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Preface

A variety of services have been deployed over the Internet in recent years, such as streaming and
cloud services. Due to advancements in Internet-related technologies and the subsequent growth in
the number of online users, online traffic and its variation in time have increased drastically. Back-
bone networks need to accommodate such fluctuating traffic without congestion. Thus far, the most
common approach adopted to solve this problem has involved preparing an excess of resources to
accommodate traffic surges. This approach, however, leads the low utilization of network resources

most of the time.

One promising approach to accommodate large volumes of traffic with limited resources is
dynamic traffic engineering (TE), where a controller monitors the traffic pattern at any given time
and dynamically changes routes. However, prevalent TE methods typically set routes only for
observed traffic. This renders the configured routes unsuitable when the volume of traffic along a
route changes drastically, since routes are not updated until the next control cycle. Although the
controller can quickly respond after such changes in traffic by setting a short-control cycle interval,
frequent route changes lead to other problems, such as the degradation of TCP throughput. Thus,
existing TE methods find it difficult to adapt to traffic changes and generate stable routes at the same

time.

In this thesis, we study prediction-based TE methods to solve the above problem. In this method,
a controller not only monitors the traffic pattern, but also predicts changes in the pattern to determine
routes. If the controller knows that traffic flow along a certain route is going to increase, it can
gradually make changes to routes before the actual increase occurs. Of course, the prediction incurs

errors due to the uncertainty of changes in traffic, although many models for traffic prediction



have been investigated in the literature. If traffic prediction is simply applied to TE, the resulting
uncertainty leads to the setting of inappropriate routes, and leads to congestion or unnecessary route

changes. Thus, the main problem is handling uncertainty concerning future traffic.

One approach to handling the above uncertainty involves setting a safe-side route that covers
the upper bound of the traffic variation. For this purpose, we first propose a traffic prediction
method to estimate the upper bound of future traffic variation. In this method, the observed traffic
variation is first divided through preprocessing into a predictable variation and a noisy variation.
With regard to the former, we predict future variation in traffic and estimate the error bound of
the prediction. For the latter, we estimate the bounds of the variation. We thus obtain the upper
bound of the future variation by adding the bounds of prediction error and noisy variation to the
predicted variation. By applying this method to an actual traffic trace, we investigate the predictive
accuracy and effectiveness of the proposed method for TE. We show that prediction-based TE with
our prediction method can reduce the bandwidth required to accommodate traffic by 18.9% over a

TE method that uses only observed traffic, though prediction errors were over 40% on average.

Predicting variations in traffic in the distant future is very useful for avoiding the consequences
of drastic route changes due to fluctuation in the volume of traffic along routes of interest. However,
predicting the distant future in this context incurs large prediction errors and leads to inappropriate
decision concerning route changes. Thus, prediction-based control is required for robustness against
prediction errors, especially in case of predictions related to the distant future. To this end, we
introduce a control-theoretic method called model predictive control (MPC) to TE control. In our
method, a controller calculates a route series to accommodate future traffic variation without drastic
route changes. The controller then sets the route for the next time slot and monitors traffic after the
route changes. By obtaining new data, the controller corrects its prediction results and recalculates
the routes. Thus, it avoids the impact of prediction errors. Using a simulation, we showed that the
proposed method can avoid congestion incurred by a prediction-based TE method that does not use
the MPC mechanism. Moreover, we investigate the impact of such parameters as how far into the
future traffic is predicted, the extent to which routes changes are avoided by the prediction, and the

frequency with which control and prediction are executed.
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Although MP-TE is robust against prediction errors, it offers no clear guarantee against pre-
diction uncertainty. In order to effect more reliable control, we improve MP-TE to directly handle
prediction errors. In this method, the controller calculates routes so that the probability of conges-
tion is kept lower than a target probability. Because of the magnitude of the prediction error in the
distant future, such a probabilistic constraint can become too severe and cause unnecessary route
changes. Thus, we also propose a constraint-relaxation method where the guaranteed probability
gradually increases from the target probability. In the simulation, we showed that the proposed
method can achieve lower queuing delay than the original MP-TE. Furthermore, we showed that
only a small number of additional route changes was required to accommodate the prediction error.

Finally, we address the hierarchical control of MP-TE to achieve scalability. In hierarchical
control, multiple controllers are deployed over the network, which hierarchically determines routes.
The controller in the bottom layer decides the specific routes in a small area, whereas the controller
in the upper layer determines inter-area routes using abstract information concerning the lower
layer. Since routes change in an area affects other areas through changes in the states of the net-
work, cooperation among areas is required. The common approach to handling interaction among
areas is to set a long control interval at the upper layer. This approach, however, causes another
problem whereby the reaction at the upper layer delays to the environmental changes. To solve this
problem, we again use the MPC in the hierarchical TE. Our method deploys an MP-TE controller
to determine routes in each area. To cooperate with other controllers, each controller predicts their
behavior to decide the routes. Through the simulation, we showed that our method achieves routing
convergence more quickly than the prevalent hierarchical TE method. We also investigated sen-
sitivity to prediction error, and found that our method works well even when the prediction error

constitutes 76% of average traffic.
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Chapter 1

Introduction

1.1 Background

The Internet has come to play an important role in our society, not only as a novel means of com-
munication, but also as an indispensable infrastructure to a variety of industries today. In the early
years, its main application was text-based exchanges, such as e-mail, chat, and simple text-based
webpages. In recent years, various services have been deployed over the Internet, such as streaming
and cloud services. Due to the enhancement of Internet services and the increase in the number of
users over the years, fluctuation in online traffic has increased. This situation is expected to persist
over the next few decades with the emergence of new Internet services and technologies, including
the Internet of Things (IoT). The backbone network, which is the core network of the Internet, needs

to accommodate this variable traffic without becoming congested.

The most common current approach to address the above problem of online traffic is overpro-
visioning [1,2]. That is, the network manager prepares an excess of resources in order to avoid
congestion even when traffic surges. Overprovisioning requires a large network capacity, and leads
to poor use of resources, approximately 17%—-29% in case of Google backbone [3], less than 50% in
the Sprint backbone [4], and less than 20% in Internet2 [5]. This increases waste of equipment and
management. Thus, online traffic needs to be accommodated with a limited amount of resources to

save cost due to overprovisioning.



1.1 Background

Traffic engineering (TE) is a promising approach to accommodate traffic with limited resources.
TE implements load balancing over network resources by changing the routes of traffic patterns. A
number of TE methods have been proposed in the literature [6—19]. They can be roughly divided
into two types, static TE and dynamic TE, depending on whether the routes are altered according
to traffic variation.

Static TE involves methods that set a fixed route to accommodate traffic. A common method is
oblivious routing [6-8], which calculates a fixed route without prior knowledge of traffic statistics.
In oblivious routing, the route is calculated by minimizing a metric called the oblivious ratio, which
represents the worst ratio of the maximum link load to its optimal value. Although this method
guarantees the performance in the worst case, it worsens in normal situations. In [8], Németh
showed that oblivious routing involves the greatest expenditure of time in a congested state with a
number of source-destination pairs, even though the oblivious ratio is kept low. Thus, static TE is
not suitable to accommodate traffic that significantly varies over time.

Dynamic TE involves changing routes in accordance with changes in traffic. In dynamic TE,
a controller periodically collects traffic information from network monitors and changes routes to
accommodate the observed traffic pattern [12-14]. However, these methods typically set routes
only for the observed traffic. This renders the configured routes unsuitable once traffic changes
drastically because the routes are not updated until the next control cycle. Although the controller
can quickly respond to such traffic changes by setting a short control cycle interval, frequent route
changes cause routing oscillation, which degrades TCP throughput. Since the packets of a TCP ses-
sion are transferred through different paths during routing oscillation, the order of received packets
is different from that of sent packets. Such packet reordering reduces the window size of the TCP
session and, hence, its throughput. Routing oscillation also causes fluctuation in the round-trip time
(RTT) of a TCP session, which degrades the throughput of delay-based TCP [20]. Thus, avoiding
significant routes changes is important for dynamic TE.

A promising solution to the above problem involves predicting future traffic variation to cal-
culate the routes change schedule. If the TE controller knows in advance that traffic drastically
changes at certain points of time and in certain places in the future, it can gradually change routes

before the traffic change occurs. Thus, drastic routes change can be avoided in prediction-based
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Chapter 1. Introduction

TE.

Of course, prediction is uncertain, although many models have been studied for traffic predic-
tion, such as ARMA, ARIMA [21,22], ARCH [23], GARCH [24], and neural networks [25-27].
When applying traffic prediction to TE, such uncertainty leads the controller to set inappropriate
routes, which degrades TE performance. For instance, the controller allocates fewer resources to
a traffic flow than actually required if traffic is underpredicted. Conversely, the controller allocates
excessive resources to a traffic flow, which causes resource shortage in other flows, if traffic is
overpredicted.

In this thesis, we address the problem of handling uncertainty concerning future traffic to estab-

lish prediction-based TE, and propose methods to this effect.

1.2 Outline of Thesis

Traffic Prediction Method for Traffic Engineering [28-30]

To avoid congestion due to uncertainty in traffic changes, TE should set a safe-side route to ac-
commodate the upper bound of traffic variation. In Chapter 2, we first propose a traffic prediction
methodology to estimate the upper bound of future traffic variation. In this method, observed traf-
fic variation is separated into predictable, longer-term variation and noisy, short-term variation by
preprocessing. A time-series model is then fitted to only predictable variation. By using the fit-
ted model, future variation and estimated prediction error are calculated. For noisy variation, our
method estimates the range of noisy variation by a standard deviation. Finally, the predicted upper
bound of future traffic is calculated by summing up the predicted traffic, and the bounds of the
prediction errors and noisy variation. Since the preprocessing method determines the target varia-
tion for prediction, the accuracy of prediction and the upper bound depends on the preprocessing
method. Thus, we assess the prediction method with three preprocessing methods—Ilowpass filter,
trend component, and an envelope—to investigate the preprocessing suitable for TE. By applying
the prediction method to a traffic trace in a backbone network, we first investigate the characteristic

of the prediction results with two common prediction models, ARIMA and SARIMA. From the
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1.2 Outline of Thesis

aspect of prediction accuracy, the prediction result contained errors for all preprocessing methods
tested. Although the lowpass filter achieved the lowest prediction error among other preprocessing
methods as well as in the case of prediction without preprocessing, the average prediction error was
over 40%. We also investigated the characteristics of the prediction results in detail, and found that
preprocessing improved prediction accuracy in case of daily variation. and upper bound estimation
for a sudden traffic increases. Following this, we evaluate TE performance using our prediction
method to investigate the effectiveness of the predicted traffic in the TE. We used a simple TE
method for comparison, where the controller calculated fixed routes for multiple time slots, such
as 12 hours, by minimizing the peak of link utilization using the predicted traffic. We were able
to reduce the required bandwidth to accommodate traffic by 18.9% using the trend component and

SARIMA over the simple TE, which used only observed traffic.

Traffic Engineering Based on Model Predictive Control [31-33]

To alter routes according to traffic variation without drastic changes, we need to predict traffic not
only in the near future, but also in the distant future. The prediction of the distant future, however,
induces a large prediction error in general. Thus, In Chapter 3, we propose a prediction-based TE
method that avoids the impact of prediction errors, especially in the far future. To achieve this,
we focus on a methodology in system control called model predictive control (MPC) [34-37]. In
MPC, a system controller calculates an input series to avoid drastic input changes by predicting how
the future output of the system will change. Once the controller calculates the optimal input series
for the future, the controller enters the first input to the system. The controller then obtains a new
system output as feedback, and corrects the prediction and the input at a later time. To apply this
MPC mechanism to TE, we first model the network as a system where the input is the route and the
output is link congestion. We then propose a prediction-based TE method called Model Predictive
Traffic Engineering (MP-TE). We evaluate the performance of our method using an actual traffic
trace, and found that the MP-TE can avoid congestion that simple prediction-based TE cannot.
Moreover, we investigate the impact of such parameters as the extent in the future to which traffic

needs to be predicted, the extent to which route changes should be avoided, and the frequency with
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Chapter 1. Introduction

which control and prediction should be executed. We found that performance was not sensitive to
the length of prediction and the weight of the route changes. Furthermore, we found route changes
at 10-second intervals was sufficient to accommodate traffic changes every second, whereas the

prediction was required every second.

Traffic Engineering Guaranteeing Risk Probability against Prediction Uncertainty [38,
39]

Although we propose a prediction-based TE method, there is no clear guarantee against prediction
uncertainty in our method. In Chapter 4, we improve the MP-TE to handle the prediction error
more directly in the search for highly reliable control. Fortunately, such uncertainty-aware con-
trol has also been considered in the MPC, such as stochastic MPC [40]. In stochastic MPC, the
controller predicts system behavior with a probability distribution and calculates the probability
that the system’s states violate system constraints. By applying stochastic MPC to TE, we propose
the Stochastic MP-TE (SMP-TE), which guarantees that the probability of congestion will remain
below a certain target probability. Such probability constraints, however, can become too severe,
especially in case of predictions of the distant future, because prediction errors generally increase
when the prediction target is distant in the future. This leads to frequent and unnecessary routes
changes because the controller changes routes to compensate for large prediction errors, even if
the relevant traffic pattern never emerges. Thus, we also propose a constraint-relaxation method
to avoid unnecessary route changes, where the guaranteed probability gradually increases from the
target probability for the distant future. Through a simulation involving a real network traffic, we
showed that the SMP-TE maintains a lower queuing delay than the original MP-TE by directly han-
dling prediction error. We also showed that the constraint-relaxation method reduces the frequency

of route changes by reducing unnecessary ones.

Scalable Traffic Engineering by Hierarchical Model Predictive Control [41,42]

In Chapter 5, we propose a hierarchical TE method based on the MP-TE to achieve scalable network

control. Hierarchical control is a common approach to controlling large-scale networks, and many
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1.2 Outline of Thesis

past studies have proposed various methods [43—48]. In hierarchical network control, the network
is divided into multiple areas with multiple layers. In the bottom layer, each area has only a small
number of nodes and links. In the upper layer, each area is constructed by multiple lower areas
whose original topology is abstracted from. A controller is then deployed in each area at each
layer. The controller collects network information in the area to determine the operation there,
and sends abstracted information to other controllers in the upper layer. Thus, each controller only
manages a small topology to calculate operation, even if the entire network becomes large. One
difficulty in hierarchical network control is the oscillation of operation due to interactions among
controllers in other layers. A common approach to avoid oscillation is to set a long control interval
in the upper layer [49, 50]. This approach, however, causes a response delay in the upper layer,
and the changes in the environment across the relevant areas leads to severe congestion, which is
ever-more pronounced nowadays because of the content distribution network (CDN), user mobility,
and so on. Thus, a new approach is required to avoid oscillation without setting a long interval in
the upper layer. Our approach here involves predicting the behavior of other controllers to achieve
cooperation among them. More specifically, we deploy MP-TE controllers in the hierarchical TE,
where each predicts how much traffic is sent to a given area from other areas, and how much can be
sent to the other areas to determine the routes. Through a simulation, we showed that our method
more quickly responds to traffic changes and reduces congestion in comparison with the existing
hierarchical TE approach. We also investigated sensitivity to the prediction error and the sensitivity
of parameters, i.e., the length of prediction and the weight of route changes. We found that our
method works well even if the prediction error is as high as 76% of average traffic, which is large
enough to be an actual prediction error. Moreover, we found that the upper layer should set a large

weight for route changes, whereas performance is not very sensitive to other parameters.



Chapter 2

Traffic Prediction Method for Traffic

Engineering

2.1 Introduction

In recent years, time variation of Internet traffic has increased due to wide deployments of streaming
and/or cloud services. Backbone networks are expected to accommodate such time-varying traffic
without congestion. So far, backbone networks have addressed this problem by preparing redundant
link capacity by considering not only average traffic but also traffic surges [1,2]. However, such an
approach requires overly large capacity in accordance with the level of traffic change increases and
causes low bandwidth utilization. For the last dozen years, the literature has reported that average
link utilization of backbone networks has been very low, such as 17-29% in Google backbone [3],
less than 50% in Sprint backbone [4], and 20% utilization is targeted in Internet2 [5]. This not only
causes the waste of the bandwidth due to poor utilization of the network resource but also incurs
unnecessary energy consumption. Henceforth, the traffic congestion must be avoided with limited

resources, which will definitely reduce the over-provisioning cost and power consumption.

Adaptive traffic engineering is a promising approach for accommodating time-varying traffic
by appropriately setting up the Origin—Destination (OD) routes [9—13]. In such traffic engineering

methods, a control server periodically measures the traffic load in the network (typically every hour)
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and dynamically changes the routes so as to minimize the network congestion. However, traffic
engineering using the measured traffic only mitigates the observed congestion and never avoids the
future congestion. The currently congested links are resolved by changing routes at the next control
epoch. By making the control interval shorter (say, in a unit of minutes), the control server may
respond quickly to such traffic changes. However, it obviously causes the heavy load at the control
server and affects the performance of the upper-layer protocol TCP due to frequent route changes.
Such routing oscillation degrades the throughput of TCP sessions because of packet reordering
and changes of RTT [20]. Our solution here is to execute traffic engineering by predicting the
future traffic changes. That is, the control server should set up routes by considering the future
traffic demands, not past ones. More exactly, the control server predicts the traffic variation in the
next control cycle and then determines routes that can accommodate the predicted traffic without
causing congestion in the next control cycle. For deciding the traffic variation, we again have the
“time-scale” problem: if we want to have stable operation, we need set up a larger control cycle, but
in that case, we cannot react to the temporal changes of traffic variation within the control interval.
The shorter control cycle has exactly the same problem described above.

So far, various prediction methods have been studied on the basis of traffic predictive models
such as ARMA, ARIMA [21,22], ARCH [23], GARCH [24], and Neural Network [25-27]. How-
ever, to the best of our knowledge, existing prediction methods do not solve the above problem
because they can predict the traffic variation accurately only for its target time scale. For example,
the method proposed by Guang et al. [26] targets prediction in time scale of several hours. There-
fore, it cannot obtain information about shorter-term variations because they are removed as noise
before the prediction. On the other hand, a prediction method targeting a small time scale such as
milliseconds or minutes [21,23,24,51] is only effective for very near future prediction because of
the significant degradation of prediction accuracy in the far future.

In this chapter, we propose a traffic prediction procedure intended for application to traffic
engineering by separating the short-term (non-periodical or temporal) and longer-term (hour or
day) variations. We directly predict the longer-term variation as existing methods and estimate the
short-term variation instead of predicting it. We then obtain the range of traffic variation includ-

ing short-term variation during the next several hours, which is used as a basis for calculating the
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necessary capacities of each route in the next control interval. That is, our key contribution here
is that we investigate how to handle the prediction uncertainty in order to apply our method to
traffic engineering. As described before, the prediction uncertainty stems from two factors (pre-
diction error for periodical pattern and noisy short-term variation), and we take account of such
prediction uncertainty in determining the necessary resources for each route. In this chapter, we
focus on the results of traffic engineering instead of the accuracy of prediction, because prediction
methods with small error are not always suited to traffic engineering. Even when mean prediction
error is low, congestion cannot be avoided by traffic engineering using the predicted traffic if the
temporal increase of the traffic causing congestion is not predicted. On the other hand, a prediction
method responsive to the traffic increase that may cause the congestion can avoid congestion even
if the method’s mean prediction error is large. Therefore, we evaluate our prediction procedure by

investigating the influence of prediction method on traffic engineering performance.

In our earlier work [29], we only compared the effectiveness of traffic engineering using pre-
dicted traffic with observation-based traffic engineering. This chapter also investigates details of
the impact of traffic prediction on traffic engineering. We first investigate the impact of two param-
eters in our prediction procedure having a large impact on traffic engineering, the confidence level
of prediction errors and the confidence level of short-term variation. We find that the confidence
level of the short-term variation should be set to a large value, while a small confidence level for

prediction errors is generally sufficient.

We then investigate the impact of considering periodicity, and find that even prediction without
considering periodicity is sufficient if the control period is a few hours, while traffic prediction
considering periodicity improves the worst-link utilization achieved by traffic engineering if the

control period is larger than 24 hours.

The rest of this chapter is organized as follows. Section 2.2 surveys related work of traffic
prediction and traffic engineering. Section 2.3 introduces the traffic engineering method using the
predicted traffic. Section 2.4 describes the prediction procedure. Section 2.5 presents an evaluation

of our prediction procedure. Section 2.6 mentions the conclusion and future work.



