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Preface

Making decisions is a commom and vital activity among human beings, indeed ”Our
lives are the sum of our decisions - whether in business or in personal spheres” as Thomas
L. Saaty aptly puts it (Saaty, 1980). In the process, decision makers are subject to several
factors which might influence their decisions, i.e., a personal preference may influence when
deciding between different alternatives as regards to a set of criteria. Thus, implementing
such policies may produce positive or negative outcomes consider, for instance, a company
under a process of production planning. A possible solution for this particular problem is
to find a generalized and systematic approach that is analytically adequate to subjective
factors.

In this research, we made use of the great capacity of game theory, particularly
cooperative game theory, to strategically analyze multicriteria decision making problems.
The objective of this study can be outlined as follows i) to propose an efficient mathematical
model to support decisions made under uncertainty, that is, a support tool to the group of
deciders in order to achieve a certain level of group agreement opposite to an individual
benefit; i) to extend the concept of Shapley value in cases where ambiguity prevails factors
not considered when using the original technique; ii7) to demonstrate the applicability of
game theoretic techniques to real-world situations. Firstly, the study combines game and
risk theories by defining a typical characteristic function which incorporates elements of
risk. This makes it possible to study the flow of risk parametrically in order to describe
the numerical advantages or disadvantages of chosen policies during the process. Secondly,
in order to deal with ambiguity we employ fuzzy theory concepts under coalitional game
framework by proposing a minimax optimization model which is implemented to water
resources allocation. Through numerical examples a multiperiod production planning
problem with demand uncertainty is analyzed by using risk measures such as value-at-risk
(VaR) and conditional value-at-risk (CVaR) and, moreover, a case study on the equitable
sharing of international water is also considered.

Shapley value is a strong solution concept in cooperative game theory, but with some
application in noncooperative too because of the possibility of bringing player to cooperate
despite of their self interest. Thus connecting fuzziness to Shapley value would be interesting
just to mention that ambiguity often is not analyzed when comes to emplying Shapley value
or other solution concept. Therefore, a probable contribution of this research would be the
possibility of offering an optimization model to support decisions-makers in uncertainty
enviroment. Accordingly, the results from this study may be beneficial to the field of water re-
source management in the sense that decision-makers can get accurate information regarding
their expectation, as well as to forecast economical benefits regarding the process of sharing
the river water from the viewpoint of different sectors, and likewise it is possible to evaluate
how the population and ecosystem around the basin are positively or negatively affected.



Anténio Oliveira Nzinga René
Osaka University, December 2016
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Chapter

Introduction

We human beings are essentially decision makers (DMs). In fact, our lives are based
on the decisions we make, good or bad for we make decisions all the time consciously
or unconsciously. This thesis, for instance, is a result of a decision made a few years in
the past. Thus, in every sector of life, individuals, companies, academics, politics, etc.,
decisions are very important element to be considered due to the implications their results
may produce. This fact is more evident especially in environments where a certain group
of people play the role of DM. This group has to face several factors which might influence
the performance of their decisions. For instance, a personal preference may influence
with regard to decisions on different alternatives based on a set of criteria [59]. Hence,
implementing such policies may produce positive or negative outcomes if considering, for
instance, a company under the process of production planning.

Overcoming uncertainty in decision making is an important issue for research. Once
the uncertainty is detected and solved, decisions can be efficient. For instance, a company
may have a loss of revenue if production managers or those responsible for decisions do not
consider uncertain factors seriously; a group of DMs can perform their activities well if
they have the right information in order to avoid subjective factors.

For centuries, probability theory and error calculus has led the research related to
uncertainty for being the only methodology accepted to treat uncertainty [24]. However,
in recent times new studies have emerged and, consequently, different approaches have
been proposed to deal with uncertainty within the decision theory and other fields. These
methods are capable to solve problems where classical probability theory cannot succeed.
For instance, with regards to intangible elements, the analytic hierarchy process (AHP)
and its extension analytic network process (ANP) proposed by Saaty [58, 59] have been
applied. Both methodologies are used for measurement through pairwise comparisons
and rely on the judgements of experts to derive priority scales. As judgments may be
inconsistent, the concern of AHP is to measure inconsistency and improve the judgements
when possible to obtain better consistency. Zadeh [77] proposed the Fuzzy Set Theory
to handle incomplete numerical and linguistic information, DM’s subjectivity, etc. The
theory is essentially non-statistical in nature, providing a natural procedure for dealing with
problems in which the source of imprecision is evident. The technique has been extended
by introducing the concept of fuzzy variables by Kaufmann [30], and explored by others [45,
78]. Stochastic Optimization (SO) and Sensitivity Analysis (SA) are traditional approaches
to treating data uncertainty in Optimization. Linear Programming (LP) models [25] can,
often, be used to get important information. However uncertainty may reside within the
data making the LP model become uncertain. This issue is considered in methods such as
Robust Optimization (RO) suggested in [3, 4, 8]. The method consits of detecting data
uncertainty, which can heavily be affect the quality of the nominal solution and generate a



robust solution [3].

In this research we treat the problem of uncertainty under the framework of Game
Theory (GT), particularly cooperative game theory (CGT), also known as coalitional game
theory. Within the thesis, we use both terms interchangeably to refer to the same nature
of games. Game theory uses mathematical models known as games to capture the key
attributes of scenarios in which self-interested players interact. The word game is used
in a technical sense, that is, the technical sense of game theory. Therefore, obviously, it
does not refer to the games in the everyday recreational sense (chess, checkers, poker, etc),
although the use of that term (and much of the associated theory) was originally derived
from the study of recreational games such as poker [29, 49, 50].

A player is an independent decision making unit with a certain interest regarding
its decisions [11, 13]. According to the context, players may represent persons such as
consumers, suppliers of certain services, a group of tradesmen, politicians, or subjects, or
even a group of people with common interests, a corporate conglomerate, or even a nation.
Basically, a player can make decisions, take actions, and have objectives to achieve; that is,
he/she has choices over the actions during the game.

1.1 Consensus Decision Making

Consensus decision making is a formal, structured process for making decisions, which
leads to a non-violent resolution of conflicts with the cooperation of decision that everyone
involved can support. This type of decision making is usually performed in major companies,
the North Atlantic Treaty Organization (NATO) [48], the United Nations (UN) [46], and
several activists or nonprofit groups [10, 12, 62].

Consensus is achieved when all the members of the group consent to the final decision
even when that decision is opposite to their personal preference; the point is to choose
the best decision for the group and not the individual. The concept can be understand
through the following summary [62].

e Comnsensus is not unanimity: consensus is simply the process for deciding what is
best for a group. It is a decision to which the group consent for representing the best
choice for the group.

e Consensus is a cooperative process: it is a process for people who want to work
together to seek the good solution.

e Consensus may lead to democracy: gives participants power to express their opinions
and make decisions, and at the same time demands complete responsibility for those
decisions.

e Skills and the desire to cooperate are requirements for consensus: people in the
process have to be committed and open to accountability and willing to help.

Herrera-Viedma et al., [1] proposed a consensus model for multiperson decision making
with different structures. Their model evaluates two types of consensus measures, namely:
consensus degree, and the linguistic distances. These elements are applied in three acting
levels, i.e., level of preference, level of alternative, and level of preference relation.

1.2 Motivation and Purpose of the Research

This research explores the great capacity of game theory to strategically analyze
multicriteria decision making problems. The motivation behind this study is that very
often, solution concepts in cooperative game theory, in particular, do not treat uncertainty
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directly. A related study performed by Aghassi and Bertsimas [2] treats robustness in
noncooperative game theory (NGT) by using concepts of RO, while this work takes the
direction of fuziness to treat robustness in CGT. We incorporate Shapley value to situations
where ambiguity is prevalent. To extend the large possibility of applications of game
theory, we also analyse production planning problem under the framework of CGT. In
general, through this research we aim to propose mathematical models to support DMs
while dealing with uncertainty.

1.3 Thesis Structure

Starting with this introduction through which we present an overview of the problem
we attempt to solve, the thesis is divided in five chapters described as follows.

The focus of Chapter 2 is Shapley value. The chapter starts by describing some concepts
related to GT in Subsection 2.1. Important concepts to distinguish the two branches of GT,
i.e., cooperative games and noncooperative games are described. In Section 2.2 Shapley
value is introduced and the theory behind the value; the next part of the chapter, that
is, Section 2.3 is reserved to the extension of Shapley value to fuzzy concepts in order to
deal with ambiguity existent in the process of decision making. A numerical illustration
regarding the computation of Shapley values in fuzzy framework is then considered in
Section 2.4.

In Chapter 3 we combine cooperative games with production planning considering risk
measures, such as value-at-risk (VaR) and conditional value-at-risk (CVaR) to propose
models to solve production planning problems in a multi-period time. Three models
for inventory management are proposed. These models may serve as tools to support
production managers to forecasting. Several cases are considered in Section 3.3 followed by
a discussion on the results, respectively.

Chapter 4 extends models of Fuzzy Shapley value in Chapter 2 by introducing a
minimax model. The the characteristic functions as in the other cases represent fuzzy
numbers. Through the proposed models DMs may detect the level of ambiguity while the
model generates a robust solution. Two case studies related to water resources management
are considered as numerical examples.

The thesis is concluded in Chapter 5 through a summary with regard to the results of
this research, followed by a description on main contribution of the work. Future directions
are also pointed.






Chapter

Foundations of Shapley Value

Game Theory is a branch of Mathematics used to solve problems where players (or
DMs) interact strategically in situation where conflict and cooperation can be considered.
Applications of this approach to solve real-world problems are vast in engineering field,
politics, economics, etc. This chapter, starts by describing some theoretic concepts of game
theory in Section 2.1. Shapley value, probably the most known solution concept in CGT
is introduced in Section 2.2. The following section is dedicated to the extension of the
value to an LP model, followed by a fuzzy Shapley value model to support the process of
decision making when uncertaint factors have to be considered. The chapter concludes in
Section 2.4 where a numerical example is considered.

2.1 Basic Concepts of Cooperative
n-Person Games

Denote the finite set of players N, e.g., a game with three persons, or simply a 3-person
game, will be denoted as the set of players N = {1,2,3}, and for a 6-person game one just
need to add three more elements into the later set, i.e., N = {1,2,3,4,5,6} [29, 71].

While players are autonomous, they can make agreement to coordinate how they
play through joint decisions which, probably, could not be guaranteed in case of acting
independently. This agreement or cooperation is called a coalition.

A coalition, mathematically, is a subset of the set of players N hereinafter defined by 8.
The coalition 8§ is formed relying on the agreement between every player in the set and
by no player not in 8, that is, N — 8. Additionally, it is not allowed agreement between
any player of 8§ and those of N — 8. Hence, the agreement plays an important role to the
coalition formation.

The grand coalition, the coalition of all n players, is referred to as a coalition N. A
coalition structure describes how players in N divide into common exclusive and complete
coalitions. Any partition of the players can be described by the set £ = {S1,5,...,S5n}
of the m coalitions that formed. Basically, £ is a partition of N satisfying the following
three conditions:

on;é@,j:l,Q,...,m,

e 8, u8;= Jforalli# j and

e | Jsi=n

SjEL



This conditions indicate that each player is in one and only one of the m nonempty
coalitions within the coalition structure, and pointing out that all elements of a coalition
are associated each other, yet not to anyone not in the coalition.

An outcome constitutes the main goal of the game, while a quantitative representation
of the outcome of a player in the game is called payoff, i.e., each player ¢ at the end of the
game receives a payoff, which is denoted by x;. The set of payoffs to all players may be
expressed as the row vector X =< x1,x9,...,2z, > of each player’s payoff. X is called as
payoff vector. Thus a payoff is a number representing the worth to a player of an outcome
of a game.

2.1.1 Cooperative vs. Noncooperative Games

The absence of pure conflicts between players implies that there exists the possibility
of agreement among players. This fact helps to distinguish cooperative to noncooperative
games. Basically, in the former players may embark to mutual agreements; it is expected
that:

e Players can negotiate before the game starts.

e All negotiations are clearly known by each player and their intended targets.
e All agreements are determined and completed to the rules of the game.

e The set of outcomes does not depend on the rules from the negotiations.

The expression cooperative implies that players may team up to their common profit;
however, this profit is not always guaranteed. In the later type of games, i.e., noncooperative,
a prior agreement among the players is not allowed. Mathematically, cooperative games
represent a subset of the most common noncooperative games [29].

Representation of Games
Games in Normal Form

The normal form, or the strategic or matrix form, is the most used representation of
strategic interactions in game theory. This form of defining a game seeks to represent every
player’s utility for every action, specially those cases where set of actions depends only
on the players’ combined actions. As described in Brown and Shoam [11], since most of
representations of interest can be reduced to this typical representation of a game, the
normal form turns to be the most fundamental in game theory.

Definition 2.1.1 (Normal-form game). A finite, n-person normal-form game is a tuple
(A, N,u), where:

e N is a finite set of players.

e A={A; x Ay x---x A}, with A; denoting a finite set of actions available to player

1. Each vector a =< a1,a9, -+ ,a, >€ A is considered to be an action profile.
e u = {uy, - ,u,} where, u;: A — R is real-valued utility (or payoff) function for
player 1.

Usually, an n-dimanesional matrix is used to represent the games. For instance, Fig.2.1.1
shows a two dimensional game matrix well known among game theorists.

6



Games in Extensive Form

The extensive or tree form is also a way of representing a game. Two groups define
this class of games, namely, perfect-information game and imperfect-information game.
Brown and Shoham in [11] offer the formal definition for both.

Definition 2.1.2 (Perfect-information game). A perfect-information game is a tuple
G = (N,A,D,Z,(,0,\,u), with:

e N is a finite set of n players;

A is a set of actions;

D is a set of nonterminal choice nodes;

Z is a set of terminal nodes, disjoint from H;

¢ : D — 24 is the action function, which assigns to each choice node a set of possible
actions;

e 0 : D — N is the player function, which assigns to each nonterminal node a player
i€ N who chooses an action at that node;

e \: DxA— DuZ is the sucessor function, which maps a choice node and an action
to a new choice node or terminal node such that for all hy,ds € H and a1,as € A, if
Ady,a1) = ANdg,az) then di = do and a1 = ag; and

l={(l1, - ,ln)} wherely : Z — R is real-valued utility function for player i on the
terminal nodes Z.

Definition 2.1.3 (Imperfect-information game). An imperfect-information game
is a tuple (N, A,D,Z,(,6,\,u,I), where: A perfect-information game is a tuple G =
(N,A,D,Z,(, x, A\ u), where:

e (N,A,D,Z,(,0,\,u,I) is a perfect-information extensive game; and

oI = (I, -, In) with I; = (Ij1, -, Ljx,;) is an equivalence relation on (i.e., a
partition of ) h € D : §(d) = j with the property that ((d) = ((d') and §(d) = §(d)
whenever there exists a j for which h € I, and d' € I;,.

Regarding the representation of games, consider a typical illustration set of games
starting with the Prisoner’s Dilemma [11, 29, 49] which, probably, might be the most
famous example of game theory problems.

Example 2.1.1 (The Prisoner’s Dilemma). Two criminals, A and B, are arrested.
They are suspected of having robbed a bank. Because there is very little evidence, the two
can only be sentenced to a year of imprisonment on the basis of what evidence there is. For
this reason, the two are held in separate cells, with no way of meeting or communicating,
and no way to make binding agreements. A deal is offered to each of them:

e If one confess and the other does not, the confessor will be freed, and the other will
be jailed for twelve years;

o If both confess, then each will be jailed for six years.
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Table 2.1: The Prisoner’s Dilemma in matrix form
Prisoner A

M Confess Keep quiet
EJ Confess 6, 6 0, 12

.g Keep quiet 12,0 1,1

&

This information can be modeled by using a 2 x 2 matrix as shown in Table 2.1 The pair

(x,y) at the intersection of row i and column j means that the row player gets x and the
column player gets y. Intuitively, the prisoners have to decide whether to cooperate, which
is equal to (keep their mouth shut, i.e., not to confess to the crime) and not cooperate,
which implies (to confess to the crime). How should one choose rationally between these
two strategies? For this purpose, consider the following line of reasoning, from the point of
view of player A:

e Suppose B confesses; then, if I confess, my prison term would be six years, and if 1
keep quiet, it would be twelve years. Thus, my best choice would be to confess.

e If B keeps quiet; then, if I confess, I would walk free and if I keep quiet, I would
spend a year in jail. Again, my best course of action is to confess.

The Prisoner’s Dilemma is a symmetric game for prisoner B will reason in the same way
about his opponent, and conclude that his best choice is also to confess. The conclusion is
that they both confess, and the overall outcome of the game is that both prisoners will
serve 6 years in jail.

