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1. Introduction

In recent years there were many authors in theory of Dirichlet forms and related
fields who studied the so-called Feynman-Kac semigroups, Schrédinger operators
and the corresponding bilinear forms. Particularly, the multiplicative functionals in
consideration are not necessarily the exponential of classical positive continuous ad-
ditive functionals or abbreviated as PCAF’s. In a series of papers by Albeverio and
Ma ([1], [2] and references therein) they investigated the perturbation of Dirichlet
forms by signed smooth measures £# = £+ Q,,, where p is a signed smooth measure
and Q,(f,g) = u(f - g), and found necessary and sufficient conditions for £ to be
a lower semi-bounded closed quadratic form. In [15] the author studied the killing
transformation by general decreasing multiplicative functionals and perturbation of
Dirichlet forms by bivariate smooth measures: £¥ = £ + @Q,,, where v is a bivariate
smooth measure and Q,(f,g9) = v(f ® g), and proved the generalized Feynman-
Kac formula. He also proved that the killing transformation in theory of Markov
processes is equivalent in some sense to the notion of subordination in theory of
Dirichlet forms in [17]. In [13] the author also studied the additive functionals in the
form of A, = A} + >, F(Xs—, Xs), where u is a signed smooth measure, A* the
difference of two PCAFs associated with y and F' a bounded Borel function vanish-
ing on the diagonal, but his base processes are symmetric stable processes on R%. He
found the conditions for the Feynman-Kac semigroup Q; f(x) := P%(e~4t f(X})) to
be strongly continuous and the bilinear form corresponding to it. In quite different
approach, Albeverio and Song [3] studied the perturbation caused by

E (u,u) := E(u,u) + /(u(a:) — u(y))?v(dzdy).

They gave a necessary and sufficient condition for the form to be closable and
constructed the corresponding resolvent which is not the killing type. Very recently
Stollmann and Voigt [14] made a thorough investigation on perturbation by a
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934 J. YING

signed smooth measure, however their approach is rather analytic and even made
no assumption of existence of the associated process. As I am about to send out
this paper, I received a preprint from R.K.Getoor. In this paper [7] the generalized
Schrodinger equation (attached with a measure) was investigated in context of right
Borel Markov processes, but contrary to [14] the approach are totally probabilistic.

In this paper we are going to investigate the perturbation of a symmetric Markov
process by a general increasing additive functional. More precisely let X be an
m-symmetric Markov process on state space £ and A an (increasing, symmetric)
additive functional of X. Let (ExpA) be the Stieltjes exponential of A and set
P74 f(x) := P*[(ExpA):f(X;)] for measurable function f on E and x € E. Then
(P7*) is a semigroup of kernels which is not Markovian in general. We shall in-
troduce so called additive functionals of extended Kato class as analogous to the
notion in [7] and prove that if A belongs to this class, then (P,"“) may be extended
into a strongly continuous semigroup of bounded operators on L?(E, m). Our ap-
proach is very different from the one employed in [7]. We shall also characterize the
bilinear form associated with (P, 4).

The paper is organized as follows. In section 2 we settle down the notations and
terminologies used in the sequel, introduce additive functionals of extended Kato
class and discuss the properties of the perturbation semigroup. In section 3 we will
discuss the relationship between Feynman-Kac semigroup and the corresponding
bilinear form. The main theorem extends Prop 3.1 in [2]. In section 4 we will take
the symmetric Lévy processes as examples to explain some of results.

I would like to thank P.J. Fitzsimmons and R.K. Getoor for many iluminating
discussions and suggestions which, in particular, shape up the right form of the key
Lemma 2.1.

Notations and Conventions. We use "=’ as a way of definition, which is
always read as ‘is defined to be’. For a class F of functions, we denote by bF
(resp. pF(= FT)) the set of bounded (resp. nonnegative) functions in F. We won’t
distinguish ‘nonnegative’ and ‘positive’. When a number a > 0 or a function f > 0
everywhere, we say they are strictly positive. For a measure p and a function f,
w(f) := [ fdu. We sometimes write LP or LP(m) for LP(E,m) and (-,-) for the
inner product in L?(m). For f, g € B(E), f ® g(z,v) := f(z)g(y), =, y € E. Finally
we shall use exclusively P* for both probability measure and expectation.