2.2 Related Work

2.2 Related Work

traffic engineering

There is a large body of literature regarding TE [9-13]. The most of existing traffic engineering
methods are observation-based approach in which the control server collects the current traffic
information and then sets the routes so as to accommodate the observed traffic. However, such
observation-based method may not be able to accommodate the future traffic because the traffic
pattern will change from the observed pattern.

One approach to handling such uncertainty of the future traffic is to allocate sufficient resources
to accommodate worst-case traffic patterns. For example, a static routing method called oblivious
routing [6-8] sets a fixed route to accommodate worst-case traffic. Instead of observing current
traffic, this method tries to accommodate all possible traffic patterns by minimizing the maximum
link load. Wang et al. proposed a robust traffic engineering method by introducing the oblivious
routing concept [9]. Their method considers the convex hull of a set of historical traffic patterns,
namely the set of arbitrary weighted average of observed traffic. It handles uncertain future traffic
dynamics by optimizing routes for this convex hull under constraints where the worst-case perfor-
mance is not degraded. However, the approach requires large resources to accommodate worst-case
traffic.

To accommodate the future traffic variation with a small resources, it is important to know the
future traffic. Thus, our traffic engineering approach uses the prediction of time series of traffic to

decide the routes.

traffic prediction

The predictability of Internet traffic has received significant interest in various domains, such as
capacity planning, anomaly detection, admission control, and traffic engineering. The prediction
methods of the network traffic have been studied for various time scales such as milliseconds,
seconds or minutes order [21,23,24,51], daily [25-27], and even monthly variation [22].

The prediction based traffic engineering requires the traffic prediction for the control period.
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The control period may be a few hours or more. Thus, the traffic prediction should follow the daily
variation. On the other hand, the traffic variation during the control period includes the temporal
changes, which should also be considered by the traffic engineering so as to avoid the congestion.

Some of existing prediction methods focus on the daily traffic variation [25-27]. However, they
exclude the short-term variation, which is also important for the traffic engineering. For instance,
the method in [26] eliminates the values which is too far from average traffic value, and then re-
moves the white noise from the data by Fourier analysis before inputting the data to the prediction
process. If these eliminated data is not considered in traffic engineering, the calculated routes cannot
accommodate the temporal traffic change and may cause the congestion.

One simple approach to consider these removed variation is to use the short-term prediction
method [21, 23,24,27,51]. However, the short-term prediction method causes a large prediction
error when it is used to predict the traffic during the control period, which may be a few hours or
more. To predict the daily variation with a small time granularity, a number of iterations of one-step
ahead prediction is required, which causes inaccurate prediction for the distant future due to the
accumulation of errors. For instance, in [27], the error of the iterative prediction with 5 minutes of
granularity monotonically increases as the prediction target becomes long.

Therefore, in this chapter, we clarify how to handle the long-term and short-term variation for
the prediction based traffic engineering. In our approach, we decompose the traffic variation into
long-term and short-term variation. Then, in addition to the prediction of the long-term variation,
we also estimate the range of the short-term variation. Finally, we obtain the predicted upper bound
of traffic variation by summing the predicted long-term variation and estimated range of the short-
term variation.

In addition, we evaluate the prediction method combined with the traffic engineering. Though
most of the existing work on the traffic prediction discuss their prediction accuracy by comparing
the predicted values with the actual values. However, prediction errors of some flows may have
only a small impact on the performance on the traffic engineering, while other flows may have a
large impact; the large flows affect the link utilization significantly than the small flows and may
be required to be predicted accurately. Therefore, in this chapter, we discuss the suitable prediction

method considering the results of the traffic engineering using the predicted traffic.
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2.3 Fixed Route Design Using Traffic Prediction

In this chapter, we deploy a central control server that controls the network. The central control
server observes and predicts the traffic rate and calculates routes on the basis of the predicted traffic.

The control server observes the traffic rate at each flow in fixed intervals (e.g. 10 minutes, 30
minutes, or one hour) called time slots. The observed traffic rates of all flows in the ¢-th time slot are
represented as a vector. We denote this vector as ;. The aggregation of a number of flows is useful
for reducing the observing cost and prediction time. In this chapter, we aggregate the flow as OD
flow that traverses from the ingress Point-of-Presence (PoP) router to the egress PoP router. This
flow grain is sufficient to decide the routing in a backbone network, and the existing observation
based traffic engineering methods often use OD flow [9, 12].

Using the observed traffic rates until the ¢-th time slot, the control server predicts the future

traffic rates in the next f time slots. The prediction of future traffic is formulated as

Zpp1arf = F(Teni1.) (2.1

where ¢, , = (T4, Tgq+1, -, &p) is @ matrix in which each column corresponds to each vector,
&}, is the predicted traffic in the k-th time slot, f is the number of time slots where the traffic rate
is predicted, h is the length of observed time slots used in the prediction, and F' is a prediction
function defined by a prediction method.

In traffic engineering, the control server calculates the routes so as to avoid congestion for f
time slots. We define these f time slots as the control period. In this chapter, we consider the case
in which the control period is 3-24 hours. The calculated routes are represented as a matrix A called
routing matrix. The (i, j)-element a; ; in the routing matrix A represents the ratio of the traffic over
the OD flow j mapped onto the link ¢. Corresponding to the routing matrix, the predicted traffic

mapped onto each link in the control period is represented as

@t+1..t+f = A%y 11444, (2.2)

where 9, is the vector indicating the predicted traffic on all links in the k-th time slot. Traffic

—12 -



Chapter 2. Traffic Prediction Method for Traffic Engineering

engineering is the process to adjust A so as to control g, ;. ; in some desirable way.

In traffic engineering, the most widely used metric of congestion is maximum link utiliza-
tion [9, 12], i.e. the utilization of the most congested link. In this chapter, we use a simple opti-
mization approach that minimizes the maximum utilization among all links for all time slots within
the control period, though there may be a more sophisticated approach using the predicted traffic.
Using this simple approach, we can clarify the impact of the prediction on the traffic engineering
performance by simply observing the achieved maximum link utilization. If the traffic engineering
method using the traffic information predicted by a method keeps the small link utilization for a
long time, the prediction method is suitable for the traffic engineering intended to stabilize traffic

accommodation.

The optimization problem is formulated as the following linear programming problem:

minimize : U 2.3)
subject to : Vs,d, Z A1) =1 (2.4)

p(h)=s
Vs,d, Y A¥() =1 (2.5)

f()=d
Vs,d,n, Yo AM() = Y A%() (2.6)

p(h)=n f)=n
Az

Vi ke[t+1,t+ >
s,d

co < U, Q2.7)

where U is the maximum link utilization, A%%(l) is the ratio of traffic from s to d routed over the
link [, and p(l) and f(I) are the start and end nodes of the link /, respectively, i"i’d is the predicted
traffic rate of the flow from s to d at the k-th time slot and C'(1) is the capacity of the link /. ﬁ:,i’d and
C(1) are given in this problem, and A*%(l) and U are the variables to be obtained. Egs. (2.4-2.6)
are the constraints for flow conservation. Eq. (2.7) ensures that U is the maximum link utilization of
all the links for all the time slots within the given control period. By solving the above problem, we
obtain routing matrix A, which is used for the control period [t + 1, t + f], and is not changed before

t+ f+ 1. Setting f to a large value avoids frequent route changes, but to do so the traffic prediction

should be response to traffic variation occurring in the control period [t + 1,¢ + f]; if the predicted

— 13 -



2.4 Traffic Prediction Process

traffic cannot respond to the temporal traffic variation that occurs in some time slots, congestion
may occur. In Section 2.4 we therefore discuss a traffic prediction procedure that considers traffic
variation in each time slot.

To map the routing matrix A to actual network, we assume the paths between an OD pair
of routers are determined by MPLS Label Switched Paths (LSPs). According to the link-based
routing determined by A, the control server can calculate the path-based routing, i.e. defining the
link set used by each LSP and split ratio among the LSPs. Each PoP router splits traffic among
the LSPs corresponding to an OD flow using the hashing method described by Anwar et al. [13].
In this method, each fine-grain flow (e.g TCP flow) is routed to only one LSP to avoid the packet

reordering that degrades TCP throughput.

2.4 Traffic Prediction Process

2.4.1 Overview

In the network, traffic variation has a daily pattern in longer-term (hour or day) variation, and
the traffic changes every few hours. The traffic prediction needs to follow longer-term variation
so that the traffic engineering calculates the routes suitable for the next few hours. However, the
actual traffic variation includes noisy variation (short-term variation), and the longer-term tendency
is polluted. Such polluted data cause a large prediction error. Therefore, we use preprocessing
that extracts the daily periodical variation excluding the noisy variation to improve the prediction
accuracy.

On the other hand, the short-term traffic variation excluded by the preprocessing may cause the
congestion. The short-term traffic variation is hard to predict, but it can be considered as a noisy
fluctuation whose mean and variance are stable if the preprocessing extracts the longer-term traffic
variation accurately. Thus, we consider the short-term traffic variation by calculating the variance
of the traffic variation excluded by the preprocessing. Then, by adding the confidence interval of
the calculated variance to the predicted longer-term traffic variation, we avoid the underprediction

caused by the short-term traffic variation.
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Figure 2.1: Prediction process

Moreover, we also consider the confidence interval of the prediction error to avoid the impact
of the prediction error on the traffic engineering. The confidence interval causes the overpredic-
tion. However, the overprediction has a smaller impact than the underprediction. This is because
the underprediction causes the lack of allocated resources and congestion while the overprediction
does not affect the communication performance until the overpredicted flow blocks resources to be
allocated to other flows.

Our approach is summarized in Fig. 2.1. First, we extract the longer-term variation from the
actual traffic variation by the preprocessing. Second, we predict the future traffic variation using
the extracted variation and estimate the variance of excluded variation. Finally, we obtain the upper
bound of traffic variation summing up the predicted upper bound of longer-term variation and the
confidence interval of the excluded variation. The obtained upper bound is used as input of the

traffic engineering.

2.4.2 Prediction

After each preprocessing, the traffic prediction process calculates the future traffic and its confi-
dence interval. To predict the traffic, many prediction methods have been proposed such as methods
based on time series models and neural network. The model-based prediction method fits the model

parameters from inputted data and then predicts the future values and the confidence interval of the
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prediction. Although other approach such as neural network does not require to assume a certain
model for the original traffic variation, they have difficulty in obtaining the exact interval of the
prediction and only approximations are available [52]. Though our prediction process is not limited
by a certain prediction method, we use the model-based approach since we focus on the effect of
considering the confidence interval. We use two traffic prediction models ARIMA and SARIMA
as examples to discuss the effect of considering the periodicity of traffic variation. The rest of this

section gives an overview of prediction with the ARIMA and SARIMA models.

2.4.2.1 Prediction models

ARMA model Before describing the ARIMA and SARIMA models, we briefly explain the ARMA
model, which is the base model for the ARIMA and SARIMA models.

The ARMA model represents data at each time slot using the previous data and errors as

p q
Tn = Y GiTn i+ Y bien i+c (2.8)
i=1 =0

bO = 17

where p and ¢ respectively denote the numbers of past data and errors on which the current data

depends. a; and b; are the coefficients, ¢; is the error at the i-th time slot and c is a constant.

ARIMA model The ARIMA model is an extension of the ARMA model so as to model the
non-stationary data, such as the data whose mean value fluctuates over time. To apply the ARMA
model to such data, the non-stationarity is removed. When the variation of the mean has a linear
characteristic, the differenced data Ax,, = x,, — z,,—1 exclude the variation of the mean. In this
manner, d times differencing operation A¢ can remove the mean variation following a polynomial
of degree d. In the ARIMA model, ARMA model in Eq. (2.8) is applied to the differenced data

Ay,

SARIMA model The SARIMA model is a generalization of the ARIMA model. Considering the

periodicity, the SARIMA model applies a periodical differencing to the data as Agx,, = x,, — Tp—s,

—16 —



Chapter 2. Traffic Prediction Method for Traffic Engineering

where s is a period length. After the D times of the periodical differencing AP z,, are applied, the
differencing method in the ARIMA model is also applied. Therefore, differenced data are finally
denoted as A?APz,,. Considering the daily periodicity and the weekday/weekend difference, we

set s to the weekly length.

The differenced data are fitted to the following model, which expands the ARMA model by

adding the data and errors in previous periods as
p q
Tn = Y GTn_i+ P bien_i+c
i=1 i=0

P p Q q
+D A aiwnsj—i+Y Bj Y bien—sji (2.9)
Jj=1 =1 j=1 =0

bp = 1,

where P and () denote the numbers of previous periods for depended data and errors, respectively.

A; and B; are the coefficients that indicate how the previous i-th period affects the current time slot.

2.4.2.2 Model Fitting

An ARIMA or SARIMA model is fitted to the data by the following steps.

First, the differencing parameter is determined by differencing the data until the data become
stationary. A stationarity test is performed by examining whether the data follow a non-stationary
process x; = x;—1 + € called unit root process. We use the KPSS test [53] for determining d. The
KPSS test examines the null hypothesis e = 0, which means the data are stationary. For determining
D in the SARIMA model, we use the Canova-Hansen test [54]. The Canova-Hansen test applies

the null hypothesis test to the Fourier coefficients variation of each period.

Second, the coefficients and the number of the terms in a model are determined. To determine
the number of the terms in a model, we determine the coefficients by the MLE for each case of the
number of terms. Then, we determine the model by selecting the model with the highest goodness

among the models calculated by the MLE. The goodness of a model is defined by the Akaike
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Information Criterion (AIC) [55], which is defined by

AIC = —2log L + 2k, (2.10)

where L is the maximized likelihood with the MLE and k is the number of parameters. k =
p+ g+ P+ @ in the SARIMA model, and k¥ = p + ¢ in the ARIMA model. A model with a
large number of parameters can fit the data well but may fit the incidental variation such as noise.
By penalizing k, AIC can select the best model while avoiding overfitting the data. To search for
the model with the highest goodness, we use the method proposed by Hyndman et al. [56]. In this
method, the model with the highest goodness is searched for by changing p, ¢, P and () by one until

no new model can improve AIC.

2.4.2.3 Prediction with Fitted Model

After the fitting of a model, the future traffic is predicted in accordance with the obtained model.
The predicted traffic in the next k-th time slot is calculated as following conditional expectation of

T4y given the previous observation values:

Tk = Elrp|ei—ni1.4]- (2.11)

According to the prediction model (2.8 or 2.9), the traffic rate of the next one time slot is directly
calculated with observation values. The next two or more time slots are iteratively predicted by

using the former predicted value instead of the observation value.

2.4.2.4 Confidence Interval

The model-based prediction can calculate the confidence interval for the prediction error. The
upper confidence bound for the prediction can be calculated by Ty, + adyy, Where T4y is the

predicted traffic rate at the next k-th time slot, «v is a parameter indicating the considered confidence

level, and 641 = \/V @1k |i_p11.4] is the estimated standard deviation of prediction error where

V[#¢4k|Tt—ps1.¢) is the conditional variance of predicted value given the observed values.

— 18 —



Chapter 2. Traffic Prediction Method for Traffic Engineering

2.4.3 Prediction Preprocessing

In the preprocessing, we extract the daily periodical variation from the observed traffic. The object
of preprocessing is to filter out the short-term traffic variation that is hard to predict. This increases
the accuracy of the prediction of the longer-term traffic variation.

In this chapter, we investigate the following preprocessing methods: the lowpass filter, the trend

component, and the envelope. The rest of this subsection details the preprocessing methods.

2.4.3.1 Lowpass Filter

One approach to extract the longer-term variation of the traffic variation is to use the lowpass filter,
which extracts the longer-term variation using the Fourier transform.

By using the Fourier transform, the time series of the traffic data can be represented as

h—1 nk
= . omi— | 2.12
o= X e (27 1)

where f,, is Fourier coefficient corresponding the frequency n/h and i is the imaginary unit. Eq.
(2.12) also includes high frequency variations such as noise. To reduce these noisy variations, the

lowpass filter removes the terms with large n and extracts the longer-term variation as

L
nk
l, = n 2mi— |, 2.13
k nEZOf eXP( s h) (2.13)

where L is the threshold to remove the high frequency variations. In this chapter, we set L so as to
remove the variation of frequency higher than the daily variation, i.e. the lowpass filter extracts the

daily pattern of traffic variation.

2.4.3.2 Trend Component

In the second approach, we extract the longer-term variation by using a time series model. One
approach to model the longer-term variation is the trend model [57]. We call the traffic variation

extracted by using the trend model trend component. The trend component includes the daily traffic
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variation and longer-term traffic variation. The trend model is denoted as

T = tp+ e (2.14)

At = Atp_q1 + wy, (2.15)

where x, is the traffic rate of a flow in the k-th time slot, ¢; is the trend component, At =
th —th_1, € - N (0, 6?) is the noise of observation, and wy, - N (0, \?) is the noise in the trend
component.

Eq. (2.14) indicates that the original data are composed of the trend component and the noise,

and Eq. (2.15) indicates that the trend component is perturbed by Gaussian noise.

At the first step to calculate the trend component, the variances # and A\? are found by the
Maximum Likelihood Estimation (MLE). Then, the trend component t;(i =t — h + 1,--- ,t) is
determined by the conditional expectation E [t;|z;_p11.+] with the probability of transition in Egs.

(2.14) and (2.15).

In terms of extracting the daily variation, the trend component approach is the same as the
lowpass filter. However, the trend component extracts the main tendency of the traffic variation,
while the lowpass filter extracts the targeted frequency component. Therefore, the trend component
also extracts the variation mismatched to the frequency component when the variation can be taken

as the main tendency.

2.4.3.3 Envelope

Extracting the variation of traffic upper bounds may be useful to predict the bandwidth required to
accommodate the short-term traffic variation. In the third approach, we extract the upper bound
variation by tracing the peak value in the fixed time interval. We divide the observed values
Tp—htl, - ,T¢ int0 | = % intervals, where 7 denotes the length of the intervals. The set of the

time slots in the k-th interval is denoted as

Iy = {(k=D)7+t—h+1,--- kr+t—h}. (2.16)
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We set the interval length 7 to 12 hours considering the daily variation.

The peak value in [}, is represented by x,, , where py, represents the peak time slot denoted as

Pr = arg maxw;. .17
S
In this chapter, we extract the envelope by connecting the peak values ), - ,x,, and the

latest value x;, ., = x; with lines. By including the latest value x, the prediction can reflect the
latest data. We simply perform the linear interpretation for points between x,, , and x,, , and each

point is interpreted as

T —z )
Tjo= ap (=) (2.18)
Pk+1 — Pk
j = pkapk+17"'7pk+l7 kzl?al

2.4.4 Range of Excluded Variation

The traffic variation excluded by the preprocessing should also be considered because it may cause
the congestion. In this chapter, we consider the excluded traffic variation by using the standard

deviation of the excluded traffic variation. The standard deviation is calculated as

1 t
o=\l S (w—ah)?, (2.19)
k=t—h+1

where x, is the original traffic rate on a flow at k-th time slot and ), is the extracted variation
by preprocessing. Using o, we compensate for the excluded variation in the predicted traffic with
Z¢ + fo where 3 is a parameter indicating the confidence level for the upper bound prediction of

the excluded variations.

Finally, the upper bound prediction including both the prediction error and the excluded varia-

tion in the preprocessing can be calculated as &; = Z; + ad; + fo.
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Figure 2.2: Internet2 topology

2.5 Evaluation

2.5.1 Datasets

We use actual traffic traces from the backbone network of Internet2 [58], a research and education
network in the United States. Figure 2.2 shows its topology, and the capacity of each link is de-
scribed in [59]. The traffic data are collected by a Netflow protocol at each of the nine PoP routers.
The sampling rate is one packet in every 100 packets, and aggregated data are exported every five
minutes. The sampling method has two main problems: it causes sampling errors, and there may be
unsampled flows. However, it is not a critical problem for our evaluation because we only need the
traffic rate of aggregated OD flow, which has a large number of samples. The large daily variation
between day and night is mainly observed in the traffic variation. Focusing on such traffic variation
over several hours, we set the length of the observation time slot to one hour and aggregate the
observed data into the time slots.

