|

) <

The University of Osaka
Institutional Knowledge Archive

Design and Implementation of Distributed Message
Title Queue Systemswith High Throughput and
Availability

Author(s) |AKTF, HX

Citation | KPrKZE, 2017, {1t

Version Type|VoR

URL https://doi.org/10.18910/61850

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Design and Implementation of
Distributed Message Queue Systems

with High Throughput and Availability

January 2017

Masafumi KINOSHITA

Design and Implementation of
Distributed Message Queue Systems

with High Throughput and Availability

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2017

Masafumi KINOSHITA

List of publications

A. dJournal Papers

1.

M. Kinoshita, G. Tsuchida, I. Mizutani and T. Koike, “High-throughput messaging
system based on in-memory KVS for processing large traffic volume of short
messages,” IEICE Transactions on Communications, vol. B96, no. 10, pp.
1206-1216, Oct. 2013 (in Japanese).

M. Kinoshita, O. Takada, 1. Mizutani, T. Koike, K. Leibnitz, and M. Murata,
“Improved resilience through extended KVS-based messaging system,” IEICE
Transactions on Information and Systems, vol. E98-D, no. 3, pp. 578-587, Mar.
2015.

M. Kinoshita, H. Konoura, T. Koike, K. Leibnitz, and M. Murata, “High throughput
dequeuing technique in distributed message queues for IoT,” IPSJ Journal of
Information Processing, vol. 27, no. 2, to appear Feb. 2017.

Refereed Conference Papers

M. Kinoshita, G. Tsuchida, and T. Koike, “High-throughput message systems for
mobile e-mail services based on in-memory KVS,” in Proceedings of Wireless and
Mobile Communications (ICWMC), pp. 146-153, June 2012.

H. Konoura, M. Kinoshita, T. Koike, K. Leibnitz, and M. Murata, “Efficient
dequeuing technique for distributed messaging systems processing massive
message volumes,” in Proceedings of the 26th IEEE International
Telecommunication Networks and Applications Conference (ITNAC), pp. 280-285,

Dec. 2016.

Non-Referred Conference Papers

M. Kinoshita, G. Tsuchida, and T. Koike, “Throughput improvement of message
system in cooperation with distributed in-memory KVS,” in Proceedings of IEICE
Society Conference, p. 412, Sep. 2011 (in Japanese).

I. Mizutani, K. Toumura, and M. Kinoshita, “Method of achieving N-to-N
configuration for message system based on distributed KVS,” in Proceedings of
IEICE Society Conference, p. 359, Sep. 2012 (in Japanese).

M. Kinoshita, O. Takada, I. Mizutani, T. Koike, K. Leibnitz, and M. Murata, “High
availability method for extended KVS-based messaging system,” in Proceedings of
IEICE (1A2014-84), vol. 114, no. 439, pp. 31-36, Jan. 2015 (in Japanese).

H. Konoura and M. Kinoshita, “Study of performance enhancing method on a
message-oriented middleware,” in Proceedings of IEICE Society Conference,
p. B-6-5, Sep. 2015 (in Japanese).

Preface

The innovation paradigm regarding smart phones, Machine-to-Machine (M2M)
communication, or the Internet of Things (IoT) is currently causing an explosion in the
number of devices connected to the network and thus requires changes to the service
system. Smart phones have been gaining in popularity over the last seven years with
about 2.5 billion connected devices in 2009. Then, M2M devices, such as smart meters
and health equipment, accelerated this increase to 10 billion in 2014. 10T devices, such
as sensors/actuators in factories, cars, home devices, etc., are expected to increase to 30
billion by 2020. In addition, the amount of digital data in the whole world created by
connected devices is expected to reach 40 ZB by 2020.

In this thesis, we focus on these upcoming drastic changes of network systems
providing services or applications to users, where we especially focus on message queue
systems as frontend of these network systems. Furthermore, we discuss what features
these message queue systems should provide for processing this unprecedented data
volume created by 10T devices and how they should handle requirements on availability
and scalability.

We begin this thesis with the discussion of high-throughput and scalable
processing of huge volumes of messages in smart phone services. To solve this issue,
we propose high-throughput queuing techniques and architectures for distributed
message queue systems that can serve much larger message traffic than before. We
designed a message queue system based on a distributed in-memory key-value store
(KVS) to meet the requirements on throughput and scalability. We also propose an
architecture for satisfying high throughput and high scalability in a message queue
system for massive message traffic volumes through a distribution method of
queue-type in-memory KVS and synchronized processing of distributed queues by
single TCP connections. We embed the proposed architecture and strategies into a mail
system for smart phones and perform evaluations of this system. The evaluation results
reveal that the throughput of the proposed message queue system achieves 3,600

messages per second (msg/s) per server, which is about 5 times higher than that of the
conventional method operating with RAID storages. Moreover, the throughput of the
proposed KVS is 200,000 transactions per second for message size of 0.4 KB, which
doubles the performance of the well-known KVS called memcached.

Our next concern is the resilience of the message queue system for M2M
services. M2M services, such as metering and monitoring services, have enhanced the
social infrastructure field. As social infrastructure, the service system, especially in our
case the message queue system, is required to simultaneously satisfy both, high
availability and high throughput. To solve this issue, we propose a resilient message
queue system based on a distributed KVS. Its servers are interconnected among each
other and messages are distributed to multiple servers in the normal processing state.
Our proposed system can provide long-term availability and continue its service
regardless where failures in the message queue server/process may occur by distributing
messages to multiple servers. Furthermore, to achieve short-term availability, even
during an underlying network failure and/or slowdown of servers, we propose message
distribution by round-robin with slowdown KVS exclusion and two logical KVS
counter-rotating rings. Evaluation results show that this system can continue service
without the need for failover processing. Compared with the conventional method, our
proposed distribution methods reduce 92% of service errors caused by server failures.

Finally, we discuss a method for increasing the dequeue throughput in message
queue systems for the 0T era. 10T services require information extracted from historical
or real-time data for specific objectives, such as optimization services or learning
through trial-and-error pattern analysis of data. This approach requires collecting large
volumes of messages that are periodically created by the devices. On other hand, the
backend system retrieves messages from the message queue at its own non-periodic and
process-dependent timings. Therefore, controlling the massive and heterogeneous traffic
in the message system becomes a crucial issue. To solve this issue, we propose a
dequeuing method called Retry Dequeue-request Scheduling (RDS), which can reduce
unnecessary transmissions of dequeue requests to the message queues by waiting for
messages to arrive at the message queues. RDS can better reduce throughput
degradation than the conventional method by making use of missed-dequeue messages.
By evaluation through simulations, we compare the throughputs achieved by the
conventional method, RDS, and Periodical Monitoring and Scheduling (PMS), which is
another dequeuing method proposed for reducing the number of missed-dequeues by

periodically monitoring each message queue to gather information on the message
counters. Simulation evaluation results show that RDS maintains the highest throughput,
regardless of an increased dequeue request rate. Further experimental evaluation results
show that the RDS method achieves 80% higher throughput than the conventional
method in real systems.

Through the following discussions, we conclude that high-throughput queuing
techniques and a resilient message queue system are fundamental technologies to stably
process large-volume messages created by loT devices. Additionally, the increased
throughput of the RDS method is essential in finding patterns within large data volumes
from loT services. These proposed technologies can make it much easier and faster than
before to build complex loT systems requiring high throughput, availability, and
scalability. We believe that the following discussions will contribute to the better design
and implementation of future loT systems.

Vi

Acknowledgments

This thesis could not have been accomplished without the assistance of many people,
and I would like to acknowledge all of them.

First and foremost, | would like to express my sincere appreciation to Professor
Masayuki Murata of the Graduate School of Information Science and Technology,
Osaka University, for his patient encouragement, insightful and comprehensive advice,
and valuable discussions. He directed me to the appropriate perspective in this domain
and inspired me to aim at higher goals.

I am also deeply grateful to the members of my PhD evaluation committee,
Professor Teruo Higashino, Professor Toru Hasegawa, and Professor Takashi Watanabe
of the Graduate School of Information Science and Technology, Osaka University, and
Professor Morito Matsuoka of the Cybermedia Center, Osaka University, for their
critical reviews and comments from various angles.

Furthermore, | am deeply grateful to Guest Associate Professor Kenji Leibnitz
of Osaka University for his much-appreciated comments and support. His passionate
and unerring guidance have been informative and helpful. His kindness on my behalf
was invaluable, and | am forever in debt.

I am also grateful to Dr. Kenichi Sakamoto, Head of the Planning Office at the
Yokohama Research Laboratory of Hitachi Ltd., Dr. Seishi Hanaoka, Department
Manager of Hitachi Ltd., Center for Technology Innovation — Information and
Telecommunication, Network Research Department, and Mr. Tatsuhiko Miyata, Unit
Leader at the Center for Technology Innovation — Information and Telecommunication,
Network Research Department, for giving me the opportunity to study for a doctorate at
Osaka University.

My appreciation also goes to my colleagues Dr. Osamu Takada, Dr. Yasunori
Kaneda, Dr. Ken Naono, Ms. Yukiko Takeda, Dr. Hiroaki Konoura, Ms. 1zumi Mizutani,
Dr. Yu Nakata, Dr. Kunihiko Toumura, Mr. Yoshiki Matsuura, Dr. Gen Tsuchida, Mr.
Toshiyuki Kamiya, and Mr. Takafumi Koike of Hitachi Ltd. for their valuable

vii

discussions, advice, support, and encouragement during this study.

Additionally, I am thankful to all the members of the Network Research
Department, Hitachi Ltd., Center for Technology Innovation — Information and
Telecommunication, for their continuous support and friendship.

Finally, I deeply thank my wife, Maki, my daughter Hana, my son Sou, my
parents, and my grandparents for their understanding and hearty support and
encouragement in my daily life. This work would not have been achieved without them.

viii

Contents

LiSt OF PUDTICALIONS ... I
o =] =T PSSRSO ii
ACKNOWIEAGMENES ... re e be e sre e re e vii
000 01 (=] 1 1< TP IX
Chapter 1 INtrOAUCLIONcuveieieiieeie e e 1
1.1, BACKGIOUNG......cuiiiiietiiiee et 1
1.2. Overview of Message QUEUE SYSLEMSccueiverrerieiieieeiiesee e et e e 5
1.3, Issues in Message QUEUE SYSEIMS.......ccucieeueieerireiesreesteeseeseesreeeesreesreeeesneesnas 8
1.3.1. Issues in First Phase of Message QUEUE SYSLEMS..........cccevververererenerinnnns 8
1.3.2. Issues in Second Phase of Message Queue SYStEMS.........ccceeveveevieeriennnnnn, 9
1.3.3. Issues in Third Phase of Message QUeue SYStemS........ccccoerverererienieninnn. 10

1.4, OULIING OF TNESIS ...ovveviiiiciieiee e e 12
1.4.1. High-Throughput Message Queue System Based on Distributed
IN-MEMOIY KVS L. e 12
1.4.2. Improved Resilience of Message Queue System through Server
D13 (] o111 o] USSR 13
1.4.3. Increased Throughput of Message Queue System through Dequeue
SCNEAUIING ..t 14
Chapter 2 High-Throughput Message Queue System Based on Distributed
IN-MEMOINY KVS ... e e e e e nrae e e nneees 15
20 I 1 7 [N o4 o o PSS 15
2.2. Overview of Message Queue Systems in Smart Phone Services...........c........ 17
2.2.1. Components of Message QUEUE SYSTEMS.........ceverirereeieerieniesiesiesiesieeieas 17
Figure 2.1 Example of message queue system for smart phone services................ 17
2.2.2. Conventional Research on Distributed in-Memory KVS.............ccocoovine 18

2.3. Message Queue System-based on Distributed in-Memory KVS 19
2.3.1. Architecture of Message QUEUE SYSIEMScccvevveeiieiie e 19

file:///W:/MyDocument/デスクトップ/Phd_theis_r70.docx%23_Toc471381858

2.3.2. Proposed KVS with QUEUE STFUCTUIEcciiiiiiiiiicieee e 21

2.3.3. High-Throughput Queuing Method with KVS............cccoov i, 23
2.3.4. Behavior of Failure and RECOVEIYcccoiiiiiiiiiiiiecee e 24
2.4. Evaluation of High Throughput QUEUINGccceciveiieieiie e 25
2.4.1. Implementation and Evaluation Environment..............cccoovevevveieiie e, 25
2.4.2. Throughput Evaluation of Message DeliVery.........ccccooeieieneicicinnnnnnns 25
2.4.3. Performance of Proposed KVS..........cccoiiiiieiieie e 27
2.4.4. Experience in Real Message QUeUE SYSEMScccovvveerenieneeresreenieeees 33
2.5, RElated WOTKocuiiiiiiiiicie et e 34
LG T @0 o] 1115 o] o PSSR 34

Chapter 3 Improved Resilience of Message Queue System through Server
Distribution 35

200 R (011 0o [ot 1 o] OSSR 35
3.2, Background and ISSUESc.ecveiieiieiiecie e se et se et sae e nas 38
3.2.1. Outline of Message Queue System for M2M DevViCes.........ccccoverervrinne. 38
3.2.2. Risk of FailloVer ProCeSSINGccciveiieiiieieeiie e 38
3.2.3. Trade-off between Consistency and Availability..............c.ccccooeviiieinennn. 39
3.3. Proposed Architecture and Distribution Methodscccccooviveieiienieicnee. 43
3.3.1. Architecture of Fabric Message Queue Systemccccoevevevieieerieceenn. 43
3.3.2. Distribution Methods for Improving Short-Term Availability 46
3.4. Implementation and Evaluation..............cccccooveiiiii i 49
3.4.1. Implementation and Methodology for Evaluationccccccceceninvninnne. 49
3.4.2. \Verification of Detection of SIOWAOWNScccoovveriiiiiiiececeee e 49
3.4.3. Determining the Optimal Slowdown Detection Time.............cccccvevveeveenee. 52
3.4.4. Impact of Server Failures on Availability...........c.ccooviniiiiniiiie 54
3.5, Related WOTK ... s 58
K3 T o 4 Tod 111 o] o SRS 59

Chapter 4 Increased Throughput of Message Queue System through Dequeue
Scheduling 61

Ot I [0o [ot o] ST 61
4.2, BaCKQIOUNG......ccuiiiiiiie ittt e e e eenee 63
4.2.1. Outline of 10T SErviCe SYSTEMcooiiiiiiiieiere s 63
4.2.2. Conventional Approach using Distributed Message QUEUES 65
4.2.3. Outline of 10T SErvice SYSEMcccveiiiieeiierie e 67

4.3. Analysis of Throughput Degradation and Proposalcccoceveiienienienenne. 68

4.3.1. Process of Distributed Message QUEUEccvevverieieerieeniesie e esee e 68
4.3.2. Analysis of Throughput Degradationcccceveeieniniieneneneee e 69
4.3.3. Proposed Methodsccceiieiiiiiiieie e 70

4.4, Simulation EValUation ... 73
4.4.1. Description of the Simulation Modelccooiiiiii 73
4.4.2. Simulation Results and DISCUSSIONccereriirinenininienieiesie e 75
4.4.3. Evaluation and Discussion of Optimal Sleep Time for RDS 80

4.5, Experimental EVAlUAtIONcccoooiiiiii i 81
4.5.1. Implementation and Methodology for Evaluationcccccceeceninnninnne. 81
4.5.2. ReSUItS and DISCUSSIONcccueiuiiirriieieiiesieenie e sieeee e ste e sree e neesneenees 82

4.6. REIAEA WOIKo.viiiiiiiieieee e bbb 83
R o 4 Tod 1115 o] o SRS 85
Chapter 5 Conclusion and FUtUre WOrKccooveiiiieineiece e 87
BIDHOGrAPNY .. 91

Xi

xii

Chapter 1

Introduction

1.1. Background

Innovative network paradigms, such as mobile smart phones, Machine-to-Machine
(M2M) communication, and the Internet of Things (IoT) have been gaining popularity
with a billion devices already connected to the Internet today. Figure 1.1 outlines this
growth in the number of connected devices over three phases of time based on [1]. The
number of traditionally connected devices, like PCs, accounted for only 500 million in
2003. The number of connected smart phones was about 2.5 billion in 2009, and they
have drastically gained in popularity since then. M2M devices, such as smart meters [2],
health equipment [3], and vending machines [4] increased the number of connected
devices even further to approximately 10 billion in 2014. In the future, 10T devices such
as sensors/actuators in factories [5], used for transportation [6], or home devices [7] are
expected to increase to about 30 billion by 2020.

In this thesis, we focus on traffic data of network systems providing services or
applications, especially short-length data created by various devices, which we will
refer to as short messages in the following. Reference [8] states that the amount of all
digital data in the world created by various devices is predicted to reach 40 ZB by 2020
(Fig. 1.2).

To increase the future processing ability for short messages, we focus in this
work on end-to-end communication. End-to-end protocols, such as the Hypertext
Transfer Protocol (HTTP) [9], have been widely used for client-server communication
in the Internet [10-12]. However, such protocols could also face problems if the number

2008 2013 2017 2020
: : 30 billion

‘1st Phase | 2nd Phase |3rd Phase :
' Smart phone : M2M device EIOT device ! ! !

2014
10 billion

2009

2.5 billion é
2003 ; g G)
500 million

Figure 1.1 The growth in the number of connected devices
N A
% 4478
(@))
@M
0
n
5
=
|_
o
©
Qo 4.47B
S
-}
Z
2014 2020
Figure 1.2 The growth in the volume of 0T messages

of end-to-end clients drastically increases due to server congestion by huge traffic
volumes, inefficiency of one-to-many communication, or heavy loads for maintaining
massive connections in server and network [13-15]. To solve these problems, messaging

communication protocols, such as MQ Telemetry Transport (MQTT) [16] or Advanced
Message Queuing Protocol (AMQP) [17] are expected to better handle the large
volumes of short messages in M2M/IoT [18-21]. Messaging communication requires
the network system to queue and relay messages between client and server and we will
refer to such systems as message queue systems in the following. On the other hand,
conventional message queue systems have often led to concerns regarding throughput
and scalability [22-24]. Figure 1.3 outlines the drastic change of throughput
requirements in a message queue system. Conventional message queue systems have
been used for various services, such as e-mail messages on PCs or electronic data
interchange between companies. These services don’t have large numbers of devices or
large message traffic volume. For example, the throughput of a single server for
sendmail [25], which is widely used for e-mail message services in companies, is below
100 msg./s [26]. However, in the smart phone/M2M/IoT era, we estimate that a message
queue system is required to process more than 10,000 msg./s of short messages due to
the increase in number of devices and message traffic volume in service systems. For
example, the number of smart phones of a carrier system increases approximately from
10 to 100 million [27, 28]. The number of smart meters of an electricity company
increases approximately from 10 to 50 million [29, 30]. Furthermore, we estimate that
the number of devices, such as sensors, actuators, and radio frequency identifier (RFID)
for tracking products in a smart factory increases from 1,000 to 10,000 and all these
messages are collected in real-time [31]. Therefore, message queue systems will be
required to apply new methods and architectures to process these huge volumes of short
messages. One main goal of this thesis is the discussion of the performance of message
gueue systems processing huge volumes of short messages.

