
Title
Design and Implementation of Distributed Message
Queue Systemswith High Throughput and
Availability

Author(s) 木下, 雅文

Citation 大阪大学, 2017, 博士論文

Version Type VoR

URL https://doi.org/10.18910/61850

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Design and Implementation of

Distributed Message Queue Systems

with High Throughput and Availability

January 2017

Masafumi KINOSHITA

Design and Implementation of

Distributed Message Queue Systems

with High Throughput and Availability

Submitted to

Graduate School of Information Science and Technology

Osaka University

January 2017

Masafumi KINOSHITA

i

List of publications

A．Journal Papers

1. M. Kinoshita, G. Tsuchida, I. Mizutani and T. Koike, “High-throughput messaging

system based on in-memory KVS for processing large traffic volume of short

messages,” IEICE Transactions on Communications, vol. B96, no. 10, pp.

1206-1216, Oct. 2013 (in Japanese).

2. M. Kinoshita, O. Takada, I. Mizutani, T. Koike, K. Leibnitz, and M. Murata,

“Improved resilience through extended KVS-based messaging system,” IEICE

Transactions on Information and Systems, vol. E98-D, no. 3, pp. 578-587, Mar.

2015.

3. M. Kinoshita, H. Konoura, T. Koike, K. Leibnitz, and M. Murata, “High throughput

dequeuing technique in distributed message queues for IoT,” IPSJ Journal of

Information Processing, vol. 27, no. 2, to appear Feb. 2017.

B．Refereed Conference Papers

1. M. Kinoshita, G. Tsuchida, and T. Koike, “High-throughput message systems for

mobile e-mail services based on in-memory KVS,” in Proceedings of Wireless and

Mobile Communications (ICWMC), pp. 146-153, June 2012.

2. H. Konoura, M. Kinoshita, T. Koike, K. Leibnitz, and M. Murata, “Efficient

dequeuing technique for distributed messaging systems processing massive

message volumes,” in Proceedings of the 26th IEEE International

Telecommunication Networks and Applications Conference (ITNAC), pp. 280-285,

ii

Dec. 2016.

C．Non-Referred Conference Papers

1. M. Kinoshita, G. Tsuchida, and T. Koike, “Throughput improvement of message

system in cooperation with distributed in-memory KVS,” in Proceedings of IEICE

Society Conference, p. 412, Sep. 2011 (in Japanese).

2. I. Mizutani, K. Toumura, and M. Kinoshita, “Method of achieving N-to-N

configuration for message system based on distributed KVS,” in Proceedings of

IEICE Society Conference, p. 359, Sep. 2012 (in Japanese).

3. M. Kinoshita, O. Takada, I. Mizutani, T. Koike, K. Leibnitz, and M. Murata, “High

availability method for extended KVS-based messaging system,” in Proceedings of

IEICE (IA2014-84), vol. 114, no. 439, pp. 31-36, Jan. 2015 (in Japanese).

4. H. Konoura and M. Kinoshita, “Study of performance enhancing method on a

message-oriented middleware,” in Proceedings of IEICE Society Conference,

p. B-6-5, Sep. 2015 (in Japanese).

iii

Preface

The innovation paradigm regarding smart phones, Machine-to-Machine (M2M)

communication, or the Internet of Things (IoT) is currently causing an explosion in the

number of devices connected to the network and thus requires changes to the service

system. Smart phones have been gaining in popularity over the last seven years with

about 2.5 billion connected devices in 2009. Then, M2M devices, such as smart meters

and health equipment, accelerated this increase to 10 billion in 2014. IoT devices, such

as sensors/actuators in factories, cars, home devices, etc., are expected to increase to 30

billion by 2020. In addition, the amount of digital data in the whole world created by

connected devices is expected to reach 40 ZB by 2020.

In this thesis, we focus on these upcoming drastic changes of network systems

providing services or applications to users, where we especially focus on message queue

systems as frontend of these network systems. Furthermore, we discuss what features

these message queue systems should provide for processing this unprecedented data

volume created by IoT devices and how they should handle requirements on availability

and scalability.

We begin this thesis with the discussion of high-throughput and scalable

processing of huge volumes of messages in smart phone services. To solve this issue,

we propose high-throughput queuing techniques and architectures for distributed

message queue systems that can serve much larger message traffic than before. We

designed a message queue system based on a distributed in-memory key-value store

(KVS) to meet the requirements on throughput and scalability. We also propose an

architecture for satisfying high throughput and high scalability in a message queue

system for massive message traffic volumes through a distribution method of

queue-type in-memory KVS and synchronized processing of distributed queues by

single TCP connections. We embed the proposed architecture and strategies into a mail

system for smart phones and perform evaluations of this system. The evaluation results

reveal that the throughput of the proposed message queue system achieves 3,600

iv

messages per second (msg/s) per server, which is about 5 times higher than that of the

conventional method operating with RAID storages. Moreover, the throughput of the

proposed KVS is 200,000 transactions per second for message size of 0.4 KB, which

doubles the performance of the well-known KVS called memcached.

 Our next concern is the resilience of the message queue system for M2M

services. M2M services, such as metering and monitoring services, have enhanced the

social infrastructure field. As social infrastructure, the service system, especially in our

case the message queue system, is required to simultaneously satisfy both, high

availability and high throughput. To solve this issue, we propose a resilient message

queue system based on a distributed KVS. Its servers are interconnected among each

other and messages are distributed to multiple servers in the normal processing state.

Our proposed system can provide long-term availability and continue its service

regardless where failures in the message queue server/process may occur by distributing

messages to multiple servers. Furthermore, to achieve short-term availability, even

during an underlying network failure and/or slowdown of servers, we propose message

distribution by round-robin with slowdown KVS exclusion and two logical KVS

counter-rotating rings. Evaluation results show that this system can continue service

without the need for failover processing. Compared with the conventional method, our

proposed distribution methods reduce 92% of service errors caused by server failures.

 Finally, we discuss a method for increasing the dequeue throughput in message

queue systems for the IoT era. IoT services require information extracted from historical

or real-time data for specific objectives, such as optimization services or learning

through trial-and-error pattern analysis of data. This approach requires collecting large

volumes of messages that are periodically created by the devices. On other hand, the

backend system retrieves messages from the message queue at its own non-periodic and

process-dependent timings. Therefore, controlling the massive and heterogeneous traffic

in the message system becomes a crucial issue. To solve this issue, we propose a

dequeuing method called Retry Dequeue-request Scheduling (RDS), which can reduce

unnecessary transmissions of dequeue requests to the message queues by waiting for

messages to arrive at the message queues. RDS can better reduce throughput

degradation than the conventional method by making use of missed-dequeue messages.

By evaluation through simulations, we compare the throughputs achieved by the

conventional method, RDS, and Periodical Monitoring and Scheduling (PMS), which is

another dequeuing method proposed for reducing the number of missed-dequeues by

v

periodically monitoring each message queue to gather information on the message

counters. Simulation evaluation results show that RDS maintains the highest throughput,

regardless of an increased dequeue request rate. Further experimental evaluation results

show that the RDS method achieves 80% higher throughput than the conventional

method in real systems.

 Through the following discussions, we conclude that high-throughput queuing

techniques and a resilient message queue system are fundamental technologies to stably

process large-volume messages created by IoT devices. Additionally, the increased

throughput of the RDS method is essential in finding patterns within large data volumes

from IoT services. These proposed technologies can make it much easier and faster than

before to build complex IoT systems requiring high throughput, availability, and

scalability. We believe that the following discussions will contribute to the better design

and implementation of future IoT systems.

vi

vii

Acknowledgments

This thesis could not have been accomplished without the assistance of many people,

and I would like to acknowledge all of them.

First and foremost, I would like to express my sincere appreciation to Professor

Masayuki Murata of the Graduate School of Information Science and Technology,

Osaka University, for his patient encouragement, insightful and comprehensive advice,

and valuable discussions. He directed me to the appropriate perspective in this domain

and inspired me to aim at higher goals.

I am also deeply grateful to the members of my PhD evaluation committee,

Professor Teruo Higashino, Professor Toru Hasegawa, and Professor Takashi Watanabe

of the Graduate School of Information Science and Technology, Osaka University, and

Professor Morito Matsuoka of the Cybermedia Center, Osaka University, for their

critical reviews and comments from various angles.

Furthermore, I am deeply grateful to Guest Associate Professor Kenji Leibnitz

of Osaka University for his much-appreciated comments and support. His passionate

and unerring guidance have been informative and helpful. His kindness on my behalf

was invaluable, and I am forever in debt.

I am also grateful to Dr. Kenichi Sakamoto, Head of the Planning Office at the

Yokohama Research Laboratory of Hitachi Ltd., Dr. Seishi Hanaoka, Department

Manager of Hitachi Ltd., Center for Technology Innovation – Information and

Telecommunication, Network Research Department, and Mr. Tatsuhiko Miyata, Unit

Leader at the Center for Technology Innovation – Information and Telecommunication,

Network Research Department, for giving me the opportunity to study for a doctorate at

Osaka University.

My appreciation also goes to my colleagues Dr. Osamu Takada, Dr. Yasunori

Kaneda, Dr. Ken Naono, Ms. Yukiko Takeda, Dr. Hiroaki Konoura, Ms. Izumi Mizutani,

Dr. Yu Nakata, Dr. Kunihiko Toumura, Mr. Yoshiki Matsuura, Dr. Gen Tsuchida, Mr.

Toshiyuki Kamiya, and Mr. Takafumi Koike of Hitachi Ltd. for their valuable

viii

discussions, advice, support, and encouragement during this study.

Additionally, I am thankful to all the members of the Network Research

Department, Hitachi Ltd., Center for Technology Innovation – Information and

Telecommunication, for their continuous support and friendship.

Finally, I deeply thank my wife, Maki, my daughter Hana, my son Sou, my

parents, and my grandparents for their understanding and hearty support and

encouragement in my daily life. This work would not have been achieved without them.

ix

Contents

List of publications .. i

Preface ... iii

Acknowledgments .. vii

Contents ... ix

Chapter 1 Introduction ... 1

1.1. Background ... 1

1.2. Overview of Message Queue Systems ... 5

1.3. Issues in Message Queue Systems.. 8

1.3.1. Issues in First Phase of Message Queue Systems.. 8

1.3.2. Issues in Second Phase of Message Queue Systems 9

1.3.3. Issues in Third Phase of Message Queue Systems 10

1.4. Outline of Thesis .. 12

1.4.1. High-Throughput Message Queue System Based on Distributed

In-memory KVS ... 12

1.4.2. Improved Resilience of Message Queue System through Server

Distribution ... 13

1.4.3. Increased Throughput of Message Queue System through Dequeue

Scheduling .. 14

Chapter 2 High-Throughput Message Queue System Based on Distributed

In-memory KVS ... 15

2.1. Introduction .. 15

2.2. Overview of Message Queue Systems in Smart Phone Services 17

2.2.1. Components of Message Queue Systems .. 17

Figure 2.1 Example of message queue system for smart phone services 17

2.2.2. Conventional Research on Distributed in-Memory KVS 18

2.3. Message Queue System-based on Distributed in-Memory KVS 19

2.3.1. Architecture of Message Queue Systems .. 19

file:///W:/MyDocument/デスクトップ/Phd_theis_r70.docx%23_Toc471381858

x

2.3.2. Proposed KVS with Queue Structure .. 21

2.3.3. High-Throughput Queuing Method with KVS .. 23

2.3.4. Behavior of Failure and Recovery ... 24

2.4. Evaluation of High Throughput Queuing ... 25

2.4.1. Implementation and Evaluation Environment ... 25

2.4.2. Throughput Evaluation of Message Delivery .. 25

2.4.3. Performance of Proposed KVS.. 27

2.4.4. Experience in Real Message Queue Systems .. 33

2.5. Related Work .. 34

2.6. Conclusion .. 34

Chapter 3 Improved Resilience of Message Queue System through Server

Distribution 35

3.1. Introduction .. 35

3.2. Background and Issues ... 38

3.2.1. Outline of Message Queue System for M2M Devices 38

3.2.2. Risk of Failover Processing ... 38

3.2.3. Trade-off between Consistency and Availability 39

3.3. Proposed Architecture and Distribution Methods .. 43

3.3.1. Architecture of Fabric Message Queue System .. 43

3.3.2. Distribution Methods for Improving Short-Term Availability 46

3.4. Implementation and Evaluation .. 49

3.4.1. Implementation and Methodology for Evaluation 49

3.4.2. Verification of Detection of Slowdowns ... 49

3.4.3. Determining the Optimal Slowdown Detection Time 52

3.4.4. Impact of Server Failures on Availability .. 54

3.5. Related Work .. 58

3.6. Conclusion .. 59

Chapter 4 Increased Throughput of Message Queue System through Dequeue

Scheduling 61

4.1. Introduction .. 61

4.2. Background ... 63

4.2.1. Outline of IoT Service System .. 63

4.2.2. Conventional Approach using Distributed Message Queues 65

4.2.3. Outline of IoT Service System .. 67

xi

4.3. Analysis of Throughput Degradation and Proposal ... 68

4.3.1. Process of Distributed Message Queue ... 68

4.3.2. Analysis of Throughput Degradation .. 69

4.3.3. Proposed Methods ... 70

4.4. Simulation Evaluation .. 73

4.4.1. Description of the Simulation Model .. 73

4.4.2. Simulation Results and Discussion ... 75

4.4.3. Evaluation and Discussion of Optimal Sleep Time for RDS 80

4.5. Experimental Evaluation .. 81

4.5.1. Implementation and Methodology for Evaluation 81

4.5.2. Results and Discussion .. 82

4.6. Related Work .. 83

4.7. Conclusion .. 85

Chapter 5 Conclusion and Future Work ... 87

Bibliography ... 91

xii

1

Chapter 1

Introduction

1.1. Background

Innovative network paradigms, such as mobile smart phones, Machine-to-Machine

(M2M) communication, and the Internet of Things (IoT) have been gaining popularity

with a billion devices already connected to the Internet today. Figure 1.1 outlines this

growth in the number of connected devices over three phases of time based on [1]. The

number of traditionally connected devices, like PCs, accounted for only 500 million in

2003. The number of connected smart phones was about 2.5 billion in 2009, and they

have drastically gained in popularity since then. M2M devices, such as smart meters [2],

health equipment [3], and vending machines [4] increased the number of connected

devices even further to approximately 10 billion in 2014. In the future, IoT devices such

as sensors/actuators in factories [5], used for transportation [6], or home devices [7] are

expected to increase to about 30 billion by 2020.

In this thesis, we focus on traffic data of network systems providing services or

applications, especially short-length data created by various devices, which we will

refer to as short messages in the following. Reference [8] states that the amount of all

digital data in the world created by various devices is predicted to reach 40 ZB by 2020

(Fig. 1.2).

To increase the future processing ability for short messages, we focus in this

work on end-to-end communication. End-to-end protocols, such as the Hypertext

Transfer Protocol (HTTP) [9], have been widely used for client-server communication

in the Internet [10-12]. However, such protocols could also face problems if the number

2

of end-to-end clients drastically increases due to server congestion by huge traffic

volumes, inefficiency of one-to-many communication, or heavy loads for maintaining

massive connections in server and network [13-15]. To solve these problems, messaging

Figure 1.1 The growth in the number of connected devices

Figure 1.2 The growth in the volume of IoT messages

1st Phase

2020
30 billion

2014
10 billion

2009
2.5 billion

2003
500 million

Smart phone M2M device IoT device

2008 2013 2017

2nd Phase 3rd Phase

20202014

4.4ZB

44ZB

10x

N
u
m

b
e
r

Io
T

 M
e

s
s
a
g

e
s

3

communication protocols, such as MQ Telemetry Transport (MQTT) [16] or Advanced

Message Queuing Protocol (AMQP) [17] are expected to better handle the large

volumes of short messages in M2M/IoT [18-21]. Messaging communication requires

the network system to queue and relay messages between client and server and we will

refer to such systems as message queue systems in the following. On the other hand,

conventional message queue systems have often led to concerns regarding throughput

and scalability [22-24]. Figure 1.3 outlines the drastic change of throughput

requirements in a message queue system. Conventional message queue systems have

been used for various services, such as e-mail messages on PCs or electronic data

interchange between companies. These services don’t have large numbers of devices or

large message traffic volume. For example, the throughput of a single server for

sendmail [25], which is widely used for e-mail message services in companies, is below

100 msg./s [26]. However, in the smart phone/M2M/IoT era, we estimate that a message

queue system is required to process more than 10,000 msg./s of short messages due to

the increase in number of devices and message traffic volume in service systems. For

example, the number of smart phones of a carrier system increases approximately from

10 to 100 million [27, 28]. The number of smart meters of an electricity company

increases approximately from 10 to 50 million [29, 30]. Furthermore, we estimate that

the number of devices, such as sensors, actuators, and radio frequency identifier (RFID)

for tracking products in a smart factory increases from 1,000 to 10,000 and all these

messages are collected in real-time [31]. Therefore, message queue systems will be

required to apply new methods and architectures to process these huge volumes of short

messages. One main goal of this thesis is the discussion of the performance of message

queue systems processing huge volumes of short messages.

From the viewpoint of message queue systems, we consider that these

upcoming drastic changes in messaging traffic have progressed through roughly three

phases as illustrated in Fig. 1.1. The initial phase consists of the increase of short

messages used for e.g., mobile email services, short message services (SMS) [32], or

social networking services (SNS) [33] between 2008 and 2013, which coincides with

the spread of smart phones. The most important issue during this phase is the

high-throughput and scalable processing of huge volumes of short messages in smart

phone services. The second phase extends short messages to other M2M applications in

social infrastructure fields beyond smart phones, such as smart meters and health

equipment from 2013 to 2017. In this phase, high availability and resilience for

4

providing continuous and stable services becomes most important. The third phase is

driven by the progress of IoT applications and its extension to the financial sector,

industries and smart homes, which is currently ongoing and expected to continue until

about 2020. The most important issue is how to control the massive heterogeneous

traffic between devices and IoT service systems for achieving higher throughput,

availability, and scalability than conventional systems.

