. 3D time-of-

flight (TOF) MR angiography was performed for geometric information. Imaging parameters 

for 3D TOF MR Angiography were as follows; TR/TE 22/3.5 ms, FA 220, FOV 200 mm, 

matrix 293 x 512, and 0.7mm slice of thickness. 

 

2.2.4  Velocity field obtain from PC-MRI measurement 

In PC-MRI image, the vascular region was extracted using the range of the intensity 

value where the surrounding tissue of the blood vessel is not selected as much as possible in 

measurement data. The intensity value of the blood vessel region is set to 1, and for the non-

blood vessel, the region is set to 0. A 3D velocity field was obtained from the voxel intensity 

value in each of the three phase images corresponding to each voxel of the vessel region 

extracted from the PC-MRI image. As shown in Fig. 2.4(a), coordinate axis is taken with the 

pixel in the lower left corner as the reference point. The values of i and j represent pixel 

positions on the image, expressed as integers from 1 to the number of pixels, and the value of 

k represents the slice position of the image and is represented by an integer from 1 to the 
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number of slices (2.2). The measurement result is recorded on the phase image with 12 bits 

(4096 gradations).  

 

Fig. 2.4 (a) Coordinate axes in a plane. (b) The relationship between the brightness values and 

the velocity. 

 

 

The relationship between intensity value and speed is shown in Fig. 2.4(b). At this time, VENC 

is the absolute value of the speed measurement range at the time of phase image, and the 

intensity value and the speed are in a linear relation (2.3).  
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(2.3) 

However, as shows in Fig. 2.4(b), the speed value outside the range of VENC is the folded 

value. This is called folding artefact. A velocity vector in each voxel constituting the cerebral 

blood vessel region extracted from the PC-MRI image was calculated from three phase images 

to generate a three-dimensional velocity field. Table 2.2 shows the spatial average inlet velocity 

obtained from PC-MRI measurement images at peak systole, and corresponding Reynolds 
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numbers are shown based on the inlet vessel diameter and typical kinematic viscosity of the 

blood. 

 Normally, the aneurysm geometry obtained from PC-MRI was presented in voxels 

(see Fig. 2.5(a)) and for the three-dimensional velocity field acquired from the PC-MRI 

measurement as shown in Fig. 2.5(b). Both images were visualized by ParaView (Kitware Inc.). 

 In order to investigate the velocity differences between PC-MRI measurement and 

CFD simulation, it is necessary to register the cerebral aneurysm shape model with the shape 

obtained from the PC-MRI image. Therefore, these two model are possible to register by 

coordinate transformation using an Iterative Closest Point (ICP) algorithm [35] where is widely 

used as a basic method of alignment between two 3D models. Details are described in Appendix 

2.   
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Table 2.2   Average inlet velocity and corresponding Reynolds number obtained from PC-MRI 

data at peak systole. 

  

Patient  

1 

Patient  

2 

Patient  

3 

Patient  

4 

Patient  

5 

Patient   

6 

Patient  

7 

Patient  

8 

Patient  

9 

Patient  

10 

Inlet 

velocity 

(m/s) 

0.212 0.601 0.294 0.729 0.201 0.335 0.307 0.731 0.463 0.455 

Reynolds 

number 

142 427 435 558 230 213 201 475 523 148 

 

 

 

 

 

Fig. 2.5 a cerebral aneurysm obtained from PC-MRI intensity image in patient 1. (a) 

Reconstruction of vascular geometry presented by voxel. (b) Typical velocity fields in a 

cerebral aneurysm obtained from PC-MRI measurement. 
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2.2.5  Blood flow analysis 

Generation of the computational mesh for the blood flow analysis was done using the 

commercial software STAR-CCM+ 6.04.014 (CD-Adapco, Yokohama, Japan).  Five prism 

layer meshes with a 10% wrapper scale were set in the vicinity of the wall, and polyhedral 

meshes were adopted for the rest of the flow region. The parameters for meshing were 

determined so that the base size of the mesh is 0.6 mm (meshes above 10% of base size are 

allowable). The total number of meshes as shows in Table 2.3. Since the Reynolds number of 

the blood flow in the cerebral artery ranges from 142 to 558 (see Table 2.2), the flow is assumed 

as laminar flow. The aneurysms region was defined by the volume mesh separation of arterial 

geometries as shown in Fig. 2.6 by the function of STAR-CCM+.  

 

Table 2.3 Number of meshes for each patient. 

Patient No. Number of elements 

1 383189 

2 147968 

3 485528 

4 250411 

5 488850 

6 409488 

7 566241 

8 276357 

9 200107 

10 156343 
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Blood was assumed to be an incompressible Newtonian fluid because the non-Newtonian 

nature of blood only generates secondary effects on blood flow as compared with the geometry 

of the flow region [36]. Although flow in the cerebral artery is normally unsteady with a 

Womersley number of 3, steady flow was assumed for simplicity [37]. For the present 

simulation, the flow was modeled with the Navier-Stokes equation and the equation of 

continuity, given by 

u u p u, (2.4) 

  u (2.5) 

where u is the velocity vector of the flow, p is the pressure,  the density, and the viscosity 

of the fluid. The simulation condition was set as follows. Blood was treated as a specific density 

of  = 1050 kg/m3, and viscosity  = 3.5 × 10-3 Pa.s. Arterial walls were assumed to be rigid, 

and a no-slip condition, u was applied. On the inlet boundary Γin, the uniform velocity was 

imposed shown in Table 2.2 and a zero gradient condition for the pressure. On the outlet 

boundary Γout , a zero gradient condition for the velocity was imposed and a Dirichlet boundary 

condition for the pressure, set at an arbitrary value.  

Generally, for incompressible fluid analysis involving the multiple outlets, when the 

inlet velocity is fixed, the outlet pressures should also be fixed. However, in blood flow analysis, 

a part of the general circulation is extracted and addressed, and thus the outlet pressures are not 

deterministically obtained. In order to investigate the effects of extracted geometry on velocity 

difference between PC-MRI measurement and CFD simulation on the patient-specific 

aneurysm, two different approaches to determine the outlet boundary condition were 

introduced, called the pressure-fixed (P-fixed) approach and flow-rate control (Q-control) 

approach.  
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Fig. 2.6 Configuration of patient-specific aneurysms recontracted from clinical DSA images 

acquired at Department of Radiology, Osaka University Hospital. Regions with red and grey 

colors indicate the aneurysm region and non-aneurysms region respectively. 
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2.2.5.1   Pressure-fixed (P-fixed) approach 

The basic framework with Ad-hoc pressure fixed (P-fixed) approach was presented. The outlet 

i[1,I] was defined, where I is the total number of outlets, and corresponding outlet pressures 

p(i). In the P-fixed approach, all the outlet pressures was set to zero, i.e., p(i) = 0 for i[1,I].  

 

2.2.5.2   Flow-rate control (Q-control) approach 

Although pressure is generally used as outlet boundary condition in CFD analysis [9], it is 

difficult to acquire the pressure inside a blood vessel by measurement setting when there are 

multiple outlet boundaries. Therefore, the value of the pressure was proportionally controlled 

so as to coincide with the flow distribution ratio calculated from the PC-MRI image at a 

plurality of outlet boundaries. 

By [38], the outlet flow rates control (Q-control) approach was introduced for the PC-

MRI measurement and CFD as Q(i) and q(i) respectively, for the outlets i[1,I]. In the Q-control 

approach, the outlet pressure p(i) is modified by the flow rate difference Q(i) - q(i), based on the 

proportional feedback control as follows. 

( )1 ( ) ( ) ( )( )   k k ki i i ip p G Q q ,       for i[2,I] (2.6) 

Here, the superscript k represents the iteration number in solving the time-dependent Navier-

Stokes equations (2.4), (2.5) or feedback loop, and kp(i) and kq(i) are the outlet pressure and flow 

rate for the k-th iteration in the CFD analysis, respectively. The second-term in (2.6) represents 

the pressure increment modifying the outlet pressure at the next feedback loop k+1. In terms 

of the feedback control theory, it is interpreted that the PC-MRI flow rate Q(i) is the desired 

value,  the CFD flow rate kq(i) is the output, their difference Q(i) - kq(i) is the deviation, and the 

pressure increment of the second-term in (2.6) is the control variable. Here, G is the 
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dimensional proportional gain, which associates the flow rate difference between the CFD and 

PC-MRI with the outlet pressure (increment). In this study, instead of using the dimensional 

gain G, we employed a non-dimensional gain G* to relax a problem dependency by introducing 

an inlet dynamic pressure Uin
2 and inlet flow rate Qin so that G= (Uin

2/Qin)G
*. We fix the 

pressure at outlet 1 to 0, i.e., p(1) = 0 for all iterations, because, in incompressible flow 

simulation, the relative pressure works with the velocity inlet boundary condition.  

 It should be noted that the non-dimensional gain G* behaves like a spring constant in 

the system and still depends on the analysis condition. In the feedback loop, a convergence 

speed becomes faster as G* is increased. However, the system becomes oscillatory and unstable 

as G* is much increased. Since its threshold is explored by trial and error, we had found the 

solutions are stable and reasonably accurate at G*=15 from our preliminary numerical trials. 

Thus, we employed it for all our analyses by the Q-control approach. The flowchart of the Q-

control approach is shown in the Fig. 2.7. 
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Fig. 2.7 Flowchart of algorithm in the Q-control approach. 
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2.2.6  Evaluation of the velocity difference 

In order to compare the velocity difference between measurements and computations, 

the velocity field of CFD analysis is interpolated to the voxel-based data obtained from the low 

resolution of PC-MRI measurement. By combining Gaussian quadrature method and moving 

least squares approximation method, the average value in voxels from discrete element velocity 

vectors in CFD analysis was approximated. We calculated the discrete velocity difference as: 

m mU u       for       [1, ]m M  (2.7) 

where M is the total number of voxels or measurement points of the PC-MRI, and Um and um 

are the m-th measurement and numerical velocities, respectively, at the measurement point xm. 

Note that the measurement velocity using the PC-MRI is not regarded as a pointwise value 

because of the relatively low resolution compared to the vessel size. The velocity value 

obtained from the PC-MRI was spatially averaged in each voxel of the PC-MRI, and thus the 

projection procedure was introduced to associate the CFD solutions with the PC-MRI 

measurements for the evaluation of velocity difference. The detailed procedure for evaluation 

of velocity difference was described in Appendix 3 and Fig. 2.8 shows the evaluation domain 

in all ten patients. 

 

For the evaluation, the velocity difference norm, Eu has introduced as:  

1

uE
1 M

m m

mM 

  U u  (2.8) 

In addition, the normalized norm is defined as 

* u
u

in

E
E

U
  (2.9) 

where Uin is the inlet velocity shown in Table 2.2.  
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Fig. 2.8 Evaluation domain in all ten patients. (a) Patient 1, (b) Patient 2, (c) Patient 3, (d) 

Patient 4, (e) Patient 5, (f) Patient 6, (g) Patient 7, (h) Patient 8, (i) Patient 9 and  (j) Patient 10. 
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2.3   Results and discussion 

About fifty of cerebral aneurysm models were created base on five different Cthres 

values. In the determination of threshold image intensity, we obtained the highest and lowest 

values were (8572-11261) and (-4119-2698) respectively. The threshold image intensity value 

calculated to Cthres values of 0.2, 0.3, 0.4, 0.5 and 0.6 were (528-2109), (1125-1864), (1724-

2659), (2322-3639) and (2839-4618) respectively.  