From the common sense it seems that this outcome is not the best that could be
done, i.e., why both players do not cooperate by keeping quiet? This would lead to the
outcome where both players would serve 1 year in jail. Such mutual cooperation would
be strictly preferred over mutual confession by both prisoners, and that is a very strong
solution concept known as dominant strategy equilibrium, which does not always exist in
games, yet when they do, it is very hard to imagine any other outcome occurring through
rational choice. The reason on considering this game as a dilemma lays on the fact that
a unique rational outcome, according to dominant strategy equilibrium, is strictly worse
for both players than another outcome. Thus, both prisoners have a sub-optimal rational
outcome, that is, this is a typical game in which gains comes through cooperation-the best
outcome for both players is that neither confesses. Independent to what one player does,
the other will prefer to confes to keep quiet and, consequently the game has a unique Nash
equilibrium (confess, confess) [49].

The Prisoner Dilemma can also be depicted in a game of extensive form, such as shown
in Fig. 2.1, where A and B represent player A and player B, respectively, and their actions
C (confess) and D (deny).

2.1.2 Characteristic Functions and Payoff Configurations

As stated previously, players in the game can form coalitions which result in payoffs
defined as money. An important element related to cooperative games is the concept of
characteristic function, which is described in the next lines.

Definition 2.1.4 (Cooperative n-person game in characteristic function form). A
cooperative n-person game in characteristic function is a pair (N,v), with N = {1,2,--- ;n}
denoting the set of players and v represents a real valued function defined on the subsets
of N called a characteristic function, whose main role is to assign a real value v(8) to
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each subset 8 of players. The number v(S) represents the value of 8, i.e., it is the money
which coalition 8 can obtain while its members cooperate. The empty set, &, has always

v(@) = 0.
Implicitly, a set of assumptions [29] arises from this definition, namely:

(i) The value of any coalition of players, i.e., money is always preferred to be no less.

(ii) A set of players formed by agreement a coalition on the way that the value of the
coalition is shared among its members.

(iii) Actions on N — 8 does not affect the amount v(8). Thus none of the amount of v(8)
is given to members of N — 8, in the same way amount from N — § can be given to
any element of 8.

(iv) All players know the characteristic function v, consequently all spending related to
the value of v and agreements concerning the establishment of a coalition is known
to all n players.

(v) Only the characteristic function has power over players linking although, other
exceptions may be specified.

(vi) Although the concept of all nonempty coalition can also be formed, the characteristic
functions may be designed in order to a typical formation of certain coalitions make
sits members infeasible.

Logically payoff and coalition allow the rising of the first three assumptions. Assumption (iv)
implies that players have a previous knowledge regarding their negotiations. A difference
between models, i.e., those in which players are abstract and those in which they quarrel
among them is presented in assumption (v). The concept of characteristic function requires
assumption (vi), but in terms of practicality it is often pointless.

Symmetry and Desirability

In an n-person game the numerical ability for players to obtain more payoff for them-

selves is found in the values of coalitions of which they are members, since a known
characteristic function represents these players and their respective coalitions worth. Sym-
metry and desirability are two basic relationship for such ability. The former can be
understood as a representation of equality or substitutability of players, while the later
indicates the order of scores in terms of players’ ability to reach payoffs [29].
More precisely, given known an n-person game (N, v), two players A and B in (N, v) are
considered to be symmetric if, for all coalitions that neither player belongs to, a new
coalition in the same value is obtained by adding either player. i.e., players A and B are
symmetric if

v(8 U {A}) =v(8 u {B}) for all § © Nsuch thatA, B € 8. (2.1)

6,6 0,12 12,0 1,1

Figure 2.1: The Prisoner’s Dilemma in Extensive-form



According to [29], for all theories of coalition formation held that for symmetric players A

and B in the same coalition if the payoff vector X = (x1, 29, ,x,) is an element of the
solution of the game, then the payoff vector X follows the same conclusion, with

~

X, =xp,7 #1,]; XZ = x5 T = x5
As regard to desirability, player B is more desirable than player A if
v(P u{B})=v(Pu{A}) for all P < N such that A, B¢ P.

This inequality is rigorously observed for at least one coalition P, i.e., replacing player B
by player A in any coalition, the value of that coalition does not decrease, and it increases
in at least one instance.

For the satisfaction of coalition formation [29], a more desirable player of a coalition should
not receive less payoff than a less desirable player in the same coalition. Under the point
of view of symmetry, this agreement is determined necessarily from the definition of the
characteristic function; more desirable elements, having alternative coalitions with larger
values, have at least as much strategic benefit as less desirable players.

Example 2.1.2 (Symmetry and desirability). To investigate symmetry and desirability
properties, consider the following 3-person game with the characteristic functions for each
player and respective coalitions defined as:

v(a) = 3;
v(b) =v(e) = 1;
v(be) = 8;
v(ac) = v(ab) = 11;
v(N) =15

Players b and ¢ are symmetric for v(b) = v(c) and, A is more desirable than B and C
since v(a) = v(b) and v(ac) = v(be), as long as the inequality is strict at least once. Thus,
desirability is a transitive relationship, i.e., if player a is more desirable than player b, and
player b more desirable than player ¢, then player a is more desirable than player c.

Payoff Configurations

Any outcome of a game can be denoted through a payoff configuration (PC), formally
defined as a pair (x;8) = (z4,2p, - ,2n;C1,Ca,- -+ ,Cp), with x denoting a payoff vector
and R a coalition structure. There cannot be more coalitions than players, i.e., m < n, and
additionally

z(C;) = Z x; =0v(C;), forall j=1,2,--- m. (2.2)
1eC;

The meaning of Eq. (2.2) is that each proposed or formed coalition will expend neither
more nor less than its value to its members.

The usage and efficiency of the characteristic function representation of a game and

the PC representation of its outcomes are presented through the following examples taken
from [29].

Example 2.1.3 (Odd Man Out). Three players bargain in pairs to form a deal. The
deal is an agreement on how to divide money provided by the experimenter. The amount of
money that the experimenter provides depends on which pair concludes the deal. If players
A and B combine, excluding C, then they divide $4.00. If players A and C team up to

10



exclude B, then they get $5.00. And if B and C coalesce, they split $ 6.00. Its characteristic
function is defined as follows.

v{A} = v{B} = v{C} = v{N} = 0;
v{AB} = 4; v{AC} = 5; v{BC} =6

If players A and B decide to divide their joint payoff equally, the PC of the game will
be
(2.00,2.00,0; AB, C).

If players B and C form a coalition where player C gets two-thirds of v{BC}, leads to the
PC
(0,2.00,4.00; A, BC)

Whereas if all the players in the game are unable to reach agreement, the PC will be

(0,0, 0; A, B, C).

Example 2.1.4 (A Slightly Larger Market). Suppose a society in which there are
five sandlmakers. Symmetric players A and B make only left sandals, while symmetric
players C, D, and E make only right sandals. In one working period, a left sandalmaker
can manufacture 17 sandals, while in the same time, a right sandalmaker can produce 10
sandals. Any single sandal is worth nothing, but a pair sells for 20. At the end of the
working period, all scrap leather and unused sandals are worthless. A coalition is a binding
agreement among sandalmakers to pool their output and divide their profits.

A single player cannot earn any value, that is, v{i} = 0, for all i € {A, B,C, D, E}. In the
same way, companies making same-footed are not alowed to merge in order to get lucrative
results; thus, v{AB} = {CD} = {CE} = {DE} = {CDE} = 0. Whenever a member of
each subdivision makes ties, the smaller output of the right sandalmaker determines that
v{dr}= 200, de {A, B}, r € {C, D, E}. The value for a 4-person coalition of two of each
type of sandalmaker corresponds the double value of the 2-person coalition. A 3-person
coalition of one left and two right sandalmakers is constrained by the output of the left
sandals, therefore v{drr} = 340. Summing a left sandalmaker to an (dr) coalition or a right
sandalmaker to an (drr) coalition sums no value. Thus, the grand coalition can produce
30 pairs of sandals for 600.

The summary of all aforementioned can be observed through the characteristic function
as follows.

v{A} = v{B} = v{C} = v{D} = v{E} = 0; )
v{AB} = v{CD} = v{CE} = v{DE} = v{CDE} = 0;
v{AC} = {BC} = {AD} = {BD} = {AE} = v{BE} = 200;
) v{ACD} = v{ACE} = v{ADE} = v{BCD} = v{BCE} = v{BDE} = 340;
v{ABC} = v{ABD} = v{ABE} = 200;
v{ACDE} = v{BCDE} = 340;
v{ABCD} = v{ABCE} = v{ABDE} = 400;
\ W{N} = 600.

Suppose now that players A and D make a deal, opposite to B and E whom decide to play
independently, this could have the following PC

(100, 50,0, 100, 150; AD, BE, C);
moreover, finding other PCs is also possible as long as players keep making agreements.
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2.2 Shapley Value in Transferable Utility (TU) Games

Classes of TU games

Definition 2.2.1. (Superadditive game). A game G = (N,v) is superadditive if for
all S, T c N, SnT =, holds

W(SUT) = V(S)+ V(T). (2.4)

Superadditivity makes sense when coalitions can always work without interfering with
one another; hence, the value of two coalitions will be less than the sum of their individual
values. This property implies that the value of the entire set of players, i.e., the ”grand
coalition” is no less than the sum of the value of any nonoverlapping set of coalitions. In
other words, the grand coalition has the highest payoff among all coalitional structures.

When coalitions can never affect one another, either positively or negatively, then we
have additive (or inessential) games.

Definition 2.2.2 (Additive game). A game G = (N,v) is additive (orinessential) if
forall S, T c N, SnT =, holds

v(SuT)=v(S)+v(T). (2.5)

Definition 2.2.3. (Constant-sum game). A game G = (N,v) is constant sum, if for
all S N,
v(S) + v(N\S) = v(N). (2.6)

Every additive game is necessarily constant sum, but not vice versa. In noncooperative
game theory, the most commonly studied constant-sum games are zero-sum games.

Definition 2.2.4. (Convex game) A game G = (N,v) is called convex if for all S, T
c N,
v(SUT)=v(S)+v(T)—v(SnT). (2.7)

Convexity is a stronger condition than superadditivity. Whereas convex games may
therefore appear to be a very specialized class of cooperative games, these games are
actually not so rare in practice [50, 11].

Definition 2.2.5. (Simple game). A game G = (N,v) is said to be simple if for all
Sc N, u(S)e (0,1).

Simple games represent a class of cooperative games with restrictions on the values
that payoffs are allowed to take. This class of games are useful for modeling situations.
?7?. Often is added the requirement that if a coalition wins, then all larger sets are also
winning coalitions ( i.e., if v(S) =1, then for all T' > S, v(T) = 1).

When simple games are also constant sum, they are called proper simple games. In
this case, if S is a winning coalition, then N\S is a losing coalition.

As regard to the relationship between the different classes aforementioned in this
subsection, a graphical representation taken from [11] is given in Fig. 2.2. X Y means
that class X is a superclass of class Y. Dividing payoff to the grand coalition among the

players constitutes the main question in cooperative game theory. The centralization on
the grand coalition is due to the fact that most widely studied games are superadditive.
Since the grand coalition is the coalition achieving the highest payoff over all the coalitions,
it is expected that this coalition will appear for there may not be other alternative for
players, but to form the grand coalition.
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On the difficult to decide how this coalition should divide its payoffs a variety of solution
concepts have been proposed. In this research, our focus is mainly the Shapley value.
Therefore, as the chapter points out, our description will be made having this solution
concept in mind.

A basic definition related to payoff division must be given before to proceed.

Definition 2.2.6 (Imputation). An imputation for the n—person game v is a vector
X = (21,...,%n) (2.8)
satisfying
(a) > @i =uv(N),
ieN
(b) x; =zv={i} forallie N.
Under an imputation, each player must be guaranteed a payoff of at least the amount

that he could achieve by forming a singleton coalition. As a solution concept, the core
suffers from three main drawbacks:

(i) The core can be empty;

(ii) The core can be quite large, hence selecting a suitable core allocation can be difficult,
and

(iii) In many scenarios, the allocations that lie in the core can be unfair to one or more
players.

These drawbacks motivated the search for a solution concept, which can associate to
every coalitional game (NN, v), a unique payoff vector known as the value of the game (a
value quite different from the value of a coalition). Hence, a solution concept known as the
Shapley value was proposed in 1953 by Lloyd Stowell Shapley [50, 63, 75]. His concept
was originally defined for transferable utility games (TU games); however, extensions to
nontransferable utility games (NTU games) exist [50, 29, 11, 13, 40, 42].

The Shapley value is based on a set of axioms, which are described in the next lines
after the following two definitions.

Definition 2.2.7 (Carrier). Let ¢ be an n-person game. A coalition R such that, for any
coalition T, ¢(T) = ¢(T n R) is called a carrier for game c. Any player i out of the carrier
18 a dummy player, that is, cannot contribute to any coalition.

Definition 2.2.8 (Permutation). Consider 7 a permutation of the set N, and ¢ an
n-person game. Then, game u implies Tc such that, for any Q = {r1,r2,--- ,rq}. Then,
changing the roles of the players in game c by the permutation T, holds

u({7(r1),7(r2), -+, 7(rg)}) = c(Q), (2.9)
that is, Tc is simply the game u such that, for any Q = {r1,r2, -+ ,rq} Eq. (2.9) is satisfied.

Super-additive D Convex
Additive
Constant-sum 2
Proper-simple
Simple

Figure 2.2: A hierarchy of coalitional game classes.
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Axioms of Shapley value
Let ¢[c] an n-vector be the value of game c.

Axiom 2.2.1 (Efficiency). Players distribute among themselves the resources available
to the grand coalition, that is, if T is any carrier, then

Mild = e(T) (2.10)
T

Axiom 2.2.2 (Symmetry). If two players a and b in game c are symmetric, then
wa(c) = @p(c). This goes along with permutation, i.e., for any permutation p, and i in N,

Pr@)(Tc) = pilc) (2.11)

To recall that two players a and b are said to be symmetric with respect to game c if
they have the same marginal contribution to any coalition they belong to, that is, for each
T c N witha,b¢ T, c¢(T ua)+c(T ub). Players are paid equal shares.

Axiom 2.2.3 (Additivity). If u and c are any games, then

@i(u+c) = pi(u) + @i(c) (2.12)

Axiom 2.2.4 (Dummy). If a is a dummy player, that is, ¢(T v a) — c¢(T) = 0 for every
T < N, then pq(c) = 0.

Theorem 2.2.1 (Shapley, 1953). For all games there ezists a unique value varphi
satisfying all these axioms. This value is obtained in Eq. (2.28).

The uniqueness [75] is sustained by the fact that n-person games have a 2"~ !-dimensional
vector space based on a set of unanimity games. A game vg is called a unanimity game on
the domain Q if

1, if QcT

vo(T) = 2.13
o(T) {0, otherwise ( )

Since each player in the domain should receive an equal share of 1 and the others 0, a
value that is uniquely determined on unanimity games is possible through the dummy and
symmetry axioms The additivity axiom complets the uniqueness result. Furthermore, the
proof of Theorem 2.2.1 follows by [50] through a sequel of lemmas and a corollary.

Lemma 2.2.1. For any coalition T, consider wr a game defined as

0, if TER
wr(r) < {0 T E (2.14)

1, i+ TcR.

Follows that if by defining the number of players in T as t,
1 . .

3 if 1eT
i[wr] = 2.15
pilwr] { vy (2.15)

Proof. From Definition 2.2.7, it is straightforward to verify that T is a carrier for wr, as
well as any set R containing 7. From Axiom (2.2.2) holds,

Z%‘[WT] =1if TcR.
R

This implies that ¢;[wr] =0 for i ¢ T.

If any permutation u carries 7', then pwr = wp. Thus, from Axiom (2.2.2) follows
pilwr] = @;[wr] for any i, j € T. Additionally, ¢;[wr] = 1 if i € T, since there are t of
those terms, and if their sum is 1. ]
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Corollary 2.2.1. If e > 0, then

%[ewt]={§’ goiel (2.16)

0, if i¢T.

Lemma 2.2.2. If ¢ is any game, then there exist 2" — 1 real numbers e; for T < N such

that
C = Z CtWy,
TcN

where, wy s defined in the same was as in Lemma (2.2.1).

Proof. Consider
er= > (=1)""e(T) (2.17)

RcT

with r denoting the number of players in R. The task now, is to verify that lemma (2.2.2)
is satisfied by e;. For this purpose, suppose that H is a coalition,

Z ewi(H) = Z ey

TcN TcH
= —1)Te(T
T;H (T;R( : ()> (2.18)
= > | D) eR).
TcH \TcH
ToOR

h—r
h—t
R c T < H. Therefore, the inner parenthesis may be replaced by

i <Z:’;>(—1)t—ﬂ (2.19)

t=r

For every value of ¢ between r and h, there are set T" with ¢ elements such that

The expression in Eq. (2.19) is the binomial expansion of (1 — 1)*~". This expression is
equal to zero if r < h, and 1 if r = h. Therefore,

Z ewi(H) = ¢(H), for all H < N. (2.20)
TcN

Through these two lemmas some important ideas can be summed up:

(i) By Lemma (2.2.2) any game can be written as a linear combination of games wy.
(ii) From Lemma (2.2.1) there exists a function ¢, which is defined for such games.

(iii) Though some coefficients e; are negative, by Axiom (2.2.3) assuming that u, ¢ and
u — ¢ are games, then ¢(u — c¢) = ¢(u) — ¢(c), and consequently for all games c
function phi is uniquely defined.