From the viewpoint of message queue systems, we consider that these
upcoming drastic changes in messaging traffic have progressed through roughly three
phases as illustrated in Fig. 1.1. The initial phase consists of the increase of short
messages used for e.g., mobile email services, short message services (SMS) [32], or
social networking services (SNS) [33] between 2008 and 2013, which coincides with
the spread of smart phones. The most important issue during this phase is the
high-throughput and scalable processing of huge volumes of short messages in smart
phone services. The second phase extends short messages to other M2M applications in
social infrastructure fields beyond smart phones, such as smart meters and health
equipment from 2013 to 2017. In this phase, high availability and resilience for

Conventional . Message

Message Queue System
—— Queue System 10-100 million in l0T/M2M era
- > A
5,000 ’ " ()
i » 10-50 million
Ty 100
il s
Y 1,000-10,000 x
real-time update
Below 100 msg/s Beyond 10,000 msg/s

Figure 1.3 Drastic change of throughput requirements in

message queue system

providing continuous and stable services becomes most important. The third phase is
driven by the progress of 10T applications and its extension to the financial sector,
industries and smart homes, which is currently ongoing and expected to continue until
about 2020. The most important issue is how to control the massive heterogeneous
traffic between devices and loT service systems for achieving higher throughput,
availability, and scalability than conventional systems.

In this thesis, we focus on the three phases mentioned above and discuss
current and future challenges in message queue systems processing short messages from
a realistic viewpoint. Furthermore, by the discussions in this thesis we intend to
contribute to the better design and implementation of future 10T systems.

1.2. Overview of Message Queue Systems

Figure 1.4 outlines an example of the service system’s structure needed to process short
messages. This system consists of four major components: connected devices, network,
message queue system, and backend system. Connected devices include smart phones,
smart meters, sensors, or other types of IoT devices. Network denotes the private or
public network over which the connection takes place, e.g., Long Term Evolution (LTE)
wireless network [34]. The message queue system is located as frontend system in the
cloud and backend systems provide services and applications. The message queue
system relays short messages between connected devices and the backend.

Generally, a message queue system has a messaging server relaying the
message and message queues acting as a persistent (non-volatile) storage or data store.
In this thesis, we define the process of messaging as receiving, handling, storing
(queuing), and relaying (dequeuing) short messages. A conventional messaging server
for enterprise service is in general a physical server running a messaging server program,
while in this thesis we define messaging server only as a messaging server program
(software) due to the consideration of server virtualization in cloud computing.
Furthermore, a messaging server mainly consists of two programs: the enqueue
controller (E-Ctrl), which processes the reception of messages and stores them in a
queue (enqueue), and the dequeue controller (D-Ctrl), which processes the retrieval of
messages from queues and their relaying.

Connected Network Message Queue Backend System

Devices System (Service/Application)
1(.Receive) (4 Forward)
Enqueue Dequeue

. Message Messaglng Server Message

=
= _ _3.Re | ‘ s
‘\ C) & Ectrl D-Ctrl Telecommunlcation
@ 2.Store 5.Delete
o (Queuing) Message -MM/ p

Lty Message Electric power

-
l'V'eSS?igeQueue \ -ML L=

Industry
Persistent Storage
/Data Store

_—

Figure 1.4 Outline of message queue system

A message queue system is also sometimes known under the terms of message
queue (MQ) [35] or message oriented middleware (MOM) [36]. Message queue
systems have several important tasks to perform, such as reliably relaying messages
without loss, buffering of message traffic from devices, and providing interoperability
between devices and backend systems. Furthermore, message queue systems can
achieve reliable relaying of messages and buffering of message traffic from devices by
using the store-and-forward method from source devices to backend systems (or to the
next-hop message queue system). Processing of store-and-forward messages needs to be
handled in the following order:

(1) receive (enqueue) messages from devices,

(2) store messages (queueing) into a queue in persistent storage,

(3) instantly reply to devices,

(4) forward (dequeue) messages to backend servers,

(5) delete stored messages from the message queue after successfully sending them.

If the message cannot be stored for any reason, e.g., due to a queue overflow, an error
response is sent to the source device. The received message is normally sent
instantaneously, but may also be delayed if the backend system is temporally

unavailable. The message queue system keeps the message in its queue until the
backend system becomes available again, which may take from several hours to a few
days. Finally, the server deletes the message if the message was successfully sent or if a
retransmission timeout occurred.

Message queue systems achieve interoperability by supporting various
protocols. For example, MQTT, AMQP, or Representational State Transfer (REST) [37]
are major protocols in the 10T era. This interoperability and absorption enables devices
and the backend system to become loosely coupled and the message queue system
enables the developer to rapidly interoperate between them. Under the condition that the
message queue has both, sufficient performance to process the message traffic from
devices and scalability in performance and storage, the message queue enables the
developers of the backend system to design their system without considering the entire
volume of the message traffic.

Active/Standb .
y Difficult to scale-out

Configurations
Smart Message Queue U/ Backend System
phone System (Service/Application)
Receive 1

. flessagl Messagi ng Server Forward

Message J,
N =i M o 2
. T Store &
| (Queuing)
|' Message v
. SMS/E-maill
SNS etc.

Wireless|
Network | .‘/
Persistent Storage
/{Data Store
Figure 1.5 Issues in the first phase of message queue systems

1.3. Issues in Message Queue Systems

In this section, we provide an overview of the development of message queue systems
and distinguish roughly in three different phases (see Fig. 1.1), which we now describe
in more detail. Our focus lies on issues concerning the message queue system itself, and
we do not elaborate on the other parts of the system, such as connected devices, network,

or the backend system.

1.3.1. Issues in First Phase of Message Queue Systems

In the first phase, the enormous growth in the number of smart phones has led to an
explosion in the volume of short message traffic encountered by telecommunication
operators and other service providers. The most important issue of this phase is the high
throughput and scalable processing of huge volumes of short messages in smart phone
services.

Figure 1.5 outlines issues in the first phase of message queue systems. As
mentioned above, message queue systems generally relay messages with the
store-and-forward method such that incoming messages are first stored in a queue
located within non-volatile storage and are then forwarded to the backend system server.

Active/standby Arisk of failover
configurations processing

M2M Devices Message Queue System Backend System

(Smart (Head-End System) (Electricity Application)
Meters)

Receive - Forward
(Enqueue)\ Messaging Server = /(Dequeue)
Message ' :

' N

Failover N;

Store

(Queuing) | Processing M/
ﬂ Message *+ Mater Data
Management
* Device
‘ ‘ Management

Persistent Storage

/Data Store Part/all of services

are stopped

Figure 1.6 Issue in the second phase of message queue systems

Store-and-forward methods achieve reliable relaying and buffering of message traffic
from devices, however, their main disadvantage is the low throughput due to
non-volatile storage, such as when disks and storage systems are accessed, which turns
out to be the bottleneck in relaying short messages. Additionally, conventional message
queue systems generally have their message queues on RAID storage, which is difficult
to scale-out.

Since these issues on high throughput and scalability for processing massive
volumes of short messages are also fundamental for IoT applications, they will also be
highly relevant to the 10T era.

1.3.2. Issues in Second Phase of Message Queue Systems

In the second phase, it has become common to connect M2M devices, such as smart
meters or health equipment, to the network. For example, message queue systems are
used in Head-End Systems (HES), which receives data through the network in a smart
meter system [38]. The most important issue in this phase is the high availability and
resilience for providing non-stop and stable services. Figure 1.6 outlines an example of
such failover processing. Generally, mission-critical systems implement shared data and

failover processing for providing high-availability (HA) services [39]. Failover
processing includes application restart, process initialization, and recovery of data.
These consist of special application-dependent processes as well as common processes,
such as health check or error detection of hardware/software. However, catastrophic
service failures of mission-critical systems with failover processing have frequently
been reported [39-41]. Causes of these service failures are usually software or hardware
defects and it is very difficult to exhaustively identify these defects during the system
testing stage because all cases of failover processing, e.g., complex problems caused by
only theoretically occurring defects, can hardly be tested. Therefore, a highly available
message system without failover processing is needed.

1.3.3. Issues in Third Phase of Message Queue Systems

It is generally agreed that IoT services require information from historical or real-time
data for their own objectives, such as optimization services. For example, message
queue systems are expected to be applied to the Platform Tier, which receives device
data through the network in the IoT reference architecture of the Industrial Internet
Consortium (11C) [42]. Figure 1.7 outlines issues in the third phase of message queue
systems. In [43-45], 10T service systems are required to manage the massive volume of
data generated by sensors from various fields, such as the financial sector, industries,
smart homes, etc. In [46], optimization in smart manufacturing at enterprise level
requires periodically collected data. In [47], general smart sensors may consist of single
microchips and generate simple periodical data.

The general approach in 10T for finding patterns in data is to learn through

trial-and-error data analysis. This approach requires collecting a large data volume for
various analyses. Therefore, traffic volume from devices generating periodical message
data has become enormous in 10T service systems.
On the other hand, the backend system collects data for various I0T objectives, such as
monitoring and optimization, and retrieves messages from the queue at their own timing,
which is non-periodic and process-dependent. These processing timings differ by
context of message, message size, and other related data. To achieve higher throughput
by fully utilizing computational resources, the backend system retrieves messages from
the queue with a pull-based method [48]. In addition, progress in distribution platforms,
such as Spark [49] or Storm [50], leads to a dramatic change in processing time of the

10

Send messages Get messages in one’s

periodically own processing time
loT Devices Message Queue System Backend System
(Edge Tier) (Platform Tier) (Enterprlse Application)
MQTT REST, Deque- o

Messaging Server.

SARR M Sadaia (LTS Request =
G ﬁq M/ -

CoAP etc.

Production

UL D-Ctrl : _ Planning

& Machine
T & & s
Enqueue Deq’ue ﬁ .
_ML Pred|ct|ve
lllll I I I Maintenance

Message Queue \Optlmlzatlon :@
w 'ML Supply Chain

Management
Persistent Storage Compensate for the
/Data Store o .
eterogeneity in message traffic
Figure 1.7 Issues in the third phase of message queue systems

backend system.
While devices send massive amounts of periodical messages, backend systems

process I0T messages at their own timings. Therefore, the control function of the
massive and heterogeneous message traffic in the message system becomes a crucial

issue in Phase 3.

11

1.4. Outline of Thesis

In this thesis, we selected several important, but so far not well-discussed issues from
those addressed in the previous section and studied solution approaches for message
queue systems. In particular, this thesis focuses on the following main points in
distributed message queue systems, spanning from short message services over M2M to
the loT era.

(1) Design of message queue systems with high-throughput queuing and scalability
of short message services for smart phones

(2) Design and development of message queue systems with high availability
through distribution methods for M2M services

(3) Design of message queue systems with increased throughput through dequeue
scheduling in the 10T era

The contents of the chapters in this thesis are summarized in Fig. 1.8. and will be briefly
summarized in the following subsections.

1.4.1. High-Throughput Message Queue System Based on
Distributed In-memory KVS

In Chapter 2, we focus on high-throughput queuing techniques and architectures based
on distributed message queue systems for smart phone services. We propose a message
queue system for short messages based on a distributed in-memory key-value store
(KVS) [51] to meet the requirements of high throughput and scalability, and to
physically store messages in a queue structure while preserving the consistency of data
in the respective queues. We present a method of high-throughput access to pipeline
messages on an active TCP connection that is linked to a queue on message queue
systems and its backup queue in KVS. We evaluate the performance of the proposed
KVS and the message queue system corresponding to the KVS. The results show that
both the KVS and message queue system achieve the required high throughput.
Experimental evaluations further show that the throughput of our proposed method
achieves 450% of that of the conventional method.

12

Connected Message Queue Backend System

Devices System (Service/Application)
-
(Eneché\z) M ina S J)Increase

. and Reply essaging server roughput

\ | : \ (Dequeue)
EFS"'_ ' ' ﬁ J/

. 1) (2)High
& Availability —
-t Distribution

=

X method $
Message Queye -

Data Store
(Key-Value Store)

Figure 1.8 Relationship between the 3 main topics of this thesis

1.4.2. Improved Resilience of Message Queue System through
Server Distribution

In Chapter 3, we focus on a technique to achieve high availability for mission critical
services using messages from M2M devices. We propose a resilient message queue
system based on a distributed KVS. Its servers are interconnected among each other and
messages are distributed to multiple servers in the normal processing state. This
architecture can continue its messaging services regardless where any failures in the
message queue server/process may occur without requiring any failover processing. We
also propose further methods for improved resilience: the round-robin method with
slowdown KVS exclusion and the two logical KVS counter-rotating rings to provide
short-term availability in the message queue system. Evaluation results demonstrate that
the proposed system can continue service without failover processing. Compared to the
conventional method, our proposed distribution method reduces 92% of error responses
caused by server failures.

13

1.4.3. Increased Throughput of Message Queue System
through Dequeue Scheduling

In Chapter 4, we discuss a method for increasing dequeue throughput in message queue
systems. In the 10T era, services require both information from historical or real-time
data for their own objectives, such as optimization service, and learning through
trial-and-error of data analysis for finding patterns in the data. This requires collecting
large volumes of messages created by devices periodically. On the other hand, the
backend system retrieves messages from the message queue at its own timing, which is
non-periodic and process-dependent. Therefore, the control function of the massive and
heterogeneous message traffic in the message system becomes a crucial issue, which
can lead to dequeue throughput degradation. To solve this issue, we propose the
dequeuing method called Retry Dequeue-request Scheduling (RDS) which can reduce
the unnecessary transmission of dequeue requests to the message queues by waiting for
messages to arrive at the message queues. In particular, RDS can better reduce
throughput degradation due to missed-dequeue messages than the conventional method.
By evaluations through simulation, we compare the throughputs achieved by the
conventional method, RDS, and Periodical Monitoring and Scheduling (PMS), which is
another dequeuing method proposed for reducing the number of missed-dequeues by
periodically monitoring each message queue to gather message counter information.
Simulation results show that only RDS maintains highest throughput, regardless of an
increase in the dequeue request rate. Experimental results further show that the RDS
method achieves 80% higher throughput than the conventional method in real systems.

14

Chapter 2

High-Throughput Message Queue
System Based on Distributed In-memory
KVS

2.1. Introduction

The enormous growth in the number of smart phones has led to an explosion in the
volume of short message traffic encountered by telecommunication operators and other
service providers. Especially, short message communication services such as e-mail,
short message services (SMS), and social networking services (SNS) have become
essential for our life. For instance, message traffic at specific times, such as after the
occurrence of disasters, the turn of New Year, and other popular events, may reach over
143,000 transactions per second [52]. This burst of transactions is beyond the capacity
of conventional message queue systems and forces telecommunication operators to
regulate the amount of transactions [53]. For processing the large and still growing
amount of short messages traffic, much higher throughput has been required for
message queue systems. To process this increasing traffic of short messages, high
scalability is required for enabling the greater processing capacity and memory sizes.
Furthermore, simultaneous availability of message queue systems is also required in the
same way as for conventional systems.

As mentioned before, message queue systems conventionally relay messages
with the store-and-forward method. Messaging servers of message queue systems
receive messages once and store these received messages to persistent storage, such as

15

disks, after which they successively relay the messages to the backend system. This
enables an instant response to the devices and shortens the session activity time.

Here, let us focus on the function of message queue systems for smart phone
services. In those systems, there are several important functions such as buffering and
controlling traffic in the system, stabilization of the system, and avoidance of network
contention between devices and message queue systems. However, when the message
queue receives a lot of short messages, disk accesses for storing (queuing) these
messages generally becomes the bottleneck for throughput. For example, if the
throughput of a single server for sendmail [25] or postfix [54], which are both widely
used for e-mail message services in companies, drops to below 100 msg./s, it will
become too low to process a large amount of short messages [26].

Hence, to solve these concerns, we follow the approach of applying a
distributed in-memory KVS instead of persistent storage to message queue systems. We
aim at achieving high throughput and scalability of the message queue system and solve
the following issues in this chapter. We propose an architecture for a message queue
system with high throughput and scalability based on distributed in-memory KVS. We
also design a high-throughput queuing (storage) method between message server and
KVS with availability and process of KVS to achieve high-throughput queuing.

This chapter is organized as follows. First, we provide an overview of the
message queue system for smart phone services. We then present the architecture and
proposed methods. Next, we reveal the implementation and performance evaluation.
Finally, we describe related work and give a conclusion.

16

Smart Message-queue J Backend system

A B o system l (Service/Application)
rﬁeggggg . 4.Forward
. (enqueue) Messaging Server message

—4 r— .. __ __ (dequeue) "
B o) \Dﬂ'b"" 6

. 2.Store = A
message
. (queuing) s’

an .-.-..- ..-.--. v ---'-.-' .-.-.... . SMS .“E -mail ;
SNS etc.

Message queue
Wireless
000 000 .
Persistent storage
/Data store
Figure 2.1 Example of message queue system for smart phone services

2.2. Overview of Message Queue Systems in Smart Phone
Services

2.2.1. Components of Message Queue Systems

Figure 2.1 outlines an example of the system structure for short message service for
smart phones. Message queue systems are widely used for a variety of services, such as
e-mail, SNS, SMS, and other push notification services from data centers to smart
phones.

Message queue systems receive messages from devices via the wireless
network and relay them to the backend system or next-hop message queue system with
the store-and-forward method. Message queue systems support various protocols for
their own services. For example, simple mail transfer protocol (SMTP) and multimedia
messaging service (MMS) are used in e-mail services, while short message peer-to-peer
(SMPP) is used in SMS and other push naotification services.

Main functions of message queue systems are reliable in relaying messages to
the backend system without message loss and with congestion control of message traffic
from devices to the backend system. In wireless networks, messaging servers decrease
the failure rate of transmission and reduce the number of active sessions by quick

17

responses with the store-and-forward method.

Messaging systems maintain several message queues for each backend system
or next-hop message queue system. For each message queue, locks at the internal
queues are required for relaying messages by the messaging server to provide exclusive
access (these functions are denoted as queue transactions) as well as relay message
priorities. Message queue systems enable congestion control of each backend system by
regulating dequeue traffic from each message queue to the backend systems. Moreover,
message queues store billing data or metadata depending on the situation and, therefore,
their guarantee of data consistency is crucially important.

Conventional message queue systems have a message queue in RAID storage
and high-availability (HA) cluster structure. As mentioned in Sect. 2.1, disk accesses at
queues generally become the bottleneck for throughput. Furthermore, HA clusters
generally have active/standby configurations making it difficult to scale-out for
enhancing throughput.

2.2.2. Conventional Research on Distributed in-Memory KVS

Many efforts have been expended on distributed in-memory KVS for high throughput
and scalability. In-memory KVS memcached [55], which is known as high throughput
KVS, is currently used as a cache by many companies, such as Facebook [56].
Memcached runs on a single server and stores messages without any duplication and
distribution, which is not utilized as persistent data store in general. On the other hand,
in-memory KVS can be utilized as persistent data store by multiplication and
distribution of data on memory. Nevertheless, they have two disadvantages compared
with RAID storage used in conventional message queue systems. The first is that data is
lost if all nodes having the same replicated data are down at the same time. However, as
power supplies are duplicated at the data center and data is periodically backed up to
disks, there is only a small probability that data will be lost. The second disadvantage is
that storage capacity of KVS is usually not very large because memory is more
expensive than disks.

In previous work related to messaging systems, Wang et al. [57] proposed a
distributed message queue supporting queue transaction while relaying messages and
guaranteeing the order of message processing by referring to additional metadata to
control the message queue stored in typical in-memory KVS with simple key-value data

18

Smart Message-queue Backend system

phone - system - (Next-hop system)

message message
. A | Load balancer | *

P T—) 7
) [

. ~EServer-A| “Eserver-B| |~ Server-C
Messaging| (Messaging| (Messaging
Server-A Server-B Server-C S
TS T
— V

~

KVS-A KVS-B KVS-C
11} 11} LI
K1 X] 1)

Store message in
memory of
3 servers

/ .\ Easy to scale out

Figure 2.2 Proposed architecture of message queue system

structure. In the following, this is called simple KVS-based method. In general, KVS
refers to a simple data model consisting of a pair of key and value, which is completely
different from conventional queue data structures. Although the simple KVS-based
method presents an implementation of message queues in distributed systems, it does
not consider about high-throughput queuing, and data structure or processes of KVS.