 

2.3.1  Effect of Cthres on configuration of vascular models 

The effect of extracted geometry in a patient-specific aneurysm was investigated using 

CFD studies. Fig. 2.9 shows the inlet area and volume of vascular models decreased as the 

Cthres value was increased. In the volume results, the Cthres value of 0.5 was significantly smaller 

than those obtained from Cthres values of 0.2 and 0.3 (p < 0.001) respectively and those, in the 

inlet area results, the Cthres value of 0.3 was significantly larger than those obtained from Cthres 

values of 0.5 and 0.6 (p < 0.001) respectively. The configuration of the vascular model gives 

the high impact on intra-aneurysmal hemodynamics and potentially useful in predicting the 

aneurysm rupture [39]. Early studies investigated hemodynamics and blood flow 

characteristics strongly depend on vessel configuration [28]. Therefore, the extracted geometry 

of these parts must be accurately [40], [41]. The incidence of disconnection artery (see Fig. 

2.10) or the creation of holes in the vascular vessel increases when the threshold image intensity 

becomes higher. This disconnection of artery especially large branches associated with the 

aneurysm cannot be negligible because it may have a major effect on cerebral aneurysm 

hemodynamics. Thus, the effect of Cthres was evident from the fact that the blood flow characteristic 

strongly depends on vessel configuration and all the subsequent results were obtained at Cthres0.3. 
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Fig. 2.9 Effect of threshold coefficient (Cthres) values on vascular model configuration. The 

comparison between five different Cthres values for the volume (top) and inlet area (bottom) of 

the vascular model respectively. These values decrease as the Cthres values increase.  
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Fig. 2.10 Representative vascular models reconstructed from patient 1 using five threshold 

coefficient (Cthres). The posterior connecting artery was removed at Cthres 0.6 (red arrow) 

because of the disconnection artery during extracted geometry process. 

 

2.3.2  Effect of Cthres on WSS of vascular models 

The highest WSS region was located at the neck area in all 10 patient-specific 

aneurysms and the Fig. 2.11 shows, the value of WSS distribution increased when the Cthres 

value increased. The average WSS distribution of the entire vascular model with a Cthres value 

of 0.2 was significantly lower than those obtained with Cthres values of 0.5 and 0.6 (p < 0.001) 

respectively. However, the Cthres value of 0.5 was significantly higher than those obtained with 

Cthres values of 0.2 and 0.3 (p < 0.001 and p < 0.01) respectively. The highest WSS distribution 

was observed at the neck area and the lowest WSS distribution detected at the body/dome area 

of the vascular model. The remarkably changed WSS distribution was obtained when the Cthres 

value increased especially at Cthres values of 0.5 and 0.6 as shown in Fig. 2.12.  

Addition, we observed the WSS distribution was considerably changed due to volume 

change. Fig. 2.13 shows a negative non-linear correlation between volume and the average of 

WSS distribution. Therefore, the extracted geometry based on threshold determination method 

should be performed carefully especially for vascular models with small volumes in order to 

neglect the extreme changes in the WSS distribution of the patient-specific geometry. 
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Fig. 2.11 Effect of threshold coefficient (Cthres) values differences on wall shear stress (WSS) 

distribution of a vascular model. The WSS distribution at the highest region increases when 

the Cthres values increase. 

 

 

 

Fig. 2.12 Remarkable change wall shear stress (WSS) distribution when the Cthres values 

increase near to cerebral aneurysms region. 
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Fig. 2.13 A non-linear negative correlation between volume and average WSS distribution of 

a patient-specific aneurysm based on different threshold coefficient (Cthres) values. 

 

2.3.3 Effect of Cthres on the flow-field solution 

The variation of the velocity differences between measurement and numerical solution, 

with different Cthre values using a P-fixed approach and a Q-control approach, is shown in Fig. 

2.14. Comparison of these two approaches indicates the minimum velocity difference was 

obtained at a Cthres value of 0.3, which decreased the difference between the measurement and 

numerical solution from 40% in the P-fixed approach to 32% in the Q-control approach. After 

a Cthres value of 0.3, the differences increased as the Cthres values increased for both approaches. 

In the box-and-whisker plot, the velocity differences between PC-MRI measurement and CFD 

simulation with a Cthres value of 0.3 were significantly lower than those obtained with Cthres 

values of 0.4, 0.5 and 0.6 (p < 0.001) respectively but not significant when compared with Cthres 

values of 0.2. 



31 
 

Normally, the velocity difference and WSS error are predominantly due to image 

processing and model construction steps because the error from finite element discretization is 

fairly small. Therefore, the effect of Cthres on flow-field solution was evident from the fact that 

the hemodynamics and blood flow characteristic strongly depend on vessel configuration. 

 

 

 

Fig. 2.14 Box-and-whisker plot showing the Cthres values in the vessel geometry reconstruction 

for ten patient-specific aneurysms versus the normalized velocity differences between the 

measurements and numerical solutions in the P-fixed approach and the Q-control approach. 
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2.4 Summary 

This chapter investigated the influence of extracted geometry on velocity difference 

between PC-MRI measurement and CFD simulation for patient-specific blood flow fields. The 

CFD results exhibited excellent agreement with the previous study that the hemodynamics and 

blood flow characteristic strongly depend on vessel configuration. 

Further detailed development on extensive analysis of the numerical simulation may 

help to reduce the effect of the reconstructed geometry on the flow-field solution and to verify 

this beneficial knowledge for clinical application in order to observe the hemodynamic in each 

patient based on the patient-specific flow characteristics of the blood flow in the aneurysm.  
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Chapter 3 

Minimizing the blood velocity difference between PC-

MRI and CFD simulation in cerebral arteries and 

aneurysms 

 

3.1 Introduction 

Since the flow characteristic in the patient-specific aneurysms highly depends on its 

geometry as Chapter 2, it is still not enough to identify the factor affecting the blood flow fields 

and hemodynamics factor. Thus, to complete the study, it would be important to further 

investigate the effect of boundary treatment on patient-specific blood flow fields.    

In recent years, remarkable progress has been made in numerical simulation of blood 

flow in realistic boundary condition constructed between CFD simulation and PC-MRI 

measurement. It has reported, the numerical simulations can encounter problems relating to the 

specification of realistic boundary conditions [42]-[45]; inaccurate boundary conditions can 

introduce unphysical modeling errors. However, little information is available in the literature 

about the accuracy of the approach and quantitative differences between PC-MRI measurement 

and CFD simulation, especially on boundary condition and vessel configuration as discussed 

in Chapter 2.  

In order to obtain a more realistic comprehension of blood flow alteration, a 

combinatorial boundary condition was implemented in the hemodynamic simulation. A way to 

avoid the incorrect specification of boundary conditions is to use velocity profiles obtained 

from PC-MRI. In [20], [46], [47], blood flow simulation of carotid bifurcations was performed, 

and the results were compared with PC-MRI measurements. These studies indicated that CFD 
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combined with PC-MRI could be useful for obtaining the blood flow field. However, the 

velocity profile was poorly resolved in space and time, and included measurement noise; so it 

is not clear that the measured velocity can be used directly as the boundary condition in CFD 

analysis.  

 In this chapter, we have proposed a novel basic framework, called velocity-field optimized 

(V-optimized) approach, to couple the velocity fields in the measurement and computation, in 

which a set of pressure values on outlet boundary (outlet pressure) is determined based on an 

optimization problem. The present approach solves the direct problem iteratively. Moreover, it 

enables the use of commercial software to solve the fluid system without any modifications. 

To show the effectiveness of the present approach, we have compared this boundary treatment 

of outlet pressures, with previous approaches in Chapter 2; P-fixed approach and Q-control 

approach. 

 

 

3.2   Methodology 

3.2.1  Patient-specific aneurysms 

Ten patient-specific aneurysms were acquired from clinical digital subtraction 

angiology (DSA) at Osaka University hospital. The aneurysms formed in the internal carotid 

artery (ICA), anterior cerebral artery (ACA), middle cerebral artery (MCA) and basilar artery 

(BA). The longest diameter was approximately 9.13 mm (see Table 2.1 in Chapter 2).  
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3.2.2  Blood flow analysis 

The blood flow is assumed to be an incompressible Newtonian fluid, and its flow is steady. 

The blood flow analysis was conducted using the steady incompressible Navier-Stoke equation 

given in eq. (2.4) and (2.5). The following conditions were imposed on the boundaries of the 

artery and aneurysm; a uniform velocity (see Table 2.2) at the inlet and no-slip condition at the 

fixed walls. Then, for the outlet boundaries, we have applied the velocity field (V-optimized) 

approach as discussed in the next section. 

 

3.2.2.1   Velocity-field optimized (V-optimized) approach 

In the previous chapter 2, the Q-control approach in (2.6) reduces the flow rate 

difference between the CFD and PC-MRI at each outlet. However, in the PC-MRI 

measurement, the spatial resolutions at the outlets are coarse compared with the inlet, and thus 

the estimation accuracy of the outlet flow rate is low because of the observation noise. Thus, 

in the Q-control approach, the computational velocity field in the entire domain is not reliable 

because the entire velocity field is affected by the outlet flow rate distribution. Meanwhile, the 

full velocity information obtained from the PC-MRI is used for the CFD.  

In this chapter, a basic framework for imposing a pressure condition on the outlet 

boundary was proposed and so-called velocity-field optimized (V-optimized) approach, which 

minimizes a velocity difference between the CFD velocity u and PC-MRI velocity U over the 

entire domain, i.e., reduces Lp norm of the velocity difference, ||U-u||p, by changing the outlet 

pressure at each branch. In the V-optimized approach, we solve the following combinatorial 

optimization problem: 
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Here, the CFD velocity u is determined through the governing equations by giving the outlet 

pressure p(i), and thus, eqs. (2.4) and (2.5) are taken as constraints in the optimization problem. 

H is the set of discrete pressures defined as: 
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(3.3) 

Here, Pn is the discrete pressure, Pmin and Pmax are the minimal and maximal pressures, 

respectively, and N is the total number of discrete pressures as shown in Fig. 3.1. We set p(1) = 

0, while we find the outlet pressure p(i) for i[2,I] in H. 

 

In this study, we minimize the L1 norm of velocity difference, ||U-u||1, in (2.7), by 

applying the exhaustive search technique for finding the optimal solution. In this regard, the 

number of outlet branches is 2 or 3 in this study, and thus the degree of freedoms of the set of 

all the outlet pressures is N or N2 at most. The following is a brief summary of the V-optimized 

approach. 

1. Define the set of discrete pressure H by giving the minimum and maximum pressures Pmin 

and Pmax and the total number of discrete pressures N. In this study, we set N=6. 

2. Fix the outlet pressure as p(1)=0 for the outlet 1. 

3. Set i=2 for the loop of outlet pressure index, and introduce the minimum cost function Jmin, 

which is set large enough here. 