As,
c= Z erwy (2.21)

Holds,
dic) = X epilwr) = Y e/t (2.22)



By replacing e; as defined in Eq. (2.17), in the previous expression, holds

gi(c) = D) 1/t 3, (=1)*e(R), (2.23)
N

(&)= 3 N (-1 eR), (2.24)
RN foN,

Making

BB = D) (1) elR) (2.25)
Roier

Suppose R = R' ui and i ¢ R, then we have ¢;(R') = —;(R). If these conditions

are satisfied, then the terms in the right side of Eq. (2.24) turn to be the same, with
exceptuation of 7 = 1’ 4+ 1, and this implies a change of sign.

¢i(c) = ) Vi(R)e(R) - ¢(R — ). (2.26)
ek

n—r

Now, the opposite case, i.e., i € R, implies that theres exists (7~

such that Rc T.
Consequently,

) coalitions T with ¢ elements

From Eq. (2.27), holds,

$i(R) = (7’_1)7;# (2.27)
From Eq. (2.26) and Eq. (2.27) results,
site) = Y, T D (R — o(r - i) (2.29)
=

O

The expression in (2.28) represents explicitly the Shapley value, and it satisfies the
aforementioned axioms. Where the numerator indicates the number of permutations of NV
with ¢ being preceded by the elements of coalition R, and the total number of permutations
is defined through the denominator. Since the game is superadditive, we have,

¢i(v) = (i), (2.29)



meaning that ¢;(v) is an imputation. Although interpreted as a measure for evaluating
player’s power in a cooperative game, according to Winter in [75], Shapley value is often
interpreted and sometimes applied as a technique to allocating collective benefits or costs.
Hence, there is a concern for solving noncooperative bargain games based on cooperative
solution concepts, the so-called Nash Program [28].

Winter [75] lists Harsanyi [22] for probabily being the first to address the relationship
between Shapley value and noncooperative games through his ”dividend game”, he makes
use of the conection between the Shapley value and the decomposition of games into
unanimity games. The list related to research on the relationship between noncoperative
games and the Shapley value goes with studies by Gul [21], Hart and Mas-Colell [23],
Perez-Castillo and Wettstein and [16, 43, 51, 44, 74].

2.3 Shapley Value in Linear Solvable Formulation and Fuzzy-
Shapley Value with Constraints

A description on basic concepts related to cooperative game theory, especially those
related to Shapley value, was given in the previous subsection and brief comments on
noncooperative game theory were also considered. Through this section, we extend Shapley
value to an linear programming by making use of techniques related to least square value
in TU games [56, 57, 47], and the DEA game proposed in Nakabayashi and Kone [46] is
described. Furthermore, for the sake of dealing with uncertainty in decision-making as our
model is also a data driven approach there may exist uncertainty within the data. So, in
order to overcome this problem we simply extend the model to fuzzy theory field in the
subsequent subsection.

Shapley Value in Linear Solvable Formulation

Definition 2.3.1 (Weight function). A positive and symmetric weight function on N,
is a function m(s) (or simply m) such that 2N\ — R where m(S) = 0 for all S < N,
where m(S) > 0 for some S # N, and such that m(S) = m(T') whenever s = t, where s
and t denote the cardinality of S and T respectively.

Consider the following problem for each weight function m:

2
Minimize Z M, s <U(S) - Z zd(R,v)> (2.30)

ScR, SR deS

Subject to Z z4(R,v) = v(R)
deR

The solution for Eq. (2.30) can be found through a vector imputation z (R, v) defined by

the following expression:
1
zT(R,v) = - {U(R) + Z(cdi - cid/)} (2.31)
€R

and ['(d*, d~)={ScR|de S, d ¢S}
M, s, a set of weights, is defined as:

1 r—2\ "
M, = 2.32
e r—l(s—l) (2.32)
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This process produces a vector imputation equivalent to the Shapley value defined in
Eq. (2.28) That is,

27 (R.c) = ga(R. ) (2.33)

Consequently, ¢;(R,c) is always an imputation [56, 57].
Let ¢+ be a sample from a dataset, and x; and y, are the values of the sample. An error
from data can be estimated through the following expression

e, = fa(A, M,v) = (ATMv - ATM Az), (2.34)

where ()4 denotes the selection of the d-th row value, thus the sum of all error functions
E =3, |e;| using the multiple linear regression model that minimize the sum of the absolute
values of the residuals. This problem can be restated as an LP problem [54]:

Minimize € (2.35)
Subject to ATMwv +st —s7 = ATM Az

> za(K,v) = v(K)

deK

0<s"<e 0<s <e

where s = [s],s5,s5, -, ]Y and s7 = [s], 55,83, ,8,]T; A is a matrix satisfying
the condition of supperaditive; v is a column matrix whose elements are the real values
v(5), i.e., the characteristic functions of singular players and their respective coalitions
in the game; M is a diagonal matrix formed by the weights M}, ; obtained through Eq.

(2.32), and is defined as follows.

My 0 0
0 M, - 0

M= . . . (2.36)
0 0 o My

Briefly we explain how matrices and vectors of the optimization model are obtained. A
more elaborated example is considered in Section 2.4.

Example 2.3.1. Suppose a game (K,v) with three players, i.e., K = {1,2,--- /k} then
the matrices aforementioned have the following structures.

v({4})
(K, v) v({B})
’ v({C
z=| zp(K,v) |, v = fu({(jl g)}) , (2.37)
oty v({A.C))
| v({B,C}) |
and
" Ms; O 0 0 0 0
0 Ms; O 0 0 0
B 0 0 Mg; O 0 0
M= 0O 0 0 Mgy 0 0 |’ (2.38)
0 0 0 0 My O
o 0 0 0 0 Msy |
100110
AT = 0o 10101 (2.39)
001011




Decision making in order to be efficient and consistent in terms of results requires to
consider factors such as uncertainty. With this in mind we extended the linear solvable
formulation of Shapley value to fuzziness environment in order to obtain robustness
solutions, which can overcome the ambiguity in the mind of DM.

Probability theory and error calculus were for centuries the only models known to deal
with uncertainty. This dependence was overcome with the introduction of several models
for handling incomplete numerical and linguistic information, decision maker’s subjectivity,
etc. Nonmeasurable elemnts such as ”almost the same”, or ”preference”, for instance,
cannot be treated by the conventional set theory or probability theory [24]. However, this
kind of vagueness on information can be treated nowadays by using techniques such as
fuzziness proposed by Zadeh [77] who proposed the concept of fuzzy set, and has been
applied to a variety of real problems. The concept by itself is a non-statistical, and can
deal with situations where imprecision is evident. This technique is defined as follows.

Definition 2.3.2 (Fuzzy set). A fuzzy set F' in a universe K is a mapping from F to
[0,1]. For any k € K the value F(k) is called the degree of membership of k in F. K
corresponds the carrier of the fuzzy set F'. The degree of membership can also be represented
by k instead of F (k). G(k) denotes the class of all fuzzy sets in K.

Following the concept of fuzzy set the notion of fuzzy variable was also introduced [30,
78, 45]

According to Klir and Yuan [32], uncertainty can be manifested in different forms. These
forms are classified in three distinct types of uncertainty within the framework of fuzzy set
theory and fuzzy measure theory, while in probability theory, uncertainty is recognized
only in one form. The three types are: nonspecificity, also known as imprecision, it is
connected with sizes (cardinalities) of relevant sets of alternatives; fuzzines or vagueness,
which results from imprecise boundaries of fuzzy sets; the last type is strife or discord, this
type describes conflicts among various sets of alternatives [24].

As the progress on studies related to decision theory is evident, it is probable that
uncertainty may not be limited in these three types only. Fig. 2.3 shows the three types of
uncertainty.

Fuzzy-Shapley Value with Constraints

Because there may exists factors such as ambiguity while DM performs his tasks,
through this subsection, we propose a fuzzy-Shapley value model.

Let Z; = (24,Cq)1 be a fuzzy Shapley value with z4 as the center and (y the width;
( ) denotes is represented by L(z) satisfying

L(z) = L(-a),
L) = 1, (2.40)

L(z) is mnon —increasing function in x € [0, ).

For instance, if L(z) = max(0,1 — |z|) its fuzzy membership function is defined by

2d — Yd
1zy(Ya) = L ( 2 )
Moreover the characteristic function is also assumed to be generated by fuzzy value
V(S) = (v(5), ms) -
Then we can define fuzzy vector Y = BTv and X = C'z whose elements are given
by the fuzzy variables Y = [Y7,Ys, Y5, -+ | Yy] and

Yy = (b, |de|7r)L=< D1 basv(S), D] \bds|7r5> C(d=1,2,--, k)2.41)
L

ScK, S+K ScK, S+K
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Figure 2.3: Basic types of uncertainty [32].

where b} € R! x R is a d-th row vector of matrix BT and |bY| = [|ba.1], [ba2], -, [bagl]-
Vector 7w € R4 x R! is the width representing ambiguity of fuzzy variables for V(S).
Also X = [Xl,XQ,Xg, s ,Xk] is

Xa=(cqz lejl¢), = < > sz ) |Cds|Cd> , (d=1,2,--- k) (2.42)
L

ScK, S+K ScK, S+K

where ¢} € R! xR is a d-th row vector of matrix CT and |} | = [|ea1l, [cazl, |cas],  , |baxl]-
The vector ¢ € R* x N! is the width representing ambiguity of fuzzy variables for z4.

Possibility Measure for Fuzzy Shapley Value

Here we consider the following possibility of equivalent Pos(Yy = Xy) for fuzzy variables,
Y, and X4, as follows;

Pos(¥; = Xq) = supmin (ny, (0). ux, (6)). (2.43)

and the condition for « level set
Pos (Y; = X3) = a. (2.44)

Such definition implies the sets of vectors z and ¢ consisting of the fuzzy vector X
under the condition as the possibility of equivalent between Y; and Xy is larger than a.
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Now that we can derive a LP problem to obtain fuzzy Shapley value by

k
Minimize Z el |¢ + Be (2.45)
d=1
Subject to ciz— LN a)|ej|¢ + st —s; <bjv+ L Ha)|b|m,

(d=1,2,3,--- k)
coz— L7 a)|el|¢ +sf —s; = biv— L7 a)|b)|m,
(d=1,2,3,--- k)

k
N 2K, v) = o(K)

=1

N X
U
\Y
o
K
\Y
=
»
Nt
N
\'ﬂ\
»
IS
N
™

d (d:1a27377k>

It is assumed that the coefficient 8 in model (2.45) is given by a value sufficiently large,
and e works significantly if o = 1, that is, the values of the decision variables are exactly
equal to Shapley value as in Eq. (2.28).

Necessity Measure for Fuzzy Shapley Value

Next, we consider the following necessity of inclusion Nec(Yy D Xy4) for fuzzy variables,
Yd and Xd,

Nee(Yy = Xq) = inf max (s, (0), 1 - pix, (0)) (2.46)

and the condition for « level set
Nec(Yy 2 Xy) = a. (2.47)

Inequality (2.47) implies that the sets of vectors z and ¢ have a fuzzy vector X under
the condition that it is the degree of necessity. Furthermore, Xy is included by Yy, and
larger than a.

Having this condition satisfied, then we can obtain fuzzy Shapley value by solving
tprogram (2.48), which corresponds the LP model in case of necessity of inclusion.

k
Minimize — D leql¢ + Be (2.48)
d=1
Subject to ciz+ L N1 —a)leg|¢+ s —s; <bjv+ L Y a)bj|m,

(d:17273"" 7k)
coz— L Y1 —a)lej|¢+si —s; =bjv— LY (a)|b]|m,
(d=1,2,3, - k)

k
N 2K, v) = o(K)

=1

N
ISH
\%
o
o
\%
=
»
a4
N
u(‘Y\
»
IS
A
(@)

d (d:1a27377k>

2.4 Numerical Example

In this section, models proposed within the chapter are tested. A comparison study
with other models preceds the discussion on the results.
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Table 2.2: Data of 3 shops

’ Shop ‘ Profits | Employee ‘ Size ‘

A 10 9 20
B 5 16 10
C 7 20 30
Sum 22 45 60

The first example, the Market Arcade Game, corresponds to a problem taken from
Cooper et al., in [15], where Shapley value was obtained by using the DEA game approach
proposed by Nakabayashi and Tone in [46]. The problem is presented as follows.

A shopping mall association made the following agreement on the arcade maintenance
fee: ”Every shop facing the arcade street has to pay a monthly fee. The method for arriving
at this fee for each shop was discussed and approved at the general meeting. Share of cost
was determined based on parameters such as category of business, the size of the shop,
the number of employees and so on.” Suppose that only three shops A, B and C face the
arcade street and they have to determine share of the arcade maintenance fee based on
three criteria such as the profits, the number of employees and the size of the three shops,

as exhibited in Table 2.2.

Assignment: How is share of cost determined? The values of the characteristic functions

for this 3-person game are fuzzy values as mentioned previously, having v as the center

and 7 as the width:

v(A) 0.2 m(A) [ 0.02
v(B) 0.1667 7(B) 0.01
| w(@) | | 0.3182 | wo) 0.03
=B | T 05 =1 x4,B) 0.05 (249)
v(A, ) 0.6444 (A, C) 0.06
| v(B,C) | | 0.5455 | | #(B,C) | [ 0.05
The computation of matrices M, AT, BT and C7 gives
(05 0 0 0 0 0
0 05 0 0 0 O
0 0 05 0 0 0
M = 0 0 0 05 0 0 (2:50)
0 0 0 0 05 0
| 0 0 0 0 0 05
(100110
AT = o 10101 (2.51)
001011
(05 0 0 05 05 0
BT - 0 05 0 05 0 05 (2.52)
| 0 0 05 0 05 05
1.5 0.5 0.5
ct = |05 1.5 05 (2.53)
| 05 05 15

Then, fuzzy variables Y are given by
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0.67220 0.065
Yy = 0.60610 |, | 0.055 (2.54)

0.75405 0.070 L

If @ = 1, ambiguity does not exist for ¢ is null and both models have the same result as

those from Shapley value in (2.28). By finding Shapley values through the possibility and
necessity measures we intend to analyze the ambiguity, which usually is not considered.
Ambiguity can be observed through «.

With some ambiguity, say o = 0.7, the value for possibility condition diferes a little
comparing to those from the condition of necessity of inclusion. The fuzzy Shapley value
based on possibility of equality is given as follows.

0.4381 0.5475
z=| 02047 |, ¢= 0 (2.55)
0.3572 0

Adequate conditions such as, a width pattern can be added in order to control the
result of ¢, moreover, CT is not an invertible matrices. As for necessity of inclusion fuzzy
Shapley values were obtained as follows.

0.3286 0
z=10255 |, ¢=1]0 (2.56)
0.4119 0

This result shows that even if there is ambiguity through the characteristic functions,
necessity of inclusion does not present always ambiguity. These numerical simulations were
performed on Excel solver the results obtained for possibility measure are presented in
Table 2.3.

In this chapter, concepts related to CGT were presented, and briefly the main difference
between CGT and NCGT was also considered. The term ”cooperative” may mislead, it
does not mean that there not exists cooperation among players in NCGT at all, or that
they always cooperate with regard to CGT. One of the key difference is that in the former,
players act strategically, while in the later they try to form coalitions. Solution concepts in
cooperative games with TU and NTU with emphasis to Shapley value were considered.
One of the advantages of cooperative games, unlike noncoperative games in multiperson
situations, it is very practical. Real problems are easily understood into a coalitional game,
which has proved more tractable than that of a noncoperative game, whether that be in
normal or extensive form.

Basic concepts regarding the theory behind Shapley value was also introduced. Shapley
value was proposed with the motivation of finding a mathematical concept to deal with
any game, i.e., n-player games. According to [75], among all the solution concepts in
cooperative game theory, the Shapley value seems to be the most cooperative, undoubtedly
more than the core, and moreover the concept emerges as the outcome of a variety of
noncooperative games quite different in structure and interpretation. Its main advantage
is the possibility of offering fair and unique solution while the difficult on the computation
due to number of combination of players in terms of coalition formation is the drawback
especially if n is large.