2.3. Message Queue System-based on Distributed in-Memory
KVS

This section presents the architecture and implementation method for message queue
systems to address the issues mentioned in Sect. 2.1.

2.3.1. Architecture of Message Queue Systems

2.3.1.1. Implementation of High-Throughput Queuing and
Scalability

Figure 2.2 shows the proposed architecture of a message queue system based on the
distributed in-memory KVS. The proposed KVS differs from general KVS in having a
queue structure on the server’s physical memory. Each server has both, a messaging
server program for relaying messages and an in-memory KVS program. As mentioned
before, we refer to the message handling program as messaging server and refer to the

19

Server-A‘ © Server-B = Server-C

Messaging Messaging Messaging

server-A server-B server-C
Q1 597 Q2ees Q4 see;
Oieee®]T
' ! y e L1
L2
L3
L4
Kvs-Al KVS-B KVS-C J. Logical ring
Q4 eee Q1 ‘41 | a2 eee
Q2 see Qi e8e Q; eee
Q3 00 Q1
Figure 2.3 Example of logical rings of message queues

KVS program simply as KVS. Each server acts independently and communicates via an
internal network among the servers.

To implement highly available and distributed message queues, they must be
separately deployed into both, messaging servers and KVS as shown in Fig. 2.3. A load
balancer allocated in front of each server distributes received messages to the messaging
servers. After receiving messages from the load balancer, the messaging server stores
these messages into the message queue and delivers them in accordance with the
store-and-forward method. Messaging servers retain a message not only in a single KVS
message queue, but also in other message queues of the KVS, as well as in a local
message queue of the messaging server itself. This means that a single message is
duplicated and exists on 3 servers simultaneously. Here, we decided the number of
duplicates to achieve the same availability as RAID storage [58, 59]. Hence, messaging
servers provide high availability (fault tolerance) to avoid message loss even in the case
where up to two servers are broken down, achieving high-throughput access without the
bottleneck of disk access.

Messaging server and KVS are homogeneously aligned in parallel on
messaging servers, which is effective for balancing load, removing single points of
failure, and flexible scaling of servers. In the following sections, this structure is
referred to as distributed message queue.

20

2.3.1.2. Logical Ring Structure of Distributed Message Queues

A messaging server is composed of logical rings covering the message queues of two
KVS servers and the local message queue. Figure 2.3 demonstrates the structure of
logical rings over message queues.

The messaging server associates with the queues of two KVS having the same
messages via logical ring and then synchronously processes messages
(storing/enqueuing, dequeuing, or deleting). For instance, after receiving messages, the
messaging servers distribute the same messages into both a local message queue and
two message queues associated by a logical ring. In other words, the state of linked
gueues sharing the same logical ring is synchronized.

In each logical ring messaging servers can maintain multiple logical rings and
synchronize. In Fig. 2.4, the messaging server messaging-B has two message queues,
Q2 and Q3, where Q2 is associated with KVS-A and KVS-C via logical ring L2, and Q3
Is associated with KVS-A and KVS-C via logical ring L3. From another point of view,
KVS also retain multiple logical rings. In Fig. 2.4, KVS-A retains L2, L3, and L4
connected to Q2 of messaging-B, Q3 of messaging-B, and Q4 of messaging-C,
respectively. For one process, KVS performs message processing of a single message
queue, whereas for multiple processes, KVS can perform message processing of
multiple message queues in parallel (details are explained in Sect. 2.3.3).

In CAP theory [60] the terms C, A, and P refer to consistency, availability, and
partition tolerance, thus, the structure of message queues on a logical ring obtains C-P
characteristic. This characteristic solves the issue of implementation of distributed
message queues. Although availability is not originally satisfied in the C-P model, the
proposed system also keeps availability on a certain level by allocating multiple logical
rings connected to the messaging servers and the two KVS. In this structure, even
though some of the logical rings may stop their function, the remaining logical rings can
keep continuous services.

2.3.2. Proposed KVS with Queue Structure

As mentioned before, the KVS has a queue structure on the physical memory of the
server, and the messaging server synchronizes message processing between the local
message queue and message queues of the two KVSs on the logical ring. In terms of

21

Messaging

Server KVS
Receiving
buffer
_ Req.1 .
Req.2 ___|(a)Receiving [-R€%-1 | (b)Processing
Reg.3 || inblock Req.2 | & storing data
Req.3 | ——
Pipelining on _| Req.4 ;-(c)Res ondin Req.1
connection Req.5 ,|\¢)/Resp 9 Req.2
Rep.1 in order _—[Req.3
) Rep.2 3 "Receivi = :
Rep.3 [(@)Receiving b”)Processin
i B in block | Req.4 (Q)storin datg
Keeping | Req.5 9
another <IIIIIIIIIIII’
connection for/
switchover
Figure 2.4 Method of communication to KVS for high-throughput queuing

fault tolerance and availability of the whole messaging system, the proposed method has
two major features.

The first feature of the proposed method is the reduction of frequency and
amount of communication required to synchronize the message queues for achieving
high-throughput queuing. In the simple KVS-based method, extra processing of
metadata is required for every access of queues. For example, in assuming a simple
model for adopting the simple KVS-based method, messaging servers need to receive
and update the metadata for each storing process. In this case, the communication
frequency of the conventional method becomes more than 3 times larger than that of the
proposed method. The behavior of messaging systems with the high-throughput queuing
method is detailed in Sect. 2.3.3.

The second feature of the proposed method is the shortened downtime during
server failures. When broken or stopped servers recover from failure, the messaging
server gets all backup messages from the KVS message queues and then restarts
services after synchronizing the message queues to guarantee data consistency. Due to
the KVS retaining the physical queue structure, the messaging server efficiently obtains
messages by just a single communication. The behavior of messaging systems for
failure recovery is detailed in Sect. 2.3.4. On the other hand, in the simple KVS-based
method, messages of queues are not accumulated in a specified server and, thus, the
messaging server must access all servers repeatedly to resume each message one by one.

22

This restriction prolongs their recovery time.

2.3.3. High-Throughput Queuing Method with KVS

The communication method between the messaging server and KVS to achieve
high-throughput queuing and guaranteed data consistency is described in Fig. 2.4.
Communication between messaging server and KVS in Fig. 2.4 corresponds to the
process between Q1 of messaging server A and Q1 of KVS B for synchronization in
Fig. 2.3. Each queue is connected by an individual TCP connection. Although backup
TCP connections are also prepared in practice to maintain availability, its explanation is
omitted here for the sake of brevity.

As shown in Fig. 2.4, the messaging server sends multiple synchronization
requests over a single TCP connection corresponding to a queue. KVS collectively
receives the requests (Fig. 2.4 (a)) and processes theses requests successively (Fig. 2.4
(b)). While the KVS sends multiple replies (Fig. 2.4 (c)), processes described in Fig. 2.4
(@) and Fig. 2.4 (b) are also performed simultaneously.

By communicating the queue messages of each server through single TCP
connections and processing requests in the order of their arrival sequence at the KVS,
the order of message processing between messaging server and KVS is guaranteed.
Furthermore, by issuing sequence numbers in every request and identifying the state of
synchronization through this sequence number, data consistency is maintained.

To increase throughput of synchronized processing while guaranteeing data
consistency of message queues, the conventional method increases multiplicity by
increasing the number of TCP connections and the proposed method increases the data
density (multiplicity) on TCP connections. The former access method is used in the
simple KVS-based method. However, this method raises several concerns: the possibility
of throughput degradation due to exclusive control among several TCP connections for
strict guarantees of data consistency and the complexity of multiple design parameters
of the network, such as the optimal number of TCP connections (or controls) to
maximize message throughput [61].

On the other hand, the proposed method achieves an efficient internal queue
lock of queue transactions by the simple design of using single TCP connections with
every one-to-one message queue. However, for the proposed method, several demerits
are considered. For example, due to a few TCP connections, influences of congestion

23

control [61] and connection latency of application requests may become significant. In
addition, the proposed method may not efficiently utilize CPUs on multi-cores for
parallel processing. In Sect 2.4.4, we discuss and evaluate to what degree these
influences are negligible.

2.3.4. Behavior of Failure and Recovery

We explain the behavior of our proposed method by referring to Figs. 2.3 and 2.4. When
server B breaks down, both messaging server B and KVS B stop operating. The
subsequent behavior is described as follows.

(1) In the wake of stopping messaging server B, the load balancer B isolates
the stopped messaging server B and keeps distributing messages to the
messaging servers A and C, thereby, steadily continuing message
processing.

(2) Messages that were processed shortly before messaging server B broke
down are also stored into KVS A and C, and are resumed at the time
messaging server B recovers.

(3) Breakdown of KVS B affects messaging servers A and C, which share the
logical ring connected to the queue of KVS B. Concretely, messaging
servers A and C detect the breakdown of KVS B by reply timeout, isolate
the KVS B, and continue service in duplication mode.

On the other hand, when server B recovers from failure, it tries to restart both
messaging server B and KVS B. The subsequent behavior is described as follows.

(1) Messaging server B obtains messages that were partly processed before it
broke down from KVS A or C sharing the same logical ring. After that,
messaging server B restarts its service.

(2) Messaging servers A and C using KVS B detect its recovery. KVS B
simultaneously obtains and synchronizes messages from the message
gueues of messaging servers A or C. After that, K\VS B restarts service.

24

2.4. Evaluation of High Throughput Queuing

2.4.1. Implementation and Evaluation Environment

We developed a messaging server and KVS as an event driven architecture [62]. These
server programs are implemented in the C programming language. For the environment
of our evaluation, we assume an e-mail system for smart phones representing the
message queue systems.

2.4.2. Throughput Evaluation of Message Delivery

We evaluate throughput of the message queue system proposed in Sect. 2.3.1 and
compare it with that of a conventional message queue system using RAID storages. An
overview of this evaluation architecture is depicted in Fig. 2.5.

The test program sends messages (e-mail data) to the messaging server by
SMTP. The messaging server stores messages into KVS and RAID storage using
proposed and conventional methods, respectively. After that, the messaging server
forwards the messages to the message transfer agent (MTA), which is a typical backend
system for the e-mail service, after which it deletes them from the message queue.

The test program sends messages to the messaging servers based on a
predetermined transmission rate. We adopt the combination of different message lengths,
consisting of 70% of 1 KB messages and 30% of 10 KB messages, used for the
evaluation of the conventional method [26].

First, we evaluate the maximum throughput (msg./s) defined as the rate at
which the messaging server can steadily process store-and-forward e-mails without
overflowing the messaging queues. Figure 2.6 shows the result of this simulation. This
result reveals that the proposed message queue system achieves 3,600 msg./s, which is
4.5 times larger than that of conventional message queue systems having the bottleneck
of disk access (850 msg./s).

25

SMTP Message-queue MTA

client e system (destination)
; 1{ Rerok?ved 4.Forward
Test oL WOrBERES Messaging message Destination
program server (dequeve server

N | ﬂ‘/

CPU : 3.0GHzx2 (6core)

Memory: 32GB
Network : 1Gbps

2.Store :
message
(queuing)
*Proposed : KVS Modulex2

-Conventional : RAID storage Message queue

Persistent storage
/Data store

Figure 2.5 Method for the evaluation of message queue system.

4,000

3,000

2,000

1,000 -

Conventional system Proposed system
w/ RAID storage w/ KVS

Throughput [msg./s]

Figure 2.6 Throughputs of message queue systems

26

2.4.3. Performance of Proposed KVS

Next, we evaluate the method of communication processing to synchronize among
distributed message queues as proposed in Sect. 2.3.3. First, we compare the throughput
of the proposed method and the simple KVS-based method. Second, as a benchmark of
KVS performance, we compare throughputs of the proposed queue-type KVS with
memcached representing the in-memory KVS. Finally, we evaluate and discusse the
dependence of throughput on the number of message queues of KVSs.

2.4.3.1. Throughput Comparison with Simple KVS-based
Method

To compare the throughput of proposed method and simple KVS-based method, we
experimentally produce results for KVS by simulating the simple KVS-based method.
Figure 2.7 describes the overview of the evaluation for comparison of the throughputs.
The test program sends a pair of enqueue request of 0.1KB fixed messages and delete
request as one transaction to the KVS. Hence, we evaluate the maximum number of
transactions that can be successfully processed by KVS.

The prototype KVS based on the simple KVS-based method retains one
message queue, receives transactions via multiple TCP connections from the test
program, and performs message processing after setting an internal queue lock every
time. In this research, we vary the number of TCP connections from 1 to 100.

On the other hand, we evaluate the maximum throughput for our proposed
method while continuously connecting one test program and one message queue of a
KVS by a single TCP connection.

Figure 2.8 shows the results of the throughput evaluation. Throughput of the
proposed method is 91,000 msg./s, which is 3.8 times larger than that of the simple
KVS-based method (24,000 msg./s with 100 connections). This results from the
difference of the exclusive control methods and communication processing methods.

27

Store & delete Key-value store
Test (multiple connection) Sinagle
s J e | o Sh
N | LocK

~

(a) The method based on standard KVVS

Test | Store & delete K
program | (single connection) Key pallo sto.re
- o Single
g queue
No Lock

CPU:3.0GHzx2 (2core)

Memory:4GB
Network:1Gbpsx2
(b) Proposed method
Figure 2.7 Evaluation of standard and proposed KVS methods
@ 100,000 7, e Proposed method
5 80,000 - +Simple KVS-based method
£ 60,000 -
()]
§ 40,000 -
e
— 20,000 - —* —
o .
0 50 100

No. of connections

Figure 2.8 Transaction throughputs of KVS for different methods.

28

2.4.3.2. Throughput Comparison with memcached

We compare the throughput of proposed queue-type KVS with memcached as the
benchmark of in-memory KVS. memcached is well known as simple and
high-throughput KVS and is also an event-driven architecture and implemented in the C
language. Figure 2.9 describes the evaluation to compare both KVSs. Note that the
condition of traffic from the test program is same as that shown in Sect. 2.4.3.1. We
evaluate six values of message lengths (0.4, 1, 2, 4, 10, and 20 KB).

In this evaluation, due to that the total number of cores being four (2 cores x 2
CPUs), the number of TCP connections used in memcached is also set to four.
Meanwhile, between 1 and 4 TCP connections in proposed KVS are prepared for
connection between one and four queues. We evaluated their maximum throughputs
under these conditions.

In Fig. 2.10, the x-axis and y-axis show message length and corresponding
throughputs, respectively. In addition to throughputs of KVS for the proposed method
and memcached, the throughput between test program and KVS is also described as a
reference value of the critical performance with message forwarding on a 1Gbps
network.

From the results, the maximum throughput of the proposed KVS is 200,000
msg./s when the message size is 0.4KB and there are two queues. Moreover, the
maximum throughput of the proposed KVS is 100,000 msg./s when the message length
is 1KB and there is only a single queue. Furthermore, in the range where the message
length is larger than 2KB, the maximum throughput of the proposed KVS reaches the
critical performance value of the 1Gbps network when there is only a single queue. The
results for message lengths 10KB and 20KB are omitted in Fig. 2.10. Here, we confirm
that doubling the number of queues does not affect the throughput when the message
length is 0.4KB. The relationship between throughput and the number of queues of
KVS, i.e., the total number of TCP connections, is discussed in Sect. 2.4.4.3.

In comparison with memcached, the maximum throughput of KVS s
approximately 1.4 times as large as that of memcached with 1 KB messages. With 0.4
KB messages, the maximum throughput of KVS is approximately 2 times as large as
that of memcached. These results indicate that the proposed KVS achieves high
throughput when short messages are smaller than 1KB.

29

Store & delete Key-value store
Test II (multiple connection) |. memcached (no queue)
| program E - Proposed KVS (with queue)

CPU:3.0GHzx2 (2core)
Memory:4GB
Network:1Gbpsx2

Figure 2.9 Evaluation method of KVS
300,000 4
E 250.000 - \ = NW Limits(1 Gbps)
- ' \
g 200000 |« TR
S 150,000 - \
o
E 100,000 -
50,000 A
0 T 1
0 2 4
Message size [KB]
Figure 2.10 Transaction throughput of KVS for different messages sizes

Although proposed KVS performs more functions including processing for
high availability and data consistency than memcached, the proposed communication
processing method is superior to that of memcached in dealing with short-length
messages. On the other hand, in the range where the message length is larger than 2KB,
throughput of the proposed method reaches critical performance values and there is a
margin to perform additional operations in the CPU usage (CPU usage is 3%/2.7%
when dealing with 10KB/20KB messages, respectively). These facts indicate that the
proposed method is always effective to enhance throughput even if more network
capacity is available.

30

Store & delete

(multiple queue

Test \with each connection Kev-value store
program

CPU:3.0GHzx2 (2core)
Memory:4GB
Network:1Gbpsx2

Figure 2.11 Evaluation method of KVS for different number of message queues

250,000 -~
=. 200,000 - ¢
H
2 150,000 H
S
© 100,000 -
=
F 50,000 -

0 .]
0 5 10
No. of queues
Figure 2.12 Transaction throughput of KVS for different number of message queues

2.4.3.3. Relationship between Number of Message Queues and
Throughput

We evaluate the dependence of throughput on the number of logical rings (the number
of queues) which KVS retains and processes. Figure 2.11 shows the overview of this
evaluation.

Both, test program and KVS have multiple queues and each queue is connected
by a single TCP connection. We evaluate throughput of the KVVS when the number of

31

queues (the total numbers of TCP connections) is 1, 2, 4, and 8. Referring to Sect.
2.4.4.2, maximum throughput is obtained when message length is 0.4KB for 2 message
queues or 1KB for 1 message queue. To eliminate the limit of network margin and
accentuate the effect of the different number of queues, we set the message length to
0.1KB.

Figure 2.12 shows the throughput of the KVS for different number of message
queues. For the proposed method, throughput for two message queues is 180,000 msg./s,
which is twice of that when using a single message queue. In this evaluation, even if the
number of message queues is more than two, CPU usage is at most 7%, which shows
that CPU is not a bottleneck. Meanwhile, for a message length of 0.1KB, the critical
performance value with message forwarding on the 1Gbps network is 1,300,000 msg./s,
which means that the network is also not the bottleneck.

There are three major tasks of the KVS: (a) receive requests, (b) store messages
into memory, and (c) send reply, as shown in Fig. 2.4. Additionally, both (a’) waiting for
requests after (c) and the communication time between the test program and KVS also
affect the throughput. The KVS processes multiple queues in parallel and each message
queue is handled by one process. Here, we consider that the throughput difference is not
caused by processes (a), (b), and (c) due to the margin of the CPU. Besides,
examination of the test program reveals that test program is no bottleneck for the CPU.
Therefore, we presume that the communication time between the test program and KVS
becomes the bottleneck. Concretely, the bottleneck originates from the window-based
flow control of the TCP connection. When the number of message queues (the total
number of TCP connections) increases, the bottleneck of communication between test
program and KVS seems to mitigate and throughput is improved due to each queue
being processed in parallel. Because KVS retains multiple message queues on logical
rings as shown in Fig. 2.3, the proposed method is less subject to the influence of
communication bottlenecks.

32

2.4.4. Experience in Real Message Queue Systems

Message queue systems as proposed in this chapter have been already applied to
continuously support commercial services for more than five years without any service
interruptions. This message queue system enables users to reduce the efforts for system
construction without requiring RAID storages. Meanwhile, this message queue system
also supports flexible system extension of the number of servers. From these features,
the proposed message queue system satisfies both high availability and scalability.
Moreover, the message queue system with distributed message queues is easy to
interrupt and reboot, which can update software without stopping. Furthermore, the
possibility that messaging server and KVS can coexist in one server contributes to a
reduction in maintenance and monitoring workload compared with conventional
message queue systems.