4. Initialize the outlet pressures as p(j)=Pmin for j[2,I] and set n=1 for the loop of discrete 

pressure index. 
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5. Solve the incompressible Navier-Stokes equations using the outlet pressure set p(i) until the 

convergence solution is obtained. 

6. Evaluate a L1 norm of velocity difference, ||U-u||1 as J. If J < Jmin, Jmin J and keep the 

solution sets umin, pmin. 

7. Go to step 8 if n=N, otherwise update the outlet pressure as p(i)=Pn+1 and go to step 5 with 

nn+1. 

8. Go to step 9 if i=I, otherwise go to step 4 with ii+1. 

 

 

 

Fig. 3.1 Schematic of the discrete pressure field P(i). 
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3.3   Results and discussion 

In a computational fluid dynamics (CFD) analysis of blood flows using biomedical 

images, assumptions are often made that can adversely affect the numerical results. One is the 

boundary conditions, and the other is the reconstruction of the vessel geometries through the 

image analysis. 

 

3.3.1  Effect of boundary treatments on the velocity  

  difference 

 

The distributions of velocity difference magnitude |Um - um| in (2.7) for the ten patient-

specific aneurysms are presented in Fig. 3.2. The differences were distributed within the 

domain, and the highest velocity change was observed at a different location for each model. 

In patients 1, 7, and 10, the areas of relatively high-velocity difference were concentrated 

around the aneurysmal neck and dome. About 50% of the patients presented large velocity 

differences at the wall and close to arterial bifurcations. For patients 2 and 4, the large 

differences were found around both an aneurysm and the wall. These locational differences for 

the velocity change were attributed to the flow patterns and the relationship between the 

measurement voxel size and the vessel size. The effects of voxel evaluation can be seen in 

patients 2, 4, 8, and 9. This is even more evident in smaller vessels, which can have only two 

or three voxels across their lumen. Nevertheless, in all of the patients, the velocity differences 

were dramatically decreased when the V-optimized approach was employed. 

Next, we investigated the quantitative relationship of the velocity difference in the 

boundary treatments. Both the velocity difference norms defined in (2.8) and (2.9) for the ten 

patient specific data are shown in Fig. 3.3. All the differences with the Q-control approach were 

slightly improved over those with the P-fixed approach. Moreover, the differences with V-
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optimized approach were significantly reduced; they were approximately 19.8%, 19.1%, 19.2%, 

17.8%, 19.9%, 18.1%, 15.2% 24.7%, 21.6%, and 17.6% for patients 1–10 respectively; 80% 

(8/10) of patients had a reduced velocity difference of less than 20%. A high reduction of 

velocity difference (>30%) was shown for patients 1 and 4–7, whereas a small reduction (6.3–

25%) was found for the other patients in Fig. 3.3. The smaller reduction in velocity difference 

could be attributed to the relative size of the spatial measurement resolution, to the vessel 

diameter (shown in Fig. 3.2 (b, c, h-j)), where the measurement voxel occupied the vessel wall, 

and the velocity information in the voxel was not reliable for the blood velocity. The detailed 

contour maps of Eu (norm velocity difference) distribution on discrete pressure fields presented 

in V-optimized approach for ten patient-specific aneurysms shown in Fig. 3.4. In the 

circumstance of three branches, for example Q-control approach and V-optimized approach 

presented, the pressure at Pout2 and Pout3 acquired similar range were (0-250Pa : 0-260Pa), (250-

500Pa : 0-500Pa), (0-150Pa : 100-250Pa), (-200-0Pa : 0-400Pa), (-50-50Pa : 50-150Pa), (0-

200Pa : 100-300Pa) and (50-200Pa : -100-200Pa) from patient 1 to patient 7 respectively. 

However, the result indicated the huge range of outlet boundary in case of the real application 

but given the significant prediction on CFD analysis. On the other hand, the repetition process 

and the computational time were frequently increased. 

The normalized velocity differences shown in Fig. 3.3 are statistically summarized 

using the box-and-whisker plot in Fig. 3.5. In addition, we evaluated the mean for the 

normalized velocity differences in respective boundary treatments. It was found they were 

40.3% in the P-fixed approach, 32.1% in the Q-control approach, and 19.3% in the V-optimized 

approach, respectively. The normalized norm of velocity difference with the V-optimized 

approach was significantly lower than that obtained with the P-fixed approach (p < 0.001) and 

the Q-control approach (p < 0.001).   
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Fig. 3.2 Comparisons of velocity difference [unit: m/s] distribution on ten patient-specific 

aneurysms (a) patient 1, (b) patient 2, (c) patient 3, (d) patient 4, (e) patient 5, (f) patient 6, (g) 

patient 7, (h) patient 8, (i) patient 9, and (j) patient 10, for different boundary treatments, the 

P-fixed approach (left column), the Q-control approach (middle column), and the V-optimized 

approach (right column). 
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For a Cthres value of 0.3, the quantitative comparison shows that the lowest and highest velocity 

differences were obtained using the V-optimized approach and P-fixed approach with median 

values of 19.2% and 44.1%, respectively. However, the velocity differences remained when 

minimizing the velocity difference norm in the V-optimized approach. One possible reason is 

that of the measurement accuracy of the PC-MRI, including the relatively low spatial resolution 

regarding the vessel size. The other reason is because of the assumptions of a rigid wall, and a 

Newtonian viscous model in the CFD analysis. 

In the present study, we investigate the velocity difference between PC-MRI and CFD 

simulation by using all the velocity data obtained from PC-MRI measurement and this V-

optimized approach accurately performed the best when searching for the optimal solution. 

However, this present approach is tremendously expensive regarding computational cost 

because the grids are made of a large number of cells (up to millions of cells), and the 

simulation time increased due to a combinatorial optimization with an exhaustive search is 

applied to find the optimal solution deal with a real patient-specific geometry. 
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Fig. 3.3 Comparison of Eu (norm of velocity difference) and Eu* (normalized norm of velocity 

difference) for ten patient-specific aneurysms. (a) patient 1, (b) patient 2, (c) patient 3, (d) 

patient 4, (e) patient 5, (f) patient 6, (g) patient 7, (h) patient 8, (i) patient 9, and (j) patient 10, 

in terms of different boundary treatments, the P-fixed approach, the Q-control approach, and 

the V-optimized approach. The analysis was investigated at Cthres value of 0.3. 
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Fig. 3.4 Contour maps of Eu (norm of velocity difference) on discrete pressure fields presented 

in V-optimized approach for ten patient-specific aneurysms. (a) patient 1, (b) patient 2, (c) 

patient 3, (d) patient 4, (e) patient 5, (f) patient 6, (g) patient 7, (h) patient 8, (i) patient 9, and 

(j) patient 10. 
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Fig. 3.5 Box-and-whisker plot showing the normalized norm of the velocity difference between 

the measurement and numerical simulation for the ten patient-specific aneurysms with different 

boundary treatments. The highest values of velocity difference were for the P-fixed approach 

(right), the second-highest for the Q-control approach (middle), and the lowest for the V-

optimized approach (left). 
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3.3.2  Local velocity difference in aneurysm and non- 

  aneurysm parts 

 

The V-optimized model showed good improvement in decreasing the velocity 

difference in the overall domain. One of the important issues in the present analysis is how the 

flow field is represented by the aneurysm part when compared with the full geometry. Here, 

we evaluate local velocity differences in the aneurysm and non-aneurysm parts separately. The 

normalized norm defined in (2.9) was used for the evaluation of the local velocity differences, 

where the summations in (2.8) were used for the aneurysm and non-aneurysm parts, 

respectively. The results are shown in Fig. 3.6. Analogous to the overall velocity difference, 

the V-optimized model showed the smallest different in both the mean and standard deviation 

for the aneurysm and non-aneurysm parts, which was approximately half of those with the P-

fixed and the Q-control. In the present V-optimized model, the evaluation function (2.7) 

adopted the overall norm over the whole domain, and thus the reduction of velocity difference 

when compared with the Q-control model was roughly uniform in both the aneurysm and non-

aneurysm parts, as shown in Fig. 3.6.  

However, as mentioned in the previous subsection, the measurement velocity in the 

low-resolution part compared with the vessel diameter was not reliable because of 

measurement noise. This suggests that the local velocity difference in the aneurysm part is 

improved when we adopt a weight function depending on the measurement resolution or 

position; for example, we can use a high weight for the norm evaluation in (2.8) around an 

aneurysm or large vessel part. Nevertheless, even in the simple evaluation with the uniform 

weight used in this study, the present V-optimized model is capable of reducing the velocity 

differences in the aneurysm part by approximately 19%. 
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Fig. 3.6 Normalized norms of the local velocity difference in the aneurysm and non-aneurysm 

parts for the ten patients, with different boundary treatments, P-fixed, Q-control, and V-

optimized approaches.  
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3.3.3  Effect of boundary treatments on WSS  

 

Hemodynamic values such as wall shear stress (WSS) are important factors in the 

growth and rupture of a cerebral aneurysm [23], [48]. However, these factors are strongly 

attributed to the flow pattern, and thus a flow analysis with poorly posed boundary conditions 

may lead to an incorrect hemodynamic model. 

 Here, we investigate how the different boundary treatments used in this study affected 

the computation of the WSS around the aneurysm and non-aneurysm parts. Fig. 3.7 shows the 

WSS obtained from the flow velocity in the CFD model with the various boundary conditions 

for the ten patients. Significant decreases in the value of the WSS were observed in the different 

boundary conditions for both the aneurysm and non-aneurysm parts. The highest value of WSS 

was obtained in the P-fixed approach, and the second-highest value was obtained in the Q-

control approach. Meanwhile, the V-optimized model showed the lowest value of WSS. In the 

P-fixed and Q-control approaches, no significant change of WSS values was observed because 

of the inaccurate boundary conditions. In contrast, for the V-optimized approach, Fig. 3.7 

shows the WSS value obtained for the aneurysm and non-aneurysm parts was significantly 

reduced in comparison with the P-fixed (p < 0.001) approach. However, the WSS value 

obtained in the V-optimized approach was significantly lower than the Q-control approach (p 

< 0.001), but only in the aneurysm part.  

In other aneurysm study, the higher WSS distribution for aneurysm and non-aneurysm 

depends not only on the boundary condition used but also on the way the blood flows from the 

parent vessel into the aneurysm, which in turn is influenced by the geometry of the cerebral 

artery [34]. In some aneurysms cases, the blood flows from the parent vessel directly into the 

aneurysm, resulting in a concentrated inflow jet [29] that impacts the aneurysm wall, producing 

a region of locally higher WSS distribution.  
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Fig. 3.7 Comparison of wall shear stress (WSS) for the three different boundary treatments. 

The average WSS region of the aneurysm (right) and non-aneurysm (left) parts at the peak 

systole for the ten patient-specific aneurysms. 
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In other patient-specific aneurysm studies, the higher WSS distribution depends not only on 

the boundary condition but also on the blood flow stream from the parent vessel into the 

aneurysm, which in turn is influenced by the geometry of the cerebral artery. In some aneurysm 

cases, the blood flows from the parent vessel directly enter into the aneurysm, resulting in a 

concentrated inflow that impacts the aneurysm wall, producing a region of locally higher WSS 

distribution. Other aneurysms have a more diffuse inflow that produces a slower aneurysm 

flow pattern and a more uniform WSS distribution than the non-aneurysm parts [34]. 