We use four week’s worth of data (11/28/2011 to 12/25/2011) aggregated into the flows between
PoP routers using the BGP information. Table 2.1 summarizes the number of time slots used to
train the traffic model, and number of time slots used to test the prediction accuracy or traffic

engineering performance. We use the data from the previous two weeks as the observed data. We
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Table 2.1: Number of Data Used in Training and Test series

control period [hours] | training series [hours] | test series [hours]
3 336 3
12 336 12
24 336 24

perform the preprocessing and prediction processes using these data, then compute optimal routes
for the targeted control period using the predicted traffic. Finally, we evaluate these routes with
actual traffic traces during the control period. We perform the above process 24 times, changing
the start time of the prediction because traffic variation at the start of the prediction greatly affects
its accuracy. Due to an over-provisioning policy [5], link utilization on the Internet2 network is
less than 20%. Congestion rarely occurs in such situations, but this means that most of equipped
capacity is redundant and unnecessary energy consumption is incurred. Our interest here is how
to deal with congestion under limited resources in a way that reduces over-provisioning and power

consumption costs, so we multiplied actual traffic amounts by 5 in the following evaluation.

2.5.2 Characteristics of the Traffic Prediction
2.5.2.1 Prediction Error

Before the evaluation of prediction based traffic engineering, we investigate the characteristics of
the prediction method. First, to investigate accuracies of the prediction methods, we compare the
mean absolute percentage error (MAPE), defined as MAPE;, = % Stk 1 %, where 7; is the
predicted traffic rate, x; is the actual traffic rate, and k is the length of the test series. This is one of
the most frequently used metrics of prediction performance in previous work (e.g. [25,27]).

Fig. 2.3 compares the MAPE corresponding to the length of the prediction target. In Fig. 2.3,
“non-preprocess” means prediction using original data without preprocessing; “trend,” “envelope,”
and “lowpass” mean prediction with each corresponding preprocessing; and “arima” and “sarima”
mean prediction by the ARIMA and SARIMA models, respectively. Fig. 2.3 indicates that any

traffic prediction includes prediction errors (e.g. at least around 40% in the case of “lowpass”). Fig.

2.3 also indicates that the MAPE generally increases as the prediction target becomes far from the
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current time slot except the case of “envelope”. This increase is caused by the accumulation of one
step prediction errors. In the SARIMA and ARIMA models, the future traffic value is predicted by
continuing the one step prediction. As a result, even if the prediction errors included in each step
is small, the prediction errors in the far future become large by accumulating the prediction errors
included in each step.

From Fig. 2.3, prediction with the envelope has the largest prediction error. This is because the
“envelope” includes the large short-term fluctuation, since the upper bound of traffic is frequently
changed by temporal traffic changes. It is difficult for SARIMA or ARIMA model to fit to the traffic
pattern which includes such a large fluctuation. As a result, the prediction result with the envelope
has large error even in one-step prediction. This large prediction errors also makes the MAPE of
envelope independent from the time slot, while the MAPE of the other prediction methods increases
as the time slot becomes far from the current time slot.

In Fig. 2.3, prediction with the lowpass filter achieves the lowest prediction error, because the
lowpass filter effectively improves the prediction accuracy by excluding noisy variation. However,
this result does not necessarily mean that prediction methods using the lowpass filter are best suited
to traffic engineering. The MAPE indicates the overall accuracy of the prediction of all flows.
However, for the traffic engineering, the importance of the prediction may depend on the flows; the
prediction of the large flows may be important since the large flows have a large impact on the link

utilization. We demonstrate the impact of the prediction on traffic engineering in Subsection 2.5.3.

2.5.2.2 Predicted Traffic Variation in Case of Daily Traffic Pattern

To investigate the detailed characteristic of each prediction method, we show the predicted traffic
time series. As an example, Fig. 2.4 shows the prediction results of a flow using each preprocessing
method without a confidence interval. In Fig. 2.4, “SARIMA” and “ARIMA” mean the prediction
methods using the SARIMA model and the ARIMA model, respectively. Additionally, “real” means
the actual traffic rate. Figs. 2.4(a)—(c) show the prediction results using the trend component, the
lowpass filter, and the envelope. Fig. 2.4(d) shows the prediction results using original data without

preprocessing.
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Figure 2.3: MAPE of each prediction method

Fig. 2.4 indicates that the preprocessing methods “trend” and “lowpass” improve the accuracy
of the prediction of the daily variation. This is because the preprocessing excludes the noisy vari-
ation and clarifies the longer-term traffic variation, which enables accurate modeling of the daily
traffic variation. Fig. 2.4 also indicates that the SARIMA model predicts the daily variation more
accurately than the ARIMA model. This is because considering the periodicity in the prediction
model is effective for predicting the daily variation. The results shown in Fig. 2.4 is different from
those in Fig. 2.3. This is caused by that the prediction errors in the small flows; the MAPE is aver-
age of the prediction errors normalized by their actual values, and the prediction errors in the flows
whose actual traffic amounts are small have significantly large impacts on the MAPE. In addition,

the large prediction errors occur in the small flows, especially in the flows whose average traffic
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amounts are small but that have some spikes. Figure 2.5 shows an example of such small flows with
spikes. In this figure, the vertical dotted line indicates the start point of the prediction. In this figure,
there is a spike before the start point of the prediction. Such spikes cannot completely extracted
by the trend or lowpass filter, and have a impact on the extracted long-term tendency. In the case
of Fig. 2.3, the spike causes the sudden increase and decrease in the extracted tendency just before
the start point of the prediction. As a result, the SARIMA model whose parameters are set to fit
such sudden changes becomes different from the long-term trend of the traffic, and causes a large
prediction error.

However, such spikes causing the large prediction errors are not found in the large flows. This
is because the large flow includes a numerous number of user flows. The spikes in the flows are
caused by the spikey behavior of the user flows. However, even if the flow includes the user flows
whose behaviors are spikey, the spikey flows have only small impacts on the total traffic amounts
of the flow, when the flow includes a large number of user flows.

Considering the traffic engineering, the prediction of the large flows such as a flow shown in
Fig. 2.4 are important, compared with the small flows, since the large flows have a large impact on
the link utilizations. Thus, the evaluation of the accuracy of the prediction is not sufficient, and we
need the evaluation of the performance of the traffic engineering using the predicted traffic, which

is discussed in Section 2.5.3.

2.5.2.3 Predicted Traffic Variation in Case of Sudden Traffic Change

Though we do not need the accurate prediction on the spikey flows with small average traffic rates,
the large flow may have the traffic variation which suddenly deviate from the longer-term pattern.
Since the large flow affects the performance of the traffic engineering, the prediction should follow
the main pattern of variation even in this case.

In this subsection, we investigate the accuracy of the prediction with a lowpass filter and trend
component when such sudden change occurs in the large flows. Fig. 2.6 shows the prediction results
of the SARIMA and ARIMA of a flow when the sudden traffic change is included. Fig. 2.6 plots

the actual traffic variation and the predicted variation. In this figure, we plot the prediction results
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Figure 2.4: Example of the predicted traffic time series using each preprocessing method

of two prediction methods (lowpass and trend) that can accurately predict the daily traffic variation
as discussed in the previous subsection. The vertical dotted line indicates the start point of the
prediction. “upper lowpass” and “upper trend” indicates the upper bound calculated by setting o
and ( to 0.84, which correspond to the confidence level of 80% for prediction error and short-term

variation, respectively.

Unlike the spikey flows with small average traffic rates, the large flow, whose traffic rates sud-
denly increase, increases over multiple time slots as shown in Fig. 2.6. Thus, we can obtain the
information used for the prediction of the sudden increase.

In Fig. 2.6, the method using the trend component follows the main variation under sudden

traffic change more accurately than the method using the lowpass filter. This is because the trend
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component extracts the tendency to increase, while the lowpass filter removes all the variation
shorter-term than daily variation. As a result, the lowpass filter removes the increasing tendency
and underpredicts the sudden increase in traffic.

Fig. 2.6 also indicates that the predicted traffic of the ARIMA and SARIMA are almost the
same. This is because the periodicity of the traffic variation is not effective for such sudden varia-

tion.

2.5.3 Performance of the Traffic Engineering

In this subsection, we investigate the performance of the traffic engineering using the predicted
traffic. In this evaluation, we compute the optimum routes by solving the linear programming prob-
lem in Eqs. (2.3-2.7) using the predicted traffic. The linear programming problem is solved by
CPLEX [60]. After the calculated routes are set, we investigate the performance of traffic engineer-
ing using actual traffic with the calculated routes.

To evaluate the performance of traffic engineering, we investigate the link load of each link at
each slot, which are the sum of traffic passing the link. In this evaluation, we focus on the peak
link loads during the control period, because the network operator should set the bandwidth of each
link so as to accommodate peak traffic without congestion. Among all links, we also focus on the
most congested link, because the reduction of the link load on the most congested link is one of
important objectives in the traffic engineering. Since the most congested link is passed by a large
number of flows, the mitigation of the congestion of such a link improves the performance of a large
number of flows. In addiction, the reduction of the link load on the most congested link avoids the
concentration of traffic on a certain link, which may cause the necessity of enhancement of the link

capacities. Thus, we use the maximum peak link loads defined by

— l 2.20
TS e y(l) (2.20)

where f is the length of control period, and y (1) is the traffic rate on the link / at the time slot
k. The small r indicates that we do not require a large bandwidth to accommodate traffic without

congestion.
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In the evaluation, we normalize the value of r by that of InvCap routing, which is the most
commonly used method for load balance routing. InvCap routing calculates the shortest path using
the inverse of link capacities as weights, splitting the traffic equally among equal weighted paths.

The normalized maximum peak link load ’ is defined as

R 2.21)
TInvCap
where r'mycap = max; g yi“vcap(l ) is the maximum peak link load under the InvCap routing, and

yinvcap(l ) is the traffic rate on the link [ at the time slot k& under the routes determined by InvCap

routing. In our evaluation, we focus on the largest value of 7/ to clarify the reduction in the required

bandwidths to avoid congestion.

2.5.3.1 Impact of Considering the Short-Term Variation and Prediction Errors

We compare the maximum peak link load by the traffic engineering using the predicted traffic with
various « and 3. Figures 2.7-2.8 show the complement cumulative distribution function (CCDF)
of the normalized maximum peak link load. Figures 2.7-2.8 show the cases of SARIMA and
ARIMA with the trend component for various control periods. In this comparison, when changing
«, B is set to 0. On the other hand, when changing (5, « is set to 0. Here, “mean” indicates
the result using mean prediction without confidence interval, and “k %” means that confidence
level corresponds to £%. The confidence interval corresponding to a confidence level is calculated
under the assumption that predictive error follows a Gaussian distribution. This assumption can
be examined by a Kolmogorv-Smirov (KS) test, and the null hypothesis of Gaussian distribution
cannot be rejected at a significance level of 5% for more than 85% of OD flows.

In most cases in Figs. 2.7-2.8, the largest link load of prediction-based traffic engineering is
improved by considering the confidence level. This is because by considering the range of the
short-term variation and prediction errors, the congestion occurred by temporal traffic variation can
be avoided. When these ranges are not considered, temporal traffic variation sometimes causes
congestion. Moreover, the difference between considering confidence intervals or not becomes

large when the control period is large. This is because a large control period has a higher possibility
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Table 2.2: Values of Parameters for Confidence Levels (o, 3)

control period [slots] 3 12 24
trend (0.5,0.6) (0.5,0.8) (0.9,0.8)
lowpass (0.8,0.5) (0.7,0.8) (0.8,0.9)
envelope (0.8,-) (0.9,-) (0.8,-)
non-preprocess (0.7,-) (0.7,-) (0.8,-)

of temporal traffic changes which may causes the congestion.

From Figs. 2.7-2.8, an overly large o sometimes requires large capacity, while the maximum
peak link load is kept small even when (3 is set to a large value. When « is set to a large value, the
predicted traffic rate of the distant future time slots becomes large because the traffic of the distant
future time slot is difficult to predict and the variance of the prediction becomes large. As a result,
too many resources are allocated to the traffic whose variance of the prediction is large. On the other
hand, the variance of the short-term traffic variation is constant for all time slots in our prediction
procedure. Thus, even when [ is set to a large value, no traffic is predicted as a too large value.
Therefore, setting 3 to a large value and « to O is sufficient to avoid future congestion caused by

short-term variation.

2.5.3.2 Comparison of the Preprocessing Methods

We compare the impacts of the preprocessing methods on the traffic engineering using the predicted
traffic. Hereafter, we configure the confidence levels (« and ) of each prediction method in traffic
engineering so that the maximum link load at the peak time slot is minimized. Table 2.2 shows
the configured values of («,53). For “envelope” and “non-preprocess”, the value of 5 is not valid
because it makes no sense to consider the removed variance in preprocessing in these methods.

Figs. 2.9-2.10 show the CCDF of normalized maximum peak link load at each control pe-
riod when the traffic is predicted by the SARIMA or ARIMA with each preprocessing. Here,
“observation-based TE” means calculating routes using the previous one hour’s worth of data in-
stead of the predicted traffic.

Figs. 2.9-2.10 show that the traffic engineering with the prediction keeps maximum peak link
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load low for the worst or almost worst case than “observation-based TE”. This is because the traffic
engineering using the predicted traffic variation sets the routes so as to avoid the future congestion
by considering the future traffic variation. On the other hand, the “observation-based TE” sets the
routes on the basis of the observed traffic, which sometimes differs from the future traffic signifi-

cantly. As a result, the “observation-based TE” causes the congestion on a certain link.

Comparing the results of the different control periods, the maximum peak link loads increases
as the control period becomes large. This is because the traffic changes included in the control
period increases as the control period becomes large. As a result, more bandwidth is required to
accommodate the traffic fluctuation during the control period. However, the short control period
causes frequent route changes. In addition, the routing optimization may take a long time, the
control period cannot be set to a small value especially in a large network. Even in the case of the
long control period, the prediction based TE does not required a large bandwidth, compared with

the observation based TE, which is one of the important advantage of the prediction based TE.

In Fig. 2.9, the SARIMA method with the trend keeps the worst value of link load small
compared with the other methods. This is caused by that the SARIMA with the trend follows both
of the long-term variation and sudden changes. As a result, traffic engineering using SARIMA with

the trends allocates sufficient resources considering the long-term variation and sudden changes.

We also investigate the gain of the prediction based TE compared with “observation-based TE”,

defined by

r
1—- -
Tobservation

where 7 is the maximum peak link load of the prediction based TE, ropservation = max j yzbsewation (1)

is that of the observation based TE, and y¢Ps°rvation (7) is the traffic rate on the link [ at the time slot
k under the routes determined by observation based TE. Figure 2.11 shows the performance gain
of each control period when the control period is set to 12 slots. In Fig. 2.11, the maximum, third
quartile, median, first quartile, and minimum values are plotted as horizontal line from top to bot-
tom, and the average value is plotted as a crossed point. Similar to the previous results, we focus on
the worst case to evaluate the reduction of capacity which must be prepared. Although there is dif-

ference among the prediction method, the worst case of gain is positive in all methods. Especially,
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the gain of the prediction based traffic engineering using SARIMA with the trend component is at
least 18.9%. That is, the prediction based traffic engineering using SARIMA with trend component

reduces the required bandwidth by 18.9% compared with the observation based traffic engineering.

2.5.3.3 Comparison of the ARIMA and SARIMA Models

We also compare the performance of the traffic engineering using the traffic predicted by the
ARIMA and SARIMA models. Fig. 2.12 compares the CCDF of maximum peak link load nor-
malized by InvCap routing. In Fig. 2.12, we present the results for the traffic engineering using
the traffic predicted by the ARIMA/SARIMA with the trend component or lowpass filter, and the
observation-based traffic engineering.

Fig. 2.12 indicates that the traffic engineering using the traffic predicted by the ARIMA keeps
maximum peak link load similar in size to that of the traffic engineering using the traffic predicted
by the SARIMA when the control period is small. This is because the traffic variation of the short
control period can be predicted even without considering the periodicity of the traffic variation.

On the other hand, the SARIMA method achieves lower maximum peak link load than the
ARIMA when the control period is 24 slots. Because the longer-term traffic variation cannot be
predicted without considering the periodicity, the prediction errors of the ARIMA become large.
On the other hand, the SARIMA predicts the longer-term variation accurately by considering the
periodicity. As a result, the traffic engineering using the traffic predicted by the SARIMA allocates
the resources to the traffic properly.

We also compare the computational complexity of the ARIMA and SARIMA. The computa-
tional complexity of the prediction with ARIMA and SARIMA is O(m3t) where m is the oldest
time slot in the model and ¢ is the length of the data used to learn the parameters of the model.
m = maz(sP,sQ) + mazx(p,q) in the SARIMA model and m = max(p,q) in the ARIMA
model. In the case of datasets used in our evaluation, the period length s equals 168, the number
of period terms P or () usually equals 1, and p or ¢ usually equals 3—5. Therefore, the value of
m in the SARIMA model is about 30-60 times larger than the ARIMA model. Thus, the ARIMA
predicts the traffic about 38,000-180,000 times faster than the SARIMA.
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Therefore, the ARIMA prediction is useful for the traffic engineering targeting the short time
scale. This kind of the traffic engineering may require the future traffic variation to be frequently
recalculated, and the ARIMA predicts the traffic quickly. In addition, the ARIMA predicts the
traffic variation with sufficient accuracy to avoid the congestion during the short control periods.

On the other hand, the SARIMA is required when we aim to calculate the stable routes for a long
control period. By considering the longer-term traffic variation, we may handle even unexpected
traffic changes by changing routes of only a small amount of traffic corresponding to the unexpected
changes. As a result, we keep the network stable.

To achieve this, we must predict both the longer- and short-term traffic variations accurately.
The SARIMA predicts the longer-term variation accurately, while the ARIMA cannot. Though the
SARIMA takes a long time to predict the traffic, the future traffic does not need to be frequently

recalculated when the target control period is large.

2.6 Conclusion

In this chapter, we proposed a traffic prediction procedure that obtains all the information required
for traffic engineering. In our prediction procedure, we extract the longer-term variation before the
prediction so as to improve the prediction accuracy of the daily traffic variation. The short-term
traffic variation is also handled by calculating the variance of the traffic variation excluded by the
preprocessing. Through the simulation, we clarified that the results of traffic engineering using
the predicted traffic show that considering the short-term variation and prediction errors avoids the
congestion caused by the prediction uncertainty. The results also indicate that the ARIMA model is
suitable for the traffic engineering method targeting the short-term control period and the SARIMA
model is suitable for the longer-term control period.

Our future work will include further investigation of more sophisticated prediction models such
as neural networks, and developing traffic engineering methods suitable for use with predicted

traffic.
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Figure 2.6: Example of the prediction for the sudden traffic change
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Figure 2.7: Complement Cumulative distribution of maximum peak link load normalized by InvCap
routing with different confidence levels in the SARIMA model prediction with the trend component
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Figure 2.8: Complement Cumulative distribution of maximum peak link load normalized by InvCap
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link load compared with the observation-based traffic engineering (Control period: 12slots)
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Figure 2.12: Complement Cumulative distribution of maximum peak link load normalized by In-
vCap routing when the ARIMA and SARIMA model predictions with the different preprocessing
are used in traffic engineering
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Chapter 3

Traffic Engineering Method Based on
Model Predictive Control

3.1 Introduction

In recent years, the time variation of Internet traffic has increased due to the growth of streaming
and cloud services. Backbone networks must accommodate such traffic without congestion.

Until now, backbone networks have addressed this problem by reserving redundant link capacity
to accommodate not only average traffic but also traffic surges [1,2]. However, this approach
incurs higher costs as the average and variance of traffic increases. Moreover, this approach wastes
energy due to the poor utility of network resources; this approach reserves more than double the
capacity required to accommodate the actual traffic. Hence, a method for accommodating network
traffic without congestion and with limited resources is required in order to reduce costs and power
consumption caused by over-provisioning.

Routing optimization such as load balancing by splitting traffic among paths is effective for
accommodating traffic with limited resources. A routing method called oblivious routing [6-8]
tries to accommodate traffic demands without prior knowledge of traffic statistics by using fixed
routes that are calculated in advance. In this method, the route is calculated so as to minimize a

metric called oblivious ratio which is the worst ratio of maximum link load to its optimal value.
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Such worst-case-guarantee routes, however, degrade performance under normal situations. In [8],
numerical evaluations show that oblivious routing will spend most of its time in a congested state
when the number of source—destination pairs is large, despite achieving a low oblivious ratio.

