|

) <

The University of Osaka
Institutional Knowledge Archive

A Study on Partial Gathering and Uniform
Title Deployment of Mobile Agents in Distributed
Systems

Author(s) |%cH, I

Citation | KPrKZE, 2017, {1t

Version Type|VoR

URL https://doi.org/10.18910/61860

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

A Study on

Partial Gathering and Uniform Deployment
of Mobile Agents in Distributed Systems

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2017

Masahiro SHIBATA

iii
List of Related Publications

Journal Papers

1. Masahiro Shibata, Shinji Kawai, Fukuhito Ooshita, Hirotsugu Kakugawa, and
Toshimitsu Masuzawa, “Partial gathering of mobile agents in asynchronous uni-

directional rings”, Theoretical Computer Science, Elsevier, Vol. 617, pp 1-11, 2016.

Conference Papers

2. Masahiro Shibata, Shinji Kawai, Fukuhito Ooshita, Hirotsugu Kakugawa, and
Toshimitsu Masuzawa, “Algorithms for partial gathering of mobile agents in asyn-
chronous unidirectional rings”, Proceedings of the 16th International Conference
on Principles of Distributed Systems, LNCS 7702, pp. 254-268, Rome Italy, Dec.
2012.

3. Masahiro Shibata, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Ma-
suzawa, “Move-optimal partial gathering of mobile agents in asynchronous trees”,
Proceedings of the 21st International Colloguium on Structural Information and

Communication Complexity, LNCS 8576, pp. 327-342, Gifu Japan, July 2014.

4. Masahiro Shibata, Daisuke Nakamura, Fukuhito Ooshita, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa, “An algorithm for partial gathering of mobile agents in
arbitrary networks” Workshop on Distributed Robotic Swarms, Tokyo Japan, Oct.
2015.

5. Masahiro Shibata, Toshiya Mega, Fukuhito Ooshita, Hirotsugu Kakugawa, and
Toshimitsu Masuzawa, “Uniform deployment of mobile agents in asynchronous
rings”, Proceedings of the 29th ACM Symposium on Principles of Distributed Com-
puting, pp. 415-424, Chicago America, July, 2016.

iv
Technical Reports

6. Masahiro Shibata, Shinji Kawai, Fukuhito Ooshita, Hirotsugu Kakugawa, and
Toshimitsu Masuzawa, “Algorithms for partial rendezvous of mobile agents in asyn-
chronous rings”, Technical Report of IEICE, COMP2012-9, Vol. 112, No. 24, pp.
17-24, May 2012.

7. Masahiro Shibata, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Ma-
suzawa, “An algorithm for uniform deployment of mobile agent in asynchronous
rings”, Technical Report of IEICE, COMP2015-11, Vol. 115, No. 84, pp. 107-114,
June 2015.

List of Unrelated Publications

Technical Reports

8. Jun Ri, Masahiro Shibata, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu
Masuzawa, “Algorithms for group gossiping of mobile agents”, Technical Report of

IEICE, COMP2014-24, Vol. 114, No. 199, pp. 61-68, Sep. 2014.

9. Tsuyoshi Goto, Masahiro Shibata, Fukuhito Ooshita, Hirotsugu Kakugawa, and
Toshimitsu Masuzawa, “Move-Efficient Fault-Tolerant Simulation of Message-Passing
Algorithms by Mobile Agents”, Technical Report of IEICE, COMP2016-3, Vol. 116,
No. 17, April 2016.

Abstract

A distributed system consists of autonomous computers (nodes) and communication links.
In recent years, distributed systems have become large and design of distributed systems
has become complicated. As a promising design paradigm of distributed systems, (mo-
bile) agent systems have attracted a lot of attention. Agents can traverse the system,
collect information and execute tasks on nodes. Hence, we can encapsulate data and algo-
rithms in agents, which simplifies design of distributed systems. Actually agent systems
have many applications such as network exploration, network management, electronic
commerce and so on.

The total gathering problem (usually it is simply called the gathering problem) is a
fundamental and deeply investigated problem for coordination of agents. This problem
requires all the agents to meet at a single node. By meeting at a single node, agents can
share information or synchronize their behavior. Hence, after the gathering agents can
determine their behavior so that they can execute tasks collaboratively and efficiently.

Solving the total gathering problem implies completely symmetry breaking when the
initial locations of agents have symmetry. It is known that the symmetry breaking is
difficult and sometimes impossible. Due to its difficulty, there are two problems about
the total gathering problem. The first is about the total moves, that is, agents require
more total moves to solve the total gathering problem, which causes high network loads.
The second is about the solvability, that is, if agents do not have distinct IDs, they cannot
solve the total gathering problem from several initial configurations.

In this dissertation, we introduce two problems for coordination of agents that require

less (or no) symmetry breaking than the total gathering. We investigate the problems

vi

especially in terms of the total moves or solvability and compare them with the total
gathering.

First, we introduce a variation of the total gathering problem, called the g-partial
gathering problem. The g-partial gathering problem is a generalization (or relaxation) of
the total gathering problem. This problem requires, for a given positive integer g, that
each agent should move to a node so that at least g agents should meet at each of the nodes
they terminate at. In the g-partial gathering problem, we investigate the total moves
compared with the total gathering problem. While the total gathering problem requires
all the agents to meet at the same node, the g-partial gathering problem allows agents
to meet at multiple nodes. Hence, the requirement for the g-partial gathering problem is
weaker than that for the total gathering problem, that is, the g-partial gathering problem
requires less symmetry breaking than the total gathering problem. Thus, agents aim to

solve the g-partial gathering problem with fewer total than the total gathering problem.

We consider the g-partial gathering problem in ring networks (Chapter B) and tree
networks (Chapter @). In ring networks, we assume that each node has a whiteboard
where agents can read and write information. Then, if the algorithm is deterministic
and assumes unique ID of each agent, or the algorithm is randomized and assumes no
IDs of each agent (i.e., anonymous), agents can achieve the g-partial gathering in O(gn)
(expected for the randomized algorithm) total moves, where n is the number of nodes.
Note that in ring networks, the total gathering problem requires Q(kn) total moves,
where k is the number of agents. Since g < k holds, we show that agents can achieve
the g-partial gathering in fewer total moves than the total gathering problem. Note
that agents can attain this improvement of the total moves since the g-partial gathering

requires less symmetry breaking than the total gathering problem.

In tree networks, since trees have lower symmetry than rings, we aim to solve the
g-partial gathering problem in weaker models than the whiteboard model used in rings.
We consider the model such that each agent has one removable token and ability to
detect whether there is at least one agent at the current node or not. Note that this
model is weaker than the whiteboard model considered in a ring scenario. Then, agents

can achieve the g-partial gathering in O(gn) total moves. Note that agents require Q(kn)

vii

total moves to solve the total gathering problem also in tree networks. Thus, we show
that also in tree networks, agents can achieve the g-partial gathering in fewer total moves
than the total gathering problem

Second, we introduce the uniform deployment problem in ring networks, which re-
quires agents to spread uniformly in the ring network (Chapter H). In the uniform
deployment problem, we investigate the solvability compared with the total gathering
problem. Remind that in the total gathering problem, agents need to completely break
the symmetry. On the other hand, in the uniform deployment problem agents need to at-
tain the symmetry (i.e., require no symmetry breaking), and attaining symmetry is easier
than breaking symmetry. Hence, there is possibility that agents can achieve the uniform
deployment in several configurations from which the total gathering can not be achieved.
As our result, if agents have knowledge of k£ and the algorithm requires termination detec-
tion, or agent do not have any knowledge and the algorithm does not require termination
detection, even for agent with no distinct IDs our proposed algorithms achieve the uni-
form deployment from any initial configuration, including configurations such that the
total gathering cannot be achieved. Note that agents can attain this solvability since the

uniform deployment problem requires no symmetry breaking.

Contents

I__Introduction 1
[T Overview of This Disserfafiod 3
[.LT.T Partial Gathering 3

[.I.2 Uniform Deploymenfl)

T2 Relafed Warkd e 6
[.2.T Exploration Probleml 6

L.2.2 leader Agent Rlection Problem 6

IL.2.0 'lTotal Gathering Problem 7

L.2.4 Relation Between the lotal GGathering Problem and Symmetry| 8

IL.o Organization of 1his Dissertation o« v v v v v v v v 8

2 Preliminary] 9
p__Partial Gathering in king Networksg 11
BT Infroduction L 11
bl 1 Contribution00 e e e e e 11

BT Relafedsworkd. 12

B.I.3 Organizafion 13

BZ Preliminary]l o o v e e e e e e 14
B.2.T Svystem Model. 14

B2.2 Agent Model 14

B.2.3 System Configuratiod 15

ix

CONTENTS

24 Problem Debtnition

p.o.2 1he second part: movement to gathering node§

p.o Ihe First Model: A Deterministic Algorithm for Distinct Agenty . . .
p.o.l 'I'he nrst part: leader electiony

pb.4 'I'he Second Model: A Randomized Algorithm for Anonymous Agents

pb.4.1 'T'he nrst part: leader election

p.4.2 1'he second part: movement to gathering node§

p.o lhe Third Model: A Deterministic Algorithm for Anonymous Agentg

p.o.l Existence ol Unsolvable Initial Conngurationyd

p.o.2 Froposed Algorithm

p.6 Concluding hemarkg o 0000

Partial GGathering 1n Iree Networks

40| Intraduction

d.l.o Orgamizatlon v v i e e e e e e e e e

B2 Preliminarylo e
d.2.1 System Modelo oo

d.2.2 Agent Model o s

d.2.0 System Configuration« . ..

u24 Problem Detimition

B3 Lower Bound of the lotal Maoves tor the Non-1loken Maodel

A.4 Weak Multiplicity Detection and Non-1loken Model

B.4.1 Proposed algorithm for asymmetric tree§d

A.4.2 Impossibility result 1or symmetric tree§

d.o Strong Multiplicity Detection and Non-1oken Model

A.0 Weak Multiplicity Detection and kemovable-1oken Model

4.6.1 'I'he nrst part: leader election

£.0.2 Ihe second part: leaders’ instruction and agents” movement

47
47
47
49
50
50
50
51
53
54
54
o6
o6
o6
70
72
74
82

CONTENTS

g. . Concluding hemarkg 000

P Unitorm Deployment in Ring Networks

bl Infroduction L0000 Lo
bl 1 Contrmbution 0 0 e
bl2Z2 HRelatedworkd. 0 00000 o s
p.l.o Organizatlon oo e e e e
p.Z2 Preliminaryl oo e e e e e
p.2.1 System Model.o Lo
p.2.2 Agent Model o Lo
p.2.0 odystem Configuration
B2 4 Problem Definifiono 0oL
p.o Agents with knowledge of Al Lo o o
p.o.l A trivial algorithm with OJ(klogn) agent memory
p.o.2 An algorithm with O(logn) agent memoryl.
p.4 Agents with no knowledge ot K orn
p.4.1 Unitorm deployment problem with termination detection
p.4.2 Unitorm deployment problem without termination detection
p.o Concluding hemarkso
EC I]
p.l Summary ot the kesulty 000000000
b2 _bButure Directiond L 0L L 0L L e e e

xi

87

89
89
89
92
93
93
93
93
94
96
98
98
102
108
109
111
124

List of Figures

IL.1

An example ot the total gathermg

L.2

T'he symmetry each problem eventually require§.

L3

An example of the g-partial gathering (¢ =3)

L.4

An example of the uniform deployment

B.1

An execution example of the leader election part (k=8,g=3)

B2

'1T'he first example of agent a; that passes other agents (e.g. az)

B.3

'1'he second example of agent a; that passes other agents (e.g.. ap)

B.4

'I'he third example of agent a; that passes other agents (e.g, ap)

B.5

''he realization of partial gathering (¢ =3)

p.0

An example that some agent observes the same random IDg

g1

Asymmetric and Symmetric trees o . e e e e e e e e e e e

@.2

Figures of 1T and 1

.3

Classification depending on values of /Ny and No (N7 > No)

g4

An example ot Case d e e e

B.o

An example of Case g e e e e

B.0

An example ol Case d e e e e e e e

Bl

An example of the basicwallkl

E.8

An example that agents observe the same port sequencd

4.9

Partial gathering in the removable-token model for the case of ¢ = 3 (a{

and a9 are leaders, and black nodes are token nodes)

xiii

[N R C I\

Xiv

LIST OF FIGURES
pb.I An example of the symmefry degred 91
b.2 The initial configuration to derive a Iower bound €2(kn) of the total moved 97
p.3 The base nodes and the farget noded 99
b.4 An example of the base node condition (n =18, k=9.d=2) 102
b5 AnIDofanactiveagentay 104
b.6 An example that an agent estimafes the number ofnoded 112
b.7 An example 1n the ring having some periodic subsequence (n = 27,k =
0. a | e 116
b.8 "An examples of S,y and S, 0] - - - - - oo 119
b.9 An example for the periodicring 121

List of Tables

BT Resultstmeachmaoadel 12
ET smallcaption]. e 48
BT Resultstmeachmadel 90
b.2 Meaning of each element in configuration c = (5,1, M, P,). 95

XV

List of Algorithms

B.1 'T'he behavior of active agent a; (v; 1s the current node of ap) 22
B.2 Procedure LasicAction() forayo 23
B.3 Initial values needed in the second part (v; 1s the current node of agent ay) 28
B.4 'T'he behavior of leader agent a; (v; 1s the current node of ap) 29
B.o 'l'he behavior of inactive agent a; (v; 1s the current node ot ap) 30
B.6 'T'he behavior of moving agent aj (v; 1s the current node of ap) 30
B.7 Values required for the behavior ot active agent aj; (v; 1s the current nodq

Df ap) - - 35
B.8 'l'he behavior of active agent a; (v; 1s the current node ot ap) 36
B.9 Values required for the behavior of semi-leader agent a; (v; 1s the current

................................... 37
B.10 The first half behavior of semi-leader agent a; (v; 1s the current node of ap) 38
B.11 The latter half behavior ot semi-leader agent a; (v, 1s the current node of

an) - 39
B.12 The behavior of active agent a; (v; 1s the current node of a;.) 44
1.1 "T'he behavior of active agent ap (v; 1s the current node of ap.). 71
1.2 'T'he behavior ot active agent ap (v; 1s the current node of ap.). 78
h.1 1t NextActive() (v; 1s the current node of ap.) 79
1.3 'I'he behavior of leader agent a; (v; 1s the current node ot ap) 85
k.2 void Nextloken() (v; 1s the current nodeof ap.) 86
1.4 'T'he behavior of inactive agent ap (v; 1s the current node ot ap) 86
.o 'T'he behavior of moving agent aj (v; 1s the current node of ap) 86

xvii

xviii LIST OF ALGORITHMS
b.I A time optimal algorithm for agents with knowledge of A 101
p.2 "The behavior of activeagentag 105
p.3 "The behavior of Ieader or follower agentag 107
b.4 "The behavior of agent a; in the estimating phasd 113
b.5 The behavior of agent a; in the patrolling phasd 114
b.6__The behavior of agent a; in the deployment phasd 115

Chapter 1

Introduction

A distributed system [ll] consists of autonomous computers (nodes) and communication
links. Nodes execute a distributed algorithm [2] to solve a problem and provide a service.
To design distributed algorithms, symmetry breaking is one of fundamental concepts [3].
This is a technique to select several (possibly one) nodes as special nodes from candidate
nodes. When symmetry breaking is achieved, nodes can provide a service based on the
selected nodes. There are a lot of researches for symmetry breaking. For example, the
leader election problem [I] requires to select the exactly one node as a leader node among
all nodes. When the leader election is achieved, the selected node can instruct the other
node to coordinate. The mazimal independent set problem [[] requires to select a maximal
set of nodes such that there are no link connecting two nodes included in the set. When
the maximal independent set is achieved, the selected nodes can behave as local base
stations. Symmetry breaking is considered in various networks (e.g., rings [3, @, &] and
general graphs [B, [7]), and is achieved by using distinct IDs [3, @], network topology [6]
or random numbers [G, [, 6]. Symmetry breaking has been extensively studied, and it

has been known to be difficult, and sometimes impossible from several settings.