 In this thesis, we focus on the three phases mentioned above and discuss

current and future challenges in message queue systems processing short messages from

a realistic viewpoint. Furthermore, by the discussions in this thesis we intend to

contribute to the better design and implementation of future IoT systems.

Figure 1.3 Drastic change of throughput requirements in

message queue system

Conventional

Message

Queue System

Message

Queue System

in IoT/M2M era10-100 million

1,000-10,000 ×
real-time update

10-50 million

Beyond 10,000 msg/s

100×

Below 100 msg/s

300-
5,000

10

5

1.2. Overview of Message Queue Systems

Figure 1.4 outlines an example of the service system’s structure needed to process short

messages. This system consists of four major components: connected devices, network,

message queue system, and backend system. Connected devices include smart phones,

smart meters, sensors, or other types of IoT devices. Network denotes the private or

public network over which the connection takes place, e.g., Long Term Evolution (LTE)

wireless network [34]. The message queue system is located as frontend system in the

cloud and backend systems provide services and applications. The message queue

system relays short messages between connected devices and the backend.

Generally, a message queue system has a messaging server relaying the

message and message queues acting as a persistent (non-volatile) storage or data store.

In this thesis, we define the process of messaging as receiving, handling, storing

(queuing), and relaying (dequeuing) short messages. A conventional messaging server

for enterprise service is in general a physical server running a messaging server program,

while in this thesis we define messaging server only as a messaging server program

(software) due to the consideration of server virtualization in cloud computing.

Furthermore, a messaging server mainly consists of two programs: the enqueue

controller (E-Ctrl), which processes the reception of messages and stores them in a

queue (enqueue), and the dequeue controller (D-Ctrl), which processes the retrieval of

messages from queues and their relaying.

6

Figure 1.4 Outline of message queue system

Telecommunication

Electric power

Industry

Backend System

(Service/Application)

...

Persistent Storage
/Data Store

4.Forward
(Dequeue)
Message

3.Reply

Message Queue

System

2.Store
(Queuing)
Message

Message Queue

Connected

Devices

Messaging Server

5.Delete
Message

1.Receive
(Enqueue)
Message

E-Ctrl D-Ctrl

Network

A message queue system is also sometimes known under the terms of message

queue (MQ) [35] or message oriented middleware (MOM) [36]. Message queue

systems have several important tasks to perform, such as reliably relaying messages

without loss, buffering of message traffic from devices, and providing interoperability

between devices and backend systems. Furthermore, message queue systems can

achieve reliable relaying of messages and buffering of message traffic from devices by

using the store-and-forward method from source devices to backend systems (or to the

next-hop message queue system). Processing of store-and-forward messages needs to be

handled in the following order:

(1) receive (enqueue) messages from devices,

(2) store messages (queueing) into a queue in persistent storage,

(3) instantly reply to devices,

(4) forward (dequeue) messages to backend servers,

(5) delete stored messages from the message queue after successfully sending them.

If the message cannot be stored for any reason, e.g., due to a queue overflow, an error

response is sent to the source device. The received message is normally sent

instantaneously, but may also be delayed if the backend system is temporally

7

unavailable. The message queue system keeps the message in its queue until the

backend system becomes available again, which may take from several hours to a few

days. Finally, the server deletes the message if the message was successfully sent or if a

retransmission timeout occurred.

 Message queue systems achieve interoperability by supporting various

protocols. For example, MQTT, AMQP, or Representational State Transfer (REST) [37]

are major protocols in the IoT era. This interoperability and absorption enables devices

and the backend system to become loosely coupled and the message queue system

enables the developer to rapidly interoperate between them. Under the condition that the

message queue has both, sufficient performance to process the message traffic from

devices and scalability in performance and storage, the message queue enables the

developers of the backend system to design their system without considering the entire

volume of the message traffic.

8

1.3. Issues in Message Queue Systems

In this section, we provide an overview of the development of message queue systems

and distinguish roughly in three different phases (see Fig. 1.1), which we now describe

in more detail. Our focus lies on issues concerning the message queue system itself, and

we do not elaborate on the other parts of the system, such as connected devices, network,

or the backend system.

1.3.1. Issues in First Phase of Message Queue Systems

In the first phase, the enormous growth in the number of smart phones has led to an

explosion in the volume of short message traffic encountered by telecommunication

operators and other service providers. The most important issue of this phase is the high

throughput and scalable processing of huge volumes of short messages in smart phone

services.

Figure 1.5 outlines issues in the first phase of message queue systems. As

mentioned above, message queue systems generally relay messages with the

store-and-forward method such that incoming messages are first stored in a queue

located within non-volatile storage and are then forwarded to the backend system server.

Figure 1.5 Issues in the first phase of message queue systems

9

Store-and-forward methods achieve reliable relaying and buffering of message traffic

from devices, however, their main disadvantage is the low throughput due to

non-volatile storage, such as when disks and storage systems are accessed, which turns

out to be the bottleneck in relaying short messages. Additionally, conventional message

queue systems generally have their message queues on RAID storage, which is difficult

to scale-out.

Since these issues on high throughput and scalability for processing massive

volumes of short messages are also fundamental for IoT applications, they will also be

highly relevant to the IoT era.

1.3.2. Issues in Second Phase of Message Queue Systems

In the second phase, it has become common to connect M2M devices, such as smart

meters or health equipment, to the network. For example, message queue systems are

used in Head-End Systems (HES), which receives data through the network in a smart

meter system [38]. The most important issue in this phase is the high availability and

resilience for providing non-stop and stable services. Figure 1.6 outlines an example of

such failover processing. Generally, mission-critical systems implement shared data and

Figure 1.6 Issue in the second phase of message queue systems

Backend System

(Electricity Application)

...

Persistent Storage
/Data Store

Message Queue System

(Head-End System)

Store
(Queuing)
Message

Message Queue

M2M Devices

(Smart

Meters)

Messaging Server
Receive
(Enqueue)
Message

Forward
(Dequeue)
Message

Part/all of services

are stopped

Active/standby

configurations

ACT STBACT

A risk of failover
processing

Failover
Processing

・Mater Data

Management

・Device

Management

・Billing etc.

10

failover processing for providing high-availability (HA) services [39]. Failover

processing includes application restart, process initialization, and recovery of data.

These consist of special application-dependent processes as well as common processes,

such as health check or error detection of hardware/software. However, catastrophic

service failures of mission-critical systems with failover processing have frequently

been reported [39-41]. Causes of these service failures are usually software or hardware

defects and it is very difficult to exhaustively identify these defects during the system

testing stage because all cases of failover processing, e.g., complex problems caused by

only theoretically occurring defects, can hardly be tested. Therefore, a highly available

message system without failover processing is needed.

1.3.3. Issues in Third Phase of Message Queue Systems

It is generally agreed that IoT services require information from historical or real-time

data for their own objectives, such as optimization services. For example, message

queue systems are expected to be applied to the Platform Tier, which receives device

data through the network in the IoT reference architecture of the Industrial Internet

Consortium (IIC) [42]. Figure 1.7 outlines issues in the third phase of message queue

systems. In [43-45], IoT service systems are required to manage the massive volume of

data generated by sensors from various fields, such as the financial sector, industries,

smart homes, etc. In [46], optimization in smart manufacturing at enterprise level

requires periodically collected data. In [47], general smart sensors may consist of single

microchips and generate simple periodical data.

The general approach in IoT for finding patterns in data is to learn through

trial-and-error data analysis. This approach requires collecting a large data volume for

various analyses. Therefore, traffic volume from devices generating periodical message

data has become enormous in IoT service systems.

On the other hand, the backend system collects data for various IoT objectives, such as

monitoring and optimization, and retrieves messages from the queue at their own timing,

which is non-periodic and process-dependent. These processing timings differ by

context of message, message size, and other related data. To achieve higher throughput

by fully utilizing computational resources, the backend system retrieves messages from

the queue with a pull-based method [48]. In addition, progress in distribution platforms,

such as Spark [49] or Storm [50], leads to a dramatic change in processing time of the

11

backend system.

While devices send massive amounts of periodical messages, backend systems

process IoT messages at their own timings. Therefore, the control function of the

massive and heterogeneous message traffic in the message system becomes a crucial

issue in Phase 3.

Production

Planning

Backend System

(Enterprise Application)

...

Persistent Storage
/Data Store

Deque-
Request

Message Queue System

(Platform Tier)

Message Queue

IoT Devices

(Edge Tier)

Messaging Server

E-Ctrl D-Ctrl

MQTT, REST,
CoAP, etc.

Analysis

Dequeue

Compensate for the

heterogeneity in message traffic

Machine

Learning

Optimization

Enqueue

Send messages

periodically
Get messages in one’s

own processing time

Predictive

Maintenance

Supply Chain

Management

Figure 1.7 Issues in the third phase of message queue systems

12

1.4. Outline of Thesis

In this thesis, we selected several important, but so far not well-discussed issues from

those addressed in the previous section and studied solution approaches for message

queue systems. In particular, this thesis focuses on the following main points in

distributed message queue systems, spanning from short message services over M2M to

the IoT era.

(1) Design of message queue systems with high-throughput queuing and scalability

of short message services for smart phones

(2) Design and development of message queue systems with high availability

through distribution methods for M2M services

(3) Design of message queue systems with increased throughput through dequeue

scheduling in the IoT era

The contents of the chapters in this thesis are summarized in Fig. 1.8. and will be briefly

summarized in the following subsections.

1.4.1. High-Throughput Message Queue System Based on

Distributed In-memory KVS

In Chapter 2, we focus on high-throughput queuing techniques and architectures based

on distributed message queue systems for smart phone services. We propose a message

queue system for short messages based on a distributed in-memory key-value store

(KVS) [51] to meet the requirements of high throughput and scalability, and to

physically store messages in a queue structure while preserving the consistency of data

in the respective queues. We present a method of high-throughput access to pipeline

messages on an active TCP connection that is linked to a queue on message queue

systems and its backup queue in KVS. We evaluate the performance of the proposed

KVS and the message queue system corresponding to the KVS. The results show that

both the KVS and message queue system achieve the required high throughput.

Experimental evaluations further show that the throughput of our proposed method

achieves 450% of that of the conventional method.

13

1.4.2. Improved Resilience of Message Queue System through

Server Distribution

In Chapter 3, we focus on a technique to achieve high availability for mission critical

services using messages from M2M devices. We propose a resilient message queue

system based on a distributed KVS. Its servers are interconnected among each other and

messages are distributed to multiple servers in the normal processing state. This

architecture can continue its messaging services regardless where any failures in the

message queue server/process may occur without requiring any failover processing. We

also propose further methods for improved resilience: the round-robin method with

slowdown KVS exclusion and the two logical KVS counter-rotating rings to provide

short-term availability in the message queue system. Evaluation results demonstrate that

the proposed system can continue service without failover processing. Compared to the

conventional method, our proposed distribution method reduces 92% of error responses

caused by server failures.

Figure 1.8 Relationship between the 3 main topics of this thesis

14

1.4.3. Increased Throughput of Message Queue System

through Dequeue Scheduling

In Chapter 4, we discuss a method for increasing dequeue throughput in message queue

systems. In the IoT era, services require both information from historical or real-time

data for their own objectives, such as optimization service, and learning through

trial-and-error of data analysis for finding patterns in the data. This requires collecting

large volumes of messages created by devices periodically. On the other hand, the

backend system retrieves messages from the message queue at its own timing, which is

non-periodic and process-dependent. Therefore, the control function of the massive and

heterogeneous message traffic in the message system becomes a crucial issue, which

can lead to dequeue throughput degradation. To solve this issue, we propose the

dequeuing method called Retry Dequeue-request Scheduling (RDS) which can reduce

the unnecessary transmission of dequeue requests to the message queues by waiting for

messages to arrive at the message queues. In particular, RDS can better reduce

throughput degradation due to missed-dequeue messages than the conventional method.

By evaluations through simulation, we compare the throughputs achieved by the

conventional method, RDS, and Periodical Monitoring and Scheduling (PMS), which is

another dequeuing method proposed for reducing the number of missed-dequeues by

periodically monitoring each message queue to gather message counter information.

Simulation results show that only RDS maintains highest throughput, regardless of an

increase in the dequeue request rate. Experimental results further show that the RDS

method achieves 80% higher throughput than the conventional method in real systems.

15

Chapter 2

High-Throughput Message Queue

System Based on Distributed In-memory

KVS

2.1. Introduction

The enormous growth in the number of smart phones has led to an explosion in the

volume of short message traffic encountered by telecommunication operators and other

service providers. Especially, short message communication services such as e-mail,

short message services (SMS), and social networking services (SNS) have become

essential for our life. For instance, message traffic at specific times, such as after the

occurrence of disasters, the turn of New Year, and other popular events, may reach over

143,000 transactions per second [52]. This burst of transactions is beyond the capacity

of conventional message queue systems and forces telecommunication operators to

regulate the amount of transactions [53]. For processing the large and still growing

amount of short messages traffic, much higher throughput has been required for

message queue systems. To process this increasing traffic of short messages, high

scalability is required for enabling the greater processing capacity and memory sizes.

Furthermore, simultaneous availability of message queue systems is also required in the

same way as for conventional systems.

As mentioned before, message queue systems conventionally relay messages

with the store-and-forward method. Messaging servers of message queue systems

receive messages once and store these received messages to persistent storage, such as

16

disks, after which they successively relay the messages to the backend system. This

enables an instant response to the devices and shortens the session activity time.

Here, let us focus on the function of message queue systems for smart phone

services. In those systems, there are several important functions such as buffering and

controlling traffic in the system, stabilization of the system, and avoidance of network

contention between devices and message queue systems. However, when the message

queue receives a lot of short messages, disk accesses for storing (queuing) these

messages generally becomes the bottleneck for throughput. For example, if the

throughput of a single server for sendmail [25] or postfix [54], which are both widely

used for e-mail message services in companies, drops to below 100 msg./s, it will

become too low to process a large amount of short messages [26].

 Hence, to solve these concerns, we follow the approach of applying a

distributed in-memory KVS instead of persistent storage to message queue systems. We

aim at achieving high throughput and scalability of the message queue system and solve

the following issues in this chapter. We propose an architecture for a message queue

system with high throughput and scalability based on distributed in-memory KVS. We

also design a high-throughput queuing (storage) method between message server and

KVS with availability and process of KVS to achieve high-throughput queuing.

 This chapter is organized as follows. First, we provide an overview of the

message queue system for smart phone services. We then present the architecture and

proposed methods. Next, we reveal the implementation and performance evaluation.

Finally, we describe related work and give a conclusion.

17

2.2. Overview of Message Queue Systems in Smart Phone

Services

2.2.1. Components of Message Queue Systems

Figure 2.1 outlines an example of the system structure for short message service for

smart phones. Message queue systems are widely used for a variety of services, such as

e-mail, SNS, SMS, and other push notification services from data centers to smart

phones.

Message queue systems receive messages from devices via the wireless

network and relay them to the backend system or next-hop message queue system with

the store-and-forward method. Message queue systems support various protocols for

their own services. For example, simple mail transfer protocol (SMTP) and multimedia

messaging service (MMS) are used in e-mail services, while short message peer-to-peer

(SMPP) is used in SMS and other push notification services.

Main functions of message queue systems are reliable in relaying messages to

the backend system without message loss and with congestion control of message traffic

from devices to the backend system. In wireless networks, messaging servers decrease

the failure rate of transmission and reduce the number of active sessions by quick

Figure 2.1 Example of message queue system for smart phone services

18

responses with the store-and-forward method.

Messaging systems maintain several message queues for each backend system

or next-hop message queue system. For each message queue, locks at the internal

queues are required for relaying messages by the messaging server to provide exclusive

access (these functions are denoted as queue transactions) as well as relay message

priorities. Message queue systems enable congestion control of each backend system by

regulating dequeue traffic from each message queue to the backend systems. Moreover,

message queues store billing data or metadata depending on the situation and, therefore,

their guarantee of data consistency is crucially important.

Conventional message queue systems have a message queue in RAID storage

and high-availability (HA) cluster structure. As mentioned in Sect. 2.1, disk accesses at

queues generally become the bottleneck for throughput. Furthermore, HA clusters

generally have active/standby configurations making it difficult to scale-out for

enhancing throughput.

2.2.2. Conventional Research on Distributed in-Memory KVS

Many efforts have been expended on distributed in-memory KVS for high throughput

and scalability. In–memory KVS memcached [55], which is known as high throughput

KVS, is currently used as a cache by many companies, such as Facebook [56].

Memcached runs on a single server and stores messages without any duplication and

distribution, which is not utilized as persistent data store in general. On the other hand,

in-memory KVS can be utilized as persistent data store by multiplication and

distribution of data on memory. Nevertheless, they have two disadvantages compared

with RAID storage used in conventional message queue systems. The first is that data is

lost if all nodes having the same replicated data are down at the same time. However, as

power supplies are duplicated at the data center and data is periodically backed up to

disks, there is only a small probability that data will be lost. The second disadvantage is

that storage capacity of KVS is usually not very large because memory is more

expensive than disks.

 In previous work related to messaging systems, Wang et al. [57] proposed a

distributed message queue supporting queue transaction while relaying messages and

guaranteeing the order of message processing by referring to additional metadata to

control the message queue stored in typical in-memory KVS with simple key-value data

19

structure. In the following, this is called simple KVS-based method. In general, KVS

refers to a simple data model consisting of a pair of key and value, which is completely

different from conventional queue data structures. Although the simple KVS-based

method presents an implementation of message queues in distributed systems, it does

not consider about high-throughput queuing, and data structure or processes of KVS.

2.3. Message Queue System-based on Distributed in-Memory

KVS

This section presents the architecture and implementation method for message queue

systems to address the issues mentioned in Sect. 2.1.