Within the chapter, extension of Shapley value to optimization programs was presented.
For being one of optimization approaches most used, LP models seem to be easier and
faster because of the large number of softwares capable to solve a problem defined through
the method. Therefore, within the chapter the conventional formulation of Shapley was,
also, considered in LP model. This model was extended to fuzziness concepts, and through
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possibility and necessity measures we proposed models to obtain fuzzy Shapley values with
fuzzy variables. The differences between these models and the classical formulation is that
through them DMs can also have information regarding ambiguity, a type of uncertainty.
This fact is not considered in the original case. In practical terms DM chooses the value for
7 in order to get a precise information while analyzing the membership function. Values
are defined in terms of fuzziness, while in the previous case they are crisp values. To test
the efficiency of these models, a numerical example was included in the last section. If « is
equal to unity, then models become simply the classical Shapley value by returning the
same results. The level of ambiguity can be observed for cases where a # 1.
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54

Table 2.3: Fuzzy Shapley value based on possib

ility measure with a =1

POS 21 29 23 G (2 (3 a{r a2+ ag ay g ag € o L (o) L (1-a)
Fuzzy Shapley value  20.328083  0.261983  0.409933 0 0 0 0 0 0 0.155883  0.155883  0.155883  0.155883 1 0
min 0 0 0 0 25 25 25 0 0 0 0 0 100 15.58833
s.t. 1.5 0.5 0.5 0 0 0 1 0 0 -1 0 0 0 0.6722 <
0.5 1.5 0.5 0 0 0 1 0 0 -1 0 0 0 0.6061 <
0.5 0.5 0.5 0 0 0 1 0 0 -1 0 0 0 0.75405 < 0.6722
1.5 1.5 0.5 0 0 0 1 0 0 -1 0 0 0 0.8722 < 0.6061
0.5 0.5 0.5 0 0 0 1 0 0 -1 0 0 0 0.6061 < 0.75405
0.5 0.5 0.5 0 0 0 1 0 0 -1 0 0 0 0.75405 < 0.6722
1 1.5 0.5 0 0 0 1 0 0 -1 0 0 0 1 < 0.6061
0 0.5 0.5 0 0 0 1 0 0 -1 0 0 0 -0.15588 < 0.75405
0 1 0.5 0 0 0 1 0 0 -1 0 0 0 -0.15588 < 1
0 0 0 0 0 0 1 0 0 0 0 0 -1 -0.15588 < 0
0 0 0 0 0 0 1 0 0 1 0 0 -1 -0.15588 < 0
0 0 0 0 0 0 0 1 0 0 0 0 -1 0 < 0
0 0 0 0 0 0 0 0 1 0 0 0 -1 0 < 0
0 0 0 0 0 0 0 0 0 1 0 0 -1 0 < 0
0 0 0 0 0 0 0 0 0 0 0 1 -1 0 < 0
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Chapter

Risk Measure in Production Planning with
Probability

In order to understand risk is preferable to define first its concept and what that
it involves. Accordingly, risk measure can be defined as a procedure for shaping a loss
distribution, for instance an investor’s risk profile [61, 55]. Value-at-risk (VaR), which is a
percentile of a loss distribution and conditional value-at-risk (CVaR) are among the few
risk measure approaches most accepted by practitioners. There is a close correspondence
between both approaches. When it is considered the same confidence level, VaR becomes a
lower bound for CVaR. In terms of optimization applications CVaR is superior to VaR [61].
This chapter deals with production planning problems. Firstly, inventory management is
described on the viewpoint of supplier; then, risk measures such as VaR and CVaR are
introduced, followed by a treatement of multi-period production planning where Shapley
value, and other proprieties of games such as group or grand rationality and individual
rationality are also incorporated. Within the chapter, the relation between production
planning and cooperative game theory is described, and as result three models to forecast
production volume are proposed. The chapter concludes with a numerical example where
the suggested models are tested.

3.1 Inventory Management

The automobile industry has been pushing forward with reduction in cost, induction
of foreign capital, competition between suppliers, and so on. It becomes very important
to remove waste of the production activities and to meet the demands of an individual
customer and a changing market. In particular, we must satisfy the variety of customer
specification in product and service, without dropping the productive efficiency in mass
customization [9, 20, 52].

For example, in case of a certain car manufacturer, it is said that there is possibility of
300,000,000 ways of specification for a ”customized product” in one model of a car. On
manufacturing of this ”customized product”, leveling of production load becomes very
difficult because manufacturers have to meet orders of customers based on each specification.
Then the productivity decreases, finished goods in stock increase, and it becomes difficult
to deal with customer specification.

There have already been some manufacturing strategies for mass customization. How-
ever, the design method of production planning and management system for it has not
yet been established. Under the precondition that delivery lead time which is expected
by customers is longer than production lead time which is necessary for manufacurers,
Make-to-Order management system in which manufacturing starts after receiving an order
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has been applied for a variety of customer specifications as production planning and
management system for mass customization. However, it is often the case that delivery
lead time becomes shorter than production lead time. Therefore manufacturers have to
start manufacturing before they receive an order from customers.

For a variety of customer specifications, Make-to-Order management system and Parts
Oriented Production System (POPS) type module manufacturing system are proposed [14].
The Material Requirement Planning (MRP) [64] and Advanced Planning & Scheduling
(APS) [36] are presented to plan and manage such systems. This MRP satisfies various
demands from customers by promoting modularization in production. By making use of
modularization, the MRP makes production lead time shorter, and it manages Make-to-
Order management system on precondition that delivery lead time is longer than production
lead time. When delivery lead time is shorter than production lead time, we consider the
minimum stock as necessary beforehand. But in these management systems, the mechanism
between substitutability of unfulfilled order and stocks on mass customization has not been
discussed quantitatively.

On precondition that delivery lead time is shorter than production lead time, manufac-
ture seat system for both prospective stocks and order stocks has been proposed in [17]. A
study on the analysis of manufacture seat system coverage has also been [34]. However, it
has been pointed out that further theoretical work about the decision method for proper
manufacture seat should be done [66].

Mass Customization Environment

In order to implement mass customization for each item (or part) it is necessary a
colaboration between manufacturers and suppliers. Three types of order information
(forecast order) from manufacturer to suplier can be considered, that is, a monthly forecast
order which gives the prospected order, say 3 months before; the weekly forecast order
informing the prediction value for weeks before, and the delivery instruction to supplier
which is given as the firm order 1-3 days before delivery due date. The increase of
customer specifications, in mass customization environment, implies increase of production
specifications in manufacturer. This means that the quantities of firm order reflecting
customer needs have large fluctuation.

For supplier, the standard production lead time for 100-200 kinds of products (or parts)
usually takes about 1 week. Therefore production lead time becomes longer than delivery
lead time. Supplier must start production in advance based on production plan by using
MRP, for example, according to weekly forecast order. Furthermore, the supplier must
perform the production planning while at the same time avoiding unfulfilled order to the
firm order which is given 1-3 days before the delivery due date.

We regard mass customization as fluctuation of order from customer to manufacturer
and from manufacturer to supplier. Then it can be grasped from the supplier’s point of view
as the fluctuation of order quantities of target part from manufacturer to supplier. This
means that the fluctuation of order quantities can be represented by standard deviation
around average that forecast order gives.

Assuming that og denotes the order fluctuation of concerned model of car from customer
to manufacturer and o denotes the order fluctuation about concerned production (or parts)
from manufacturer to suppliers. Then the production planning and management system
implementing mass customization in suppliers side can be considered by the problem such
as how to product and to stock individual parts in advance in order not to run short of
supplies for o which gives fluctuation of firm order from manufacturer. In this chapter, we
assume that o is given and demand is defined as a normal distribution with time variant
average and time variant deviation of order. We here focus on the supplier’s production
planning system, so the effect of o only are discussed in this model. However it is important

28



to investigate the impact of og on the model, which should be included in the future
research.

Unfulfilled Order Rate for Supplier’s Production Planning and Manage-
ment System

Derivation of Unfulfilled Order Rate

In mass customization environment, we formulate problem which determines proper
production quantities among n periods to optimize inventory change at final production
stage of supplier, corresponding to fluctuation of demand from manufacturer. In this
section, we discuss about one certain part.

[Notation]
i : Period (i < n).
d; : Firm order of manufacturer at period 7.
x; :+ Production quantity at period ¢ of supplier.
S; ¢ Inventory quantity at period ¢ of supplier.
p; + Manufacturing cost per module at period i of supplier.
h; : Inventory holding cost per module at period ¢ of supplier.
r : Total product quantity until n period of supplier.
R : Set of linear production constraints of supplier.
SO; : Unfulfilled order rate until ¢ period of supplier.

B+ Unfulfilled order rate of planned target of supplier.

It is assumed that d; obeies an average d; and standard deviation w; where d;, d; (i #j)
are independent each other, and w; = o - d;, where o is the deviation of order. Let initial
inventory be Sy. R is denoted by (z1, x2, -+, x,)€ R where R denotes linear production
constraints, and is convex. SO; is probability function which is in short of delivery to the
firm order at least untill ¢ period.

The inventory quantity S; at ith period is given by

SZ':So—I—ixt—ZZ:dt (3.1)
t=1 t=1

where d; is random variable so that 5; becomes random variable. It obeys normal distribu-
tion which has the following time variant average and variance.

Average m; = So + Z Ty — Z ds, (3.2)
t=1 t=1
Variance o7 = Z w?. (3.3)
t=1
S; can be replaced by
Si —m;
;= —. 3.4
y p (3.4)
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We consider an unfulfilled order rate SO, which represents probability that S >
0,52 >0, >0, ---,5, = 0 is not satisfied. The probability function M; which satisfies
inventory quantity S; = 0 at ¢ period is derived by

o0 1 _(Srﬂg%')Q 0 1 y2
Mi = J;) 7%6 23 dSz :J‘ m; m677dyi‘ (35)

Thus
(i) =054 [ Loty gm0 (3.6)
7 P = e 2ay; m; =2 V),
0 V2m Y
~ o 1 5
ii M; =05 — ' e 2dy; (m; <0 3.7
(i) | e <o) (3.7

These equations can be represented by

M; =0.5+ sgn(mi)f e 2 dy;. (3.8)

0 \V 2T

n
The upper bound of the unfulfilled order rate SO, is given by 1 — [ [ M;. Since it is difficult

t=1
to obtain the true value of the unfulfilled order rate, we define the unfulfilled order rate
SO, by

SO, =1-] [ M. (3.9)

t=1

By considering such unfulfilled order rate, we can construct the production planning on
safety side. In addition, SO, can be rewritten by applying the integration by parts to M;
as follows;

50 =1-4 (3.10)
where
A ﬁ 0.5 + e_%<%)2 © |_%|2k+1
B sgn(my) N ];1 1-3-5---(2k+ 1) (3.11)

Property of Unfulfilled Order Rate
We clarify the property of unfulfilled order rate to understand effect of some variables.
Lemma 1 SO,, is monotonous decrease function of x;.
Lemma 2 SO, is monotonous decrease function of Sy.
Lemma 3 SO,, is monotonous increase function of d;.

Lemma 4 SO, is monotonous increase function of w; in m; > 0 (i < n).
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Proof. We apply partial derivative SO,, with respect to x;, So, d; and w;. Let a be arbitrary
variable.

n M M. M,
0500 _ _ QMT.-MH —MlgMgp--Mn 71\41z\42.--z\4n,1(9 . (3.12)
o o oo o
Since M; > 0 and
A dg9()
— Ddy; = — , 3.13
P Fyi)dy: = = flg(a)) =~ (3.13)
by substituting « into x;, So, d; and w;, we can derive the following properties.
oM; 1 _;(_ﬂ)"’
— 2 3 «— Iy, s 14
P 27r<7i6 >0 (o < x;,Sp) (3.14)
&Mz 1 _1(i_mg _
= L sm) < (0 ), (3.15)
oo \2mo;
é’Ml 1 e Zmi )
o —me 2( “z) U—?-U—i<0 (o — w;, m; > 0). (3.16)
O

(3.14) and M; > 0 (i < n) lead to Lemmas 1 - 4.

Production Planning for Implementing Mass Customization with Multi-
item

Problem Formulation of Mass Customization with Multi-item

In this subsection, we define supplier’s production planning and management system as
the stochastic programming problem to find production plan minimizing manufacture and
inventory cost under both unfulfilled order rate constraint and production constraint. In
order to consider the multi-item case, previous notations are extended by adding information
about jth part of product (j < m). For example, d!, z] and S/ denote the firm order

about jth part of manufacture at period ¢ with time-variant average dg , the production
quantity of jth part at period 7 and inventory quantity of jth part at period ¢ respectively.
Also p! and h! denote manufacturing cost per module about jth part of manufacture at
period 7 and inventory holding cost per module about jth part of manufacture at period 4,
respectively. Those parameters, p! and h?, will be regarded as the same value about each
part without losing generality and practicality in order to simplify a transformation of
objective function. And S} denotes initial inventory of jth part, 37 is targeted unfulfilled
order rate of jth part, and @); denotes upper bound of total product quantity at period 1.
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minimize E[i Zn: Z h! 594 (3.17)

7j=1 =1
st S§+ D> al - Z #=0 (Vi§) (3.18)
t=1 =

Z a:i =7 (¥)) (3.19)

i=1
SOI < B (V)) (3.20)
Yl < (Vi) (3.21)

j=1
o, al) e R (V) (3:22)
:cf =0 (Vi,7) (3.23)
The evaluation function (eq. (3.17)) expresses that we must find optimal solutions

(x1,---,2™) that minimize the expected value (expectation) of the sum of production cost
and inventory cost. Eq. (3.18) is non negative condition about inventory quantity that the
demand is not over the forecast order. Eq. (3.19) is constraint about target production
quantity. Eq. (3.20) gives constraint about unfulfilled order rate, Eq. (3.21) denotes limit
of production capacity at each period and Eq. (3.23) represents linear constraint about
production.

The above problem is a manufacture/inventory problem where demand changes stochas-
tically [68]. Although the (s, S) strategy [17, 68] is known as an effective tool for such a
problem, it is not applicable when the problem has many conditions about production.
Thus we propose practical and effective algorithm by solving linear problem as partial
problems repeatedly.

3.2 Risk Measure Approaches

To understand risk and all that it is involved become easier bu defining first the concept
itself. The most known definition of risk, according to Holton [26], is credited to Frank
Knight [33], while was actively researching the foundations of probability.

Regarding subjective versus objective interpretations of probability, the list of re-
searchers includes John Maynard Keynes [31], Richard von Mises [41], and Andrey Kol-
mogorov[35]. For the objective interpretations probability is real, and may be visualized by
logic or evaluated through statistical analyses. The subjective side determines probability
as human beliefs which are not intrinsic to nature. They may be stipulated to determine
the uncertainty. Hume [27] is believed to be the pioneer of the philosophical roots of
subjective interpretations of probability, as he states on this quote:

Though there be no such thing as Chance in the world; our ignorance of the
real cause of any event has the same influence on the understanding, and begets
a like species of belief or opinion.

Concepts related to measurement of risk have been associated to probability theory by
mathematicians since the early stage of studies on risk as Daniel Bernoulli [7] stated:

FEzxpected values are computed by multiplying each possible gain by the number
of ways in which it can occur, and then dividing the sum of these products by
the total number of possible cases where, in this theory, the consideration of
cases which are all of the same probability is insisted upon.
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He explains his idea through the following fundamental rule:

If the utility of each possible profit expectation is multiplied by the number of
ways in which it can occur, and we then divided the sum of these products by
the total number of possible cases, a mean utility (or moral expectation) will be
obtained, and the profit which corresponds to this utility will equal the value of
the risk in question.

Thus, according to Bernoulli, in order to get a valid measurement of the value of a risk one
must consider its wutility. However, this utility depends on the circumstances which makes
it hard to be generalized.

3.2.1 Value-at-Risk (VaR)

Let X be a loss random variable with the cumulative distribution function F,(z) =
P{X > z}.

Definition 3.2.1 (VaR). The value-at-risk of X with confidence level o € (0,1) is given
by
VaRi_o(X) = min{z: Fy(z) = o} (3.24)

i.e., VaRi_o(X) is a lower a-percentile of X and is proportional to the standard deviation
if X is normally distributed, that is, X ~ N(u,o?) then,

k(o) = v2erf 1 (2a — 1) (3.25)

and

erf(z) = j% J: e dt. (3.26)

VaR,(X) is a nonconvex and discontinuous function of the confidence level « for discrete
distributions; non-subadditive and has several extrema for discrete which makes it to be
difficult to control or optimize for nonnormal distributions [39].

3.2.2 Conditional Value-at-Risk (CVaR)

Definition 3.2.2 (CVaR). CVaR,(X) equals the conditional expectation of X subject to
X = VaR,(X) for random variables with continuous distribution. Formally,

CVaRy(X) = {E[X] 5.t.X > VaRa(X)} (3.27)

The CVaR of X with ac € (0,1) is the mean of the generalized a-tail distribution:

o0
—0
where
o for z < VaRa(X) (3.29)
o .
T %, for z > VaR,(X)

CVaR,(X) is not equal to an average of outcomers greater than VaR, (X).
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3.3 Multi-period Production Planning by Shapley Value

Game theory can be applied to production planning process. Comparison between the
main element for both techniques are presented in Table 3.1. In our methodology we use
the corresponding second column to perform the computations. The estimated demand
can be represented as d = [dy,da, ... ,d,], and is normally distributed, i.e., d ~ N(d, X).,
with d denoting the expected demand.

Shapley Value in Quadratic Form

In their study, [57] proved Shapley value to be a least square value (LS) with its weight

function M, ; defined by
v L (=T (3.30)
M —1\s—1 '

where s denotes the cardinality of any coalition S, and n the number of players in the
game.
Model 1 (Shapley value)

s.t. Z x; = v(N) (3.31)
x; = (i), (Vie N)

where, m(s) = M,, s is the weight function, z a payoff vector and

2(S) = > @i (3.32)

€S

for any coalition S. As demonstrated in [56, 57], Eq. (3.31) is equivalent to Eq. (2.28) ,
but in QP form with individual rationality and group rationality as constraints.