Many dynamic traffic engineering (TE) methods have addressed the problem of accommodating
time-varying traffic by using limited resources effectively [9, 11-13]. In dynamic TE methods, a
control server periodically observes network traffic and dynamically reroutes flow to accommodate
the observed traffic. These methods set routes for only observed traffic, however. This renders the
configured routes unsuitable after significant traffic changes because routes are not changed until
the next control cycle. Control servers can quickly respond to traffic changes by shortening the con-
trol cycle interval, but frequent route changes cause routing oscillations that degrade TCP session
throughput; oscillations cause packet reordering by delivering the packets of a given TCP session
via different paths, which reduces the TCP session window size. Routing oscillations also cause
overly frequent changes in round-trip time (RTT), which decreases the throughput of delay-based
TCP [20]. Hence, a method that avoids congestion without significant route changes is required.

TE with traffic prediction is one approach to solving such problems. In this method, routes are
calculated on the basis of predicted future traffic. Prediction methods for network traffic have been
studied for various time scales, with variation ranging from milliseconds or seconds [21,23,24,51]
up to daily [25,26] and even monthly or yearly long-term variation [22,61]. Traffic prediction that
considers both daily and short-term variation has also been proposed for TE [29]. However, no pre-
diction methods are without error, and routes calculated from incorrect traffic information become
inappropriate for actual traffic and may cause congestion. Therefore, TE with traffic prediction
should be robust to prediction errors.

In this chapter, we propose a TE method that uses traffic prediction in a way that is not impacted
by prediction errors. Our method uses model predictive control (MPC) [34, 35], which has been
recently studied as a method of system control based on the prediction of system dynamics. In
MPC, a controller inputs system parameters so as to maintain system output at close to a target
value. The MPC controller predicts the system output, which reflects changes in the input values,
and calculates the optimal input values for future time slots. Input values are implemented for

only the next time slot. The MPC controller then observes the output and corrects the predictions
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by using the output value as feedback. After correction of the predictions, the MPC controller
recalculates the input value for the next time slot with the corrected predictions. By repeatedly
performing the above steps, the MPC controller can calculate accurate input for future time slots
even when prediction errors occur. Moreover, the MPC controller avoids overreaction to temporary
prediction errors by avoiding drastic changes in the input value. In this chapter, we apply MPC
to TE to propose a method that follows predicted traffic variation and is robust against prediction

€ITors.

We summarize the contribution of this chapter as follows. (i) This chapter proposes a new
prediction-based TE method, which is robust to the prediction errors by applying the idea of MPC.
(i1) This chapter demonstrates the advantage of our TE method by simulation using the actual traffic

trace. (iii) This chapter discusses the suitable parameter setting of our TE method.

The rest of this chapter is organized as follows. Section 3.2 describes TE and TE with traffic
prediction. Section 3.3 describes our TE method, to which we apply MPC. Section 3.4 presents an
evaluation of basic behavior in our TE method. Section 3.5 gives an evaluation of our TE method
as applied to an actual backbone network. Section 3.6 surveys related work. Section 3.7 presents

our conclusions.

3.2 Dynamic Traffic Engineering and Traffic Prediction

3.2.1 Dynamic Traffic Engineering

TE has been studied as an approach to accommodating changing traffic by dynamically changing
routes. The process of TE is composed of the following three steps: (1) traffic rates at network
devices are observed, (2) routes are calculated so as to accommodate the current traffic, and (3) the
calculated routes are applied to the actual network. These steps are periodically repeated to follow

traffic changes. The details of the above steps are discussed below.

Traffic rates are observed at a fixed interval (e.g., one second, one minute, or one hour), with

the times between observations called time slots. Because there are a huge number of traffic flows,
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aggregate traffic rates are observed instead of individual rates. In [9, 12], multiple flows are aggre-
gated as an origin—destination (OD) flow that traverses from the ingress point-of-presence (PoP)
router to the egress PoP router. Similar to these work, we too aggregate individual flows as OD
flows. Hereafter, we denote the traffic rate of OD flow ¢ at the kth time slot by z;(k), and the vector
z(k) = Y(z1(k),- -+ ,z4(k)) represents the traffic rates of all OD flows at the kth time slot, where
q is the number of OD flows. The traffic rates of the OD flows are monitored by routers or traffic
monitors attached to the routers. This information can be collected by using the Netflow protocol

or similar.

After the traffic information is collected, routes are calculated on the basis of the observed traffic
rates. The routes are defined by the fraction of traffic of each OD flow sent to each path. We denote
the fractions by a matrix R(k) whose (i, j) element R; ;(k) indicates the fraction of traffic on the
OD flow j that traverses the available path 7. Under the assumption that the traffic pattern will not

change between the current and next time slots, the expected traffic rates on links are calculated as

Gt+1) =G R(t+1) z(t) (3.1)

where §(t + 1) = 1(g1(t + 1),...,9(t + 1)) is a vector whose component §J;(¢ + 1) indicates the
expected traffic rate of link ¢ at the next time slot, [ is the number of links, and G is a matrix whose
(i,j) element G} ; is 1 if the available path j traverses the link ¢ and 0 otherwise. TE is the process
of calculating routes R(t+ 1) so as to minimize a cost function f(g(t+1)), such as link load, delay,
or packet loss rate for traffic rates on the links. The TE is formalized as the following optimization

problem:

minimize : f(g(t+1)) (3.2)

subjectto : Pgt+1)=G-R(t+1)- x(t). (3.3)
The most used cost function is maximum link utilization [9, 12] for accommodating unexpected
traffic surges.

Finally, the calculated routes are implemented. One approach to implementing the routes is to
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set the MPLS label-switched paths (LSPs) between the OD pair along the calculated routes [10, 13,
15]. In this approach, a control server calculates the set of links used by each LSP and the split
ratio of OD flow among LSPs from R(¢ + 1). Then, the calculated routes are implemented by
establishing the LSPs.

In the existing TE method, the control server calculates the next routes R(t + 1) from the latest
observed traffic rates @ (t). These routes R(t + 1), however, are not exactly suited to the traffic rates
at time slot ¢ 4- 1, because the actual rates will differ from those of time slot ¢. Under drastically
changing traffic, the difference between x(¢ + 1) and x(¢) becomes large and routes calculated
from x(t) may no longer accommodate the actual traffic at the (¢ + 1)th time slot. Frequent control
with narrow time slots is one way to quickly respond to such traffic fluctuations. In such methods,
routes are frequently calculated to respond to traffic changes. However, frequent and significant
route changes degrade the throughput of TCP sessions because of the induced packet reordering or
frequent changes in RTT. To solve these problems, the TE and traffic prediction must cooperate. By

using predicted traffic, the TE method directly sets routes fitting the traffic at future time slots.

3.2.2 Dynamic TE with Traffic Prediction

Traffic prediction is useful for TE to prevent route change delays due to differences between ac-
tual and observed traffic. Fig. 3.1 shows an overview of TE with traffic prediction. Unlike exist-
ing observation-based TE methods, observed traffic rates are not directly used to calculate routes.
Rather, observed traffic is used to calculate future traffic rates by the traffic prediction process, and
routes are then calculated from prediction results. This process is periodically repeated to follow
traffic trends. The details are shown below.

The traffic prediction is estimation of future traffic rates of OD flows. First, a model of traffic
dynamics is constructed from the observed traffic rates. The model represents a time evolution such
asz(k+1) = F(x(1),---,z(k)) where F' is a model of traffic dynamics. Future traffic rates are
then predicted in accordance with the model. If we observe the traffic rate until time slot ¢, the

traffic rate at time slot ¢ 4+ 1 is calculated as

z(t+1)=F(z(1), - ,z(t)), (3.4)
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Figure 3.1: Overview of traffic engineering with traffic prediction

where &(t + 1) is the predicted traffic at time slot ¢ + 1. The traffic rates from time slot ¢ + 2
are iteratively calculated, by using the previous predicted values instead of observation values, as

F(t+k)=Fla(), - ,z(t), 2t +1), -, 2t +k— 1))

Using the predicted traffic on the OD flows, traffic rates on the links can also be predicted; the

predicted traffic rates on links in the case of routes R(¢ + 1) are calculated as
y(t+1)=R(t+Da(t+1). (3.5)

In TE with traffic prediction, the routes are calculated by considering the cost function of g (¢ + 1).

TE with traffic prediction configures routes so as to avoid future congestion without frequent
route changes. One approach is to configure the fixed routes R that minimize a cost function at
future time slots from ¢ + 1 to ¢ + h. The optimal fixed routes R are obtained by solving the

following optimization problem:

minimize : f(g(t+1),---,g{t+h)) (3.6)

subjectto : y(k)=Rx(k),k=t+1,--- ,t+h. (3.7

The predicted traffic, however, includes the prediction error. Thus, the TE method must configure

the appropriate routes even when the prediction errors occur.
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3.3 Traffic Engineering Based on MPC

3.3.1 Overview of MPC

MPC is a method of system control based on predictions of system dynamics; this has been studied
in recent years. Fig. 3.2 shows an overview of MPC. In MPC, a controller sets an input parameter
so as to keep the output performance of the system close to an operator-specified target. Unlike
traditional system control, the MPC controller predicts changes in the output value to calculate the
inputs for the predictive horizon, time slots [t + 1,¢ + h] where h is the distance to the predictive
horizon. We denote the input and output at the kth time slot by u(k) and y(k), respectively. The
MPC controller calculates the inputs for the predictive horizon [t + 1,¢ + h| so as to keep y(k)
close to the target value ry (k). The inputs u(t + 1), - - -, u(t + h) that keep y(k) close to 7, (k) are
t+h

obtained by using the objective function J; = Y170 [|y(k) — ry(k)||?, where || - || represents the

Euclidean norm:

(u(t+1),---,u(t+h)) = argmin Jj. (3.8)
(w(t+1), ,u(t+h))

To solve the above optimization problem, the future outputs y(t+1),--- , y(¢+ h) must be pre-
dicted from the inputs u(t + 1), - - ,u(t + h). The future output under the given input is calculated

by a system model that represents the system dynamics. In system control, a system model is often
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represented by a mathematical formula, the state space representation, described as

z2(k+1) = ¢k, z(k),u(k)) (3.9

y(k) = Pk, 2(k),u(k)), (3.10)

where z(k) is the state of the system at the kth time slot, and ¢ and ¢ are functions that respectively
map the current state and input onto the next state and output.

Modeling the system by a mathematical formula, however, may entail modeling errors, such as
the use of ¢ or ¢ functions that do not well represent actual system dynamics. Predictions of system
output will be inaccurate under an incorrect model, and prediction errors become increasingly large
with more distant predictive horizons. The MPC controller therefore implements only the first of
the calculated inputs u(¢t + 1),--- ,u(t + h) for the predictive horizon. Then, the MPC controller
observes the output and corrects the prediction by using the output value as feedback. After pre-
diction correction, the MPC controller recalculates the input value for the next time slot with the
corrected prediction.

Prediction errors may also significantly change input values, destabilizing the system. The
controller therefore restricts the amount of allowed change to inputs, which mitigates the influence
of prediction errors. We denote the amount of change in the input at the time slot k& by Au(k) =
u(k) — u(k — 1), and the aggregated amount of change during the predictive horizon by Jo =
Stth ||Au(k)]||. Instead of the input values determined by Eq. (3.8), the controller calculates the

k=t+1

input values by the following optimization problem:

(u(t+1), -+, u(t+h)) = argmin (1—w)Ji+wJs (3.11)
(u(t+1), - u(t+h))

where 0 < w < 1 is a parameter for weighting the two objective functions J; and Js.

3.3.2 Applying MPC to TE

We apply MPC to TE to achieve a prediction-based TE that is robust against prediction errors.

Fig. 3.3 shows an overview of our TE method, to which MPC is applied. We assume that a control
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Figure 3.3: Overview of traffic engineering based on MPC

server collects all traffic information and sets the routes. In the TE, a central control server acts as
the MPC controller, which inputs the routes R(k) and measures the outputs of the network and the
traffic rates on the links y(k). The control server periodically changes the routes by repeating the
following two steps: 1) The control server predicts the traffic rates of OD flows for the target time
slots from the previously observed traffic rates using a certain prediction model. 2) The control
server calculates the routes from the prediction so as to minimize a cost function f(¢(k)), such as

link load, delay, or packet loss rate.

3.3.2.1 Traffic Prediction

The control server predicts future traffic from the previous observations in accordance with a pre-
diction model. The predicted traffic is used as an input of the route calculation. In our TE, any
prediction method can be used. Though a prediction method may have an impact on prediction
errors, the suitable prediction method is out of the scope of this chapter. Instead, we use one of the
simplest prediction models in our evaluation to demonstrate that our TE works properly even in the

case of inaccurate prediction.

3.3.2.2 Routes Calculation

The control server computes the routes by minimizing the objective function .J; = Z’;;;};  fyk)),

which indicates the summation of the cost function during the predictive horizon. In addition, the
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control server also minimizes Jo = Yt 1 IAR(K)||* where AR(k) is a matrix whose (i, /)
element AR; j(k) = R;j(k) — R;j(k — 1). By minimizing Jo, the overreaction to prediction
error is avoided. This multi-objective optimization is conducted by minimizing the weighted sum

(1 —w)J; +wJa, where 0 < w < 1 weights the importance of the restriction on the route changes.

In our TE method, the control server solves the following optimization problem at each time

slot ¢:
minimize %If (1= w) F(@k) + wl| ARE)|?) (3.12)
subject to @?,J;)l(k):G-R(k)-a‘c(k) (3.13)
Yk, Vi, Vj, Ri (k) € [0,1] (3.14)
VEVj, Y Rij(k) =1. (3.15)

i€p(j)
Here, x(k), G are given variables and R(k), §(k) are the variables to be optimized. Eq. (3.13)
represents the relation between the traffic rates of the OD flows and links. Egs. (3.14) and (3.15)
mean that all traffic on each OD flow is allocated to an available path.

Although all of the routes R(t + 1),--- , R(t + h) during the predictive horizon are obtained
by solving the above optimization problem, the control server implements only the next routes
R(t + 1). After the route change, the control server corrects the traffic prediction &(k) by using
the newly observed traffic rate and recalculates the next routes by solving the optimization problem

again.

3.4 Evaluation of Basic Behavior of MPC-based TE

In this section, we investigate the behavior of the MPC-based TE in a basic situation. In this
evaluation, we generate the average traffic rate of each time slot of each OD flow. At the beginning
of each time slot, we calculate the routes of the OD flows by TE methods using the traffic rates of
the past time slots. Then, we map the OD flows on the links according to the calculated routes.

Finally, we evaluate the performance of the TE based on the average traffic rate on each link. In this
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Figure 3.4: Simple network topology

evaluation, we do not assume a specific time scale of the time slot, but the length of the time slot is

sufficiently large so that the route change does not affect the traffic rate.

3.4.1 Simulation Environment
3.4.1.1 Network Topology

We use the simple network topology shown in Fig. 3.4. Each link has a capacity of 100 units of
traffic and delay of 0.1 unit time. In this simple network there are only two OD flows, from node 0
to node 1 and from node 4 to node 5. Each OD flow has two available paths, shown by the arrows in
Fig. 3.4, the paths 0—1 and 0-2-3-1 for the OD flow between node 0 and node 1 and the paths 4-5
and 4-2-3-5 for the other OD flow. Due to the overlap between paths 0—2—-3-1 and 4-2-3-5 (on
link 2-3), the control server has to adjust the split ratio of traffic among the paths. For example, if
the traffic rates increase at the OD flow 0-1, more traffic should be bypassed on the path 0-2-3-1,

and traffic at OD flow 4-5 should not traverse the path 4-2-3-5 so much to avoid the congestion.

3.4.1.2 Network Traffic

We use the artificial traffic shown in Fig. 3.5. This artificial traffic includes traffic increases and

decreases, which will cause congestion unless the routes are appropriately changed.
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Figure 3.5: Network traffic for simple network topology

3.4.1.3 Prediction Method

In this evaluation, we use a simple prediction method detailed as follows. First, we find a best-fit
straight line [(k) = ak + b that minimizes the sum of squared distances from the previous observed
traffic rates x(t—s), x(t—s+1), - ,z(t)(s > 1), denoted as > "5 _,(z(t—s+k)—1(t—s+k))%. We
then obtain the future traffic rate as (¢ + k) = [(t + k). Though there are many more sophisticated
prediction methods, we use the above simple prediction with s = 1 to verify the effect of correcting

the prediction with feedback from new observations, which is one of the main effects of MPC.

3.4.1.4 Cost Function

In this evaluation, we use a cost function that is based on link utilization, which is similar to existing
work [62]. While most previous studies have minimized link utilization, high link utilization does
not affect communication performance unless congestion occurs. We therefore use a cost function
that indicates whether congestion occurs. In this cost function, we define the congestion level
¢j(k) > 0 for each path j at time slot k. To distinguish whether congestion occurs or not, we
introduce a threshold value called target capacity ¢; = pC; where p is an allowable upper limit of
link utilization which is defined by the performance requirements such as delay or loss rate. In this

evaluation, we set the value of p to 0.9. If traffic on any links over path j does not exceed the target
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capacity, then j is regarded as an uncongested path. If there are the links with traffic exceeding the
target capacity, then j is regarded as a congested path. The congestion level of a path is determined
under the following policies: (1) the congestion on a link equally affects paths that traverse the link,
and (2) the congestion level on a path is determined by the bottleneck link, defined as the most
congested intermediate link on the path. Based on these polices, we set (j(k) as

Gj(k) = max [yi(k) —ci] /s, (3.16)

where [z]* equals z if x is positive and equals 0 otherwise, n; is the number of paths which traverse
the link ¢, and Z2(j) is the set of all links the path j traverse. In the following evaluation, we use

the congestion level normalized by scaling the value of (;(k) with the maximum link capacity
C]'(k) = Cj(k)/mzax ¢ (3.17)

instead of (j(k). If (j(k) is O for any path j, the TE succeeds in accommodating traffic with
satisfying performance requirements. Therefore, we use the sum of (;(k) as the metric to evaluate

the TE methods.

3.4.1.5 Route Calculation

Though the congestion level defined by Eq. (3.17) is non-linear, it can be rewritten as a linear
constraint in the optimization problem. The calculation of [g;(k) — cl]Jr can be replaced by a linear
constraint [§j;(k) — )|t = §1(k) — ¢; + Sy(k), where Sj(k) > 0 is a slack variable. The operation
Marc p(p) is translated by inequality constraints ;¢ (k) > max;ec 5y [91(k) — c|t / max ¢ for

all links / in the path p. As a result, the MPC-based TE using the congestion level as a cost function
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is rewritten as the following convex quadratic programming problem:

t+h
minimize : Y ((1—w)||¢' (k)] + w|AR(K)])) (3.18)
k=t+1
subject to : Vk,Vp,Vl € @(p),m({,(k) > ou(k) (3.19)
max ¢y
Vi,V o (k) = 31(k) — ¢ (k) + Si(k) (3.20)
VE, V1, ap(k) >0 (3.21)
VE, V1, S;(k) >0 (3.22)
VEk,§(k) = G- R(k) - &(k) (3.23)
Vk, Vi, Vi, R; j(k) € [0,1] (3.24)
VEVi, Y Rij(k) =1. (3.25)
i€p(j)

Here, a;(k) > 0 represents the value of [;(k) — ¢;]T. The solution of this optimization prob-

lem satisfies the original congestion level because the variables satisfy the inequality formulation

g +
Gy (k) > maxge o (p) rfl‘;ikc)l > maxe g (p) %, and the equality is attained when (), (k) is

minimized.
To solve the optimization problem of Egs. (3.18)—(3.25), we use the CPLEX [60] package,
which is an optimization problem solver. We run CPLEX on computers equipped with four Intel

Xeon Processors, each having 10 cores and 30 MB of cache memory.

3.4.1.6 Compared Method

Observation-based TE We use an observation-based TE to compare with our MPC-based TE.
In the observation-based TE, the control server uses only the observed traffic rates instead of the
predicted rates. Comparing the MPC-based TE with this observation-based TE demonstrates the

effect of considering future traffic variation.

Simple Prediction-based TE We also use a simple prediction-based TE in our comparison. In

this method, the controller simply calculates the routes without restricting the routes changes. For
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the prediction, the controller uses the same prediction model for MPC-based TE. This TE method
is a special case for our method when parameters are set to A = 1 and w = 0. Comparison with this

method demonstrates the effect of restricting route change to avoid the impact of prediction errors.

3.4.2 Simulation Results
3.4.2.1 Congestion Level

Fig. 3.6 shows the sum of (;(k) for all paths, which is the amount of traffic exceeding the target link
capacity at each time slot. The labels “MPC”, “prediction base”, and “observation base” represent
the results of the MPC-based TE, simple prediction-based TE, and observation-based TE, respec-
tively. We compares two cases of MPC-based TE with h = 1 and h = 3 to verify the effect of
considering the future traffic variation.