2. Additive functionals of extended Kato class.

Throughout this paper (£, D) is a quasi-regular symmetric Dirichlet form on
L?(E, m), where E is a Lusin space and m a Borel measure on E. Let S be the set
of all smooth measures on E and Sy the subset of S consisting of all Borel measures
of finite energy integral. Let X = (Q,F,F;,0:, Xt, P®) be a Borel right process on
E with transition semigroup (P;) which is m-symmetric and associated with (&£, D).
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Let ¢ be the life time of X. For a Borel function f on E (write f € B(E) sometimes)
we set

@ 17l = inf _, sup (@),
where Cap(/N) denotes the 1-capacity of N with respect to (£, D). When f is quasi-
continuous, || f||g is the same as ||f||o the usual L>-norm. In fact it is clear that
[|flloc < ||f]l@. Suppose that ||f||coc < ||f|lg- Then there exists an m-null set K
such that sup,gx [f(z)| < ||fllq. We may pick r with sup gk |f(z)| < 7 <||fllQ
and set K; := {& € E : |f(z)] > r}. Then K; C K and K; is finely open. Thus
Cap(K;) = 0 since K} is also an m-null set. We have sup,qx, [f(z)| <7 < ||fllq.
which is a contradiction.

A subset N of E is called an exceptional set if Cap(N) = 0. A subset A of Q is
called an Q-equivalent set if there exists an exceptional set N such that P*(A) =1
for all z ¢ N. We say that A is an additive functional of X if A = (A¢)>0 is a
[0, 00]-valued adapted process on 2 and there exists an Q-equivalent set A such that
for all w € A, (i) Ai(w) < oo for t < ((w); (i1) t — Ag(w) is right continuous;
(iii) A¢ys(w) = Ar(w) + A(6rw) for all £, s > 0. Let A be the set of all additive
functionals of X. Therefore all additive functionals talked in this paper is assumed
to be increasing.

It is well-known (see §73 in [ 11]) that there exists a positive continuous additive
functional (abbreviated as PCAF) H of X having bounded 1-potential and a kernel
N on (E,B(F)) such that (i) N(z, {z}) = 0 for all z € FE; (ii) for every non-negative
Borel function f on E X E, (f(f Nf(X,)dH,)i>0, where N f := [ N(-,dy)f(:,y), is
the dual predictable prejection of the random measure

K(w,dt) =D F(Xom (W), Xs(@)1{x, ()X, @)} €s(dL)-
s>0

We call the pair (N,H) a Lévy system of X. Let J(dz,dy) := N * p(dz,dy) :=
N(z,dy)p(dr) (noting that the second equality gives a way getting a bivariate mea-
sure via a kernel and a measure), where p is the Revuz measure of H with respect to
m. Then J is the canonical measure of X with respect to m or sometimes called Lévy
(also, jumping) measure of (£,D) and J is symmetric; i.e., J(dz, dy) = J(dy, dz).

Let B(E x E) be the set of Borel functions on E x E. The bivariate Revuz
measure of A € A with respect to m is defined by

22) valf) =T tim 2P [ (X, X,)dA,
tlo t 10,

for f € pB(E x E), it follows from [16] that there exist a smooth measure y and a
nonnegative function F' on E x FE vanishing on diagonal such that

(2.3) va(dz,dy) = 6 x u(dz,dy) + F(z,y)J (dz,dy)
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where 6 denotes the unit kernel §(z, B) := 1p(z), and A, = A} + >, F(X,_, X,)
a.e. P™ for any t > 0, where A* is the PCAF determined by p. For simplicity we
write this as A = A**TF. Actually 4 and F are uniquely determined by A. We say
that A is symmetric (with respect to m) if F'- J is symmetric as a measure on E x E.
Since J is symmetric, we may (and do) choose F' as a symmetric function on E x E
with A = A#HF,

Let L be a right continuous increasing function on [0, c0[ with Ly = 0 which
may take infinite value. The unique solution Z of the equation

(2.4) Z = 1+/ Zs_dLs, t>0,
10.2]

is usually called the Stieltjes exponential function of L, denoted by (ExpL);, which
coincides with the usual exponential function if L is continuous. The reason we
write (ExpL); instead of ExpL; is that the Stieltjes exponential is really defined by
paths. It is known (see [11]) that if L® is the continuous part of L, then

(2.5) (ExpL), =% JJ(1 + AL,),

s<t

where AL, = L, — Ls_. Clearly exp(L;) > (ExpL); and the equality holds only if
L is continuous.

A smooth measure p is said to belong to the Kato class, which extends the
classical notion of Kato class for Brownian motion, if lim; o || P" A%'||g = 0. However
inspired by Getoor [7] and Stollmann-Voigt [ 14], we may actually go a little further
as introducing the so-called additive functionals of extended Kato class, which seems
more natural to work with in this context. Given an additive functional A, define

ki(A) :
k(A)

1P Al

2.6) .
( kA

Khas’minskii’s lemma says that if A is continuous and P*A; < a < 1 for all
x € F and a fixed t > 0, then

Preft < .
“1l—-a
This is not true when A is not continuous as shown in an example in §4. However
the following lemma shows that it is true if we replace the usual exponential with
the Stieltjes exponential.
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Lemma 2.1.
(a) Let Ae A If there existt > 0 and )\ < 1 such that for all s <t and x € E,
P*(A;)) < A <1, then forxz € E,

1
2. P*(ExpA); < ——.
(2.7) (ExpA); < -
(b) Let A€ A. Ifk(A) < 1, there exist positive constants c and (3 such that for all
t>0,
(2.8) ||P (ExpA)s|lq < c- €.