Fig. 3.8 (top) shows the velocity vectors of PC-MRI and CFD with different boundary 

treatments at PC-MRI measurement points around the daughter and aneurysm part for patients 

7. The large differences in the magnitude of velocity vector between PC-MRI measurement 

and CFD simulation are perceived inside an aneurysm. In the V-optimized, Fig. 3.8 (top-right) 

shows the magnitude of the velocity vector differences between CFD and PC-MRI in an 

aneurysm are significantly reduced in comparison with those of P-fixed and Q-control 

approaches. By estimating the realistic pressure boundary based on the V-optimized approach, 

the flow pattern was completely changed along with the reference (PC-MRI measurement) 

velocity field even inside the aneurysm.  

Next, we investigate how these flow pattern changes affect the WSSs in the CFD 

solution. Fig. 3.8 (bottom) shows the WSSs obtained from the flow velocity in the CFD with 

different boundary treatments for same patients. These results show the WSS was changed in 

the Fig. 3.8 (bottom) in different boundary treatments. The highest value of WSS is obtained 

in the P-fixed approach, and the second-highest value is obtained in the Q-control approach. 

Meanwhile, the V-optimized shows the lowest value of WSS. The present results show that a 

flow analysis with poor boundary conditions gives an unrealistic flow distribution that 

compares badly with the actual flow (measurement), and incorrectly estimates the WSS around 

an aneurysm. 
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P-fixed Q-control V-optimized 

 

 

Fig. 3.8 Comparison of velocity fields (top); red and black arrow indicates the CFD and PC-

MRI velocity respectively, and wall shear stress distribution (bottom) for patient 7, in terms of 

different boundary treatments, the P-fixed approach, the Q-control approach, and the V-

optimized approach. 
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3.4 Summary 

In this chapter, the minimizing of velocity difference between PC-MRI measurement 

and CFD simulation was investigated and discussed the effects of difference boundary 

treatment on flow field solution for patient-specific aneurysms. The basic strategy was 

proposed, namely, the V-optimized approach to impose the boundary condition (outlet pressure 

boundaries) with couple the velocity fields in the measurement and computation, based on an 

optimization problem. 

In the V-optimized approach, because the outlet pressure was determined such that the 

norm of velocity difference was minimized based on the combinatorial optimization strategy, 

the normalized norms of the velocity difference for all ten patients were significantly reduced 

to 19.3% in the mean, which was much less than those of 40.3% in the P-fixed approach and 

32.1% in the Q-control approach. This was also established in the local domain of the blood 

vessel and confirmed that the differences in the boundary treatments affect the WSS values in 

both the aneurysm and non-aneurysm parts. 

This chapter exhibits that the boundary condition setup (outlet boundaries) plays an 

important role in the flow field solution between measurement and simulation, which may be 

a key issue for the treatment effectiveness on the patient-specific aneurysm. 
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Chapter 4 

The feasibility study of physically consistent feedback 

control based data assimilation (PFC-DA) method on 

patient-specific aneurysms  

 

4.1 Introduction 

Previous chapters revealed the effects of vessel configuration (Chapter 2) and the 

effects of boundary treatment (Chapter 3) on flow field solution between PC-MRI 

measurement and CFD simulation for a patient-specific aneurysm. Although the previous 

studies have a potential to obtain the “optimal solution” in each patient, the solution is vain due 

to the high computational cost when conducted an exhaustive search technique in V-optimized 

approach. 

An alternative data assimilation method based on the optimal control [49], [25], [50] 

have been applied in blood flow analysis. A comprehensive understanding of the relationship 

between the variational and statistical (Bayesian) approaches has been also attempted [27]. In 

optimal control based approaches, the formulation is mathematically clear. However, the 

analysis usually requires a large computational cost and is still under development for practical 

time-dependent problems. 

In the current study by [26], data assimilation approach has been developed based on 

feedback control theory. This approach introduces a body force attributed to the residual 

velocity term, which is the difference between the reference and numerical data, to drive the 

flow. Although the body force naturally fits in the momentum equation that maintains mass 

conservation, an unphysical pressure field appears due to this momentum source. Ideally, this 



54 
 

would be remedied in a post-procedure on the obtained pressure field [26]. However, it is still 

unclear that the body force would bring an unphysical acceleration or rotation in the flow 

around the location where the body force is imposed. As compared with optimal control-based 

approaches [25], [27], [49], [50], the conventional feedback control-based approach is not 

guaranteed to provide the optimal solution. However, the computational cost is generally low 

because the velocity residual between the reference and numerical data is incorporated into the 

system as a kind of penalty term.  

In this chapter, a physically-consistent feedback control based data assimilation (PFC-

DA) method was proposed and discussed in terms of the feasibility and accuracy. 

 

 

4.2   Methodology 

4.2.1  Patient-specific analysis on cerebral aneurysms 

The patient-specific geometries of the cerebral aneurysms were reconstructed through 

image analysis using a commercial software AMIRA 5.4.2 (Visage Imaging, Berlin, Germany), 

with DSA images with a pixel/slice resolution of 0.1 mm. The patient-specific models remain 

same with previous Chapter 2 and Chapter 3. However, the geometry extension was applied 

due to the setting of domain size in Cartesian mesh. Detail geometries for all ten patients were 

showed in Fig. 4.1.  

The spatial resolution of the PC-MRI measurement data were 0.72, 0.72 and 0.5 mm 

for the x, y, z directions, respectively. In this analysis, the CFL number was approximately 0.1 

base on the setting of mesh resolution and the time increment. 
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Fig. 4.1 Extension of the geometries for all ten patient based on domain size in Cartesian mesh 

system. (a) patient 1, (b) patient 2, (c) patient 3, (d) patient 4, (e) patient 5, (f) patient 6, (g) 

patient 7, (h) patient 8, (i) patient 9, and (j) patient 10. 
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4.2.2   Basic idea of the PFC-DA method 

The governing equations are the incompressible Navier-Stokes equations (4.1) and 

continuity equation (4.2) as follows 

∂t u + u. u) = p + 2 u (4.1) 

 . u = 0 (4.2) 

where u is the velocity vector,  is the density and is the dynamic viscosity. The pressure 

driven system with a set of boundary conditions is given by  

u = 0,            on w 
(4.4) 

 pn+∂n u = - n   on in, out 

where w, in, out are the wall, inlet and outlet boundaries and  is the boundary pressures 

including both inlet and outlet. A basic idea of the present approach is to determine the boundary 

pressure  based on the feedback control theory (proportional control). Since we regard the 

solved velocity u as an output from the system and the reference velocity U as the desired output, 

we derive a general form of the feedback control system as 

f = K (U – u) (4.4) 

where f is the control signal sent to the system or body force, and K is the feedback gain. To 

incorporate the signal f into the system, Funamoto and Hayase [26] impose it into the 

momentum equation (4.1) as a body force. However, it is still an open question whether the 

body force would bring an unphysical flow acceleration and rotation. In a pressure-driven 

system with a bounded domain, the flow field could be reproduced by giving a set of adequate 

boundary pressures. Therefore, we do not need to include spatially distributed body forces 

within the domain into the momentum equations. According to this idea, we cast the signal f 

into the analysis system as the pressure boundary condition.  
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When the pressure difference was dominant to driven the flow, we assume the body force 

represented by a scalar potential field   

f = - (4.5) 

Using a vector calculus identity, the scalar potential field satisfies the following Poisson 

equation 

2=  - . f (4.6) 

with the Neumann boundary condition 

∂n = 0,   on w, in, out  (4.7) 

Note that, when a pointwise signal f exists, the scalar potential field by  plays a role in driving 

the flow due to a difference of the measurement velocity U and CFD velocity u. Therefore, the 

expected new pressure field is reproduced when the boundary value of  is prescribed as the 

boundary pressure for in and out. 

 Consequently, our final system consists of incompressible NS equations (4.1), (4.2) and 

Poisson equation for scalar potential (4.6) with a set of boundary condition (4.7). The detailed 

description about the numerical discretization on fixed Cartesian mesh, please refer to Appendix 

4.  
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4.2.3   Calculation of volume fraction (VOF) data 

The partial differential equations are spatially discretized by a finite difference method 

in a Cartesian mesh system. To deal with the flow in an arbitrary geometry of the vessels, the 

boundary data immersion (BDIM) method was introduced [51], in which both the fluid 

governing equations and no-slip wall condition for a rigid are mixture using a smoothed phase 

function. The phase functions were calculated by averaging an exact phase indicator function 

which corresponding to volume fraction, so-called VOF function [52]. The VOF data on each 

voxel are calculated based on the extracted vessel geometry represented by a set of surface 

polygons through the SDFlib library (RIKEN, Japan), where a domain size and the mesh 

number (nx, ny, nz) for each ten patient shows in Table 4.1.The isosurface of VOF=0.5 is 

shown in Fig. 4.2.  

 

Table 4.1 Spatial discretization parameter for each ten patient-specific aneurysms. 

Patient Domain size [mm] 
Number of Mesh 

(nx,ny,nz) 

1 20 x 20 x 20 (80, 80, 80) 

2 15 x 15 x 15 (80, 80, 90) 

3 25 x 25 x 25  (120, 90, 80) 

4 12 x 12 x 12 (160, 80, 170) 

5 32 x 32 x 32 (80, 80, 90) 

6 27 x 27 x 27 (115, 80, 80) 

7 30 x 30 x 30 (90, 80, 80) 

8 23 x 23 x 23 (80, 80, 80) 

9 18 x 18 x 18 (80, 100, 80) 

10 12 x 12 x 12 (150, 80, 130) 
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Fig. 4.2 (a) ‘Cut’-geometry in a domain. (b) Calculated VOF function. The surface represented 

as VOF=0.5.  The domain size of 20mm x 20mm x 20mm with the number of meshes for (nx, 

ny, nz) = (80, 80, 80). The illustration model shows patient 1. 
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4.3 Results and discussion 

The present PFC-DA method was applied to the blood flow on real patient-specific 

cerebral aneurysm. In order to investigate the accuracy and the feasibility of this present PFC-

DA method, first, we have checked the effects of the proportional gain, Kp, on flow field 

solution. Next, we have observed the effects on pressure distribution at the inlet and outlet. 

Then, we have shown the overall behavior of flow field. Finally, we have presented the detailed 

information on hemodynamics for all ten patient-specific aneurysms. 

 

4.3.1  Effects of proportional gain (Kp) on flow field  

solution 

In order to investigate the ability of the present PFC-DA method, the test with difference 

proportional gain Kp values for ten patient-specific aneurysms was conducted. A temporal 

change of the normalized velocity difference Eu
* between PC-MRI measurement and CFD 

simulation with difference proportional gain, Kp for each ten patient-specific was shown in Fig. 