33

2.5. Related Work

For message queue systems achieving scalability and availability, several mail systems
utilize distributed file systems based on hash tables [63-65] or distributed KVS
Cassandra [66]. These proposals discuss scalability and availability by targeting the
mailbox system, however, both approaches of distributed message queues and obtained
throughputs are not mentioned in these works.

Moreover, in addition to the structure based on the pair of key and value in
KVS, column-type KVS [66] is used for storing data into N-dimensional associative
arrays. To our best knowledge, there has been no research on message queues utilizing
such column-type KVS, however, it can be physically used as queue-type KVS by
combining column-type KVS and simple KVS-based method. This KVS does not
include the solution of high-throughput data synchronization in distributed systems.
Hence, we conclude that the queue-type KV'S proposed here is superior in performance.

2.6. Conclusion

In this chapter, we proposed an architecture for satisfying high throughput and high
scalability in a message queue system for processing massive volumes of short-length
messages through a distribution method of queue-type in-memory KVS and
synchronized processing of distributed queues by single TCP connections.

We embedded the proposed architecture and method into a mail system for
smart phones and performed evaluations of this system. The evaluation results revealed
that throughput of the proposed message queue system achieves 3,600 msg./s per server,
which is 4.5 times higher than that of the conventional method cooperating with RAID
storages. Moreover, the throughput of the proposed KVS is 200,000 transactions/s with
0.4 KB messages, which is 2 times the performance of memcached.

34

Chapter 3

Improved Resilience of Message Queue
System through Server Distribution

3.1. Introduction

Due to the progress of mobile network technology such as Long Term Evolution (LTE)
it has become popular to connect Machine-to-Machine (M2M) devices, such as smart
meters, health monitoring devices, or heavy equipment to the network. According to [1],
the number of connected wireless devices reached 10 billion in 2014 and this number
has been steadily increasing since then, especially with the continuous enhancements of
the social infrastructure through M2M services. The service system, in particular its
message queue system, is required to have high availability, which is considered among
the most important features of mission-critical systems beside high-throughput
processing of huge traffic volumes sent by devices. However, two issues need to be
addressed to simultaneously satisfy high availability and high-throughput processing in
a message queue system.

The first issue is that failover processing itself has a risk of failure. Generally,
mission-critical systems implement shared data and failover processing for providing
high availability (HA) services [39]. Failover processing includes application restart,
process initialization, and recovery of data. These processes consist of special
application-dependent processes, as well as common processes, such as health check
and error detection of hardware/software. Their design and implementation become
much more complex as the volume of messages to process becomes larger.

35

However, in recent years, catastrophic service failures of mission-critical
systems processing large volumes of messages with failover processing [39-41] have
frequently been reported. Causes of these service failures are usually software or
hardware defects and it is very difficult to exhaustively identify these defects at the
system testing stage because all possible cases of failover processing, e.g., complex
problems caused by only theoretically occurring defects, can hardly be tested in advance.
Therefore, a high-availability messaging system without failover processing is needed.

The second issue is to balance between consistency and availability. For
message queue systems, a strong consistency of messages and message queues is the
highest requisite to maintain reliable messaging. Furthermore, these message queue
systems also require maintaining the state of the messaging process and the internal
queue lock, which are denoted as queue transactions. To process large volumes of
messages, the message queue system generally consists of multiple servers, however,
maintaining consistency among these servers is a common issue for distributed
processing [67]. Following Consistency Availability Partition (CAP) tolerance
terminology [60], we can make a trade-off between consistency and availability at the
KVS.

Here, an approach is required in which consistency in the message queue
system can be guaranteed by the KVS functions and availability is improved by our
proposal in this chapter. More specifically, not only 365 days of non-stop service is
mandatory as long-term-availability, but also short-term-availability is required, e.g.,
even during a transient state when a failed server is being isolated or traffic congestion
is being eliminated, the messaging service can be continuously provided without
performance degradation. In this chapter, we propose a fabric message queue system
without failover processing. Fabric message queue describes the distribution of
messages to multiple servers in normal processing state to avoid failover processing.
This system has the following two features and advantages.

(a) The message queue system architecture based on distributed in-memory KVS can
provide long-term availability, i.e., it can continue its service wherever in the
message queue system server/process failures may occur, by distributing messages
to multiple servers, as well as by guaranteeing strong consistency of the messages
and queues by using KVS functions and the Paxos protocol [68, 69].

36

Active/standby Arisk of failover
configurations processing

M2M Devices Message Queue System Backend System
I\(/Ismart (Head-End System) (Electricity Application)
eters) Receive Forward

(Enqueue)\ Messaging Server ' [(Dequeue)
Message = @

ﬂ SO 4 Message -MM/
- P @,,J@, i

e >
NG

Store Failover N; ‘ % j
(Queuing) | Processing M
@ Message - Mater Data
Management
- Device
 Message Queue 1 | Management

Persistent Storage

/Data Store Part/all of services

are stopped

Figure 3.1 Example of message queue system for M2M

(b) The distribution method of messages to servers using round-robin with a slowdown
KVS exclusion and two logical counter-rotating KVS rings can achieve short-term
availability even during an underlying network failure and/or slowdown of servers.

This chapter is organized as follows. First, we explain the research background
and issues related to message queue systems. We then present the system architecture
and design. Next, we show the implementation and the performance evaluation results
on availability of the system. Finally, we describe related work and conclusion.

37

Conventional System Approach based on KVS

Distribute messages to all server
without failover process

Arisk of failover processing

1
Message-Queue Message-Queue !
System System E
| Loadbalancer | i
T 5 | Loadbalancer |i
g e
]
@ @ - ; Server-A*Server—B' Serfer-C
Store Failover ”Msessagiza MsessagiEg fmsessa'iga
. erver-, erver- ervef-
Queuing) Processing)
essage ~——

Message

{7

Mol O
000 000
]

Persistent Storage
/Data Store

Part/All of services
are stopped

Resistance of
split-brain

Figure 3.2 Risk of failover processing in conventional systems and
our approach to achieve high-availability

3.2. Background and Issues

3.2.1. Outline of Message Queue System for M2M Devices

Figure 3.1 outlines an example of the system structure for services of M2M devices.
Message queue systems are widely used for a large variety of services such as smart
meter services in an electric power company, health equipment monitoring services, etc.
Main functions of message queue systems are to reliably relay messages to the backend
system without message loss and to buffer the message traffic of devices.

3.2.2. Risk of Failover Processing

Figure 3.2 outlines an example of failover processing and our approach to achieve high
availability. Mission-critical systems usually have HA clusters for continuous service
when their components fail. HA clusters detect hardware/software failures and
immediately restart the application on another standby system, which is referred to as

38

failover.

Conventional message queue systems have a risk of failover processing.
Similarly, our previously proposed system in Chapter 2 also partly has this risk because
it uses recovery processing in which another system (messaging server) on standby gets
all messages stored before the failure of the KVS.

To solve this issue caused by failover processing in the message queue system,
we take advantage of distributed in-memory KVS. Generally, distributed in-memory
KVS is used for high-throughput and scalability. However, we use it here for improving
availability of the message queue system. To remove failover processing, we follow the
approach of fabric messaging that distributes messages to all servers during the normal
processing state. A fabric is a topology in which nodes pass data to each other through
interconnected nodes in a mesh fashion. In data center network research, switch fabrics
are well known [70, 71]. In this chapter, we propose a fabric architecture on the
application layer containing the data store for solving the above-mentioned failover
processing issue of message queue systems (see Sect. 3.3.1).

3.2.3. Trade-off between Consistency and Availability
3.2.3.1. Queues on Distributed KVS Ring

For scalability of the data store, a general distributed KVS distributes data as (key,
value) pair by consistent hashing [72] and a cluster of distributed KVS is configured by
using range partitioning [72, 73] (the cluster of distributed KVS is denoted as KVS
ring). In the KVS ring, each server (coordinator in [72]) is responsible for the region
between itself and the previous server on the ring.

Our previously proposed message queue system in Chapter 2 simply applied
basic KVS technology, therefore, the consistency of messages cannot be maintained
when split-brain occurs as shown in Fig. 3.2. To maintain strong consistency, we use
Paxos, a protocol for obtaining consensus in interconnected unreliable processors,
which is widely used in many distributed processing systems [73].

However, even if both general distributed KVS technology and Paxos were
simply applied to the message queue system as shown in Fig. 3.3, there would be new
problems that are described in Sect. 3.2.3.2.

In Fig. 3.3, each KVS is assigned queues based on range partitioning. Each
queue is stored in three KVS and can be in either master or non-master state. The master

39

KVS ring Network

KVS-A 5 _ S
Master Non-master NON-master Networkfau_ure monitoring
oD (Detectiontime: 1 to several sec)
e/

)
D
j=4
=
]
)
>

V4 Master Non-maste
Messagin o f
ging _|__4.——"AA 00
=1

Server ';\ KVS-C

O
‘\\\ YN Master

Non-master

AV N _Non-maste
. Wi XX
Consistent \; p L[R S 2 _
. ‘A - L sy
Hashing \iy, KVS-D § Standby
\ \\ Master Non-master Non-master g
| VOO0 EEE
P\
i \‘ KVS-E !
H - Noh- t n
\ WS ORI SEr master ¥ KVSfailure monitoring
000 OO LL L p (Detection time: severalto 10 sec)
Rintion
Figure 3.3 Applying conventional method in real system

queue is responsible for queue transactions, such as enqueuing or dequeuing of
messages, and for message replication of the two non-master queues. If a KVS failure is
detected in a KVS ring by Paxos, the faulty KVS is isolated from the ring and one of the
non-master queues becomes the new master queue as alternative to the previous master
queue on the faulty KVS. The messaging server selects the KVS with master queue by
using consistent hashing and sends messages to this newly selected KVS.

3.2.3.2. Two Problems in Message Queue Systems

Figure 3.4 outlines the new problems that arise when applying conventional methods to
this message queue system. When constructing the message queue system, as shown in
Fig. 3.3, the KVS are connected to the underlying network, which consists of more than
a single network device (each device has its own standby device in case of a failure).
Considering a route change between switches in case of failure at a single or multiple
switches, the route stabilization time takes several seconds or more than 10 seconds in
either case.

40

KVS ring

'M L) KVS-A
essaging Master Non-master Non—master
Server

\
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|

Messaging (1)KVS-Aand KVS-B
wait responses

-

Master Non-Thastyr Non—master
Server

)
Messaging

Server

Consistent
Hashing

(1)Messaging servers KVS—E Non-master Nbn-maste..

wait responses Master
P - Master Master. (2)-2When KVS-C,D are down

M\ Loo HEE KVS-E includes 3 masters

il Replication :
RN Direction -

Figure 3.4 Problems of applying conventional methods.

[[\AAA (2)-1When KVS-C is down
i KVS-D includes 2 masters
¢

The temporal performance degradation of a server is another problem. As
shown in Fig. 3.4, when the server of KVS-C fails, the performance of KVS-A and
KVS-B having the responsibility for non-master queues degrades due to multiple
reply-timeouts of KVS-C until the detection and isolation of KVS-C’s failure; Typically,
more than 10 seconds are needed for a server failure detection, see Fig. 3.3. Furthermore,
a heavy workload background job also temporally degrades server performance. This is
denoted as slowdown of a server. Above-mentioned examples may lead to the following
two problems of short-term availability in the message queue system as shown in Fig.
3.4.

(1) Large values of KVS failure detection timer

To avoid false detections of server-failures during the route stabilization of the
underlying network, the detection time for KVS failures must be set to a value that is
larger than the route stabilization time of the network, i.e., from several seconds to
above 10 seconds. Consequently, all messaging servers must wait for the response from
the faulty KVS until the KVS failure detection timer expires. The same problem also

41

occurs for a slowdown. One example of this adverse effect is that the messaging server
cannot reply to the mobile devices for over 10 seconds, while wasting wireless
resources and degrading messaging service quality, see Fig. 3.4-(1).

(2) Concentration of message queue load after KVS failures

When KVS-C in Fig. 3.4 fails, KVS-D becomes the new master after the KVS failure
detection time has passed and the non-master queue is designated as the new master
queue as described in Sect. 3.2.3.1. The designation order of the new master queue
depends on the KVS ring’s direction. For example, if both KVS-C and KVS-D fail,
KVS-E is designated as the new master, therefore, it must process three master queues
of all three KVS (C+D+E). In this situation, the load of message traffic concentrates on
KVS-E, which can lead to performance degradation (see Fig. 3.4-(2)).

The first problem described above is because the detection time for the KVS
failure on the underlying network or a server slowdown can be relatively long compared
to the messaging time itself (tens of milliseconds for messaging versus more than ten
seconds for network stabilization or server slowdown). The second problem arises from
the nature of the distributed KVS since it is important for mission-critical systems to
continuously provide services even when multiple server failures occur [74, 75].

In this chapter, we propose distribution methods to solve these problems and
provide short-term-availability while guaranteeing the consistency of the messages by
the Paxos protocol used in the KVS.

42

Message Queue System

(2) Interconnecting (4) Two KVS

each module { kysring2 ,counter-Rotating Rings

M2M

devices (1) Backena
—1 JE-Ctrl system
G JRNIGN; / \
i [|
G A - ; -

0 S—E-Ctrl = D-Ctrl _M/ @
o : —_— 3 -
® - ‘

0] S
! E-Ctrl
(3) Distributing to avoid (5) Get messages from

slowdown KVS

Figure 3.5 Fabric message queue system architecture

3.3. Proposed Architecture and Distribution Methods
3.3.1. Architecture of Fabric Message Queue System

The architecture of the proposed fabric message queue system is shown in Fig. 3.5. Its
logical structure and functions as well as its physical configuration are described below.

3.3.1.1. Logical Structure and Functions

As mentioned before, the messaging server consists of two programs: the enqueue
controller (E-Ctrl), which receives messages and stores them to the queue (enqueue),
and the dequeue controller (D-Ctrl), which retrieves messages from the queues and
relays them. E-Ctrl distributes messages to all servers during the normal processing
state to remove failover processing. This architecture has fabric topology in which
nodes pass data to each other through interconnected nodes in a mesh fashion.
We describe the logical structure and function of proposed fabric message
gueue system where the following numbers correspond to those shown in Fig. 3.5.
(1) The load balancing module dispatches incoming messages from the source clients to
the E-Ctrl in the same way as the conventional system. It monitors the TCP ports of
the E-Ctrl to avoid dispatching to a faulty E-Ctrl.

43

(2) Multiple E-Ctrl and D-Ctrl are interconnected via multiple KVS. Both the E-Ctrl
and the D-Ctrl are stateless and operate cooperatively and independently through the
message queues in the KVS.

(3) The E-Ctrl selects a KVS by round-robin with a rule that excludes KVS in a faulty
and/or slowdown state, then stores the message at the selected KVS (see Sect. 3.2.1).
Therefore, the E-Ctrl can store messages, regardless if there are KVS failures and
can continue services.

(4) The KVS on a server are logically linked to shape a directional ring that includes
multiple KVS and provides distributed KVS. Message queues are deployed on the
KVS ring as mentioned in Sect. 3.2.3.1. Messages and message queues are handled
by the Paxos protocol as distributed KVS consisting of three KVS. Each KVS has
multiple message queues. In Fig. 3.5, there are three queues, the topmost one is a
master queue and the lower two are non-master queues. The E-Ctrl enqueues and the
D-Ctrl dequeues messages Via the master queue. Functions for high availability such
as KVS failure detection, isolation of the faulty KVS, and the master/non-master
KVS reassignment, are based on the basic distributed KVS described in Sect. 3.2.3.
KVS can continue service such as enqueuing and dequeuing messages after failure
detection regardless of which KVS has a failure (regarding availability within the
failure detection, see Sect. 3.3.2.1).

(5) Multiple D-Ctrl get messages from multiple KVS and send them to the destination.
Therefore, there is enough redundancy for the messaging service even if
failure/slowdown of the D-Ctrl occurs. In detail, the D-Ctrl gets a message from one
of the master message queues and sends it to the destination. If the message is
successfully received by the destination, the D-Ctrl removes the message from the
master messaging queue. The D-Ctrl sets an internal lock on the messaging queue
while accessing it to arbitrate access conflicts. The D-Ctrl preferentially gets
messages from a local KVS, i.e., located on the same physical server, rather than
from non-local KVS to reduce processing overhead.

3.3.1.2. Physical Configuration and Features for High
Availability and Scalability

The fabric message queue system consists of N units of load balancers and servers, as
well as network devices (not shown explicitly in Fig. 3.5). All the servers have a

44

homogeneous configuration where the E-Ctrl, distributed KVS, and the D-Ctrl are all
located on one server. This configuration makes it easy to add/delete servers in this
system.

KVS use Paxos for communication within their logical KVS ring for
maintaining strong consistency, even in the case of network faults or split brain. We
consider two KVS rings that are independent of each other in our architecture. If a
server failure occurs in one KVS ring or its modules, this system can continue with the
messaging service by using the other KVS ring. Both KVS rings are connected to
different networks and therefore, this system can continue service even when one
network becomes disconnected. Based on the proposed fabric architecture, high
scalability and long-term-availability of the message queue system can be realized.

Note that regarding messages from a specific source to destination, the
message delivery is guaranteed if the destination is ready to receive the message, but the
order of message delivery is not necessarily guaranteed because multiple paths (KVS)
between the E-Ctrl and D-Ctrl exist. We designed a fabric architecture and multiple
paths to achieve higher availability. If the message queue system consists of N units of
load balancers and servers having the same performance, we consider that availability is
more important than message reordering for the majority of M2M services. If precise
ordering is required, adding a KVS selection condition could prevent message
reordering, e.g., a pair of source and destination client addresses is mapped to one
specific KVS.

45

(1) Monitor an elapsed time to ' KVSring
determine a status of the KVS | KVS-A W

@0 Slowdown

(2) Avoid storing next messages

. 00d
in the slowdown KVS 000
Figure 3.6 Distribution method avoiding slowdown KVS

3.3.2. Distribution Methods for Improving Short-Term
Availability

3.3.2.1. Round-Robin Method with Slowdown KVS Exclusion

To solve the problem (1) described in Sect. 3.2.3.2, i.e., when the detection time for the
KVS failure on the underlying network or a server slowdown is three orders of
magnitude longer than the messaging service itself, we define the KVS status as being
either in slowdown or no-slowdown. An E-Ctrl selects a KVS by the round-robin
method with a slowdown KVS exclusion, instead of the consistent hashing method
basically used in the conventional KVS.

In detail, the E-Ctrl monitors the elapsed time that starts at the time of
transmitting messages to a KVS until reception by the KVS. The E-Ctrl has a threshold
for the elapsed time of each KVS denoted as slowdown detection time. If the elapsed
time exceeds the slowdown detection time, the E-Ctrl determines the KVS state as in
slowdown, after which it avoids storing messages in that KVS and stores them instead
on another KVS in non-slowdown state as shown in Fig. 3.6.

46

;- KVS Ring 1 - KVS Ring 2 i
< i KVS1-A | | KVS2-A :
QL, E-Ctrl A | Master Non-master Non-master | i Master Non-master Non-master | |
Z | \ / : : :
Z : PR X% mEE
' =
P (1)Round-robin Kvs1—% . \' o KVSZ—BNon—gster Non-master |
i i eplicate - i
e LA Mastey Nommaster NS "“as:e?‘fx_:‘ Mostor (3)Master (4)Master |
» ,& 900 & e OO ‘EE A !
il ;
------------- R : -
{0 KVS1-C <1 1 Kvs2-C F
'g Master Non-fasterNon-paister | | Master Nop‘master Noh-master | |
'3 lll\f“/Lxs’ . | EEE »

KVS2-D
Master n—master

KVS1-D Ngn‘:nas r Non—master

Server-D

Server-E

[0]8]8)

Figure 3.7 Distribution method with 2 KVS rings

By monitoring each KVS with a slowdown detection time of several hundred
milliseconds, we can avoid the longer detection time needed for the KVS failure or
server-slowdown. An optimal value of the slowdown detection time will be evaluated in
Sect. 3.4.3.