Fig. 3.6 indicates the advantages of MPC-based TE. In Fig 3.6, congestion occurs at some time
slots for all TE methods except MPC(h = 3,w = 0.5). The observation-based TE cannot avoid
the congestion because the routes based on the previous traffic rates are no longer suited to the next
time slot. Thus, the traffic prediction is required to avoid congestion. However, the prediction based
TE also cannot avoid the congestion due to the prediction errors. In our evaluation, the prediction
error occurs at time slots 10, 20, and 30, because the slope of traffic rate changes at those time slots.
Due to these prediction errors, the prediction-based TE poorly configures the routes: the capacity
of the shared link 2-3 is under-allocated for the under-predicted flow, while it is over-allocated for
the over-predicted flow. As a result, the actual traffic on the under-predicted flow overshoots the
target capacity and causes congestion. The prediction error, however, is corrected after observation
of the implemented routes at time slots 10, 20, and 30. Therefore, the routes are corrected with
exact predictions after these time slots.

Restricting the route changes avoids the overreaction to prediction errors. However, restricting
the route changes may prevent the required route changes. As a result, MPC(h = 1,w = 0.5)
cannot avoid the congestion. This problem can be solved by starting route changes in advance.
MPC(h = 3,w = 0.5) starts to change the routes when the future congestion is predicted. Thus,

MPC(h = 3,w = 0.5) configures the routes so as to follow the traffic changes without changing
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Figure 3.6: Traffic exceeding target link capacity in a simple network

the routes significantly at any time slot. As a result, MPC(h = 3, w = 0.5) avoids congestion at all
time slots.

The above results indicate that the idea of MPC that controls input on the basis of predictions
and mitigates the influence of prediction errors is effective for TE. MPC-based TE avoids future
congestion, while the simple prediction- or observation-based TE cannot avoid congestion induced

by prediction errors or traffic changes.

3.4.2.2 End-to-end Delay

In the previous subsection, we demonstrated that MPC-based TE keeps the congestion level close
to 0. In this subsection, we demonstrate the impact of keeping the congestion level close to 0.

One of the important impacts is the end-to-end delay; keeping the congestion level to 0 keeps
the queuing delay of links small. Therefore, we compare the end-to-end delay in this subsection.

We calculate the link delay from link utilization by approximating packet processing on the
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Internet by the M/M/1 queuing model. According to queuing theory, link delay is calculated as

le o TP where L is the average packet length, p; is the propagation delay, and Cj is the actual

capacity of the link /. The delay of OD flow j at time slot k is the weighted sum of the delays of

all available paths " ) R; ;(k)d;, where d; is the delay of the path ¢ as the sum of delays on

i€p(d
all links over the path. Large delays are caused not only by congestion, but also by path length.
Therefore, if most traffic traverses a long path, the delay of OD flow becomes large even under low
congestion.

Figs. 3.7 and 3.8 show the average delay and maximum delay of all OD flows, respectively.
These figures show that MPC(h = 3,w = 0.5) avoids the large delay at all time slots. This is
because MPC(h = 3, w = 0.5) keeps the congestion level low.

In Figs. 3.7 and 3.8, MPC(h = 3, w = 0.5) decreases the delay significantly from time slot 10
to 19. This is because MPC(h = 3, w = 0.5) selects the shorter paths without congestion.

This significant change of the end-to-end delay does not degrade the TCP throughput, because
the length of the time slot can be set larger than the length of TCP flows; frequent route change is
not required since MPC-based TE avoids congestion at all time slots. In the evaluation using the
actual traffic traces described in Section 3.5, the length of the time slot is set to 1 or 10 seconds,
while most of observed TCP sessions ends withing 1 second.

In actual situation, the M/M/1 model is too simple to model the packet processing. However,
the rational characteristic that a delay monotonically increases as a link load increases does not
change. Thus, the MPC-based TE will suppress the queuing delay similarly even in actual situation

if the target capacity is set by using realistic delay model.

3.5 [Evaluation in an Actual Network

From the above simulation results, we show that MPC-based TE can reduce the congestion level
and end-to-end delay in simple situations where only one link is shared by two OD flows. In actual
networks, where multiple OD flows share multiple links, however, the situation is more complex. To
demonstrate that MPC-based TE is also effective for actual networks, we evaluate the performance

on the Internet2 topology by using actual traffic traces. The evaluation is performed by the similar
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Figure 3.7: Average end-to-end delay of all OD flows in a simple network

way to Section 3.4.

3.5.1 Simulation Environment

3.5.1.1 Network Topology

In this subsection, we use an actual Internet2 backbone network, shown in Fig. 3.9. Each link has a
capacity of 10 Gbps except four links (kans — salt, chic — kans, newy — wath, and wash — atla),
each of which has a capacity of 20Gbps. The link capacities of Internet2 are over-provisioned, so
that maximum link utilization is less than 20%. Hence, in our simulation we set the target capacity

of the link to 15% of actual capacity.
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Figure 3.8: Maximum end-to-end delay of all OD flows in a simple network

3.5.1.2 Network Traffic

Here, we use actual traffic traces [58]. These traffic data are collected by the Netflow protocol at
each of the PoP routers. The sampling rate is one out of every 100 packets, and aggregated data are
exported every five minutes. The sampling method has two main limitations: it contains sampling
errors, and there may be unsampled flows. However, this is not a critical problem for our evaluation
because we need only the traffic rate of the aggregated OD flow, which has many samples. We use
four minutes of data, avoiding file boundaries by excluding the first and last 30 s of the Netflow
data for 12:00 to 12:05 p.m. on 1 November 2011. The traffic data are aggregated into the OD
flows between PoP routers by using the BGP information. From the start and end times and the
total amount of traffic of each flow in the Netflow data, we obtain the traffic rate every second. The

start and end times are recorded with millisecond granularity. When the start and end times of a
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Figure 3.9: Internet2 topology

flow are ¢ and t., the amount of traffic during a certain period 7 is calculated as

(3.26)

by assuming that traffic arrives at a constant bitrate with 6 the total amount of flow traffic. The

traffic amount at the time slot & corresponding to the actual time interval [t t;+1] depends on the

active time of the flow in the time slot, so 7 is set to the active time as

test —ts  (th < ts Atps1 <te)
te—ts  (th <tsAtpe1 >te)
ter1 — e (b > ts Atppr < te)
te—tr  (th > ts Apa1 > te)

0 (otherwise).

(3.27)

Finally, the traffic rate of an OD flow is obtained by summing the traffic amount for all flows in the

OD flow. The calculated traffic rates are shown in Fig. 3.10.

3.5.1.3 Prediction Method

We use the same prediction method that was used in Section 3.4.
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Figure 3.10: Internet2 network traffic

3.5.1.4 Cost Function

We use the same cost function that was used in Section 3.4.

3.5.1.5 Calculation of Routes

As in Section 3.4, we use CPLEX [60] to calculate the routes. In this evaluation, the optimization

is finished within one second when h = 3.

3.5.1.6 Compared Method

In addition to the simple prediction-based TE and observation-based TE, we also compare MPC-
based TE with the following smoothed observation-based TE. The smoothed observation-based TE
calculates the next routes R(t + 1) by using the smoothed value Z(t), which reduces the noise of
observation value x(t). We use an exponential moving average for smoothing. If z;(t — 1) is a
previous smoothed value of the flow 4, and we observe a current traffic rate x;(¢), then we update
the smoothed value to z;(t) = nx;(t)+ (1 —n)z;(t — 1), where 7 represents the degree of weighting
decrease of historical data. By comparing the MPC-based TE with the smoothed observation-based

TE, we demonstrate that the advantages of MPC-based TE are not due to smoothing the observed
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traffic rates, though the traffic prediction obtains the average dynamics of traffic and eliminates

short-term variation.

3.5.2 Simulation Results

Fig. 3.11 shows the amount of traffic exceeding the target link capacity when MPC-based TE is
applied to the Internet2 topology with actual traffic traces. For readability, we only show the results
at certain time slots around the time when congestion occurs. The label “with smoothing” represents
the results of smoothed observation-based TE.

Similar to Fig. 3.6, only MPC(h = 3, w = 0.5) avoids congestion at all time slots. The simple
prediction-based TE causes congestion due to prediction errors. MPC(h = 1, w = 0.5) cannot also
avoid congestion because we cannot change the routes sufficiently. On the other hand, MPC(h =
3,w = 0.5) avoids the congestion; MPC(h = 3,w = (.5) avoids the overreaction to prediction
errors by avoiding the significant route changes, and follows the traffic changes by changing the
routes gradually after future congestion is predicted.

By comparing the results of MPC-based TE with smoothed observation-based TE, we can dis-
tinguish the effect of smoothing and prediction. From Fig. 3.11, the TE using simple smoothing
cannot avoid the congestion because the smoothing amplifies the difference between expected and

actual traffic rates, which slows the response to the traffic change.

3.5.3 Discussion on Parameter Setting

The MPC-based TE has some parameters such as weight for route change, length of predictive
horizon, and cycle length of control and prediction. We investigate the effect of these parameters in

detail using the Internet2 topology with actual traffic trace.

3.5.3.1 Weight for Route Change

First, we examine the impact of w, which is the weight of route change. In the above evaluation, we
show that our TE method is robust against prediction errors when w = 0.5. The value of w, how-

ever, represents the sensitivity to not only the prediction error but also the changing traffic. Hence,
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Figure 3.11: Traffic exceeding target link capacity with actual Internet2 traces

we may have to consider a trade-off between the robustness and sensitivity to set an appropriate

value of w.

Figure 3.12 shows the maximum amount of traffic exceeding the target link capacity for all time
slots when the MPC-based TE is conducted with various values of w. The y-axis is the amount of
exceeding traffic, and the x-axis is the value of w. The label h means that the MPC-based TE is

conducted with the predictive horizon length of h.

In Fig. 3.12, the medium value of w such as w=0.1-0.6 is appropriate for avoiding the conges-
tion, which manages to balance the robustness and sensitivity. In addition, the achieved performance

of the MPC-based TE is not sensitive to w within the range of w=0.1-0.6.
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Figure 3.12: Maximum amount of traffic exceeding the target link capacity for all time slots when
the MPC-based TE is conducted with various values of w

3.5.3.2 Length of Predictive Horizon

Second, we investigate the impact of the length of the predictive horizon h. This parameter indicates
how long into the future the control server considers calculating the routes. Using the large value of
h, the control server can take into account not only the next time slot but also further time slots to
change the routes gradually in advance of traffic changes. However, setting too large h may cause
wrong route changes because the prediction errors generally become large as the prediction target

is far ahead. In addition, the larger h becomes, the longer the calculation of routes takes.

Figure 3.13 shows the maximum amount of traffic exceeding the target link capacity when the
MPC-based TE is conducted with various values of h, setting the value of w to 0.5. When h is
larger than 27, the congestion level increases as h becomes large. This is because the influence of
prediction error becomes large as the predictive horizon becomes long. Too small valuesof h = 1,2
also cause the congestion because the control server does not consider the traffic change further into

the future. The appropriate values of h to avoid the congestion are within the range of 3-26. Hence,
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Figure 3.13: Maximum amount of traffic exceeding the target link capacity for all time slots when
the MPC-based TE is conducted with various values of h (w = 0.5)

it is sufficient for the MPC-based TE to set h to 3 or slightly larger values.

3.5.3.3 Cycle Length of Control and Prediction

Finally, we discuss the cycle length of control and prediction. In the above simulation, we set the
control and prediction cycle length so that they equal the observation cycle length (one second).
However, the frequent control increases the loads on the control server. On the other hand, the con-
trol server cannot follow the traffic change when the control and prediction cycle is large. Therefore,
it is important to clarify which length of cycle is appropriate to avoid the congestion and a large
calculation time.

To discuss the impact of cycle lengths of control and prediction, we simply extend the MPC-
based TE so as to deal with different cycle lengths of control and prediction. If the prediction cycle
is T}, seconds, the control server estimates the future traffic every 7, seconds using the previous

. . _ kTp—1 .
average rate in each 7T}, seconds; that is, we use the average rate (k) = Tip Zij(’k_l)T x() as
- p
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input to traffic prediction, and we obtain the future average rates Z(t + 1), --- Z(t + h). Similarly,
if the control cycle is 7. seconds, which is a multiple of 7}, the control server calculates the routes
every T, seconds using the average rate of predicted traffic in each 7, seconds; that is, we use the
average predicted value &' (k) = % ZLTEI:UTC #(i) as input to TE in order to calculate the route
R'(t 4 1) during the next T, seconds. Though the period of control and prediction is changed, the
time grain of traffic change is not. That is, traffic rates change every second.

Figure 3.14 shows the maximum amount of traffic exceeding the target link capacity for all time
slots when the MPC-based TE is conducted with various lengths of control and prediction. We set
the x-axis to the length of the predictive horizon similar to that in Fig. 3.13 because the effect of the
predictive horizon will change as cycle length changes. The labels T}, and 7. in the figure represent
the lengths of the prediction cycle and control cycle, respectively.

From Fig. 3.14, frequent control and prediction are better for avoiding the congestion. This is
simply because the routes are quickly changed corresponding to the traffic change by the frequent
control and prediction. However, the control cycle and prediction cycle have different impacts. In
Fig. 3.14, the congestion can be avoided by the frequent prediction (7}, = 1) even when the control
cycle is 10 seconds. On the other hand, the congestion cannot be avoided when the prediction cycle
is 10 seconds. This is because predicting with fine granularity can follow the changing traffic and
the control server can accommodate traffic even with fixed routes considering the fluctuation of
traffic. Therefore, we can set the length of the control cycle to slightly large while the prediction

has to be frequently conducted.

3.6 Related Work

There is a large body of literature regarding TE. Though we formalized MPC-based TE as a cen-
tralized control in which a central control server collects all the information and calculates all the
routes for a network, our method is also applicable to distributed schemes. Distributed TE achieves
scalability and quick response to the traffic changes using only locally observed traffic information.
In TeXCP [12] and MATE [13], each ingress node observes path states such as packet loss rate

and delay, and splits the traffic of ingress—egress pairs among the paths on the basis of observed
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Figure 3.14: Maximum amount of traffic exceeding the target link capacity for all time slots when
the MPC-based TE is conducted with various lengths of control and prediction (w = 0.5)

statistics.

In another application of MPC to TE, Rétvari and Németh [63] applied MPC to rate-adaptive
multipath routing, in which a central controller adjusts sending rates of each user. Their method
preliminarily sets explicit rate control rules corresponding to each set of user demands. The control
server then periodically observes user demands, searches the appropriate control rules, and adjusts
the sending rate according to the control rules. In setting the rules, they use a traffic model called the
zero-buffer path flow (ZBPF) model instead of traffic prediction. In the ZBPF model, they assume
that no further traffic arrives within the predictive horizon. Hence, their method also works as an
observation-based TE.

The predictability of Internet traffic has received significant interest in many domains, such
as capacity planning, anomaly detection, admission control, and traffic engineering. Many pre-
diction models have been proposed to predict network traffic, such as ARMA, ARIMA [21, 22],
ARCH [23], GARCH [24], and neural networks [25,26] . Although we use only a simple prediction

method in our evaluation, our TE method can select prediction models according to characteristics
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of the target variation, such as time granularity and periodicity.

3.7 Conclusion

We proposed a TE method that uses predicted traffic rates instead of observed values. According to
prediction-based control theory, our TE method calculates routes while correcting predictions and
avoiding large route changes to mitigate the impact of prediction errors. Through simulation with
actual backbone network traffic traces, we demonstrated that our TE method can avoid congestion
that observation-based TE cannot. In addition, comparison with MPC-based TE with a smoothing
method showed that the advantage of MPC-based TE does not come from the smoothing effect of
the traffic prediction. Moreover, we discussed the parameter setting such as the weight for route
change w, the length of predictive horizon h, and the cycle length of control and prediction. Then,
we clarified that the performance of our method is not sensitive to the parameters w and h in a
certain range and that we can select safe values of w and h from the range. Furthermore, we
showed that changing routes even in 10-second intervals is sufficient to respond to the change in
traffic rates every one second while the prediction has to be conducted in one second.

Future work will include clarification of the robustness of MPC-based TE through theoretical
analyses. Additionally, to guarantee its scalability, we will adapt MPC-based TE to distributed
control that determines routes using only local traffic information. Through experimental evaluation
with MPC-based TE implemented in hardware, we will investigate the effect of interaction with

other network controls such as TCP.
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Chapter 4

Traffic Engineering Guaranteeing Risk
Probability against Prediction

Uncertainty

4.1 Introduction

Traffic engineering (TE) plays an essential role in deciding routes that effectively use network re-
sources. This is particularly important when one considers increasing time variation of Internet
traffic such as streaming and cloud services. In the past, backbone networks have addressed this
problem by reserving redundant link capacity to accommodate traffic surges [2]. However, doing
so incurs significantly higher costs as the average and variance of traffic increases; poor network
resource utility tends to reserve more than double the capacity required to accommodate the actual
traffic. Dynamic TE methods have been studied for treating time-varying traffic in a way that effec-
tively utilizes limited resources [9,11,12]. In the dynamic TE method, a control server periodically
observes network traffic and dynamically reroutes flows to accommodate the observed traffic. How-
ever, such methods set routes for only observed traffic. This renders configured routes unsuitable
if traffic changes happen, because routes are not changed during the next control cycle. One might

think that the control server should quickly respond to traffic changes by shortening the control
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cycle interval, but doing so can induce frequent route changes resulting in route oscillation that de-
grades TCP session throughput; oscillations cause packet reordering by delivering the packets of a
given TCP session via different paths, which reduces the TCP session window size. Route oscilla-
tions also cause overly frequent changes in round-trip time (RTT), which decreases the throughput
of delay-based TCP [20]. Hence, a dynamic TE that avoids congestion without significant route
changes is required.

One approach to solving such problems is to use the predicted traffic. In [33], we have presented
such a TE method, which is based on a control theory of predictive control called model predictive
control (MPC). In this method, the control server calculates the routes of several future time slots
(or control cycles), considering predicted traffic variation. The control server then sets up only the
next-step routes, and corrects the traffic prediction by reflecting traffic changes newly observed.
It can then follow traffic variation without significantly changing the routes. Of course, traffic
prediction errors cannot be wholly avoided even in the above method, and prediction errors may
cause congestion in the next step.

In this chapter, we discuss the TE method that is robust to prediction errors. One approach to
handling prediction uncertainty is to utilize a probability distribution of prediction errors. Fortu-
nately, MPC can consider the probability distribution, by introducing the constraints that the risk
of control failure should be less than a predefined threshold. MPC considering the probabilistic
distribution is called stochastic MPC(SMPC) [40].

In this chapter, we apply SMPC to TE. We call this stochastic model predictive traffic engineer-
ing (SMP-TE). We first model the problem of TE as an optimization problem that maximizes the
network performance under the constraints that the probability of congestion should be less than a
predefined threshold. In SMP-TE, this optimization problem is solved by the controller so as to ob-
tain the routes for future time slots. Then, similar to the TE based on MPC [33], the controller sets
up only the next-step routes, and recalculates the routes for the future time slot after the correction
of the traffic prediction by reflecting newly observed traffic data. SMP-TE avoids congestion with-
out requiring a large amount of excess network resources even if prediction causes errors, because
the optimization problem considers the distribution of prediction errors.

In SMP-TE, one of the important problems is the threshold for the probability of congestion.
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Generally, the prediction errors of the traffic in the far future become large. Such a large prediction
error may cause the unnecessary route changes. To solve this problem, we also propose a relaxation
of probability constraints.

The rest of this chapter is organized as follows. Section 4.2 describes our TE method, SMP-TE,
in which we apply SMPC to the TE method. Section 4.3 presents an evaluation of our TE method

comparing with the simple prediction-based TE. Section 4.4 presents our concluding remarks.

4.2 SMP-TE: Stochastic Model Predictive Traffic Engineering

Before describing our SMP-TE, we first briefly introduce SMPC in Subsection 4.2.1. We then move
to our proposed SMP-TE in Subsection 4.2.2.