4.3. As the proportional gain Kp was increased, velocity difference Eu
* becomes smaller, and 

the convergence speed becomes faster. However, in Fig. 4.3 (e), (f), and (i), Eu
* becomes 

oscillatory in time by incresing Kp, where the velocity difference Eu
* were approximately 0.25, 

0.24 and 0.21 at Kp of 100, 1000 and 1000 respectively. Based on this, the Kp values of 50, 100 

and 100 were applied in these three patients and run up the analysis to t = 1 s. The velocity 

difference Eu
* was gradually decreased over time and converged to a constant approximately 

17.1%, 19.5%, 19.7%, 19.0%, 19.4% and 16.9% for patient 1, patient 3, patient 4, patient 5, 

patient 6 and patient 7 respectively. However, for patient 2, patient 8, patient 9 and patient 10, 

the velocity difference remain higher were 24.1%, 20.8%, 21.2% and 23.6% respectively. One 
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possible reason giving such a large velocity difference (> 20%) was assumed that the 

measurement data are pointwise and that the singular source was used in the evaluation of the 

scalar potential field. However, because the PC-MRI data were spatially smeared out over its 

measurement resolution, rather than pointwise [53], and was reformulated it to incorporate the 

signal as a source into the scalar potential field by using spatial filtering.  

 As compared to others figure the value of Kp giving a minimal velocity difference Eu
* 

is gradually shifted to smaller values as the Kp value increases. These results for the 

relationships of Eu
* with Kp imply that the good assimilated solution was obtained when the 

behavior of Eu
* was investigated and find the optimal Kp depends on the analysis conditions. 

Note that, velocity difference Eu
* was strongly affected by Kp .  

 The main pitfalls of PC-MRI, as compared with DSA is the possibility of 

overestimation of the voxel size. This undesirable effect may occur if the voxel size is too large 

related to the diameter of the vessel. Fig. 4.4 shows the influence of inlet diameter of the vessel 

on the flow solution. These values of normalized velocity difference Eu
* decrease as the inlet 

diameter of the vessel increases.  As well-known, the low spatial resolutions or the use of large 

voxel will introduce the error and lead to a decrease in total noise. In this sense, the vascular 

vessel can not only be overestimated but in some cases may even be underestimated if the voxel 

size is so large that the partial volume effect becomes important. 
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Fig. 4.3 Temporal changes of normalized velocity difference, Eu
* between PC-MRI 

measurement and CFD simulation with different proportional gain, Kp for each ten patient-

specific aneurysms. (a) patient 1, (b) patient 2, (c) patient 3, (d) patient 4, (e) patient 5, (f) 

patient 6, (g) patient 7, (h) patient 8, (i) patient 9, and (j) patient 10. 
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Fig. 4.4 Influence of vessel diameter on flow solution. These values of velocity difference Eu
* 

decreases as the inlet diameter of the vessel increases.  

 

4.3.2  Effects of voxel meshes on pressure distribution  

The pressure distribution on the voxel meshes at all discrete points of the interior 

domain of the vessels (for VOF > 0.5) was shown in Fig. 4.5. It was seen that a smoothed 

distribution without any unphysical acceleration was calculated even if the Cartesian type 

approach was used. The boundary pressure varies in each daughter branches that are shown at 

patient 2, patient 3, patient 6 and patient 8. However, the constant pressure distribution was 

obtained at patient 1, patient 4, patient 5, patient 7, patient 9 and patient 10 respectively. 

Usually, it was impossible to properly determine the boundary conditions only using the 

geometric information especially for an abnormal case such as a cerebral aneurysm because 

the physiological conditions might be changed from those of a normal case. In this regard, the 

present PFC-DA method automatically gives the boundary pressures. 
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Fig. 4.5 Numerical solutions for the pressure distribution at every discrete points for VOF > 

0.5 with ten patient-specific aneurysms. (a) patient 1, (b) patient 2, (c) patient 3, (d) patient 4, 

(e) patient 5, (f) patient 6, (g) patient 7, (h) patient 8, (i) patient 9, and (j) patient 10. 
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4.3.3 Overall behaviour of flow fields 

Fig. 4.6 shows the velocity fields at the discrete points of the assimilated solution for 

all ten patient-specific aneurysms. It was seen that an overall behaviour of the assimilated 

velocity field at discrete points was shown that the smooth velocity profiles in the mother and 

daughter branches, including the aneurysm, where the flow was automatically separated into 

daughter branches by the estimated boundary pressures. These shows that the flow rate of the 

inlet vessel is well reproduced and properly divided into outlet branches. Since the CFD 

analysis can use higher resolution meshes than the measurement resolution, more detailed 

information on the flow field was obtained. 

 

 

4.3.4 Detail information on wall shear stress (WSS) 

In additional, we can evaluate the continuous WSS profile by using the velocity 

distribution obtained using the higher resolution computational meshes. Fig. 4.7 shows the 

WSS distribution, where it is constructed by the least-squares method using a surrounding set 

of the flow velocity on the Cartesian meshes. Again, it was confirmed that a smoothed profile 

was obtained even in the Cartesian mesh systems. In all patients, the WSS values inside the 

aneurysm were much smaller than that of the mother branch. However, a bit higher value was 

observed around the neck region of the aneurysm at patient 2, patient 5, patient 8, patient 9 and 

patient 10.  The highest WSS was seen around a bifurcation area, especially distributed in the 

small artery that was attributed to the flow separation on the corner of outlet branches. 
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Fig. 4.6 Numerical solutions for the velocity at every discrete points for VOF > 0.5 with ten 

patient-specific aneurysms. (a) patient 1, (b) patient 2, (c) patient 3, (d) patient 4, (e) patient 5, 

(f) patient 6, (g) patient 7, (h) patient 8, (i) patient 9, and (j) patient 10. 
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Fig. 4.7 The WSS values are evaluated based on the velocity distribution at each discrete points 

for ten patient-specific aneurysms. (a) patient 1, (b) patient 2, (c) patient 3, (d) patient 4, (e) 

patient 5, (f) patient 6, (g) patient 7, (h) patient 8, (i) patient 9, and (j) patient 10. 
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4.4 Summary 

This chapter investigated the feasibility of the present PFC-DA method on patient-

specific blood flow analysis for a cerebral aneurysm, using the PC-MRI velocity data. The 

feedback control approach was extended, with satisfying the physical consistency through the 

pressure boundary condition, which was evaluated by relaxing a misfit of velocity field between 

measurement and simulation.  

In the investigation with a patient-specific aneurysm model, the assimilated flow field 

was in good agreement with the measurement flow field, where the velocity difference between 

measurement and simulation was reduced to less than 20% in systole condition. Moreover, a 

reasonable WSS distribution was reproduced. The information on hemodynamics (wall shear 

stress) and pressure field and also blood flow dynamics enables a better understanding of blood 

flow and would provide novel indices for diagnosis of cerebral diseases. In conclusion, this 

chapter clearly shows a feasibility of the present PFC-DA method for the simulation based 

patient-specific blood flow analyses on the cerebral aneurysm. 
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Chapter 5 

Conclusions 

 

This thesis presented a new concept of data assimilation method for reproducing an 

exact flow field by reducing the velocity difference between measurement and simulation with 

using all the velocity data obtained from PC-MRI measurement for patient-specific cerebral 

aneurysms. The effects of extracted geometry on blood flow field were evaluated to investigate 

the velocity difference between PC-MRI measurement and CFD simulation for patient-specific 

geometries in Chapter 2. The effects of boundary condition (outlet boundary) setup on flow 

solution were revealed in Chapter 3 through the investigation of the three difference boundary 

treatments; namely P-fixed approach, Q-control approach and V-optimized approach in 

minimizing the velocity difference between PC-MRI measurement and CFD simulation. 

Finally, toward the consideration to improve the V-optimized approach, Chapter 4 proposed 

the physically consistent feedback control based data assimilation (PFC-DA) method and 

investigated the feasibility of this method using patient-specific aneurysms. In the following 

context, this chapter provides a brief summary of each chapter, future works and emphasize 

the potential of the outcomes in this thesis. 

In Chapter 2, the effects of extracted geometry on patient-specific aneurysm were 

examined by using the threshold determination method. These results demonstrated the volume 

and inlet area decrease as the Cthres value increases, and the WSS increases as the Cthres value 

increases. Interestingly, the minimum value of velocity difference between PC-MRI 

measurement and CFD simulation was obtained at Cthres value of 0.3 for both boundary 
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treatments; P-fixed and Q-control approach. According to this, the reconstructed vessel 

configuration strongly affects the flow characteristics.  

To focus deeply on this relationship, Chapter 3 re-examined the CFD studies on 

minimizing the velocity difference between PC-MRI measurement and CFD simulation by 

introducing the basic framework; so-called velocity-field optimized (V-optimized) approach. 

The methodology remains same as Chapter 2. The results were compared with the P-fixed 

approach and Q-control approach and exhibited the significant reduction of velocity difference 

to 19.3% in V-optimized approach. The finding clearly confirmed that the differences in 

boundary treatments affected WSS value. However, this approach is tremendously expensive 

regarding computational cost because due to a combinatorial optimization with an exhaustive 

search is applied to find the optimal solution. 

Chapter 4 proposed the novel physically consistent feedback control based data 

assimilation (PFC-DA) method to improve the V-optimized approach. The detail information 

of flow was successfully expressed through the feasibility study on this PFC-DA method. 

Through the numerical simulation for the 3D exact flow fields, along with a blood flow analysis 

on the real patient-specific cerebral aneurysm with actual PC-MRI velocity data, the results 

confirmed that the flow automatically separated into respective branches and with the higher 

resolution in the computational mesh provides the WSS profile. 

The main achievement of this thesis is to develop a basic strategy to investigate the 

optimal solution of velocity difference between PC-MRI measurement and CFD simulation by 

using V-optimized approach and then improve it with the novel physically consistent feedback 

control based data assimilation (PFC-DA) method in order to reduce the computational cost. 

The understanding of the effects of extracted geometry on flow field solution for a patient-

specific aneurysm also has a huge potential to innovate the clinical assessment of the 

hemodynamics. Fig. 5.1 illustrates a schematic of framework developed in this thesis.  
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Fig. 5.1 Schematic of the new concept of data assimilation method framework for patient-

specific aneurysm. 
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Patient-specific blood flow field was measurable by using medical imaging (PC-MRI), and 

then the flow characteristics can be evaluated with using correct vessel configuration and 

boundary condition (Chapter 2&3). However, due to the lack of measurement spatial resolution, 

the large of velocity difference was introduced. For further improvement on the V-optimized 

method in chapter 3, the novel data assimilation called PFC-DA method was introduced in 

Chapter 4.  

 This thesis not only revealed to reduce the velocity difference between PC-MRI 

measurement and CFD simulation on the global and local blood flow fields in the patient-

specific cerebral aneurysm but also developed the new concept in computational mechanics 

analysis by using all the PC-MRI velocity data. These achievements clearly exhibit a huge 

potential of the computational mechanics approach.  
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Appendix 1 

Smoothing process for vascular geometry 

The three-dimensional (3D) reconstruction of the patient-specific geometry was done 

using the AMIRA 5.4.2 (Visage Imaging, Berlin, Germany). The vessel surface was given by 

3-D triangle meshes based on the unconstrained smoothing function of AMIRA 5.4.2. To 

reduce the remain spatial irregularity in the obtained surface meshes, a physics-based surface 

smoothing process was carried out, in which the stretching and bending resistance expressed 

by a spring network model [54] was applied to each edge of the mesh and pair of the adjacent 

meshes, respectively. The volume and surface area of the whole aneurysm geometries between 

the vessel geometries prior and after smoothing process were evaluated and confirmed that 

both changes were less than 2 %.  