In recent years, distributed systems have become large and design of distributed
systems (e.g., symmetry breaking) has become complicated. As a promising paradigm
of distributed systems, (mobile) agent systems have attracted a lot of attention [8, 9].

Agents can traverse the system, collect information and execute tasks on nodes. Hence,

2 CHAPTER 1. INTRODUCTION

[8 :agent O :node with no problem . :node with a problem]

Figure 1.1: An example of the total gathering

we can encapsulate data and algorithms in agents, which simplifies design of distributed
systems [I0, [T]. Actually agent systems have many applications such as network explo-

ration, network management, electronic commerce and so on.

The total gathering problem (or the rendezvous problem) [27] is a fundamental prob-
lem for coordination of agents.! This problem requires all the agents to meet at a single
node. By meeting at a single node, agents can share information or synchronize their
behavior. For example in Fig.[D (a), we assume that nodes v and v’ have troubles.
When agents meet at a single node, agents can share such information (Fig.ITD (a) to
(b)). Hence, after the gathering agents can determine their behavior so that they can

execute tasks collaboratively and efficiently (Fig.I (b) to (c)).

Even though the achievement of the total gathering can simplify the distributed

1Usually it is simply called the gathering problem. In this dissertation, we call it the total gathering

problem in contrast to the partial gathering problem we introduce.

1.1. OVERVIEW OF THIS DISSERTATION 3

Total gathering || g-partial gathering || Uniform deployment

g ‘ NS

Minimum Max

Low High

Figure 1.2: The symmetry each problem eventually requires

system, the problem also requires to break (or reduce) the symmetry as mentioned before.
Since symmetry breaking is known to be difficult and sometimes impossible, there are two
problems about the total gathering problem. The first is about the total moves, that is,
agents require more total moves to solve the total gathering problem, which causes high
network loads. The second is about the solvability, that is, if agents do not have distinct

IDs, they cannot solve the total gathering problem from several initial configurations.

1.1 Overview of This Dissertation

In this dissertation, we introduce two problems for coordination of agents, called the g-
partial gathering problem and the uniform deployment problem, which require less or no
symmetry breaking than the total gathering problem. For such problems, we investigate
the total moves and the solvability compared with the total gathering problem. Fig.I2

shows the symmetry each problem eventually requires.

1.1.1 Partial Gathering

First, we introduce the variation of the total gathering problem, called the g-partial gath-
ering problem. The g-partial gathering problem is a generalization of the total gathering
problem. This problem does not always require all agents to meet at a single node, but
requires agents to gather partially at several nodes. More precisely, the g-partial gath-

ering problem requires, for a given positive integer g, that each agent should move to a

4 CHAPTER 1. INTRODUCTION

Figure 1.3: An example of the g-partial gathering (g = 3)

node so that at least g agents should meet at each of the nodes they terminate at. From
a practical point of view, the g-partial gathering problem is still useful especially in large-
scale networks. This is because, when agents achieve the g-partial gathering, agents can
share information and execute tasks with collaboration among at least g agents (Fig. =3
(a) to Fig.3 (b)). In addition, while in the total gathering agents meet at a single
node, in the g-partial gathering agents meet at multiple nodes separately. This means
that each group with at least g agents can partition the network and own its area that

they should monitor efficiently (Fig.I3 (b) to Fig. 3 (c)).

The g-partial gathering problem is interesting to investigate also from theoretical
point of view, and we investigate the problem in terms of the total moves and compare
it with the total gathering problem. While the total gathering problem requires all the
agents to meet at the same node, the g-partial gathering problem allows agents to meet
at multiple nodes. Hence, the g-partial gathering problem has a weaker requirement
than the total gathering problem, that is, the g-partial gathering problem requires less
symmetry breaking than the total gathering problem. Thus, agents aim to solve the
g-partial gathering problem with fewer total moves (i.e. lower costs) than the total

gathering problem.

1.1. OVERVIEW OF THIS DISSERTATION 5

>

Figure 1.4: An example of the uniform deployment

1.1.2 Uniform Deployment

Second, we introduce the uniform deployment problem in ring networks, which requires
agents to spread uniformly in the network like Fig.[A. From a practical point of view,
the uniform deployment is useful for the network management. For instance, if agents
with ability to repair faulty nodes are deployed uniformly, such agents can quickly reach
and repair faulty nodes after the faults are detected. If agents with database replicas are
deployed uniformly, each node can quickly access the database. Hence, we can regard the
uniform deployment problem as a kind of the resource allocation problem. The uniform
deployment is interesting to investigate also from a theoretical point of view, and we
investigate the solvability compared with the total gathering problem. The problem
exhibits a striking contrast to the total gathering: the uniform deployment aims to
attain the symmetry of agent locations (i.e., requires no symmetry breaking) while the
total gathering aims to break the symmetry. Remind that the symmetry breaking is
difficult (and sometimes impossible) in distributed systems. Hence, it is interesting to
clarify how easily the uniform deployment can be achieved compared with the total

gathering.

6 CHAPTER 1. INTRODUCTION

1.2 Related Works

There exist a lot of researches for coordination of agents. In the following, we explain

several problems in each subsection.

1.2.1 Exploration Problem

The exploration problem requires that every node is visited at least once by some agent.
For a single agent, Sudo at el. [I2] considered it under the assumption that each node
has a whiteboard, and Dieudonné at el. [I3] considered it with Byzantine tokens, that
is, tokens on nodes continues to appear and disappear. For multiple agents placed at
distinct nodes in the initial configuration, Chalopin at el. [I4] considered it using tokens
in arbitrary networks, and Gasieniec at el. [I5] considered the memory requirement in
tree networks. For multiple agents placed at the same node in the initial configuration,
Dereniowski et al. 6] considered the trade-off between the upper bound of time and the
number of agents in tree networks and arbitrary networks, and Yann et al [I7] considered

the trade-off between the lower bound of time and the number of agents in tree networks.

1.2.2 Leader Agent Election Problem

The leader agent election problem is a fundamental problem that requires symmetry
breaking. This problem requires agents to select one common agent as a leader among
all agents. The leader agent election problem is considered in ring networks for agents
using tokens [I8], in arbitrary networks under the assumption that each node has a
whiteboard [19], in arbitrary networks for agents that cannot mark nodes in any way
but can communicate with other agents staying at the same node [20]. The gossip
problem requires all agents to share information that each agent initially has. Suzuki
et al. [21] considered it under the assumption that each node has a whiteboard and
agents can communicate with other agents staying at the same node. They showed that

if agents solve the leader agent election problem, agents can solve the gossip problem

asymptotically optimal in terms of total moves.

1.2. RELATED WORKS 7

1.2.3 Total Gathering Problem

The total gathering problem has been extensively studied. Kranakis at el. [22] considered
the total gathering problem for the first time. They considered it for two agents in
ring networks, and this work has been extended to consider multiple agents [23, 24].
While [22, 23, 24 assumed that algorithms are deterministic and each agent has a token,
Kawai at el. [25] considered a randomized algorithm to solve the total gathering problem
under the assumption that each node has a whiteboard. Kranakis at el. [26] considered
the total gathering problem in torus networks, and in [27] they conclude the results of

22, 23, 24, 26|.
) Y Y

1.2.3.1 Total Gathering for Synchronous Agents or Asynchronous Agents

The total gathering problem for synchronous agents is considered in [2R, 29, B0]. While
[28] considered it for two agents with distinct IDs, [29] considered it for two agents with no
distinct IDs but with knowledge where they are located in the network. Dieudidonné and
Pelc [30] considered it for multiple agents with ability to communicate with the agents

at the same node. The total gathering problem for asynchronous agents is considered

]
)

in [31, B2, B3, B4]. Marco at el. [31] considered it for such agents for the first time.

Czyzowicz at el. [83] considered it for two agents with distinct IDs, and Guilbault and
Pelc [B2] considered it for two agents with no distinct IDs. While in [32, B3] agents
require exponential total moves to solve the problem, Dieudonné and Pelc [34] proposed

an algorithm to solve the problem in polynomial total moves.

1.2.3.2 Fault Tolerant Gathering

A fault tolerant gathering problem is considered in [35, B6, 37, B8, BY]. Flocchini at el.
[85] considered the total gathering in ring networks with faulty tokens, where tokens may
disappear during the execution of the algorithm. In [35], they consider it for synchronous
agents, and this work was extended to consider asynchronous agents [36]. Das at el. [37]
considered such a problem in arbitrary networks. A Byzantine gathering problem is

considered in [B8, BY], where there exist Byzantine agents that execute any malicious

8 CHAPTER 1. INTRODUCTION

behavior. Dieudonné at el. [38] proposed an algorithm with the minimum number of
non-faulty agents under the assumption that Byzantine agents execute any malicious
behavior except for changing their IDs. Bouchard at el. [39] proposed an algorithm with
the minimum number of non-faulty agents under the assumption that Byzantine agents

execute any malicious behavior, including changing their IDs.

1.2.4 Relation Between the Total Gathering Problem and Symmetry

As mentioned before, to solve the total gathering problem, agents need to break (or
reduce) the symmetry. It is known that the symmetry breaking is difficult and some-
times impossible. Due to its difficulty, there are two problems about the total gathering
problem. The first is about the total moves, that is, agents require more total moves to
solve the total gathering problem, which causes high network loads. The second is about
the solvability, that is, if agents do not have distinct IDs, they cannot solve the total

gathering problem from several initial configurations.

1.3 Organization of This Dissertation

This dissertation comnsists of six chapters. In Chapter B, we describe definitions of our
system model, agent model, and each problem. In Chapter B, we propose algorithms
to solve the g-partial gathering problem in ring networks. In Chapter B we propose
algorithms to solve the g-partial gathering problem in tree networks. In Chapter H
we propose algorithms to solve the uniform deployment problem in ring networks. We

conclude this dissertation in Chapter B.

Chapter 2

Preliminary

In this chapter, we describe a general definition of a agent model. A network is modeled as
a undirected graph G = (V, L), where V is a set of nodes and L is a set of a communication
links. We denote by n (= V') the number of nodes. We assume that nodes are anonymous
(i.e., have no distinct IDs), but each node v; € V has a whiteboard that agents on node
v; can read from and write on. We assume that each link [incident to v is uniquely
labeled at v with a label chosen from the set {0,1,...,d, — 1}. We call this label port
number. Since each communication link connects two nodes, it has two port numbers.
However, port numbering is local, that is, there is no coherence between the two port
numbers. The path P(vg,vk) = (vo,v1,...,v,) with length & is a sequence of nodes from
vo to vy such that {v;, viy1} € L (0 <@ < k) and v; # v; if i # j. The distance from u
to v is the length of the shortest path from u to v.

Let A = {ap,a1,...,ax_1} be a set of k agents. For simplicity, operations to an
index of an agent assume calculation under modulo k. We consider two problem set-
tings: agents with communication capability and agents without communication capabil-
ity. Agents with communication capability can send a message of any size to agents at
the same node. Agents without communication capability can not communicate with
other agents directly, but instead they communicate via whiteboards. An agent is a state
machine having an initial state $;,;14. Agents move in the network according to its state

transition function. An agent executes the following seven operations in an atomic step:

9

10 CHAPTER 2. PRELIMINARY

1. The agent reaches some node v (or starts operation at v).

2. For the case of agents with communication capability, the agent receives all the

messages (if any).

3. The agent obtains information at v (e.g., the state of the whiteboard and agents

staying at v).
4. The agent executes local computation at v.

5. For the case of agents with communication capability, the agent broadcast a message

to all the agents staying at v (if any) if it decides to send a message.
6. The agent updates the contents of v’s whiteboard.

7. The agent moves to the next node or stays at v.

A (global) configuration c is defined as a product of states of agents, states of nodes,
messages reached some agent but not consumed yet (for agents with communication
capability), and location of agents. We denote by C' the set of all possible configurations,
In initial configuration ¢ € C, all agents are in the initial state and placed at distinct
nodes. In Chapters B and @, we consider the following scheduler and execution (In
Chapter B, we consider another scheduler and execution, and we explain the detail in
Chapter B). When configuration ¢; changes to ¢;+1, a scheduler activates a non-empty
set of agents, say A;, and each agent in A; takes a step as mentioned before. We denote
by such a transition ¢; A, ci+1- We assume that the scheduler is fair, that is, each
agent is activated after a finite (unknown) amount of time and infinitely many times. If
several agents at the same node are included in A;, the scheduler activates the agents
in an arbitrary exact order. When A; = A holds for every i, all agents take steps
every time. This model is called the synchronous model. Otherwise, the model is called
the asynchronous model. In this dissertation, we consider the asynchronous system. If
sequence of configurations F = cg,cy,... satisfies ¢; Ay ci+1 (1 > 0), E is called an
execution starting from cg. We assume that any execution E is maximal in the sense

that E is infinite, or ends in final configuration cy;,q where every agent’s state is sfinq-

Chapter 3

Partial Gathering in Ring
Networks

3.1 Introduction

In this chapter, we present algorithms to achieve the g-partial gathering problem in
asynchronous unidirectional rings with whiteboards on nodes. The aim in this chapter
is to clarify the difference on the move complexity between the total gathering problem

and the g-partial gathering problem.