Proof. (a) From §3 of [4], ExpA may be developped as

(2.9) (ExpA)e =Y _ / dA,, / dA,, - / dA,,.
]O,t} ]O’tn[ ]01t2[

n>0

Reordering the integrations, we have
(2.10) (ExpA)e = Y / dAy, -+~ dAy,.
7507 0<t1 <<t <t

Now taking the expectation of the integration and noting that P*(A; — A4|Fs) =
PXs(A;_s) < X for s < t, we get

P° / dAy, - dA,,
0<t; < <tn <t

=PI/ dAtl "'dAtn_;l(At _Atn—l)
0<t; <+ <tp—1<t

= Pz/ dA¢, ---dA;, PT(Ay— Ae, | Fr._y)
0<t1 < <tp-1<t

< AP® / dA,, ---dA,, |
0<t1< - <tn-1<t

<A™

Then (2.7) follows easily.

(b) Since k(A) < 1, we may choose an exceptional set N C E, A < 1 and
T > 0 such that if starting from any point in £ — N, the process X never reaches
N, and P*Ar < X for all z ¢ N. By (a) it holds that P*Exp(Ar) < 1/(1 — A) for
z ¢ N.

Let M := (ExpA), which is an increasing multiplicative functional of X. Then
for any integer n > 1 we have
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P*M,r = P*{Mr 0 0(n_1yr M(n—1)7}
= P {M(n_1yr EX-97 Mr}

1 1 \"
< _- _p° <—) .
< 1_/\P Mup-nyr < (1_/\)

For any ¢ > 0, take n such that (n — 1)T < ¢t < nT. It follows that

1 n 1 %+1
P°M, < P°Mur < [ —) <(— :
L= "T—<1—)\> *<1—,\)

Now (2.8) holds for c=1/(1 — X) and 3 = (1/T) log(1/(1 — A)). 0

Remark. The argument in the proof actually proves a little more. If L is a
right continuous adapted increasing process on §2 with Ly = 0 and, for z € E and
s <t, P*(Ly — Ls|Fs) < A < 1, then

1
P*(ExpL); < ——.
(ExpL)e < 75
The readers may compare it to a result of Dellacherie and Meyer : if P*(L; —
L,_|Fs) <A< 1, then
1
Pz L, <
1o x
from which the Khasminskii’s lemma follows easily. We may also feel the difference
between two exponentials.
Let P be the set of all symmetric additive functionals of X and define

Py := {A € P:ps is smooth}

(2.11)
Pk = {AeP:k(A) <1}

The element in Py is called quasi-integrable and the element in Pk is called an
additive functionals of the extended Kato class. A smooth measure p (resp. F' €
pB(E x E)) with A* € Pk (resp. AF € Pg) is said to belong to the extended Kato
class. Let Hf := [f NF(X,)dH, and A* := A* + HF. Clearly P*A, = P* A} for
allt>0and z € E, and if A € Py, A* is a PCAF of the extended Kato class.

Suppose that A € P. We define the A-perturbation semigroup of (P;) (or, X)
as

(2.12) P4 f(z) := P*((ExpA):f(X:)), f€pB(E), z€E,
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(we use —A to be consistent with the standard notation P/) and the A-perturbation
bilinear form (£~4,D~4) (or, (X,m)) as

D=4 .= DN L%(pa),

(2.13)

E A (u,u) == E(u,u) —va(u®u), u€ DA,
where p4 denotes the Revuz measure of A, which equals the marginal measure
of va. It follows from the additivity of A that (P *) is a semigroup of kernels
on (E,B(E)) and from the Holder’s inequality that (£~4,D~4) is a well-defined
bilinear form on L?(m).

Lemma 2.2. Let A be an additive functional of X. If A is symmetric, then
(P74) is m-symmetric; i.e., for all f, g € pB(E),

(Pt_Af'l g) = (f) Pt_Ag)'

Proof.  Recall the reversibility of X under P™. Let (-y;) be the reversal oper-
ators on §2; namely, for any w € Q and t < {(w)

X(t_s)_(LU), s < t;
A, s> t,

Xiow) = {

where A is the trap point of X. Since X is m-symmetric, it is reversable under P™;
more precisely, for any ¢ > 0 and a nonnegative F;-measurable random variable G,

(2.14) P™(G;t < ¢) = P™(G oyt < ().