2.3.1. Architecture of Message Queue Systems

2.3.1.1. Implementation of High-Throughput Queuing and

Scalability

Figure 2.2 shows the proposed architecture of a message queue system based on the

distributed in-memory KVS. The proposed KVS differs from general KVS in having a

queue structure on the server’s physical memory. Each server has both, a messaging

server program for relaying messages and an in-memory KVS program. As mentioned

before, we refer to the message handling program as messaging server and refer to the

Figure 2.2 Proposed architecture of message queue system

20

KVS program simply as KVS. Each server acts independently and communicates via an

internal network among the servers.

To implement highly available and distributed message queues, they must be

separately deployed into both, messaging servers and KVS as shown in Fig. 2.3. A load

balancer allocated in front of each server distributes received messages to the messaging

servers. After receiving messages from the load balancer, the messaging server stores

these messages into the message queue and delivers them in accordance with the

store-and-forward method. Messaging servers retain a message not only in a single KVS

message queue, but also in other message queues of the KVS, as well as in a local

message queue of the messaging server itself. This means that a single message is

duplicated and exists on 3 servers simultaneously. Here, we decided the number of

duplicates to achieve the same availability as RAID storage [58, 59]. Hence, messaging

servers provide high availability (fault tolerance) to avoid message loss even in the case

where up to two servers are broken down, achieving high-throughput access without the

bottleneck of disk access.

Messaging server and KVS are homogeneously aligned in parallel on

messaging servers, which is effective for balancing load, removing single points of

failure, and flexible scaling of servers. In the following sections, this structure is

referred to as distributed message queue.

Figure 2.3 Example of logical rings of message queues

21

2.3.1.2. Logical Ring Structure of Distributed Message Queues

A messaging server is composed of logical rings covering the message queues of two

KVS servers and the local message queue. Figure 2.3 demonstrates the structure of

logical rings over message queues.

The messaging server associates with the queues of two KVS having the same

messages via logical ring and then synchronously processes messages

(storing/enqueuing, dequeuing, or deleting). For instance, after receiving messages, the

messaging servers distribute the same messages into both a local message queue and

two message queues associated by a logical ring. In other words, the state of linked

queues sharing the same logical ring is synchronized.

In each logical ring messaging servers can maintain multiple logical rings and

synchronize. In Fig. 2.4, the messaging server messaging-B has two message queues,

Q2 and Q3, where Q2 is associated with KVS-A and KVS-C via logical ring L2, and Q3

is associated with KVS-A and KVS-C via logical ring L3. From another point of view,

KVS also retain multiple logical rings. In Fig. 2.4, KVS-A retains L2, L3, and L4

connected to Q2 of messaging-B, Q3 of messaging-B, and Q4 of messaging-C,

respectively. For one process, KVS performs message processing of a single message

queue, whereas for multiple processes, KVS can perform message processing of

multiple message queues in parallel (details are explained in Sect. 2.3.3).

In CAP theory [60] the terms C, A, and P refer to consistency, availability, and

partition tolerance, thus, the structure of message queues on a logical ring obtains C-P

characteristic. This characteristic solves the issue of implementation of distributed

message queues. Although availability is not originally satisfied in the C-P model, the

proposed system also keeps availability on a certain level by allocating multiple logical

rings connected to the messaging servers and the two KVS. In this structure, even

though some of the logical rings may stop their function, the remaining logical rings can

keep continuous services.

2.3.2. Proposed KVS with Queue Structure

As mentioned before, the KVS has a queue structure on the physical memory of the

server, and the messaging server synchronizes message processing between the local

message queue and message queues of the two KVSs on the logical ring. In terms of

22

fault tolerance and availability of the whole messaging system, the proposed method has

two major features.

The first feature of the proposed method is the reduction of frequency and

amount of communication required to synchronize the message queues for achieving

high-throughput queuing. In the simple KVS-based method, extra processing of

metadata is required for every access of queues. For example, in assuming a simple

model for adopting the simple KVS-based method, messaging servers need to receive

and update the metadata for each storing process. In this case, the communication

frequency of the conventional method becomes more than 3 times larger than that of the

proposed method. The behavior of messaging systems with the high-throughput queuing

method is detailed in Sect. 2.3.3.

The second feature of the proposed method is the shortened downtime during

server failures. When broken or stopped servers recover from failure, the messaging

server gets all backup messages from the KVS message queues and then restarts

services after synchronizing the message queues to guarantee data consistency. Due to

the KVS retaining the physical queue structure, the messaging server efficiently obtains

messages by just a single communication. The behavior of messaging systems for

failure recovery is detailed in Sect. 2.3.4. On the other hand, in the simple KVS-based

method, messages of queues are not accumulated in a specified server and, thus, the

messaging server must access all servers repeatedly to resume each message one by one.

Figure 2.4 Method of communication to KVS for high-throughput queuing

23

This restriction prolongs their recovery time.

2.3.3. High-Throughput Queuing Method with KVS

The communication method between the messaging server and KVS to achieve

high-throughput queuing and guaranteed data consistency is described in Fig. 2.4.

Communication between messaging server and KVS in Fig. 2.4 corresponds to the

process between Q1 of messaging server A and Q1 of KVS B for synchronization in

Fig. 2.3. Each queue is connected by an individual TCP connection. Although backup

TCP connections are also prepared in practice to maintain availability, its explanation is

omitted here for the sake of brevity.

As shown in Fig. 2.4, the messaging server sends multiple synchronization

requests over a single TCP connection corresponding to a queue. KVS collectively

receives the requests (Fig. 2.4 (a)) and processes theses requests successively (Fig. 2.4

(b)). While the KVS sends multiple replies (Fig. 2.4 (c)), processes described in Fig. 2.4

(a) and Fig. 2.4 (b) are also performed simultaneously.

By communicating the queue messages of each server through single TCP

connections and processing requests in the order of their arrival sequence at the KVS,

the order of message processing between messaging server and KVS is guaranteed.

Furthermore, by issuing sequence numbers in every request and identifying the state of

synchronization through this sequence number, data consistency is maintained.

To increase throughput of synchronized processing while guaranteeing data

consistency of message queues, the conventional method increases multiplicity by

increasing the number of TCP connections and the proposed method increases the data

density (multiplicity) on TCP connections. The former access method is used in the

simple KVS-based method. However, this method raises several concerns: the possibility

of throughput degradation due to exclusive control among several TCP connections for

strict guarantees of data consistency and the complexity of multiple design parameters

of the network, such as the optimal number of TCP connections (or controls) to

maximize message throughput [61].

On the other hand, the proposed method achieves an efficient internal queue

lock of queue transactions by the simple design of using single TCP connections with

every one-to-one message queue. However, for the proposed method, several demerits

are considered. For example, due to a few TCP connections, influences of congestion

24

control [61] and connection latency of application requests may become significant. In

addition, the proposed method may not efficiently utilize CPUs on multi-cores for

parallel processing. In Sect 2.4.4, we discuss and evaluate to what degree these

influences are negligible.

2.3.4. Behavior of Failure and Recovery

We explain the behavior of our proposed method by referring to Figs. 2.3 and 2.4. When

server B breaks down, both messaging server B and KVS B stop operating. The

subsequent behavior is described as follows.

(1) In the wake of stopping messaging server B, the load balancer B isolates

the stopped messaging server B and keeps distributing messages to the

messaging servers A and C, thereby, steadily continuing message

processing.

(2) Messages that were processed shortly before messaging server B broke

down are also stored into KVS A and C, and are resumed at the time

messaging server B recovers.

(3) Breakdown of KVS B affects messaging servers A and C, which share the

logical ring connected to the queue of KVS B. Concretely, messaging

servers A and C detect the breakdown of KVS B by reply timeout, isolate

the KVS B, and continue service in duplication mode.

On the other hand, when server B recovers from failure, it tries to restart both

messaging server B and KVS B. The subsequent behavior is described as follows.

(1) Messaging server B obtains messages that were partly processed before it

broke down from KVS A or C sharing the same logical ring. After that,

messaging server B restarts its service.

(2) Messaging servers A and C using KVS B detect its recovery. KVS B

simultaneously obtains and synchronizes messages from the message

queues of messaging servers A or C. After that, KVS B restarts service.

25

2.4. Evaluation of High Throughput Queuing

2.4.1. Implementation and Evaluation Environment

We developed a messaging server and KVS as an event driven architecture [62]. These

server programs are implemented in the C programming language. For the environment

of our evaluation, we assume an e-mail system for smart phones representing the

message queue systems.

2.4.2. Throughput Evaluation of Message Delivery

We evaluate throughput of the message queue system proposed in Sect. 2.3.1 and

compare it with that of a conventional message queue system using RAID storages. An

overview of this evaluation architecture is depicted in Fig. 2.5.

The test program sends messages (e-mail data) to the messaging server by

SMTP. The messaging server stores messages into KVS and RAID storage using

proposed and conventional methods, respectively. After that, the messaging server

forwards the messages to the message transfer agent (MTA), which is a typical backend

system for the e-mail service, after which it deletes them from the message queue.

The test program sends messages to the messaging servers based on a

predetermined transmission rate. We adopt the combination of different message lengths,

consisting of 70% of 1 KB messages and 30% of 10 KB messages, used for the

evaluation of the conventional method [26].

First, we evaluate the maximum throughput (msg./s) defined as the rate at

which the messaging server can steadily process store-and-forward e-mails without

overflowing the messaging queues. Figure 2.6 shows the result of this simulation. This

result reveals that the proposed message queue system achieves 3,600 msg./s, which is

4.5 times larger than that of conventional message queue systems having the bottleneck

of disk access (850 msg./s).

26

Figure 2.5 Method for the evaluation of message queue system.

Figure 2.6 Throughputs of message queue systems

27

2.4.3. Performance of Proposed KVS

Next, we evaluate the method of communication processing to synchronize among

distributed message queues as proposed in Sect. 2.3.3. First, we compare the throughput

of the proposed method and the simple KVS-based method. Second, as a benchmark of

KVS performance, we compare throughputs of the proposed queue-type KVS with

memcached representing the in-memory KVS. Finally, we evaluate and discusse the

dependence of throughput on the number of message queues of KVSs.

2.4.3.1. Throughput Comparison with Simple KVS-based

Method

To compare the throughput of proposed method and simple KVS-based method, we

experimentally produce results for KVS by simulating the simple KVS-based method.

Figure 2.7 describes the overview of the evaluation for comparison of the throughputs.

The test program sends a pair of enqueue request of 0.1KB fixed messages and delete

request as one transaction to the KVS. Hence, we evaluate the maximum number of

transactions that can be successfully processed by KVS.

The prototype KVS based on the simple KVS-based method retains one

message queue, receives transactions via multiple TCP connections from the test

program, and performs message processing after setting an internal queue lock every

time. In this research, we vary the number of TCP connections from 1 to 100.

On the other hand, we evaluate the maximum throughput for our proposed

method while continuously connecting one test program and one message queue of a

KVS by a single TCP connection.

Figure 2.8 shows the results of the throughput evaluation. Throughput of the

proposed method is 91,000 msg./s, which is 3.8 times larger than that of the simple

KVS-based method (24,000 msg./s with 100 connections). This results from the

difference of the exclusive control methods and communication processing methods.

28

(a) The method based on standard KVS

(b) Proposed method

Figure 2.7 Evaluation of standard and proposed KVS methods

Figure 2.8 Transaction throughputs of KVS for different methods.

29

2.4.3.2. Throughput Comparison with memcached

We compare the throughput of proposed queue-type KVS with memcached as the

benchmark of in-memory KVS. memcached is well known as simple and

high-throughput KVS and is also an event-driven architecture and implemented in the C

language. Figure 2.9 describes the evaluation to compare both KVSs. Note that the

condition of traffic from the test program is same as that shown in Sect. 2.4.3.1. We

evaluate six values of message lengths (0.4, 1, 2, 4, 10, and 20 KB).

In this evaluation, due to that the total number of cores being four (2 cores 2

CPUs), the number of TCP connections used in memcached is also set to four.

Meanwhile, between 1 and 4 TCP connections in proposed KVS are prepared for

connection between one and four queues. We evaluated their maximum throughputs

under these conditions.

In Fig. 2.10, the x-axis and y-axis show message length and corresponding

throughputs, respectively. In addition to throughputs of KVS for the proposed method

and memcached, the throughput between test program and KVS is also described as a

reference value of the critical performance with message forwarding on a 1Gbps

network.

From the results, the maximum throughput of the proposed KVS is 200,000

msg./s when the message size is 0.4KB and there are two queues. Moreover, the

maximum throughput of the proposed KVS is 100,000 msg./s when the message length

is 1KB and there is only a single queue. Furthermore, in the range where the message

length is larger than 2KB, the maximum throughput of the proposed KVS reaches the

critical performance value of the 1Gbps network when there is only a single queue. The

results for message lengths 10KB and 20KB are omitted in Fig. 2.10. Here, we confirm

that doubling the number of queues does not affect the throughput when the message

length is 0.4KB. The relationship between throughput and the number of queues of

KVS, i.e., the total number of TCP connections, is discussed in Sect. 2.4.4.3.

 In comparison with memcached, the maximum throughput of KVS is

approximately 1.4 times as large as that of memcached with 1 KB messages. With 0.4

KB messages, the maximum throughput of KVS is approximately 2 times as large as

that of memcached. These results indicate that the proposed KVS achieves high

throughput when short messages are smaller than 1KB.

30

Although proposed KVS performs more functions including processing for

high availability and data consistency than memcached, the proposed communication

processing method is superior to that of memcached in dealing with short-length

messages. On the other hand, in the range where the message length is larger than 2KB,

throughput of the proposed method reaches critical performance values and there is a

margin to perform additional operations in the CPU usage (CPU usage is 3%/2.7%

when dealing with 10KB/20KB messages, respectively). These facts indicate that the

proposed method is always effective to enhance throughput even if more network

capacity is available.

Figure 2.9 Evaluation method of KVS

Figure 2.10 Transaction throughput of KVS for different messages sizes

31

2.4.3.3. Relationship between Number of Message Queues and

Throughput

We evaluate the dependence of throughput on the number of logical rings (the number

of queues) which KVS retains and processes. Figure 2.11 shows the overview of this

evaluation.

Both, test program and KVS have multiple queues and each queue is connected

by a single TCP connection. We evaluate throughput of the KVS when the number of

Figure 2.11 Evaluation method of KVS for different number of message queues

Figure 2.12 Transaction throughput of KVS for different number of message queues

32

queues (the total numbers of TCP connections) is 1, 2, 4, and 8. Referring to Sect.

2.4.4.2, maximum throughput is obtained when message length is 0.4KB for 2 message

queues or 1KB for 1 message queue. To eliminate the limit of network margin and

accentuate the effect of the different number of queues, we set the message length to

0.1KB.

Figure 2.12 shows the throughput of the KVS for different number of message

queues. For the proposed method, throughput for two message queues is 180,000 msg./s,

which is twice of that when using a single message queue. In this evaluation, even if the

number of message queues is more than two, CPU usage is at most 7%, which shows

that CPU is not a bottleneck. Meanwhile, for a message length of 0.1KB, the critical

performance value with message forwarding on the 1Gbps network is 1,300,000 msg./s,

which means that the network is also not the bottleneck.

There are three major tasks of the KVS: (a) receive requests, (b) store messages

into memory, and (c) send reply, as shown in Fig. 2.4. Additionally, both (a’) waiting for

requests after (c) and the communication time between the test program and KVS also

affect the throughput. The KVS processes multiple queues in parallel and each message

queue is handled by one process. Here, we consider that the throughput difference is not

caused by processes (a), (b), and (c) due to the margin of the CPU. Besides,

examination of the test program reveals that test program is no bottleneck for the CPU.

Therefore, we presume that the communication time between the test program and KVS

becomes the bottleneck. Concretely, the bottleneck originates from the window-based

flow control of the TCP connection. When the number of message queues (the total

number of TCP connections) increases, the bottleneck of communication between test

program and KVS seems to mitigate and throughput is improved due to each queue

being processed in parallel. Because KVS retains multiple message queues on logical

rings as shown in Fig. 2.3, the proposed method is less subject to the influence of

communication bottlenecks.

33

2.4.4. Experience in Real Message Queue Systems

Message queue systems as proposed in this chapter have been already applied to

continuously support commercial services for more than five years without any service

interruptions. This message queue system enables users to reduce the efforts for system

construction without requiring RAID storages. Meanwhile, this message queue system

also supports flexible system extension of the number of servers. From these features,

the proposed message queue system satisfies both high availability and scalability.

Moreover, the message queue system with distributed message queues is easy to

interrupt and reboot, which can update software without stopping. Furthermore, the

possibility that messaging server and KVS can coexist in one server contributes to a

reduction in maintenance and monitoring workload compared with conventional

message queue systems.

34

2.5. Related Work

For message queue systems achieving scalability and availability, several mail systems

utilize distributed file systems based on hash tables [63-65] or distributed KVS

Cassandra [66]. These proposals discuss scalability and availability by targeting the

mailbox system, however, both approaches of distributed message queues and obtained

throughputs are not mentioned in these works.

Moreover, in addition to the structure based on the pair of key and value in

KVS, column-type KVS [66] is used for storing data into N-dimensional associative

arrays. To our best knowledge, there has been no research on message queues utilizing

such column-type KVS, however, it can be physically used as queue-type KVS by

combining column-type KVS and simple KVS-based method. This KVS does not

include the solution of high-throughput data synchronization in distributed systems.

Hence, we conclude that the queue-type KVS proposed here is superior in performance.

2.6. Conclusion

In this chapter, we proposed an architecture for satisfying high throughput and high

scalability in a message queue system for processing massive volumes of short-length

messages through a distribution method of queue-type in-memory KVS and

synchronized processing of distributed queues by single TCP connections.