3.1.1 Contribution

The contribution of this paper is summarized in Table B, where & is the number of
agents and n is the number of nodes. First, we propose a deterministic algorithm to
solve the g-partial gathering problem for the case that agents have distinct IDs. This
algorithm requires O(gn) total moves. Second, we propose a randomized algorithm to
solve the g-partial gathering problem for the case that agents have no IDs but agents
know the number k of agents. This algorithm requires expected O(gn) total moves.
Third, we consider a deterministic algorithm to solve the g-partial gathering problem
for the case that agents have no IDs but agents know the number k£ of agents. In this

case, we show that there exist initial configurations for which the g-partial gathering

11

12 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

Table 3.1: Results in each model

Model 1 Model 2 Model 3
(Section B3) | (Section BA) (Section B3)
Unique agent ID Available Not available Not available
Deterministic
Deterministic | Randomized Deterministic
/Randomized
Knowledge of £ | Not available Available Available
The total moves O(gn) O(gn) O(kn)
Note) } There exist
unsolvable configurations

n: number of nodes, k: number of agents, g: minimum number of agents at each node where

agents exist

problem is unsolvable. Next, we propose a deterministic algorithm to solve the g-partial
gathering problem for any solvable initial configuration. This algorithm requires O(kn)
total moves. Note that the total gathering problem requires 2(kn) total moves regardless
of deterministic or randomized settings. This is because in the case that all the agents
are uniformly deployed, at least half agents require O(n) moves to meet at one node.
Hence, the first and second algorithms imply that the g-partial gathering problem can be
solved with fewer total moves than the total gathering problem for the both cases. Note
that agents can attain this improvement of the total moves since the g-partial gathering
requires less symmetry breaking than the total gathering problem. In addition, we show
a lower bound Q(gn) of the total moves for the g-partial gathering problem if g > 2. This
means the first and second algorithms are asymptotically optimal in terms of the total

moves.

3.1.2 Related works

The gathering problem for rings has been extensively studied [27, 22, 23, [8, 24, B3, 40, 25]
because algorithms for such highly symmetric topologies give techniques to treat the

essential difficulty of the gathering problem such as breaking symmetry.

3.1. INTRODUCTION 13

For example, Kranakis et al. [2Z] considered the gathering problem for two mobile
agents in ring networks. This algorithm allows each agent to use a token to select
the gathering node based on the token locations. Later this work has been extended
to consider any number of agents [23, P4]. Flocchini et al. [Z3] showed that if one
token is available for each agent, the lower bound on the space complexity per agent is
Q(log k + loglogn) bits, where k is the number of agents and n is the number of nodes.
Later, Gasieniec et al. [24] proposed the asymptotically space-optimal algorithm for
uni-directional ring networks. Barriere et al. [IR] considered the relationship between
the gathering problem and the leader agent election problem. They showed that the
gathering problem and the leader agent election problem are solvable under only the
assumption that the ring has sense of direction and the numbers of nodes and agents are
relatively prime.

A fault tolerant gathering problem is considered in [35, &1]. Flocchini et al. [35]
considered the gathering problem when tokens fail and showed that knowledge of n
(number of agents) allows better time complexity than knowledge of k (number of agents).
Dobrev et al. [d1] considered the gathering problem for the case that there exists a
dangerous node, called a black hole. A black hole destroys any agent that visits there.
They showed that it is impossible for all agents to gather and they considered how many
agents can survive and gather.

A randomized algorithm to solve the gathering problem is shown in [25]. Kawai
et al. considered the gathering problem for multiple agents under the assumption that
agents know neither k£ nor n, and proposed a randomized algorithm to solve the gathering

problem with high probability in O(kn) total moves.

3.1.3 Organization

This chapter is organized as follows. In Section BZ3 we consider the first model, that is,
the algorithm is deterministic and each agent has a distinct ID. In Section B we consider
the second model, that is, the algorithm is randomized and agents are anonymous. In
Section B3 we consider the third model, that is, the algorithm is deterministic and agents

are anonymous. Section B concludes this chapter.

14 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS
3.2 Preliminary

3.2.1 System Model

In this chapter, we restrict the network topology only to unidirectional ring networks.

Then, ring R = (V, L) is defined as follows:
o V= {vo,v1,...,Un-1}
e L= {(%U(iﬂ)modn) |0<i<n-—1}

For simplicity, operations to an index of a node assume calculation under modulo n, that
1S, U(j+1) mod n 1S simply represented by v;y1. We define the direction from v; to viy1
as the forward direction, and the direction from v;;1 to v; as the backward direction.
Note that the ring is unidirectional, agents staying at some node can move only in the
forward direction. In addition, we define the i-th (i # 0) forward (resp., backward) agent
aj, of agent aj, as the agent such that there are i — 1 agents between aj, and aj in the
ap's forward (resp., backward) direction. Moreover, we call the ap’s 1-st forward and

backward agents neighboring agents of a; respectively.

3.2.2 Agent Model

We consider three model variants. In the first model, we consider agents that are distinct
(i.e., agents have distinct IDs) and execute a deterministic algorithm. We model an
agent aj, as a finite automaton (5,9, sinitial, Sfinar). The first element S is the set of
the ap’s all states, which includes initial state s;uqa and final state spiq. When ay
changes its state to sf;nq;, it terminates the algorithm. The second element ¢ is the
state transition function. We denote by W a set of all state (contents) of a whiteboard.
Then, since we treat deterministic algorithms, ¢ is a mapping S x W — S x W x M,
where M = {1,0} represents whether the agent makes a movement or not in the step.
The value 1 represents movement to the next node and 0 represents stay at the current
node. Since rings are unidirectional, each agent moves only to its forward node. Note
that if the state of aj is sfinq and the state of its current node’s whiteboard is w;, then

8 (8 final, Wi) = (8 final, Wi, 0) holds. In addition, we assume that each agent cannot detect

3.2. PRELIMINARY 15

whether other agents exist at the current node or not. Moreover, we assume that each
agent knows neither the number of nodes n nor agents k. Notice that S, 9, Sinitial, and
Sfinal can be dependent on the agent’s ID.

In the second model, we consider agents that are anonymous (i.e., agents have no
IDs) and execute a randomized algorithm. We model an agent similarly to the first
model except for state transition function . Since we treat randomized algorithms, ¢ is
a mapping S x W x R — S x W x M, where R represents a set of random values. Note
that if the state of some agent is sy, and the state of its current node’s whiteboard is
w;, then 0 (sfinal, Wi, R) = (Sfinal, Wi, 0) holds. In addition, we assume that each agent
cannot detect whether other agents exist at the current node or not, but we assume that
each agent knows the number of agents k. Notice that all the agents are modeled by the
same state machine since they are anonymous.

In the third model, we consider agents that are anonymous and execute a deterministic
algorithm. We also model an agent similarly to the first model. We assume that each
agent knows the number of agents k. Note that all the agents are modeled by the same
state machine. In each model, each agent executes the following three operations in
an atomic step: 1) The agent reads the contents of its current node’s whiteboard, 2)
the agent executes local computation, 3) the agent updates the contents of the node’s
whiteboard, and 4) moves to the next node or stays at the current node. We assume
that agents move instantaneously, that is, agents always exist at nodes (do not exist at

links).

3.2.3 System Configuration

In this chapter, a (global) configuration c¢ is defined as a product of states of agents,
states of nodes (whiteboards’ contents), and locations of agents. In initial configuration
cp € C, we assume that each node v; has boolean variable v;.initial at the whiteboard
that indicates existence of agents in the initial configuration. If there exists an agent on
node v; in the initial configuration, the value of v;.initial is true. Otherwise, the value of
vj.initial is false. We consider a fair scheduler defined in Chapter B, that is, it activates

a non-empty set of agents A;, and each agent in A; takes a step as mentioned in Section

16 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

B=23. We also consider execution F = ¢y, cq, ... defined in Chapter B.

3.2.4 Problem Definition

The g-partial gathering problem requires, for a given positive integer g, each agent to
move to a node and terminate so that at least g agents should meet at the node. Formally,

we define the g-partial gathering problem as follows.

Definition 3.2.1. Execution E solves the g-partial gathering problem when the following

conditions hold:

e FEzxecution E is finite.

o In the final configuration, for any node v; such that there exists an agent on vj,

there exist at least g agents on vj. 0

For ring networks, we have the following lower bound on the total number of agent

moves. This theorem holds in both deterministic and randomized algorithms.

Theorem 3.2.1. The total number of agent moves required to solve the g-partial gath-

ering problem is Q(gn) if g > 2.

Proof. We consider an initial configuration such that all agents are scattered evenly (i.e.,
all the agents have the same distances to their nearest agents). We assume n = ck holds
for some positive integer ¢. Let V' be the set of nodes where agents exist in the final
configuration, and let z = [V’|. Since at least g agents meet at v; for any v; € V', we
have k > gz.

For each vj € V', we define A; as the set of agents that meet at v; and T} as the total
number of moves of agents in A;. Then, among agents in A;, the i-th smallest number

of moves to get to v; is at least (¢ — 1)n/k. Hence, we have

|4 n
T > i — 1) —
. (i—1) 2
=1
g gn
> Y61 (4] -9 2
=1
n g(g—1) gn
p— —_— . A' _ - —_,
LA (45l -g)- 2

3.3. THE FIRST MODEL: A DETERMINISTIC ALGORITHM FOR DISTINCT AGENTS17

Therefore, the total number of moves is at least

T:ZT]-

UJEV/
n glg—1) n
> p.—. k— a
> @+ (k- gw)
gnx
= gn—L"(g+1
gn =5 (g+1)
Since k£ > gz holds, we have
n
T>—(g—1).
2 5(9-1)
Thus, the total number of moves is at least Q(gn). O

3.3 The First Model: A Deterministic Algorithm for Dis-
tinct Agents

In this section, we propose a deterministic algorithm to solve the g-partial gathering
problem for distinct agents (i.e., agents have distinct IDs). The basic idea is that agents
elect a leader and then the leader instructs other agents which nodes they meet at.
However, since Q(nlog k) total moves are required to elect one leader [Z1], this approach
cannot lead to the g-partial gathering in asymptotically optimal total moves (i.e., O(gn)).
To achieve the partial gathering in O(gn) total moves, we elect multiple agents as leaders
by executing the leader agent election partially. By this behavior, the number of moves
for the election can be bounded by O(nlog g). In addition, we show that the total number
of moves for agents to move to their gathering nodes by leaders’ instruction is O(gn).
Thus, our algorithm solves the g-partial gathering problem in O(gn) total moves.

The algorithm consists of two parts. In the first part, multiple agents are elected
as leader agents. In the second part, the leader agents instruct the other agents which

nodes they meet at, and the other agents move to the nodes by the instruction.

3.3.1 The first part: leader election

The aim of the first part is to elect leaders that satisfy the following conditions called

leader election conditions: 1) At least one agent is elected as a leader, and 2) there exist

18 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

at least ¢ — 1 non-leader agents between two leader agents. To attain this goal, we use
a traditional leader election algorithm [42]. However, the algorithm in [47] is executed
by nodes and the goal is to elect exactly one leader. Hence we modify the algorithm
to be executed by agents, and then agents elect multiple leader agents by executing the
algorithm partially.

During the execution of leader election, the states of agents are divided into the

following three types:

e active: The agent is performing the leader agent election as a candidate of leaders.
e inactive: The agent has dropped out from the candidate of leaders.

e leader: The agent has been elected as a leader.

For an intuitive understanding, we first explain the idea of leader election by assuming
that the ring is synchronous and bidirectional. Later, the idea is applied to our model,
that is, asynchronous unidirectional rings. The algorithm consists of several phases. In
each phase, each active agent compares its own ID with IDs of its backward and forward
neighboring active agents. More concretely, each active agent a;, writes its own ID idy to
the whiteboard of its current node, and moves backward and forward. Then, a; observes
ID idy of its backward active agent and ids of its forward active agent. After this, ap
decides if it remains active or drops out from the candidates of leaders. Concretely, if
its own ID ids is the smallest among the three IDs, aj remains active (as a candidate of
leaders) in the next phase. Otherwise, a;, drops out from the candidate of leaders and
becomes inactive. Note that, in each phase, neighboring active agents never remain as
candidates of leaders. Thus, at least half active agents become inactive in each phase.
Moreover from [42], after executing j phases, there exist at least 2/ — 1 inactive agents
between two active agents. Thus, after executing [log g| phases, the following properties
are satisfied: 1) At least one agent remains as a candidate of leaders, and 2) the number
of inactive agents between two active agents is at least ¢ — 1. Therefore, all remaining
active agents become leaders since they satisfy the leader election conditions. Note that,
before executing [log g| phases, the number of active agents may become one. In this

case, the active agent immediately becomes a leader.

3.3. THE FIRST MODEL: A DETERMINISTIC ALGORITHM FOR DISTINCT AGENTS19

g P active

’ P inactive

Figure 3.1: An execution example of the leader election part (k =8, g = 3)

In the following, we implement the above algorithm in asynchronous unidirectional
rings. First, we implement the above algorithm in a unidirectional ring by applying a
traditional technique [42]. Let us consider the behavior of active agent a. In unidirec-
tional rings, aj cannot move backward and cannot observe the ID of its backward active
agent. Instead, a; moves forward until it observes IDs of two active agents. Then, ay,
observes IDs of three successive active agents. We assume ap, observes idy, ide, ids in
this order. Note that idy is the ID of aj. Here this situation is similar to that the active
agent with ID ids observes id; as its backward active agent and id3 as its forward active
agent in bidirectional rings. For this reason, aj; behaves as if it would be an active agent
with ID ids in bidirectional rings. That is, if ids is the smallest among the three IDs,
ap remains active as a candidate of leaders. Otherwise, a;, drops out from the candidate
of leaders and becomes inactive. After the phase if a; remains active as a candidate, it

assigns idy to its ID and starts the next phase.”