3.3.2.2. Two KVS Counter-Rotating Rings

To solve the problem of concentration of message queue load after KVS failures as
described in Sect. 3.2.3.2, we propose the message distribution method with two
counter-rotating KVS rings as shown in Fig. 3.7. This KVS has three queues, the
leftmost is the master queue and the other two are non-master queues. Both KVS rings
have opposite directions of processing order.

In normal state, an E-Ctrl distributes messages to the master queues by
round-robin between both KVS rings, see (1) in Fig. 3.7. The master queues oversee the
message replication for the two non-master queue. If a KVS failure/slowdown happens,

47

it would impact the two KVS that have the master queue sending replicated messages to
the non-master queues of the faulty KVS until the faulty KVVS becomes isolated, see (2)
in Fig. 3.7. For example, a slowdown of KVS1-C in Fig. 3.7 would influence KVVS1-A
and KVS1-B. At that time, if an E-Ctrl can determine KVS1-B slowdown as described
in Sect. 3.3.2.1, it skips with the next message to KVVS2-B in the other KVS ring, which
is not influenced by the failure of KVVS1-C.

If a server failure occurs, an E-Ctrl can also determine the KVS slowdown and
it skips with the next message to the normal (non-failure) KVS. After that KVS detects
the faulty KVS and changes one of the non-master queues to be the new master queue.
For example, (3) in Fig. 3.7 shows that if a failure of Server-C occurs, the non-master
queues of KVS1-D and KVS2-B become master queues. This divides the load onto both
servers and is more effective when multiple server failures occur simultaneously, e.g.,
failures of Server-C and Server-D, see (4) in Fig. 3.7. For the conventional method that
has only a single KVS ring, KVS-E must process the data of three KVS (C+D+E) when
KVS-C and KVS-D fail. On the other hand, with our proposed method, KVS1-E and
KVS2-B only need to process data of two KVS under the same situation. Thus, the
proposed distribution method reduces the negative impacts on the service caused by
server/KVS process failures.

48

3.4. Implementation and Evaluation

3.4.1. Implementation and Methodology for Evaluation

E-Ctrl and D-Ctrl were implemented based on an event-driven architecture [62]
developed in the C language. We implemented KVS, which have a key-value data
structure, in Java and added functions for queue transactions to the KVVS. The message
queue system for the evaluation consists of 5 E-Ctrl, 5 D-Ctrl, and 10 KVS. There are 2
logical KVS rings, each consisting of 5 KVS. Each KVS has 18 GB of memory for
storing more than a million messages.

We evaluate the short-term-availability provided by proposed two methods
described in Sect. 3.3.2 and the long-term-availability of the fabric message queue
system described in Sect. 3.3.1. We intend to observe this behavior and evaluate
availability under server failures, therefore, we assume message sizes as 30 KB, which
is relatively large in our experience and it can therefore increase the server load of the
messaging server/KVS. A test client program generates the workload to the E-Ctrl and
the message queue system forwards the messages to a test destination server.

3.4.2. Verification of Detection of Slowdowns

To verify the effect of the round-robin method with slowdown KVS exclusion described
in Sect. 3.3.2.1, we compared the throughput of two message queue systems, one with
the proposed round-robin method with slowdown KVS exclusion and the other with
conventional consistent hashing method. Figure 3.8 outlines the test environment of the
evaluation. We let server-D fail while processing the workload and monitor the
throughput and the error responses to the test client program from all the E-Ctrl. The
test client program transmits the workload to E-Ctrl at a rate of 1200 msg./s that can be
processed stably under one server failure in this evaluation environment.

49

T —— . KVS ring’s direction

{ Ringl ! Ring2 | irecti
Evaluate - | g R g . (1) Same dlreFtlor?
Throuehout BH = N KVS1ZA I'f" KVS2-A ~ (2) Reverse direction
'Quequsn th 2 G eee . 000 qora ™ —F
e Y | 000559] || 3T HEH]]
- | : —"
‘f E=Ctrl | KVS1-B | || KVS2-B D-Ctrl _i}
Tost 1‘——13 B oi-82aa . 000 aptB ° -
et | 23 3 | ‘8@® 000 | ALA > Test
rogram | e ! : "| Server
Test Workload T E-Qt | KVSI-C | KVS2-C D-Ctrl Program
— g QI-CHEMN ([AAAQ2{C =
> 3 | AAA 900 | 960 HEE >

[R— : :

i@ ECtl . Kvs1-D | || Kkvs2-D || D-Ctd —*:
= E Po oodieadsony D =2
8 B0 AAA 5 0 (Dserver-D down

T i s T —

— 1 ! D_CDtrI —

— qz) —

R

—_ @server-E down

Figure 3.8 Method of evaluation of message queue system

Throughputs of the two message queue systems are shown in Fig. 3.9. For the
proposed method, the throughput remains stable before and after the server failure. In
contrast, for the conventional consistent hashing method, the throughput is temporally
decreased for about 15 seconds after the server failure. The number of error responses is
shown in Fig. 3.10. Compared to the conventional method (2379 error responses), the
error responses decrease with the proposed method (214 error responses) by 92%. Thus,
it is shown that the proposed method increases the short-term-availability of the
message queue system.

50

1,600

)

9 1,200

Igl L]

é_ 800 | server down /'

o :

3 400 —Conventional

= 0 | | —Pro!oosed |

0 30 60 90
Time [s]

Figure 3.9 Throughput of message queue systems.

300 -

—Conventional i —— 2379
250 1 —Proposed :

200

Server down /'

Error responses [msg./s]

150 -
100 - 4
90 -
0 | | |
0 30 0 90
Time [s]
Figure 3.10 Number of error responses.

51

1,250 ~ - 3,000

2 1200 A . - 2,500
(@)]
@ - 2,000
£ 1,150 A 8
a <+ Throughput - 1,500 @
< 1,100 . g
S +\ariance - 1,000
o
‘E 1,050 - L 500
1,000 . 0
0.0 0.5 1.0
Detection time [s]
Figure 3.11 Average and variance of throughput

for different slowdown detection time

3.4.3. Determining the Optimal Slowdown Detection Time

To find an optimum value of the slowdown detection time described in Sect. 3.3.2.1, we
evaluate the performance of the proposed system for different parameter values. We use
the same test environment as shown in Fig. 3.8 and evaluate the average and variance of
the throughput for different slowdown detection time from 0.1 to 1 second.

The average and variance of the throughput are shown in Fig. 3.11. The
average throughput increases in the range from 0.1 to 0.4 seconds for the slowdown
detection time values, and flattens in the range larger than 0.4 seconds. On the other
hand, the variance of throughput decreases in the range from 0.1 to 0.4 seconds. Figure
3.12 shows the behavior of the throughput for two slowdown detection time values, 0.1
and 0.4 seconds, before and after a server failure. The throughput for 0.1 seconds has a
high fluctuation, while it is stable for 0.4 seconds. The average throughput for 0.1
seconds is 9% less than the throughput for 0.4 seconds.

In general, it is better to set smaller values for slowdown detection, because
larger values impact the waiting time of the source clients (mobile devices) as described
in Sect. 3.2.3.2. From the result in Fig. 3.11, an optimum value of slowdown detection
time is 0.4 sec.

52

2,500 4 —detection time=0.4s
= —detection time=0.1s
= 2,000 -
> Server down /
E
=
Q
£
o
=
o
_C
= :
0 ; Loy
0 30 60
Time [s]
Figure 3.12 Throughput for different slowdown detection time values

(0.1 and 0.4 sec) over time.

The reason why the throughput is not stable for 0.1 seconds is an effect of the
copying garbage collection of Java. Copying garbage collection happened every second
in the test and the process of KVS stopped operation when the detection time value is in
the range from 0.1 to 0.3 seconds.

In conventional systems, the duration of copying garbage collection is
negligible. Previous research on garbage collection of Java [76] revealed that the
duration of copying garbage collection depends on the memory size and becomes
non-negligible when the memory size is larger than 1 GB. We estimate that the duration
time of copying garbage collection becomes longer, because each KVS has 18 GB
memory and must store a lot of key-value data including the metadata to achieve queue
transactions.

If a KVS halts due to copying garbage collection for more than slowdown
detection time, the E-Ctrl stop transmitting messages to this KVS. Thus, the KVS has
nothing to process, leading to a decrease in throughput of the whole message queue
system. In addition, we presume this effect of copying garbage collection to be a
common problem of KVS-based systems, because many KVS implementations such as
Cassandra or Hbase [77] are implemented in Java and modern distributed systems are
equipped with large memory.

53

Conventional Method

Ctrl | KVSI-A [
Or Proposed Method - : : = e
Bess A Jeee || 000 A B—
. 1 (] i"‘
— W ¢ ' S
N : | —
@ e P vers | [

Test — g - ! <><> _-’

Client ::: 3 E AAA > Test
Progran | ~—p ’ | Server
Test Weorkload, T | KVS2-C | | D-Ct Program

—— 9 . AAA —
— 5 ? —
—Q : \ KVS2-D D—%trl —
> ! = G

L 2 5 A

Vi—e 8 5 000 Serever-D down
— : VS2- D-Ctl —¥
— O E (@) -D —
—_— Z : ! L4 N g
— 3 | 3o 000 000 v

S Ring Direction
Figure 3.13 Performance evaluation of the proposed message queue system

3.4.4. Impact of Server Failures on Availability

We evaluate the performance of the proposed fabric message queue system from the
long-term-availability point of view. Figure 3.13 outlines the test environment of the
evaluation. We compare the performance behavior, throughput, and queue length of the
message queue of the proposed system and the conventional system. The conventional
system has two KVS same-direction rings because that is same as having a single KVS
ring with one direction. The queue length of the message queue reflects the variance of
load balancing in the whole system. We apply the optimum value of 0.4 seconds as the
slowdown detection time to the system.

For mission-critical systems, e.g., carrier grade systems, operators expect the
system to handle 2 simultaneous server failures and they construct the redundancy
system for this worst-case scenario. A single server can stably process 300 msg./s as
shown in Sect. 3.4.2, therefore, the test client program transmits the workload to the
E-Ctrl at a rate of 900 msg./s that can be processed stably when 2 server failures occur.
After 60 seconds of transmitting the workload, we first let server-D fail, followed by a

54

. Server-D down

_. 1,200 - :
L 4 . Server-E down
9 1,000 - e
£ 800 -
S :
2 600 -
= :
3 400 -
< :
= 200 -
0 5 P .
0 60 120 180
Time [s]
Figure 3.14 Throughput of message queue system

(conventional method: same direction of both rings).

7,000
6,000
5,000
4,000
3,000
2,000
1,000

0

Queue length

failure of server-E.

Server-D down
- / .

: : Server-E down

0 60 120 180 240 300
Time [s]

Figure 3.15 Queue lengths of each KVS
(conventional method: same direction of rings).

(1) Conventional Message queue system

Throughput of the conventional message queue system is shown in Fig. 3.14.
Throughput is stable when the first server failure happens, however, when the second
server fails, it decreases to zero, meaning that the messaging service completely stops.

—Q1-A
—Q1-B
—Q1-C
—Q1-D
—Q1-E
---Q2-A
---Q2-B
---Q2-C
---Q2-D
---Q2-E

After 5 seconds of stopping the messaging service, the service is recovered.

55

The queue length of the message queue in each KVS is shown in Fig. 3.15. For
example, the queue name “Q1-A” shows the queue of KVS belonging to ring 1 and
initially located in Server-A. When the Server-D failure occurs, the lengths of Q1-E and
Q2-E increase. We consider that it is caused by excluding KVS-D. When the server-E
failure occurs, the lengths of 6 queues (Q1-A, Q2-A, Q1-D, Q2-D, QI1-E, Q2-E) are
increased. We attribute this to the problem in load balancing as described in Sect.
3.2.3.2(2). Server-A that includes KVS1-A, KVS1-B, and D-Ctrl-A must process the
queues of 3 KVS and the failure of Server-E impacts the other KVS during the failure
detection time (described in Sect. 3.3.2.2) leading to a messaging service stop for 5
seconds.

(2) Proposed Message Queue System

The throughput of the proposed message queue system having the two KVS
counter-rotating rings is shown in Fig. 3.16. Compared to the conventional system in
Fig. 3.14, throughput in Fig. 3.16 remains rather stable when the first and second
servers fail. Throughput decreases about 20%, which corresponds to the workload of
two messaging (master) queues temporally in an out-of-service state out of the initial
five messaging (master) queues.

The queue lengths in each KVS are shown in Fig. 3.17 for the proposed system.
Compared to the conventional system in Fig. 3.15, the lengths of queues in Fig. 3.17 are
only slightly increased. That is caused by the proposed method reducing the impact of
load balancing as described in Sect. 3.2.2. Thus, it is shown that the proposed
architecture and two methods can continue the messaging service even if multiple server
failures occur. Therefore, it can provide long-term-availability.

56

1,200

i : Server-D down
:/ .
@ 1,000 :
Q 800
E,
3 600
S
3 400 - :
< : Server-E down
=200 - v
0 T I T
0 60 120 180
Time [s]
Figure 3.16 Throughput of message queue system
(proposed method: opposite directions of rings).
7,000 1 Server-D down _gig
i 4 : TN
= 6,000 : : Server-E down —Q1-C
i‘c? 5,000 N ;/ _Ql_D
@ 4,000 - —Q1-E
S 3000 - : Q1-A,Q1-B, Q1-C,Q1-D, -—Q2-A
(@4 2000 A Qz_Ev Q2_C QZ_EA, Q2-C, Q2-D, Q2'E ---Q2_B
’ : : ---Q2-C
1,000 ~ ---Q2-D
0 --Q2-E
0
Figure 3.17 Queue lengths of each KVS

57

3.5. Related Work

We describe related work from three points of view: message queue systems, failover
processing, and distribution methods.

Regarding message queue systems, a queuing system based on distributed
in-memory KVS was proposed in [57]. Its queuing function deployed in the KVS is
similar to the function of our proposed system. However, it focused on the queuing part
only and it did not discuss about the availability of the whole system including the
messaging process. In addition, our approach of focusing on availability of distributed
in-memory KVS differs from conventional research.

Previous study in the risks of failover processing have been reported in [78, 79].
To avoid catastrophic service failures, they proposed management rules, e.g.,
monitoring system failures and verifying configurations of failover processing, and
preparations, e.g., procedures when system failure happens. It was also mentioned in
[78] that designing the system for a concentration of message load after failover
processing was important.

The shared nothing architecture [79] is similar to ours when distributing
messages in a normal processing state. However, the shared nothing system usually
doesn't duplicate messages and needs failover processing or recovery processes to
continue service. The significant difference between our proposed architecture and the
shared nothing architecture is when it is executed. Our proposed system always
executes the same process wherever a server failure happens, while application restart
and recovery process in the shared nothing architecture are executed only when a server
failure happens. Therefore, our proposed architecture can be more available than the
shared nothing architecture.

Regarding the distribution method of KVS, consistent hashing is the standard
distribution method of KVS such as in Cassandra. Our proposed method is optimized
for queuing and high availability in the messaging service.

58

3.6. Conclusion

In this chapter, we proposed a fabric message queue system that has the following
functions and advantages.

The message queue system architecture based on distributed in-memory KVS can
provide long-term-availability and can continue its service wherever in the message
queue system server/process failures may occur by distributing messages to multiple
servers. Furthermore, it can guarantee strong consistency of the messages and
message queues by using KVS functions and the Paxos protocol.

The distribution methods of messages to servers by using round-robin with a
slowdown KVS exclusion and two logical KVS counter-rotating rings can achieve
short-term-availability even during an underlying network failure and/or a
slowdown of servers.

Evaluation results show that this system can continue service without failover
processing. Compared with the conventional method, our proposed distribution methods
reduced 92% of user errors caused by server failures. Furthermore, we determined the
optimum value of slowdown detection time in our distribution method.

59

60

Chapter 4

Increased Throughput of Message Queue
System through Dequeue Scheduling

4.1. Introduction

In the Internet of Things (lIoT) era, the amount of all digital data in the world created by
various devices and sensors is exponentially increasing and it is predicted to reach 40
ZB by 2020 [8]. loT service systems utilizing data from devices typically consist of 3
groups: field devices which send and receive data, backend systems in a data
center/cloud, and the message queue systems located between the devices and backend
systems.

Message queue systems are widely used for interoperability and control of the
huge message traffic between devices and backend systems [81, 82]. Especially, the
control of message traffic has become an important requirement as the volume of loT
messages has increased dramatically over the past years. There are several solutions
such as Kafka [48], Amazon Kinesis [83], Azure 10T Hub [84], etc., following different
approaches depending on their respective objectives. In addition, to satisfy these
requirements as well as obtaining a high availability, such as a short failover time of
within one second for social infrastructure systems, we proposed in the previous
chapters a high-throughput and reliable message queue system based on a distributed
in-memory key-value store (KVS).

Here, we address another issue of traffic control between devices and backend
systems for 10T services. Devices transmit messages periodically at their own intervals,

61

such as the period of log collection for their service requirements. On the other hand,
backend systems process messages at different rates to achieve maximum throughput
for the individual objectives of the 10T services, such as analysis, management of
devices, or data visualization. Therefore, to compensate for the heterogeneity in
message traffic between devices and backend systems, message queue systems use
buffering to handle message traffic from devices. This compensation is achieved
through distributed message queue systems, which enables the distribution and
load-balancing of message processing on multiple servers. In the past, the specifications
of field devices and backend systems were defined in advance. However, today’s 10T
service systems in conjunction with development and operations (DevOps) trends
require rapid implementation and continuous modification, additionally to the backend
system also becoming adaptable [85-88]. Furthermore, progresses of distribution
platforms such as Spark [49] or Storm [50], have dramatically improved the
performance of backend system. In this background, updating the processes or
parameter settings of backend system can impact the system’s performance.

In fact, when the number of backend systems connecting to the message queue
increases, we can observe that this situation impacts the performance of our proposed
message queue and degrades the throughput for retrieving messages from the message
queue (dequeue). By analyzing the factor of throughput degradation, we recognize a
large number of missed-dequeues, which means that the lack of messages in the selected
queue wastes computational resources.

Therefore, in this chapter, we focus on the dequeue process of distributed
message queue systems and we propose a method called Retry Dequeue-request
Scheduling (RDS) to solve the throughput degradation problem. We evaluate the RDS
method by simulation and also prove its advantage in experimental real servers.

This chapter is organized as follows. First, we explain the background and
issues of message queue systems for 10T. We then present our proposed method and its
design. Next, we show its performance evaluation by simulation, and the results from
the experimental evaluation. Finally, we describe related work and provide a conclusion.