We embedded the proposed architecture and method into a mail system for

smart phones and performed evaluations of this system. The evaluation results revealed

that throughput of the proposed message queue system achieves 3,600 msg./s per server,

which is 4.5 times higher than that of the conventional method cooperating with RAID

storages. Moreover, the throughput of the proposed KVS is 200,000 transactions/s with

0.4 KB messages, which is 2 times the performance of memcached.

35

Chapter 3

Improved Resilience of Message Queue

System through Server Distribution

3.1. Introduction

Due to the progress of mobile network technology such as Long Term Evolution (LTE)

it has become popular to connect Machine-to-Machine (M2M) devices, such as smart

meters, health monitoring devices, or heavy equipment to the network. According to [1],

the number of connected wireless devices reached 10 billion in 2014 and this number

has been steadily increasing since then, especially with the continuous enhancements of

the social infrastructure through M2M services. The service system, in particular its

message queue system, is required to have high availability, which is considered among

the most important features of mission-critical systems beside high-throughput

processing of huge traffic volumes sent by devices. However, two issues need to be

addressed to simultaneously satisfy high availability and high-throughput processing in

a message queue system.

The first issue is that failover processing itself has a risk of failure. Generally,

mission-critical systems implement shared data and failover processing for providing

high availability (HA) services [39]. Failover processing includes application restart,

process initialization, and recovery of data. These processes consist of special

application-dependent processes, as well as common processes, such as health check

and error detection of hardware/software. Their design and implementation become

much more complex as the volume of messages to process becomes larger.

36

However, in recent years, catastrophic service failures of mission-critical

systems processing large volumes of messages with failover processing [39-41] have

frequently been reported. Causes of these service failures are usually software or

hardware defects and it is very difficult to exhaustively identify these defects at the

system testing stage because all possible cases of failover processing, e.g., complex

problems caused by only theoretically occurring defects, can hardly be tested in advance.

Therefore, a high-availability messaging system without failover processing is needed.

The second issue is to balance between consistency and availability. For

message queue systems, a strong consistency of messages and message queues is the

highest requisite to maintain reliable messaging. Furthermore, these message queue

systems also require maintaining the state of the messaging process and the internal

queue lock, which are denoted as queue transactions. To process large volumes of

messages, the message queue system generally consists of multiple servers, however,

maintaining consistency among these servers is a common issue for distributed

processing [67]. Following Consistency Availability Partition (CAP) tolerance

terminology [60], we can make a trade-off between consistency and availability at the

KVS.

Here, an approach is required in which consistency in the message queue

system can be guaranteed by the KVS functions and availability is improved by our

proposal in this chapter. More specifically, not only 365 days of non-stop service is

mandatory as long-term-availability, but also short-term-availability is required, e.g.,

even during a transient state when a failed server is being isolated or traffic congestion

is being eliminated, the messaging service can be continuously provided without

performance degradation. In this chapter, we propose a fabric message queue system

without failover processing. Fabric message queue describes the distribution of

messages to multiple servers in normal processing state to avoid failover processing.

This system has the following two features and advantages.

(a) The message queue system architecture based on distributed in-memory KVS can

provide long-term availability, i.e., it can continue its service wherever in the

message queue system server/process failures may occur, by distributing messages

to multiple servers, as well as by guaranteeing strong consistency of the messages

and queues by using KVS functions and the Paxos protocol [68, 69].

37

(b) The distribution method of messages to servers using round-robin with a slowdown

KVS exclusion and two logical counter-rotating KVS rings can achieve short-term

availability even during an underlying network failure and/or slowdown of servers.

 This chapter is organized as follows. First, we explain the research background

and issues related to message queue systems. We then present the system architecture

and design. Next, we show the implementation and the performance evaluation results

on availability of the system. Finally, we describe related work and conclusion.

Figure 3.1 Example of message queue system for M2M

Backend System

(Electricity Application)

...

Persistent Storage
/Data Store

Message Queue System

(Head-End System)

Store
(Queuing)
Message

Message Queue

M2M Devices

(Smart

Meters)

Messaging Server
Receive
(Enqueue)
Message

Forward
(Dequeue)
Message

Part/all of services

are stopped

Active/standby

configurations

ACT STBACT

A risk of failover
processing

Failover
Processing

・Mater Data

Management

・Device

Management

・Billing etc.

38

3.2. Background and Issues

3.2.1. Outline of Message Queue System for M2M Devices

Figure 3.1 outlines an example of the system structure for services of M2M devices.

Message queue systems are widely used for a large variety of services such as smart

meter services in an electric power company, health equipment monitoring services, etc.

Main functions of message queue systems are to reliably relay messages to the backend

system without message loss and to buffer the message traffic of devices.

3.2.2. Risk of Failover Processing

Figure 3.2 outlines an example of failover processing and our approach to achieve high

availability. Mission-critical systems usually have HA clusters for continuous service

when their components fail. HA clusters detect hardware/software failures and

immediately restart the application on another standby system, which is referred to as

Figure 3.2 Risk of failover processing in conventional systems and

our approach to achieve high-availability

39

failover.

 Conventional message queue systems have a risk of failover processing.

Similarly, our previously proposed system in Chapter 2 also partly has this risk because

it uses recovery processing in which another system (messaging server) on standby gets

all messages stored before the failure of the KVS.

To solve this issue caused by failover processing in the message queue system,

we take advantage of distributed in-memory KVS. Generally, distributed in-memory

KVS is used for high-throughput and scalability. However, we use it here for improving

availability of the message queue system. To remove failover processing, we follow the

approach of fabric messaging that distributes messages to all servers during the normal

processing state. A fabric is a topology in which nodes pass data to each other through

interconnected nodes in a mesh fashion. In data center network research, switch fabrics

are well known [70, 71]. In this chapter, we propose a fabric architecture on the

application layer containing the data store for solving the above-mentioned failover

processing issue of message queue systems (see Sect. 3.3.1).

3.2.3. Trade-off between Consistency and Availability

3.2.3.1. Queues on Distributed KVS Ring

For scalability of the data store, a general distributed KVS distributes data as (key,

value) pair by consistent hashing [72] and a cluster of distributed KVS is configured by

using range partitioning [72, 73] (the cluster of distributed KVS is denoted as KVS

ring). In the KVS ring, each server (coordinator in [72]) is responsible for the region

between itself and the previous server on the ring.

Our previously proposed message queue system in Chapter 2 simply applied

basic KVS technology, therefore, the consistency of messages cannot be maintained

when split-brain occurs as shown in Fig. 3.2. To maintain strong consistency, we use

Paxos, a protocol for obtaining consensus in interconnected unreliable processors,

which is widely used in many distributed processing systems [73].

However, even if both general distributed KVS technology and Paxos were

simply applied to the message queue system as shown in Fig. 3.3, there would be new

problems that are described in Sect. 3.2.3.2.

In Fig. 3.3, each KVS is assigned queues based on range partitioning. Each

queue is stored in three KVS and can be in either master or non-master state. The master

40

queue is responsible for queue transactions, such as enqueuing or dequeuing of

messages, and for message replication of the two non-master queues. If a KVS failure is

detected in a KVS ring by Paxos, the faulty KVS is isolated from the ring and one of the

non-master queues becomes the new master queue as alternative to the previous master

queue on the faulty KVS. The messaging server selects the KVS with master queue by

using consistent hashing and sends messages to this newly selected KVS.

3.2.3.2. Two Problems in Message Queue Systems

Figure 3.4 outlines the new problems that arise when applying conventional methods to

this message queue system. When constructing the message queue system, as shown in

Fig. 3.3, the KVS are connected to the underlying network, which consists of more than

a single network device (each device has its own standby device in case of a failure).

Considering a route change between switches in case of failure at a single or multiple

switches, the route stabilization time takes several seconds or more than 10 seconds in

either case.

Figure 3.3 Applying conventional method in real system

KVS-A

KVS ring

Master Non-master

KVS-B

KVS-C

KVS-D

KVS-E

Replicate

Non-master

Master Non-masterNon-master

Master Non-master
Non-master

Master Non-master
Non-master

Master Non-masterNon-master

Ring Direction

Network

Network failure monitoring

(Detection time: 1 to several sec)

Messaging

Server

Consistent

Hashing

Active

Standby

KVS failure monitoring

(Detection time: several to 10 sec)

41

The temporal performance degradation of a server is another problem. As

shown in Fig. 3.4, when the server of KVS-C fails, the performance of KVS-A and

KVS-B having the responsibility for non-master queues degrades due to multiple

reply-timeouts of KVS-C until the detection and isolation of KVS-C’s failure; Typically,

more than 10 seconds are needed for a server failure detection, see Fig. 3.3. Furthermore,

a heavy workload background job also temporally degrades server performance. This is

denoted as slowdown of a server. Above-mentioned examples may lead to the following

two problems of short-term availability in the message queue system as shown in Fig.

3.4.

(1) Large values of KVS failure detection timer

To avoid false detections of server-failures during the route stabilization of the

underlying network, the detection time for KVS failures must be set to a value that is

larger than the route stabilization time of the network, i.e., from several seconds to

above 10 seconds. Consequently, all messaging servers must wait for the response from

the faulty KVS until the KVS failure detection timer expires. The same problem also

Figure 3.4 Problems of applying conventional methods.

42

occurs for a slowdown. One example of this adverse effect is that the messaging server

cannot reply to the mobile devices for over 10 seconds, while wasting wireless

resources and degrading messaging service quality, see Fig. 3.4-(1).

(2) Concentration of message queue load after KVS failures

When KVS-C in Fig. 3.4 fails, KVS-D becomes the new master after the KVS failure

detection time has passed and the non-master queue is designated as the new master

queue as described in Sect. 3.2.3.1. The designation order of the new master queue

depends on the KVS ring’s direction. For example, if both KVS-C and KVS-D fail,

KVS-E is designated as the new master, therefore, it must process three master queues

of all three KVS (C+D+E). In this situation, the load of message traffic concentrates on

KVS-E, which can lead to performance degradation (see Fig. 3.4-(2)).

The first problem described above is because the detection time for the KVS

failure on the underlying network or a server slowdown can be relatively long compared

to the messaging time itself (tens of milliseconds for messaging versus more than ten

seconds for network stabilization or server slowdown). The second problem arises from

the nature of the distributed KVS since it is important for mission-critical systems to

continuously provide services even when multiple server failures occur [74, 75].

In this chapter, we propose distribution methods to solve these problems and

provide short-term-availability while guaranteeing the consistency of the messages by

the Paxos protocol used in the KVS.

43

3.3. Proposed Architecture and Distribution Methods

3.3.1. Architecture of Fabric Message Queue System

The architecture of the proposed fabric message queue system is shown in Fig. 3.5. Its

logical structure and functions as well as its physical configuration are described below.

3.3.1.1. Logical Structure and Functions

As mentioned before, the messaging server consists of two programs: the enqueue

controller (E-Ctrl), which receives messages and stores them to the queue (enqueue),

and the dequeue controller (D-Ctrl), which retrieves messages from the queues and

relays them. E-Ctrl distributes messages to all servers during the normal processing

state to remove failover processing. This architecture has fabric topology in which

nodes pass data to each other through interconnected nodes in a mesh fashion.

We describe the logical structure and function of proposed fabric message

queue system where the following numbers correspond to those shown in Fig. 3.5.

(1) The load balancing module dispatches incoming messages from the source clients to

the E-Ctrl in the same way as the conventional system. It monitors the TCP ports of

the E-Ctrl to avoid dispatching to a faulty E-Ctrl.

Figure 3.5 Fabric message queue system architecture

M2M

devices

Message Queue System

E-Ctrl

E-Ctrl

E-Ctrl D-Ctrl

D-Ctrl

D-Ctrl

Backend

system
L

o
a
d

 b
a
la

n
c
e
r

KVS-A

KVS-B

KVS-C

KVS ring 1

KVS ring 2

(1)

(3) Distributing to avoid
slowdown KVS

(5) Get messages from
master-queue with lock

(4) Two KVS
Counter-Rotating Rings

(2) Interconnecting
each module

44

(2) Multiple E-Ctrl and D-Ctrl are interconnected via multiple KVS. Both the E-Ctrl

and the D-Ctrl are stateless and operate cooperatively and independently through the

message queues in the KVS.

(3) The E-Ctrl selects a KVS by round-robin with a rule that excludes KVS in a faulty

and/or slowdown state, then stores the message at the selected KVS (see Sect. 3.2.1).

Therefore, the E-Ctrl can store messages, regardless if there are KVS failures and

can continue services.

(4) The KVS on a server are logically linked to shape a directional ring that includes

multiple KVS and provides distributed KVS. Message queues are deployed on the

KVS ring as mentioned in Sect. 3.2.3.1. Messages and message queues are handled

by the Paxos protocol as distributed KVS consisting of three KVS. Each KVS has

multiple message queues. In Fig. 3.5, there are three queues, the topmost one is a

master queue and the lower two are non-master queues. The E-Ctrl enqueues and the

D-Ctrl dequeues messages via the master queue. Functions for high availability such

as KVS failure detection, isolation of the faulty KVS, and the master/non-master

KVS reassignment, are based on the basic distributed KVS described in Sect. 3.2.3.

KVS can continue service such as enqueuing and dequeuing messages after failure

detection regardless of which KVS has a failure (regarding availability within the

failure detection, see Sect. 3.3.2.1).

(5) Multiple D-Ctrl get messages from multiple KVS and send them to the destination.

Therefore, there is enough redundancy for the messaging service even if

failure/slowdown of the D-Ctrl occurs. In detail, the D-Ctrl gets a message from one

of the master message queues and sends it to the destination. If the message is

successfully received by the destination, the D-Ctrl removes the message from the

master messaging queue. The D-Ctrl sets an internal lock on the messaging queue

while accessing it to arbitrate access conflicts. The D-Ctrl preferentially gets

messages from a local KVS, i.e., located on the same physical server, rather than

from non-local KVS to reduce processing overhead.

3.3.1.2. Physical Configuration and Features for High

Availability and Scalability

The fabric message queue system consists of N units of load balancers and servers, as

well as network devices (not shown explicitly in Fig. 3.5). All the servers have a

45

homogeneous configuration where the E-Ctrl, distributed KVS, and the D-Ctrl are all

located on one server. This configuration makes it easy to add/delete servers in this

system.

KVS use Paxos for communication within their logical KVS ring for

maintaining strong consistency, even in the case of network faults or split brain. We

consider two KVS rings that are independent of each other in our architecture. If a

server failure occurs in one KVS ring or its modules, this system can continue with the

messaging service by using the other KVS ring. Both KVS rings are connected to

different networks and therefore, this system can continue service even when one

network becomes disconnected. Based on the proposed fabric architecture, high

scalability and long-term-availability of the message queue system can be realized.

Note that regarding messages from a specific source to destination, the

message delivery is guaranteed if the destination is ready to receive the message, but the

order of message delivery is not necessarily guaranteed because multiple paths (KVS)

between the E-Ctrl and D-Ctrl exist. We designed a fabric architecture and multiple

paths to achieve higher availability. If the message queue system consists of N units of

load balancers and servers having the same performance, we consider that availability is

more important than message reordering for the majority of M2M services. If precise

ordering is required, adding a KVS selection condition could prevent message

reordering, e.g., a pair of source and destination client addresses is mapped to one

specific KVS.

46

3.3.2. Distribution Methods for Improving Short-Term

Availability

3.3.2.1. Round-Robin Method with Slowdown KVS Exclusion

To solve the problem (1) described in Sect. 3.2.3.2, i.e., when the detection time for the

KVS failure on the underlying network or a server slowdown is three orders of

magnitude longer than the messaging service itself, we define the KVS status as being

either in slowdown or no-slowdown. An E-Ctrl selects a KVS by the round-robin

method with a slowdown KVS exclusion, instead of the consistent hashing method

basically used in the conventional KVS.

 In detail, the E-Ctrl monitors the elapsed time that starts at the time of

transmitting messages to a KVS until reception by the KVS. The E-Ctrl has a threshold

for the elapsed time of each KVS denoted as slowdown detection time. If the elapsed

time exceeds the slowdown detection time, the E-Ctrl determines the KVS state as in

slowdown, after which it avoids storing messages in that KVS and stores them instead

on another KVS in non-slowdown state as shown in Fig. 3.6.

Figure 3.6 Distribution method avoiding slowdown KVS

47

By monitoring each KVS with a slowdown detection time of several hundred

milliseconds, we can avoid the longer detection time needed for the KVS failure or

server-slowdown. An optimal value of the slowdown detection time will be evaluated in

Sect. 3.4.3.

3.3.2.2. Two KVS Counter-Rotating Rings

To solve the problem of concentration of message queue load after KVS failures as

described in Sect. 3.2.3.2, we propose the message distribution method with two

counter-rotating KVS rings as shown in Fig. 3.7. This KVS has three queues, the

leftmost is the master queue and the other two are non-master queues. Both KVS rings

have opposite directions of processing order.

 In normal state, an E-Ctrl distributes messages to the master queues by

round-robin between both KVS rings, see (1) in Fig. 3.7. The master queues oversee the

message replication for the two non-master queue. If a KVS failure/slowdown happens,

Figure 3.7 Distribution method with 2 KVS rings

48

it would impact the two KVS that have the master queue sending replicated messages to

the non-master queues of the faulty KVS until the faulty KVS becomes isolated, see (2)

in Fig. 3.7. For example, a slowdown of KVS1-C in Fig. 3.7 would influence KVS1-A

and KVS1-B. At that time, if an E-Ctrl can determine KVS1-B slowdown as described

in Sect. 3.3.2.1, it skips with the next message to KVS2-B in the other KVS ring, which

is not influenced by the failure of KVS1-C.

 If a server failure occurs, an E-Ctrl can also determine the KVS slowdown and

it skips with the next message to the normal (non-failure) KVS. After that KVS detects

the faulty KVS and changes one of the non-master queues to be the new master queue.