For example, consider the initial configuration in Fig.BT (a). In the figures, the
number near each agent is the ID of the agent and the box of each node represents the
whiteboard. In the first phase, each agent writes its own ID to the whiteboard on its
initial node. Next, each agent moves forward until it observes two IDs, and then the

configuration is changed to the one in Fig.B (b). In this configuration, each agent

We imitate the way in [22], but active agent aj may still use its own ID id; in the next phase.

20 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

compares three IDs. The agent with ID 1 observes IDs (1, 8, 3), and hence it drops out
from the candidate because the middle ID 8 is not the smallest. The agents with IDs
3, 2, and 5 also drop out from the candidates. The agent with ID 7 observes IDs (7, 1,
8), and hence it remains active as a candidate because the middle ID 1 is the smallest.
Then, it updates its ID to 1 and starts the next phase. The agents with IDs 8, 4, and
6 also remain active as candidates and similarly update their IDs and start the next
phase. In the second phase, active agents with updated IDs with 1,2,3, and 5 move until
they observe two IDs of active agents respectively, and then the configuration change is
changed to the one in Fig. B (c). In this configuration, the agent with ID 2 observes IDs
(2, 5, 1), and it drops out from the candidate because the middle ID is not the smallest.
Similarly, the agent with ID 1 also drops out from the candidate. On the other hand,
the agent with ID 5 observes IDs (5, 1, 3), and it remain active because the middle ID is
the smallest. Similarly, the agent with ID 3 remains active. Since agents with IDs 5 and

3 execute 2 (= [log g]) phases, they become leaders.

Next, we explain the way to treat asynchronous agents. To recognize the current
phase, each agent manages a phase number. Initially, the phase number is zero, and
it is incremented when each phase is completed. Each agent compares IDs with agents
that have the same phase number. To realize this, when each agent writes its ID to the
whiteboard, it also writes its phase number. That is, at the beginning of each phase,
active agent ay writes a tuple (phase,idy) to the whiteboard on its current node, where
phase is the current phase number and idy, is the current ID of aj. After that, a; moves
until it observes two IDs with the same phase number as that of a;. Note that, some
agent ajp may pass another agent a;. In this case, a; waits until a; catches up with ay.
We explain the details later. Then, a; decides whether it remains active as a candidate
or becomes inactive. If ap remains active, it updates its own ID. Agents repeat these

behaviors until they complete the [log g|-th phase.

Pseudocode. The pseudocode to elect leader agents is given in Algorithm BT and B=2.
All agents start the algorithm with active states, and the behavior of active agent ay, is
described in Algorithm B7. We describe v; by the node that aj currently exists. If ay,

changes its state to an inactive state or a leader state, a; immediately moves to the next

3.3. THE FIRST MODEL: A DETERMINISTIC ALGORITHM FOR DISTINCT AGENTS21

part and executes the algorithm for an inactive state or a leader state in Section BZ3A.

Agent a; and node v; have the following variables:

e ay.idq, ap.ids, and ay,.ids are variables for aj, to store IDs of three successive active
agents. Agent ay, stores its ID on ap.id; and initially assigns its initial ID ay.id to

ah.idl.
e ay.phase is a variable for a; to store its own phase number.

e vj.phase and v;.id are variables for an active agent to write its phase number and

its ID. For any vj, initial values of these variables are 0.

e vj.inactive is a variable to represent whether there exists an inactive agent at
v; or not. That is, agents update the variable to keep the following invariant:
If there exists an inactive agent on vj;, vj.inactive = true holds, and otherwise

vj.inactive=false holds. Initially v;.inactive = false holds for any v;.

In Algorithm B, aj, uses procedure BasicAction(), by which agent a; moves to node
vjr satisfying vy .phase = ap,.phase.

The pseudocode of BasicAction() is described in Algorithm B2. In BasicAction(),
the main behavior of a; is to move to node v, satisfying vj.phase = ap.phase. To
realize this, aj, skips nodes where no agent initially exists (i.e., vj.initial = false) or an
inactive agent whose phase number is not equal to aj’s phase number currently exists
(i.e., vj.inactive = true and ay.phase # vj.phase), and continues to move until it reaches
a node where some active agent starts the same phase (lines 2 to 4). Note that during
the execution of the algorithm, it is possible that aj; becomes the only one candidate of
leaders. In this case, aj, immediately becomes a leader (line 6 of Algorithm B).

In the following, we explain the details of the treatment of asynchronous agents.
Since agents move asynchronously, agent a; may pass some active agents. To wait for
such agents, agent aj, makes some additional behavior (lines 5 to 8). First, consider the
transition from the configuration of Fig.B2 (a) to that of Fig. B2 (b) and consider the
case that aj passes a; with a smaller phase number. Let x = ay,.phase and y = ay.phase

(y < x). In this case, aj detects the passing when it reaches a node v, such that

22 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

Algorithm 3.1 The behavior of active agent aj, (v; is the current node of ap)

Variables in Agent ay,
int ay.phase;
int ap.idy,ap.ids,ap.ids;
Variables in Node v;
int v;.phase;
int v;.id;
boolean v;.inactive = false;
Main Routine of Agent a,
1: ap.phase =1
2: ap.id; = ap.id
3: vj.phase = ap.phase
v;.0d = ap.id
BasicAction()
if (v;.phase = ayp.phase) A (vj.id = ap.id1) then change its state to a leader state
ap.idy = vj;.id

BasicAction()

ap.id3 = vj;.id

10: if ap.idy > min(ay,.idy, ap.ids) then
11: wj.inactive = true

12: change its state to an inactive state
13: else

14: if ap.phase = [log g]| then

15: change its state to a leader state
16: else

17: ap.phase = ay.phase + 1

18: ap.idy = ap.ids

19: end if

20: return to step 3
21: end if

ap.phase > v..phase holds. Hence, aj can wait for a; at v.. Since ap increments v..phase

or becomes inactive at v., ap waits at v, until either v..phase = x or v..inactive = true

3.3. THE FIRST MODEL: A DETERMINISTIC ALGORITHM FOR DISTINCT AGENTS23

Algorithm 3.2 Procedure BasicAction() for ay
: move to the forward node

=

2: while (vj.initial = false) V (vj.inactive = true A ay.phase # vj.phase) do
3: move to the forward node

4: end while

5: if aj.phase > vj.phase then

6: wait until v;.phase = aj.phase or v;.inactive = true

7: return to step 2

8: end if

holds (line 6). After a; updates the value of either v..phase or v..inactive, aj resumes

its behavior.

Next, consider the case that aj passes a; with the same phase number. In the
following, we show that agents can treat this case without any additional procedure.
Note that, because aj increments its phase number after it collects two other IDs, this
case happens only when qa;, is a forward active agent of ay. Let x = ap.phase = ay.phase.
Let ap, ap, a., and a4 are successive agents that start phase z. Let vy, vp, ve, and vg
are nodes where ay, ap, ac, and a4 start phase x, respectively. Note that aj (resp., ap)
decides whether it becomes inactive or not at v, (resp., v4). We consider further two cases
depending on the decision of aj at v.. First, in the transition from the configuration of
Fig.B3 (a) to that of Fig.B3 (b), consider the case aj becomes inactive at v.. In this
case, since ay, does not update v..id, a; gets a..id at v. and moves to vg and then decides
its behavior at vg. Next, in the transition from the configuration of Fig.B4 (a) to that
of Fig.B3A (b), consider the case aj remains active at v.. In this case, a; increments its
phase (i.e., ap.phase = x+1) and updates v..phase and v..id. Note that, since aj, remains
active, ap.tdo = ap.id is the smallest among the three IDs. Hence, v..id is updated to
ap.id by ap. Then, ap continues to move until it reaches vy. If aj reaches vy before ay
reaches vy, both vg.phase < ap.phase and vg.inactive = false hold at vy. Hence, aj, waits
until ap reaches vg. On the other hand when ap reaches v., since ap.phase < v..phase

holds, a; continues to move without waiting for the update of v..phase. In addition since

24 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

phase = x phase =y

g &* O
H Fphase = y}-+

Vg Vp Ve

@

phase =y phase =x

o 8% 8=
1 Flphase = y}-

(b)

Figure 3.2: The first example of agent a;, that passes other agents (e.g, ap)

an ap

O

-iphase = xPlphase = x|~|phase = x}+lphase = x|+
Vh Vp Ve Vg

(@

ap ap

@)

-|phase = xp|phase = x|~phase = x|+[phase = x|~

Vh Up Ve Va

(b)

Figure 3.3: The second example of agent a;, that passes other agents (e.g., ap)

ap, has updated v..id, ap, sees v..id = ap.id. Thus since ay.td; = ap.ido holds, a; becomes
inactive when it reaches vy. After that, aj resumes the movement.

We have the following lemma about Algorithm BT similarly to [42].

Lemma 3.3.1. Algorithm B eventually terminates, and the configuration satisfies the

3.3. THE FIRST MODEL: A DETERMINISTIC ALGORITHM FOR DISTINCT AGENTS25

following properties.
o There exists at least one leader agent.
o There exist at least g — 1 inactive agents between two leader agents.

Proof. At first, we show that Algorithm BT eventually terminates. After executing [log g|
phases, agents that have dropped out from the candidates of leaders are inactive states,
and agents that remain active changes their states to leader states. In addition if agent
ap passes another agent ajs, aj waits for ap at some node v; until either v;.phase
or vj.inactive is updated (lines 5 to 8 in Algorithm B). Since the passed agent aj
eventually reaches v; and updates either v;.phase or v;.inactive, it does not happen that
ap, waits at v; forever. Moreover, by the time executing [logg]| phases, if there exists
exactly one active agent and the other agents are inactive, the active agent changes its
state to a leader state. Therefore, Algorithm B eventually terminates. In the following,
we show the above two properties.

First, we show that there exists at least one leader agent. From Algorithm BT, in each
phase if aj.idy is smallest of the three IDs, a; remains active. Otherwise, a; becomes
inactive. Since each agent uses a unique ID, if there exist at least two active agents in
some phase i, at least one agent remains active after executing the phase i. Moreover,
from line 6 of Algorithm BT, if there exists exactly one candidate of leaders and the other
agents remain inactive, the candidate becomes a leader. Therefore, there exists at least
one leader agent.

Next, we show that there exist at least ¢ — 1 inactive agents between two leader
agents. At first, we show that after executing j phases, there exist at least 2/ — 1 inactive
agents between two active agents. We show it by induction on the phase number and by
using the fact that in each phase if an agent aj; remains as a candidate of leaders, then
its backward and forward active agents drop out from candidates of leaders. For the case
j =1, there exists at least 1 = 2! — 1 inactive agents between two active agents. For the
case j = [, we assume that there exist at least 2! — 1 inactive agents between two active
agents. Then, after executing [+ 1 phases, since at least one of neighboring active agents

becomes inactive, the number of inactive agents between two active agents is at least

26 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

ap ap

O

-phase = xPphase = x|~|phase = xPphase = x}*
Vn Vp Ve Va

(@

ap.phase = x +1

oé@o

n _ L _ | |phase = x| | — ol
phase = xfphase = x id = ay.id phase = x
Un Vp Ve Vg4
(b)

Figure 3.4: The third example of agent aj, that passes other agents (e.g, ap)

(2! —=1)4+1+ (2 —1) = 2"+ — 1. Hence, we can show that after executing j phases, there
exist at least 27 — 1 inactive agents between two active agents. Therefore, after executing

[log g] phases, there exist at least g — 1 inactive agents between two leader agents. [
In addition, we have the following lemma similarly to [42].
Lemma 3.3.2. The total number of agent moves to execute Algorithm [is O(nlogg).

Proof. In each phase, each active agent moves until it observes two IDs of active agents.
This costs O(n) moves in total because each communication link is passed by two agents.

Since agents execute [log g| phases, we have the lemma. O

3.3.2 The second part: movement to gathering nodes

The second part achieves the g-partial gathering by using leaders elected in the first
part. Let leader nodes (resp., inactive nodes) be the nodes where agents become leaders
(resp., inactive agents) in the first part. In this part, states of agents are divided into

the following three types:

e [eader: The agent instructs inactive agents where they should move.

3.3. THE FIRST MODEL: A DETERMINISTIC ALGORITHM FOR DISTINCT AGENTS27

Figure 3.5: The realization of partial gathering (g = 3)

e inactive: The agent waits for the leader’s instruction.
e moving: The agent moves to its gathering node.

The idea of the algorithm is to divide agents into groups each of which consists of
at least g agents. Concretely, first each leader agent aj writes 0 to the whiteboard on
the current node (i.e., the leader node). Next, ap moves to the next leader node, that
is, the node where 0 is already written to the whiteboard. While moving, whenever ay,
visits an inactive node vj, it counts the number of inactive nodes that a; has visited. If
the number plus one is not a multiple of g, aj writes 0 to the whiteboard. Otherwise,
ap, writes 1 to the whiteboard. These numbers are used to indicate whether the node
is a gathering node or not. The number 0 means that agents do not meet at the node
and the number 1 means that at least g agents meet at the node. When aj, reaches the
next leader node, it changes its own state to a moving state, and we explain the behavior
of moving agents later. For example, consider the configuration in Fig. B3 (a). In this
configuration, agents a; and ag are leader agents. First, a; and as write 0 to their current
whiteboards (Fig.B3 (b)), and then they move and write numbers to whiteboards until
they visit the node where 0 is already written to the whiteboard. Then, the system
reaches the configuration in Fig.B3 (c).

Each non-leader (i.e., inactive agent) aj waits at the current node until the value

of the whiteboard is updated. When the value is updated, ap changes its own state

28 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

Algorithm 3.3 Initial values needed in the second part (v; is the current node of agent

ah)
Variable in Agent ay

int ap.count = 0;
Variable in Node v;

int v;.isGather =1;

to a moving state. Each moving agent moves to the nearest node where 1 is written
to the whiteboard. For example, after the configuration in Fig.B3 (c), each non-leader
agent moves to the node where 1 is written to the whiteboard and the system reaches the
configuration in Fig.BH (d). After that, agents can solve the g-partial gathering problem.