Production Planning

Production managers are responsible for decision making regarding planning of produc-
tion for certain period. To this end, consider the following elements [67]:

e The cumulative demand D = dy +da+- - - +d,,, where d;, (i = 1,2,---,n) expresses the
demand for product at certain period i of planning. The demand d = [dy,da, ... ,dy]
follows the normal distribution, i.e., d; ~ N(d, wf) Vi, with d denoting the expected
demand. Moreover, Cov(d;,d;) = 0 Vi, j, i # J.

e The inventory for the i*"-period is given by S;, (i = 1,2,---,n), and calculated
through Eq. (3.33). At the beginning of the process the initial inventory Sy is
assumed to be known.

i i
Si=So+ Y af =) dy (3.33)
t=1 t=1
where, x denotes the production level set for each period i, (i = 1,2,---,n) which is

computed by applying Eq. (3.41).
e 1 — « is the confidence level, often set to 0.95 or 0.99 [61].
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Relation between Production Planning and Cooperative Game Theory

As a technique used for strategic decision making, game theory can be applied to
several problems including production planning. A summary on the relation between the
former and latter approaches is described in Table 3.1 [67]. On the top of the table both
approaches are stated; the first column describes the comon element between them, and the
following two columns describe the meaning of each element in production planning and
coalitional game theory, respectively. The i**-period in production planning is described
as the i*"-player in cooperative games; subset S, (S © N), a coalition in game theory
represents a set of periods in production planning; while the characteristic functions are
denoted by v(S) in game theory their correspondence in production planning is CVaR with
a confidence level of 1 — «; in the last row, ; indicates the estimated demand in production
planning, hereafter we call it allocated risk, and Shapley value is its correspondence in
coalitional game theory point of view.

Consider CVaRp|p(1 — ) for a cumulative demand D. Production planning problem
in a multi-period context [67] consists, basically, in finding the volume of production
for each period in order to satisfy CVaRp|p(1 — «) using Shapley value. The avarage
value-at-risk is given by

CVaRpip(l —a) = E[D|D > VaRp(1 — )] (3.34)

Given an initial inventory Sy, the process starts with x; production volume, an average
demand d; is estimed; in the next period the stock is evaluated and it is expected to
increase the average of the demand, as well as high level of production. This dynamics is
performed for all n periods as shown in Figure 3.1.

Characteristic Function

The characteristic function v(S) for any member of S is equal to CVaR(;_,), and can
be computed by using Eq. (3.35) defined as follows.

v(S) = CVaR(S = >d;

ZES (3 35)
Z1 a ’
I
€S jesS Zl* )
where,

VaRp(l—a)— > d;

ies (3.36)

Zl—a =
2,2,
€S jeS

Here, ¥ is the standard normal density; ® denotes the cumulative function and o;; the
elements of the covariance matrix ¥ as shown in (3.44) .

Table 3.1: Relation between production planning problem and game theory
’ ‘ Production Planning ‘ Cooperative Game Theory

1 Period Player

S Set of Periods Coalition
Characteristic

function CVaR(1—q) v()

Vi Estimated demand Shapley value
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Figure 3.1: Dynamics of the production planning

This typical characteristic function is subadditive [61], that is, given S,T < N such
that SnT = &,

v(SuT)<v(S)+v(T). (3.37)

Thus, v(5) is negative, as well as Shapley value in order to satisfy superadditivity.

Production Constraints

The production manager can obtain information regarding the volume of production
for each i period by analyzing the relation between the production constraints (z;) and
Shapley values (¢;).

Formally, this volume is computed [67] by solving the following equation.

e Fori=1:
] = —p1— So (3.38)
e For i > 2:
xf = —p;+ i1 +diq (3.39)
That is,
i = —p1— So

Tog = —p2 + @1+ dq (3.40)

Ty = —Pn+ Pn-1+ Jnfl
A production volume will be accepted if =7 > 0; in case where x;* < 0, the process will be

interpreted as x} = 0, i.e., nothing to be considered.
System (3.40) can be rewritten in compact form as

X =Qp+d, (3.41)
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where,

Ty P1
) P2
;, “n
—5So -1 0 0 0 0
d 1 -1 0 0 0
d=| d2 Q=0 1 -10 - 0| (3.43)
dn, o 0 o0 o0 1 -1

The covariance matrix (3.44) of cumulative demand D is computed by finding first the

variance w; and performing the arithmetic within the matrix.

_w% w% w%
w% w%—kw% w%—kw%
I
2 2 2 2 2 2
| Wl Wl Fwy e Wi Fwy A+ Wy (344)
011 012 -+ Oln
021 022 -+ O2p
| Onl On2 *°° Onn

with oy =wi +wi+ - +w?, (i<})).

Models

Methods to solve a typical production planning problem with uncertainty demand are
several. For instance, one can employ stochastic models or safety inventory, which are
probability of stock-out methods based approaches. In this research, we took a different
direction by basing our analysis on the cumulative demand.

In Ueno, et al., [67] a similar problem were treated by applying Shapley value to risk
management considering several periods. Through this chapter, we aim to extend that
study by taking as initial state the quadratic form of Shapley value defined in Ruiz, et
al,. in [57, 56]; three nonlinear models are presented. In the first model we added new
constraints, production constraints, directly into the QP model in order to find optimal
and feasible solutions within the production planning point of view; in the second model,
a new constraint is considered to estimate the penalty of individual rationality as regard
to risk in order to support policy makers. Hence, the model is also called as Constrained
Model. Now, because of some weakness this model was extended the Available Model.
Computations regarding the efficiency of the models proposed in the chapter can be found
in the next section through a numerical example, followed by its discussion.

Now, introducing a set of productions constraints into (3.31) in order to satisfy the two
aforementioned properties we proposed the following models.
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Model 1.1
min Z (v(S) — x(S))*m(s)
scN
s.t. Z v; = v(N)
ieN (3.45)
(i)

©

A\VARR\VARRA\Y,
= o <

()

8
=%

©; s (E| 1€ N )
where 3 represents a nonnegative value interpreted by the decision-maker as upper or lower
value in production volume, this helps DM to analyze the perfomance of the process in a
specific period; z} denotes the production volume as defined is (3.40).

Model 1.1 is simply an extension of Shapley value in (3.31). The motivation to propose
Model 1.1 or Eq. (3.45) is that Model 1 or Eq. (3.31) has direct application in cooperative
games, but it is inefficient to solve problems related to production planning. The diference
between these two models lies, essentially, on the constraints added, that is, 7 > 0 and ¢;.

These new constraints, particularly x; > 0, allows the decider to evaluate problems
related to production planning under cooperative game theory framework. Furthermore:

e 7 > 0 informs DMs about the level of production.

e The relation between Shapley value ¢; and production volume z} is described through
Eq. (3.40), i.e., production volume is linearly proportional to the difference between
Shapley value and the initial inventory in first period, and proportional to the
difference between Shapley solution and the i*" for the subsequent periods.

e By adding § the decision-maker would be able to estimate if the level of production
in the 7*"-period is upper or lower comparing to other periods. For instance, suppose
he desires to reach a high volume of production on the last day of the week, then
he would attribute a certain value to [ while forecasting the production for that
particular day.

Although it satisfies individual and group rationalities, as one can observe in the last
three columns in Table 3.3 (cases 2-12 and 2-13), Model 1.1 does not have solution always.
Therefore, in order to solve this inefficiency we proposed Model 2 which is formally given
by

Model 2(Constrained model)

LTS €5
xf =0

where v(S) represents the characteristic function computed through CVaR in (3.35);
© = [@1,02, -+ ,on]" are the decision variables; M = diag(Mp, s, -+ , My n—1) denotes a
matrix of weights whose components are taken from Eq. (3.30), that is,

M, s

M = (3.47)

Mn,n—l i
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e This model is distint to the previous one by considering a matrix of weights in the
objective function, and moroever, payoff vector x(S) is replaced by the total reward
allocated, i.e., @;(N,v).

e Although it has a solution; however, the constrained model does not satisfy the
individual rationality; in order to evaluate the distribution of production a penalty is
chosen by the decision maker.

Models described above seemed to be ineffective to control the satisfaction of individual
rationality for each period. For this reason, we proposed a new model by adding a weighting
factor, w;, (i =1,2,--- ,n), into QP (3.46).

Model 3 (Available Model)

msian ZZ’sz(’U(S) - Z @i(Nv U)>2

i |S| ies
;= 0, (JieN)
¥ =0

~

e The objective function in model (3.48) indicates the badness regarding uncertainty.

e The penalty is defined by the difference between the allocated risk and the charcteristic
functions, formally ¢; — v{s}. This is possible for inserting the new contraints
Z vi = v(N) and ¢; > [ into the model.
ieS

e The difference between model (3.48) and the constrained model (3.46) is essentially
the weighting factor added into the ojective function of model (3.48).

e Model 3 has always feasible solution.

e The weighting factor, w;, (i = 1,2,---,n), is inserted to strictly satifies the group
rationality, as well to control the satifaction of individual rationality from the point
of view of cooperative game theory; while in terms of production planning individual
rationality is not necessarily crucial for all periods, thus this condition may not always
be satisfied.

e If the weighting factor is w; » 0, (i = 1,2,---,n), the objective funtion to be
minimized will be comparativelly small, otherwise it makes it greater, which turns to
be a contradiction as we pretend to decrease this value.

e The advantage of using factor w; is that it allows policy makers to forecast precisely
how much they would expect as production volume for each i-period, that is, using
model (3.48) the decision maker is able to predict which period will have upper or
lower performance as regards to production for using w;, (i = 1,2,--- ,n). This fact
can be observed through cases 4-11 to 4-18 in Table 3.3.

Next section provides a numerical example where models described above were employed.

3.4 Numerical example

To analyze the efficiency of the three models, we performed different case studies.
Numerical results are summarized through Tables 3.2 - 3.5.

39



Table 3.2: Characteristic function v(S) for the 5-period game
’ Coalitions | v(S) H Coalitions | v(S) ‘

v{} 0 v{123} | -73.5853
o{1} 17.9957 || o{124} | -57.1545
v{2} -31.3076 || o{125} | -64.6151
v{3} -37.8488 || o{134} | -62.6151
v{4} 21.9912 || {135} | -69.9870
v{5} 298788 || v{145} | -53.2845
v{12} 438488 || v{234} | -73.9870
v{13} 49.9912 || v{235} | -81.2845
v{14} “33.8788 | wv{245} | -64.5186
v{15} 415853 | {345} | -69.6978
v{23} “61.8788 || wv{1234} | -85.2845
v{24} 455853 || v{1235} | -92.5186
v{25} 531545 || v{1245} | -75.6978
v{34} 51.1545 || 0{1345} | -80.8287
v{35} 58.6151 || v{2345} | -91.9169
v{45} “41.9870 || v{12345} | -102.9670

3.4.1 A 5-Period Game

Consider a group of production managers intending to forecast their business for five
periods. Thus, we have a problem of production planning for a set of five periods, i.e.,
N = {1,2,3,4,5} as described in Table 3.1 periods denote player in cooperative game
theory, thus it is a 5-persons or 5-periods game.

Initially, their inventory is assigned to be Sy = 10, the estimated demand is given by
d = [d1,ds,ds,dys,ds] = [10, 20,24, 6, 12], respectively; the variance w is equal to 3 with the
level of significance o = 0.01. The characteristic functions for each period and respective
coalitions are shown in Table 3.2, and were obtained by solving Eq. (3.35).

From Eq. (3.30) and Eq. (3.47) holds: Ms; = M54 = 0.25 and M52 = M5 3 = 0.0833

0.2500 0 0 0

0 0.0833 0 0

M= 0 0 0.0833 0
0 0 0 0.2500

The matrix covariance-variance (3.44) is then given by

9 9 9 9
18 18 18 18
18 27 27 27
18 27 36 36
18 27 36 45

\
Il
© © © © O

3.4.2 Results and discussion

To discuss the results from models proposed in this chapter, we start by explaning
the content of each table throug columns to rows, which indicate the performance of each
tested case.

Table 3.3 shows the allocated risk ¢; for all periods.
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The first column lists all case studies considered in the problem, namely Shapley
value Eq. (3.31) was employed to case 2-11; cases 2-12 and 2-13 were analyzed by
employing Model 1.1, that is, Eq. (3.45), while the Constrained Model Eq. (3.46)
was used to solve cases 3-11 to 3-15, and finally cases 4-11 to 4-18 were computed by
using Mode 3 in Eq. (3.48).

The second column displays the constraints added, only the first case does not
consider new constraints for being the one that employs the original model Eq. (3.31).
These constraints are chosen by the decision-maker; all values of ¢i are negative,
with ¢; = —;. In all cases we took the last period as the sample representation with
exception to case 3-15. For instance, suppose that the decider wishes to evaluate his
choices for each cases with respect to the 5% period.

From the third to the seventh column, the numbers indicate Shapley values in the first
cell of each column and the allocated risk in the rest of cells for all periods, respectively.
As for difference on terminologies with regard to cells, please see Table 3.1.

The eighth column indicates the objective function to be minimized in each case.
This value refers to the level of badness while implementing the Eq. (3.48).

In the ninth column is presented the total penalty over individual rationality for
each case. These values represent overall quantity on how individual rationality is
affected with regard to each model when using the constraints, and is found through
Table 3.4.

The next two columns list the satisfaction or dissatisfaction of group rationality and
individual rationality, respectively.

The last column lists the state of satisfaction of constraints in each case.

In the first row Shapley values are indicated by ¢;, they are all negatives due to the
characteristic function being subadditive. Consider, for instance, case 2-11 vector
p =[-12.761, -24.616, - 30.300, -13.886, -21.405] represents Shapley values for all
periods, respectively. This case corresponds to Shapley model (3.31), therefore there
is not constraints added; optimal solution is found with the objective function equal
to 141.928; this model satisfies both group and individual rationalities.

Hereafter we set ¢; = —;. In the second row, case 2-12 has = 20, then the last
period is forecast to be no great than 20, that is, ¢5 > 20; this case is equal to Shapley
value model despite of using a constraint that is not considered in the conventional
method; depending on the constraints chosen by the decision-maker this model have
the same solution with those in Shapley model. As can be observed the constraint
added by the decision-maker is satisfied with ¢; = 21.405.

Case 2-13, in the third row, with constraint set to ¢5 > 25, model 1.1 satisfy all
properties; the highest value is 25.

From the 4" to the 7 rows, i.e., case 3-11 to 3-14, employing model 2 (3.46)
individual rationality is not observed, but all cases have solution. The highest is the
value of 8 the highest is the total penalty, which is 20.121 cprresponding to case 3-14.

In the 8 row, case 3-15, the penalty affects the 4*" and the 5" periods for the
decision-maker forecasts the production by setting the sum of these two period to
not be less than 60. These correspond to cases where Model 2 was considered.
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From case 4-11 to 4-18, corresponding to the last eight rows, the Available Model
(3.48) was used to evaluate the performance. The weighting factor is set to w; = 100.
For instance, in case 4-12 w; = 100, and ¢; is pretty close to v{1} in Table 3.2.
Whenever w; is applied to a certain period the total penalty is found essentially high
at that period.

In most of cases individual rationality is not satisfied, while group rationality is always
satisfied. Additionally, all cases where model (3.48) was used the total penalty seems
to be very small implying that the solution from this model satisfies group rationality
by using production constraints, (cf. ninth column of Table 3.3). Furthermore, this
solution is quite close to those from Shapley value and thus, model (3.48) is efficient
to solve problems regarding production planing.

Table 3.4 highlights the concept of penalty for each period, which as given by the difference
between the allocated risk and the characteristic functions.

The meaning of this table is to evaluate if individual rationality is satisfied. This is
done by quantifying the level of penalty, computed through the difference between
the allocated risk ¢; in each period and the characteristic functions v{i} for each
period, i.e., p; — v{i}.

The first column describes the cases, and all other columns show the penalties for
each period, respectively.

Note, for instance in Case 4-14, that whenever the weighting factor w; applied to a
certain period is large, the penalty over that period is essentially low.

Table 3.5 shows data related to production volume as computed through Eq. (3.40), and
added as constraints, =7 > 0, in the models.

Production volume is the same for cases 2-11 and 2-12 although diferent models were
employed. High level of production is expected mostly for periods where w; = 100
is considered. Because there exists uncertainty the nature of the problem requires
other factors to be considered. Thus, adding constraints to the model will produce
robust results in order to overcome uncertainty, and this brings up the efficiency
of the proposed model. Information obtained for inserting these constraints allows
managers to predict the outcomes from their policies.

Having a balanced penalty over individual rationality in case 2-13 is expected low
volume of production in period 3.

Particular atention must be given to the 4", 5% 7" and 8 rows corresponding
to cases 3-11, 3-12, 3-14 and 3-15 in the first period, their production volume is
estimated to be null. The reason for this is that the initial inventory .Sy is too large,
which means that there is not necessity for production at that particular time. This
can be verified, numerically by computing z; in Eq. (3.40).

Contrary to other cases in the group case 3-13, in the 6" row, is forecast to have a
minimal volume of production in the first and the fourth periods, but increasing in

others especially the third period.