For example, (3) in Fig. 3.7 shows that if a failure of Server-C occurs, the non-master

queues of KVS1-D and KVS2-B become master queues. This divides the load onto both

servers and is more effective when multiple server failures occur simultaneously, e.g.,

failures of Server-C and Server-D, see (4) in Fig. 3.7. For the conventional method that

has only a single KVS ring, KVS-E must process the data of three KVS (C+D+E) when

KVS-C and KVS-D fail. On the other hand, with our proposed method, KVS1-E and

KVS2-B only need to process data of two KVS under the same situation. Thus, the

proposed distribution method reduces the negative impacts on the service caused by

server/KVS process failures.

49

3.4. Implementation and Evaluation

3.4.1. Implementation and Methodology for Evaluation

E-Ctrl and D-Ctrl were implemented based on an event-driven architecture [62]

developed in the C language. We implemented KVS, which have a key-value data

structure, in Java and added functions for queue transactions to the KVS. The message

queue system for the evaluation consists of 5 E-Ctrl, 5 D-Ctrl, and 10 KVS. There are 2

logical KVS rings, each consisting of 5 KVS. Each KVS has 18 GB of memory for

storing more than a million messages.

 We evaluate the short-term-availability provided by proposed two methods

described in Sect. 3.3.2 and the long-term-availability of the fabric message queue

system described in Sect. 3.3.1. We intend to observe this behavior and evaluate

availability under server failures, therefore, we assume message sizes as 30 KB, which

is relatively large in our experience and it can therefore increase the server load of the

messaging server/KVS. A test client program generates the workload to the E-Ctrl and

the message queue system forwards the messages to a test destination server.

3.4.2. Verification of Detection of Slowdowns

To verify the effect of the round-robin method with slowdown KVS exclusion described

in Sect. 3.3.2.1, we compared the throughput of two message queue systems, one with

the proposed round-robin method with slowdown KVS exclusion and the other with

conventional consistent hashing method. Figure 3.8 outlines the test environment of the

evaluation. We let server-D fail while processing the workload and monitor the

throughput and the error responses to the test client program from all the E-Ctrl. The

test client program transmits the workload to E-Ctrl at a rate of 1200 msg./s that can be

processed stably under one server failure in this evaluation environment.

50

Throughputs of the two message queue systems are shown in Fig. 3.9. For the

proposed method, the throughput remains stable before and after the server failure. In

contrast, for the conventional consistent hashing method, the throughput is temporally

decreased for about 15 seconds after the server failure. The number of error responses is

shown in Fig. 3.10. Compared to the conventional method (2379 error responses), the

error responses decrease with the proposed method (214 error responses) by 92%. Thus,

it is shown that the proposed method increases the short-term-availability of the

message queue system.

Figure 3.8 Method of evaluation of message queue system

51

Figure 3.9 Throughput of message queue systems.

Figure 3.10 Number of error responses.

52

3.4.3. Determining the Optimal Slowdown Detection Time

To find an optimum value of the slowdown detection time described in Sect. 3.3.2.1, we

evaluate the performance of the proposed system for different parameter values. We use

the same test environment as shown in Fig. 3.8 and evaluate the average and variance of

the throughput for different slowdown detection time from 0.1 to 1 second.

The average and variance of the throughput are shown in Fig. 3.11. The

average throughput increases in the range from 0.1 to 0.4 seconds for the slowdown

detection time values, and flattens in the range larger than 0.4 seconds. On the other

hand, the variance of throughput decreases in the range from 0.1 to 0.4 seconds. Figure

3.12 shows the behavior of the throughput for two slowdown detection time values, 0.1

and 0.4 seconds, before and after a server failure. The throughput for 0.1 seconds has a

high fluctuation, while it is stable for 0.4 seconds. The average throughput for 0.1

seconds is 9% less than the throughput for 0.4 seconds.

In general, it is better to set smaller values for slowdown detection, because

larger values impact the waiting time of the source clients (mobile devices) as described

in Sect. 3.2.3.2. From the result in Fig. 3.11, an optimum value of slowdown detection

time is 0.4 sec.

Figure 3.11 Average and variance of throughput

for different slowdown detection time

53

The reason why the throughput is not stable for 0.1 seconds is an effect of the

copying garbage collection of Java. Copying garbage collection happened every second

in the test and the process of KVS stopped operation when the detection time value is in

the range from 0.1 to 0.3 seconds.

In conventional systems, the duration of copying garbage collection is

negligible. Previous research on garbage collection of Java [76] revealed that the

duration of copying garbage collection depends on the memory size and becomes

non-negligible when the memory size is larger than 1 GB. We estimate that the duration

time of copying garbage collection becomes longer, because each KVS has 18 GB

memory and must store a lot of key-value data including the metadata to achieve queue

transactions.

 If a KVS halts due to copying garbage collection for more than slowdown

detection time, the E-Ctrl stop transmitting messages to this KVS. Thus, the KVS has

nothing to process, leading to a decrease in throughput of the whole message queue

system. In addition, we presume this effect of copying garbage collection to be a

common problem of KVS-based systems, because many KVS implementations such as

Cassandra or Hbase [77] are implemented in Java and modern distributed systems are

equipped with large memory.

Figure 3.12 Throughput for different slowdown detection time values

(0.1 and 0.4 sec) over time.

54

3.4.4. Impact of Server Failures on Availability

We evaluate the performance of the proposed fabric message queue system from the

long-term-availability point of view. Figure 3.13 outlines the test environment of the

evaluation. We compare the performance behavior, throughput, and queue length of the

message queue of the proposed system and the conventional system. The conventional

system has two KVS same-direction rings because that is same as having a single KVS

ring with one direction. The queue length of the message queue reflects the variance of

load balancing in the whole system. We apply the optimum value of 0.4 seconds as the

slowdown detection time to the system.

For mission-critical systems, e.g., carrier grade systems, operators expect the

system to handle 2 simultaneous server failures and they construct the redundancy

system for this worst-case scenario. A single server can stably process 300 msg./s as

shown in Sect. 3.4.2, therefore, the test client program transmits the workload to the

E-Ctrl at a rate of 900 msg./s that can be processed stably when 2 server failures occur.

After 60 seconds of transmitting the workload, we first let server-D fail, followed by a

Figure 3.13 Performance evaluation of the proposed message queue system

55

Figure 3.14 Throughput of message queue system

(conventional method: same direction of both rings).

Figure 3.15 Queue lengths of each KVS

(conventional method: same direction of rings).

failure of server-E.

(1) Conventional Message queue system

Throughput of the conventional message queue system is shown in Fig. 3.14.

Throughput is stable when the first server failure happens, however, when the second

server fails, it decreases to zero, meaning that the messaging service completely stops.

After 5 seconds of stopping the messaging service, the service is recovered.

56

The queue length of the message queue in each KVS is shown in Fig. 3.15. For

example, the queue name “Q1-A” shows the queue of KVS belonging to ring 1 and

initially located in Server-A. When the Server-D failure occurs, the lengths of Q1-E and

Q2-E increase. We consider that it is caused by excluding KVS-D. When the server-E

failure occurs, the lengths of 6 queues (Q1-A，Q2-A, Q1-D，Q2-D，Q1-E，Q2-E) are

increased. We attribute this to the problem in load balancing as described in Sect.

3.2.3.2(2). Server-A that includes KVS1-A, KVS1-B, and D-Ctrl-A must process the

queues of 3 KVS and the failure of Server-E impacts the other KVS during the failure

detection time (described in Sect. 3.3.2.2) leading to a messaging service stop for 5

seconds.

(2) Proposed Message Queue System

The throughput of the proposed message queue system having the two KVS

counter-rotating rings is shown in Fig. 3.16. Compared to the conventional system in

Fig. 3.14, throughput in Fig. 3.16 remains rather stable when the first and second

servers fail. Throughput decreases about 20%, which corresponds to the workload of

two messaging (master) queues temporally in an out-of-service state out of the initial

five messaging (master) queues.

The queue lengths in each KVS are shown in Fig. 3.17 for the proposed system.

Compared to the conventional system in Fig. 3.15, the lengths of queues in Fig. 3.17 are

only slightly increased. That is caused by the proposed method reducing the impact of

load balancing as described in Sect. 3.2.2. Thus, it is shown that the proposed

architecture and two methods can continue the messaging service even if multiple server

failures occur. Therefore, it can provide long-term-availability.

57

Figure 3.16 Throughput of message queue system

(proposed method: opposite directions of rings).

Figure 3.17 Queue lengths of each KVS

(proposed method: opposite directions of rings).

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 60 120 180

Q
u

e
u

e
 le

n
g

th

Time [s]

Q1-A

Q1-B

Q1-C

Q1-D

Q1-E

Q2-A

Q2-B

Q2-C

Q2-D

Q2-E

Server-D down

Server-E down

Q2-E, Q2-C

Q1-A, Q1-B, Q1-C, Q1-D,

Q2-A, Q2-C, Q2-D, Q2-E

58

3.5. Related Work

We describe related work from three points of view: message queue systems, failover

processing, and distribution methods.

Regarding message queue systems, a queuing system based on distributed

in-memory KVS was proposed in [57]. Its queuing function deployed in the KVS is

similar to the function of our proposed system. However, it focused on the queuing part

only and it did not discuss about the availability of the whole system including the

messaging process. In addition, our approach of focusing on availability of distributed

in-memory KVS differs from conventional research.

Previous study in the risks of failover processing have been reported in [78, 79].

To avoid catastrophic service failures, they proposed management rules, e.g.,

monitoring system failures and verifying configurations of failover processing, and

preparations, e.g., procedures when system failure happens. It was also mentioned in

[78] that designing the system for a concentration of message load after failover

processing was important.

The shared nothing architecture [79] is similar to ours when distributing

messages in a normal processing state. However, the shared nothing system usually

doesn't duplicate messages and needs failover processing or recovery processes to

continue service. The significant difference between our proposed architecture and the

shared nothing architecture is when it is executed. Our proposed system always

executes the same process wherever a server failure happens, while application restart

and recovery process in the shared nothing architecture are executed only when a server

failure happens. Therefore, our proposed architecture can be more available than the

shared nothing architecture.

Regarding the distribution method of KVS, consistent hashing is the standard

distribution method of KVS such as in Cassandra. Our proposed method is optimized

for queuing and high availability in the messaging service.

59

3.6. Conclusion

In this chapter, we proposed a fabric message queue system that has the following

functions and advantages.

・ The message queue system architecture based on distributed in-memory KVS can

provide long-term-availability and can continue its service wherever in the message

queue system server/process failures may occur by distributing messages to multiple

servers. Furthermore, it can guarantee strong consistency of the messages and

message queues by using KVS functions and the Paxos protocol.

・ The distribution methods of messages to servers by using round-robin with a

slowdown KVS exclusion and two logical KVS counter-rotating rings can achieve

short-term-availability even during an underlying network failure and/or a

slowdown of servers.

Evaluation results show that this system can continue service without failover

processing. Compared with the conventional method, our proposed distribution methods

reduced 92% of user errors caused by server failures. Furthermore, we determined the

optimum value of slowdown detection time in our distribution method.

60

61

Chapter 4

Increased Throughput of Message Queue

System through Dequeue Scheduling

4.1. Introduction

In the Internet of Things (IoT) era, the amount of all digital data in the world created by

various devices and sensors is exponentially increasing and it is predicted to reach 40

ZB by 2020 [8]. IoT service systems utilizing data from devices typically consist of 3

groups: field devices which send and receive data, backend systems in a data

center/cloud, and the message queue systems located between the devices and backend

systems.

Message queue systems are widely used for interoperability and control of the

huge message traffic between devices and backend systems [81, 82]. Especially, the

control of message traffic has become an important requirement as the volume of IoT

messages has increased dramatically over the past years. There are several solutions

such as Kafka [48], Amazon Kinesis [83], Azure IoT Hub [84], etc., following different

approaches depending on their respective objectives. In addition, to satisfy these

requirements as well as obtaining a high availability, such as a short failover time of

within one second for social infrastructure systems, we proposed in the previous

chapters a high-throughput and reliable message queue system based on a distributed

in-memory key-value store (KVS).

Here, we address another issue of traffic control between devices and backend

systems for IoT services. Devices transmit messages periodically at their own intervals,

62

such as the period of log collection for their service requirements. On the other hand,

backend systems process messages at different rates to achieve maximum throughput

for the individual objectives of the IoT services, such as analysis, management of

devices, or data visualization. Therefore, to compensate for the heterogeneity in

message traffic between devices and backend systems, message queue systems use

buffering to handle message traffic from devices. This compensation is achieved

through distributed message queue systems, which enables the distribution and

load-balancing of message processing on multiple servers. In the past, the specifications

of field devices and backend systems were defined in advance. However, today’s IoT

service systems in conjunction with development and operations (DevOps) trends

require rapid implementation and continuous modification, additionally to the backend

system also becoming adaptable [85-88]. Furthermore, progresses of distribution

platforms such as Spark [49] or Storm [50], have dramatically improved the

performance of backend system. In this background, updating the processes or

parameter settings of backend system can impact the system’s performance.

In fact, when the number of backend systems connecting to the message queue

increases, we can observe that this situation impacts the performance of our proposed

message queue and degrades the throughput for retrieving messages from the message

queue (dequeue). By analyzing the factor of throughput degradation, we recognize a

large number of missed-dequeues, which means that the lack of messages in the selected

queue wastes computational resources.

Therefore, in this chapter, we focus on the dequeue process of distributed

message queue systems and we propose a method called Retry Dequeue-request

Scheduling (RDS) to solve the throughput degradation problem. We evaluate the RDS

method by simulation and also prove its advantage in experimental real servers.

This chapter is organized as follows. First, we explain the background and

issues of message queue systems for IoT. We then present our proposed method and its

design. Next, we show its performance evaluation by simulation, and the results from

the experimental evaluation. Finally, we describe related work and provide a conclusion.

63

4.2. Background

4.2.1. Outline of IoT Service System

4.2.1.1. Message Queue System in IoT Service

Figure 4.1 outlines an example of the system structure in IoT services. Message queues

are widely used for a large variety of services, e.g., monitoring/optimization of services

in industry, smart meter services in electricity companies, connected vehicle services, or

services of a telecom company collecting data from M2M devices. Message queues are

required for the interoperability and abstraction (absorption) of message traffic of

devices. By supporting IoT protocols, e.g., MQ Telemetry Transport (MQTT),

Representational State Transfer (REST), or Constrained Application Protocol (CoAP)

[89], and by making devices and backend system become loosely coupled (independent),

message queues enable the developer to interoperate between them rapidly. Message

queues buffer messages into a queue on a persistent storage (enqueue) and enable the

backend system to retrieve the messages from the queue at their own timing. Under the

condition that the message queue has both, sufficient performance to process messaging

traffic from devices and scalability in performance and storage, the message queue

enables the developers of the backend system to design their system without

Figure 4.1 Structure of IoT service system

Production

Planning

Backend System

(Enterprise Application)

...

Persistent Storage
/Data Store

Deque-
Request

Message Queue System

(Platform Tier)

Message Queue

IoT Devices

(Edge Tier)

Messaging Server

E-Ctrl D-Ctrl

MQTT, REST,
CoAP, etc.

Analysis

Dequeue

Compensate for the

heterogeneity in message traffic

Machine

Learning

Optimization

Enqueue

Send messages

periodically
Get messages in one’s

own processing time

Predictive

Maintenance

Supply Chain

Management

64

considering the entire volume of the messaging traffic.

4.2.1.2. Heterogeneity in IoT Message Traffic

It is generally agreed that IoT services require information from historical or real-time

data for their own objectives, such as monitoring and optimization [43-47]. In [43-45],

IoT service systems are required to manage the massive volume of data generated by

sensors in various fields, such as smart grids, connected vehicles, and heavy equipment,

etc. In [46], optimization at the enterprise level in smart manufacturing requires only

periodically collected data. In [47], general smart sensors are organized in simple

packages, i.e., they may consist of single chips and generate simple periodical data.

The general approach in IoT to find patterns in data is to collect much data

from devices and learn through trial-and-error of data analysis. This approach requires a

large data volume for various analyses. Therefore, traffic volume from devices

generating periodical message data has become enormous in IoT service systems. The

transmitted data size of sensors highly depends on their service requirements and

protocols, such as MQTT, REST, and Transport Layer Security (TLS) [90], etc. From

our past experiences with specific use cases, such as monitoring or optimization

services, we assume in this chapter that the data size is 1 KB, which is widely applied to

IoT services.

On the other hand, the backend system collects data for various IoT objectives,

such as monitoring and optimization, for which it retrieves messages from the queue at

its own non-periodic and process-dependent timing. The processing times differ by

context of message, message size, and other related data. To achieve higher throughput

by fully utilizing computational resources, the backend system retrieves messages from

the queue with a pull-based method [48]. We describe further details in Sect. 4.6. In

addition, progress in distribution platforms, such as Spark, leads to a dramatic change in

processing time of the backend system.

 Here it can be seen that while devices send massive amounts of periodical

messages, backend systems process messages at their own timing in IoT. Therefore, the

control function of the massive and heterogeneous message traffic in the message queue

becomes a crucial issue in IoT. In this chapter, we are targeting these heterogeneous

environments in the IoT service system.

65

4.2.2. Conventional Approach using Distributed Message

Queues

4.2.2.1. Architecture for High Scalability and Availability

In Chapter 3, we proposed a high-throughput and reliable message queue system based

on a distributed in-memory key-value store (KVS) for social infrastructure systems (Fig.

4.2). The proposed message queue system adopts a fabric architecture with connected

full-meshed servers for high scalability and availability. The proposed message queue

system consists of 3 parts: the enqueue controller (E-Ctrl) for receiving and storing

messages in a queue, the distributed queue to the KVS server as persistent storage, and

the dequeue controller (D-Ctrl) for receiving dequeue requests from the backend system

and retrieving the messages from queues. This structure enables to eliminate a single

point of failure and enhances the horizontal scalability of each part.