The conceptual diagram of the spring network is shown in Fig. A1.1. A linear spring 

was defined on each side of the triangle, a bending spring was defined between adjacent 

elements, potential energy was obtained for each, and the force applied to each node was 

calculated according to the principle of energy minimization. By solving the equation of motion 

at each node positively, we deformed the shape dynamically to an optimum shape. The elastic 

energy of each side of the triangular element constituting the shape 

𝑊𝐷 =∑
1

2
𝑘𝑑(𝐿𝑙 − 𝐿𝑙0)

2

𝑁𝑙

𝑙=1

 

(A1.1) 

Here, Nl is the total number of sides, L10 is the initial length of the spring, Ll is the spring length 

after deformation, and kd is the spring constant. The bending elastic energy stored in the entire 

shape due to the angular change between the adjacent elements is defined as 00, 

𝑊𝐵 =∑
1

2
𝑘𝐵𝐿𝐵tan

2 (
𝜃𝑏
2
)

𝑁𝑏

𝑏=1

 

(A1.2) 
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Here, Nb is the total number of bending springs, kB is the bending spring constant, LB is the 

length of the side connecting adjacent elements, and θb is the angle between the elements. In 

addition, the force applied to an arbitrary node by the internal pressure is defined as the sum of 

the pressures applied to the element including the node, 

𝐅𝐵 =∑
𝑃𝐴𝑗

3
𝐧𝑗

𝑁𝑗

𝑗=1

 

(A1.3) 

j is the element containing the node, P is the pressure, A is the area of the element, and n is the 

normal vector of the element. 

 

 

Fig. A1.1 Schematic of spring network model. 

 

 

From the principle of energy minimization, the equation of motion of the node is 

𝑚𝐫̈ + 𝜂𝐫̇ = −
𝜕(𝑊𝐷 +𝑊𝐵)

𝜕𝐫
+ 𝐅𝐵 

(A1.3) 

By explicitly solving this equation and evolving time, we changed it to a dynamically optimal 

shape. Fig. A1.2 shows the mesh of 10 actual patient-specific aneurysm model with three-

dimensional construction from DSA image and smoothing process. 
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Fig. A1.2 Geometry of patient-specific aneurysm models after smoothing process. (a) Patient 

1, (b) Patient 2, (c) Patient 3, (d) Patient 4, (e) Patient 5, (f) Patient 6, (g) Patient 7, (h) Patient 

8, (i) Patient 9 and  (j) Patient 10. 
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Appendix 2 

Registration of three-dimensional shape between 

DSA and PC-MRI models 

 

A2.1 Introduction 

 In order to investigate the velocity field obtained in the CFD analysis and the PC-MR 

image, two different 3D shapes of vessel model used in the CFD analysis are corresponded 

from the voxels acquired from the PC-MR image. Therefore, two different 3D models are 

registered by using an Iterative Closest Point (ICP) algorithm [35] which is widely used as a 

basic method of alignment between two models.  

 

 

A2.2 Methodology 

 The DSA model used in the CFD analysis is aligned to PC-MRI model by using the 

ICP algorithm. For the convenience of formulation, the surface of each DSA model is divided 

by mesh. The PC-MRI model extracts only the outermost voxel and places a point on the 

surface of the outer voxel. Fig. A2.1 (left) shows the initial position relationship between DSA 

model and PC-MRI model. For example, the number of nodes in DSA model is NP = 40, 511, 

and the number of nodes in the PC- MRI model is NX = 1,692. The geometric transformation 

estimated by the ICP algorithm is a three-dimensional rigid body transformation belonging to 

the 3D special SE group [55]. In the ICP algorithm, the rotation is set to the q unit, 
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𝑞⃗𝑅 = [𝑞0 𝑞1 𝑞2 𝑞3]
t (𝑞0 ≥ 0，𝑞0

2 + 𝑞1
2 + 𝑞2

2 + 𝑞3
2 = 1) (A2.1) 

 

We used the seven-dimensional variable 𝑞⃗𝑇 = [𝑞4 𝑞5 𝑞6 ]
t  combined with the translation 

vector 𝑞⃗ = [𝑞⃗𝑅 | 𝑞⃗𝑇]
t. The ICP algorithm estimates the three-dimensional rigid body motion 

transformation and aligns the DSA model to the PC-MRI model by iterative computation and 

alternates the correspondence by the nearest neighbor point and the estimation process of the 

geometric transformation from the corresponding point (see Fig. A2.1 (right)).  

 

 

 

 

Fig. A2.1 Left: Initial position between DSA vessel model (white) and PC-MRI model (blue). 

Right: Diagram of determination of the nearest point. Both DSA and PC-MRI model shows 

patient 1. 
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A2.2.1 Mapping by nearest neighbor 

 A point closest to the PC-MRI (set as X) model is associated with the data point 

belonging to the DSA model. A conceptual diagram of correspondence by the nearest neighbor 

is shown in Fig. A2.1 (right). The distance, x from the point pi to the PC-MRI model is set as 

𝑙(𝑝⃗，𝑋) = min
𝑥⃗∈𝑋

‖𝑥⃗ − 𝑝⃗𝑖‖ (A2.2) 

points in the PC-MRI model which are closest to the point of the DSA model, 

𝑦⃗𝑖 = argmin
𝑥⃗∈𝑋

‖𝑥⃗ − 𝑝⃗𝑖‖ (A2.3) 

Let set of Y, then found for each point in P. This processing was performed by using the 

operator C for obtaining the nearest neighbor point, 

𝑌 = 𝐶(𝑃，𝑋) (A2.4) 

 

 

A2.2.2 Estimation of geometry transformation to  

  corresponding points 

It is possible to solve the rigid body motion conversion that minimizes the square error of the 

sets P and Y in the correspondence relationship. The least squares solution 𝑞⃗ of the geometry 

transformation was performed to pairs the point of P and Y. Then it was minimized the square 

error d, where obtained by using the operator Q, 

(𝑞⃗，𝑑) = 𝑄(𝑃，𝑌) (A2.5) 

for center vectors 𝜇⃗𝑝, 𝜇⃗𝑦 y for sets P and Y correspondence to 

𝜇⃗𝑝 =
1

𝑁
∑𝑝⃗𝑖

𝑁

𝑖=1

，𝜇⃗𝑦 =
1

𝑁
∑𝑦⃗𝑖

𝑁

𝑖=1

 

(A2.6) 

where N was the number of points P and Y,  N = NP = 40, 511. Next, the covariance matrix as 
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∑ =
1

𝑁
∑[(𝑝⃗𝑖 − 𝜇⃗𝑝)(𝑦⃗𝑖 − 𝜇⃗𝑦)

t
]

𝑁

𝑖=1

 

(A2.7) 

An antisymmetric component of this covariance matrix was expressed by 

𝐴𝑖𝑗 = (∑ −∑  
 t

𝑖𝑗𝑖𝑗
) 

(A2.8) 

The vector Δ was calculated using this antisymmetric component, 

∆= [𝐴23, 𝐴31, 𝐴12]
t (A2.9) 

the 4×4 matrix Q was obtained, 

𝐐 = [
𝑡𝑟(∑)

∆ 

∆t

∑ +∑ −
 t

𝑡𝑟(∑) 𝐈3
] 

(A2.10) 

Here, I3 was a 3×3 identity transform. The eigenvector of the largest eigenvalue matrix Q was 

𝑞⃗𝑅 = [𝑞0 𝑞1 𝑞2 𝑞3]
t representing the optimal rotation, the rotation matrix 𝐑(𝑞⃗𝑅)  

𝐑(𝑞⃗𝑅) = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] 

(A2.11) 

From the rotation matrix and the center of gravity, the optimal translation vector  

𝑞⃗𝑇 = 𝜇⃗𝑦 − 𝐑(𝑞⃗𝑅)𝜇⃗𝑝 (A2.12) 

The least squares solution of geometric transformation was obtained as 𝑞⃗ = [𝑞⃗𝑅 | 𝑞⃗𝑇]
t . By 

applying the geometric transformation obtained here, the point 𝑝⃗𝑖
𝑘 of the vessel model shape at 

the k step was obtained at the 𝑘 + 1 step, 

𝑝⃗𝑖
𝑘+1 = 𝐑(𝑞⃗𝑅)𝑝⃗𝑖

𝑘 + 𝑞⃗𝑇 (A2.13) 

The minimized squared error 𝑑𝑘 

𝑑𝑘 =
1

𝑁
∑‖𝑦⃗𝑖

𝑘 − 𝑝⃗𝑖
𝑘+1‖

2
𝑁

𝑖=1

 

(A2.14) 
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A2.2.3 Overall composition 

 In the ICP algorithm, it converges to the minimum solution which minimizes the 

squared error from the initially aligned model. However, in the case of having the local 

minimum solution, it does not necessarily converge to the optimal solution, so initial position 

matching is important. For the convergence judgment, the threshold value τ set to 1.0 × 10−8 , 

and the ICP algorithm is terminated when 𝑑𝑘 − 𝑑𝑘+1 < 𝜏. A flowchart of the ICP algorithm is 

shown in Fig. A2.2. 

 

 

 

    Fig. A2.2 Flowchart of the ICP algorithm. 



81 

 

A2.3 Results and discussion 

 Fig. A2.3 shows the positional relationship between the DSA blood vessel model and 

the PC-MRI model after paring using ICP algorithm. We know that, although the approximate 

position of the two model matches after the initial alignment, a few overlapping parts were still 

remained. As shown in Fig. A2.3 (b), after executing the ICP algorithm, there are more 

overlapping parts than before execution. Fig. A2.4 shows the transition of the square error d 

when the ICP algorithm is executed after the initial position. It is found that the square error 

monotonously decreases as the step number k increases and converges.  

 

 

 

 

Fig. A2.3 (a) Position relation between the vessel model (blue) and the PC-MR model (white) 

with initial alignment. (b) Position relation between the vessel model (blue) and the PC-MRI 

model (white) after ICP algorithm with initial alignment. 
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Fig. A2.4 Variation of the square error 𝑑. The result shows patient 1. 
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Appendix 3 

Evaluation of velocity difference between CFD 

simulation and PC-MRI measurement  

 

 An average value of voxel mesh was obtained from PC-MRI by the Gauss quadrature 

method, in which the voxel center is inside the vessel, located far from the vessel surface. Then, 

define the coordinates of 8 Gaussian points (see Fig. A3.1 (a)) for the 4th-order Gaussian 

quadrature in each selected voxel, and obtain the velocity value from the CFD solutions using 

a quadratic interpolation with the moving least-squares method.  