Pseudocode. The pseudocode to achieve the partial gathering is described in Algo-
rithm B3 to BB. In this part, agents continue to use vj;.initial and v;.inactive. Remind
that vj.initial = true if and only if there exists an agent at v; initially. In addition,
vj.inactive = true if and only if there exists an inactive agent at v;. Note that, since
each agent becomes inactive or a leader at a node such that there exists an agent initially,
agents can ignore and skip every node v; such that v .initial = false holds.

At first, the variables needed to achieve the g-partial gathering are described in Al-
gorithm BZ3. For leader agents instructing inactive agents gathering nodes, agent a; and

node v; have the following variables:

e aj.count is a variable for aj to count the number of inactive nodes ay, visits (The

counting is done modulo g). The initial value of aj.count is 0.

e v;.isGather is a variable for leader agents to write values to indicate whether node
v; is a gathering node or not. That is, when a leader agent a; visits an inactive
node vj, aj, writes 1 to vj.isGather to indicate v; is a gathering node if aj,.count = 0,

and aj, writes 0 to v;.isGather otherwise. The initial value of v;.isGatheris L.

The pseudocode of leader agents is described in Algorithm B@. Since agents move
asynchronously, it is possible that there exists active agents executing the first part and

leader agents executing the second part at the same time. Hence, it may happen that

3.3. THE FIRST MODEL: A DETERMINISTIC ALGORITHM FOR DISTINCT AGENTS29

Algorithm 3.4 The behavior of leader agent ay, (v; is the current node of ay)
1: v;.isGather = 0

2: ap.count = ap.count + 1

3: move to the forward node

4: while v;.isGather =1 do

5: while vj.initial = false do

6: move to the forward node

7. end while

8: if (vj.inactive = false) A (vj.isGather =1) then
9: wait until v;.inactive = true or v;.isGather #1
10: end if

11: if vj.inactive = true then

12: if aj.count = 0 then

13: v;.i8Gather = 1

14: else

15: v;.i8Gather = 0

16: end if

17: // an inactive agent at v; changes to a moving state
18: ap.count = (ap.count + 1) mod g

19: move to the forward node

20: end if

21: end while

22: change to a moving state

some leader agent aj may pass some active agent a;. In this case, a; waits until a; catch
up with ap and a; becomes a leader or inactive. More precisely, when leader agent ay,
visits the node v; such that v;.initial = true and v;.inactive = false and v;.isGather =L
hold, it detects that it passes some active agent a;. This is because v;.inactive = true
should hold if some agent becomes inactive at v;, and v;.isGather #_L holds if some agent

becomes leader at v;. In this case, aj, waits there until the agent caches up with it and

30 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

Algorithm 3.5 The behavior of inactive agent aj, (v; is the current node of ap)
1: wait until v;.isGather #1

2: change to a moving state

Algorithm 3.6 The behavior of moving agent ay, (v; is the current node of ay,)
1: while v;.isGather # 1 do

2: move to the forward node

3. if (vj.initial = true) A (vj.isGather =1) then
4: wait until v;.isGather #1

5. end if

6: end while

either v;.inactive = true or v;.isGather #1 holds (lines 8 to 10). When the leader agent
updates vj.isGather, an inactive agent on node v; changes to a moving state (line 17).
After a leader agent reaches the next leader node, it changes its own state to a moving
state (line 22). The behavior of inactive agents is described in Algorithm BZ3.

The pseudocode of moving agents is described in Algorithm B@. Moving agent aj,
moves to the nearest node v; such that v;.isGather = 1 holds. When all agents complete
such moves, the g-partial gathering problem is solved. In asynchronous rings, a moving
agent may pass leader agents. To avoid this, the moving agent waits until the leader
agent catches up with it. More precisely, if moving agent aj visits node v; such that
vj.anitial = true and v;.isGather =1 hold, a; detects that it passed a leader agent.
Then, aj, waits there until the leader agent comes and updates v;.isGather (lines 3 to 5).

We have the following lemma about the algorithm in Section B=32.

Lemma 3.3.3. After the leader agent election, agents solve the g-partial gathering prob-

lem in O(gn) total moves.

Proof. At first, we show the correctness of the proposed algorithm. Let v, v{,...,v] be
nodes such that v? .isGather = 1 holds (0 < j <) after all leader agents complete their
behaviors, and we call these nodes gathering nodes. From Algorithm B®, each moving

agent moves to the nearest gathering node v? . By Lemma B=3IT, there exist at least

3.4. THE SECOND MODEL: A RANDOMIZED ALGORITHM FOR ANONYMOUS AGENTS31

g — 1 moving agents between ng- and v? 41 Hence, agents can solve the g-partial gathering
problem. In the following, we consider the total number of moves required to execute

the algorithm.

First, the total number of moves required for each leader agent to move to its next
leader node is obviously n. Next, let us consider the total number of moves required for
each moving agent to move to nearest gathering node ng (For example, the total moves
from Fig B3 (c) to Fig BA (d)). Remind that there are at least g — 1 inactive agents
between two leader agents and each leader agent aj, writes 1 to v;.isGather after writing
0 g — 1 times. Hence, there are at most 2g — 1 moving agents between v? and v]g- Y1
Thus, the total number of these moves is O(gn) because each link is passed by at most

2g agents. Therefore, we have the lemma. O

From Lemmas B232 and BZ323, we have the following theorem.

Theorem 3.3.1. When agents have distinct IDs, our deterministic algorithm solves the

g-partial gathering problem in O(gn) total moves. O

3.4 The Second Model: A Randomized Algorithm for Anony-

mous Agents

In this section, we propose a randomized algorithm to solve the g-partial gathering prob-
lem for anonymous agents under the assumption that each agent knows the total number
k of agents. The idea of the algorithm is the same as that in Section BZ3. In the first
part, agents execute the leader election partially and elect multiple leader agents. In
the second part, the leader agents determine gathering nodes and all agents move to the
nearest gathering nodes. In the previous section each agent uses distinct IDs to elect
multiple leader agents, but in this section each agent is anonymous and uses random
IDs. We also show that the g-partial gathering problem is solved in O(gn) expected total

moves.

32 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

3.4.1 The first part: leader election

In this subsection, we explain a randomized algorithm to elect multiple leaders by using
random IDs. Similarly to Section BZ3, the aim in this part is to satisfy the following
conditions (leader election conditions): 1) At least one agent is elected as a leader, and
2) there exist at least g — 1 non-leader agents between two leader agents. The basic idea
is the same as Section B2, that is, each active agent moves in the ring and compares
three random IDs. If the ID in the middle is the smallest of the three random IDs, the
active agent remains active. Otherwise, the active agent drops out from the candidate of

leaders.

Now we explain details of the algorithm. In the beginning of each phase, each active
agent selects 3 log k random bits as its own ID. After this, each agent executes in the same
way as Section B2, that is, each active agent moves until it observes two random IDs
of active agents and compares three random IDs. If the observed three IDs are distinct,
the agent can execute the leader agent election similarly to Section BZX. In addition
to the behavior of the leader election in Section 3.1, when an agent becomes a leader at
node vj, the agent sets a leader-flag at v;, and we explain how leader-flags are used later.
If no agent observes a same random ID, the total number of moves for the leader agent
election is the same as in Section B3, that is, O(nlogg). In the following, we consider

the case that some agent observes a same random ID.

Let ap.tdy, ap.ido, and ap.ids be random IDs that an active agent a; observes in some
phase. If ap.idi = ap.ids # ap.ids holds, then ap behaves similarly to Section BZXTI,
that is, if ap.ide < ap.idiy = ay.ids holds, ap remains active and aj; becomes inactive
otherwise. For example, let us consider a configuration of Fig. B8 (a). Each active agent
moves until it observes two random IDs (Fig.B@ (b)). Then, agent a; observes three
random IDs (2,1,2) and remains active because ay.idy < aj.id; = aj.id3 holds. On the
other hand, agent ay observes three random IDs (3,4,3) and becomes inactive because
as.ido > ag.id] = as.ids holds. The other agents do not observe same random IDs and
behave similarly to Section BZ3, that is, if their middle IDs are the smallest, they remain

active and execute the next phase. If their middle IDs are not the smallest, they become

3.4. THE SECOND MODEL: A RANDOMIZED ALGORITHM FOR ANONYMOUS AGENTS33

g :active
’ tinactive

Figure 3.6: An example that some agent observes the same random IDs

nactive.

Next, we consider the case that either ap.idys = ay.id; or ap.ido = ap.ids holds. In
this case, aj changes its own state to a semi-leader state. A semi-leader is an agent that
has a possibility to become a leader if there exists no leader agent in the ring. When at
least one agent becomes a semi-leader, each active agent becomes inactive. The outline
of the behavior of each semi-leader agent is as follows: First each semi-leader travels a
round in the ring. After this, if there already exists a leader agent in the ring, each
semi-leader becomes inactive. Otherwise, the leader election is executed among all semi-
leader agents, and exactly one semi-leader is elected as a leader and the other agents
become inactive (including active agents). Note that, we can show that the probability
some active agent becomes a semi-leader is sufficiently low and the expected number of
semi-leader agents during the leader election is also sufficiently small. Hence even when
each semi-leader travels a round in the ring several times, the expected total moves to

complete the leader agent election can be bounded by O(nlog g).

Now, we explain the detailed behavior for semi-leader agents. When an active agent
ap becomes a semi-leader, it sets a semi-leader-flag on its current whiteboard. In the
following, the node where the semi-leader flag is set (resp., not set) is called a semi-
leader node (resp., a non-semi-leader node). After that, semi-leader agent aj travels a
round in the ring. In the travel, when ay, visits a non-semi-leader node v; where there

exists an agent in the initial configuration, that is, a non-semi-leader node v; such that

34 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

vj.initial = true holds, ay, sets the tour-flag at v;. This flag is used so that other agents
notice the existence of a semi-leader and become inactive. Moreover when a;, visits a
semi-leader node, a; compares its random ID with the random ID written to the current
whiteboard. Then, a; memorizes whether its random ID is smaller or not and whether
another semi-leader has the same random ID as its random ID or not.

After traveling a round in the ring, aj decides if it becomes a leader or inactive. While
traveling in the ring, if aj, observes a leader-flag, it learns that there already exists a leader
agent in the ring. In this case, ap becomes inactive. Otherwise, aj decides if it becomes
a leader or inactive depending on random IDs. Let ap.id be ap’s random ID and Ay,
be the set of semi-leaders such that each semi-leader a;, € A,,i, has the smallest random
ID id,nin, among all semi-leaders. In this case, each semi-leader aj, ¢ Ay clears a semi-
leaders-flag and becomes inactive. On the other hand, if aj has the unique minimum
random ID (i.e., |Amin| = 1), ap becomes a leader. Otherwise, ay selects a random ID
again, writes the ID to the current whiteboard, travels a round in the ring. Then, ay
obtains new random IDs of semi-leaders. Each semi-leader aj, repeats such a behavior
until |A;,in| = 1 holds.

Pseudocode. The pseudocode to elect leader agents is given in Algorithm BZ2 to
BT, Algorithm BT represents variables required for the behavior of active agents, and
Algorithm B8 represents the behavior of active agents. Agent a; and node v; have the

following variables:

e ay.idy, ap.ids, and ay.idg are variables for ay, to store random IDs of three successive

active agents. Note that aj stores its own random ID on ay.id;.
e ay.phase is a variable for a; to store its phase number.

e v;.phase and v;.id are variables for an active agent to write its phase number and

its random ID. For every vj, initial values of these variables are 0.

e v;.tour-flag and vj.leader-flag are variables to represent whether there exists an
semi-leader agent and a leader agent or not respectively. The initial values of these

variables are false.

3.4. THE SECOND MODEL: A RANDOMIZED ALGORITHM FOR ANONYMOUS AGENTS35

Algorithm 3.7 Values required for the behavior of active agent aj (v; is the current

node of ay)

Variables for Agent ay

int ap.phase;

int ap.idy,ap.ids,ap.ids;
boolean ay.semiObserve = false
Variables for Node v,

int vj.phase;

int v;.id;

boolean v;.inactive = false;
boolean v;.tour-flag = false;

boolean v;.leader-flag = false;

e ay.semiObserve is a variable for ap to decide whether it observes a tour-flag or not.

The initial value of ap.semiObserve is false.

In addition to these variables, agents aj uses the procedure random(l) to get its own
random ID. This procedure returns [random bits.

In each phase, each active agent selects its own random ID of 3logk bits length
through random(3log k), and moves until it observes two random IDs by BasicAction()
in Algorithm BZ. If each active agent a; neither observes a tour-flag nor observes phase
numbers and random IDs such that (aj.phase = vj.phase) A (ap.idy = ap.idy V ap.idy =
ap,.id3) holds, this pseudocode works similarly to Algorithm BZ3. In this case when an
agent becomes a leader, the agent sets a leader-flag at v; (lines 20 to 23). If an active
agent ap observes a tour-flag, then a; moves until it observes two random IDs of active
agents and becomes inactive (lines 11 to 14). Remind that v;.inactive is a variable to
represent whether there exists an inactive agent or not. If an active agent aj observes
three random IDs such that (aj.phase = vj.phase) A (ap.ida = ap.idi V ap.ida = ap.id3)
holds, then aj, changes its own state to a semi-leader state (line 15).

Algorithm B™ represents variables required for the behavior of semi-leader agents,

and Algorithm BT0 and Algorithm BT represent the behavior of semi-leader agents.

36 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

Algorithm 3.8 The behavior of active agent aj, (v; is the current node of ap)

1: ap.phase =1

2: ap.idy = random(3logk)

3: vj.phase = ay.phase

4: vj.id = ap.idy

5: BasicAction()

6: if vj.tour = true then ay.semiObserve = true
7 ap.idy = vj.id

8: BasicAction()

9: if v;.tour = true then ay.semiObserve = true
10: ap.id3 = vj;.id
11: if ap.semiObserve = true then
12: wj.inactive = true
13: change its state to an inactive state
14: end if
15 if (ap.phase = vj.phase) A (ap.idy = ap.ida V ap.ide = aj.id3) then change its state

to a semi-leader state

16: if ap.ide > min(ay.idy, ap.id3) then
17: wj.inactive = true
18: change its state to an inactive state
19: else

20: if ap.phase = [log g| then

21: vj.leader-flag = true

22: change its state to a leader state
23: else

24: ap.phase = ay.phase + 1

25: end if

26: return to step 2

27: end if

3.4. THE SECOND MODEL: A RANDOMIZED ALGORITHM FOR ANONYMOUS AGENTS37

Algorithm 3.9 Values required for the behavior of semi-leader agent ay, (v; is the current

node of ap)

Variables for Agent ay
int ap.semiPhase;

int ap.semilD;

int ap.agentCount;
boolean ay,.isMin = true
boolean ay,.isUnique = true
boolean ay.leaderObserve = false
Variables for Node v,
int v;, semiPhase;

int v;.id;

boolean v;.leader-flag;
boolean v;.semi-leader-flag;

boolean wv;.tour-flag;

Semi-leader-agent a; and node v; have the following variables:
e ay.semilD is a variable for a;, to store its random ID.

e ay.agentCount is a variable for aj to detect the completion of one round of the ring

travel.

e ay.isMin is a variable for a;, to detect whether its random ID is the smallest or not.