4.2.1 Stochastic Model Predictive Control
4.2.1.1 Model Predictive Control

First, we briefly show the concept of MPC. MPC is a method of system control based on predictions
of system dynamics that has been studied in recent years. In MPC, a controller sets an input param-
eter so as to maintain system performance at close to an operator-specified target. Unlike traditional
system control, the MPC controller predicts changes in the output value to calculate inputs for the
predictive horizon, time slots [t + 1,¢ + h] where h is the distance to the predictive horizon. We
denote the input and output at the kth time slot by u(k) and y(k), respectively. The MPC controller
calculates the inputs for the predictive horizon [t 4+ 1,¢ + h] so as to keep y(k) close to the target
value r, (k). The inputs u(t + 1), - - -, u(t + h) that keep y(k) close to ry (k) are obtained using the

objective function J; = S0 1 lly(k) — ry(k)||?, where || - | represents the Euclidean norm:

(u(t+1),---,u(t+h)) = argmin Jj. 4.1)
(w(t+1), ,u(t+h))

To solve the above optimization problem, future outputs y(t+1), - - - , y(t+h) must be predicted
from inputs u(t + 1), - - -, u(t + h). The future output under a given input is calculated by a system

model that represents the system dynamics. In system control, a system model is often represented
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by a mathematical formula, the state space representation, described as

2k +1) = bk, 2(k), u(k)) 4.2)
y(k) - 'lb(k‘,Z(k‘),u(k)), (4.3)

where z(k) is the state of the system at the kth time slot, and ¢ and ¢ are functions that respectively
map the current state and input onto the next state and output. We use (k) as the predicted value
of y(k).

Modeling the system by a mathematical formula, however, may entail modeling errors. The
prediction of system output will entail error under such an incorrect model, and prediction errors
become increasingly large with more distant predictive horizons. One approach to solve this in-
creasing error is to use feedback of actual system output. That is, the MPC controller implements
only the first of the calculated inputs u(¢ + 1). Then, the MPC controller observes the output and
corrects the prediction, using the output value. After prediction correction, the MPC controller
recalculates the input value for the next time slot with the corrected prediction.

Prediction errors may also significantly change input values, destabilizing the system. The
controller therefore restricts the amount of allowed change to inputs, which mitigates the influence
of prediction errors. We denote the amount of change in the input at the time slot k£ by Au(k) =
u(k) — u(k — 1), and the aggregated amount of change during the predictive horizon by Jo =
Sih +1 [[Au(k)]|. Instead of the input values determined by Eq. (4.1), the controller calculates the

input values by the following optimization problem:

(u(t+1), - u(t+h)= argmin J; +wls, (4.4)
(w(t+1),-u(t+h))

where w is a parameter for weighting the two objective functions J; and Js.

4.2.1.2 Probability Constraints

Realistic systems entail input or output constraints such as physical constraints and boundary con-

ditions. Here, if the system has an upper bound on output, the MPC controller needs to search the
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optimal input under the constraint

where y,, is the upper bound of the output value.

If a modeling error exists, the calculated input may be infeasible, which violates the constraint
(4.5). Given the exact upper bount € > y(t + k) — 4(t + k), the controller determines the input

without the constraint violation by maintaining the constraint

gt +k)+e<yy k=1,--- h. (4.6)

However this hard constraint causes overly conservative control, and guaranteeing applicability to
the worst-case scenario will considerably degrade control performance. Additionally, exact upper

bounds are rarely available in actual situations.

A probability distribution of error can determine a soft bound to use in place of an exact bound
on modeling error. Assuming that the k-th ahead modeling error €, (¢t + k) is a random variable
following a certain probability distribution, the output value y(t + k) = §(t + k) + €, (t + k) is
also a random variable. Then, the probability that y(t + k) violates the upper bound can be defined,
and we denote the probability as Ply(t + k) > y,]. SMPC is a control method that deals with such
random variables of output. To avoid constraint violations, the violating probability should be at a

certain level p. Then, the controller calculates safe inputs by the probability constraint

Eq. (4.7) becomes a harder constraint when p is small, and Eq. (4.7) is equivalent to Eq. (4.6) when
p = 0. Even allowing for the rare case of constraint violation according to p, the controller can still

robustly avoid performance degradation to model errors.
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Figure 4.1: Overview of SMP-TE

4.2.2 Applying SMPC to TE
4.2.2.1 TE Model for SMPC

We apply SMPC to TE, and realize a prediction-based TE that is robust to prediction errors. Fig-
ure 4.1 shows an overview of our TE method, to which SMPC is applied. We assume that a control
server collects all traffic information and sets the routes. In the TE, a central control server acts as
the MPC controller, which inputs routes R(k) and measures network outputs and the traffic rates on
links y (k). The control server periodically changes routes by repeating the following two steps: 1)
The control server predicts the traffic rates of OD flows for the target time slots from the previously
observed traffic rates. 2) The control server calculates routes from the prediction so as to minimize

a cost function f(R(k)) while maintaining a low congestion occurrence probability.

4.2.2.2 Formulation of the Optimization Problem

To avoid congestion caused by prediction errors, we use probabilistic constraints as capacity con-
straints. Given target capacities C; and probability p, the controller maintains the occurrence prob-
ability of capacity overshooting P[y;(k) > Cj] under p. With this constraint, the control server
computes routes by considering objective functions J; = Zifl’; 41 f(R(k)), which indicates a sum-

mation of the cost function at each time slot, and Jp = >t 1 IAR(K)||?, which indicates the

sum of squares of the amount of route changes. This multi-objective optimization is conducted by
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minimizing the weighted sum (1 — w)J; + wJa, where 0 < w < 1 weights the importance of the
restriction on route changes.

In SMP-TE, the control server solves the following optimization problem at each time slot ¢:

minimize tf ((1 = w)F(R(K)) + w]| ARK)|?) (4.8)
subject to \'ZZZ(@ — G- R(k) - #(k) (4.9)
Yk, 1, Plyi(k) > Cy] < p (4.10)
Vk,Vi,Vj, R ; (k) € [0,1] (4.11)
Vk, > Rij(k)=1. (4.12)

i€p(j)

where &(k) is predicted value of x(k), wp(j) is the set of available paths of OD flow j, and G
is a matrix whose (¢, j) element G, ; is 1 if the path j traverses the link 7 and O otherwise. Here,
&(k), G are given variables and R(k), §(k) are the variables to be optimized. Eq. (4.9) represents
the relation between the traffic rates of the OD flows and links. Eq. (4.10) is the probabilistic
constraint that the probability of congestion occurrence is lower than p. Egs. (4.11) and (4.12)
mean that all traffic on each OD flow is allocated to an available path.

Although all of the routes R(t + 1),--- , R(t + h) during the predictive horizon are obtained
by solving the above optimization problem, the control server implements only the next routes
R(t 4+ 1). After the route change, the control server corrects the traffic prediction & (k) using the
newly observed traffic rate, and recalculates the next routes by solving the optimization problem

again.

4.2.2.3 Relaxation of Future Probabilistic Constraint

In the above formulation of SMP-TE, the probability p was constant for all time slots within the
predictive horizon. However, prediction accuracy for the next time slot is more important in the
current model setting. Also, further future prediction is less reliable. Accordingly, forcing the
same level of probabilistic constraint for unreliable far-future predictions incurs unnecessary routes

changes. This is because the probability P[y;(k) > Cj] becomes large when the y;(k) has large
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variance, and constraints Eq. (4.10) becomes more active.

To solve this problem, we introduce the increasing probability p(k) for the capacity constraints.
By replacing the p in Eq. (4.10) with p(k), the probabilistic constraint is gradually relaxed as time
slots advance. There are many possible approaches to relaxing the probability. In this chapter, we

exponentially decrease the complement probability (k) = 1 — p(k) as

a(k) = (1 — pexp(— L= 1) (4.13)

T

where 7 is the time constant that determines the decreasing speed. If ¢(k) is less than 0.5, even the
expected traffic rates are not accommodated by the calculated routes. In this case, calculated routes
no longer avoid the congestion, hence it does not make sense to consider the case of ¢(k) < 0.5.

We thus limit the minimum value of ¢(k) as 0.5.

4.3 Evaluation

4.3.1 Simulation Environment
4.3.1.1 Network Topology

In the following evaluation, we use the Internet2 backbone network (Fig. 4.2). The Internet2 back-

bone network has 9 PoP routers and 13 bidirectional links.

4.3.1.2 Traffic

We use actual traffic traces [58] monitored from 00:00 on 6 Feb 2014 to 23:59 on 12 Feb 2014.
These traffic data were collected by the Netflow protocol at each of the PoP routers. The sampling
rate is one out of every 100 packets, and aggregated data are exported every 5 min. Though sampled
data may contain sampling errors, those errors do not have a large impact on our evaluation because
a huge number of flows are aggregated into OD flows, in which the aggregated error of each flow is
much smaller than the total traffic amounts.

Our interest lies on how the SMP-TE can avoid the congestion under limited resources and the
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Figure 4.2: Internet2 topology

existence of prediction error. However, in fact, the Internet2 network is not congested due to an
over-provisioning of link capacity; the maximum link utilization is less than 20%. Accodingly, we
artifically set up a congested environment by multiplying actual traffic amounts by 5, and setting
the target link utilization to 95% in the following evaluation. The traffic data used in our evaluation

is shown in Fig. 4.3, where the time slot length is set to 2 h.

4.3.1.3 Prediction Error Model

In our evaluation, the predicted traffic rates are given by adding prediction errors to the actual traffic
rates to evaluate the SMP-TE without impact of the specific prediction model. The prediction error
is generated so as to follow a zero-mean Gaussian distribution, based on the existing chapters on
prediction methods [21,64].

Assuming that the prediction error of each time slot is independent, the variance of prediction
error in the kth ahead time slot is 02k where o2 is the variance of one-step prediction error. We set
the variance of one-step prediction error on flow j based on a normalized prediction error metric

called normalized mean squared error (NMSE):

NMSE = (4.14)

Viz; ()]’
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Figure 4.3: Internet2 network traffic (time slot granularity: 2 h)

where 0]2- is the variance of prediction error on flow j, and V'[x;(t)] is the variance of actual traffic.

Therefore, we set 032- to 0.3V [x;(t)] based on typical NMSE values [65].

4.3.1.4 Cost Function

In our evaluation we use the average hop length as a cost function, because reducing hop length
lowers propagation delay in the calculated routes. Because the queuing delay is negligible when the
link load is under a certain targeted capacity, we minimize the end-to-end delay by minimizing the

propagation delay. The average hop length D is defined using R; D = % 25 2icp(j) Rijdi, where

D
max; d;

d; is the path length of 7. We use the normalized hop length

as a cost function. Though we
conduct the simulation with changing the weighting parameter w from O to 1 by 0.1, we show only

the result with w = 0.5 because the similar result is obtained with any 0 < w < 1.
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4.3.1.5 Routing Calculation

To solve the probabilistic optimization Eqs. (4.8)—(4.12), we transform the probabilistic constraint
Eq. (4.10) into a deterministic constraint. Similaly to [66], the probabilistic constraint Eq. (4.10) is

equally replaced by following deterministic constraint

VENLGi(k)+@ (1 —p) > Ari(k)202k < Ci(k), (4.15)
where ® ! is the quantile function of the Gaussian distribution, and A; ;(k) is the (i, j)-element of

the matrix A(k) = G - R(k), which indicates the fraction of OD flow j traversing link 7.

As aresult of the transformation, our optimization problem Eqgs. (4.8)—(4.12) is equally replaced
by a convex optimization program called second-order cone programming (SOCP). We use the
optimization problem solver CPLEX [60] package to solve the SOCP. We ran CPLEX on a computer
with four Intel Xeon E7-4870 processors. The calculation of each time slot is finished within a few

seconds for Internet2 topology.

4.3.1.6 Compared Methods

We compare our SMP-TE method with two prediction-based TE methods. The first is the simplest
TE method, which uses only one-step ahead prediction without considering the probability distri-
bution of prediction error. This is a special case of our method when parameters are set to h = 1

and p = 0.5. Comparison with this method demonstrates the effect of multi-step prediction.

The second method is simple MPC-based TE similar to [33], which uses multi-step-ahead pre-
diction without considering the probability distribution. This is also a special case of SMP-TE with
parameter setting p = 0.5. Hereafter, we call this MPC-based TE as MP-TE. Comparison with
this method confirms that the stochastic constraint is effective for avoiding the impact of prediction

error without causing significant route changes.
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4.3.2 Effect of Stochastic Constraint

First, we show how the stochastic constraint is effective for avoiding congestion caused by predic-
tion error. Figure 4.4 shows the queuing delay of the bottleneck link. Shown is a 99.9% delay,
which means that 99.9% of packets will experience delay caused by queuing on a link lower than
this value. We calculated the link delay from link utilization by approximating packet processing on
the Internet by the M/M/1 queuing model. According to queuing theory, 99.9% delay is calculated
as —log(1 — 0.999)%, where L is the average packet length, and C} is the actual capacity of
link !

In Fig. 4.4, SMP-TE achieves lower delay in both cases of one-step prediction and multi-step
prediction. This is because SMP-TE sets a safer route that accommodates the traffic without con-
gestion, even when the prediction error occurs. On the other hand, the non-stochastic approaches
of simple prediction-based TE and MP-TE cause higher delay, because the routes calculated using
only expected traffic no longer deal with unexpected traffic arrival. Of course, congestion may occur

with even SMP-TE if the prediction error is significantly outside of the expected range. However,

this case only occurs with probability p, which the network operator can set to an appropriate value.

4.3.3 Multi-step Prediction Effect

The prediction-based TE can gradually change routes by predicting future congestion in advance.
Although this is not an effect of the stochastic approach, our interest is in how this prediction effect
is reproduced in our SMP-TE. Figure 4.5 shows the maximum difference of the path fraction, which
is defined as max, |[AR,(t)| in each case of the TE method. From this figure, TE with one-step
prediction requires a significant route change at time slot 31, but that is avoided by using the multi-
step prediction. This is because gradual route changes proactively proceeded before the actual
traffic change by considering the multi-step prediction. This indicates that far-future prediction is
also effective toward avoiding significant route changes in SMP-TE.

However, the frequency of route changes increases in both SMP-TE and MP-TE. This is because
wasteful routes changes occur when the predicted future congestion does not actually occur. SMP-

TE in particular causes more route changes, because the control server becomes more conservative
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at expanding future prediction error. One solution of this too-conservative to far-future congestion
is relaxation of the future probabilistic constraint, as mentioned in subsection 4.2.2. The effect of

constraint relaxation is discussed in the next subsection.

4.3.4 Probability Relaxation Effect

In this subsection, we discuss the effect of relaxing future constraints. Figure 4.5 shows that re-
laxation avoids frequent route changes, while Fig. 4.4 shows that congestion is avoided even in the
case of the relaxation. To discuss the effect of the probability in more detail, we focus on the route
changes performed by the TE methods. Table 4.1 shows a summary of routes changes performed
by each TE method. In this table, “average” means the average difference of path fraction |AR,,(¢)|
for all times and all paths, “max” means the maximum difference of the path fractions, and “fre-
quency” means the ratio of time slots in which more than 1% of traffic is moved from a path to other
paths. As previously mentioned, the maximum route changes become small in the TE-method us-
ing multi-step prediction. On the other hand, more frequent route changes occurred in multi-step
prediction, though the average routes changes are the lowest among TE methods.

Comparing the relaxed SMP-TE with original SMP-TE, relaxation of constraints can reduce
the frequency of route changes. However, the maximum route changes in relaxed SMP-TE are
larger than in the original SMP-TE. This is because constraint relaxation delays the control server
reaction to future congestion. With larger 7, the relaxation is gradually conducted over time, avoid-
ing such response delay. However, the result causes frequent route change during ordinary traffic.
Therefore, 7 should be appropriately tuned to an optimal balance between following traffic varia-
tion and ignoring prediction error. Our future work will include developing a method for tuning this

parameter.

4.3.5 Scalability

Theoretically, the worst-case time complexity of each iteration to solve SOCP is O(N? 3", N;) [67]
where N is the number of variables and /V; is the dimension of second-order cone constraints. In the

SMP-TE, the number of variables is O(mn?) and the dimension of second-order cone constraints
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Table 4.1: Route Changes Caused in Each TE Method
TE using one-step prediction

average | max | frequency

simple prediction-based TE 0.083% | 10% 16%
SMP-TE(p = 0.1) 0.094% | 14% 23%
SMP-TE(p = 0.01) 0.11% | 16% 36%

TE using multi-step prediction(h = 5)

average | max | frequency
MP-TE 0.074% | 6.3% 33%
SMP-TE(p = 0.1)-relaxed(r = 5) 0.088% | 8.9% 42%
SMP-TE(p = 0.1)-relaxed(r = 20) | 0.089% | 7.1% 46%
SMP-TE(p = 0.1) 0.090% | 6.0% 51%
SMP-TE(p = 0.01)-relaxed(T = 5) 0.10% | 12% 52%
SMP-TE(p = 0.01)-relaxed(r = 20) | 0.11% | 8.9% 62%
SMP-TE(p = 0.01) 0.012% | 6.0% 78%

is O(n?) where m, n and are the number of links and nodes, respectively. Therefore, the computa-
tional complexity of SMP-TE is O(m?n®). To use SMP-TE in a large network, we should reduce
the calculation time. One approach is decomposing a network into multiple ranges and applying

the SMP-TE to each range, which is one of our future research topics.

4.4 Conclusion

We have proposed a TE method called SMP-TE that follows predicted traffic in a way that avoids
the impact of prediction error. According to the basic idea of SMPC, our SMP-TE calculates routes
while considering the probability distribution of prediction error. Through simulation using ac-
tual backbone network traffic traces, we demonstrated that SMP-TE can avoid congestion in cases
where simple prediction-based TE cannot. Additional route changes required to accommodate the

prediction error remained small.

Future work will include further verification of our method using larger networks with more

realistic traffic. Furthermore, we will reduce calculation times by adapting SMP-TE to distributed
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control that determines routes using only local traffic information. We are now implementing SMP-

TE, and will report the results in a forthcoming paper.
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Chapter 5

Scalable Traffic Engineering by

Hierarchical Model Predictive Control

5.1 Introduction

The hierarchical control scheme is a promising approach to improving the scalability of network
controls [43—48]. In this scheme, a network is divided hierarchically into multiple areas; the area
in the lowest layer includes only a small number of nodes and links, and the area in the upper layer
is constructed of multiple areas of the lower layer. One control server is deployed in each area, and
each control server monitors the state of its corresponding area by collecting detailed information
about the area from nodes within the area or about the aggregated information from the controllers
of the lower layer. Then, each control server decides on control actions for the corresponding area.
By doing so, effective network control can be achieved without a controller that considers detailed
information from the whole network.

Of course, there are several challenging problems in such hierarchical network control. One
difficult problem is how to avoid the oscillation of operations. When the control server at the upper
layer changes operations across the lower areas, the network states in the lower areas may change
in a way that the control server at the lower layer does not expect. For example, consider a control

server at the upper layer reallocating network resources at area A to another area B which requires
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more resources. Owing to this reallocation, the network resources at area A become smaller than
expected by the controller of area A. On the other hand, the operations in lower areas change the
state of those areas and stimulate operation changes at the upper layers. For example, when the area
A is congested, the control server of the upper area considers that area A requires more resources.
However, congestion may be mitigated by the control server of area A. In this case, the resources
reallocated without knowledge of the behavior of the controller in area A are not necessary, and
are again reallocated to other areas which are regarded as areas requiring more resources. Such
interaction between layers occurs repeatedly, and global operation oscillates.

The common way to handle such unexpected oscillation in hierarchical network control is to
set the control interval of the upper layer to a large value [49, 50]. By doing so, the control servers
of the lower layers change operations with sufficient time before the upper layer changes inter-area
operations. However, a large control interval increases the time required to respond to environmen-
tal changes; if all resources are used up in a certain area, the lack of resources cannot be mitigated
until the control server of the upper layer reallocates inter-area resources. This tendency of large
and/or frequent environmental changes is remarkable because of wide deployment of, e.g., content
distribution networks (CDNSs), user mobility, and so on.

To solve the above problem in existing hierarchical network control, we propose a hierarchi-
cal network control method with a new mechanism to avoid control oscillation without setting a
large control interval. Our method is based on model predictive control (MPC) [34, 35], which
changes the input adequately based on predictions so as to maintain system output near a target
value. According to the concept of MPC, each control server predicts the traffic changes caused
by the behavior of other control servers and then decides its own operations. By predicting the
behavior of other control servers, the control servers are expected to smoothly shift to appropriate
operations. Although operations may still oscillate if the controller changes operations based on
an inaccurate prediction, MPC can effectively avoid the impact of prediction error by restricting
large changes in its operation so as not to affect the other controllers, and by correcting predictions
with newly observed information at the next time slot. Therefore, MPC-based hierarchical control
is capable of handling environmental changes without oscillations, which is the main subject of the

this chapter. To develop an effective MPC-based hierarchical control method, we utilize the idea of
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hierarchical traffic engineering (TE) [45,47,48]. In hierarchical TE, each control server changes
the routes of the flows within its area to avoid congestion. We then apply MPC to the hierarchical
TE, which we call hierarchical MP-TE. Through simulation of MP-TE, we show that our MPC
scheme significantly absorbs the impact of interaction among layers without setting a large control

interval at the upper layer.