 Fig. A3.1 (b) shows a diagram that schematically shows the relationship between 

measurement points and calculation points that fall within the influence radius. The 

approximate value 𝐯(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) = 𝐯(𝑥0 + 𝑥̃𝑗 , 𝑦0 + 𝑦̃𝑗 , 𝑧0 + 𝑧̃𝑗)  of the velocity vector at the 

point j falling within the influence radius satisfies, the velocity vector v0 at the measurement 

point (𝑥0, 𝑦0, 𝑧0). By using the second-order Taylor expansion 

 

𝐯(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) = 𝐯(𝑥0 + 𝑥̃𝑗 , 𝑦0 + 𝑦̃𝑗 , 𝑧0 + 𝑧̃𝑗)

= 𝐯0 + 𝐯x0𝑥̃𝑗 + 𝐯𝑦0𝑦̃𝑗 + 𝐯𝑧0𝑧̃𝑗 +
1

2
𝐯𝑥𝑥0𝑥̃𝑗

2 +
1

2
𝐯𝑦𝑦0𝑦̃𝑗

2

+
1

2
𝐯𝑧𝑧0𝑦̃𝑗

2 + 𝐯𝑥𝑦0𝑥̃𝑗𝑦̃𝑗 + 𝐯𝑦𝑧𝑦̃𝑗𝑧̃𝑗 + 𝐯𝑧𝑥0𝑧̃𝑗𝑥̃𝑗 

(A3.7) 

 

v is the velocity vector at Cartesian coordinates (x, y, z). The lower right j is the index of the 

element falling within the influence radius, and the lower right of v0 represents the partial 

differentiate variable. Generally, 
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𝐯𝑛0 =
𝜕𝐯

𝜕𝑛
|
0

，𝐯𝑚𝑛0 =
𝜕2𝐯

𝜕𝑚𝜕𝑛
|
0

，(𝑛,𝑚 = 𝑥, 𝑦, 𝑧) (A3.8) 

Also, 𝑥̃𝑗 , 𝑦̃𝑗 , 𝑧̃𝑗 are the difference in x, y, z coordinate from the point of interest. To make the 

weighting function bigger near to the point of interest and smaller at the distant position, 

𝑤(𝑟𝑗) = {

1

2𝑟𝑒
{1 + cos (

𝜋𝑟𝑗

𝑟𝑒
)}   (𝑟𝑗 ≤ 𝑟𝑒)

   0     (𝑟𝑗 > 𝑟𝑒)
 (A3.9) 

Here, re is the influence radius, and rj is the distance between the point of interest. We assumed 

the number of points j falling within the influence radius is Nin, where the evaluation function 

obtained by multiplying the approximate value of the velocity vector and weighting function,  

𝐸(𝐯0, 𝐯𝑥0, 𝐯𝑦0, 𝐯𝑧0𝐯𝑥𝑥0 , 𝐯𝑦𝑦0, 𝐯𝑧𝑧0, 𝐯𝑥𝑦0, 𝐯𝑦𝑥0, 𝐯𝑧𝑥0) =
1

2
∑𝑤(𝑟𝑗)(𝐯(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) − 𝐯𝑗)

2

𝑁𝑖𝑛

𝑗=1



=
1

2
∑𝑤(𝑟𝑗) (𝐯0 + 𝐯𝑥0𝑥̃𝑗 + 𝐯𝑦0𝑦̃𝑗 + 𝐯𝑧0𝑧̃𝑗 +

1

2
𝐯𝑥𝑥0𝑥̃𝑗

2 +
1

2
𝐯𝑦𝑦0𝑦̃𝑗

2 +
1

2
𝐯𝑧𝑧0𝑦̃𝑗

2 + 𝐯𝑥𝑦0𝑥̃𝑗𝑦̃𝑗

𝑁𝑖𝑛

𝑗=1

+ 𝐯𝑦𝑧𝑦̃𝑗𝑧̃𝑗 + 𝐯𝑧𝑥0𝑧̃𝑗𝑥̃𝑗 − 𝐯𝑗)
2

 

 

(A3.10) 

Then, as a condition for minimizing the evaluation function E, we partially differentiated E 

becomes zero. For simplicity, we described the following based on the Einstein summary 

convention, 

 

𝜕𝐸

𝜕𝐯0
= 𝑤𝑗𝐬𝑗 = 0，

𝜕𝐸

𝜕𝐯𝒙0
= 𝑤𝑗𝑥̃𝑗𝐬𝑗 = 0 

𝜕𝐸

𝜕𝐯𝑦0
= 𝑤𝑗𝑦̃𝑗𝐬𝑗 = 0，

𝜕𝐸

𝜕𝐯𝑧0
= 𝑤𝑗𝑧̃𝑗𝐬𝑗 = 0 

𝜕𝐸

𝜕𝐯𝑥𝑥0
=
1

2
𝑤𝑗𝑥̃𝑗

2𝐬𝑗 = 0，
𝜕𝐸

𝜕𝐯𝑦𝑦0
=
1

2
𝑤𝑗𝑦̃𝑗

2𝐬𝑗 = 0 

𝜕𝐸

𝜕𝐯𝑧𝑧0
=
1

2
𝑤𝑗𝑧̃𝑗

2𝐬𝑗 = 0，
𝜕𝐸

𝜕𝐯𝑥𝑦0
= 𝑤𝑗𝑥̃𝑗𝑦̃𝑗𝐬𝑗 = 0 

(A3.11) 
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𝜕𝐸

𝜕𝐯𝑦𝑧0
= 𝑤𝑗𝑦̃𝑗𝑧̃𝑗𝐬𝑗 = 0，

𝜕𝐸

𝜕𝐯𝑧𝑥0
= 𝑤𝑗𝑧̃𝑗𝑥̃𝑗𝐬𝑗 = 0 

𝐬𝑗 = 𝐯0 + 𝐯𝑥0𝑥̃𝑗 + 𝐯𝑦0𝑦̃𝑗 + 𝐯𝑧0𝑧̃𝑗 +
1

2
𝐯𝑥𝑥0𝑥̃𝑗

2 +
1

2
𝐯𝑦𝑦0𝑦̃𝑗

2 +
1

2
𝐯𝑧𝑧0𝑦̃𝑗

2 

+𝐯𝑥𝑦0𝑥̃𝑗𝑦̃𝑗 + 𝐯𝑦𝑧𝑦̃𝑗𝑧̃𝑗 + 𝐯𝑧𝑥0𝑧̃𝑗𝑥̃𝑗 − 𝐯𝑗 

Then calculated the matrix as, 

𝐀𝐁 = 𝐂 (A3.12) 

𝐁 =

(

 
 
 
 
 
 
 

𝐯0
𝐯𝑥0
𝐯𝑦0
𝐯𝑧0
𝐯𝑥𝑥0
𝐯𝑦𝑦0
𝐯𝑧𝑧0
𝐯𝑥𝑦0
𝐯𝑦𝑥0
𝐯𝑧𝑥0)

 
 
 
 
 
 
 

，𝐂 =

(

 
 
 
 
 
 
 
 
 

𝑤𝑗𝐯𝑗
𝑤𝑗𝑥̃𝑗𝐯𝑗
𝑤𝑗𝑦̃𝑗𝐯𝑗
𝑤𝑗𝑧̃𝑗𝐯𝑗

𝑤𝑗𝑥̃𝑗
2𝐯𝑗/2

𝑤𝑗𝑦̃𝑗
2𝐯𝑗/2

𝑤𝑗𝑧̃𝑗
2𝐯𝑗/2

𝑥̃𝑗𝑦̃𝑗𝐯𝑗
𝑦̃𝑗𝑧̃𝑗𝐯𝑗
𝑧̃𝑗𝑥̃𝑗𝐯𝑗 )

 
 
 
 
 
 
 
 
 

 (A3.13) 

Here, 

𝑑1 = 1，𝑑2 = 𝑥̃𝑗，𝑑3 = 𝑦̃𝑗，𝑑4 = 𝑧̃𝑗，𝑑5 =
1

2
𝑥̃𝑗
2， 

𝑑6 =
1

2
𝑦̃𝑗
2，𝑑7 =

1

2
𝑧̃𝑗
2，𝑑8 = 𝑥̃𝑗𝑦̃𝑗，𝑑9 = 𝑦̃𝑗𝑧̃𝑗，𝑑10 = 𝑧̃𝑗𝑥̃𝑗  

(A3.14) 

The component of matrix A is expressed as [A] kl = wj dk dl. The velocity vector v0 at the point 

of interest is obtained by multiplying C by the inverse matrix of A. 
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Fig. A3.1 (a) Gauss quadrature points with n=2 in a 3-dimesional voxel cell. (b) Schematic of 

the interpolation with the moving least-squares method, where the blue square, cross point and 

filled-circle indicate measurement points, the edge of voxel cell used in the PC-MRI 

measurement and discretization point in the CFD. j denotes an index of the measurement point 

and 𝑟𝑒 denotes the influence radius of the interpolation. 

 

 The stencils for the interpolation are chosen to be in a radius approximately four times 

larger than the representative mesh size around the evaluation point in the CFD model. Finally, 

we calculated the average velocity in the CFD simulation on each voxel as v by for 4th-order 

Gaussian quadrature, using the below obtained discrete velocities at 8 Gaussian points as  

 

(𝑥1, 𝑦1, 𝑧1) = (
𝐿

2
(1 + 1 √3⁄ ),

𝐿

2
(1 + 1 √3⁄ ),

𝐻

2
(1 + 1 √3⁄ ))， 

(𝑥2, 𝑦2, 𝑧2) = (
𝐿

2
(1 + 1 √3⁄ ),

𝐿

2
(1 + 1 √3⁄ ),

𝐻

2
(1 − 1 √3⁄ ))， 

(𝑥3, 𝑦3, 𝑧3) = (
𝐿

2
(1 + 1 √3⁄ ),

𝐿

2
(1 − 1 √3⁄ ),

𝐻

2
(1 + 1 √3⁄ ))， 

(A3.15) 
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(𝑥4, 𝑦4, 𝑧4) = (
𝐿

2
(1 + 1 √3⁄ ),

𝐿

2
(1 − 1 √3⁄ ),

𝐻

2
(1 − 1 √3⁄ ))， 

(𝑥5, 𝑦5, 𝑧5) = (
𝐿

2
(1 − 1 √3⁄ ),

𝐿

2
(1 + 1 √3⁄ ),

𝐻

2
(1 + 1 √3⁄ ))， 

(𝑥6, 𝑦6, 𝑧6) = (
𝐿

2
(1 − 1 √3⁄ ),

𝐿

2
(1 + 1 √3⁄ ),

𝐻

2
(1 − 1 √3⁄ ))， 

(𝑥7, 𝑦7, 𝑧7) = (
𝐿

2
(1 − 1 √3⁄ ),

𝐿

2
(1 − 1 √3⁄ ),

𝐻

2
(1 + 1 √3⁄ ))， 

(𝑥8, 𝑦8, 𝑧8) = (
𝐿

2
(1 − 1 √3⁄ ),

𝐿

2
(1 − 1 √3⁄ ),

𝐻

2
(1 − 1 √3⁄ ))   

 

where L is the vertical, and horizontal lengths of the voxel and H is the height of the voxel. 

Given that the velocity vector of the blood flow can be represented by the function v(x,y,z). 