Since F' is symmetric, it is easy to check that (ExpA); oy, = (ExpA); and hence we
have

P™((ExpA):f(Xt)g(Xo)) = P™((ExpA)ef(X:)g(Xo)) 0t)
= P ((ExpA):f(Xo)g(Xt))-

That completes the proof. OJ

We are now going to show that if A € Pk, the perturbation semigroup is
actually a strongly continuous semigroup of bounded operators on L?(E, m). When
A is continuous, Getoor [7] proved a much more general and stronger result for
perturbation semigroup. Unfortunately his argument does not apply in our situation
because the Stieltjes exponential behaves very differently from the usual one in some
way. Thus we shall use a rather different approach.
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Assume that A € Py. Then A — A* is a local martingale and its Doleans-Dade
exponential may be written as

M := Exp(A — A*) = {4t (ExpA)¢}+,

which is a supermartingale multiplicative functional of X. Let Y be the subprocess of
X transformed by M, which is m-symmetric, and (P}’) the corresponding transition
semigroup, which is also a strongly continuous contraction semigroup of bounded
operators on L2(E,m). Let (¥, DY) be the Dirichlet form on L?(E,m) associated
with Y and set

DF =Dn{ueD: /(u(y) — u(x))?va(dz, dy) < oo},
(2.15)

EF (u,u) := E(u,u) + % /(u(y) —u(z))’va(dz,dy), ueD.

Lemma 2.3. Suppose A € Py. Then
(a) DN L3%p,) is densely contained in DY, DN L%(ps) = DY N L%(p4) and for
u€ DN L% pa), EY (u,u) = & (u,u);
(b) DY c D and foru € DY, & (u,u) < EY (u,u).

Proof. (a) Let

Mt+ = (EXpAF)t = H(l + F(Xs—7Xs))1
s<t

t
M; = exp(—HF) = exp (-—/ NF(Xs)dHS) ,
0

and Z be the subprocess of X transformed by M~ with the associated Dirichlet
form (£Z,D%) on L?(E, m), which is given exactly by

D? = DN L*(pa-);

(2.16)
EZ(u,u) = E(u,u) + pa-(u?), ue€ D

Clearly Z coincides with the subprocess of Y transformed by
L _ H 1— F(Xs—aXs)
M+ = 1+ F(Xs—, Xs) '
= t

It is known from [9] that the ((1 + F)N,H), where ((1 + F)N)(z,dy) = (1 +
F(z,y))N(z,dy), is a Lévy system of Y. Hence the jumping measure of ¥ equals
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(1+ F)J and the bivariate Revuz measure of 1/M* computed with respect to (Y, m)
equals v4. It follows from [16] that

D? = DY N L%(pa);

2.17)
E%(u,u) = E(u,u) + J(F - (u®@u)),u € DZ.

Combining (2.16) and (2.17), (a) follows.

(b) Assume that u € DY. We may choose a sequence {u,} C DN L%(p4) such
that u, — u in 83’ -norm. Then {u,} is an £¥-Cauchy sequence and by the result
above it is also an £-Cauchy sequence. Therefore u € D and u, — u in £;-norm
and quasi-everywhere (at least for a subsequence). Invoking the Fatou’s lemma we
have

E (u,u) < UM E (Un, upn) = im EY (un, un) = EY (u,u) < oco.

Therefore (b) follows. ]

A bilinear form (b, D(b)) on L?(m) is lower semi-bounded if there exists ¢ > 0
such that b(u,u) + q(u,u) > 0 for all w € D(b). Theorem 4.1 of [2] says that if
A is a PCAF, then the A-perturbation semigroup of X is a strongly continuous
semigroup on L?(m) if and only if the A-perturbation bilinear form of X is lower
semibounded. The part (a) of the following result generalizes this theorem slightly.

Theorem 2.4. Suppose that A € Py.

(a) The A-perturbation semigroup of (P;) is a strongly continuous semigroup on
L2(m) if and only if the A-perturbation bilinear form of (€, D) is lower semi-
bounded.

(b) If the A*-perturbation semigroup of (P,) is a strongly continuous semigroup of
bounded operators on L?(E, m), so is the A-perturbation semigroup of (P;).

Proof. (a) It is obvious that the A-perturbation semigroup of (P;) is exactly
the same as the A*-perturbation semigroup of (PY). We denote by (£*,D*) the
A*-perturbation bilinear form of (£Y,DY). By the definition and Lemma 2.3 D* =
DY NL%(pa+) =DN L%(pa) = D4 and for u € D*,

E*(u,u) = EY (u,u) — p(u?) = E(u,u) — valu @ u) = E4(u,u).