The initial value of a.isMin is true.

e ay.isUnique is a variable for aj, to detect whether another semi-leader has the same
random ID as its random ID. The initial value of ay.

1sUnique is true.

e ay.leaderObserve is a variable for aj to detect whether there exists a leader agent

in the ring or not. The initial value of a,.leaderObserve is false.

e ay.semiPhase is a variable for ay, to store its phase number in the semi-leader state.

38 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

Algorithm 3.10 The first half behavior of semi-leader agent ay, (v; is the current node

of ap)
1: if v;.tour-flag = true then

2: wvj.anactive = true

3: change its state to an inactive state

4: end if

5: vj.semi-leader-flag = true

6: ap.semiPhase =1

7: vj.semiPhase = ay.semiPhase

8: v;.id = random(3log k)

9: ap.semilD = v;.id

10: while ay.agentCount # k do

11: move to the forward node

12: while v;.initial = false do move to the forward node
13: ap.agentCount = ap.agentCount + 1

14: if vj.leader-flag = true then ay.leaderObserve = true

15: if vj.semi-leader-flag = true then

16: if ay,.semiPhase # vj.semiPhase then wait until ay,.semiPhase = v;j.semiPhase
17: if vj.id < ay.semilD then ay,.isMin = false

18: if vj.id = ay.semilD then ay,.isUnique = false

19: else

20: vj.tour-flag = true

21: end if

22: end while

e vj.semiPhase is a variable for a semi-leader agent to write its phase number in the

semi-leader state.

Variables ay,.semiPhase and v;.semiPhase are used for the case that there exist several
semi-leaders having the same smallest random IDs. In addition to these variables, each

node v; has variables vj.id, v;.leader-flag, v;.semi-leader-flag, and v;.tour-flag as defined

3.4. THE SECOND MODEL: A RANDOMIZED ALGORITHM FOR ANONYMOUS AGENTS39

Algorithm 3.11 The latter half behavior of semi-leader agent aj, (v; is the current node

of ay)

1: if ay.leaderObserve = true then

2: vj.anactive = true

3: change its state to an inactive state
4: end if

5. if ap.isMin = false then

6: wvj.semi-leader-flag = false

7 wj.anactive = true

8: change its state to an inactive state
9: end if

10: if ap.isUnique = true then

11: change its state to a leader state
12: else

13: ap.semiPhase = ap.semiPhase + 1
14: ap.agentCount = 0

15: return to step 7 of Algorithm B0
16: end if

in Algorithm B72.

Before semi-leader aj, begins moving in the ring (from v;), if it detects tour-flag at v;,
another semi-leader a;/ has already visited v;. Then aj becomes inactive and does not
start the travel in the ring (lines 1 to 4 of Algorithm BT0). This is because, otherwise,
each semi-leader cannot share the same random IDs. After each semi-leader travels a
round in the ring, if there exists exactly one semi-leader whose random ID is the smallest,
the semi-leader becomes a leader and the other semi-leaders become inactive. Otherwise,
each semi-leader a;, whose random ID is the smallest updates its phase and random ID
again, and travels a round in the ring (lines 12 to 15 of Algorithm BT). Then, aj, obtains
new value of random IDs. Each semi-leader aj, repeats such a behavior until exactly one

semi-leader has the smallest random ID.

40 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

We have the following lemmas similarly to Section B=3.

Lemma 3.4.1. Algorithm E38 eventually terminates, and the configuration satisfies the

following properties.

o There exists at least one leader agent.

o There exist at least g — 1 inactive agents between two leader agents.

Proof. The above properties are the same as Lemma BT. Thus, if no agent becomes
a semi-leader during the algorithm, each agent behaves similarly to Section BZ3 and
the above properties are satisfied. Moreover if at least one agent becomes a semi-leader,
exactly one semi-leader is elected as a leader and the other agents become inactive. Then,
the above properties are clearly satisfied.

Therefore, we have the lemma. O

Lemma 3.4.2. The expected total number of agent moves to elect multiple leader agents

is O(nlogg).

Proof. If there exist no neighboring active agents having the same random IDs, Algo-
rithms B8 works similarly to Section B3, and the total number of moves is O(nlog g).
In the following, we consider the case that some neighboring active agents have the same
random IDs.

Let [be the length of a random ID. Then, the probability that two active neighboring
active agents have the same random ID is (%)l Thus, when there exist k; active agents in
the ¢-th phase, the probability that there exist neighboring active agents having the same
random IDs is at most k; X (%)l Since at least half active agents drop out from candidates
in each phase, the probability that neighboring active agents have the same random IDs
until the end of the [log g] phases is at most k x (3)!+ & x (3) +-- -+ Qﬂog% x (5)! <
2k x (3)'. Since I = 3logk holds, the probability is at most k% < . We assume that k
active agents become semi-leaders and circulate around the ring because this case requires
the most total moves. Then, each semi-leader a; compares its random ID with random

IDs of each semi-leader. Let A,,;, be the set of semi-leader agents whose random IDs

3.4. THE SECOND MODEL: A RANDOMIZED ALGORITHM FOR ANONYMOUS AGENTS41

are the smallest. If |A,,;n| = 1 holds, agents finish the leader agent election and the total
number of moves is at most O(kn). Otherwise, at least two semi-leaders have the same
smallest random IDs. This probability is at most k x (%)l In this case, each semi-leader
ap updates its phase and random ID again, travels a round in the ring, and obtains
new random IDs of each semi-leader. Each semi-leader aj repeats such a behavior until
| Apin| = 1 holds. We assume that ¢t = k x (%)l and semi-leaders complete the leader
agent election after they circulate around the ring s times. In this case, before they
circulate around the ring s — 1 times, |A,in| # 1 holds every time they circulate around
the ring. In addition when they circulate around the ring s times, |A;,in| = 1 holds, and
the probability such that |A,u:,| = 1 holds is clearly less than 1. Hence, the probability
such that agents complete the leader election after they circulate around the ring s times
is at most t*~! x 1 = t*~1, and the total number of moves is at most skn. Since the
probability that at least one agent becomes a semi-leader is at most %, the expected total
number of moves for the case that some agents become semi-leaders and complete the
leader agent election is at most O(nlogg) + ¢ x > oo t*7 1 x skn = n Y o0 st*~ 1. Let
Spbelx1+2xt+---+nt""L Then, we have S, = (nt"*! — (n — 1)t" +1)/(1 —).
When n = oo, we have S,, = 1/(1 —t)%. Moreover since ¢t = k x (3)! and [= 3log k hold,
we have t < % and S, < 4. Furthermore, the expected total number of moves is at most
O(n). Since the total moves to elect multiple leaders for the case that no agent becomes
a semi-leader is O(nlog g), the expected total moves for the leader election is O(nlog g).

Therefore, we have the lemma. O

3.4.2 The second part: movement to gathering nodes

After executing the leader agent election in Section B2, the conditions shown by Lemma
BT is satisfied, that is, 1) At least one agent is elected as a leader, and 2) there exist
at least g — 1 inactive agents between two leader agents. Thus, we can execute the
algorithms in Section BZ32 after the algorithms in Section BZT. Therefore, agents can
solve the g-partial gathering problem.

From Lemmas BZ33, B2, and B2, we have the following theorem.

42 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

Theorem 3.4.1. When agents have no IDs, our randomized algorithm solves the g-

partial gathering problem in expected O(gn) total moves. Ol

3.5 The Third Model: A Deterministic Algorithm for Anony-

mous Agents

In this section, we consider a deterministic algorithm to solve the g-partial gathering
problem for anonymous agents. At first, we show that there exist unsolvable initial
configurations in this model. Later, we propose a deterministic algorithm that solves the

g-partial gathering problem in O(kn) total moves for any solvable initial configuration.

3.5.1 Existence of Unsolvable Initial Configurations

To explain unsolvable initial configurations, we define the distance sequence of the ini-
tial configuration. For initial configuration ¢y, we define the distance sequence of agent
an as Dp(co) = (di(co),...,d? (co)), where d?(cy) is the distance between the i-th
forward agent of ap and the (i + 1)-th forward agent of ap in ¢g. Then, we define
the distance sequence of configuration ¢y as the lexicographically minimum sequence
among {Dp(co)|lar, € A}, and we denote it by D(cp). In addition, we define sev-
eral functions and variables for sequence D = (dg,dy,...,dk—1). Let shift(D,x) =
(dgydys1, ... dg—1,do,d1,...,dy—1) and when D = shift(D,z) holds for some z such
that 0 < z < k holds, we say D or the ring is periodic (Otherwise, we say D or the ring is
aperiodic). Moreover, we define period of D as the minimum (positive) value such that
shift(D, period) = D holds.

Then, we have the following theorem.

Theorem 3.5.1. Let ¢y be an initial configuration. If D(cg) is periodic and period is

less than g, the g-partial gathering problem is not solvable.

Proof. Let m = k/period. Let A; (0 < j < period — 1) be a set of agents aj, such
that Dp(co) = shift(D(cp),j) holds. Then, when all agents move in the synchronous

manner, all agents in A; continue to do the same behavior and thus they cannot break

3.5. THE THIRD MODEL: A DETERMINISTIC ALGORITHM FOR ANONYMOUS AGENTS 43

the periodicity of the initial configuration. Since the number of agents in A; is m and
no two agents in A; stay at the same node, there exist m nodes where agents stay in
the final configuration. However, since k/m = period < g holds, it is impossible that at
least g agents meet at the m nodes. Therefore, the g-partial gathering problem is not

solvable. 0

3.5.2 Proposed Algorithm

In this section, we propose a deterministic algorithm to solve the g-partial gathering
problem in O(kn) total moves for solvable initial configurations. Let D = D(cg) be the
distance sequence of initial configuration c¢y. From Theorem B, the g-partial gathering
problem is not solvable if period < g. On the other hand, our proposed algorithm solves
the g-partial gathering problem if period > g holds. In this section, we assume that each
agent knows the number £ of agents.

The idea of the algorithm is as follows: First each agent aj travels a round in the
ring and obtains the distance sequence Dy(cg). After that, a, computes D and period.
If period < g holds, aj, terminates the algorithm because the g-partial gathering problem
is not solvable. Otherwise, agent ay, identifies nodes such that agents in {ay|D = Dy(co)}
initially exist. Then, a; moves to the nearest node among them. Clearly period (> g)
agents meet at the node, and the algorithm solves the g-partial gathering problem.

We have the following theorem about Algorithm BT2.

Theorem 3.5.2. When agents have no IDs, our deterministic algorithm solves the g-

partial gathering problem in O(kn) total moves if the initial configuration is solvable.

Proof. At first, we show the correctness of the algorithm. Each agent aj moves around
the ring, and computes the distance sequence D,,;, and its period. If period < g holds,
the g-partial gathering problem is not solvable from Theorem B and a; terminates
the algorithm. In the following, we consider the case that period > g holds. From line 20
in Algorithm B2, each agent moves to the forward node Zfibm_l ap.D]i] times. By this

behavior, each agent aj, moves to the nearest node such that agent a, with ay.D = D(cp)

initially exists. Since period(> g¢) agents move to the node, the algorithm solves the

44 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

Algorithm 3.12 The behavior of active agent aj, (v; is the current node of ay.)

Variables in Agent ay
int ay.total,
int ay.dis;
int ap.x;
array of int ap.D] |;
array of int Dyl |;
Main Routine of Agent ay
1: ap.total =0
2: ap.dis =0
3: while ay.total # k do
4: move to the forward node
5: while vj.initial = false do
6: move to the forward node
7 ap.dis = ap.dis + 1
8: end while
9: ap.Dlap.total] = ap.dis
10: ap.total = ap.total + 1
11: ap.dis=0
12: end while
13: let Dy be a lexicographically minimum sequence among {shift(ap.D,x)|0 < x <
k—1}.
14: period = min{x > 0|shift(Dmin,) = Dmin}
15: if (g > period) then
16: terminate the algorithm
17: // the g-partial gathering problem is not solvable
18: end if
19: ap.x = min{z < 0|shift(ap.D,x) = Dpin }

20: move to the forward node 37! ay.Di] times

3.6. CONCLUDING REMARKS 45

g-partial gathering problem.

Next, we analyze the total moves required to solve the g-partial gathering problem.
In Algorithm B2, all agents circulate the ring. This requires O(kn) total number of
moves. After this, each agent moves at most n times to meet other agents. This requires
O(kn) total moves. Therefore, agents solve the g-partial gathering problem in O(kn)

total moves. O

3.6 Concluding Remarks

In this chapter, we proposed three algorithms to solve the g-partial gathering problem
in asynchronous unidirectional rings. The first algorithm is deterministic and works for
distinct agents. The second algorithm is randomized and works for anonymous agents
under the assumption that each agent knows the total number of agents. The third
algorithm is deterministic and works for anonymous agents under the assumption that
each agent knows the total number of agents. In the first and second algorithms, several
agents are elected as leaders by executing the leader agent election partially. The first
algorithm uses agents’ distinct IDs and the second algorithm uses random IDs. In the
both algorithms, after the leader election, leader agents instruct the other agents where
they meet. On the other hand, in the third algorithm, each agent moves around the ring
and moves to a node and terminates so that at least g agents should meet at the same
node. We have showed that the first and second algorithms requires O(gn) total moves,

which is asymptotically optimal.