Likewise, cases 4-11, 4-13, 4-15 to 4-18 in the 9th, 11th, and 13th to the 16th rows
are all null in period 1, due to the same reason as explained in similar situations.
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Table 3.3:

Risk allocated ¢; for 5 periods

. Objective Group | Individual | Constraints
Cases Production Fu Total Rati Rati ] Satisf:
Constraints #1 ¥2 #3 P #s . ne Penalty a.lo- . ational- .a 1stacs
tion nality | ity tion
2-11 -12.761 | -24.616 | -30.300 | -13.886 | -21.405 | 141.928 0.000 O O X
2-12 @5 = 20 -12.761 | -24.616 | -30.300 | -13.886 | -21.405 | 141.928 0.000 O O O
2-13 5 = 25 -11.862 | -23.717 | -29.401 | -12.987 | -25.000 | 158.080 0.000 O O O
3-11 ¢s = 40 -10.000 | -19.338 | -25.021 | -8.607 | -40.000 | 578.906 -10.121 O X O
3-12 @5 = 45 -10.000 | -17.671 | -23.355 | -6.941 | -45.000 | 850.972 -15.121 O X O
3-13 @5 = 30 -10.612 | -22.467 | -28.151 | -11.737 | -30.000 | 234.274 -0.121 O X O
3-14 @5 = 50 -10.000 | -16.005 | -21.688 | -5.274 | -50.000 | 1189.705 | -20.121 O X O
3-15 ¢4 + ¢5 = 60 -10.000 | -13.642 | -19.325 | -26.240 | -33.760 | 695.707 -8.130 O X @)
> =
4-11 TSO/ 25, w2 -10.000 | -30.909 | -26.736 | -10.322 | -25.000 | 231.403 0.000 O X O
@5 = 25, w1 =
4-12 100 -17.682 | -21.777 | -27.461 | -11.047 | -25.000 | 205.684 0.000 O X O
> =
4-13 TSO/ 30, w2 -10.000 | -30.814 | -24.283 | -7.869 | -30.000 | 340.254 -0.121 O X O
> =
4-14 %0/ 30, wy -17.618 | -20.132 | -25.815 | -9.401 | -30.000 | 303.251 -0.121 O X O
¢5 = 25> w3 =
4-15 100 -10.000 | -17.844 | -37.062 | -13.062 | -25.000 | 270.083 0.000 O X O
> =
4-16 (12580/ 30, ws -10.000 | -13.494 | -36.736 | -12.736 | -30.000 | 420.508 -0.121 O X O
@5 = 25, wy =
4-17 100 -10.000 | -20.386 | -26.069 | -21.512 | -25.000 | 262.115 0.000 O X O
@5 = 30, wy =
4-18 100 -10.000 | -17.933 | -23.617 | -21.417 | -30.000 | 377.634 -0.121 O X O
O Satisfied

X Unsatisfied



Table 3.4: Penalty over each period
| No. | Period 1 | Period 2 | Period 3 | Period 4 | Period 5

2-11 5.235 6.691 7.549 8.106 8.474
2-12 5.235 6.691 7.549 8.106 8.474
2-13 6.134 7.590 8.448 9.004 4.879
3-11 7.996 11.969 12.827 13.384 -10.121
3-12 7.996 13.636 14.494 15.051 -15.121
3-13 7.384 8.840 9.698 10.254 -0.121
3-14 7.996 15.303 16.161 16.717 -20.121
3-15 7.996 17.666 18.524 -4.249 -3.881
4-11 7.996 0.398 11.113 11.669 4.879
4-12 0.314 9.530 10.388 10.945 4.879
4-13 7.996 0.493 13.565 14.122 -0.121
4-14 0.377 11.176 12.033 12.590 -0.121
4-15 7.996 13.464 0.787 8.930 4.879
4-16 7.996 17.813 1.112 9.255 -0.121
4-17 7.996 10.922 11.780 0.479 4.879
4-18 7.996 13.375 14.232 0.574 -0.121

In the followig lines we treat the problem of production planning by using the opmization
model Section 2.3 from the previous chapter.

Consider a production planning for five periods, that is, N = {1,2,3,4,5}. Sup-
pose initial inventory is evaluated to be Sy = 10, the estimated demand given by
d = [10,20,24,6,12] for each period, respectively, with the variance w = 3 and level
of significance o = 0.01. Table 3.6 presents the characteristic functions v(H) for singular
period (or player) and respective coalitions obtained from solving Eq. (3.34).

One can easily observe that Shapley’s efficiency (Group rationality) property is fulfilled,
that is, the overall sum of the values gives the same value for the grand coalition v(H) as
in Table 3.6.

Table Table 3.7 shows Shapley values for the five periods. The first row contains the
solution set using Eq. (2.28) from Section 2.2, and in the second row displayed the solution
from Program Section 2.3. Through this solution one can obtain information regarding risk
in each period. As expected both approaches present the same results, i.e., the Shapley
values for each period or player 71, mo, w3, m4 and ms are respectively, 17.58, 15.13, 32.47,
26.38 and 39.73.

Other slack variables of the problem are: s; = si = s; = 0 (for all cases).

In Table 3.8, we imposed some new constraints into problem Section 2.3 in order to
analyze the distribution of the risk among the periods. The problem was analyzed through
different cases as defined below.

e Case 1: w5 = 3m
e Case 2: 75 > 48
e Case 3: m <10
o Case 4: 75 = 3o
e Case 5: 5 < 35
o Case 6: my <6

e Case 7: m3 <20
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Table 3.5: Production volume for each periods
Production volume
Cases | Period 1 | Period 2 | Period 3 | Period 4 | Period 5

2-11 2.761 21.855 25.684 7.586 13.519
2-12 2.761 21.855 25.684 7.586 13.519
2-13 1.862 21.856 25.683 7.586 18.013

3-11 0.000 19.338 25.683 7.586 37.393
3-12 0.000 21.856 25.683 7.586 44.059
3-13 0.612 21.856 25.683 7.586 24.263
3-14 0.000 16.005 25.683 7.586 50.726
3-15 0.000 21.856 25.683 30.915 13.519

4-11 0.000 30.909 15.827 7.586 20.678
4-12 7.682 14.095 25.683 7.586 19.953
4-13 0.000 30.814 13.469 7.586 28.131
4-14 7.682 12.513 25.683 7.586 26.599
4-15 0.000 17.844 39.218 0.000 17.938
4-16 0.000 13.494 43.242 0.000 23.264
4-17 0.000 20.386 25.683 19.443 9.488
4-18 0.000 17.933 25.683 21.800 14.583

e Case 8: my <12
e Case 9: m5 < 24

Now, we desire to estimate how much is the difference of the cost or risk for each period
as compared to the main case presented in Tables 3.7 and 3.8. The result of this process is
displayed in Table 3.9.

Subtracting the results from Table 3.8 we quantified the difference on the estimated
demand for each period, this arithmetic is presented in Table 3.9. Moreover, the planning
process, in this table, is explained as follows: one can predict a higher demand in the last
period while the estimated demand for other periods is expected to decrease considerably
since the corresponding Shapley value for the fifth period increases n times the first period
(case 1); if the estimated demand is increased, for instance, 4 times in the last period, we
should expect a decreasing of the demand in the first and second periods and as well as a
significant fall off in the third period (case 2); in case 3, allocating the lowest demand, 10,
to the first period will have a positive impact on the last two periods in terms of demand,
i.e. 2.46 and 6.36, respectively. Hence, in general, positive or negative impacts regarding
demands and risks depend on the constraints the model is subject to, for this reason we
consider our model to be a Shapley constraint approach.

In this chapter, production planning problems under framework of cooperative game
theory with CVaR were analyzed.

CVaR was defined as the characteristic function for singular periods, and coalitions of
periods. The relation between production planning and cooperative game theory was also
described.

Opposite to other methods in production planning field in this chapter we considered
uncertainty on the cumulative demand. Three models based on Shapley value in QP
Eq. (3.31) form were proposed in Section 3.3 to solve a multi-period production planning.
The first model, Model 1.1 Eq. (3.45), is based, essentially, on Shapley value with the
slight difference residing on the new constraints (production constraints) inserted to the
optimization program; both models satisfies the grand and individual rationalities and
have optimal solution. The second model, the Constrained Model Eq. (3.46), is based
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Table 3.6: Coalitions’ characteristic functions

Coalitions | v(H)= - CVaRy (1 — ) | Coalitions | v(H)= - CVaRy(1 — ) ‘

v{ D} 0 v{123} 83.91695542
v{1} 17.99564266 v{124} 62.51854666
v{2} 31.30754629 v{125} 73.98257064
v{3} 37.84885933 v{134} 73.92263887
v{4} 21.99128532 v{135} 80.85219835
v{5} 29.87880051 v{145} 65.50288835
v{12} 4787880051 v{234} 88.34575512
v{13} 53.58524469 v{235} 92.64063772
v{14} 37.15448205 v{245} 79.54657798
v{15} 44.61509258 v{345} 87.23018516
v{23} 67.98692798 v{1234} 103.7939385
v{24} 51.28444217 v{1235} 110.5178543
v{25} 58.51854666 v{1245} 94.62220772
v{34} 58.82869959 v{1345} 101.9327724
v{35} 65.91695542 v{2345} 116.229087
v{45} 50.96687924 v{12345} 131.297273

essentially on a set of constraints inserted by the DM. This model has feasible solution
in most of the cases, and satisfy the condition of grand rationality the refore can be used
in production planning; finally, the Avaliable Solution Eq. (3.48) insert a weighted factor
controled by DM; the concept of penalty was introduced, and through tables the numerical
results for different simulations were displayed.

This chapter constitues the practical contribution of this research for production
managers can make use of the models proposed in their work to forecast production
volume. The difference between the sugested models beyond connecting to the field of
cooperative games they allow the deecision maker to get information regarding risk through
the penalty factor, however the manager can control by choosing the right weight factor,
and consequently be ready to forecast production efficiently.

Table 3.7: Shapley values for the 5 periods

’ Methods Periods ‘
i 9 3 T 5 v{Q}
Conventional Shapley value | 17.58 | 15.13 | 32.47 | 26.38 | 39.73 | 131.30
LP model 17.58 | 15.13 | 32.47 | 26.38 | 39.73 | 131.30
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Table 3.8: Constrained Shapley value indicating risk distribution among the 5 periods

Cases ‘ € ‘ T ‘ T ‘ T3 ‘ v ‘ s ‘ sf ‘ Sy ‘ s; ‘ Sy ‘ .s?f ‘ S3 ‘ SI ‘ S, s;
Main 0.614 | 17.58 | 15.13 | 32.47 | 26.38 | 39.73 | 0.614 0 0.614 | 0 | 0.614 0 0.614 0 0.614
Case 1 | 2.948 | 14.02 | 14.51 | 31.98 | 28.71 | 42.07 0 2.948 0 0 |0.121 0 0 2.948 | 2.948
Case 2 | 8.877 | 16.97 | 14.51 | 26.05 | 25.76 | 48.00 0 0 0 0 0 5.807 0 0 8.877
Case 3 | 6.970 | 10.00 | 14.51 | 31.86 | 28.83 | 46.09 0 6.970 0 0 0 0 0 3.068 | 6.970
Case 4 | 1.11 | 18.077 | 13.41 | 32.72 | 26.86 | 40.22 | 1.11 0 0 0 0 0 0 0 0
Case 5 | 3.13 16.97 | 14.44 | 35.00 | 25.76 | 39.12 0 0 0 0 0 0 0 0 0
Case 6 | 8.51 16.97 | 6.00 | 31.86 | 28.83 | 47.63 0 0 0 0 0 0 0 0 0
Case 7 | 11.86 | 16.97 | 14.51 | 20.00 | 37.62 | 42.19 0 0 0 0 0 0 0 0 0
Case 8 | 13.76 | 16.97 | 14.51 | 34.93 | 12.00 | 52.89 0 0 0 0 0 0 0 0 0
Case 9 | 15.12 | 16.97 | 14.51 | 34.93 | 40.88 | 24.00 0 0 0 0 0 0 0 0 0
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Table 3.9: Differences between the estimated risk in the 5 periods

Cases ‘ € ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 53 ‘ sf ‘ s, ‘ s; ‘ 33’ ‘ Sg ‘ SI ‘ sg’
Case 1 - Main | 2.33 | -3.56 | -3.07 | -0.49 2.33 2.33 -0.61 | 295 | -0.61 | -0.49 0 2.33 | 2.33
Case 2 - Main | 8.26 | -0.61 | -0.61 -6.42 | -0.61 8.27 -0.61 0 -0.61 | -0.61 | 5.81 | -0.61 | 8.26
Case 3 - Main | 6.36 | -7.58 | -0.61 -0.61 2.46 6.36 -0.61 | 6.97 | -0.61 | -0.61 0 2.45 | 6.36
Case 4 - Main | 0.49 | -0.49 | -4.18 0.24 0.49 0.49 0.50 0 -0.61 | -0.61 0 -0.61 | -0.61
Case 5 - Main | 2.53 | -0.61 | -3.14 2.53 -0.61 -0.61 | - 0.61 0 -0.61 | -0.61 0 -0.61 | -0.61
Case 6 - Main | 7.90 | -0.61 | -11.58 | -0.61 2.46 7.90 -0.61 0 -0.61 | -0.61 0 -0.61 | -0.61
Case 7 - Main | 11.24 | -0.61 | -3.07 | -12.47 | 11.25 2.46 -0.61 0 -0.61 | -0.61 0 -0.61 | -0.61
Case 8 - Main | 13.15 | -0.61 | -3.07 | -2.46 | -14.38 | 13.15 | -0.61 0 -0.61 | -0.61 0 -0.61 | -0.61
Case 9 - Main | 14.50 | -6.61 | -3.07 | -2.46 | 14.51 | -15.73 | -0.61 0 -0.61 | 2.45 0 14.50 | -0.61




Chapter

Robust Measure in Regional Strategy with
Ambiguity

In this chapter, we treat uncertainty via fuzzy concepts by using Shapley value. Though
the notation may appear to be the same, however here we deal with other types of models
applied to different situations. We intend to extend fuzzy Shapley in cases where there
exists a set of a-cuts which is a distint case comparing to the what we treated in the
referred chapter. Through the chapter, we propose minimax models for both possibility and
necessity measures. In the last part of the chapter we apply the models to real-situation
problems by combining fuzzy concepts and cooperative game theory to the field of water
resource management.

4.1 Regional Strategy

Nations, regions, states, and cities all require clear economic strategies that engage
all stakeholders, boost innovation and ultimately improve productivity. A collaborative
strategy, which is especially critical in times of austerity or economic distress, requires
setting priorities and moving beyond long lists of discrete recommendations [53].

In order to preserve the economical development and security of their citizens group of
countries are assembled through regional organizations. For instance the North Atlantic
Treaty Organization (NATO), the African Union (AU), etc., are some of regional organi-
zations around the world All these organizations work for the safety of specific or global
interest depending on the level of the organization.

To promote regional economic integration through integrated water resources manage-
ment (IWRM) in the southern part of Africa [60], there exist the regional cooperation in
water resources management document which orients the participant countries the laws to
adopt in terms of using and sharing river basin water. Most countries within Southern
African Development Community (SADC) depend, for social and economic development,
upon water that flows from and/or out of their political boundaries. The integrated
development and management of water resources at a national and regional level therefore
provides an opportunity to contribute to the achievement of the SADC strategic priorities
of regional integration and poverty reduction. This must consider the issues of balance,
equity, sustainability and mutual benefit between Member States, taking its lead from
the SADC Treaty, the Regional Indicative Strategic Development Plan (RISDP) and The
Southern African Vision for Water, Life and the Environment in the 21st Century.

SADC has made significant progress in promoting its core objective of regional integra-
tion through the adoption and implementation of various protocols and policies in areas
such as trade, transport, energy and health. The water sector is contributing to regional
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economic integration through the integrated management of shared watercourses, with the
associated building of confidence and trust between Member States. Recognition of the
imperative for joint water resources multi-purpose development projects has contributed to
the realisation that economic integration depends upon shared management of resources.
Uneven economic development and widespread poverty between Member States presents
a challenge to adopt regional approaches to economic integration, development and the
creation of economies of scale, through the integrated management of water resources and
sharing of capacity. Integrated management of shared watercourses may be hindered in
promoting or accomplishing economic integration at a regional level, unless the following
institutional and structural challenges within and between Member States are addressed
and overcome:

e Sometimes historic considerations of sovereignty by Member States tend to limit
integration both for the development and management of water resources and more
broadly for economic integration. However, it is recognised that good progress has
been and is still being made by Member States to cooperate in order to achieve this
over-arching objective.

e Poor governance and inconsistent policy and legal (enabling) environments of the
water and related sectors within and between Member States are potential barriers
to integration. It is however recognised that significant progress has already been
made in this area.

e Inadequate institutional capacity at the regional, shared watercourse and national
level restricts the ability to promote and support integration

4.2 Minimax Fuzzy-Shapley Value Model

4.2.1 Shapley Value Defined by Linear Problem

In Chapter 1 we described a linear solvable formulation based on least square value in
transferable utility game. The solution of weighted least squared error, if it satisfies the
condition of the constraints it is given by the following expression that denotes an inner
product.