It means that the A-perturbation bilinear form of (£, D) is exactly the same as the
A*-perturbation bilinear form of (€Y, DY). Now (a) follows from Theorem 4.1 of
[2] applying to A* and Y.

(b) Given the condition, we know that the A*-perturbation bilinear form of
(€,D) is lower semi-bounded, that is, there exists ¢ > 0 such that for u € DA,

Eq(u,u) — pa- (u?) > 0.
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By Lemma 2.3, D=4 = DN L?(psa) C DY and for u € D4,
pa-(u?) < Eg(u,u) < EF (u,u);

ie, E(u,u) — va(u ® w) > 0. It means that the A-perturbation bilinear form of
(€, D) is lower semi-bounded and therefore by (a) it follows that the A-perturbation
semigroup of (P;) is strongly continuous on L%(m). O

Now comes our main theorem of this section.

Theorem 2.5. Suppose that A € Px. Then the A-perturbation semigroup of
(P) is a strongly continuous semigroup of symmetric bounded operators on L*(E, m).

Proof. That A € Pk implies that A* € Pg. By Theorem (4.15) of [7], the
A*-perturbation semigroup of (P;) is a strongly continuous semigroup of bounded
operators on L?(E,m). Hence the conclusion follows from Lemma 2.4(b). O

3. Perturbation bilinear forms.

In this section we are going to further characterize the relationship between
the A-perturbation semigroup and A-perturbation bilinear form of X. First we
introduce the resolvent corresponding the perturbation semigroup.

We know that if A € A, then {1/(ExpA):}+>o, is a decreasing multiplicative
functional of X, which we denote by (ExpA)~. It is easy to see that (ExpA)~ does
not vanish before ¢ and it is the unique solution of the equation

t
3.1 Zy=1 —/ ZsdAs,.
0

Let A, ... A, B!, ... B® K ... K* [' ... [} € A and introduce notations
as follows.

L= [A',...A* -B'... - B® K! ...K* L' ...—L'];
(Expl) = [] Expa®). [] ExpBY); ] Expk®).- [] (ExpL);.
1<i<a 1<i<b 1<i<k 1<i<l

Clearly ExpCZ is still a multiplicative functional of X which does not vanish before
¢. Note that the order in £ is not relevent and if some elements in £ vanish, they
can be simply removed. Then we define

P f(2) = P*((ExpL)ef(X.)),

32
(32) U f(z) == P* /] [e_qt(Expﬁ)tf(Xt)st,
0,00
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where f € pB(E), z € E, q > 0 and L € .A. Obviuously P, defined in §2 coincides
with P, (4] Thus we also write UZ_A (resp. UZ_A‘) for Uz_[A] (resp. UZ—[A‘]). The
following lemma gives a few formulas similar to the resolvent equation.

Lemma 3.1. Let A', A%, B!, B}, L€ A, q>0 and f € pB(E).
(a) IfUT"A=4"1f(2) < oo, then

v () U T A )

— 1 _ 42 1 _ 2 1 1
_ Uz [A',—A%,BL, B“]f(z) + U;;[A ,—A2.B ,—Bz]UZ—[Al,—Az]f(z).

(b) If BY, B? are continuous and UZ—[AI’—Az]f(x) < oo, then

Ug—[Al,—Az]f(m) 4 Ug:[Al,—Az]UZ—[A‘,—A2,Bl,—Bz]f($)

= U WAL p o) L pgg W A AP g ),

(c) IfAcAandUlf(x)< oo, then
U f(z) = UL f(z) + ULUL 4 f(a).

Proof. (a) By (2.4), (3.1) and using the Markovian property,
_TAY _ a2 1 _np2 1
U;;I[A ,—A%,B! | B_]ULq—[A ,—A2]f(w)

= P“”/ e " (Exp[A', — A?));(ExpB?);_d(ExpB*),
10,00(

. ( / e~ (Exp[Al, —A?)), f(Xs)dLs> o 6,
]0)00[

= p* / (ExpB?);_ / e (Exp[A', —A?)),f(X,)dL,d(ExpB*);
10,00/

Jt,00]

= U WA ()
+ P / (Exp[BY, ~B?])d <- / e~ (Exp[A", —A42)), f(Xs)dLs>
10,00] Jt,00] '

— p® / (ExpB'); / e~ % (Exp[A', —A?)), f(X,)dLsd(ExpB?);
10,00[ Jt,00(

1 _ _ 1Al _ A2 Rl _Rp2
= v @) s )

+ Ug;;[Al,—AZ,BI,—BZ]UZ—[A‘,—A2]f(x).
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The proof of (b) is similar.
(c) By a direct computation, we have