Chapter 4

Partial Gathering in Tree
Networks

4.1 Introduction

In this chapter, we present algorithms to achieve the g-partial gathering in asynchronous
tree network. In Chapter B, agents achieve the g-partial gathering in asynchronous rings
under the assumption that each node has a whiteboard. In this chapter, since trees have
lower symmetry than rings, we aim to solve the g-partial gathering problem in models

weaker than the whiteboard model considered in Chapter B’s ring scenario.

4.1.1 Contribution

The contribution of this paper is summarized in Table Bl. We consider two multiplicity
detection models and two token models. Note that any combination of these multiplicity
detection models and token models is weaker than the whiteboard model. First, we
consider the non-token model. In this case, we show that agents require Q(kn) total moves
to solve the g-partial gathering problem even for the strong multiplicity detection model.
We omit this result in Table BXl. Next, we consider the case of the weak multiplicity
detection and non-token model, where the weak multiplicity detection model assumes

that each agent can detect whether another agent exists at the current node or not but

47

48 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

Table 4.1: Results in each model

Model 1 (Section 4.4) (Sé\g‘?igfll 425) (Si\ggiiliﬁ)
Token model Non-token Non-token Removable-token
Multiplicity detection Weak Strong Weak
Tree topology Asymmetric Symmetric Arbitrary Arbitrary
Solvability Solvable Insolvable (g > 5) Solvable Solvable
The total moves O(kn) [d8] - O(kn) O(gn)

cannot count the exact number of the agents. In this case, for asymmetric trees, from
[A6] agents can achieve the g-partial gathering problem in O(kn) total moves. From the
lower bound of the total moves for non-token model, this algorithm is asymptotically
optimal in terms of total moves. In addition, for that case that the tree is symmetric
and g > 5 holds, we show that there exist no algorithms to solve the g-partial gathering
problem. Hence, we need to relax the restriction of either the multiplicity detection
or the token model. Next, we consider the case that the restriction of the multiplicity
detection is relaxed: the strong multiplicity detection and non-token model, where the
strong multiplicity detection model allows each agent to count the number of agents at
the current node. In this case, we propose a deterministic algorithm to solve the g-partial
gathering problem in O(kn) total moves. From the lower bound of the total moves for
the non-token model, this algorithm is also asymptotically optimal in terms of the total
moves. Finally, we consider the case that the restriction of the token model is relaxed:
the weak multiplicity detection and removable-token model. In this case, we propose a
deterministic algorithm to solve the g-partial gathering problem in O(gn) total moves.
This result shows that the total moves can be reduced by using tokens. Note that in
this model, agents require 2(gn) total moves to solve the g-partial gathering problem.

Hence, this algorithm is also asymptotically optimal in terms of the total moves.

4.1. INTRODUCTION 49

4.1.2 Related works

Recently, the total gathering problem for trees has been extensively studied because
tree networks are utilized in a lot of applications. For example, Fraigniaud and Pelc
[43] considered the gathering problem in tree networks for the first time. This algorithm
achieves the gathering for two synchronous agents with an arbitrary delay in starting time.
The space complexity for each agent is O(logn) bits, which is asymptotically optimal [44].
Later, they considered the space complexity for the case that two synchronous agents
start the algorithm at the same time [44]. In this case, they proposed an algorithm to
achieve the gathering for O(log !+ loglogn) memory per agent, where [is the number of

leaves.

The time complexity required for two agents’ gathering in tree networks is considered
in [@5, 46]. Czyzowicz et al. [A5] considered the trade-off between time and space com-
plexities for two synchronous agents’ gathering for the case that each agent has k > clogn
memory bits (c is some constant). In this case, they proposed an algorithm to solve the
gathering problem in O(n + n?/k) time, which is asymptotically optimal. Elouasbi and
Pelc [46] considered the time complexity trade-off between determinism and randomiza-
tion. They proposed a deterministic algorithm for two synchronous agents’ gathering in
O(n) time. On the other hand, when agents know the maximum degree of the tree and
the upper bound of the initial distance between two agents, they proposed a random-
ized algorithm to achieve the two synchronous agents’ gathering with high probability in

O(logn) time.

Asynchronous gathering for two or more agents is considered in [47]. Baba et al.
showed a lower bound of space complexity for time-optimal algorithms, that is, they
showed that each agent requires €2(n) memory bits to solve the gathering problem in
O(n) time. In addition, they proposed a space-optimal algorithm to solve the gathering
problem on the condition that the time complexity is asymptotically optimal, that is,

both the time complexity and the space complexity are O(n).

50 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

4.1.3 Organization

This chapter is organized as follows. In Section B3 we show the lower bound of total
moves for the non-token model. In Section B4 we consider the first model, that is, the
weak multiplicity detection and non-token model. In Section B=3 we consider the second
model, that is, the strong multiplicity detection and non-token model. In Section B8 we
consider the third model, that is, the weak multiplicity detection and removable-token

model. Section BZ7 concludes this chapter.

4.2 Preliminary

4.2.1 System Model

In this chapter, we restrict the network topology only to a tree network 7' = (V, L). We
describe several definition about T'. First, we explain about center nodes. Let us consider
the following sequence of trees constructed recursively as follows: Ty = T and T;yq is
obtained from T; by removing all its leaves. Let j be the minimum value such that T}
has at most two nodes. Then, we call such nodes center nodes. We use the following

theorem about center nodes later.

Theorem 4.2.1. [dR] There exist one or two center nodes in a tree. If there exist two

center nodes, they are neighbors. O

Next we define symmetry of trees, which is important to consider solvability in Chap-

ter 4.

Definition 4.2.1. A tree T is symmetric iff there exists a function A : V — V such that
all the following conditions hold (See Fig.G-1):

e Foranyv eV, v# A(v) holds.
e For any u,v € V, u is adjacent to v iff N(u) is adjacent to A(v).

e For any link {u,v} € L, the port number assigned to {u,v} at u is equal to the port
number assigned to link {\(u), A(v)} at A(u).

4.2. PRELIMINARY 51

(a) A non-symmetric tree (b) A symmetric tree

Figure 4.1: Asymmetric and symmetric trees

When tree T is symmetric, we say nodes u and v in T are symmetric if u = A\(v)

holds. When tree T' is not symmetric, we say tree T is asymmetric.]

4.2.2 Agent Model

We assume that agents know neither n nor k. We consider the strong multiplicity detection
model and the weak multiplicity detection model. In the strong multiplicity detection
model, each agent can count the number of agents at the current node. In the weak
multiplicity detection model, each agent can recognize whether another agent stays at
the same node or not, but cannot count the number of agents at its current node. In both
models, each agent cannot read the state of any other agent. In this chapter, we assume
that each whiteboard has only 0 or 1 bit memory, that is, we consider the non-token
model and the removable-token model. In the non-token model, agents cannot mark the
nodes or the edges in any way. In the removable-token model, each agent initially leaves
a token on its initial node at the beginning of the algorithm, and agents can remove any
owner’s token during the execution of the algorithm.

We assume that agents are anonymous (i.e., agents have no IDs) and execute a de-
terministic algorithm. Similarly to Section BZZ2, We model an agent as a finite state
machine (S, 0, Sinitial, S finat)- In the weak multiplicity detection and non-token model, §
is described as § : Sx Mpx Rg — S X Myp. In the definition, set Mp = {L1,0,1,...,A—1}
represents the agent’s movement, where A is the maximum degree of the tree. In the left

side of §, the value of M7 represents the port number assigned at the current node to the

52 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

link the agent used in visiting the current node (The value is L in the first activation).
In the right side of §, the value of M7 represents the port number through which the
agent leaves the current node to visit the next node. If the value is 1, the agent does
not move and stays at the current node. In addition, R4 = {0, 1} represents whether
another agent stays at the current node or not. The value 0 represents that no other
agents stay at the current node, and the value 1 represents that another agent stays at

the current node.

In the strong multiplicity detection and non-token model, § is described as § : S x
Mpx{0,1,...,k—1} — Sx Mp. In the definition, {0,1,..., k—1} represents the number
of other agents at the current node. In the weak multiplicity detection and removable-
token model, ¢ is described as § : S X Mp x Ry X Ry — S X Rp x Mp. In the definition,
in the left side of 0, Ry = {0, 1} represents whether a token exists at the current node or
not. The value 0 of Ry represents that there does not exist a token at the current node,
and the value 1 of Ry represents that there exists a token at the current node. In the
right side of 0, Ry = {0, 1} represents whether the agent removes a token at the current
node or not. If the value of Ry in the left side is 1 and the value of Rp in the right side
is 0, it means that the agent removes a token at the current node. Otherwise, it means
that an agent does not remove a token at the current node. Note that, in both models,

we assume that each agent is not imposed any restriction on the memory.

During the execution of the algorithm, agents are located either on nodes or links.
Each agent aj executes the following three operations in an atomic step: 1) Agent ay,
reaches some node v, 2) agent ay, executes local computation at v, and 3) agent a;, leaves
v or stays there. In the local computation, agent aj, executes the following operations: 1)
Agent aj, obtains information about its local configuration (i.e., the states of all agents
at the current node v and the token state at v for the removable-token model) 2) agent
ap, executes some computation at v, 3) agent a; decides whether a;, removes the token
or not for the case of the removable-token model, 4) agent a;, decides whether a;, moves
to the next node or not, and 5) agent aj, decides the port number to leave from (in the
case that it decides to move). We assume that a;, completes possible local computation

at each step, that is, at the end of a step, aj either leaves v or decides to stay at v.

4.2. PRELIMINARY 53

If aj, decides to stay at v, after the decision aj does nothing (i.e., does not change its
state, does not remove the token at v, and does not leave v) unless other agents change
ap’s local configuration. Note that the above atomic actions can be easily implemented
if each node has a buffer that stores agents visiting the node and makes them execute
processes in a FIFO order, and this assumption is very natural in a distributed system.
In addition we assume that agents move in the tree network in a FIFO manner, that is,
when agent a, leaves some node v; before another agent a; leaves v; through the same
communication link as ap, then aj, reaches v;’s neighboring node U;- before a;. Note that
such FIFO assumptions are natural because 1) agents are implemented as messages in
practice, and 2) FIFO assumptions of messages are natural and can be easily realized in

distributed systems.

4.2.3 System Configuration

In the non-token model, a global configuration c is defined as a product of states of agents,
states of links, and locations of agents. Here, the state of link (vj,v;) is a sequence of
agents that are in transit from v; to 11;- in this order. In the removable-token model,
configuration c¢ is defined as a product of states of agents, states of nodes (tokens), states
of links, and locations of agents. Note that in both models, the locations of agents are
either on nodes or links. In addition, in the initial configuration ¢y, we assume that node

v; has a token if there exists an agent at v;, and v; does not have a token if there exists

no agent at v;.

We consider a fair scheduler defined in Chapter B, that is, it activates a non-empty
set of agents A;, and each agent in A; takes a step as mentioned in Section E=23. We
assume that if the scheduler activates some agent a; that is 1) in a sequence of agents
that are in transit in some link (v;,v7), but 2) not in the head of the sequence, then a;
does not take a step (i.e., does not reach v;). We also consider execution E = cy,cy, ...

defined in Chapter B.

54 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

4.2.4 Problem Definition

In Definition B, we defined the g-partial gathering problem in ring networks. We
can use this definition also in tree networks. In addition, in Theorem B=Z1 we showed
that agent require 2(gn) total moves to solve the g-partial gathering problem in ring
networks. We can show that this lower bound holds also in tree networks by considering
a line network such that |g/2] agents are placed at consecutive nodes starting from one
endpoint and the other k — [g/2]| agents are placed at consecutive nodes starting from
the other endpoint. Then, clearly at least | g/2] agents need to move to the center node.

This requires |g/2] x |n/2] = |gn/4] moves.

4.3 Lower Bound of the Total Moves for the Non-Token
Model

For the non-token model, we have the following lower bound of the total moves. This

results holds even for the strong-multiplicity detection model.

Theorem 4.3.1. In the non-token model, agents require Q(kn) total moves to solve the

g-partial gathering problem even if agents know k.

Proof. To show the theorem by contradiction, we assume that there exists an algorithm
A to solve the g-partial gathering problem in o(kn) total moves. Let a local configuration
of agent a staying at node v be a boolean value indicating whether another agent stays
at v or not. Then, we define a waiting state of agents as follows: an agent a is in the
waiting state at node v if a never leaves v before the local configuration of a changes.
Concretely, there are two cases. The first case is that, when a visits node v and enters
a waiting state at v, there exist no other agents at v. In this case, a neither changes
its waiting state nor leaves v until another agent visits v. When the scheduler activates
a and a observes such an agent, a can break its waiting state and leave v. The second
case is that, when a visits v and enters a waiting state at v, there exists another agent at

v. In this case, a neither changes its waiting state nor leaves v until there are no other

4.3. LOWER BOUND OF THE TOTAL MOVES FOR THE NON-TOKEN MODEL55

TI

~

Figure 4.2: Figures of T' and T’

agents at v. When the scheduler activates a and a detects such a situation, a can break
il

its waiting state and can leave v.

Let us consider the initial configuration ¢y such that k agents are placed in tree T’
with n nodes. We claim that some agent enters a waiting state in o(n) moves without
meeting other agents. Consider the execution that repeats a phase in which every agent
not in a waiting state: 1) makes a movement, and 2) visits a node. Let a; be the first
agent that enters a waiting state in this execution. Clearly, a; does not meet other agents
unless it enters a waiting state. If a; makes £2(n) moves before it enters a waiting state,
each of the other agents makes €2(n) moves. This implies the total number of moves is
Q(kn), which contradicts to the assumption of A. Hence, a; enters a waiting state in
o(n) moves without meeting other agents. This implies there exists a node v, which a;
does not visit before it enters a waiting state. Let v,, be the node where «; is placed in
the initial configuration cq.

Next, we construct tree 7 with kn’ 4+ 1 nodes as follows: Let T, ..., T* be k trees
with the same topology as T and v, (1 < j < k) be the node in T7 corresponding to v,
in T. Tree T" is constructed by connecting a node v’ to v for every j (Fig.E=2). Let v,
(1 < j < k) be the node in 77 corresponding to v, in T. Consider the configuration b

2 k

such that k agents are placed at vl,v2, ..., v¥ respectively. Since agents do not have

! The final state of an agent after gathering is a waiting state. Hence, the final state is a kind of the

waiting state.