The spatial average value of the voxel of v(x,y,z) is obtained from the velocity vector at the 

Gauss point of 8 points,  

1

𝐿2𝐻
∫ ∫ ∫ 𝐯(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧

𝐿

0

𝐿

0

𝐻

0

≈
1

8
∑𝐯(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)

8

𝑖=1

 (A3.16) 

Therefore, approximate values of velocity vectors in voxels can be obtained by the velocity 

vector v(xi,yi,zi) at 8 Gauss points using the moving least squares approximation. 
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Appendix 4 

PFC-DA method: numerical discretization based on 

projection type algorithm on fixed Cartesian mesh  

 

The PDEs are spatially discretized by the finite difference method in a Cartesian mesh 

system. For coupling the velocity and pressure, we apply the fractional step method. In order 

to deal with an arbitrary geometry, we apply the boundary data immersion method (BDIM) 

with a few modifications. In the BDIM, the smoothed phase (or indicator) function is 

introduced to represent both the fluid and solid phases as 

χ(x) = {

 0,                 in solid domain Ωs,
 ϵ(0,1),          on transition layer Γt,
 1,                 in fluid domain Ωf,

 (A4.1) 

The governing equations hold in both the domains as 

𝜌(𝜕𝑡𝐯 + 𝐯 ∙ ∇𝐯) = −∇𝑝 + 𝜇∇
2𝐯 

(A4.2) 

∇ ∙ 𝐯 = 0 

The original BDIM integrates the momentum equation over time and derives a mixture form 

in the full domain by means of the phase mixing with the phase function  . However, in this 

formula, a temporal discretization of the right-hand-side term is not reflected on the mixture, 

and thus a steady state solution includes a contribution of a discrete time increment ∆t. Instead, 

we first derive a discrete form in time and then derive the mixture form. By applying the SMAC 

algorithm to (A4.2), we obtain semi-discrete equations in prediction phase: 

{
𝜌 (
𝐯∗ − 𝐯n

∆𝑡
+𝒜𝑛(v)) = −∇𝑝𝑛 + 𝜂𝛻2 (

𝐯n + 𝐯∗

2
)            in Ωf,

𝐯∗ = 0                                                                                         in Ωs,
 (A4.3) 
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and in the projection phase: 

{
𝜌
𝐯n+1 − 𝐯∗

∆𝑡
= −∇𝛿𝑝𝑛+1                                              in Ωf,

𝐯n+1 = 𝐯∗                                                                        in Ωs,

 (A4.4) 

for 𝑡 𝜖 [𝑡𝑛 , 𝑡𝑛+1] where 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 and Δ𝑡 is the time increment. Here, 𝐯∗is the predicted 

(temporal) velocity, and δ𝑝𝑛+1 is the pressure increment following 

𝑝𝑛+1 = 𝑝𝑛 + 𝛿𝑝𝑛+1 (A4.5) 

We apply the BDIM formulation in both the prediction and projection phases, respectively. 

 

A4.1   Prediction phase 

In (A4.3), we apply the second-order Adams-Bashforth method for the advection term 

𝒜𝑛(𝐯) = (3𝐯𝑛 ∙ ∇𝐯𝑛 − 𝐯𝑛−1 ∙ ∇𝐯𝑛−1)/2  and the Crank-Nicolson method for the viscous term. 

Instead of updating the predicted velocity  𝐯∗, we update the velocity increment δ𝐯∗ satisfying 

𝐯∗ = 𝐯𝑛 + 𝛿𝐯∗ (A4.6) 

Substituting (A4.6) into (A4.3), we obtain 

{
ℱ𝑝𝑟𝑒(𝛿𝐯

∗): 𝛿𝐯∗ = (
𝜌

∆𝑡
−
𝜂

2
∇2)

−1

(−𝜌𝒜𝑛(𝐯) − ∇𝑝𝑛 + 𝜂∇2𝐯𝑛)       in Ω𝑓

ℬ𝑝𝑟𝑒(𝛿𝐯
∗): 𝛿𝐯∗ = −𝐯𝑛                                                                              in Ω𝑠

 (A4.7) 

In the BDIM method, the meta equation ℳ𝑝𝑟𝑒  is derived by the phase mixing of the governing 

field equations, ℱ𝑝𝑟𝑒  and ℬ𝑝𝑟𝑒 with the phase function  χ, 

ℳ𝑝𝑟𝑒(𝛿𝐯
∗) = 𝜒ℱ𝑝𝑟𝑒(𝛿𝐯

∗) + (1 − 𝜒)ℬ𝑝𝑟𝑒(𝛿𝐯
∗) (A4.8) 

From (A4.8) with (A4.7), we obtain 

δ𝐯∗ = 𝜒 (
𝜌

∆𝑡
−
𝜂

2
∇2)

−1

(−𝜌𝒜𝑛(𝐯) − ∇𝑝𝑛 + 𝜂∇2𝐯𝑛) − (1 − 𝜒)𝐯𝑛 (A4.9) 
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{

δ𝐯∗ = 𝜒𝛿𝐞 − (1 − 𝜒)𝐯𝑛

𝛿𝐞 ≡  (
𝜌

∆𝑡
−
𝜂

2
∇2)

−1

(−𝜌𝒜𝑛(𝐯) − ∇𝑝𝑛 + 𝜂∇2𝐯𝑛)
 (A4.10) 

in the full domain Ω. Here e  is the auxiliary variable. Using the definition (A4.6), we finally 

obtain the system in the prediction phase as follows 

(
𝜌

∆𝑡
−
𝜂

2
∇2) 𝛿𝐞 =  −𝜌𝒜𝑛(𝐯) − ∇𝑝𝑛 + 𝜂∇2𝐯𝑛 (A4.11) 

𝐯∗ =  𝜒(𝐯𝑛 + 𝛿𝐞) (A4.12) 

in Ω. Boundary conditions are given at a current time 𝑡𝑛 and temporal time  𝑡∗, and thus, for 

the auxiliary variable 𝛿𝐞, they are evaluated by using the relation (A4.12). For the inlet/outlet 

pressure related to the scalar potential , we will describe later. 

 

A4.2   Projection phase 

From (A4.4), we also derive the meta equation by the phase mixing of the governing 

field equations defined in both the fluid and solid phases as follows 

{
ℱ𝑝𝑟𝑜(𝐯

𝑛+1) ∶  𝐯𝑛+1 = 𝐯∗ −
∆𝑡

𝜌
∇𝛿𝑝𝑛+1                           in Ω𝑓

ℬ𝑝𝑟𝑜(𝐯
𝑛+1) ∶  𝐯𝑛+1 = 𝐯∗                                                   in Ω𝑠

 (A4.13) 

Analogously, we obtain the meta equation in the full domain ℳ𝑝𝑟𝑜(𝐯
𝑛+1) = 𝜒ℱ𝑝𝑟𝑜(𝐯

n+1) +

(1 − 𝜒)ℬ𝑝𝑟𝑜(𝐯
𝑛+1) that offers 

𝐯𝑛+1 = 𝐯∗ −
∆𝑡

𝜌
𝜒∇𝛿𝑝𝑛+1 (A4.14) 

In order to satisfy the continuity equation at the next time 𝑡𝑛+1, i.e. ∇ ∙ 𝐯𝑛+1 = 0, we obtain 

the pressure increment δ𝑝𝑛+1 by solving the following Poisson equation: 

∇ ∙ (𝜒∇𝛿𝑝𝑛+1) =  
𝜌

∆𝑡
∇ ∙ 𝐯∗ (A4.15) 

with the boundary condition  
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{
𝜕𝑛𝛿𝑝

𝑛+1 = 0                   on  Γ𝑤
𝛿𝑝𝑛+1 = 0                        on  Γ𝑖𝑛, Γ𝑜𝑢𝑡

 (A4.16) 

 

A4.3   Scalar potential field 

 We suppose that the reference velocity set is discretely obtained in the domain, where 

the set of reference data consists of coordinate points Xm and point-wise velocity Um for 𝑚 =

 ϵ [1,𝑀] (𝑀 is the total number of reference data). At current time step 𝑡𝑛for the discrete point 

Xm, the discrete deviation 𝐄𝑚
𝑛  and signal 𝐅𝑚

𝑛  are evaluated by 

𝐄𝑚
𝑛 = 𝐔𝑚 − 𝐕𝑚

𝑛  (A4.17) 

𝐅𝑚
𝑛 = 𝐄𝑚

𝑛  (A4.18) 

For 𝑚 =  ϵ [1,𝑀], where 𝐕𝑚
𝑛  is the solved flow velocity 𝐯𝑛 at reference points Xm, i.e., 𝐕𝑚

𝑛 =

 v𝑛 (𝐗𝑚). Generally, since the reference points do not always correspond to the discrete points 

on the fluid meshes, we apply an interpolation technique with the smoothed delta function 

commonly used in the immersed boundary method: 

𝐕𝑚
𝑛 = ∫𝛿(3)(𝐱 − 𝐗𝑚) 𝐯

𝑛(x)𝑑x (A4.19) 

Analogous to the interpolation, we need to extrapolate the continuous one 𝐟𝑛(𝐱) from the 

discrete signal  𝐅𝑚
𝑛  in a fluid space. We again employ the smoothed delta function as a kernel 

to extrapolate the continuous signal, i.e., 

𝐟𝑛(𝐱) = ℎ𝑥ℎ𝑦ℎ𝑧 ∑ 𝛿(3)(𝐱 − 𝐗𝑚)𝐅𝑚
𝑛

𝑀

𝑚=1

 (A4.20) 

Now the spatially continuous signal (or source) 𝐟𝑛 at current time 𝑡𝑛 is evaluated, we derive a 

mixture form for the poisson equation of the scalar potential . We take the phase mixing that 

leads to 
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𝜒∇2𝜙𝑛 = −𝜒∇ ∙ (𝜒𝐟𝑛) (A4.21) 

Consequently, we can obtain the scalar potential field  𝜙𝑛(x) by solving 

∇ ∙ ( 𝜒∇𝜙𝑛) =  − ∇ ∙ (𝜒𝐟𝑛) (A4.22) 

in the full domain with the Neumann boundary conditions. It should be noted that (A4.22) is 

solved with the Neumann boundary conditions, and thus the solution is allowed to have an 

indeterministic constant shift. In this study, we employ a constraint: 

1

Ω
∫
Ω
𝜙𝑑𝑥 = 0  (A4.23) 

By using the scalar potential 𝜙𝑛 on the inlet and outlet boundaries, we can evaluate the inlet 

and outlet pressures (including the spatial distribution) to solve the equation (A4.11) in the 

prediction phase, that is 

−𝑝𝑛 + 𝜇𝜕𝑛(
𝐯𝑛 − 𝐯∗

2
) =  −𝜙𝑛             on Γ𝑖𝑛, Γ𝑜𝑢𝑡 (A4.24) 

 

Briefly summarize the solution algorithm for t ∈ [tn; tn+1] as follows: 

1. Interpolate the fluid velocity Vn
m at reference points using (A4.19) 

2. Evaluate the discrete signal Fn
m using (A4.18) with (A4.17) 

3. Extrapolate the continuous signal fn using (A4.20) 

4. Solve the Poisson equation for the scalar potential ϕn using (A4.22) 

5. Solve the prediction equation for the predicted velocity v* using (A4.11) and (A4.12) 

6. Solve the Poisson equation for the pressure increment ᵟpn+1 using (A4.15) 

7. Update the velocity vn+1 in the projection phase using (A4.14) and  

    pressure pn+1 using (A4.5) 
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