Pz/ e—qtdAt (/ e—qS+As—f(Xs)dLs> 00t
10,00] 10,00]

—P* d(ExpA); ~9(ExpA),_ f(X)dLg
/]wa[< p>t/ e~ (ExpA) o f(X,)

1t,00]

UiUI* f(z)

= UZ—A_f(SC) o /]0 {(Epr)t—_e_qt(Epr).t_f(Xt)st

= Ui " f(@) - Ui f(@).
That completes the proof. ]

Now we assume that A € Pg and define 3(A) to be the minimum £ such that
|| P (ExpA)s||q < c- P

holds for a constant ¢ and all ¢t > 0. Clearly 5(A4) < oo.

Theorem 3.2. Let A € Pk and q > 5(A).
(a) Forall f € L*(m), UT™4f € D~4.
(b) Forall f € L?(m) andu € D,

(f,u) = U™ f,u) —va(UI™f ® u).

Hence for u € D=4, (f,u) = E;4(UT4f,u).
() (E74,D~4) is a closable lower semibounded bilinear form on L?(m).
d) D4=n.
(e) If2k(A) <1, then (E~4,D~4) is closed.

Before proving this theorem, we will present a few lemmas first. We should also
mention that many ideas and approaches come directly from [2].

Lemma 3.3. Let A € Px and q > 3(A). Then

— —A_
(3.3) U9 41]lq + IUF "~ 1llg + [[UR1]lq < oo.

Proof. Itis obvious that since g > B(A), a := || P® [[° e~ % (ExpA)dt||q < oo.
Now it is easily seen that ||[U9-41||g < a and

Uit 1< P /O e % (ExpA),_dA,

= P'/ e d(ExpA); = —1 +qP'/ e~ (ExpA).dt.
0 0
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Hence IIUj_A‘lle < ga—1 < oo. Finally Ujl < UX‘A‘ 1. That completes the
proof. (]

Lemma 34. Let A€ Pk and q > [S(A).
(@) Ifge L*(m+pa) andUlg € L?(pa), then U%g € D.
(b) For any a > 0, U*(L?(m)) C L?(pa).
(©) Iff € L*(m) and UTAf € L*(py), then UTAf ¢ D.

Proof. (a) Taking the approximating form &5” ) of &,, we have for g > 0,

EP USg,Usg) = p(Usg,Ulg — pUTTPUYg)
= p(Ulg, U P9)
= VA(pUq”’Uflg ® g).

The last equality follows from the Revuz formula (see [8]): for any u,v € pB(E),
(3.4) (u,Usv) = va(U%u @ ).
Since Uj g is g-excessive,

sup £ (U%g,U4) = va(Ulg ® g) < oo,
p

by the conditions. Hence U g € D.
(b) By the Revuz formula (3.4) again, for f € L?(m),

palU% V) = va((U 1) @1) < ~va(U°F* @1) < (7%, UR1).

Thus (b) follows from (3.3).

(c) By Lemma 3.1(c) it also suffices to show that UZU"_Af € D for f > 0. We
know by (b) and Lemma 3.1(c) that USUI"4f = UI"Af — U%f € L?(pa). Hence
it follows from (a) that USU?4f € D. O

Remark. Suppose that £ is a smooth measure of extended Kato class. We may
easily see from (b) that U*(U?(m)) C L2(¢) for a > 0.

The key to prove that U9~4 carries L%(m) into D is to prove that it carries
L?(m) into L?(p4). We need a genaralized Revuz formula. Let £? be the g-energy
functional of X which is m-symmetric. We list two properties of £9 which may be
checked easily by using the properties of energy functional (see [6]).

L-1. L£?is m-symmetric in the sense that £9(hym, he) = L9(ham, hy) for g-excessive
functions h; and hs.
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L-2. If A€ A, f € pB(E) and h is g-excessive, then LI(hm, U} f) =va(h® f).
The Revuz formula (3.4) follows easily from L-2.

Lemma 3.5. Let A € Pk and q > B(A). Suppose that A', A2 € Py. Then we
have a so-called generalized Revuz formula

(3.5) var(UL " fa® 1) =va2 (UL F1® fa),

for f1, f» € pB(E).