62

Send messages Get messages in one’s

periodically own processing time
loT Devices Message Queue System Backend System
(Edge Tier) (Platform Tier) (Enterprise Application)

MQTT REST, : | -
7 fé 5 _ CoAP, etc. Messaging Server.... RDe-e(?uugst 'ﬁ
Ve

wldlil) Production
4 " ﬁ Machine
T S [Ej
-_— ‘ ﬁ -MM« =

H ﬂ D-Ctrl Planning
Enqueue Dequeue

i 1k

-
Predictive
Maintenance

(optmzaton

Supply”

ain
Management
Persistent Storage Compensate for the
/Data Store L .
eterogeneity in message traffic
Figure 4.1 Structure of 10T service system

4.2. Background
4.2.1. Outline of 10T Service System
4.2.1.1. Message Queue System in 10T Service

Figure 4.1 outlines an example of the system structure in 10T services. Message queues
are widely used for a large variety of services, e.g., monitoring/optimization of services
in industry, smart meter services in electricity companies, connected vehicle services, or
services of a telecom company collecting data from M2M devices. Message queues are
required for the interoperability and abstraction (absorption) of message traffic of
devices. By supporting 10T protocols, e.g., MQ Telemetry Transport (MQTT),
Representational State Transfer (REST), or Constrained Application Protocol (CoAP)
[89], and by making devices and backend system become loosely coupled (independent),
message queues enable the developer to interoperate between them rapidly. Message
queues buffer messages into a queue on a persistent storage (enqueue) and enable the
backend system to retrieve the messages from the queue at their own timing. Under the
condition that the message queue has both, sufficient performance to process messaging
traffic from devices and scalability in performance and storage, the message queue
enables the developers of the backend system to design their system without

63

considering the entire volume of the messaging traffic.

4.2.1.2. Heterogeneity in 10T Message Traffic

It is generally agreed that 10T services require information from historical or real-time
data for their own objectives, such as monitoring and optimization [43-47]. In [43-45],
I0T service systems are required to manage the massive volume of data generated by
sensors in various fields, such as smart grids, connected vehicles, and heavy equipment,
etc. In [46], optimization at the enterprise level in smart manufacturing requires only
periodically collected data. In [47], general smart sensors are organized in simple
packages, i.e., they may consist of single chips and generate simple periodical data.

The general approach in IoT to find patterns in data is to collect much data
from devices and learn through trial-and-error of data analysis. This approach requires a
large data volume for various analyses. Therefore, traffic volume from devices
generating periodical message data has become enormous in 10T service systems. The
transmitted data size of sensors highly depends on their service requirements and
protocols, such as MQTT, REST, and Transport Layer Security (TLS) [90], etc. From
our past experiences with specific use cases, such as monitoring or optimization
services, we assume in this chapter that the data size is 1 KB, which is widely applied to
loT services.

On the other hand, the backend system collects data for various 10T objectives,
such as monitoring and optimization, for which it retrieves messages from the queue at
its own non-periodic and process-dependent timing. The processing times differ by
context of message, message size, and other related data. To achieve higher throughput
by fully utilizing computational resources, the backend system retrieves messages from
the queue with a pull-based method [48]. We describe further details in Sect. 4.6. In
addition, progress in distribution platforms, such as Spark, leads to a dramatic change in
processing time of the backend system.

Here it can be seen that while devices send massive amounts of periodical
messages, backend systems process messages at their own timing in I0T. Therefore, the
control function of the massive and heterogeneous message traffic in the message queue
becomes a crucial issue in 10T. In this chapter, we are targeting these heterogeneous
environments in the 10T service system.

64

_Queue

B

 D-Ctrl ﬁ

.Queue

<<~

. Queue

G

~” Message-Queue System

Figure 4.2 Overview of distributed message queue system. E-Ctrl and D-Citrl
denote enqueue controller and dequeue controller, respectively

4.2.2. Conventional Approach using Distributed Message
Queues

4.2.2.1. Architecture for High Scalability and Availability

In Chapter 3, we proposed a high-throughput and reliable message queue system based
on a distributed in-memory key-value store (KVS) for social infrastructure systems (Fig.
4.2). The proposed message queue system adopts a fabric architecture with connected
full-meshed servers for high scalability and availability. The proposed message queue
system consists of 3 parts: the enqueue controller (E-Ctrl) for receiving and storing
messages in a queue, the distributed queue to the KVS server as persistent storage, and
the dequeue controller (D-Ctrl) for receiving dequeue requests from the backend system
and retrieving the messages from queues. This structure enables to eliminate a single
point of failure and enhances the horizontal scalability of each part.

4.2.2.2. Transparency in Distributed Message Queues

In the proposed queue system as shown in Fig. 4.3, E-Ctrl and D-Ctrl provide access
transparency and location transparency for devices and backend system. Let us detail

65

Device Backend System

& ﬁ——ﬁg@g

Physical Queues

Backend System
. Queue & e
Coi<[pcr|N =2 = &

Queue

Device

&

!

E-Ctrl D-Ctrl

Queue

E-Ctrl

D-Ctr

select queues

dequeue from the
by round-robin

next physical queues
by round-robin

Figure 4.3 Transparency in distributed message queues

their transparency using Fig. 4.3. In the message queue system, a logical queue consists
of multiple physical queues based on KVS. E-Ctrl and D-Ctrl share information of the
logical queue, such as the location of physical queues, and enable devices/backend
system to access logical queues as a single queue. When devices enqueue a new
message into the logical queue, the E-Ctrl selects one of the physical queues by
round-robin and physically enqueues it there.

On the other hand, when the backend system dequeues messages from the
logical queue, the D-Ctrl searches for messages by round-robin in multiple message
queues and dequeues them from those. The backend system can require how many
messages are retrieved by a single dequeue-request and the D-Ctrl can dequeue
messages from multiple queues. If the backend system requires the maximum number
of messages and we define this number as Nmax, there are two types of D-Ctrl dequeue
procedures: (i) retrieving Nmax messages or (ii) retrieving a number less than Npax
messages from one of the physical queues. When the D-Ctrl gets Nmax messages, it
sends these messages to the backend system. On the other hand, when the D-Ctrl gets
less than Nmax messages from one physical queue, it continues with dequeuing from the
next physical queues by round-robin until it has Nnax messages in total or the counter for
dequeue trials exceeds the setting of dequeue trials (retry out). Each D-Ctrl performs

66

dequeues in parallel. This distribution of dequeue accesses enables the backend system
to get the messages without considering the location where they were actually stored.

4.2.3. Outline of 10T Service System

As mentioned above, backend systems are required for rapid implementation and
continuous modification due to DevOps trends in loT services. Developers modify
backend system parameters or data processing methods to adjust for variable
requirements or objectives of the 10T service. For example, an interval of dequeue
requests is required by the data processing time of backend systems for achieving loT
service requirements. The developers also determine the number of backend systems to
ensure sufficient throughput.

However, as result of the real-world performance test in the case where a large
number of backend systems is connected to our proposed message queue, the
throughput is degraded by 20% from the expected message traffic volume. The reason
for the degradation of throughput is that a large number of dequeue requests wastes
computational resources of the message queue system. Especially missed-dequeues,
which occur when there is a lack of messages in the selected queue, consume the
computational resources for enqueue and dequeue operations (see Sect. 4.3.1).

We focus on the enqueue traffic in the conventional approach and extend the
system based on the enqueue traffic. However, dequeuing (D-Ctrl) can become the
bottleneck of the 10T service system in the above case. For loT services, it is a
fundamental issue for backend systems to modify data processing continually without
the need for parameter tuning. To solve this issue, we propose novel dequeue methods
in the distributed message queue in this chapter.

67

Computational resource: K.

Enqueue Hit-dequeue Missed-dequeue
hY 4 —»
throughput loss
Dequeue
m —— D-Ctrl g [":'] E

Device Qu % Delete
& Do oom

Enque: Dequeue:

Simple round-robin Simple round-robin

(Conventional) (Conventional)
Figure 4.4 Process of distributed message queue

4.3. Analysis of Throughput Degradation and Proposal

In this section, we first analyze the processing of the message queue to solve the
problem of throughput degradation. Next, we analyze the problem of throughput
degradation based on computational resources. Finally, we propose two new dequeuing
methods that decrease the number of dequeue requests from the backend system.

4.3.1. Process of Distributed Message Queue

Figure 4.4 shows a simplified view of each process of the message queue. There are
three kinds of processes: enqueue, dequeue, and delete. Furthermore, we distinguish
between two kinds of dequeues: missed-dequeue and hit-dequeue. Here, hit-dequeue
describes the successful retrieval of messages from the selected queue. Note that
hit-dequeues always include at least one message.

When D-Ctrl receives a dequeue request from the backend system, it selects
one of the message queues and sends a dequeue request. Here, backend system sets the
number of maximum messages and we define this number as Npax. If there are no
messages in the selected queue, D-Ctrl gets a negative response that we refer to as
missed-dequeue including no messages. If there are one or more messages in the
selected queue, D-Ctrl gets a positive response that we denote as hit-dequeue regardless

68

of whether D-Ctrl gets Nmax messages or not. If D-Ctrl does not get Nmax messages in
total, D-Ctrl selects another message queue by round-robin and sends the dequeue
request to it. D-Ctrl continues to select another message queue until it gets Nmax
messages in total or a retry out occurs.

After the backend system finishes processing data, it issues a delete request to
D-Ctrl. A delete process corresponds to each message in the hit-dequeue process.
Therefore, we define the computational cost of hit-dequeues including delete processes
simply in the following consideration.

4.3.2. Analysis of Throughput Degradation

First, we consider the computational resources of data processing in a distributed
messaging queue. For calculating the maximum throughput, if we define all the
computational resources of the message queue system as R, the total cost of the
engueue process as Ce, the total cost of the hit-dequeue process as Cgn, and the total cost
of the missed-dequeue process as Cqm, We obtain following expression.

R, = Co + Cap + Cgm (1)

This expression means that the enqueue and dequeue processing share all computational
resources. If we define the enqueue message traffic as E [msg./s], the cost of the
engueue process per message as Ceo, the missed-dequeue message traffic as Dy, [msg./s],
and the cost of the missed-dequeue process per message as Cqmo, We obtain the following
expression.

R, = Eceo + Can+ Dy Camo (2)

In Eq. (2), Cgnis a variable depending on how many messages are retrieved by D-Ctrl in
a single dequeue request from a selected queue. On the other hand, ce and cqmo are
constant because enqueue and missed-dequeue are processed individually.

The total cost of the hit-dequeue process Cgyn can be divided into two parts: the
cost of constant processing and the cost of variable processing depending on the number
of messages D-Ctrl retrieves by one dequeue. If we define hit-dequeue message traffic
as Dy [msg./s], the cost of constant processing per message as Cgno, the number of
messages D-Ctrl obtained by one dequeue request as N;, and the cost of variable
processing when D-Ctrl gets Nj messages by one dequeue request as Cgnni, We obtain the
following expression in Eq. (3).

69

Dp

Can = Dpcano + Z Nicann; (3)

=1

Since the number of input messages to a message queue equals the number of output
messages, enqueue message traffic E equals the hit-dequeue message traffic Dy. Hence,
we obtain the following expression in Eq. (4).

Dp
R = E (ceo + Cano) + Z N; cann; + DmCamo (4)

i=1
In this expression, the first term represents the cost depending on enqueue message
traffic. The second term is the hit-dequeue cost depending on both how many messages
D-Ctrl gets by one dequeue request and the hit-dequeue process. If D-Ctrl can get
messages efficiently by a single dequeue request, the second term would decrease. The
third term is the cost of missed-dequeues and it is in proportion to missed-dequeue
message traffic Dy, which is independent of the enqueue message traffic E. This term
represents the loss and is independent of the input message traffic.

Here, we consider the problem of throughput degradation described in Sect.

4.2.3, where the enqueue message traffic is not changed and the dequeue message traffic
is changed. Therefore, we focus on the third term and take an approach to reduce the
number of missed-dequeue requests.

4.3.3. Proposed Methods

In this section, we propose two dequeue methods to reduce missed-dequeue requests to
avoid throughput degradation.

4.3.3.1. Periodical Monitoring Scheduling (PMS)

Figure 4.5 outlines a dequeue method we call Periodical Monitoring and Scheduling
(PMS). PMS aims at reducing the number of missed-dequeues by periodically
monitoring each message queue to gather the message counter information. D-Ctrl can
access a message queue, which has a sufficient number of messages (Fig. 4.5 (a)) by
status monitoring. If there are no queues which have enough messages, D-Ctrl regulates

70

Status monitoring & reporting L _I Status monitoring & reporting L

Message counter info. Message counter info.
Periodically Periodically
L o# 0 updates #1 0 updates
_# o | With p - Wlthh
| e E | each queue. = 3 each queue.
request request
QUBUB Queue
v Backend 3 v Backend
. "E-Ctnl | ? Ctrl |5 svetom. ‘E-Ctrl | éIl Ctrl |e= e
|- Queue >t response 7 Queue = response
. E-Ctrl | . . |D-Ctrl| . E-Ctrll . | D-Ctrl
-~ -~
Queue ueue
pE=c (Ecw) " (pcui
~ -~
(a) Messages exist (b) No messages exist
in some queues. In some queues.
Figure 4.5 Periodical monitoring and scheduling (PMS) method

the access to the message queues (Fig. 4.5 (b)). PMS efficiently accesses the message
queues to reduce the number of missed-dequeues trading off for the additional cost of
periodical monitoring. If we define the monitoring traffic as M [msg./s] and the cost of
monitoring one queue as cy, we obtain the following expression.

Dp

R. = E (ceo + Cqno) + z N; cann; + D Camo + M ¢y (5)
i=1

In this expression, the missed-dequeue cost (third term) and the monitoring cost (fourth
term) are in a trade-off relationship.

4.3.3.2. Retry Dequeue-Request Scheduling (RDS)

Figure 4.6 outlines a dequeue method we call Retry Dequeue-Request Scheduling
(RDS). RDS aims at reducing the sending of dequeue requests to message queues by
waiting until messages arrive at the message queues. When D-Ctrl receives a dequeue
request from backend system, D-Ctrl accesses the selected message queue. If D-Ctrl
cannot get any messages (i.e., missed-dequeue occurs), D-Ctrl holds responses to

71

Queue request Backend System

(o
E-Ctrl D-Ctrl B ; ™
Queue

lE-Ctrl D-Ctrl
| . .
\

If the missed-dequeue occurred,
D-Ctrl waits a reply and retries internally.

Q Backend System
Cr ueue
— E-Ctrl | = D-Ctrl e == el
-l/ response :
e Queue
E-Ctrl | = rH_It D-Ctrl
Ll
#l/
Figure 4.6 Retry Dequeue-request Scheduling (RDS) method

backend system and registers these requests to the distributed dequeue scheduler where
each registered request waits for its next retrial after a certain interval. After this interval,
the backend system sends the next dequeue request. RDS can reduce the third term
missed-dequeue cost and the second term hit-dequeue cost of Eq. (4). Scheduling time
(sleep time) of RDS is in a trade-off relationship with the latency of the message queue,
which impacts the backend system’s data processing time.

72

Generates/sends Sends request in accordance w/
msg. regularly Poisson distribution

Client Backend

Queue

Message-Queue System

Figure 4.7 Simulation model of message queue systems

4.4. Simulation Evaluation

4.4.1. Description of the Simulation Model

To investigate the effectiveness of proposed PMS and RDS methods for maintaining
high throughput in the heterogeneous environment as described in Sect.4.2.1.2, we
calculate throughput of these methods in a simulation model as shown in Fig. 4.7. We
set parameter values, such as enqueue/dequeue/monitoring cost, based on measured
values from existing real-world message queue systems. In fact, in our message queue
system, compared with the enqueue operation, the dequeue operation only includes
dequeue lock (internal queue lock) and specific mutual exclusion. To emphasize this
characteristic in this simulation, the cost of the dequeue operation is set to 20 times
larger as that of the enqueue operation. Additionally, we set the maximum number of 3
single dequeues to meet the setting of the real message queue. This parameter
contributes to keeping low latency of one dequeue by reducing access overhead of
multiple servers.

Here, detailed views of E-Ctrl and D-Ctrl are also depicted in Fig. 4.8. In Fig.
4.8, the client application regularly generates messages and sends them to E-Ctrl of the
message queue system, due to that most devices send messages periodically in 10T

73

!]
— processing flow | f Monitoring | Message E
of request <-4 unit pounter info. i

+omnes monitoring flow

" Queue selection unit |
. . T i
1 1
. |
Queue selection ! Distributed dequeue !
unit l scheduler l
(Round-robin) | R — |
\ y _ for RDS Y,
(a) E-Ctrl (b) D-Ctrl
Figure 4.8 Structures of E-Ctrl and D-Ctrl

services. We assume that a client selects one of the E-Ctrl randomly each time. E-Ctrl
receives this message and stores it into one of the queues selected by the queue selection
unit in Fig. 4.8 (a). In this simulation, the queue selection unit selects the queue by
round-robin ordering.

On the other hand, the backend system sends dequeue requests to D-Ctrl at
random intervals following a Poisson process. Here, if we define the dequeue request
rate as D [msg./s], the expected arrival rate of dequeue requests from one backend
system used for definition of the Poisson process as A, the maximum number of
messages to collect at each dequeue request as N,,,., and the number of backend
systems as B, we obtain the following expression.

D= ANp. B (6)

In this expression, dequeue request rate D includes both, hit-dequeue and
missed-dequeue. In other words, a part of A is spent for missed-dequeues and A itself
depends on the processing time and settings of the backend system in the real system.

In this simulation, we set that one of backend system corresponds to one D-Citrl
without duplication. After D-Ctrl receives a dequeue request, D-Ctrl accesses queues
selected by the queue selection unit in Fig. 4.8 (b). The function of this unit is different
between PMS and RDS methods. In PMS, the queue selection unit selects the queues in
descending order of the number of stored messages by referring to the message counter

74

Table I Simulation setup.

Description Value
Number of E-Ctrl/queues/D-Ctrl/backend system B 10/10/10/10
Enqueue cost (time) Ceo 0.001 [s]
Dequeue cost w/o msg (time) Cano 0.02 [s]
Dequeue cost w/ msg (time) Can 0.001 [s]
Missed-dequeue cost (time) Camo 0.02 [s]
Monitoring cost (time) Cu 0.0001[s]
Max. number dequeued msg/request Nmax 100

Acrrival rate of dequeue requests from backend system A 10-200 [/s]
Message size 1 KB
Max. number of dequeued messages for single dequeue 3

information of the monitoring unit, which is periodically updated by monitoring all
queues.

In RDS, the queue selection unit selects the queue by round-robin ordering. In
addition, when a missed-dequeue occurs, the dequeue request is registered to a
distributed dequeue scheduler without responding to the backend system and retried
after a certain interval.

Based on the above models for RDS and PMS methods, we computed
throughput estimated by the number of received messages by the backend system. The
simulation setup is listed in Table I. In this table, c.o, C4no» Can» Camo.» and cy
correspond to Eq. (4) and (5). For implementation, we used the library for the discrete
event simulator NS3 [91] and implemented the simulation program in the C++ language.
We decided data size by the reference from an equipment monitoring service.

4.4.2. Simulation Results and Discussion

Figure 4.9 shows the throughput comparison of message queue systems achieved by
conventional, PMS, and RDS methods. Here, conventional method indicates the simple
dequeuing based on round-robin without monitoring and scheduling. As mentioned
before, dequeue request rate is obtained by Eq. (6) and includes both hit-dequeue and
missed-dequeue. In this simulation, we set arrival rate of dequeue requests from one of

75

backend system A [/s] in the range from 10 to 200.

In Fig. 4.9, by applying the conventional method, throughput is gradually
degraded as the arrival rate of dequeue requests A increases. For PMS, when A is in the
range of 100 to 200, throughput of the PMS method is higher than that of the
conventional method. Moreover, compared with conventional and PMS methods,
especially the RDS method maintains the highest throughput, regardless of the increase
in arrival rate of dequeue requests. Figure 4.10 shows the hit-dequeue rate comparison
achieved by conventional, PMS, and RDS methods. The hit-dequeue rate represents the
number of hit-dequeues as a percentage of the number of all dequeue requests.
Comparing Fig. 4.10 to Fig. 4.9, it is obvious that throughput of the message queue
system has a strong relationship with the hit-dequeue rate. As mentioned in Sect. 4.3.2,
the RDS method reduces the third term missed-dequeue cost of Eq. (4). On other hand,
for PMS, when A is in the range of 100 to 200, the hit-dequeue rate of the PMS method
is lower than that of the conventional method. This result indicates that the PMS method
cannot reduce the third term missed-dequeue cost of Eq. (4), however, the throughput in
Fig. 4.9 is higher than the throughput of the conventional method when A is in the
range of 100 to 200.