ATMAz = ATMwv (4.1)
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k—1
where, for example of case K = {1, 2,3, - ,pr} and ¢ = 2 xC; then

j=1
[ v(1) |
v(p2)
v(r)
_ _ U(QODSOQ)
zp, (K, 0) v(p1,¢3)
Zoo (K, V) :
z=| 2K, v) | eRF xR, v = v(1, o8) eRI xR, (4.2)
Zo, (K, v ’
| @k( ) | U(QOk—la(Pk)
v(p1, P2, Pr—1)
’U(g027 ©3, - 730]6)
and
[ My 1 0 0 0 0 0 0 i
0 Mg1 O 0 0 0 0
0 0 0 0 0 0
M = 0 0 0 M. 0 0 0 e R x N9, (4.3)
0 0 0 0 Mo 0O 0
| 0 0 0 0 0 0 Mgr—
[ 1 00 0 0 1 1 1 1 0 |
010 0 O1 O O O 1
AT = 001 0 00 1 0 0 - 1 |ecpkxpe (4.4)
000 . 0 : I :
| 000 0 1.0 0 0 1 1]

Taking a sample d from a dataset, v and z as the value of referred sample the error
obtained is the expression in

eq = fa(A, B,v) = (BTv — CT2), (4.5)

where BT = ATM e RF x R7, CT = ATB € R* x R* are matrices with crisp values and
( )a denotes selection of the d-th row value, thus the sum of all error functions € =}, |eq|
using the multiple linear regression model that minimize the sum of the absolute values of
the residuals.
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The linear solvable formulation to obtain Shapley value [3] is defined by

k
min > ledl (4.6)
d

Subject to ciz—biv<leg, (d=1,2,3,---,k)

—cdz—i—bd <leql, (d=1,2,3,--- k)
k

Z Zd(Ka U) = U(K)
d=1
220 (d=1,2,3,-- k)

We define matrix B’ T, vector v’ and matrix C' T as follows:

T
B”Z_{§1?]e%“1x%ﬁ% u_{vgo]e%ﬁlxw (4.7)
C”ﬂ—[CT]emM1xmk (4.8)
- I ‘
with 0T = [0,0,---,0] e R! x R? and 1T = [1,1,--- ,1] e R! x REFL,

If we impose ek+1 to be 0, then Section 4.2.1 becomes strictly equivalent to the following
formulation, which is a linear solvable formulation to obtain Shapley value:

k+1
min Zd: ledl (4.9)
Subject to Tz —bTv<|eq, (d=1,2,3,--- kk+1)
—c; z—l—bd v<legl, (d=1,2,3,-- - kk+1)
zg 20 (d:1727377k>

where ;T € R! x R is a d-th row vector of matrix B’ T and ¢, T € R! x R4 is a d-th row
vector of matrix C’ T.

Consider Z; = (z;, (), a fuzzy Shapley value with z4 and (4 its center and width,
respectively. Moreover, ( ); defines the type of triangle, i.e., L — L type, the fuzzy
membership function pz, (y;) is represented by L(z) and satisfies

L(z) = L(-x),
L(0) = 1, (4.10)

L(xz) is a non-increasing function in z € [0, 00).

4.2.2 Possibility Measure for Robust Fuzzy Shapley Value

Here we consider the following possibility of equivalence Pos(Yy; = Xg4) for fuzzy
variables, Y; and X, as follows;

Pos(Yy = Xg) = sup min (py, (0), nx,(0)) , (4.11)

and the condition for «; level set
Pos (Yd = Xd) = Q4. (412)

Such definition implies that the set of vectors z and ¢ consist of elements from the
fuzzy vector X under the condition that the possibility of equivalence between Yy and Xy
is larger than «;.
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Once satisfied these conditions we can propose a minimax problem to obtain robust
fuzzy Shapley value under existence of ambiguity. Here we assume that ambiguities are

generated from any element of o = [a1, e, a3, -+ , ], then we have
k+1
min max Z leh|¢ (4.13)
z, ¢ « e

Subject to ciz— LY )|el|¢ <bjv+ L7 a;)|b) |,
(d=1,2,3,--- k,k+1)
—cqz = L7 (i)leg|¢ < —bjv + L™ (ay)|bg |,
(d: 172737“' 7k7k+ 1)
ZdZO, <d>0 (d:1727377k>
In the minimax model for robustness, the condition to d = k + 1 is related to the grand
coalition rationality Pos (25:1 zg(K,v) = v(K)) > q;, SO c;fH =[1,1,1,--- ,1] e R x R%,
balv is given by v(K) and ]b;thr is given by 7, respectively.
The above the minimax problem can be transformed to an LP problem as follows.
min € (4.14)
z’ C
k+1

Subject to 2 led ¢ < e
d=1

iz — L7 an)leg|¢ < bjv + L™ (ai) by,

(1=1,2,3,,1; d=1,2,3,- ,k, k+1)
—cjz— L7 (i)leg|¢ < —bjv + L™ (ay)|bg |,
(i=1,2,3,1; d=1,2,3,- k, k+1)
2020, (>0 (d=1,2,3,-- k)

4.2.3 Necessity Measure for Robust Fuzzy Shapley Value
Next, we consider the necessity measure Nec(Yy o Xy) for fuzzy variables, Y; and Xy,
Nec(Yq > Xq) = inf max (uy, (6), 1 — pux,(9)), (4.15)
and the condition for «; level set
Nec(Yq 2 Xyg) = a. (4.16)

This definition implies that the set of vectors z and ¢ whose elements are fuzzy vectors
X. The condition for the degree of necessity is that X, included in Yj is larger than «;.
Thus, we can derive an LP problem to obtain robust fuzzy Shapley values by

max € (4.17)
z7 C

k+1
Subject to 2 cil¢ > e

d=1

—cjz+ L1 —ai)lef|¢ < —bjv + L™ (o) b |,
(i=1,2,3,-,1; d=1,2,3,-- kk+1)
ciz+ L7 (1 —a)lef[¢ < bjv+ L™ ()b,
(i=1,2,3,-,1; d=1,2,3,--- k,k+1)
2420, (=0  (d=1,2,3,--- k)

53



Water resources

management
\ Vv
Water quantity » q Water quality
(Scarcity) . . (Degradation)
\ 4
> Water conflicts <

Vi v

Economic instruments |« Direct regulations

L 4

v A 4 v

Economic principles Game theoretic Governmental
& Social constraints approach policies

Noncooperative
&
cooperative games

Figure 4.1: Instruments to solve water conflicts. (Wei, 2008)

The similarity between models introduced in this chapter with those in Section 2.2 of
Chapter 2 is that in all of them we deal with fuzzy concepts. However, although having
this particularity these models are distinct as follows.

In Chapter 2, fuzzy Shapley values for necessity and possibility measures are obtained
using one single value for a. However, the robust fuzzy Shapley models here, evaluate
a set of « in just one time, in this way the DM is able to answer about ambiguity in a
certain bound of random values for «. For instance, the numerical results of the decision
variables in Table 4.3 are fuzzy Shapley values, and respective ambiguity with a=0.7, while
in Tables 4.4 - 4.6 these variables represent the robust fuzzy Shapley values with different
values of a. The reasoning of the DM while using the robust models is in general cases for
he is able to get an idea about a specific bound for random values. Initially, these are crisp
values, but in order to understand the ambiguity the DM chooses the values of the width
for each fuzzy variable.

In practical terms DMs are responsible to analyze the distribution of the width while
employing the models, i.e., DM choose values for 7 in order to obtain the width of the
fuzzy variable.

4.3 Water Resource Management and Game Theory

Water has an economic value, this idea is commonly accepted among water resource
community [76], which means that economical benefits can arise from better usage of water.
The term value in this context refer to a particular economic value for a specific location
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and point in time , such as a household with private connection using water for domestic
purposes, or a farmer abstracting water for irrigation. The economic user value of water is
the amount of money a user will be willing to give up to obtain more water and it will be
determined both by the use to which this water will be put and the amount of money the
user has, [69, 70, 72, 73]

The main task of water resource management (WRM) is essentially to support the
coordinated water use in order to maximize the objectives welfare (economic, social and
environmental) using a certain class of principles (equity, efficiency and sustainability).

Allocating water is essential to the management of water resources. due to geographically
and temporarlly unevebly distributed precipitation [5]. Conflicts often arise when different
water users compete for limited water supply. Hence, the need to establish approapriate
water allocation methodologies is extremely important, and have been pointed out by
management institutions and all entities involve in the process. Since the allocation of
water resources often engages multiple parties with conflicting interests as described in
Fang et al., [18, 19].

To achieve equitable and efficient water allocation requires the cooperation of all
stakeholders in sharing water resources. Cooperative game theory can be utilized to
study the fair allocation of common pool resources by Owen [50], and has been applied to
the following types of problems in water resources management: cost allocation of water
resources development projects, including joint waste water treatment and disposal facilities
(Giglio and Wrightington, 1972; Dinar and Howitt, 1997), and water supply development
projects (Young et al., 1982; Driessen and Tijs, 1985; Dufournaud and Harrington, 1990,
1991; Dinar et al., 1992; Lejano and Davos, 1995; Lippai and Heaney, 2000); (2) equitable
allocation of waste loads to a common receiving medium (Kilgour et al., 1988; Okada and
Mikami, 1992); and (3) allocation of water rights (Tisdell and Harrison, 1992). There are
only a limited number of models employing cooperative game theory in water allocation,
and these models have none or else simple hydrological constraints. Tisdell and Harrison
(1992) use a number of different cooperative games to model the efficient and socially
equitable reallocation of water among six representative farms in Queensland, Australia.
Rogers (1969) uses linear programming to compute the optimum benefits of six strategies
of India and East Pakistan (acting singly or in cooperation) in the international Ganges-
Brahmaputra river basin, and then analyzes the strategies by a nonzero-sum game for
the two countries. Incorporating Nepal into his analysis, Rogers (1993a, b) outlines the
applicability of cooperative game theory and Pareto frontier analyses to water resources
allocation problems. Okada and Sakakibara (1997) also applied a hierarchical cooperative
game model to analyze cost/benefit allocation in a basin-wide reservoir redevelopment as
part of water resources reallocation.

The objectives and principles of water resources management are shown in Table 4.1.
Different different intruments (economic instruments, direct regulation and game theory
techniques) have been considered to solve possible conflicts as can be vizualized in Fig. 4.4.

Allocating resources within the river basin includes several elements, such as population
around the river, water resource managers, etc, for the network includes several nodes. Fig.
4.2 shows an example of a river basin network withs its the main elements considered while

Table 4.1: Objectives and principles of WRM [65]

] Objective Principle ‘ Outcome
Society Equity Provide for essential needs
Economics Efficiency Maximize economic value of
water use
Environment | Sustainability | Maintain environmental qual-
ity
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Figure 4.2: An example of a river basin network. (Wang et al., 2003)
evaluating.

Management of international water usually involves several riparians with contradictory
interests, aims and strategies, which often result in water conflicts, such is the case of
the 10 Nile basin coriparians, for instance. Because of their scale or multipurpose nature,
water resource projects have impacts that extend across multiple political or geographic
jurisdictions, that is, typically they can be qualified as multi-criteria decision making
problems, which obliges decision makers (DMs) to not only focus on costs or benefits, but
to extend their methods to other aspects as well [65, 38, 37].

4.4 Numerical Example

In this section we intend to apply the minimax model proposed above to water resource
management. We study two cases related to river basins located in Africa. Data from
Table 4.2 is only used for testing the efficiency of the models, i.e., academic purposes, for
they might differ with the real data. Table 4.3 displays fuzzy Shaple values related to
the three countries of the Okavango river basin, the idea is to interprete how can those
countries share the water without counsing conflicts in the region for a mutual aggreement.
In Tables 4.4 - 4.5 the same set of players (countries) is evaluated in terms of robustness.
Through these tables we compare the distribution of ambiguity for differente values for a.
Finally, in Table 4.6 the analysis is extended to other group of riparian countries, that is,
those related to Nile basin. The table displays the results for robustness cases.

4.4.1 Equitable sharing of international water: the Okavango River Basin
case study

The Okavango river is located in the Southern part of Africa, and runs through Angola,
Namibia and Botswana as shown in Fig. 4.3. The management of the water river is
coordinated by the Permanent Okavango River Basin Water Commission (OKACOM),
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BOTSWANA
Figure 4.3: The Okavango river [6].

which was created in 1994 through the Windhoek Treaty signed by the riparians states of
Angola, Botswana and Namibia with a mandate to serve as the technical adviser body to
the contracting Parties on matters relating to the conservation, development and utilization
of water resources of common interest in the Okavango basin system. The main task of the
Comission is to investigate the pre-requisites and set-up conditions to [6]:

e Determine the long term safe yield of water available from the river
e Estimate reasonable water demand scenarios from consumers

e Prepare criteria for conservation, equitable allocation and sustainable utilization of
water

e Undertake investigations related to water infraestructure
e Formulate recommended pollutation prevention measures

e Develop ,easures for the aleviation of short-term difficulties, such as temporary
draughts and floods

e Generate visible impacts on poverty alleviation for teh riparian communities, emanting
from applied basin resources management options.

Considering the three riparian countries as players of the game, we have a 3-Person

game, with N = {Angola, Botswana, Namibia} .
Coalitions:
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Table 4.2: Estimated water use in the Cubango-Okavango River Basin (in 000 m?)

‘ Angola ‘ Botswana | Namibia ‘ Basin ‘
Population 505 000 219 090 | 157 690 | 881 780
Irrigation 34825.4 620.0 | 43100.0 | 78545.4
Livestock sector 13163.8 4900.0 | 14500.0 | 32563.8
Use in settlements 3935.2 6850.0 8220.0 3935.2
Mining 0.0 0.0 0.0
Tourism 0.2 280.0 2530.0 2810.2
Other (e.g. aquaculture) 0.1 0.1
Est. total water use 51924.5 12650.0 | 68350.0 | 132924.5
Est. river water use 47825.4 3994.0 | 38270.0 | 90089.4

(i) Individual players:
e Angola = v{ANG};
e Namibia =v {NAM};
e Botswana =v {BOT}
(ii) Two players:
o v{ANG, NAM}, v{ANG, BOT}, v{NAM, BOT}
(iii) Three players (grand coalition):
e v{N}

e Characteristic function:

From Table 4.2 we computed the characteristic functions for all singular players and
respectice coalitions. The ambiguity 7 related to fuzzy variable Y is chosen by the DM by
analyzing the membership of the fuzzy fuction from the viewpoint of its center and width.

v(ANG) ] [ o ] [ 0.02

v(BOT) 0.078 0.01

v — v(NAM) _ | 0.091 oo | 003
v(ANG, BOT) 0.294 |’ 0.05
v(ANG,NAM) 0.193 0.06
v(ANG,NAM) 0.169 0.05

Matrices M and AT are given as follows

05 0 0 0 0 0

0 05 0 0 0 O

0 0 05 0 0 0 s (P00 o
M = ,AT=]0 1010 1

0 0 0 05 0 0 00101 1

0 0 0 0 05 0

0 0 0 0 0 05]

e Fuzzy vector Y:

— Center = (0.2435, 0.065, 0.2705)
— Width =(0.055, 0.2265, 0.07)
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Table 4.3: Simplex tableau of fuzzy Shapley model for possibility measure with @ = 0.7 (The Okavango case).

POS ‘ 21 21 Z9 ‘ <3 ‘ CQ ‘ Cg ‘ « ‘ Lil(a) ‘ Lil(l —a) ‘
Fuzzy Shapley value 0 0.153375 0.846625 0 0 2.4425 0.7 0.3

Minimize 0 0 0 2.5 2.5 2.5 6.10625

subject to 1.5 0.5 0.5 -0.45 | -0.15 | -0.15 0.133625 < 0.263
0.5 0.5 0.5 -0.15 | -0.45 | -0.15 0.287 < 0.287
0.5 0.5 0.5 -0.15 | -0.15 | -0.15 0.2475 < 0.2475
-1.5 -0.5 -0.5 -0.45 | -0.15 | -0.45 -0.86638 < -0.263
-0.5 -1.5 -0.5 -0.15 | -0.45 | -0.15 -1.01975 < -0.287
-0.5 -0.5 -1.5 -0.15 | -0.15 | -0.45 -2.44575 < -0.2475

Grand coalition 1 1 1 0 0 0 1 = 1
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Table 4.4: Simplex tableau of robust fuzzy Shapley model for possibility measure with c; = 0.7 and as = 0.8 (The Okavango case).