Proof. It follows from Lemma 3.1(c) that UZ,-_A_fi, 1 = 1,2 are g-excessive
for X. Hence by (L-2) we have

LU fr) - m UL fo)
= LI(UL f1) - m, U fo) + LU A 1) - m, ULUS A f)
= (UL f ) +raUGA fL @ UL f).
Switching A! and A? respectively, we also have
LI(USA f2) - m, UL f1)
=va (UL 20 fi) +vaUL " 20 US4 f).
By symmetry (L-1), we see that (3.5) holds as soon as
(3.6) vaUST* Lo UL fo) < oo

We first assume k(A') = k(A%) = 0. Then L := A+ A! € Pg. Let s > B(L). Then
by Lemma 3.5

—A_ -L_
U3 " 1lle < Uz " 1llq < oo.
But mimicking the proof of Lemma 3.1(b) and taking a special case, we have
Ul 1=U5 " 14 (s — Ui AU "1

which is similar to the resolvent equation. Hence ||Uf‘fA"1||Q < oo and similarly
q—A_
V%%~ 1]l < oo,

Since A € Pk, A* is a PCAF and we may choose, for the smooth measure pa-~,
an increasing sequence { E,, } of subsets of E such that (i) forany n > 1, 1g,_ pa~ isa
finite measure of Kato class; (ii) pa~(E — U2, E,) = 0; (iii) lim,, Cap(K — E,) =0
for any compact set K. Set B, := E,, X E,,. Then 1, va(E X E) < pa~(E,) < 00
and 1g~v4 T v4. Define

t
HP ;=/ g, (Xo_, Xs)dAs, t>0,
0
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Then H™ € Py and vygn = lgnry4 for each n > 1. Thus (3.6), and then (3.5),
holds for bounded fi, f, by replacing A with H™. Now the monotone convergence
theorem (MCT) implies that (3.5) holds for all f;, f € pB with B™ in place.
Let n tend to infinity. Applying MCT again, (3.5) follows under our assumption
k(A') = k(A?) = 0. To remove this assumption, it suffices to use the arguments
above for A!, A2 and MCT again. OJ

Remark. One may prove a slightly more general formula
(37 va(Uh? f2®1) fi) =va (UL f1®1)- fo), f1,f2 € pB(E x E)
where

U = P [T et f (X X dal,

and similar for the other.

Proof of Theorem 3.2. (a) We need only to show that for f € L%(m),
U%Af € L?(pa). Let c be the constant of the lefthand side in (3.3). We find by
3.5)

pa(UIAf?) < cpa(UI™4(f]?)
= awa(U4fI?®1)
= am(U 18 |f)
< Em(|f]?) < oo,

where v, denotes the bivariate Revuz measure of d¢t which equals § * m.
(b) Without loss of generality we assume f, u > 0. First by Lemma 3.1(c), we
have

(f,u) = EUf,u) = EUI™ f,u) — EULUI™*f,u).
Employing the approximating form, resolvent equation and Revuz formula,
EULUT A f, u) = limp(USTPUTAf,u)
P

= limvy (U4 f ® pUT Pu).
4

A similar argument as in the proof of (a) shows that the measure v4(U9"4f ® )
is finite if f is L!-integrable. It is clear that pU9"Pu — u q.e. as p — oo. Let
up :=uAn and f, :=1g, (f An), where {E, } is a sequence chosen for m as in the
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proof of Lemma 3.4. Then m(f,) < oo and by the dominated convergence theorem,
we have

lim I/A(Uq_Afn Q@ pUItPy)) = VA(Uq—Afn ® uy).
P

Hence
(3.8) (frrsw) +va(UT 2 fr, ® wp) = E(UI™ A fr, w).

First u; T u q.e. and in £;-norm. Thus we may erase ! in (3.8) by MCT. Now
fa 1 f a.e-m, also in L?, and then U9~4f, 1 US4 f g.e., also in L2. A little more
computation shows that

EqUITAf, U Af,) < ELUITAf,UIAS).

Hence U9~4f, — U2 f weakly in (£, D) and (b) follows.

(c) Let (H,D(H)) be the generator of (P, ). Since (P, 4) is strongly con-
tinuous and symmetric, (¢ — H, D(H)) is a positive definite self adjoint operator
on L?(m), and hence it is associated with a closed quadratic form, say (€;, D). It
is easy to check that D C D by the approximating form. Hence we have an in-
clusion chain: U94(L?(m)) = D(H) ¢ D4 C D C D. Now we will show that
the restriction of £ on D=4 is nothing but £, 4. By Lemma 3.4(b), we know that
U(L%(m)) C DN L%(pa) = DA C D. Let f € L?(m) nonnegative and g := U9f.
A switching order of integration gives for p > 0