We have already applied MPC to TE in the case where a central server controls the whole
network [33,39]. Our previous work showed that MPC-based TE follows the changing traffic
even when prediction error occurs. However, in hierarchical TE, interaction between layers occurs,
which is not considered in our previous work, causing route oscillation. To avoid route oscillation,
in MPC-based hierarchical TE, (1) each controller predicts not only its own traffic variation but
also the behavior of other controllers, and (2) avoids significant route changes which have large
impact on other controllers. Through simulation, we demonstrate that such control avoids route
oscillation with a short control interval, and that hierarchical MP-TE can accommodate changing
traffic, which the existing hierarchical TE cannot accommodate. Additionally, we investigate the
appropriate control policy for controllers at each layer based on the role of the layer in hierarchical
TE. As a result, we find differences in appropriate control policies between the upper and lower
layers: the controller at the upper layer should change routes more gradually while the control

policy of the lower layer does not have a significant impact.

The rest of this chapter is organized as follows. Section 5.2 surveys related work. Section 5.3
explains the overview of hierarchical network control. Section 5.4 explains the framework of MPC-
based hierarchical network control. In Section 5.5, we propose a new hierarchical TE method called
hierarchical MP-TE based on an MPC-based hierarchical network framework. Section 5.6 evaluates

hierarchical MP-TE. Section 5.7 presents our concluding remarks.
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5.2 Related work

Hierarchical Network Control

Hierarchical network control [43—46] is a promising approach for controlling large networks with-
out a large control overhead and attendant computational complexity. In hierarchical network con-
trol, the network is hierarchically divided into multiple areas. A controller is deployed in each area
of each layer. Each controller collects local information and calculates optimal operations within
its area. Since each controller manages a relatively small network, large overhead for the controller

is avoided.

One of the most representative cases of hierarchical network control is hierarchical routing [48,
49] in which each controller calculates routes so as to achieve a desired communication perfor-
mance. For instance, Lui et al. proposed a hierarchical routing method that determines the route
for each connection request so that the required bandwidth and delay are satisfied. In this method,
the upper layer first calculates the inter-area routes based on the aggregated information about the
bandwidth and delay within each area. Then, each area of the lower layers determines the inner-area

routes with the actual delay and bandwidth observed within the local area.

The most challenging problem in hierarchical network control is oscillation due to interference
between layers. The common way to handle oscillation is to set the control interval of the upper
layer to a large value [49,68]. For instance, Chang et al. used multiple policies for updating routing
information to avoid route oscillation [49], which directly sets a long update time or introduces
a threshold so that the controller does not update information unless the network state exceeds
the threshold. Such methods, however, delay upper layer operations since the upper layer does
not change routes unless the routing information is updated. To solve this problem, we propose
a hierarchical network control method based on MPC that can avoid oscillations without setting a

large control interval.
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MPC and Its Application in Network Control

MPC is a method of system control based on predictions of system dynamics [34,35]. MPC effec-
tively handles environmental changes by combining the feedback and feedforward controls, whose
detail is given in Chapter 3. Since systems often encounter dynamic changes in real environments,
MPC is expected to be applied in various applications such as chemical plant controls, transporta-
tion controls, network controls, etc.

In our previous work [33], we proposed a non-hierarchical TE method based on MPC called
MP-TE. In this method, the central control server behaves as an MPC controller that inputs routes to
the network such that the link load is kept lower than a desired level. Furthermore, we developed a
TE method called SMP-TE [39] to improve the robustness of MP-TE to prediction errors. In SMP-
TE, the control server considers not only the expected value of future traffic but also its probability
distribution in order to guarantee that the risk of congestion occurrence is less than a predefined
probability.

In hierarchical TE, interaction among layers, which was not considered in our previous work
on MPC-based TE, causes route oscillation and disturbs the controllers in accommodating traffic.
Therefore, in this chapter, we newly propose an MPC-based hierarchical TE method that considers
interaction between layers. To avoid route oscillation caused by interaction between layers, each
controller in hierarchical MP-TE predicts the behavior of other controllers and avoids significant
route changes in order to avoid significantly affecting other controllers. Through simulation, we
demonstrate the effectiveness of hierarchical MP-TE in handling interactions compared with the
existing hierarchical TE, which sets a long control interval at the upper layer. In addition, we

examine appropriate parameters for hierarchical MP-TE according to the role of each layer.

5.3 Hierarchical Network Model

In hierarchical network control, the network is divided hierarchically into areas; the areas of the
lowest layer are constructed of a small number of nodes, and the areas of the upper layer are con-
structed of multiple areas from the lower layer. Hereafter, we call the set of hierarchically divided

networks the hierarchical network. A control server deployed in each area of each layer optimizes

—-91 —



5.3 Hierarchical Network Model

network operations within the area based on locally collected information about the network state.
Thus, the observation overhead and computational complexity of each control server are kept small
even when the network size becomes large. In the rest of this section, we describe the control

methodology and problems of hierarchical network control.

We introduce three vectors; z(k) is a vector indicating the state of the network at time step k,
X (k) is a vector indicating the observed information, and u(k) is a vector indicating the input from

the controller. The observed information X (k) reflects the network state z(k).

X (k) = g(z(k)), (5.1)

where ¢() is a function mapping the network state to the observed information. The input from the

controller changes the state of the network. That is,
z(k) = f(z(k —1),u(k)) + €(k), (5.2)

where f() is a function indicating the network state after the input w(k), and €(k) is a vector
indicating the disturbance. In network control, the controller observes X (k), estimates the state
of the network 2(k) = g~!(X (k)), and sets the input u(k) so as to set z(k) into an appropriate
state. As the network becomes large, the sizes of X (k), z(k), and u(k) become large, causing high
observation overhead and computational cost for the controller if one controller controls the whole

network.

In hierarchical network control, the network is divided hierarchically into areas, and a control
server is deployed in each area. The control server in the area a of the lowest layer observes the
local information X 1%(k), which reflects the network state within the area a, z'*(k), which is a
subset of the network state z(k). The control server calculates the input u'®(k), which is a subset
of u(k) and has an impact only on z5¢(k). w®(k + 1) is determined so as to set z1i%(k + 1) into

an appropriate state.

In the upper layer m, the control server for area b collects the aggregated information X m?b(k)

from the areas of the lower layers. X ™ (k) reflects the network state within area b, z™*(k), which
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includes the network states in the multiple areas of the lower layers and the network states that are
not maintained by any area of the lower layers. The control server sets the input ©"%%(k), which
has impact on the network state of the different lower layer areas but has an impact only on z"% (k)
at the layer m. w™%(k) is set so as to set z™(k) into an appropriate state.

The oscillation of operations is one of the important problems in hierarchical control. In hier-
archical control, each control sever determines its input independently. For example, the control
server at the lowest layer determines u'*(k + 1) so that 2%¢(k + 1) achieves an appropriate state.
However, z1%(k + 1) is also affected by the input of the upper layer u?®(k 4 1), which is deter-
mined independently by the control server at the upper layer. As a result, 21:%(k + 1) deviates from
the state expected by the controller of the lowest layer, and the controller must change the input.
Similarly, the input of the lower layer w'%(k 4 1) causes deviation of 2%°(k + 1) from the status
expected by the controller of the upper layer, and the controller of the upper layer also changes the
input u%®(k + 1).

The typical approach to handling control oscillation is setting a long control interval at the
upper layer. We denote s,, as the control interval of the layer m. The controller of the layer
m observes the network state every s, time steps by averaging the fine-grained observation as
X"Ek) = i Z;T("kill)sm X"™({). By doing so, the operations of the lower layers converge
before the operations of the upper layer change. This method, however, requires a long time to
conduct appropriate operations because the long control interval delays the operations of the upper

layer.

5.4 Hierarchical Network Control based on MPC

In this section, we propose hierarchical network control based on the MPC. In this method, each
control server performs as an MPC controller that determines the local operations within its area.
In the area a at the layer m, the input values are local operations w'*(k) and the output is the local
network state 2" (k).

To estimate how the network states change, the control server should predict the behavior of

the operations of other controllers. Since the behavior of other controllers is reflected in the local

—-03 —



5.4 Hierarchical Network Control based on MPC

observations, the control server predicts how the future values of X"“(k) will be changed by the
impact of other controllers. Using the predicted values X" (k), the controller calculates the future

states 2" (k) for deciding the input.

As mentioned in Section 5.3, in hierarchical network control, the interaction of operations
among layers causes control oscillation. The origin of the oscillation is that each control server
calculates its own operations with uncertainty regarding the behaviors of other controllers. Thus,
absorbing the impact of the prediction error in the behaviors of other controllers is critical in avoid-

ing control oscillation.

In MPC, the controller overcomes the uncertainty of the prediction by avoiding significant
changes in the input value. In addition, avoiding significant changes in the input value absorbs
the interaction between layers. Therefore, the control server minimizes the objective functions J;

and .Jo, which are determined as follows:

t+h

Jio= > [IE™k) — ro(K)| (5.3)
k=t+1
t+h

Jro o= > [lAaum™e (k)| (5.4)
k=t+1

where 1, (k) is the target value of 2™%(k) and Au""?(k) = u™%(k) — w™%(k — 1). That is, the

control server decides the future operations according to:

(u™(t+1); -, u™(t + h))=arg mif1l — w)J1+wJo. (5.5)
(W56 (141) ™5 (1h))

The control server actually implements only the first of the calculated inputs w"®(¢ + 1). Then, the

t+h+1).

control server observes X ™%(t+1) and corrects the prediction X (t+2),-- , X (

After the prediction correction, the control server recalculates the operations for the next time step.

—94 -



Chapter 5. Scalable Traffic Engineering by Hierarchical Model Predictive Control

5.5 Hierarchical MP-TE

In this section, we propose a new hierarchical TE method based on the MPC-based hierarchical
network control framework introduced in Section 5.4. In this section, we first formulate hierarchical

TE; then we propose a new TE method.

5.5.1 Hierarchical TE

In hierarchical TE, multiple controllers are deployed in a hierarchy of areas to calculate routes
within the areas. In the upper layer, the control server calculates routes of the flows between areas
of the lower layers using the aggregated network topology. The control server at the lower layer cal-
culates the specific routes of the flows within the area. In this subsection, we formulate hierarchical

TE.

5.5.1.1 Construction of the Hierarchical Network

First, we describe the construction of the hierarchical network, which is conducted by area

partitioning and topology aggregation.

Area Partitioning Area partitioning divides the network into multiple areas so that each area
includes the connected subnetwork of the original network. Similarly to [43,47,48], we assume that
the network is divided so that any nodes are included in one of the areas, and no nodes are included
in multiple areas. Thus, the set of links within area a includes the set of links { (i, j) € El|i;j € V,},
where F is the set of all links of the original network, and V, is the set of nodes included in area a.
In this link set, the links connecting nodes within different areas are not included in any areas, and
are included in the upper layer.

Although we can use any area-partitioning strategy, e.g., [43], we manually divide the network

into areas in the evaluation.
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2 layer —— Physical link
=== \irtual link
@ Border node
‘ @ Non-border node

Figure 5.1: The hierarchical network model.

Topology Aggregation Given area partitioning, the control server of the upper layer maintains
the aggregated network topology instead of the original network topology so as to avoid large cal-
culation time. Topology aggregation replaces each area of the lower layer with the set of a small
number of nodes and links connecting them. There are many methods of aggregating topology in-

formation [47,68], and there is a trade-off between information accuracy and topology complexity.

In this chapter, we use full-mesh topology to aggregate so as to maintain accurate information
regarding the nodes at the borders of the areas. By using full-mesh topology, the abstracted topology
of an area includes the set of nodes at the border and the set of links between all pairs of nodes at the
border. Hereafter, we call the links generated by topology aggregation the virtual links. Figure 5.1
shows an example of the hierarchical network. In this network, the upper layer includes the virtual

links and the physical links between different areas.
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5.5.1.2 Traffic Engineering in Each Area

After deploying a control server at each area, each control server periodically 1) collects information
on the traffic rates and link capacities within its area, and 2) calculates routes based on observations

and configures network devices within its area.

Collection of Information

The control server at area a of layer m collects the locally observable variables X"%(k). In
hierarchical traffic engineering, X""%(k) includes the traffic rates ™(k) and the residual link
capacities C"™*(k) within the area.

The traffic rates "% (k) form a vector whose element x:";a(k) is the traffic rate from nodes %
to 7. Each node monitors traffic rates per source and destination address pair. The control server
collects the traffic rates monitored by each node and calculates the sums of traffic rates for the flows

from one node to another within the area.

The residual link capacities C"(k) form a vector whose element C]"“(k) is the residual
capacity of the link ¢, which represents how much additional traffic can be accommodated at link
1. If the residual capacity is negative, then the link is overloaded and the controller should move

traffic on that link to other links.

As mentioned in section 5.5.1.1, there are two types of links, i.e., physical and virtual. Since
the physical link capacity is constant until the upgrade of link capacities, the actual capacity ¢; of
the physical link [ is known by each control server. Thus, the residual capacity of the physical link

l is represented by using only the local variables in
(k) = =y (k) (5.6)

where y,"* is the traffic load on link [ at area a of layer m.

On the other hand, the residual capacity of the virtual link depends on the network state of
the lower layer. In this chapter, the residual capacity of the virtual link is set to the total residual

capacity of all available paths between both ends of the virtual link. That is, the capacity of the link
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l is set by

CI™*(k) = 3 min (C7" (k) — " (k) (5.7)

pep ()@
where area b is the area in which the virtual link [ is constructed, P(7) is the set of paths in the
inner-area whose starting and ending nodes are the same as those of virtual link ¢, and L(p) is the
set of links included in path p. In this equation, min;e ) (C;" (k) — y" B (k) denotes the
residual capacity of path p, which is equal to the residual capacity of the bottleneck link on the path,

and the residual virtual link capacity sums the residual capacity for all available paths.

Route Calculation

The control server calculates routes within the area based on the observed information "% (k)
and C™“(k). Here, the control variables ©"%%(k) include the routing matrix R"“(k), whose
element R%a(k) indicates the fraction of traffic on the flow j that traverses the available path i.
We also define the appropriate network state as the state in which no congestion occurs in the area.
Thus, the control server adjusts R (k) so as to accommodate traffic without congestion.

To achieve traffic accommodation, we introduce a metric called excess traffic. The excess traffic

¢;""*(k) on the link [ is defined by
G ) = (89" (k) = " ()] oy

where Ay, (k) =y, (k) — y,"** (k — 1) is the additional traffic on the link [ caused by the route
change at time step k, and [z]" equals z when 2 > 0 and equals 0 otherwise. When ¢;"*" (k) is zero,
the additional traffic of link [ falls under the residual capacity, meaning that congestion is avoided
at link [. Therefore, the control server adjusts the routes R (k) so that {;"** (k) are minimized for
all links. We also define (" (k) as a vector whose element is (" (k).

To determine the appropriate routes, the control server has to calculate the value Clm “(k) from
local observation values "%(k), C"™“(k) and local routes R"™“(k). According to the definition

of (;"**(k) in Eq. (5.8), the controller has to estimate how the link load y,"** (k) changes by setting
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the local routes R™“(k). The control server calculates the link load based on the following relation

between link and flow traffic:
y" (k) = G™ - R™(k) - 2™ (k) (5.9)

where y"%(k) is a vector whose elements represent the link load y,"**(k), and G™“ is a matrix

whose element Gzljfa is 1 if the available path j traverses the link ¢ and O otherwise.

At the time step ¢, the control server does not know the actual traffic rates and virtual link
capacity at the next time step. Thus, the control sever uses the observation values ™(¢) and
C;""(t) instead of the actual values at ¢ + 1 to estimate the excess traffic (" (¢ + 1). As a result,

the routes at time step ¢ + 1 are determined as the solution of the following optimization problem:

minimize : || (¢ + 1)H2 (5.10)
subjectto : Y™ (t+1) = G"™ER™YU(t + 1)-x™(t) (5.11)
VL, (L) = [Ay " (E 1) - CT ()] (5.12)
vf.p, R (1) € [0,1] (5.13)
V7, Rt +1) =1 (5.14)

pep™(f)

where "% ( f) is the set of available paths of flow f and N;"“, N5 are the numbers of links and
paths, respectively. Here, "(t), G™*, C;"*(t) are given variables and R"(t + 1), y™“(t +
1),¢"™%(t + 1) are the variables to be optimized. Eq. (5.11) represents the relation between the
traffic rates of the flows and links. Eq. (5.12) is the definition of (. Egs. (5.13) and (5.14) mean that

all traffic on each flow is allocated to some available paths.

Since the observation values " (t) and C;"***(t) are different from the actual state of the next
time slot, the controller sometimes sets inappropriate routes, causing an oscillation of routes. The
common method to avoid routing oscillation is to set a long control interval at the upper layer.

However, setting a long control interval induces delay in response to the changing network state.
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5.5.2 Hierarchical MP-TE

In this subsection, we show the hierarchical TE method called hierarchical MP-TE, which is based
on the MPC methodology. Similarly to the simple hierarchical TE mentioned in Section 5.5.1,
the network is divided into multiple areas, and multiple control server are deployed in the areas.
The control server observes the traffic rates of flows and residual link capacities in a similar way
to 5.5.1.2. Based on the observed values, the control server predicts future traffic rates and residual
link capacities. Then, the control server calculates routes using the prediction, and implements the
routes in the network. In the rest of this subsection, we explain the prediction and route calculation

processes, which contain the main difference from the simple hierarchical TE method.

5.5.2.1 Prediction

Based on previously observed values, each control server predicts future traffic rates and residual
link capacities. Although the controller can adopt any prediction model, e.g., ARIMA [21, 22],
ARCH [23], GARCH [24], or neural networks [25,26], we use a simple prediction method in this

evaluation.

The prediction we use in evaluation is determined as follows. First, the control server at area a
of layer m finds a best-fit straight line [(k) = ak + b that minimizes the sum of squared distances
from the previously observed traffic ™% (¢t — 7),z™%(t — 7+ 1),--- ,2™%(t)(7 < 1), denoted as
S _o(z™t — 7+ k) — I(t — 7 + k))?. The control server then obtains the future traffic rate as
"™t + k) = I(t + k). In a similar way, the control server predicts the future residual capacity
C’m9”(t + k). Even if traffic changes linearly, this prediction method cannot predict future traffic
and residual capacity accurately because the traffic rates and residual capacities maintained by each
controller are affected by the route changes other layers. Using this simple prediction method,
we show that hierarchical MP-TE works well even with an inaccurate prediction method. In the

evaluation, we set 7 = 1.
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5.5.2.2 Route Calculation

After the prediction of traffic rates of flows and residual link capacities, the control server calculates
routes using predicted values. As mentioned in Section 5.5.1.2, observable variables X "™%(k) =
(x™(k),C™*(k)), control variables u™%(k) = R™%(k), and the appropriate network state is
defined as ¢""“(k) = 0. Then, according to Section 5.4, the control server calculates the routes by

solving the following optimization problem:

t+h ~m;a 2
. 1—w|¢ " (k) }-F w ,
minimize : Z T — ma |AR™ (k)| (5.15)
k:m(NL Zma [T NT

subject to : Vk,g"%k) = G™* - R™Y k) - & (k) (5.16)
W, LG (k) = [AG (k) — G (k)] (5.17)
Vk, f.p, jo}a(l) €1[0,1] (5.18)
vk f, Y, RyF(k)=1 (5.19)

peP™*(f)

where §™(k), C" (k), ¢ "™ (k) are the predicted values of link load, residual link capacity, and
excess traffic, respectively. Z™% = max; ,[{G"% - R™*(t) - A&™(k)}; — C}"" (k)] " is the max-
imum excess traffic if the current routes R™%(t) are used during the predictive horizon. Eq. (5.15)
is the objective function, which is the weighted summation of excess traffic ¢"**(k) and the amount
of route change AR™®(k). To clarify the effect of the weighting parameter w, we normalize the
objective function by dividing ém;a(k:) by Z"™% and dividing the excess traffic on links and route

changes on paths by N;"“ and Np"“, respectively.