76

8,000

7.000 - -’-Conventior?al. |

—_ -+-PMS (monitoring period=0.1s)
% 6,000 - ~-RDS (sleep time=1.0s)
@ .
8 5,000 -
?
E 4,000
s 3,000
o
S 2,000
o
= 1,000 A
|_

0 T T T

30 60 90 120 150
Arrival rate of dequeue requests % [/s]
Figure 4.9 Throughput comparison between conventional method (solid line)

and proposed PMS/RDS methods (dashed lines)

100%
P == = = = == — — = ——————— — — = =@

80% A
[0}
©
o 60%
=
<)
>
o 40%
3
T —~Conventional

0 . . .
20% 1 -<-PMS (monitoring period=0.01s)
--RDS (sleep time=1.0s)
0% T T T
30 60 90 120 150
Arrival rate of dequeue request % [/s]
Figure 4.10 Hit-dequeue rate comparison between conventional method (solid

line) and proposed PMS/RDS methods (dashed lines)

77

100

? -Conventional
o 80 -+-PMS (monitoring period=0.01s)
% o --RDS (sleep time=1.0s)
E 3
© 3 60 ~
23
SE 40 -
o
%Q’ -~ __ .- _ —
R |
< | e =zifeoccooos e y
0 . ' '
30 60 90 120 150

Arrival rate of dequeue request % [/s]

Figure 4.11 A comparison of average number of messages per hit-dequeues between
conventional method (solid line) and proposed PMS/RDS methods
(dashed lines)

Here, we consider the second term hit-dequeue cost of Eq. (4). Hit-dequeue
cost depends on how many messages there are for one dequeue request. Unlike the
missed-dequeue cost, hit-dequeue cost contributes to efficient dequeuing and throughput
enhancement. Figure 4.11 shows the comparison of the average number of messages per
hit-dequeue achieved by conventional, PMS, and RDS methods. The average number of
messages per hit-dequeue describes the average number of messages D-Ctrl retrieves by
one dequeue request. For the PMS method, when A is in the range of 100 to 200, the
average number of messages per hit-dequeue of the PMS method is higher than that of
the conventional method. From this result, we proved that the PMS method dequeues
more efficiently than the conventional method and the second term hit-dequeue cost of
Eg. (4) enhances the throughput of the PMS method.

Here, we discuss why PMS does not contribute to maintaining the high
throughput we expected and why RDS can maintain a high throughput. A conceivable
explanation is as follows. In the PMS method, each D-Ctrl dequeues from a message
gueue by periodically monitoring each message queue to gather the message counter

78

-—-Conventional - RDS (sleep time=0.5s)
--RDS (sleep time=1.0s) -« RDS (sleep time=5.0s)
-+ RDS (sleep time=10.0s)

8,000

»

2

© 6,000 -

©

2]

w

O

£ 4,000 A

S

Qo

52,000 A

o

o

I-E O I I I

0 50 100 150 200
Arrival rate of dequeue requests A [/s]
Figure 4.12 Relationship between sleep time and throughput for conventional

method (solid line) and RDS (dashed lines)

information. At first, we predicted that D-Ctrl can successfully access the queue having
the largest number of messages with high accuracy, which increases the hit-dequeue rate.
However, hit-dequeue rate decreases in the PMS method as shown in Fig. 4.10. On the
other hand, the PMS method increases the efficiency of dequeuing as shown in Fig. 4.11.
These facts suggest that access contentions from D-Ctrl occur in the PMS method. We
consider that multiple D-Ctrl dequeue from the same message queue which has the most
messages at the same time. Although a D-Ctrl which accesses the queue first processes
all messages from the queue as hit-dequeue, the others following it cannot dequeue any
messages and generate missed-dequeues. In other words, PMS potentially gives D-Ctrl
the access direction toward the same queues by referring to monitoring results, which
increases the probability of access contention from D-Citrl.

In contrast, in RDS each D-Ctrl independently selects queues to dequeue by
round-robin, which is comparable to D-Ctrl randomly selecting queues. Therefore, the
RDS method increases the hit-dequeue rate as shown in Fig. 4.10 and the average
number of messages per hit-dequeue as shown in Fig. 4.11 by waiting for dequeue
requests in order to increase the probability of messages arrivals at the message queues.
In short, we show that our analysis of Eq. (4) is valid for the throughput degradation of
message queues.

79

4.4.3. Evaluation and Discussion of Optimal Sleep Time for
RDS

In Sect. 4.2, we showed the superiority of the RDS method. As mentioned in Sect.
4.3.2.2, sleep time of RDS determines the highest latency. Moreover, to increase the
sleep time means limiting active connections between D-Ctrl and the backend system.
This phenomenon may be either effective in enhancing throughput due to reducing
excessive resource usage or ineffective due to limiting connections to dequeue
excessively. Therefore, we assume the existence of an optimal sleep time to achieve
maximum throughput without critical latency degradation. To investigate this
assumption, we evaluate the relationship between sleep time and throughput for RDS
method as described in Fig. 4.12. In this figure, when sleep time is 5.0 seconds, the
message queue systems achieve the highest throughput. When the sleep time is longer
or shorter than 5.0 seconds, we observe throughput degradation. These results indicate
the existence of an optimal sleep time. The duration of sleep time strongly affects the
obtained throughput.

Here, we discuss why throughput in the condition that sleep time is 5.0 seconds
is highest. A conceivable explanation is as follows. As mentioned in Sect. 4.2,
increasing hit-dequeue rate and the average number of messages per hit-dequeue
improves dequeuing efficiency resulting in a higher message throughput. RDS enables
efficiency of dequeuing by waiting for dequeue requests during sleep time in order to
increase the probability of messages arriving at the message queues. However, the
longer the sleep time is, the lower the throughput of the dequeue request becomes. If
there are messages in a queue, decreasing throughput of the dequeue request means also
decreasing the hit-dequeue throughput. Therefore, in RDS, there is trade-off between
the efficiency of dequeue and throughput of the dequeue request. This trade-off is
included in the second term hit-dequeue cost of Eq. (4), which depends on the queue
status whether it has messages or not. We consider that a sleep time of 5.0s is
well-balanced to obtain good values for both, efficiency of dequeuing and throughput of
dequeue requests.

80

Enqueue & dequeue 1CPU assigned 2CPU assigned
request \

L=

=== | g s—
5 sarvers for 5 servers for 2 virtual machines per 1 server

traffic test tools Message queue
operation

Figure 4.13 Environment of experimental evaluation of a message queue

4.5. Experimental Evaluation

4.5.1. Implementation and Methodology for Evaluation

From simulation results in Sect. 4, we revealed that high throughput of message queue
systems is successfully maintained by applying the RDS method, even though the
dequeue request rate is much higher. Actually, between the simulation and real
environment, small differences of parameters/costs and deviation of processing timing
are acknowledged. Therefore, to investigate the effectiveness of RDS in a real message
queue, we implemented RDS for a message queue in real servers and evaluate its
throughput. We evaluate the RDS method in the real heterogeneous environment
described in Sect. 4.3.3.2. We designed enqueue/dequeue communication based on the
Representational State Transfer (REST) protocol and prepared message data based on
text log data of equipment monitoring services.

Figure 4.13 describes the environment of the experimental evaluation system
with message queues. As shown in Fig. 4.13, we prepared a message queue having 10
sets of E/D-Ctrl and a queue with 10 virtual machines on 5 servers. 1 CPU is assigned
to each set of E/D-Ctrl, and 2 CPUs are assigned to each queue. To evaluate this
message queue, traffic test tools on other servers send enqueue and dequeue requests.

81

Table Il Setup of experimental evaluation

Description Value
Number of E-Ctrl/queues/D-Ctrl/backend system B 10/10/10/10
Max. number dequeued msg/request N,pax 100
Message size 1 KB

Max. number of message queues for single dequeue 3

Traffic test tools represent both field devices as message senders as well as the backend
system as message receiver. The average number of received messages per second is
estimated as throughput of the message queue systems.

Table 2 lists the parameter settings for the experimental evaluation setup. Note
that we unified configurable design parameters of experimental evaluation with those of
the simulation.

4.5.2. Results and Discussion

Figure 4.14 shows the throughput comparison of real message queue systems achieved
by conventional and RDS methods with varying dequeue request rate from traffic test
tools. As the dequeue request rate increases, throughput of the conventional method is
degraded, however, throughput of RDS is maintained at a high level. When the arrival
rate of dequeue requests reaches 200 and compared with the conventional method, the
RDS method with sleep time of 0.1 s contributes to 80% improvement of throughput.
Compared with simulation results, although the absolute throughput value is different,
the tendency of the graph is relatively similar.

From the viewpoint of sleep time in RDS, high throughput is well maintained
in the range of 0.1 s to 0.5s. When the sleep time exceeds 1.0's, we observe visible
throughput degradation. This result strongly supports the assumption that excessive
sleep time causes throughput degradation as explained in Sect. 4.2.

As a result, we reveal that the RDS method is effective for maintaining high
throughput of message queue systems even if the amount of dequeue requests from the
backend system greatly increases.

82

—-Conventional -+-RDS (sleep time=0.1s)
-» RDS (sleep time=0.5s) --RDS (sleep time=1.0s)

8,000
..,
— T sttt s s s e e AR 0
L 5,000 e 4 e NPT
© S~ e—=-=-- .-
(®)]
B
@ 4,000 - .
E
= 2,000 -
K
(@]
3
9 O T T T
= 30 60 90 120 150
Arrival rate of dequeue requests 2 [/s]
Figure 4.14 Throughput comparison between conventional and RDS method on

experimental evaluation. Several patterns of are set for RDS to
investigate the optimal sleep time.

4.6. Related Work

We describe related work on polling system models from two perspectives: queuing
theory and loT systems. Our proposed methods are based on research on polling system
models. While a typical polling system consists of multiple queues accessed in cyclic
order by a single server [92], our proposed system consists of multiple distributed
message queues mesh-accessed by multiple servers.

There are many publications on polling systems that have been developed since
the late 1950s [93]. In several surveys, the most notable ones written by Takagi [92],
detailed and comprehensive descriptions of the mathematical analysis of polling
systems are presented. Boon et al. [94] provided comprehensive descriptions of
applications to polling systems, such as a production system, which consists of a single
queue accessed by multiple processes.

However, to the best of our knowledge, there have been only few reports on
polling methods, which have multiple queues with mesh-access from multiple servers as
in our proposal. In this chapter, we simulated the polling model, which has a client

83

application putting messages onto these queues at regular intervals and a backend
application polling data at random intervals.

Regarding loT systems, dequeuing methods follow not only the polling (“pull”)
model, but also the “push” model. In the “push” model, the message queue system
automatically sends messages to preliminarily registered backend systems at the timing
when the message queue system receives messages from field devices. In the “pull”
model, backend system send dequeue requests to the message queue system and retrieve
messages.

Generally, the “push” model is effective in the case when backend systems
have sufficient computing resources to process messages sent by the message queue
system. Jiang et al. [95] indicate that “push” service can be faster and more
energy-efficient for the backend system because in this approach the backend system
does not need to look up a message queue or periodically synchronize.

On the other hand, the “pull” model is effective in the case when consumers
make full use of computing resources to process messages and it is frequently used in
cloud computing systems [48, 83, 84]. Kreps et al. [48] also mentioned that the “pull”
model is more suitable for their applications since each client obtains some advantages:
sustainability of retrieving the messages at the maximum rate and avoidance of message
flooding by being pushed faster than the client can handle. Therefore, our pull-based
proposal has advantages to achieve high throughput of message processing for fully
utilizing computational resources of the backend system.

84

4.7. Conclusion

For the 10T era, message queue systems are required to have interoperability and the
ability to control the huge message traffic between devices and the backend system. In
this chapter, we proposed the dequeuing method called Retry Dequeue-request
Scheduling (RDS) to solve the throughput degradation of distributed message queue
systems.

RDS can reduce the unnecessary transmissions of dequeue requests to the
message queues by waiting during the scheduling time for messages to arrive at the
message queues. Especially, RDS can better reduce throughput degradation due to
missed-dequeue messages than the conventional method.

By simulation evaluation, we compared throughputs achieved by the
conventional method, RDS, and Periodical Monitoring and Scheduling (PMS), which is
another dequeuing method proposed for reducing the number of missed-dequeues by
periodically monitoring each message queue to gather message counter information.
Simulation results show that RDS is able to maintain highest throughput, regardless of
an increase in the dequeue request rate.

Experimental evaluation results also show that the RDS method achieves 80%
higher throughput than the conventional method in real systems. Furthermore, we
demonstrated that the setting of the optimal sleep time improves the efficiency of the
proposed method even further.

85

86

Chapter 5

Conclusion and Future Work

The innovation of smart phones, Machine-to-Machine (M2M) communication, and the
Internet of Things (1oT) is leading to an explosion in the number of devices connected
to the network. In this thesis, we focused on the upcoming changes of network systems
providing services or applications to a drastically increasing number of users. We
discuss how message queue systems should be designed to process the significant
increase in data volume created by existing and new devices and how to achieve other
requirements such as availability and scalability.

We characterized these developments to proceed through roughly three phases.
The first phase consists of the increase of short messages used for e.g. mobile email
services, SMS, and SNS from 2008 to 2013, which started with the spread of smart
phones. The second phase extended short messages to social infrastructure fields
beyond smart phones, such as smart meters and health equipment from 2013 to 2017.
The third phase is driven by the progress of loT applications and its extension to
industries, home, etc., which is expected to continue until about 2020.

For the first phase, the most important issue is the high-throughput and scalable
processing of huge volumes of messages in smart phone services. To solve this issue,
we proposed high-throughput queuing techniques and an architecture of distributed
message queue systems to deliver much more messages than in the past. We designed a
message queue system based on a distributed in-memory key-value store (KVS) to meet
the requirements of throughput and scalability. We proposed an architecture for
satisfying high throughput and high scalability in the message queue system for
processing massive volumes of short-length messages through a distribution method of
queue-type in-memory KVS and synchronized processing of distributed queues by
single TCP connections. We embedded the proposed architecture and method into a mail

87

system for smart phones and performed evaluations of this system. The evaluation
results reveal that the throughput of the proposed message queue system achieves 3,600
msg/s per server, which is 5 times higher than that of the conventional method
cooperating with RAID storages. Moreover, the throughput of the proposed KVS is
200,000 transactions/s for message sizes of 0.4 KB, which is double as fast as
memcached.

For the second phase, M2M services such as metering and monitoring services
have enhanced the social infrastructure field. As a social infrastructure, the service
system, especially the message queue system, is required to satisfy both high
availability and high throughput at the same time. To solve this issue, we proposed a
resilient message queue system based on a distributed KVS. Its servers are
interconnected among each other and messages are distributed to multiple servers
during the normal processing state. Our proposed system can provide long-term
availability, continuing its service regardless of where in the message queue system
server/process failures may occur, by distributing messages to multiple servers as well
as guaranteeing strong consistency of the messages/message queues by using KVS
functions and the Paxos protocol. To achieve short-term availability even during an
underlying network failure and/or slowdown of servers, we proposed message
distribution methods using round-robin with a slowdown KVS exclusion and two
logical KVS counter-rotating rings. Evaluation results show that this system can
continue service without failover processing. Compared with the conventional method,
our proposed distribution methods can reduce 92% of errors caused by server failures.
Furthermore, we determined the optimum value of slowdown detection time in our
distribution method.

In the third phase, 10T services require both information from historical and
real-time data for their own objectives, such as optimization services or learning data
analysis through trial-and-error for finding patterns in the data. This approach requires
collecting large message volumes periodically created by devices. On other hand, the
backend system retrieves messages from the message queue at its own non-periodic and
process-dependent timing. Therefore, the control function of the massive and
heterogeneous message traffic in the message system becomes a crucial issue, which
can lead to dequeue throughput degradation. To solve this issue, we proposed a
dequeuing method called Retry Dequeue-request Scheduling (RDS), which can reduce
the unnecessary transmission of dequeue requests to the message queues by waiting

88

during the scheduling time for new messages to arrive at the message queues. Especially,
RDS can better reduce throughput degradation due to missed-dequeue messages than
the conventional method. We used simulations to compare throughputs achieved by the
conventional method, RDS, and Periodical Monitoring and Scheduling (PMS).
Simulation results show that RDS can maintain the highest throughput, regardless of an
increase in the dequeue request rate. Experimental evaluations also reveal that the RDS
method achieves 80% higher throughput than the conventional method in real systems.
Furthermore, we demonstrated that the setting of the optimal sleep time improves the
efficiency of the proposed method even further.

We believe that in the 10T era the message queue system with high-throughput
queuing proposed in the first phase and the resilient message queue system proposed in
the second phase are fundamental technologies to stably process large volume messages
created by loT devices. Additionally, the increased throughput of the RDS method
proposed in the third phase is essential in finding patterns in large volumes of data for
various 10T services. These proposed technologies can make it much easier and faster
than before to build complex IoT systems requiring high-throughput, availability, and
scalability. We further believe that this can become a driving force in accelerating the
innovation of 10T.

loT will be drastically enhanced by three kinds of technological progress:
network technology, cloud computing, and sensing. Network technology such as the 5th
generation mobile networks (5G) will support 10T communication at higher capacity
and lower latency [96-98]. The progress of cloud computing including machine
learning/Al and distributed computing will enable greater variability and scalability in
loT applications [99-101]. We believe that message queue systems will be needed as
frontend of 10T service systems to process much larger volume of messages than we are
facing now. Messaging communication will be needed to efficiently communicate
among the massive number of sensor devices. We also believe that the considerations
and discussions regarding distributed message queue systems in this thesis will
contribute to the better design and implementation of future I0T systems.

As our future work, we see the following challenges for IoT systems. First,
research on system dimensioning and evaluation of the scalability of message queue
systems needs to be continued. Previous studies on system dimensioning and scalability
have proposed auto-scaling methods [102, 103], however, those studies did not consider
message queue systems and heterogeneous traffic as described in this thesis. Therefore,

89

we should consider how to determine both, the accurate message traffic and the
performance of message queue systems to process this message traffic.

Second, it will also be necessary to consider the topology of the message queue
system when it is extended from tens to hundreds of servers. We proposed two logical
KVS counter-rotating rings in Chapter 3, and we should also consider various other
topologies of KVS rings for improving availability and scalability.

Finally, we also need to research on functions of the message queue systems
related to the specific requirements of 10T applications. In this thesis, we proposed
fundamental methods that can be widely applied to 10T/M2M applications, and next we
should consider issues of specific requirements of loT applications. We will apply
functions of priority queuing to loT/M2M applications where messages are relayed
based on the priority of the different queues. We also plan on investigating how to
efficiently deliver messages from the message queue system to the devices for updating
the configurations of a huge number of devices in l10T/M2M applications.

90

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

J. Cohn, P. Finn, S. Nair, and S. Panikkar, “Device democracy: Saving the future
of the Internet of Things,” the IBM Institute for Business Value Executive Report,
July 2014.

Z. M. Fadlullah, M. M. Fouda, N. Kato, A. Takeuchi, N. Iwasaki, and Y. Nozaki,
“Toward intelligent machine-to-machine communications in smart grid,” IEEE
Communications Magazine, vol. 49, no. 4, pp. 60-65, Apr. 2011.

G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson, "M2M: From
mobile to embedded internet,” IEEE Communications Magazine, vol. 49, no. 4, pp.
36-43, Apr. 2011.