’ POS 21 21 29 ‘ (3 ‘ (o ‘ (3 ‘ o ‘ L_l(a) ‘ L_l(l — Ol) ‘
Fuzzy Shapley value | 0.1035 | 0.1275 | 0.759 0 0 2.27 0.8 0.2

Minimize 0 0 0 2.5 2.5 2.5 5.675

subject to 1.5 0.5 0.5 -0.45 | -0.15 | -0.15 | 0.263 < 0.263
0.5 0.5 0.5 -0.15 | -0.45 | -0.15 | 0.287 < 0.287
0.5 0.5 0.5 -0.15 | -0.15 | -0.15 | 0.2475 < 0.2475
-1.5 -0.5 -0.5 -0.45 | -0.15 | -0.45 | -0.944 < -0.263
-0.5 -1.5 -0.5 -0.15 | -0.45 | -0.15 | -0.968 < -0.287
-0.5 -0.5 -1.5 -0.15 | -0.15 | -0.45 | -2.2905 < -0.2475

Grand coalition 1 1 1 0 0 0 1 = 1

1.5 0.5 0.5 -1.41 | -0.47 | -0.47 | -0.4834 < 0.3046
0.5 0.5 0.5 -0.47 | -1.41 | -0.47 | -0.4394 < 0.3222
0.5 0.5 0.5 -0.47 | -0.47 | -1.41 | -1.9317 < 0.2923
-1.5 -0.5 -0.5 -1.41 | -0.47 | -0.47 | -1.6704 < -0.3046
-0.5 -1.5 -0.5 -0.47 | -1.41 | -0.47 | -1.6944 < -0.3222
-0.5 -0.5 -1.5 -0.47 | -0.47 | -1.41 | -4.4697 < -0.2823
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Table 4.5: Simplex tableau for Robust Fuzzy Shapley value based on possibility measure
with a3 = 0.5; s = 0.2; @z = 0.01 and «y = 0 (The Okavango case).

l POS ‘ 21 21 22 (s (o (3 e} Lil(a) Lil(l —a) ‘
Fuzzy Shapley value [ 0.1089 0.7967 0.0944 0  1.3316 0 0.5 0.5
Minimize 0 0 0 2.5 2.5 2.5 3.329

subject to 1.5 0.5 0.5 -075  -025  -0.25 0.276 < 0.276

0.5 L5 0.5 -025  -0.75  -0.25 0.298 < 0.298

For oo = 0.5 0.5 0.5 L5 -0.25  -025  -0.75  0.2615 < 0.2615
-1.5 -0.5 05 -0.75  -025  -0.25  -0.9418 < -0.276

-05 -1.5 0.5 -025  -075  -0.25  -2.2954 < -0.298

-0.5 -05 -1.5 -025 -025  -0.75  -0.9273 < -0.2615

L5 0.5 0.5 -1.2 -0.4 0.4 -0.07626 < -0.2955

0.5 15 0.5 -0.4 -1.2 0.4 -0.30122 < 0.3145

For oo = 0.2 0.5 0.5 15 -0.4 -0.4 -1.2 0.06176 < 0.2825
-1.5 -0.5 -0.5 -1.2 -0.4 0.4 -1.14154 < -0.2955

-05 -1.5 -0.5 -0.4 -1.2 0.4 - 289462 < -0.3145

-0.5 -05 -1.5 -0.4 -0.4 -2 -1.2704 < -0.2825

L5 0.5 0.5 -1.485  -0.495  -0.495 -0.050242 < 0.30785

0.5 15 0.5 -0.495  -1.485  -0.495 - 0680726 < 0.32495

For oo = 0.01 0.5 0.5 L5 -0.495  -0.495  -1.485 -0.064742 < 0.2958
-1.5 -0.5 0.5 -1.485  -0.495  -0.495 -1.268042 < -0.30785
-05 -1.5 0.5 -0.495  -1.485  -0.495 -3.274126 < -0.32495

-0.5 -05 -5 -0.495  -0.495  -1.485 -1.253542 < -0.2958

15 0.5 0.5 -1.5 -0.5 -0.5  -0.0569 < 0.3085

0.5 L5 0.5 -0.5 -1.5 0.5 -0.7007 < -0.3255

For a =0 0.5 0.5 1.5 -0.5 -0.5 -1.5 -0.0714 < 0.2965

-1.5 -0.5 -0.5 -1.5 -0.5 0.5 -1.2747 < -0.3085

-05 -1.5 -0.5 -0.5 -1.5 0.5 -3.2914 < -0.3255

-0.5 -05 -1.5 -0.5 -0.5 -1.5 -1.2602 < -0.2965

[ Grand coalition 1 1 1 0 0 0 1 = 1




Fuzzy Shapley values for the Okavango River Basin game with o = 0.7
e For possibility measure:

— Angola = 0;
— Botswana = 0.153375;
— Namibia = 0.846625

Table 4.3 refers to models described in Chapter 2. The second row shows the fuzzy
Shapley values for the evaluated countries (0, 0.153375, 0.846625), and their values regarding
ambiguity, (0, 0, 2.4425), respectively. The result and the tenth row of the table show that
both individual and group rationality are satisfied, and Namibia has the highest value for
ambiguity, which is 2.4425.

Now, if a DM desires to understand what could happen if he considers different values
for a at the same time. In those situations, models proposed in this chapter, i.e., Eq.
(4.13), Eq. (4.14) and Eq. (4.17) are useful.

In Table 4.4, we applied Eq. (4.14) for ay = 0.7 and a3 = 0.8. The robust fuzzy
Shapley values resulted are shown in the second row of the table, that is, 0.1035, 0.1275
and 0.759, respectively. As for the information regarding ambiguity: 0, 0, 2.27, respectively.
Likewise, Namibia still have the highest value for ambiguity, 2.27, while the other countries
are null. We performed similar computations for comparison purposes as described next.

In Table 4.5 we applied the robust fuzzy Shapley model for possibility measure to
evaluate the three countries in cases where different values for o are considered. This
comparison study allows us also to have an idea on the sensintive of the results. In the
present case, we have ay= 0.5, as= 0.2, ag= 0.01 and a4 = 0; the models proposed on
Chapter 2 can only evaluate one value for a each time, while the robust model could give
us a general information on the ambiguity by considering different a-cut in one single
step. The second row of the table present the robust fuzzy Shapley value obtained for each
country, i.e., 0.1089, 0.7967 and 0.0944, respectively. As for the ambiguity represented by
vector (= [0,1.3316,0]. Constraints regarding individual rationality are all satisfied, and in
the last row group rationality is also satisified. Ambiguity is found on the second country,
Botswana, that is, 1.3316; this directs DMs to check on their policies. Similar analysis is
performed in Table 4.6, but for four countries with Ethiopia having the highest robust
value, and consequently highest ambiguity recommending DMs to reconsider their policies.

4.4.2 Conflict resolution in international river basins: a case study of
the Nile Basin

Usually, the so called Nile Economic Optimization Model (NEOM) [76] can be used
to define the characteristic functions, since it is capable to estimate benefits and costs of
each riparian country in terms of coalitions formation. Therefore, it is a tool to consider
for conflict resolution by water resource managers. The NEOM is defined in Eq. (4.18) as
folows.

v(S) = Mazimize Y { D PLe N Qp + > PHe Y KW H;* (4.18)
c i,c t i,c i,c

The constraints of the model are:
1. Continuity constraints for reservoir nodes,
tv1 =051+ 1} + (1= EV]7")R; — (e; — 1y)

St+ 5044

i i i,c i (4'19)
X [ +b (2)] — QY —Rtfor t=1,2,---,12.
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Figure 4.4: Nile Basin (Wu and Whittington, 2006).
2. Continuity constraints for intermediate nodes,

(1 - BV )R]+ I} = R + Qi (4.20)
for t = 1,2,---,12 (j indicates nodes immediate before i and be more than one
node).

3. Storage capacity constraints for reservoir nodes,
Siin < St < Shas (4.21)
4. Irrigation water withdrawal pattern,
= Qe (4.22)
t=1,2,---,12.
5. Hydropower generation equations,
KWH; = I} (S}, 5{1)e (4.23)

fort=1,2,---,12.
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. Hydropower generation capacity constraints,

KWH}® =< CAP"* (4.24)
fort=1,2,---,12.
. Nonnegativity constraints,
SIRLQLKWH! ™ >0 (4.25)
for all decision variables and for ¢t =1,2,---,12.

S! is reservoir storsage for reservoir iin moth ¢; I} is the inflow to site i in mnth ¢;
I} indicates the release (or outflow)from site i in month ¢;

el is the evaporation rate at site i in month ¢; 7 is the addition to flow at site i in
month t due to rainfall;

a’ and b’ are the constant and the slope of the area storage relation of the reservoir,
respectively;

Sarini and Spqz are the minimum and maximum storage for any reservoir at site i;
Q"¢ is the irrigation withdrawal for irrigation site ¢ in October;

5% corresponds the coefficients of irrigation withdrawal for site 7 in month ¢ in relation
to irrigation withdrawal for site ¢ in October;

7 is unit conversion constant;
f(S¢, St +1%) is function determining average productive head;
€ is hydropower efficiency;

CAP"€ is the maximum hydropower that can be generated at site i in month t.

Coalitions and respective characteristic functions

— v{Egypt} = 1804;

— v{Sudan}=1029

— v{Ethiopia} = 600

— v{Equatorial States} =1233

— v{Egypt, Sudan}= 3107

— v{Egypt, Ethiopia}=3759

— v{Egypt, Equatorial States}=3731

— v{Ethiopia, Sudan}=3131

— v{Ethiopia, Equatorial States}=1833

— v{Equatorial States, Sudan}=2990

— v{Egypt, Sudan, Ethiopia}=5684

— v{Egypt, Sudan, Equatorial States}=5509
— v{Sudan, Ethiopia, Equatorial States}=4642
— v{N}=9112
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Figure 4.5: Nile Basin as represented in the Nile Economic Optimization Model (Wu and Whittington,
2006).

In this chapter, we first described concepts related to regional strategy. Afterwards,
robust fuzzy Shapley model for possibility and necessity measures were introduced. The
objective functions of the optimization model are designed in minimax form, i.e., the
objective is to minimize the maximum of a-cut. Since minimax models can be tranformed
into LP models, the correspondent LP model for possibility measure was also introduced
within the chapter.

The robust model can evalute several values for « at once, and this is one of the
differences between the models in this chapter and those in Chapter 2. Numerical examples
were also considered by employin the model to water resoiurce management field. Basically,
this chapter and Chapter 2 represent the theoretical side of this research.
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Table 4.6: Simplex tableau

of fuzzy Shapley model for possibility measure with a; = 0.4 and as = 0.7 Nile case

[ POS [ 21 21 z2 24 G G2 € Ca a L7(a) LT(1-aq) ]

Fuzzy Shapley value [ 0 0 1 0 2599.307 2583.267  962.553  1884.767 0.4 0.6

Minimize 0 0 0 0 2.3333 2.3333 2.3333 2.3333 18736.15243

subject to 1.16667 0.3889 0.3889 0.388 -0.35 -0.116667  -0.11667 - 0.11667  -1542.93712 < 1889.2556
0.3889 1.16667 0.3889 0.3889 - 0.11667 - 0.35 - 0.116667 - 0.11667  -1539.1944 < 1539.9722
0.3889 0.3889 1.16667 0.3889 - 0.11667 - 0.11667 -0.35 -0.116667 -1160.25 < 1162.58333
0.3889 0.38889  0.38889  1.16667  -0.11667 - 0.11667 - 0.11667 -0.35 -1376.211111 < 1376.9889
-1.16667 - 0.38889 - 0.38889 - 0.3889 -0.35 -0.11667 - 0.11667 -0.3 -1889.2556 < -1889.2556
-0.3889  -1.1667 -0.3889  -0.3889  -0.116667 -0.35 -0.116667  -0.11667 -1539.9722 < -1539.9722
-0.389 -0.3889  -1.166667  -0.389  -0.116667  -0.1167 -0.35 -0.11667 -1162.5833 < -1162.5834
-0.38889  -0.3889  -0.3889  -1.1667 -0.1167 - 0.11667 - 0.116667 - 0.35 -1376.9889 < -1376.9889

[ Grand coalition [ 4446 4446 4446 4446 0 0 0 0 4446 = 4446 |

1.1677 0.3889 0.3889 0.3889 -0.4667 -0.1556 -0.1556 -0.15556 -2057.3792 < 1161.4333
0.3889 1.16667 0.3889 0.38889  -0.15556  -0.46667 -0.1556 -0.1556 -2052.389 < 945.6222
0.3889 0.38889 1.16667  0.38889  -0.15556  -0.15556 -0.4667 -0.15556 -1547.3899 < 719.18899
0.3889 0.38899 0.3899 1.16667  -0.1556 -0.15556 -0.1556 -0.46667 -1835.0778 < 850.15556
-1.16667  -0.3889  -0.38889  -0.3889 -0.4667 -0.15556 -0.1556 -0.15556  -2058.156925 < -1161.433
-0.3889  -1.16667  -0.38889  -0.3889  -0.15556 -0.4667 -0.1556 -0.15556  -2053.166667 < -945.6222
-0.3889  -0.38899  -1.16667  -0.38899  -0.1556 -0.1555 -0.4667 -0.15556 -1549.7222 < -719.1889
-0.3889  -0.38899  -0.3889  -1.1667 -0.1556 -0.15556  -0.15556 -0.4667 -1835.856 < -850.1556




Chapter

Conclusion

We are all decision makers, since we all make decisions constantly, consciously or
unconcious. This research is related to consensus decision making, a dynamic process
where deciders have to seek for an agreement in order to succeed in their projects. This
equilibrium is extremely important for it is a bridge to achieving efficient and consistent
results. If consensus is considered, then the group is able to work efficiently avoiding
selfishness, or the typical Egoist’s Dilemma whose model was proposed by Nakabayashi and
Tone [46]. Thus, consensus decision making can be defined as a cooperative process where
participants achieve their results having the benefit of the group in mind. Although the
concept is used mostly by polititians or nonviolent activists, research in the field of decision
theory includes this type of decision. In the process, the main point is not the individual,
but the group. Sometimes, the final decision is not the best in terms of personal preference,
however participants achieve an agreement by consensus as to the best performance of the
group. Hence this decision is the one which satisfies the group.

Making decision includes several factors, as to mention just one uncertainty. When
uncertainty is not evaluated, the adopted policies may have unexpected and negative
effectes. This thesis is divided in five chapters; in the Introduction we presented aspected
related to consensus decison making as well as, a background of some approaches used
to treat with uncertainty. In Chapter 2, we described basic concepts related to game
theory. Since it is not a general study on game theory, we focus on cooperative games,
specifically on Shapley value which is one of the most used solution concepts in cooperative
game theory; as referred in the chapter, there exists some applications of the value in
noncooperative games. Theoretical foundations of the value were introduced. In Section 2.3,
we introduced, first a linear programming model to find Shapley value, and then with this
model as basis we extended again the Shapley value to fuzziness framework. The motivation
behind the proposed models is that, usually, uncertainty has not been considered when
one employs the solution concepts of cooperative games in most of cases. This means that
in most of those cases there exists no information related to the level of ambiguity of the
decision made. In the last part of the chapter we presented a numerical example to test
the efficiency of the proposed models.

In Chapter 3, concepts of coalitional games were combined to risk management tech-
niques to solve a multi-period production planning problem. The relation between produc-
tion planning and coalitional games was established. Periods were defined as players in the
game, etc.

Assuming that the cumulative demand is uncertain, we interpreted the problem by
proposing three models to support production managers on forecasting the volume of
production. The first model is based on the quadratic form of Shapley value [56, 57],
defined as a least square value. The difference between the original model and ours is
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exactly the production constraints added into the optimization program; through the second
and third models we introduced the concept of penalty and a weight factor controlled by
the decision maker. The last part of the chapter discusses different case studies through
which we performed numerical simulations.

Chapter 4 extends models proposed in Chapter 2 to robustness context. Basically, the
difference between those models can be described as follows. In the former chapter, we
proposed the fuzzy Shapley value model for possibility measure, and as well as necessity
measure. These models solve the problem with one a-cut only. However in this chapter we
deal with a situation where the decision maker may wish to evaluate several values of «
in the same time in order to get a general information as regards to the distribution of
ambiguity if diferent values are analysed in one time. Therefore, the objective function of
the robust fuzzy Shapley model is defined in form of a minimax problem for the decision
maker desires to minimize the maximum of those random values in order that he may
be able to forecast his decisions based on the numerical information he already has by
applying the model.

5.1 Research Contribution and Future Direction

Game theory has several applications in real-world situations, and as an approach
for strategical decisions the need of information on uncertainty is extremely important.
Absence of uncertainty analysis in decision making problems may result in inefficient and
inconsistent decisions. Hence, the contribution of this work can be summarized in two
parts, namely:

e First, we proposed theoretical concepts to solve decision making problems under
uncertainty framework. Chapters 2 and 4 of this thesis correspond to the theoretical
part of the study. By proposing models for possibility measure and necessity mea-
sure, we combine fuzzy techniques with cooperative game theory. Accordingly, the
theoretical models presented in this research can support decision makers in their
work.

e On the practical viewpoint, that is, the second contribution of this work is related
to production planning problems. Chapter 3 addresses in practical terms how a
production manager can forecast production volume at certain period.

e The necessity measure has result has presented infeasibility in some cases. Thus, an
extension on the theory regarding this approach would be an interesting research to
consider.

e Another direction from the viewpoint of uncertainty would be a comparison study of
the proposed model with other approaches within the reasearch on uncertainty in
decision making.
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