4.2.2.2. Transparency in Distributed Message Queues

In the proposed queue system as shown in Fig. 4.3, E-Ctrl and D-Ctrl provide access

transparency and location transparency for devices and backend system. Let us detail

Figure 4.2 Overview of distributed message queue system. E-Ctrl and D-Ctrl

denote enqueue controller and dequeue controller, respectively

66

their transparency using Fig. 4.3. In the message queue system, a logical queue consists

of multiple physical queues based on KVS. E-Ctrl and D-Ctrl share information of the

logical queue, such as the location of physical queues, and enable devices/backend

system to access logical queues as a single queue. When devices enqueue a new

message into the logical queue, the E-Ctrl selects one of the physical queues by

round-robin and physically enqueues it there.

 On the other hand, when the backend system dequeues messages from the

logical queue, the D-Ctrl searches for messages by round-robin in multiple message

queues and dequeues them from those. The backend system can require how many

messages are retrieved by a single dequeue-request and the D-Ctrl can dequeue

messages from multiple queues. If the backend system requires the maximum number

of messages and we define this number as Nmax, there are two types of D-Ctrl dequeue

procedures: (i) retrieving Nmax messages or (ii) retrieving a number less than Nmax

messages from one of the physical queues. When the D-Ctrl gets Nmax messages, it

sends these messages to the backend system. On the other hand, when the D-Ctrl gets

less than Nmax messages from one physical queue, it continues with dequeuing from the

next physical queues by round-robin until it has Nmax messages in total or the counter for

dequeue trials exceeds the setting of dequeue trials (retry out). Each D-Ctrl performs

Figure 4.3 Transparency in distributed message queues

67

dequeues in parallel. This distribution of dequeue accesses enables the backend system

to get the messages without considering the location where they were actually stored.

4.2.3. Outline of IoT Service System

As mentioned above, backend systems are required for rapid implementation and

continuous modification due to DevOps trends in IoT services. Developers modify

backend system parameters or data processing methods to adjust for variable

requirements or objectives of the IoT service. For example, an interval of dequeue

requests is required by the data processing time of backend systems for achieving IoT

service requirements. The developers also determine the number of backend systems to

ensure sufficient throughput.

However, as result of the real-world performance test in the case where a large

number of backend systems is connected to our proposed message queue, the

throughput is degraded by 20% from the expected message traffic volume. The reason

for the degradation of throughput is that a large number of dequeue requests wastes

computational resources of the message queue system. Especially missed-dequeues,

which occur when there is a lack of messages in the selected queue, consume the

computational resources for enqueue and dequeue operations (see Sect. 4.3.1).

 We focus on the enqueue traffic in the conventional approach and extend the

system based on the enqueue traffic. However, dequeuing (D-Ctrl) can become the

bottleneck of the IoT service system in the above case. For IoT services, it is a

fundamental issue for backend systems to modify data processing continually without

the need for parameter tuning. To solve this issue, we propose novel dequeue methods

in the distributed message queue in this chapter.

68

4.3. Analysis of Throughput Degradation and Proposal

In this section, we first analyze the processing of the message queue to solve the

problem of throughput degradation. Next, we analyze the problem of throughput

degradation based on computational resources. Finally, we propose two new dequeuing

methods that decrease the number of dequeue requests from the backend system.

4.3.1. Process of Distributed Message Queue

Figure 4.4 shows a simplified view of each process of the message queue. There are

three kinds of processes: enqueue, dequeue, and delete. Furthermore, we distinguish

between two kinds of dequeues: missed-dequeue and hit-dequeue. Here, hit-dequeue

describes the successful retrieval of messages from the selected queue. Note that

hit-dequeues always include at least one message.

When D-Ctrl receives a dequeue request from the backend system, it selects

one of the message queues and sends a dequeue request. Here, backend system sets the

number of maximum messages and we define this number as Nmax. If there are no

messages in the selected queue, D-Ctrl gets a negative response that we refer to as

missed-dequeue including no messages. If there are one or more messages in the

selected queue, D-Ctrl gets a positive response that we denote as hit-dequeue regardless

Figure 4.4 Process of distributed message queue

69

of whether D-Ctrl gets Nmax messages or not. If D-Ctrl does not get Nmax messages in

total, D-Ctrl selects another message queue by round-robin and sends the dequeue

request to it. D-Ctrl continues to select another message queue until it gets Nmax

messages in total or a retry out occurs.

After the backend system finishes processing data, it issues a delete request to

D-Ctrl. A delete process corresponds to each message in the hit-dequeue process.

Therefore, we define the computational cost of hit-dequeues including delete processes

simply in the following consideration.

4.3.2. Analysis of Throughput Degradation

First, we consider the computational resources of data processing in a distributed

messaging queue. For calculating the maximum throughput, if we define all the

computational resources of the message queue system as Rc, the total cost of the

enqueue process as Ce, the total cost of the hit-dequeue process as Cdh, and the total cost

of the missed-dequeue process as Cdm, we obtain following expression.

𝑅𝑐 = 𝐶𝑒 + 𝐶𝑑ℎ + 𝐶𝑑𝑚 (1)

This expression means that the enqueue and dequeue processing share all computational

resources. If we define the enqueue message traffic as E [msg./s], the cost of the

enqueue process per message as ce0, the missed-dequeue message traffic as Dm [msg./s],

and the cost of the missed-dequeue process per message as cdm0, we obtain the following

expression.

𝑅𝑐 = 𝐸 𝑐𝑒0 + 𝐶𝑑ℎ + 𝐷𝑚 𝑐𝑑𝑚0 (2)

In Eq. (2), Cdh is a variable depending on how many messages are retrieved by D-Ctrl in

a single dequeue request from a selected queue. On the other hand, ce0 and cdm0 are

constant because enqueue and missed-dequeue are processed individually.

The total cost of the hit-dequeue process Cdh can be divided into two parts: the

cost of constant processing and the cost of variable processing depending on the number

of messages D-Ctrl retrieves by one dequeue. If we define hit-dequeue message traffic

as Dh [msg./s], the cost of constant processing per message as cdh0, the number of

messages D-Ctrl obtained by one dequeue request as Ni, and the cost of variable

processing when D-Ctrl gets Ni messages by one dequeue request as cdhNi, we obtain the

following expression in Eq. (3).

70

𝐶𝑑ℎ = 𝐷ℎ 𝑐𝑑ℎ0 + ∑ 𝑁𝑖 𝑐𝑑ℎ𝑁𝑖

𝐷ℎ

𝑖=1

 (3)

Since the number of input messages to a message queue equals the number of output

messages, enqueue message traffic E equals the hit-dequeue message traffic Dh. Hence,

we obtain the following expression in Eq. (4).

𝑅𝑐 = 𝐸 (𝑐𝑒0 + 𝑐𝑑ℎ0) + ∑ 𝑁𝑖 𝑐𝑑ℎ𝑁𝑖

𝐷ℎ

𝑖=1

+ 𝐷𝑚𝑐𝑑𝑚0 (4)

In this expression, the first term represents the cost depending on enqueue message

traffic. The second term is the hit-dequeue cost depending on both how many messages

D-Ctrl gets by one dequeue request and the hit-dequeue process. If D-Ctrl can get

messages efficiently by a single dequeue request, the second term would decrease. The

third term is the cost of missed-dequeues and it is in proportion to missed-dequeue

message traffic Dm, which is independent of the enqueue message traffic E. This term

represents the loss and is independent of the input message traffic.

Here, we consider the problem of throughput degradation described in Sect.

4.2.3, where the enqueue message traffic is not changed and the dequeue message traffic

is changed. Therefore, we focus on the third term and take an approach to reduce the

number of missed-dequeue requests.

4.3.3. Proposed Methods

In this section, we propose two dequeue methods to reduce missed-dequeue requests to

avoid throughput degradation.

4.3.3.1. Periodical Monitoring Scheduling (PMS)

Figure 4.5 outlines a dequeue method we call Periodical Monitoring and Scheduling

(PMS). PMS aims at reducing the number of missed-dequeues by periodically

monitoring each message queue to gather the message counter information. D-Ctrl can

access a message queue, which has a sufficient number of messages (Fig. 4.5 (a)) by

status monitoring. If there are no queues which have enough messages, D-Ctrl regulates

71

the access to the message queues (Fig. 4.5 (b)). PMS efficiently accesses the message

queues to reduce the number of missed-dequeues trading off for the additional cost of

periodical monitoring. If we define the monitoring traffic as M [msg./s] and the cost of

monitoring one queue as cM, we obtain the following expression.

𝑅𝑐 = 𝐸 (𝑐𝑒0 + 𝑐𝑑ℎ0) + ∑ 𝑁𝑖 𝑐𝑑ℎ𝑁𝑖

𝐷ℎ

𝑖=1

+ 𝐷𝑚 𝑐𝑑𝑚0 + 𝑀 𝑐𝑀 (5)

In this expression, the missed-dequeue cost (third term) and the monitoring cost (fourth

term) are in a trade-off relationship.

4.3.3.2. Retry Dequeue-Request Scheduling (RDS)

Figure 4.6 outlines a dequeue method we call Retry Dequeue-Request Scheduling

(RDS). RDS aims at reducing the sending of dequeue requests to message queues by

waiting until messages arrive at the message queues. When D-Ctrl receives a dequeue

request from backend system, D-Ctrl accesses the selected message queue. If D-Ctrl

cannot get any messages (i.e., missed-dequeue occurs), D-Ctrl holds responses to

Figure 4.5 Periodical monitoring and scheduling (PMS) method

72

backend system and registers these requests to the distributed dequeue scheduler where

each registered request waits for its next retrial after a certain interval. After this interval,

the backend system sends the next dequeue request. RDS can reduce the third term

missed-dequeue cost and the second term hit-dequeue cost of Eq. (4). Scheduling time

(sleep time) of RDS is in a trade-off relationship with the latency of the message queue,

which impacts the backend system’s data processing time.

Figure 4.6 Retry Dequeue-request Scheduling (RDS) method

73

4.4. Simulation Evaluation

4.4.1. Description of the Simulation Model

To investigate the effectiveness of proposed PMS and RDS methods for maintaining

high throughput in the heterogeneous environment as described in Sect.4.2.1.2, we

calculate throughput of these methods in a simulation model as shown in Fig. 4.7. We

set parameter values, such as enqueue/dequeue/monitoring cost, based on measured

values from existing real-world message queue systems. In fact, in our message queue

system, compared with the enqueue operation, the dequeue operation only includes

dequeue lock (internal queue lock) and specific mutual exclusion. To emphasize this

characteristic in this simulation, the cost of the dequeue operation is set to 20 times

larger as that of the enqueue operation. Additionally, we set the maximum number of 3

single dequeues to meet the setting of the real message queue. This parameter

contributes to keeping low latency of one dequeue by reducing access overhead of

multiple servers.

Here, detailed views of E-Ctrl and D-Ctrl are also depicted in Fig. 4.8. In Fig.

4.8, the client application regularly generates messages and sends them to E-Ctrl of the

message queue system, due to that most devices send messages periodically in IoT

Figure 4.7 Simulation model of message queue systems

74

services. We assume that a client selects one of the E-Ctrl randomly each time. E-Ctrl

receives this message and stores it into one of the queues selected by the queue selection

unit in Fig. 4.8 (a). In this simulation, the queue selection unit selects the queue by

round-robin ordering.

On the other hand, the backend system sends dequeue requests to D-Ctrl at

random intervals following a Poisson process. Here, if we define the dequeue request

rate as D [msg./s], the expected arrival rate of dequeue requests from one backend

system used for definition of the Poisson process as , the maximum number of

messages to collect at each dequeue request as 𝑁𝑚𝑎𝑥, and the number of backend

systems as B, we obtain the following expression.

D = λ 𝑁𝑚𝑎𝑥 B (6)

In this expression, dequeue request rate D includes both, hit-dequeue and

missed-dequeue. In other words, a part of is spent for missed-dequeues and itself

depends on the processing time and settings of the backend system in the real system.

 In this simulation, we set that one of backend system corresponds to one D-Ctrl

without duplication. After D-Ctrl receives a dequeue request, D-Ctrl accesses queues

selected by the queue selection unit in Fig. 4.8 (b). The function of this unit is different

between PMS and RDS methods. In PMS, the queue selection unit selects the queues in

descending order of the number of stored messages by referring to the message counter

Figure 4.8 Structures of E-Ctrl and D-Ctrl

75

information of the monitoring unit, which is periodically updated by monitoring all

queues.

 In RDS, the queue selection unit selects the queue by round-robin ordering. In

addition, when a missed-dequeue occurs, the dequeue request is registered to a

distributed dequeue scheduler without responding to the backend system and retried

after a certain interval.

Based on the above models for RDS and PMS methods, we computed

throughput estimated by the number of received messages by the backend system. The

simulation setup is listed in Table I. In this table, 𝑐𝑒0, 𝑐𝑑ℎ0 , 𝑐𝑑ℎ , 𝑐𝑑𝑚0 , and 𝑐𝑀

correspond to Eq. (4) and (5). For implementation, we used the library for the discrete

event simulator NS3 [91] and implemented the simulation program in the C++ language.

We decided data size by the reference from an equipment monitoring service.

4.4.2. Simulation Results and Discussion

Figure 4.9 shows the throughput comparison of message queue systems achieved by

conventional, PMS, and RDS methods. Here, conventional method indicates the simple

dequeuing based on round-robin without monitoring and scheduling. As mentioned

before, dequeue request rate is obtained by Eq. (6) and includes both hit-dequeue and

missed-dequeue. In this simulation, we set arrival rate of dequeue requests from one of

Table I Simulation setup.

Description Value

Number of E-Ctrl/queues/D-Ctrl/backend system B 10/10/10/10

Enqueue cost (time) ce0 0.001 [s]

Dequeue cost w/o msg (time) cdh0 0.02 [s]

Dequeue cost w/ msg (time) cdh 0.001 [s]

Missed-dequeue cost (time) cdm0 0.02 [s]

Monitoring cost (time) cM 0.0001[s]

Max. number dequeued msg/request Nmax 100

Arrival rate of dequeue requests from backend system 10-200 [/s]

Message size 1 KB

Max. number of dequeued messages for single dequeue 3

76

backend system [/s] in the range from 10 to 200.

In Fig. 4.9, by applying the conventional method, throughput is gradually

degraded as the arrival rate of dequeue requests increases. For PMS, when is in the

range of 100 to 200, throughput of the PMS method is higher than that of the

conventional method. Moreover, compared with conventional and PMS methods,

especially the RDS method maintains the highest throughput, regardless of the increase

in arrival rate of dequeue requests. Figure 4.10 shows the hit-dequeue rate comparison

achieved by conventional, PMS, and RDS methods. The hit-dequeue rate represents the

number of hit-dequeues as a percentage of the number of all dequeue requests.

Comparing Fig. 4.10 to Fig. 4.9, it is obvious that throughput of the message queue

system has a strong relationship with the hit-dequeue rate. As mentioned in Sect. 4.3.2,

the RDS method reduces the third term missed-dequeue cost of Eq. (4). On other hand,

for PMS, when is in the range of 100 to 200, the hit-dequeue rate of the PMS method

is lower than that of the conventional method. This result indicates that the PMS method

cannot reduce the third term missed-dequeue cost of Eq. (4), however, the throughput in

Fig. 4.9 is higher than the throughput of the conventional method when is in the

range of 100 to 200.

77

Figure 4.9 Throughput comparison between conventional method (solid line)

and proposed PMS/RDS methods (dashed lines)

Figure 4.10 Hit-dequeue rate comparison between conventional method (solid

line) and proposed PMS/RDS methods (dashed lines)

78

Here, we consider the second term hit-dequeue cost of Eq. (4). Hit-dequeue

cost depends on how many messages there are for one dequeue request. Unlike the

missed-dequeue cost, hit-dequeue cost contributes to efficient dequeuing and throughput

enhancement. Figure 4.11 shows the comparison of the average number of messages per

hit-dequeue achieved by conventional, PMS, and RDS methods. The average number of

messages per hit-dequeue describes the average number of messages D-Ctrl retrieves by

one dequeue request. For the PMS method, when is in the range of 100 to 200, the

average number of messages per hit-dequeue of the PMS method is higher than that of

the conventional method. From this result, we proved that the PMS method dequeues

more efficiently than the conventional method and the second term hit-dequeue cost of

Eq. (4) enhances the throughput of the PMS method.

Here, we discuss why PMS does not contribute to maintaining the high

throughput we expected and why RDS can maintain a high throughput. A conceivable

explanation is as follows. In the PMS method, each D-Ctrl dequeues from a message

queue by periodically monitoring each message queue to gather the message counter

Figure 4.11 A comparison of average number of messages per hit-dequeues between

conventional method (solid line) and proposed PMS/RDS methods

(dashed lines)

79

information. At first, we predicted that D-Ctrl can successfully access the queue having

the largest number of messages with high accuracy, which increases the hit-dequeue rate.

However, hit-dequeue rate decreases in the PMS method as shown in Fig. 4.10. On the

other hand, the PMS method increases the efficiency of dequeuing as shown in Fig. 4.11.

These facts suggest that access contentions from D-Ctrl occur in the PMS method. We

consider that multiple D-Ctrl dequeue from the same message queue which has the most

messages at the same time. Although a D-Ctrl which accesses the queue first processes

all messages from the queue as hit-dequeue, the others following it cannot dequeue any

messages and generate missed-dequeues. In other words, PMS potentially gives D-Ctrl

the access direction toward the same queues by referring to monitoring results, which

increases the probability of access contention from D-Ctrl.

In contrast, in RDS each D-Ctrl independently selects queues to dequeue by

round-robin, which is comparable to D-Ctrl randomly selecting queues. Therefore, the

RDS method increases the hit-dequeue rate as shown in Fig. 4.10 and the average

number of messages per hit-dequeue as shown in Fig. 4.11 by waiting for dequeue

requests in order to increase the probability of messages arrivals at the message queues.