J. Kim, J. Lee, J. Kim, and J. Yun, "M2M service platforms: survey, issues, and
enabling technologies,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1,
pp. 61-76, Oct. 2013.

M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie 4.0
Scenarios,” in Proceedings of IEEE Hawaii International Conference on System
Sciences (HICSS), pp. 3928-3937, Jan. 2016.

L. Atzori, A. lera, and G. Morabito, “The internet of things: A survey,” Computer
networks, vol. 54, no. 15, pp. 2787-2805, Oct. 2010.

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A
vision, architectural elements, and future directions,” Future Generation
Computer Systems, vol. 29, no. 7, pp. 1645-1660, Sep. 2013.

J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east,” IDC Analyze the Future, pp. 1-16,
Dec. 2012.

T. Berners-Lee, R. Fielding, and H. Frystyk, "Hypertext transfer protocol
-HTTP/1.0 ", Internet RFC 1945, May 1996.

R. Fielding and R. Taylor, "Principled design of the modern Web architecture,”
ACM Transactions on Internet Technology (TOIT), vol. 2, pp. 115-150, May 2002.

91

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Jing, A. S. Helal, and A. Elmagarmid, “Client-server computing in mobile
environments,” ACM computing surveys (CSUR), vol. 31, no. 2, pp. 117-157, Jun.
1999.

P. Fraternali, G. Rossi, and F. Sanchez-Figueroa, “Rich internet applications,”
IEEE Internet Computing, vol. 14, no. 3, pp. 9-12, Jun. 2010.

D. Liu and R. Deters, “The reverse C10K problem for server-side mashups,” in
Proceedings of International Conference on Service-Oriented Computing
(ICSOC), pp. 166-177, Dec. 2008.

M. Collina, G. E. Corazza, and A. Vanelli-Coralli, “Introducing the QEST broker:
Scaling the loT by bridging MQTT and REST,” in Proceedings of IEEE
International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC) , pp. 36-41, Sep. 2012.

N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Reali, “Comparison of
two lightweight protocols for smartphone-based sensing,” in Proceedings of
IEEE Symposium on Communications and Vehicular Technology in the Benelux
(SCVT), pp. 1-6, Nov. 2013.

U. Hunkeler, H. L. Truong, and A. S-Clark, “MQTT-S - A publish/subscribe
protocol for Wireless Sensor Networks,” in Proceedings of Communication
Systems Software and Middleware and Workshops (COMSWARE), pp. 791-798,
Jan. 2008.

H. Subramoni, G. Marsh, S. Narravula, P. Lai, and D. K. Panda, "Design and
evaluation of benchmarks for financial applications using Advanced Message
Queuing Protocol (AMQP) over InfiniBand,” in Proceedings of IEEE Workshop
on High Performance Computational Finance (WHPCF), pp. 1-8, Nov. 2008.

A. A-Fugaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
“Internet of Things: A survey on enabling technologies, protocols, and
applications,” IEEE Communication Surveys & Tutorials, vol. 17, no. 4, June
2015.

C. Pereira and A. Aguiar, "Towards efficient mobile M2M communications: Survey
and open challenges,” Sensors, vol. 14, no. 10, pp. 19582-19608, Oct. 2014.

J. S. Leu, C. F. Chen, and K. C. Hsu, “Improving heterogeneous SOA-based 0T
message stability by shortest processing time scheduling,” IEEE Transactions on
Services Computing, vol. 7, no. 4, pp. 575-585, May 2013.

N. L. Tran, S. Skhiri, and E. Zim, “Eqs: An clastic and scalable message queue for

92

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

the cloud,” in Proceedings of IEEE Cloud Computing Technology and Science
(CloudCom), pp. 391-398, Nov. 2011.

K. Sachs, S. Kounev, J. Bacon, and A. Buchmann, "Performance evaluation of
message-oriented middleware using the SPECjms2007 benchmark,” Performance
Evaluation, vol. 66, no. 8, pp. 410-434, Aug. 2009.

K. Sachs, S. Kounev, S. Appel, and A. Buchmann, “Benchmarking of
message-oriented middleware,” in Proceedings of ACM International Conference
on Distributed Event-Based Systems (DEBS), p. 44, July 2009.

K. Sachs, S. Appel, S. Kounev, and A. Buchmann, “Benchmarking
publish/subscribe-based messaging systems,” in Proceeding of International
Conference on Database Systems for Advanced Applications (DASFAA), pp.
203-214, Apr. 2010.

SendMail Inc. “Welcome to the Sendmail Community,”
http://www.sendmail.com/sm/open_source/, accessed on Nov. 16, 2016.

M. Kinoshita, M. Nakahara, and T. Sagara, “An implementation and evaluation of
multiprotocol message gateway,” in Proceedings of the 71th National Convention
of IPSJ, pp. 3.1-3.2, Mar. 20009.

The Statistics Portal, “Number of subscribers to wireless carriers in the U.S. from
Ist quarter 2013 to 3rd quarter 2016, by carrier,”
https://www.statista.com/statistics/283507/subscribers-to-top-wireless-carriers-in-t
he-us/, accessed on Jan. 04, 2017.

Telecommunication Carries Association, “Number of subscribers by carriers”,
http://www.tca.or.jp/english/database/, accessed on Jan. 04, 2017.

B. Manning, “1 billion-plus smart meters to be installed globally by 2022,”
http://centricdigital.com/blog/internet-of-things/billion-smart-meters-installs/,
accessed on Dec. 12, 2016.

The Ministry of Economy, Trade and Industry, “A report on power companies
and installation status of smart meters,”
http://www.meti.go.jp/committee/sougouenergy/denryoku_gas/kihonseisaku/pdf/0
01_07_01.pdf, accessed on Dec. 12, 2016. (in Japanese)

M. Brettel, , N. Friederichsen, M. Keller, and M. Rosenberg, “How virtualization,
decentralization and network building change the manufacturing landscape: An
industry 4.0 perspective,” International Journal of Mechanical, Industrial Science
and Engineering, vol. 8, no. 1, pp. 37-44, 2014.

93

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

C. Deglise, L. Suggs, and P. Odermatt, "Short message service (SMS) applications
for disease prevention in developing countries,” Journal of medical Internet
research, vol. 14, No. 1, p. e3, Jan. 2012.

I. Jung, H. Kim, D. Hong, and H. Ju, "Protocol reverse engineering to facebook
messages,” in Proceedings of IEEE International Conference on Intelligent
Systems, Modelling and Simulation (ISMS), pp. 539-542, Jan. 2013.

B. Furht and S. A. Ahson, "Long Term Evolution: 3GPP LTE radio and cellular
technology,” Crc Press, Apr. 2016.

J. Cownie and W. Gropp, “A standard interface for debugger access to message
queue information in MPIL” in Proceeding of European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting(Euro PVM/MPI), pp.
51-58, Sep. 1999.

G. Banavar, T. Chandra, R. Strom, and D. Sturman, “A case for message
oriented middleware,” in Proceeding of International Symposium on Distributed
Computing (DISC), pp. 1-17, Sep. 1999.

R. T. Fielding, “Architectural styles and the design of network-based software
architectures,” PhD Thesis, University of California, Irvine. 2000.

A. Erdeljan, F. Kuli, and S. Lukovi, “Software architecture for smart metering
systems with virtual power plant,” in Proceedings of IEEE Mediterranean
Electrotechnical Conference(MELECON), pp. 448-451, Apr. 2010.

N. Owada, “How systems go down,” NIKKEI BP, pp. 94-105, 2009 (in Japanese).
H. Okabe, “Report of NIKKEI COMPUTER,” IT Pro,
http://itpro.nikkeibp.co.jp/article/COLUMN/20120824/417984/ accessed on Sep.
18, 2014 (in Japanese).

Bank of Japan, “BOJ report and research papers,”
https://www.boj.or.jp/research/brp/ron_2010/data/ron1011a.pdf, accessed on Sep.
18, 2014 (in Japanese).

Industrial Internet Consortium (1IC), “The Industrial Internet reference
architecture technical report,” http://www.iiconsortium.org/lIRA-1-7-ajs.pdf,
accessed on Dec. 12, 2016.

S. Huang, Y. Chen, X. Chen, K. Liu, X. Xu, C. Wang, K. Brown, and I. Halilovic,
“The next generation operational data historian for 1oT based on informix,” in
Proceedings of ACM SIGMOD International Conference on Management of Data,
pp. 169-176, June 2014.

94

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

M. E. Porter and J. E. Heppelmann, “How smart, connected products are
transforming competition,” Harvard Business Review, vol. 92, no. 11, pp. 64-88,
Nov. 2014.

D. Niyato, L. Xiao, and P. Wang, “Machine-to-machine communications for home
energy management system in smart grid,” IEEE Communications Magazine, vol.
49, nol. 4, pp. 53-59, Apr. 2011.

D. Kibara, K. C. Morris, and S. Kumaraguru, “Methods and tools for performance
assurance of smart manufacturing systems,” Journal of Research of the National
Institute of Standards and Technology, vol. 121, pp. 1-47, Dec. 2015.

G. Meijer, K. Makinwa, and M. Pertijs, “Smart sensor systems: Emerging
technologies and applications,” John Wiley & Sons, Apr. 2014.

J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging system for
log processing,” in Proceedings of Networking Meets Databases (NetDB), pp. 1-7,
June 2011.

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized
streams: Fault-tolerant streaming computation at scale,” in Proceedings of
Symposium on Operating Systems Principles (SOSP), pp. 423-438, Nov. 2013.

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni and N.
Bhagat, “Storm@twitter,” in Proceedings of the International Conference on
ACM SIGMOD Management of Data, pp. 147-156, June 2014.

R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD Record, vol.
39, no. 4, pp. 12-27, Dec. 2011.

T. Sakaki, M. Okazaki, and Y. Matsuo, "Tweet analysis for real-time event
detection and earthquake reporting system development,” IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 4, pp. 919-931, Apr. 2013..
Ministry of Internal Affairs and Communications, “Ministry of Public
Management,”
http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h23/pdf/n0010000.pdf,
accessed on Nov.16 2016. (in Japanese).

Postfix, “The postfix home page,” http://www.postfix.org/, accessed on Nov. 16,
2016.

Memcached, “What is memcached?,” http://memcached.org/, accessed on Nov. 16
2016.

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, and D.

95

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Stafford, “Scaling memcache at facebook,” in Proceeding of Presented as part of
the USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pp. 385-398, Apr. 2013.

Y. Wang, H. Chen, B. Wang, J. M. Xu, and H. Lei, “Scalable queuing service
based on an in-memory data grid,” in Proceedings of International Conference on
IEEE e-Business Engineering (ICEBE), pp. 236-243, Nov. 2010.

L. Xiang, Y. Xu, J. Lui, and Q. Chang, “Optimal recovery of single disk failure in
RDP code storage systems,” ACM SIGMETRICS Performance Evaluation Review,
\ol. 38, No. 1, pp. 119-130, June 2010.

Y. Zhu, P. P. Lee, Y. Hu, L. Xiang, and Y. Xu, “On the speedup of single-disk
failure recovery in XOR-coded storage systems: theory and practice,” in
Proceedings of IEEE Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1-12, Apr. 2012.

E. A. Brewer, “Towards robust distributed systems,” in Proceedings of the Annual
Symposium on ACM Principles of Distributed Computing, p. 7, July 2000.

G. Hasegawa and M. Murata, “Transport-layer protocols for high-speed and
long-delay networks,” in Proceedings of IEICE technical report (IN2006-169), pp.
41-46, Feb. 2007 (in Japanese).

M. Welsh, D. Culler, and E. Brewer, “SEDA: An architecture for well-conditioned,
scalable Internet services,” in Proceedings of ACM Symposium on Operating
Systems Principles (SOSP), pp. 230-243, Oct. 2001.

N. Christenson, T. Bosserman, and D. Beckemeyer, “Highly scalable electronic
mail service using open systems,” in Proceedings of the USENIX Symposium on
Internet Technologies and Systems, pp. 1-11, Dec. 1997.

Y. Saito, B. N. Bershad, and H. M. Levy, “Manageability, availability and
performance in Porcupine: A highly scalable, cluster-based mail service”, in
Proceedings of ACM Symposium on Operating Systems Principle (SOSP), pp.
1-15, Dec. 1999.

J. R. von Behren, S. Czerwinski, A. D. Joseph, E. A. Brewer, and J. Kubiatowicz,
“NinjaMail: The design of a high-performance clustered, distributed e-mail
system,” in Proceeding of International Workshop on Scalable Web Services
(SWS), pp. 151-158, Aug. 2000.

A. Lakshman and P. Malik, “Cassandra - A decentralized structured storage
system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35-40, Apr.

96

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

2009.

M. Burrows, “The chubby lock service for loosely-coupled distributed systems,”
in Proceedings of Symposium on Operating Systems Design and Implementation
(OSDI), pp. 335-350, Nov. 2006.

L. Lamport, “The part-time parliament,” ACM Transactions on Computer Systems
(TOCS), vol. 16, no. 2, pp. 133-169, May 1998.

L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4, pp. 18-25,
Nov. 2001.

R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Randhakrishnan,
V. Subramanya, and A. Vahdat, “PortLand: A scalable fault-tolerant layer 2 data
center network fabric,” ACM SIGCOMM Computer Communication Review, vol.
39, no. 4, pp. 39-50, Oct. 2009.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta, “VL2: A scalable and flexible data center network,” in
Proceedings of ACM SIGCOMM, pp. 51-62, Aug. 20009.

G. DeCandia, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: Amazon’s highly
available key-value store,” ACM SIGOPS Operating Systems Review, vol. 41, no.
6, pp. 205-220, Dec. 2007.

J. Rao, E. J. Shekita, and S. Tata, “Using paxos to build a scalable, consistent, and
highly available datastore,” in Proceedings of the VLDB Endowment, vol. 4, no. 4,
pp. 243-254, 2011.

J. Wang, B. V. Murciano, J. Bigham, and M. Q. Isrc, “Towards a resilient message
oriented middleware for mission critical applications,” in Proceedings of the
International Conference on Adaptive and Self-adaptive Systems and Applications
(ADAPTIVE), pp. 21-26, Nov. 2010.

J. Mitsui, “Critical success factors of mission critical system based on windows
server”, UNISYS TECHNOLOGY REVIEW, vol. 28, no. 1, pp. 29-43, May 2008.
(in Japanese)

Y. Miyata, M. Obata, T. Ohta, and H. Nishiyama, “Proposal of GC time reduction
algorithm for large java object cache,” IPSJ Transactions Programming, vol. 5,
no.3, pp. 29-39, Aug. 2012.

Apache Hbase Project, “Apache Hbase,” http://hbase.apache.org/, accessed on
Sep. 18, 2014.

97

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Information-technology Promotion Agency Japan, “High reliability lessons for IT
systems,” http://www.ipa.go.jp/files/000038843.pdf, accessed on Sep. 18, 2014 (in
Japanese).

A. Egami, “The measures and background of catastrophic service failures,”
http://e-public.nttdata.co.jp/topics_detail4/contents_type=20&id=653, accessed on
May 18, 2014 (in Japanese).

M. Stonebraker, “The case for shared nothing,” IEEE Technical Committee on
Database Engineering, vol. 9, no. 1, pp. 4-9, Mar. 1986.

M. Castro, A. J. Jara, and A. F. Skarmeta, “An analysis of M2M platforms:
challenges and opportunities for the Internet of Things,” in Proceedings of
International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), pp. 757-762, July 2012.

E. Adi, M. Loeis, M. Sunur, and K. Tjandrean, “Reliability implementation over
message queue in the Internet of Things,” in Proceedings of Mobile
Communications, Networking and Applications (MobiCONA), p. 1, 2012.
Amazon, “Amazon Kinesis”, http://aws.amazon.com/kinesis/, accessed on May 1,
2016.

B. Familiar, “Microservices, loT and Azure: Leveraging DevOps and
Microservice Architecture to deliver SaaS Solutions,” Apress, pp. 133-163. Oct.
2015.

Z. Yang, Y. Peng, Y. Yue, X. Wang, Y. Yang, and W. Liu, “Study and application
on the architecture and key technologies for 10T,” in Proceedings of Multimedia
Technology (ICMT), pp. 747-751, July 2011.

A. Azzara, D. Alessandrelli, S. Bocchino, P. Pagano, and M. Petracca,
“Architecture, functional requirements, and early implementation of an
instrumentation grid for the 10T,” in Proceedings of High Performance Computing
and Communication & Embedded Software and Systems (HPCC-ICESS), pp.
320-327, June 2012.

J. Zhao, X. Zheng, R. Dong, and G. Shao, “The planning, construction, and
management toward sustainable cities in China needs the environmental Internet
of Things,” International Journal of Sustainable Development & World Ecology,
vol. 20, no. 3, pp. 195-198, May 2013.

J. Humble and J. Molesky, “Why enterprises must adopt devops to enable
continuous delivery,” Cutter IT Journal, vol. 24, no. 8, p. 6, Aug. 2011.

98

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An application protocol for
billions of tiny internet nodes”, IEEE Internet Computing, vol. 16, no. 2, p. 62,
2012.

T. Dierks and E. Rescorla, “The transport layer security (TLS) protocol version
1.2,” IETF RFC 5246, pp. 1-104, Aug. 2008.

G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” Modeling and
Tools for Network Simulation, pp. 15-34. Sep. 2010.

H. Takagi, “Queuing analysis of polling models,” ACM Computing Surveys
(CSUR), vol. 20, no. 1, pp. 5-28, Mar. 1988.

C. Mack, “The efficiency of N machines uni-directionally patrolled by one
operative when walking time is constant and repair times are variable,” Journal of
the Royal Statistical Society Series B, vol. 19, no. 1, pp. 173-178, Oct. 1957.

M. A. A. Boon, R. D. van der Mei, and E. M. M. Winands, “Applications of
polling systems,” Surveys in Operations Research and Management Science, vol.
16, no. 2, pp. 67-82, Feb. 2011.

P. Jiang, J. Bigham, E. Bodanese, and E. Claudel, “Publish/subscribe
delay-tolerant message-oriented middleware for resilient communication,” IEEE
Communications Magazine, vol. 49, no. 9, pp. 124-130, Sep. 2011.

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, and E. Hepsaydir,
“Cellular architecture and key technologies for 5G wireless communication
networks,” IEEE Communications Magazine, vol. 52, no. 2, pp. 122-130, Feb.
2014.

P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J.
Lu, and J. Yao, “5G on the horizon: key challenges for the radio-access network,”
IEEE Vehicular Technology Magazine, vol. 8, no. 3, pp. 47-53, July 2013.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, and H.
Tullberg, “Scenarios for 5G mobile and wireless communications: the vision of
the METIS project,” IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35,
May 2014.

M. A. Alsheikh, S. Lin, D. Niyato and H. P. Tan, “Machine learning in wireless
sensor networks: Algorithms, strategies, and applications,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 4, pp. 1996-2018, Apr. 2014.

[100] K. Hwang, J. Dongarra, and G. C. Fox, “Distributed and cloud computing: from

parallel processing to the internet of things,” Morgan Kaufmann, Dec. 2013.

99

[101] M. N. Sadiku, S. M. Musa, and O. D. Momoh, “Cloud computing: opportunities
and challenges,” IEEE potentials, vol. 33, no. 1, pp. 34-36, Jan. 2014,

[102] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch, “Autoscale:
Dynamic, robust capacity management for multi-tier data centers,” ACM
Transactions on Computer Systems (TOCS , vol. 30, no. 4, pp. 14. Nov. 2012.

[103] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline and budget
constraints,” In Proceedings of the IEEE/ACM International Conference on Grid
Computing, pp. 41-48, Oct. 2010.

100