Although the above optimization problem is not defined when Z"%* = 0, this case is not critical
for TE because the current routes R™%(t) minimize both ""*(k) and AR™“(k) when Z"™% = (.
Therefore, in this chapter we calculate the routes using the above optimization problem only when

Zmia £ (),
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5.6 Evaluation

In this section, we evaluate MP-TE by simulation to verify how well the MPC concept performs
in a hierarchical control scheme. At first, we use stationary traffic to demonstrate that hierarchical
MP-TE can avoid routing oscillations by absorbing the interactions between layers even with a short
control time interval. Second, we demonstrate the behavior of MP-TE under dynamic traffic with

unpredictable fluctuations, which is a more realistic situation encountered in actual networks.

5.6.1 Stationary Traffic Case

We first use stationary traffic to evaluate routing convergence with interactions between layers. Our
interest here is whether hierarchical MP-TE achieves routing convergence by avoiding significant
route changes and whether the short control interval helps in achieving quick responses to traffic
changes. To clarify these questions, we compare hierarchical MP-TE with simple hierarchical TE

and vary the control interval of the upper layer.

5.6.1.1 Simulation Environment

Network Topology In the following evaluation, we use the lattice topology shown in Figure 5.2.
The network contains 64 nodes, and all links have the same link capacity of 2 x 10? units. We

divide the network into four areas as shown in the figure.

Traffic To investigate the interaction between layers, we generate traffic so that congestion cannot
be solved by route changes at the lowest layer. We generate a traffic pattern such that traffic in an
area increases linearly from 1.0 x 107 to 7.0 x 107 during the time steps 6—10 while the traffic in
other areas does not change. The traffic pattern is shown in Figure 5.3. In this situation, an area
becomes congested without the control of the upper layer.

Similarly, we also generate a traffic pattern such that traffic between a certain pair of areas

increases from 1.0 x 107 to 3.0 x 107 during the time steps 6-10 while other traffic does not
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| _ area

BEE

Figure 5.2: Lattice topology with 64 nodes.

change. In this situation, the links between the areas become congested.

Routing Calculation The routes in MP-TE are determined as a solution of the optimization prob-
lem (5.15)—(5.19). In a similar way to [33], the optimization problem is equally transformed as a
convex quadratic programming problem which can be solved by common solvers. We use the
CPLEX [60], which is an optimization problem solver. We run CPLEX on computers equipped

with four Intel Xeon Processors, each having 10 cores and 30 MB of cache memory.

Comparison Method For comparison, we use a basic hierarchical TE method without the MPC
concept described in Section 5.5.1, which we call simple TE. To avoid routing oscillations, a long
control interval is set at the upper layer, and the averaged observation value is used to decide the
routes. Comparing with this method, we verify the effect of MPC: that each controller handles
interactions between layers by predicting the behavior of other controllers and avoiding drastic

route changes.

Metrics We use the maximum link load max; y,""*(¢) as the metric to evaluate hierarchical TE.
If the maximum link load is lower than the targeted capacity, the calculated routes accommodate all

traffic under the targeted capacity. On the other hand, |AR;"(t)| is used to check whether or not
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Figure 5.3: Time series of traffic causing inner-area congestion.

the routing has converged.

5.6.1.2 Results

Figure 5.4 shows results with increasing inner-area traffic for the cases of MP-TE and simple
TE. In the figure, “MP-TE” indicates the result of MP-TE with parameters (h = 3,w = 0.6), “sim-
ple TE” means the result of simple TE, and “predictive TE” denotes the result of simple TE using
the predicted value instead of the observed value. Predictive TE is also a special case of MP-TE
with parameters (h = 1,w = 0) in which the controller determines the routes with predicted infor-
mation for the next time step without restricting route changes. In each case for the TE methods, we
show the time series for maximum link load max; y;"*(¢) and average values for the route change
|AR™:(t)| in the upper and lower layers. The horizontal dotted line in the figure denotes the tar-
geted capacity. In the figure, s represents the control interval at the upper layer. In MP-TE, we also
change the control interval at the upper layer in a similar way to the simple TE method. Although

we show only the result of MP-TE with parameters (h = 3, w = 0.6) here, a detailed discussion of
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Figure 5.4: Time series for maximum link load and average route changes with increasing inner-
area traffic.

parameter setting for MP-TE is given in Section 5.6.2. Additionally, Figure 5.5 shows results with
increasing inter-area traffic.

In both cases of increasing inner- and inter-area traffic, MP-TE (h = 3,w = 0.6) quickly
achieves route convergence and traffic accommodation with s = 1 while simple TE with s = 1
consistently causes congestion. In simple TE with s = 1, the controllers at both upper and lower
layers set inappropriate routes because a route change at a layer causes unexpected changes of the
network state at other layers. Repeating the wrong route changes, simple TE with s = 1 causes
route oscillation. On the other hand, each control server in MP-TE avoids significant route changes
at each time step, absorbing the impact from route changes at other layers and avoiding route change
impacts on other layers. Thus, route oscillation is avoided without setting a longer control interval
at the upper layer.

Routing convergence is also achieved by simple TE with s = 5. By setting a long control
interval at the upper layer, the control server at the lower layer temporarily completes the route
changes while operations at the upper layer are unchanged. Thus, route oscillation is avoided by
setting a long control interval at the upper layer.

However, the amount of traffic exceeding the targeted capacity in simple TE (s = 5) is larger
than that of MP-TE, especially before a route change is conducted in the upper layer. This is because

the routes change in simple TE (s = 5) delays the changing traffic for two reasons: control delay
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(a) Maximum link load. (b) Route changes in the upper layer.

Figure 5.5: Time series for maximum link load and average route changes with increasing inter-area
traffic.

at the upper layer and observed information delay at the lower layer. Since congestion cannot be
solved only by inner-area routing in this simulation, congestion continues until the routes change at
the upper layer. On the other hand, in MP-TE (s = 1), the controller at the upper layer gradually
changes routes from early time steps to reduce area congestion. In addition, simple TE delays
changing the routes even in the lower layer because the controller calculates routes based on the
observed value at the previous time step. Thus, the amount of excess traffic in simple TE (s = 5)
is even larger than that of MP-TE(s = 5) when the traffic is first increasing where both methods do

not change routes at the upper layer.

Although using the prediction value is effective for following traffic changes, simple predictive
TE does not achieve routing convergence even when setting a long control interval at the upper
layer. This is because the impact of the prediction error becomes large when the route changes are
not restricted. When the controller of the upper layer overestimates the capacity of the area a and
moves traffic from area b to area a, congestion occurs in area a. By observing changes in virtual
link capacities, the controller of the upper layer predicts that the area a will be badly congested
in the future even if the current congestion is small. Then, the control server at the upper layer
moves traffic from area o to area b based largely on the underestimation of the capacity of area a.
Repeating the above process, route oscillation occurs. Since the prediction is conducted at each

control interval, the impact of the prediction error cannot be mitigated by setting a long control
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interval. Thus, setting a long control interval at the upper layer is not always effective in prediction-
based control, and introducing a restriction of route changes is required to avoid oscillation in

prediction-based control.

5.6.2 Dynamic Traffic Case

In the above evaluation, we investigated the behavior of MP-TE with only stationary traffic. Such
traffic can be predicted accurately even with a simple prediction method, although prediction er-
ror certainly occurs owing to control interactions between layers. In an actual network, traffic
changes dynamically with a certain tendency and noisy fluctuation. In this situation, the predicted
traffic always includes prediction errors owing to unpredictable fluctuations, and such inaccurate
predictions may impact the performance of hierarchical MP-TE. Therefore, we verify the impact
of unpredictable traffic changes on MP-TE by simulation. In addition, we investigate appropriate

parameter values in MP-TE considering the role of each layer in hierarchical TE.

5.6.2.1 Simulation Environment

The simulation environment is almost the same as that mentioned in subsection 5.6.1.1, the main
difference being the traffic pattern. In this simulation, we generate traffic which includes cyclic

variation and noisy variation as [69]. The traffic rate from node ¢ to node j at time step k is given as

z; (k) = p (1 + sin <277fk - 91',]->> + W (k) (5.20)

where (1 is the mean value of traffic, T is the cycle length of cyclic variation, 0; ; is the phase, and
W (k) is the noisy fluctuation, which follows the zero-mean Gaussian distribution N (0, o2). We set
p =T x 109 T = 24 and randomly change 0; ; such that the maximum difference |0; ; — 0; ;| is
3 time steps.

In the simulation we change o values from 0 to 2.3 x 10 in order to verify the impact of un-
predictable traffic on MP-TE. Table 5.1 lists the o values we use and the standard deviation of one-
step-ahead prediction error caused when applying the simple prediction method to the generated

traffic. As expected, the prediction error also becomes large when the noisy fluctuation becomes
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Table 5.1: o values and standard deviations of prediction error.

o Standard deviation of prediction error
0 3.4 x 10°

3.9 x 10° 9.9 x 10°

7.8 x 10° 1.9 x 10°

1.2 x 109 2.7 x 10°

1.6 x 10° 3.6 x 106

1.9 x 10° 4.5 x 108

2.3 x 106 5.3 x 106

large. When o = 2.3 x 105, the standard deviation of prediction error is 5.3 x 105, which is about
76 % of average traffic. Since the actual error of one-step-ahead prediction is about 30% [29], our

simulation covers the case where prediction error is much larger than the error actually expected.

5.6.2.2 Results

Figures 5.6-5.9 show the results of MP-TE. Figs. 5.6 and 5.7 show the cases of ¢ = 0 and 0 =
2.3 x 109, respectively, with various weights of route changes. In these figures, we change the value
of w at lower and upper layers separately. We denote the value of w at the lower layer as w; and
that of the upper layer as wy,.

Similarly, Figs. 5.8 and 5.9 show the cases of o = 0, 2.3 x 105 with various lengths of predictive
horizon. In these figures, we change the value of h at the lower layer (denoted as h;) and the upper
layer (denoted as h,,) separately.

In addition, we show the result of simple TE in Figure 5.10 setting various control intervals at
the upper layer. The figure shows that the maximum link load largely exceeds the targeted capacity
around the peak time of all three cycles for any s. The reason for this is different for small and large
s. When s is small, the interaction between the layers cannot be avoided since the length of the
interval is not sufficient to complete the route change at the lower layer. Therefore, the interaction
between layers causes routing oscillation and disturbs the controller in setting appropriate routes.
When s is large, a route change at the upper layer simply delays the dynamically changing traffic.

Moreover, the control server cannot grasp the congestion situation correctly since the averaged
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Figure 5.6: Time series of maximum link load and average route changes of MP-TE with various
weights of route changes (h = 3,0 = 0).

traffic rates and virtual link capacities become inappropriate when s becomes large. Thus, simple

TE causes large excess traffic for any s.

On the other hand, MP-TE keeps excess traffic to nearly zero with appropriate setting of pa-
rameters in Figs 5.6-5.9. As mentioned in 5.6.1.2, MP-TE can follow traffic changes quickly with
prediction and setting a small control interval while routing oscillation is avoided by restricting
route changes. Thus, MP-TE quickly sets better routes by responding to the dynamically changing
traffic. That is, MP-TE outperforms the existing hierarchical TE approach, especially with dynami-
cally changing traffic. The rest of this subsection discusses the impact of prediction error in MP-TE

and how to determine appropriate parameter values for MP-TE.
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Figure 5.7: Time series of maximum link load and average route changes of MP-TE with various
weights of routes changes (h = 3,0 = 2.3 x 10°)
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Figure 5.8: Time series of maximum link load and average route changes of MP-TE with various
lengths of prediction (w = 0.8, 0 = 0).
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Impact of Unpredictable Traffic Fluctuation First, we discuss the impact of unpredictable traf-
fic fluctuation. Comparing the cases of o = 0 (Figs. 5.6 and 5.8) and o = 2.3 x 10° (Figs. 5.7 and
5.9), we cannot see a clear difference in the behavior of MP-TE. This means that unpredictable traf-
fic fluctuation does not significantly affect the performance of MP-TE. This is because the control
server avoids setting routes that are highly unsuitable even when significant prediction error occurs,
since the control server restricts route changes. Moreover, prediction errors in the link loads, which
are more critical for the route calculation than the flow traffic rates, are relatively small owing to the
statistical multiplexing effect. Since noisy fluctuations and prediction error in the generated traffic
are independent between the flows, the increasing and decreasing noises cancel each other. Thus,
the control server calculates routes with relatively small prediction error even with large fluctua-
tions in the flows. As mentioned before, the prediction error when o = 2.3 x 10% is much larger
than realistic prediction error values, and the statistical multiplexing effect is common in realistic
networks [66]; hence, MP-TE should work well even in actual situations. Although we only show
the cases of o = 0, 2.3 x 105, we conducted the simulation with other ¢ listed in Table 5.1 and did

not observe a clear difference among these cases.

Setting Appropriate Parameters In this subsection, we discuss parameter setting in MP-TE.
First, we investigate the appropriate value of w in hierarchical control. Figs. 5.6 and 5.7 show that
significant congestion occurs when either w,, or w; are 0. This is because the control server signif-
icantly changes the routes when w = 0 and causes control interference between layers, disturbing
appropriate routes. Thus, the idea of MPC, which avoids significant changes, is necessary for both
layers to avoid the interference of other layers.

Moreover, Figs. 5.6 and 5.7 show that traffic exceeding the targeted capacity is reduced by
setting a large w, whereas there is no certain difference among w; > 0. This is because route
changes in the upper layers have wider impact than those in the lower layers. When a route change
occurs in an upper layer, the control at all areas of the lower layers is affected by changes in the
traffic pattern. On the other hand, a route change in the lower layer only affects the residual capacity
on the virtual link in the upper layer. Thus, the upper layer should avoid large route changes by

setting large w,, whereas the performance of the lower layers is not very sensitive to w; > 0.
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Finally, we investigate the appropriate value of & in hierarchical control. Figs. 5.8 and 5.9 show
that worse congestion occurs when either h, or h; are 1. This is because the control server with
h = 1 suddenly changes the routes just before congestion occurs, and other control servers scarcely
cooperate with such sudden route changes. The sudden route change causes unexpected changes in
the information observed by other control servers. Then the control servers wrongly set routes with
incorrect information, causing significant congestion.

On the other hand, the control server with & > 1 gradually changes routes in advance of the
occurrence of congestion. When a control server gradually changes routes, other control servers
can predict how the traffic rates and residual link capacities will change in response to future route
changes. Thus, MP-TE with A > 1 achieves better collaboration between the layers and keeps the
congestion small.

Moreover, Figs. 5.8 and 5.9 show that setting large h,, is more effective in reducing excess traffic
whereas there is no certain difference among h;, similar to w,, and w;. This is because significant
route changes should be avoided in the upper layer. Setting a long predictive horizon enables the
controller to change routes more smoothly since the controller can begin the route change earlier,
before congestion actually occurs. Thus, setting large h,, reduces interference between controllers
and results in a quick shift to the appropriate network state. On the other hand, route changes at the

lower layer have a small impact on the network state.

5.7 Conclusion

Setting a long control interval at the upper layer is a common approach for avoiding oscillations in
hierarchical network control. However, doing so requires a long time to respond to environmental
changes which cannot be solved by only operations in the lower layers. To solve this problem, we
have proposed introducing the idea of MPC into hierarchical network control. Utilizing the basic
concept of hierarchical TE, we have developed an MPC-based hierarchical network control called
hierarchical MP-TE which achieves routing convergence while setting a short control period. In hi-
erarchical MP-TE, a network is divided hierarchically into multiple areas, and multiple controllers

are deployed to calculate routes in a similar way to other hierarchical TE methods. To avoid route
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oscillation, in hierarchical MP-TE each controller gradually changes routes based on predicted traf-
fic instead of setting a long control interval. Through simulation, we demonstrated that hierarchical
MP-TE achieves routing convergence by restricting route changes even when setting a short control
interval. We also showed that setting a short control interval improves the convergence time of
hierarchical routing. In addition, considering a realistic situation, we evaluated MP-TE under large
prediction error and verified that MP-TE is not sensitive to prediction errors. Moreover, we clarified
the appropriate parameter values to be set in MP-TE.

Future work will include a method to determine appropriate partitioning of a given network.

Furthermore, we will develop a more sophisticated prediction method suitable to MP-TE.
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Chapter 6

Conclusion

As the Internet and its applications continue to grow, network traffic variation continues to increase.
In this thesis, we proposed a prediction-based TE to effectively accommodate such traffic variation.

We focused on handling uncertainty in future traffic as it pertained to prediction.

In Chapter 2, we proposed a traffic prediction method to estimate the upper bound of future
traffic for TE by setting a safe-side route against prediction uncertainty. In our method, preprocess-
ing separates monitored traffic variation into predictable longer-term variation and noisy short-term
variation. A prediction model is then constructed using only predictable variation to improve the
predictive accuracy of daily variation. Instead of prediction, the noisy variation is estimated its
range. Finally, we obtain the predicted variation and its upper bound, which covers prediction
errors and the eliminated noisy variation. Through a simulation involving a real traffic trace, we
showed that traffic engineering reduces required link capacity by using predicted traffic. We also
clarified that considering the prediction error and noisy variation can avoid congestion due to pre-
diction uncertainty. Moreover, we discussed effectiveness in order to consider periodicity in the
prediction model, and found that periodicity should be considered for traffic engineering targeting

longer control periods.

It is effective to follow changes in traffic without drastically changing routes to predict traf-

fic trends in the distant future. Such future prediction, however, incurs large prediction errors. In
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Chapter 3, we addressed the prediction-based TE method MP-TE that is robust against errors, es-
pecially in predictions regarding the distant future. Our approach involved applying the idea of the
MPC from system control theory to TE. In this method, the controller calculates the schedule of
route changes to avoid large route changes in each time slot. It then sets the calculated routes of
the first time slot for the network. Following the route change, the controller monitors traffic infor-
mation from the network as feedback, and corrects the prediction as well as the consequent future
routes. Thus, it reduces the impact of the prediction error. We also evaluated our method using
the simulation. The results showed that our TE method can avoid congestion, unlike the simple
prediction-based TE method, because of the prediction error. Moreover, we discussed parameter
setting, such as the weight of routes change w, the length of the predictive horizon h, and the cycle
length of control and prediction. We found that the performance of our method is not very sensitive
to parameters w and h. Further, we showed that changing a route at 10-second intervals is sufficient
to accommodate traffic changes at every second.

In Chapter 4, we proposed a risk-averse guarantee method by improving the MP-TE. In this
method, routes are calculated with a stochastic constraint whereby the probability of congestion
should be lower than a designated probability. Due to the characteristic of the prediction error
whereby it increases in the distant future, the stochastic constraint increases the number of unnec-
essary routes changes. Therefore, we also proposed a constraint-relaxation method, in which the
guaranteed probability is gradually reduced for the distant future. Through the evaluation involv-
ing the actual traffic trace, we showed that the proposed method guarantees lower queuing delays
than the original MP-TE. We also showed that the constraint relaxation reduces the frequency of
unnecessary routes changes.

In Chapter 5, we proposed the hierarchical MPC-based TE method to achieve scalable con-
trol. In hierarchical network control, setting a long control interval in the upper layer is a common
approach to induce cooperation among layers. This method, however, delays responses to environ-
mental changes in the upper layer. To solve this problem, we proposed introducing the MPC idea
in hierarchical TE once again to predict the behavior of other layers. In this method, the network is
hierarchically divided into multiple areas, and multiple MPC controllers are deployed to calculate

the routes. To avoid affecting the other areas, each controller gradually changes routes based on the
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predicted traffic and residual link capacity. Through the simulation, we showed that our proposal
achieves routing convergence even by setting the control interval short at the upper layer. We also
showed that our proposal reduces the convergence time of hierarchical routing over the existing ap-
proach. Moreover, we investigated sensitivity to prediction error, and found that our method works
well, even with a large error greater than that incurred in practice. Furthermore, we clarified the
appropriate parameter setting of the MPC controller in the hierarchical TE.

In this thesis, we confirmed that the prediction-based TE outperforms observation-based TE,
even if there is uncertainty concerning future traffic, by handling uncertainty in a proper manner.
Although we focused on the uncertainty of the traffic dynamics in this thesis, there is also uncer-
tainty in the sensing information due to packet loss, faulty monitoring, and so on. One of our future
research topics is to handle such incomplete data in prediction-based control. To tackle this topic,
an insight into certain neurological mechanisms can provide inspiration, since the brain uses partial
information to make decisions in everyday life. Another future research topic is improving the ac-
curacy of prediction about the network state by using not only the traffic information but also other

information such as real-world events.
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