(o) t
pUPTI=4g = P'/ e f(X;) (p/ e_ps+‘4’ds) dt.
0 0

Hence we conclude that
pUPTI=A4g < UIAf and pUPTI 49 — g qe.
Now we have

p(g,9 — pUPT*4g) = p(g,9 — pUP*%g) — p°(g, UL IUPHI~4g)
= p(g,9 — pUPHg) — va(pUPtig @ pUPHI~4y).
Since 0 < pUPHg@pUPti~4g < g@UI A f and g, UT"4f € L?(p4), it follows from
the dominated convergence theorem that £,(g, g) = & 4(g, g); namely the restriction

of & on U(L*(m)) is £;4. A consequence is that for all g € U9(L?(m)),

(3.9 va(lgl® Ig]) < &(lgl, l9]) < &,(g,9)-
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For any g € D=4 C D, there exists a sequence {g,} C U9(L?(m)) which converges
to g in &;-norm. By (3.9) {g.} is an £,-Cauchy sequence and {g,} converges to g
in £;-norm. Consequently &,(g,9) = £;*(g,9) and the restriction of £ on D=4
coincides with £, 4. Hence (£~#,D~4) is closable and for u € D4,

(3.10) va(lul @ |ul) < & (v, u).

(d) D=4 is dense in D with £;-norm since it contains U?(L%(m)) by Lemma
3.4(b). Let u € pD. there exists a sequence {u,} C pD~4 such that u, — u in
&g-norm. By (3.10) and using Fatou’s lemma,

(3.11) va(u®u) < lminfpva(u, ® upn) < Eq(u,u).

However (3.11) holds for any A € Pk (with a different ¢) and certainly holds for
A*. Hence

pa(W?) = pa-(u?) = va- (u®u) < &(u,u),

ie, DA =DNL%pa)=D.
(e) Since 2k(A) < 1, A, 2A € Pk and we may choose s large enough such
that foru € D =D"4

0 < & (u,u) —va(u®u)
< Eg(u,u)
< E(u,u) —2v4a(u @ u) + E(u,u)
= E74(u,u) +£q_A(u,u)
= Es(u,u) + & (u,u).

Since D is dense in D in £;-norm, for any w € D, there exists {w,} C D such that
wy, — w in £;-norm, then in £;-norm. By the inequality above, {w,} is a £-Cauchy
sequence and w, — w in L2. Hence w € D; namely D = D. That completes the
proof. ]

4. Examples.

In this section we shall use Lévy processes to construct two examples.

EXAMPLE 4.1. Let X be a symmetric Lévy process on R? with its Lévy expo-
nent

@) #(a) = 5(Sz,2) + 5 [(1 - cos(z, ) (dy),
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where S is a d x d nonnegative definite matrix and J a symmetric measure on

R? carried by R% — {0} satisfying J(1 A |z|?)J(dz) < oo. Then the corresponding
Dirichlet form is

D= {u elL?: /¢|ﬁ(m)|2dac < oo},
euw) = [ o(a)lie)Pds.

42)

Let h a positive symmetric function on R? with h(0) = 0, and A, := Dos<t H(AXS).
Then (ExpA); = [[.<,(1 +h(AX,)) and A € Pk if and only if h is J-integrable.
We may see that the form defined below is a lower semibounded closed quadratic
form associated with the perturbation by ((ExpA):):

(43) Pep
4.
Er(u,u) = E(u,u) — //u(z+y)u(w)dxh(y)](dy).

and the perturbation semigroup is still spatially homogeneous with Lévy exponent
N 1 1
(44)  ¢"(@) = 5(Sm,2) + 5 [ (1= cos(a, y))(1+ h(y))J (dy) — I (h).

In the case that X is a symmetric stable process of index a €]0, 2], the condition
means

h(zx)
(4-5) / de < 00.

The following example shows that we can not expect the Khas’minskii’s lemma
holds for the natural exponential function.

ExaMpLE 4.2. Let X be a Lévy process on Z, the set of integers, with convo-
lution semigroup 7 given by

Tk
T = e—t § :__J:«n7
n!
n

where J is a probability measure on Z defined by J({—n}) = J({n}) := ¢/(n?) for
n > 1 and J({0}) := 0. Let h be a function on Z defined by h(n) := log|n| for
n # 0 and h(0) = 0. Set A; := ) .., h(AX,), which is an AF of the Kato class
since J(h) < co. We claim that Eet = oo for any t > 0. (We write P* as P since
P=eAt does not depend on z while A is spatially homogeneous.)
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Suppose that Pe4t < co. Then there exist constants c,q > 0 such that for all

s>0

Pe?s < ce.

Hence e~ 9° Pes < ¢ and

t A
d s
P E e (et —1) = PA e_qtei_

s<t

t
<P / eI d A%
0

t
= e "Eet — 1+ q/ e"%*Pe’*ds < c — 1 + gtc < oo.
0

By Lévy system formula,

¢
PZe'qs(eAAs —1) = J(e" - 1)/ e %°ds.
0

s<t

This leads to a contradiction since e?(™) —1 = |n| —1 for n # 0 and J(e* — 1) = oco.
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