In short, we show that our analysis of Eq. (4) is valid for the throughput degradation of

message queues.

Figure 4.12 Relationship between sleep time and throughput for conventional

method (solid line) and RDS (dashed lines)

80

4.4.3. Evaluation and Discussion of Optimal Sleep Time for

RDS

In Sect. 4.2, we showed the superiority of the RDS method. As mentioned in Sect.

4.3.2.2, sleep time of RDS determines the highest latency. Moreover, to increase the

sleep time means limiting active connections between D-Ctrl and the backend system.

This phenomenon may be either effective in enhancing throughput due to reducing

excessive resource usage or ineffective due to limiting connections to dequeue

excessively. Therefore, we assume the existence of an optimal sleep time to achieve

maximum throughput without critical latency degradation. To investigate this

assumption, we evaluate the relationship between sleep time and throughput for RDS

method as described in Fig. 4.12. In this figure, when sleep time is 5.0 seconds, the

message queue systems achieve the highest throughput. When the sleep time is longer

or shorter than 5.0 seconds, we observe throughput degradation. These results indicate

the existence of an optimal sleep time. The duration of sleep time strongly affects the

obtained throughput.

Here, we discuss why throughput in the condition that sleep time is 5.0 seconds

is highest. A conceivable explanation is as follows. As mentioned in Sect. 4.2,

increasing hit-dequeue rate and the average number of messages per hit-dequeue

improves dequeuing efficiency resulting in a higher message throughput. RDS enables

efficiency of dequeuing by waiting for dequeue requests during sleep time in order to

increase the probability of messages arriving at the message queues. However, the

longer the sleep time is, the lower the throughput of the dequeue request becomes. If

there are messages in a queue, decreasing throughput of the dequeue request means also

decreasing the hit-dequeue throughput. Therefore, in RDS, there is trade-off between

the efficiency of dequeue and throughput of the dequeue request. This trade-off is

included in the second term hit-dequeue cost of Eq. (4), which depends on the queue

status whether it has messages or not. We consider that a sleep time of 5.0s is

well-balanced to obtain good values for both, efficiency of dequeuing and throughput of

dequeue requests.

81

4.5. Experimental Evaluation

4.5.1. Implementation and Methodology for Evaluation

From simulation results in Sect. 4, we revealed that high throughput of message queue

systems is successfully maintained by applying the RDS method, even though the

dequeue request rate is much higher. Actually, between the simulation and real

environment, small differences of parameters/costs and deviation of processing timing

are acknowledged. Therefore, to investigate the effectiveness of RDS in a real message

queue, we implemented RDS for a message queue in real servers and evaluate its

throughput. We evaluate the RDS method in the real heterogeneous environment

described in Sect. 4.3.3.2. We designed enqueue/dequeue communication based on the

Representational State Transfer (REST) protocol and prepared message data based on

text log data of equipment monitoring services.

 Figure 4.13 describes the environment of the experimental evaluation system

with message queues. As shown in Fig. 4.13, we prepared a message queue having 10

sets of E/D-Ctrl and a queue with 10 virtual machines on 5 servers. 1 CPU is assigned

to each set of E/D-Ctrl, and 2 CPUs are assigned to each queue. To evaluate this

message queue, traffic test tools on other servers send enqueue and dequeue requests.

Figure 4.13 Environment of experimental evaluation of a message queue

82

Traffic test tools represent both field devices as message senders as well as the backend

system as message receiver. The average number of received messages per second is

estimated as throughput of the message queue systems.

 Table 2 lists the parameter settings for the experimental evaluation setup. Note

that we unified configurable design parameters of experimental evaluation with those of

the simulation.

4.5.2. Results and Discussion

Figure 4.14 shows the throughput comparison of real message queue systems achieved

by conventional and RDS methods with varying dequeue request rate from traffic test

tools. As the dequeue request rate increases, throughput of the conventional method is

degraded, however, throughput of RDS is maintained at a high level. When the arrival

rate of dequeue requests reaches 200 and compared with the conventional method, the

RDS method with sleep time of 0.1 s contributes to 80% improvement of throughput.

Compared with simulation results, although the absolute throughput value is different,

the tendency of the graph is relatively similar.

 From the viewpoint of sleep time in RDS, high throughput is well maintained

in the range of 0.1 s to 0.5 s. When the sleep time exceeds 1.0 s, we observe visible

throughput degradation. This result strongly supports the assumption that excessive

sleep time causes throughput degradation as explained in Sect. 4.2.

 As a result, we reveal that the RDS method is effective for maintaining high

throughput of message queue systems even if the amount of dequeue requests from the

backend system greatly increases.

Table II Setup of experimental evaluation

Description Value

Number of E-Ctrl/queues/D-Ctrl/backend system B 10/10/10/10

Max. number dequeued msg/request 𝑵𝒎𝒂𝒙 100

Message size 1 KB

Max. number of message queues for single dequeue 3

83

4.6. Related Work

We describe related work on polling system models from two perspectives: queuing

theory and IoT systems. Our proposed methods are based on research on polling system

models. While a typical polling system consists of multiple queues accessed in cyclic

order by a single server [92], our proposed system consists of multiple distributed

message queues mesh-accessed by multiple servers.

There are many publications on polling systems that have been developed since

the late 1950s [93]. In several surveys, the most notable ones written by Takagi [92],

detailed and comprehensive descriptions of the mathematical analysis of polling

systems are presented. Boon et al. [94] provided comprehensive descriptions of

applications to polling systems, such as a production system, which consists of a single

queue accessed by multiple processes.

However, to the best of our knowledge, there have been only few reports on

polling methods, which have multiple queues with mesh-access from multiple servers as

in our proposal. In this chapter, we simulated the polling model, which has a client

Figure 4.14 Throughput comparison between conventional and RDS method on

experimental evaluation. Several patterns of are set for RDS to

investigate the optimal sleep time.

84

application putting messages onto these queues at regular intervals and a backend

application polling data at random intervals.

Regarding IoT systems, dequeuing methods follow not only the polling (“pull”)

model, but also the “push” model. In the “push” model, the message queue system

automatically sends messages to preliminarily registered backend systems at the timing

when the message queue system receives messages from field devices. In the “pull”

model, backend system send dequeue requests to the message queue system and retrieve

messages.

Generally, the “push” model is effective in the case when backend systems

have sufficient computing resources to process messages sent by the message queue

system. Jiang et al. [95] indicate that “push” service can be faster and more

energy-efficient for the backend system because in this approach the backend system

does not need to look up a message queue or periodically synchronize.

On the other hand, the “pull” model is effective in the case when consumers

make full use of computing resources to process messages and it is frequently used in

cloud computing systems [48, 83, 84]. Kreps et al. [48] also mentioned that the “pull”

model is more suitable for their applications since each client obtains some advantages:

sustainability of retrieving the messages at the maximum rate and avoidance of message

flooding by being pushed faster than the client can handle. Therefore, our pull-based

proposal has advantages to achieve high throughput of message processing for fully

utilizing computational resources of the backend system.

85

4.7. Conclusion

For the IoT era, message queue systems are required to have interoperability and the

ability to control the huge message traffic between devices and the backend system. In

this chapter, we proposed the dequeuing method called Retry Dequeue-request

Scheduling (RDS) to solve the throughput degradation of distributed message queue

systems.

RDS can reduce the unnecessary transmissions of dequeue requests to the

message queues by waiting during the scheduling time for messages to arrive at the

message queues. Especially, RDS can better reduce throughput degradation due to

missed-dequeue messages than the conventional method.

By simulation evaluation, we compared throughputs achieved by the

conventional method, RDS, and Periodical Monitoring and Scheduling (PMS), which is

another dequeuing method proposed for reducing the number of missed-dequeues by

periodically monitoring each message queue to gather message counter information.

Simulation results show that RDS is able to maintain highest throughput, regardless of

an increase in the dequeue request rate.

Experimental evaluation results also show that the RDS method achieves 80%

higher throughput than the conventional method in real systems. Furthermore, we

demonstrated that the setting of the optimal sleep time improves the efficiency of the

proposed method even further.

86

87

Chapter 5

Conclusion and Future Work

The innovation of smart phones, Machine-to-Machine (M2M) communication, and the

Internet of Things (IoT) is leading to an explosion in the number of devices connected

to the network. In this thesis, we focused on the upcoming changes of network systems

providing services or applications to a drastically increasing number of users. We

discuss how message queue systems should be designed to process the significant

increase in data volume created by existing and new devices and how to achieve other

requirements such as availability and scalability.

We characterized these developments to proceed through roughly three phases.

The first phase consists of the increase of short messages used for e.g. mobile email

services, SMS, and SNS from 2008 to 2013, which started with the spread of smart

phones. The second phase extended short messages to social infrastructure fields

beyond smart phones, such as smart meters and health equipment from 2013 to 2017.

The third phase is driven by the progress of IoT applications and its extension to

industries, home, etc., which is expected to continue until about 2020.

For the first phase, the most important issue is the high-throughput and scalable

processing of huge volumes of messages in smart phone services. To solve this issue,

we proposed high-throughput queuing techniques and an architecture of distributed

message queue systems to deliver much more messages than in the past. We designed a

message queue system based on a distributed in-memory key-value store (KVS) to meet

the requirements of throughput and scalability. We proposed an architecture for

satisfying high throughput and high scalability in the message queue system for

processing massive volumes of short-length messages through a distribution method of

queue-type in-memory KVS and synchronized processing of distributed queues by

single TCP connections. We embedded the proposed architecture and method into a mail

88

system for smart phones and performed evaluations of this system. The evaluation

results reveal that the throughput of the proposed message queue system achieves 3,600

msg/s per server, which is 5 times higher than that of the conventional method

cooperating with RAID storages. Moreover, the throughput of the proposed KVS is

200,000 transactions/s for message sizes of 0.4 KB, which is double as fast as

memcached.

For the second phase, M2M services such as metering and monitoring services

have enhanced the social infrastructure field. As a social infrastructure, the service

system, especially the message queue system, is required to satisfy both high

availability and high throughput at the same time. To solve this issue, we proposed a

resilient message queue system based on a distributed KVS. Its servers are

interconnected among each other and messages are distributed to multiple servers

during the normal processing state. Our proposed system can provide long-term

availability, continuing its service regardless of where in the message queue system

server/process failures may occur, by distributing messages to multiple servers as well

as guaranteeing strong consistency of the messages/message queues by using KVS

functions and the Paxos protocol. To achieve short-term availability even during an

underlying network failure and/or slowdown of servers, we proposed message

distribution methods using round-robin with a slowdown KVS exclusion and two

logical KVS counter-rotating rings. Evaluation results show that this system can

continue service without failover processing. Compared with the conventional method,

our proposed distribution methods can reduce 92% of errors caused by server failures.

Furthermore, we determined the optimum value of slowdown detection time in our

distribution method.

In the third phase, IoT services require both information from historical and

real-time data for their own objectives, such as optimization services or learning data

analysis through trial-and-error for finding patterns in the data. This approach requires

collecting large message volumes periodically created by devices. On other hand, the

backend system retrieves messages from the message queue at its own non-periodic and

process-dependent timing. Therefore, the control function of the massive and

heterogeneous message traffic in the message system becomes a crucial issue, which

can lead to dequeue throughput degradation. To solve this issue, we proposed a

dequeuing method called Retry Dequeue-request Scheduling (RDS), which can reduce

the unnecessary transmission of dequeue requests to the message queues by waiting

89

during the scheduling time for new messages to arrive at the message queues. Especially,

RDS can better reduce throughput degradation due to missed-dequeue messages than

the conventional method. We used simulations to compare throughputs achieved by the

conventional method, RDS, and Periodical Monitoring and Scheduling (PMS).

Simulation results show that RDS can maintain the highest throughput, regardless of an

increase in the dequeue request rate. Experimental evaluations also reveal that the RDS

method achieves 80% higher throughput than the conventional method in real systems.

Furthermore, we demonstrated that the setting of the optimal sleep time improves the

efficiency of the proposed method even further.

We believe that in the IoT era the message queue system with high-throughput

queuing proposed in the first phase and the resilient message queue system proposed in

the second phase are fundamental technologies to stably process large volume messages

created by IoT devices. Additionally, the increased throughput of the RDS method

proposed in the third phase is essential in finding patterns in large volumes of data for

various IoT services. These proposed technologies can make it much easier and faster

than before to build complex IoT systems requiring high-throughput, availability, and

scalability. We further believe that this can become a driving force in accelerating the

innovation of IoT.

IoT will be drastically enhanced by three kinds of technological progress:

network technology, cloud computing, and sensing. Network technology such as the 5th

generation mobile networks (5G) will support IoT communication at higher capacity

and lower latency [96-98]. The progress of cloud computing including machine

learning/AI and distributed computing will enable greater variability and scalability in

IoT applications [99-101]. We believe that message queue systems will be needed as

frontend of IoT service systems to process much larger volume of messages than we are

facing now. Messaging communication will be needed to efficiently communicate

among the massive number of sensor devices. We also believe that the considerations

and discussions regarding distributed message queue systems in this thesis will

contribute to the better design and implementation of future IoT systems.

As our future work, we see the following challenges for IoT systems. First,

research on system dimensioning and evaluation of the scalability of message queue

systems needs to be continued. Previous studies on system dimensioning and scalability

have proposed auto-scaling methods [102, 103], however, those studies did not consider

message queue systems and heterogeneous traffic as described in this thesis. Therefore,

90

we should consider how to determine both, the accurate message traffic and the

performance of message queue systems to process this message traffic.

Second, it will also be necessary to consider the topology of the message queue

system when it is extended from tens to hundreds of servers. We proposed two logical

KVS counter-rotating rings in Chapter 3, and we should also consider various other

topologies of KVS rings for improving availability and scalability.

Finally, we also need to research on functions of the message queue systems

related to the specific requirements of IoT applications. In this thesis, we proposed

fundamental methods that can be widely applied to IoT/M2M applications, and next we

should consider issues of specific requirements of IoT applications. We will apply

functions of priority queuing to IoT/M2M applications where messages are relayed

based on the priority of the different queues. We also plan on investigating how to

efficiently deliver messages from the message queue system to the devices for updating

the configurations of a huge number of devices in IoT/M2M applications.

91

Bibliography

[1] J. Cohn, P. Finn, S. Nair, and S. Panikkar, “Device democracy: Saving the future

of the Internet of Things,” the IBM Institute for Business Value Executive Report,

July 2014.

[2] Z. M. Fadlullah, M. M. Fouda, N. Kato, A. Takeuchi, N. Iwasaki, and Y. Nozaki,

“Toward intelligent machine-to-machine communications in smart grid,” IEEE

Communications Magazine, vol. 49, no. 4, pp. 60-65, Apr. 2011.

[3] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson, "M2M: From

mobile to embedded internet," IEEE Communications Magazine, vol. 49, no. 4, pp.

36-43, Apr. 2011.

[4] J. Kim, J. Lee, J. Kim, and J. Yun, "M2M service platforms: survey, issues, and

enabling technologies," IEEE Communications Surveys & Tutorials, vol. 16, no. 1,

pp. 61-76, Oct. 2013.

[5] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie 4.0

Scenarios,” in Proceedings of IEEE Hawaii International Conference on System

Sciences (HICSS), pp. 3928-3937, Jan. 2016.

[6] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer

networks, vol. 54, no. 15, pp. 2787-2805, Oct. 2010.

[7] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A

vision, architectural elements, and future directions,” Future Generation

Computer Systems, vol. 29, no. 7, pp. 1645-1660, Sep. 2013.

[8] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger digital

shadows, and biggest growth in the far east,” IDC Analyze the Future, pp. 1-16,

Dec. 2012.

[9] T. Berners-Lee, R. Fielding, and H. Frystyk, "Hypertext transfer protocol

-HTTP/1.0 ", Internet RFC 1945, May 1996.

[10] R. Fielding and R. Taylor, "Principled design of the modern Web architecture,"

ACM Transactions on Internet Technology (TOIT), vol. 2, pp. 115-150, May 2002.

92

[11] J. Jing, A. S. Helal, and A. Elmagarmid, “Client-server computing in mobile

environments,” ACM computing surveys (CSUR), vol. 31, no. 2, pp. 117-157, Jun.

1999.

[12] P. Fraternali, G. Rossi, and F. Sánchez-Figueroa, “Rich internet applications,”

IEEE Internet Computing, vol. 14, no. 3, pp. 9-12, Jun. 2010.

[13] D. Liu and R. Deters, “The reverse C10K problem for server-side mashups,” in

Proceedings of International Conference on Service-Oriented Computing

(ICSOC), pp. 166-177, Dec. 2008.

[14] M. Collina, G. E. Corazza, and A. Vanelli-Coralli, “Introducing the QEST broker:

Scaling the IoT by bridging MQTT and REST,” in Proceedings of IEEE

International Symposium on Personal, Indoor and Mobile Radio Communications

(PIMRC) , pp. 36-41, Sep. 2012.

[15] N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Reali, “Comparison of

two lightweight protocols for smartphone-based sensing,” in Proceedings of

IEEE Symposium on Communications and Vehicular Technology in the Benelux

(SCVT), pp. 1-6, Nov. 2013.

[16] U. Hunkeler, H. L. Truong, and A. S-Clark, “MQTT-S - A publish/subscribe

protocol for Wireless Sensor Networks,” in Proceedings of Communication

Systems Software and Middleware and Workshops (COMSWARE), pp. 791-798,

Jan. 2008.

[17] H. Subramoni, G. Marsh, S. Narravula, P. Lai, and D. K. Panda, "Design and

evaluation of benchmarks for financial applications using Advanced Message

Queuing Protocol (AMQP) over InfiniBand," in Proceedings of IEEE Workshop

on High Performance Computational Finance (WHPCF), pp. 1-8, Nov. 2008.

[18] A. A-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,

“Internet of Things: A survey on enabling technologies, protocols, and

applications,” IEEE Communication Surveys & Tutorials, vol. 17, no. 4, June

2015.

[19] C. Pereira and A. Aguiar, "Towards efficient mobile M2M communications: Survey

and open challenges," Sensors, vol. 14, no. 10, pp. 19582-19608, Oct. 2014.

[20] J. S. Leu, C. F. Chen, and K. C. Hsu, “Improving heterogeneous SOA-based IoT

message stability by shortest processing time scheduling,” IEEE Transactions on

Services Computing, vol. 7, no. 4, pp. 575-585, May 2013.

[21] N. L. Tran, S. Skhiri, and E. Zim, “Eqs: An elastic and scalable message queue for

93

the cloud,” in Proceedings of IEEE Cloud Computing Technology and Science

(CloudCom), pp. 391-398, Nov. 2011.

[22] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann, "Performance evaluation of

message-oriented middleware using the SPECjms2007 benchmark," Performance

Evaluation, vol. 66, no. 8, pp. 410-434, Aug. 2009.

[23] K. Sachs, S. Kounev, S. Appel, and A. Buchmann, “Benchmarking of

message-oriented middleware,” in Proceedings of ACM International Conference

on Distributed Event-Based Systems (DEBS), p. 44, July 2009.

[24] K. Sachs, S. Appel, S. Kounev, and A. Buchmann, “Benchmarking

publish/subscribe-based messaging systems,” in Proceeding of International

Conference on Database Systems for Advanced Applications (DASFAA), pp.

203-214, Apr. 2010.

[25] SendMail Inc. “Welcome to the Sendmail Community,”

http://www.sendmail.com/sm/open_source/, accessed on Nov. 16, 2016.

[26] M. Kinoshita, M. Nakahara, and T. Sagara, “An implementation and evaluation of

multiprotocol message gateway,” in Proceedings of the 71th National Convention

of IPSJ, pp. 3.1-3.2, Mar. 2009.

[27] The Statistics Portal, “Number of subscribers to wireless carriers in the U.S. from

1st quarter 2013 to 3rd quarter 2016, by carrier,”

https://www.statista.com/statistics/283507/subscribers-to-top-wireless-carriers-in-t

he-us/, accessed on Jan. 04, 2017.

[28] Telecommunication Carries Association, “Number of subscribers by carriers”,

http://www.tca.or.jp/english/database/, accessed on Jan. 04, 2017.

[29] B. Manning, “1 billion-plus smart meters to be installed globally by 2022,”

http://centricdigital.com/blog/internet-of-things/billion-smart-meters-installs/,

accessed on Dec. 12, 2016.

[30] The Ministry of Economy, Trade and Industry, “A report on power companies

and installation status of smart meters,”

http://www.meti.go.jp/committee/sougouenergy/denryoku_gas/kihonseisaku/pdf/0

01_07_01.pdf, accessed on Dec. 12, 2016. (in Japanese)

[31] M. Brettel, , N. Friederichsen, M. Keller, and M. Rosenberg, “How virtualization,

decentralization and network building change the manufacturing landscape: An

industry 4.0 perspective,” International Journal of Mechanical, Industrial Science

and Engineering, vol. 8, no. 1, pp. 37-44, 2014.

94

[32] C. Deglise, L. Suggs, and P. Odermatt, "Short message service (SMS) applications

for disease prevention in developing countries," Journal of medical Internet

research, vol. 14, No. 1, p. e3, Jan. 2012.

[33] I. Jung, H. Kim, D. Hong, and H. Ju, "Protocol reverse engineering to facebook

messages," in Proceedings of IEEE International Conference on Intelligent

Systems, Modelling and Simulation (ISMS), pp. 539-542, Jan. 2013.

[34] B. Furht and S. A. Ahson, "Long Term Evolution: 3GPP LTE radio and cellular

technology," Crc Press, Apr. 2016.

[35] J. Cownie and W. Gropp, “A standard interface for debugger access to message

queue information in MPI,” in Proceeding of European Parallel Virtual

Machine/Message Passing Interface Users’ Group Meeting(Euro PVM/MPI), pp.

51-58, Sep. 1999.

[36] G. Banavar, T. Chandra, R. Strom, and D. Sturman, “A case for message

oriented middleware,” in Proceeding of International Symposium on Distributed

Computing (DISC), pp. 1-17, Sep. 1999.

[37] R. T. Fielding, “Architectural styles and the design of network-based software

architectures,” PhD Thesis, University of California, Irvine. 2000.

[38] A. Erdeljan, F. Kuli, and S. Lukovi, “Software architecture for smart metering

systems with virtual power plant,” in Proceedings of IEEE Mediterranean

Electrotechnical Conference(MELECON), pp. 448-451, Apr. 2010.

[39] N. Owada, “How systems go down,” NIKKEI BP, pp. 94-105, 2009 (in Japanese).

[40] H. Okabe, “Report of NIKKEI COMPUTER,” IT Pro,

http://itpro.nikkeibp.co.jp/article/COLUMN/20120824/417984/ accessed on Sep.

18, 2014 (in Japanese).

[41] Bank of Japan, “BOJ report and research papers,”

https://www.boj.or.jp/research/brp/ron_2010/data/ron1011a.pdf, accessed on Sep.

18, 2014 (in Japanese).

[42] Industrial Internet Consortium (IIC), “The Industrial Internet reference

architecture technical report,” http://www.iiconsortium.org/IIRA-1-7-ajs.pdf,

accessed on Dec. 12, 2016.

[43] S. Huang, Y. Chen, X. Chen, K. Liu, X. Xu, C. Wang, K. Brown, and I. Halilovic,

“The next generation operational data historian for IoT based on informix,” in

Proceedings of ACM SIGMOD International Conference on Management of Data,

pp. 169-176, June 2014.

95

[44] M. E. Porter and J. E. Heppelmann, “How smart, connected products are

transforming competition,” Harvard Business Review, vol. 92, no. 11, pp. 64-88,

Nov. 2014.

[45] D. Niyato, L. Xiao, and P. Wang, “Machine-to-machine communications for home

energy management system in smart grid,” IEEE Communications Magazine, vol.

49, nol. 4, pp. 53-59, Apr. 2011.

[46] D. Kibara, K. C. Morris, and S. Kumaraguru, “Methods and tools for performance

assurance of smart manufacturing systems,” Journal of Research of the National

Institute of Standards and Technology, vol. 121, pp. 1-47, Dec. 2015.

[47] G. Meijer, K. Makinwa, and M. Pertijs, “Smart sensor systems: Emerging

technologies and applications,” John Wiley & Sons, Apr. 2014.

[48] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging system for

log processing,” in Proceedings of Networking Meets Databases (NetDB), pp. 1-7,

June 2011.

[49] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized

streams: Fault-tolerant streaming computation at scale,” in Proceedings of

Symposium on Operating Systems Principles (SOSP), pp. 423-438, Nov. 2013.

[50] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni and N.

Bhagat, “Storm@twitter,” in Proceedings of the International Conference on

ACM SIGMOD Management of Data, pp. 147-156, June 2014.

[51] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD Record, vol.

39, no. 4, pp. 12-27, Dec. 2011.

[52] T. Sakaki, M. Okazaki, and Y. Matsuo, "Tweet analysis for real-time event

detection and earthquake reporting system development," IEEE Transactions on

Knowledge and Data Engineering, vol. 25, no. 4, pp. 919-931, Apr. 2013..

[53] Ministry of Internal Affairs and Communications, “Ministry of Public

Management,”

http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h23/pdf/n0010000.pdf,

accessed on Nov.16 2016. (in Japanese).

[54] Postfix, “The postfix home page,” http://www.postfix.org/, accessed on Nov. 16,

2016.

[55] Memcached, “What is memcached?,” http://memcached.org/, accessed on Nov. 16

2016.

[56] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, and D.

96

Stafford, “Scaling memcache at facebook,” in Proceeding of Presented as part of

the USENIX Symposium on Networked Systems Design and Implementation

(NSDI), pp. 385-398, Apr. 2013.

[57] Y. Wang, H. Chen, B. Wang, J. M. Xu, and H. Lei, “Scalable queuing service

based on an in-memory data grid,” in Proceedings of International Conference on

IEEE e-Business Engineering (ICEBE), pp. 236-243, Nov. 2010.

[58] L. Xiang, Y. Xu, J. Lui, and Q. Chang, “Optimal recovery of single disk failure in

RDP code storage systems,” ACM SIGMETRICS Performance Evaluation Review,

Vol. 38, No. 1, pp. 119-130, June 2010.

[59] Y. Zhu, P. P. Lee, Y. Hu, L. Xiang, and Y. Xu, “On the speedup of single-disk

failure recovery in XOR-coded storage systems: theory and practice,” in

Proceedings of IEEE Symposium on Mass Storage Systems and Technologies

(MSST), pp. 1-12, Apr. 2012.

[60] E. A. Brewer, “Towards robust distributed systems,” in Proceedings of the Annual

Symposium on ACM Principles of Distributed Computing, p. 7, July 2000.

[61] G. Hasegawa and M. Murata, “Transport-layer protocols for high-speed and

long-delay networks,” in Proceedings of IEICE technical report (IN2006-169), pp.

41-46, Feb. 2007 (in Japanese).

[62] M. Welsh, D. Culler, and E. Brewer, “SEDA: An architecture for well-conditioned,

scalable Internet services,” in Proceedings of ACM Symposium on Operating

Systems Principles (SOSP), pp. 230-243, Oct. 2001.

[63] N. Christenson, T. Bosserman, and D. Beckemeyer, “Highly scalable electronic

mail service using open systems,” in Proceedings of the USENIX Symposium on

Internet Technologies and Systems, pp. 1-11, Dec. 1997.

[64] Y. Saito, B. N. Bershad, and H. M. Levy, “Manageability, availability and

performance in Porcupine: A highly scalable, cluster-based mail service”, in

Proceedings of ACM Symposium on Operating Systems Principle (SOSP), pp.

1-15, Dec. 1999.

[65] J. R. von Behren, S. Czerwinski, A. D. Joseph, E. A. Brewer, and J. Kubiatowicz,

“NinjaMail: The design of a high-performance clustered, distributed e-mail

system,” in Proceeding of International Workshop on Scalable Web Services

(SWS), pp. 151-158, Aug. 2000.

[66] A. Lakshman and P. Malik, “Cassandra - A decentralized structured storage

system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35-40, Apr.

97

2009.

[67] M. Burrows, “The chubby lock service for loosely-coupled distributed systems,”

in Proceedings of Symposium on Operating Systems Design and Implementation

(OSDI), pp. 335-350, Nov. 2006.

[68] L. Lamport, “The part-time parliament,” ACM Transactions on Computer Systems

(TOCS), vol. 16, no. 2, pp. 133–169, May 1998.

[69] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4, pp. 18-25,

Nov. 2001.

[70] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Randhakrishnan,

V. Subramanya, and A. Vahdat, “PortLand: A scalable fault-tolerant layer 2 data

center network fabric,” ACM SIGCOMM Computer Communication Review, vol.

39, no. 4, pp. 39-50, Oct. 2009.

[71] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,

P. Patel, and S. Sengupta, “VL2: A scalable and flexible data center network,” in

Proceedings of ACM SIGCOMM, pp. 51-62, Aug. 2009.

[72] G. DeCandia, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: Amazon’s highly

available key-value store,” ACM SIGOPS Operating Systems Review, vol. 41, no.

6, pp. 205-220, Dec. 2007.

[73] J. Rao, E. J. Shekita, and S. Tata, “Using paxos to build a scalable, consistent, and

highly available datastore,” in Proceedings of the VLDB Endowment, vol. 4, no. 4,

pp. 243-254, 2011.

[74] J. Wang, B. V. Murciano, J. Bigham, and M. Q. Isrc, “Towards a resilient message

oriented middleware for mission critical applications,” in Proceedings of the

International Conference on Adaptive and Self-adaptive Systems and Applications

(ADAPTIVE), pp. 21-26, Nov. 2010.

[75] J. Mitsui, “Critical success factors of mission critical system based on windows

server”, UNISYS TECHNOLOGY REVIEW, vol. 28, no. 1, pp. 29-43, May 2008.

(in Japanese)

[76] Y. Miyata, M. Obata, T. Ohta, and H. Nishiyama, “Proposal of GC time reduction

algorithm for large java object cache,” IPSJ Transactions Programming, vol. 5,

no.3, pp. 29-39, Aug. 2012.

[77] Apache Hbase Project, “Apache Hbase,” http://hbase.apache.org/, accessed on

Sep. 18, 2014.

98

[78] Information-technology Promotion Agency Japan, “High reliability lessons for IT

systems,” http://www.ipa.go.jp/files/000038843.pdf, accessed on Sep. 18, 2014 (in

Japanese).

[79] A. Egami, “The measures and background of catastrophic service failures,”

http://e-public.nttdata.co.jp/topics_detail4/contents_type=20&id=653, accessed on

May 18, 2014 (in Japanese).

[80] M. Stonebraker, “The case for shared nothing,” IEEE Technical Committee on

Database Engineering, vol. 9, no. 1, pp. 4-9, Mar. 1986.

[81] M. Castro, A. J. Jara, and A. F. Skarmeta, “An analysis of M2M platforms:

challenges and opportunities for the Internet of Things,” in Proceedings of

International Conference on Innovative Mobile and Internet Services in

Ubiquitous Computing (IMIS), pp. 757-762, July 2012.

[82] E. Adi, M. Loeis, M. Sunur, and K. Tjandrean, “Reliability implementation over

message queue in the Internet of Things,” in Proceedings of Mobile

Communications, Networking and Applications (MobiCONA), p. 1, 2012.

[83] Amazon, “Amazon Kinesis”, http://aws.amazon.com/kinesis/, accessed on May 1,

2016.

[84] B. Familiar, “Microservices, IoT and Azure: Leveraging DevOps and

Microservice Architecture to deliver SaaS Solutions,” Apress, pp. 133-163. Oct.

2015.

[85] Z. Yang, Y. Peng, Y. Yue, X. Wang, Y. Yang, and W. Liu, “Study and application

on the architecture and key technologies for IoT,” in Proceedings of Multimedia

Technology (ICMT), pp. 747-751, July 2011.

[86] A. Azzarà, D. Alessandrelli, S. Bocchino, P. Pagano, and M. Petracca,

“Architecture, functional requirements, and early implementation of an

instrumentation grid for the IoT,” in Proceedings of High Performance Computing

and Communication & Embedded Software and Systems (HPCC-ICESS), pp.

320-327, June 2012.

[87] J. Zhao, X. Zheng, R. Dong, and G. Shao, “The planning, construction, and

management toward sustainable cities in China needs the environmental Internet

of Things,” International Journal of Sustainable Development & World Ecology,

vol. 20, no. 3, pp. 195-198, May 2013.

[88] J. Humble and J. Molesky, “Why enterprises must adopt devops to enable

continuous delivery,” Cutter IT Journal, vol. 24, no. 8, p. 6, Aug. 2011.

99

[89] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An application protocol for

billions of tiny internet nodes”, IEEE Internet Computing, vol. 16, no. 2, p. 62,

2012.

[90] T. Dierks and E. Rescorla, “The transport layer security (TLS) protocol version

1.2,” IETF RFC 5246, pp. 1-104, Aug. 2008.

[91] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” Modeling and

Tools for Network Simulation, pp. 15-34. Sep. 2010.

[92] H. Takagi, “Queuing analysis of polling models,” ACM Computing Surveys

(CSUR), vol. 20, no. 1, pp. 5-28, Mar. 1988.

[93] C. Mack, “The efficiency of N machines uni-directionally patrolled by one

operative when walking time is constant and repair times are variable,” Journal of

the Royal Statistical Society Series B, vol. 19, no. 1, pp. 173-178, Oct. 1957.

[94] M. A. A. Boon, R. D. van der Mei, and E. M. M. Winands, “Applications of

polling systems,” Surveys in Operations Research and Management Science, vol.

16, no. 2, pp. 67-82, Feb. 2011.

[95] P. Jiang, J. Bigham, E. Bodanese, and E. Claudel, “Publish/subscribe

delay-tolerant message-oriented middleware for resilient communication,” IEEE

Communications Magazine, vol. 49, no. 9, pp. 124-130, Sep. 2011.

[96] C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, and E. Hepsaydir,

“Cellular architecture and key technologies for 5G wireless communication

networks,” IEEE Communications Magazine, vol. 52, no. 2, pp. 122-130, Feb.

2014.

[97] P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J.

Lu, and J. Yao, “5G on the horizon: key challenges for the radio-access network,”

IEEE Vehicular Technology Magazine, vol. 8, no. 3, pp. 47-53, July 2013.

[98] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, and H.

Tullberg, “Scenarios for 5G mobile and wireless communications: the vision of

the METIS project,” IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35,

May 2014.

[99] M. A. Alsheikh, S. Lin, D. Niyato and H. P. Tan, “Machine learning in wireless

sensor networks: Algorithms, strategies, and applications,” IEEE Communications

Surveys & Tutorials, vol. 16, no. 4, pp. 1996-2018, Apr. 2014.

[100] K. Hwang, J. Dongarra, and G. C. Fox, “Distributed and cloud computing: from

parallel processing to the internet of things,” Morgan Kaufmann, Dec. 2013.

100

[101] M. N. Sadiku, S. M. Musa, and O. D. Momoh, “Cloud computing: opportunities

and challenges,” IEEE potentials, vol. 33, no. 1, pp. 34-36, Jan. 2014.

[102] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch, “Autoscale:

Dynamic, robust capacity management for multi-tier data centers,” ACM

Transactions on Computer Systems (TOCS , vol. 30, no. 4, pp. 14. Nov. 2012.

[103] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline and budget

constraints,” In Proceedings of the IEEE/ACM International Conference on Grid

Computing, pp. 41-48, Oct. 2010.