56 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

knowledge of n, each agent performs the same behavior as a; in T (note that they do
not visit v}). Hence, each agent placed in TV (1 < j < k) enters a waiting state without
moving out of T77. Thus, each agent enters a waiting state at different nodes and does
not resume its execution. Therefore, algorithm A cannot solve the g-partial gathering

problem in 7”. This is a contradiction. O

4.4 Weak Multiplicity Detection and Non-Token Model

In this section, we consider the g-partial gathering problem for Model 1 in Table B,
that is, the weak multiplicity detection and non-token model. First, we consider the case
for asymmetric trees, and agents can achieve the g-partial gathering problem in O(kn)
total moves from the past result. Next, we consider the case that the tree symmetric and
agents are placed symmetrically in the initial configuration. In this case, we show that

there exist no algorithms to solve the g-partial gathering problem if g > 5 holds.

4.4.1 Proposed algorithm for asymmetric trees

From [46], for asymmetric tree agents can achieve the total gathering in O(kn) total
moves, and this result can be clearly applied to the g-partial gathering. Hence, we have

the following theorem.

Theorem 4.4.1. In the weak multiplicity detection and non-token model, agents solve

the g-partial gathering problem in O(kn) total moves for asymmetric trees. O

4.4.2 Impossibility result for symmetric trees

In this section, we show that there exist no algorithms to solve the g-partial gathering
problem for symmetric trees. We consider the case such that in the initial configuration
even agents are placed symmetrically in a symmetric tree, that is, if there exists an agent
at node v, there also exists an agent at node v/, where v and v" are symmetric. Then, we

have the following theorem.

4.4. WEAK MULTIPLICITY DETECTION AND NON-TOKEN MODEL 57

Theorem 4.4.2. Let us consider the initial configuration such that agents are placed
symmetrically in a symmetric tree. Then, in the weak multiplicity detection and non-
token model, there exist no algorithms to solve the g-partial gathering problem if g > 5

holds.

Proof. For contradiction, we assume that the g-partial gathering problem can be solved.
We prove the theorem for the case that g is an odd number (we can also prove the theorem
similarly for the case that g is an even number). We assume that the tree network is
symmetric, and for any node v, we denote by v’ the node symmetric to v. We consider the
initial configuration cq such that 3g — 1 agents are placed symmetrically in the symmetric
tree, that is, if there exists an agent at v, there also exists an agent at v’. For any agent
a located at a node v in ¢g, let @’ denote the agent that is located at v’ in ¢y. Note that
since 29 < k = 3g — 1 < 3g holds, agents are allowed to meet at one or two nodes. Then,

we have the following lemma [43].

Lemma 4.4.1. Assume that each pair of nodes v1 and V', v and v5, ... vy, and v is
1> 27 m

symmetric in tree T. If agents a; and a; (1 < i < m) start an algorithm from v; and

/

v;, respectively, there exists an execution in which each pair acts in a symmetric manner

even in an asynchronous model.]

We consider a waiting state defined in Section BZ3. Then, the definition means that
even when the local configuration of some waiting agent changes, the agent does not
change its state unless the scheduler activates the agent. Note that, if an agent is staying
at some node, then it is either in an initial state or a waiting state. Then, we have the

following lemma about a waiting state.

Lemma 4.4.2. At any node vj where at least three waiting agents exist, at least two of

the agents never leave v; by the end of the algorithm.

Proof. We assume that agents a{,ag,ag enter waiting states at v; in this order. Since
a{ is the first agent that enters a waiting state at v;, when aé enters a waiting state
at v;, the local configuration of a{ changes, and a{ can leave v;. Since we consider the

weak multiplicity detection model, even if a{ leaves v;, ag and aé cannot detect the fact

58 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

and local configurations of a} and a} do not change. Thus, agents a} and a} never leave

’Uj. O

Let us consider a configuration such that there exist at least three nodes where there
exist at least three waiting agents, respectively. We call such a configuration a three-node
three-waiting-agent configuration. Then in three-node three-waiting-agent configurations,
by Lemma B there exist at least three nodes where agents exist at the end of the
algorithm execution. In addition since agents are allowed to meet at one or two nodes
because of k < 3g, agents cannot solve the g-partial gathering problem when the system
reaches a three-node three-waiting-agent configuration. This is the key idea of the proof.
We consider an adversarial scheduler such that once some agent enters a waiting state,
the scheduler never activates the agent until all agent enter waiting states. When all
agents are in waiting state, we denote by such a configuration ¢;. Note that c¢; is the
configuration such that all agents’ states are waiting states and each agent enters a waiting
state exactly once. Then, the outline of the proof is described as follows. At first, we
construct configuration ¢; by considering the adversarial scheduler. Then, we consider
the placement of waiting agents in ¢; and show the unsolvability in any placement. If ¢
is a three-node three-waiting-agent configuration or a configuration such that there exists
at most one waiting agent at each node, we can clearly show that agents cannot solve
the g-partial gathering problem. Otherwise, we show that, in any placement of waiting
agents in ¢, there exists an execution by an adversarial scheduler such that the system
reaches either 1) a three-node three-waiting-agent configuration, 2) a configuration such
that there exists at most one waiting agent at each node, or 3) a configuration such that
there exist two nodes with agents but there exist at most g — 1 waiting agents at one of

them.

At first, we consider the execution until the system reaches the first configuration c;
such that all agents are in waiting states. We consider an execution E; under the following
fair scheduler oy that makes agents’ movements as follows: 1) When «; activates some
agent a whose initial node is v, a4 also activates the agent a’ whose initial node v" at the

same time, and 2) if an agent a enters a waiting state at node v, oy never activates a and

4.4. WEAK MULTIPLICITY DETECTION AND NON-TOKEN MODEL 59

N2 1 2 3 e T g g+ 1
1 |Case2|| Case 4 ||Case5||Case6|
2 | Case 7,8 | | Case 3 |
3

Case 1
4
i

Figure 4.3: Classification depending on values of N; and Ny (N7 > Na)

a never leaves v until all agents enter waiting states.?

Note that, in any algorithm, each agent necessarily enters a waiting state (otherwise,
if an agent never enters a waiting state, the agent moves in the tree network forever).
Agents execute such behaviors until they reach ¢;. Then, since agents are initially placed
symmetrically and move symmetrically, it follows that if there exist | waiting agents at
a node v in ¢, there also exist [waiting agents at node v’. Thus we can denote the
nodes where agents exist in ¢; by v1,...,vs,0],...,v,. In addition, let N; (resp., N]) be
the number of waiting agents at v; (resp., v;) in ¢;. Clearly, N; = N/ (1 <1 < s) and
Ny + Na+ -+ Ny = k/2 hold. Without loss of generality, we assume that N3 > Ny >
.-+ > Ng holds. Moreover, we assume that agents a{, a‘;, . ,agvj (resp., a{/, ag,, cee ag;;)
enter waiting states at v; (resp., v;) in this order.We consider the following eight cases
depending on values of Ny, No,...,Ns (N{,Nj,...,N!), and show that agents cannot
solve the g-partial gathering problem in any case (contradiction). Fig.B=3 represents

the classification depending on values of Ni; and N». In addition, Case 7 considers

N1 = Ny =2 and N3 =1, and Case 8 considers N7 = No = N3 = 2.

(Case 1: N3 > 3 holds.)

2 Scheduler a; is fair because the system reaches configuration ¢; in finite number of agents’ steps.

60 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

In this case, there exist at least three waiting agents at each of v1,v9,v] and v} (three-
node three-waiting-agent configuration). Hence from Lemma B2, there exist at least
four nodes where agents exist at the end of algorithm execution. However, since k = 3g—1
holds, agents are allowed to meet at one or two nodes. This contradicts the assumption

that agents can solve the g-partial gathering problem.

(Case 2: N = Ny =--- = Ny =1 holds.)
In this case, there exist no nodes where more than one agent exists in ¢;. From the
definition of a waiting state, the local configuration of each agent does not change and

each agent never leaves the current node. This contradicts the assumption.

Before considering Case 3, we introduce the notion of elimination. Let us select a
set of agents Aejim; such that both |Agimi| < g — 1 and Agjimi C {a{|1 <j<s,2<
i < N;}U {afl|1 <3 <s,2<i< N]'} hold. In addition, let cglimi be the configuration
obtained from ¢g by eliminating all agents in A.j;;,; in ¢g. Moreover we define an execution
Ef“mi as follows: When in E; the scheduler activates sets of agents Ag, Ay,..., A;—1 in
this order and the system reaches c;, then in Ef%™ the scheduler activates sets of agents
Ao — Actimi, A1 — Aclimis - - -, At—1 — Aeimi In this order and the system reaches cf”””.

Then, we have the following lemma.

Lemma 4.4.3. The locations and states of agents in A — Aciimi in cf“mi are the same

as those in c;.

Proof. We prove the lemma for the case of |A¢jimi| = 1. Then, we can similarly prove the
lemma for the case |Acimi| > 2 by applying the following argument to each of Agj;; one
by one. Let ag (2 <i < Nj) be the unique agent in Acj;,. In this case, we show that the
locations and states of agents in A— A jm; in cf“mi (0 <1 <t)are equal to those in ¢;. At
first, we denote by ¢, the configuration in F; immediately after ag enters a waiting state
at vj. Note that af enters a waiting state without being observed by any other agents.
This is because until ¢, ag reaches some node v, executes local computation, and leaves

the current node in an atomic step, that is, a] never waits at any node before ¢,. In

4.4. WEAK MULTIPLICITY DETECTION AND NON-TOKEN MODEL 61

addition, in ¢, there already exist waiting agents a{, ey a{fl. Moreover, we denote by

¢q (p < q) the configuration in which some agent a visits v; for the first time after c,.

Now let us consider Ef“mi. First we can show that, except for a{, the locations and

states of agents in each of cgl'“m, cﬁl”’“, .. .cgl”m in Efl’“m are the same as those in each

of cg,c1,...,¢p in Fy. This is because in E, af moves without being observed by any
other agents. Similarly, we can show that the locations and states of agents in each of
c;lffi, ceey cgl_i’fi are the same as those except for a] in each of ¢py1,...,cq—1. Next, we

elimi

elimi
. In q

consider the locations and states of agents in cg , some agent a visits v; and

then there exist ¢ — 1 waiting agents a{, . ,ag_l at vj. On the other hand in ¢4, there
exist waiting agents a{, .. .,a{ at v;. Then, agent a cannot distinguish the difference
between ¢, and c; because ¢ > 2 holds and we consider the weak multiplicity detection

model. Thus, agent a behaves in the same way as in E; and the locations and states of

elimi

agents in cg are the same as those in ¢,, except for a;.

In the following, we show by induction that the locations and states of agents in each

of cgl}rTZ, . ,cfl”’” are the same as those except for af in each of cg41,...,c;. We assume

that the locations and sates of agents in each of c&/™i (¢ +1 < r <t — 1) are the same
as those except for ag in each of ¢,. Then, in ¢f™ if there exists no agent that visits
vj, the locations and states of agents in ¢ in E€iT are the same as those in each

of ¢y41 in Ey. This is because between ¢, and c¢,11 in Fy, af stays at v; and it is never

observed by agents except for agents already staying at v;. In cfil}r’fz if there exists some

agent a that visits vj;, there exist i’ (¢ > ¢) waiting agents at v;. Then, agent a cannot

distinguish the difference between ¢, 41 and ¢ because i > 2 holds and we consider

the weak multiplicity detection model. Hence, agent a behaves in the same way as in F
and the locations and states of agents in cflﬂ“ are the same as those in ¢4 1, except for

al. Thus, we can show that the locations and states of agents in each of cglﬂn, ey cf”mi
are also the same as those except for a] in each of c4y1,...,¢;. Therefore, the locations
and states of agents in A — Aimi in cf”mi are equal to those in ¢, and we have the

lemma.

62 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

By Lemma B73 and the fact that in ¢; all agents are in waiting states, we can clearly
show that in ¢ all agents are in waiting states. We use this lemma to show the

contradiction in the remaining cases.®

(Case 3: N1 > 3 and Ny = 2 hold.)
In this case, there exist three waiting agents a%, a%, and a;l;, (a%/, a%l, and ag, respectively)
at vy (v}), and agents a} and a} (ai and a}’, respectively) never leave vy (v}) by Lemma
B2 Since k = 3¢9 — 1 holds and agents are allowed to meet at one or two nodes, all
agents must meet at vy or v}.

elimi

Now let us consider the initial configuration ¢ obtained from ¢y by eliminating

, . . . o
agents a3 and a3 . Then from Lemma EZ73, there exists an execution EZ™ from cglim?

to c§"™ where there exists exactly one waiting agent a2 (a?) at vy (vh) in ™. In
this configuration, agents a? and a2 need to meet at v; or v}. To do this, it is necessary
that some agent enters a waiting state at vo and v} in order to make a? and a} observe
changes of local configurations and leave there. We consider an execution E¢"™ under the
scheduler oszimi deciding agents and their behavior as follows. Let by, ..., by (b],...,0))
be the sequence of agents such that 1) by (b]) is an agent that can leave the current node
in ef™mi 2) b; (b)) (2 <4 < h—1)is an agent in the waiting state at some node vy,
(vy;) where no other agents exist (note that b; can leave v, when b;_; arrives at vy; and
enters a waiting state), and 3) by, (b},) is an agent in the waiting state at vy (v5), that
is, by, = a? (), = a?'). Then in af"™ agents b; and b (1 <j < h—1) are activated at
the same time, and behave symmetrically. Finally, agents b,_; and b},_, enter waiting

elimi

clmt - An example is

states at ve and v}, respectively, and we call such a configuration ¢
shown in Fig.E4. In the figure, we assume that agents a3 and a%/ of the dotted lines are
eliminated. In addition, the black agents a3}, a3, a%,, and a%l never leave the current nodes
by the end of the algorithm. In Fig.Ad, agents ai and a%, move symmetrically and enter
waiting states at vs and v}, respectively (Fig.E4 (b)), and after this, agents a3 and a}

move symmetrically and enter waiting states at ve and v}, respectively (Fig.B4 (c) to

3From Case 6 to Case 8, we consider a configuration obtained from ¢y by eliminating at least four

agents, and we cannot apply this way for the case of 2 < g < 4.

4.4. WEAK MULTIPLICITY DETECTION AND NON-TOKEN MODEL 63

Behavior in E,,

Ct

: : eliminated agent ’ : agent that never leave the current node

8 : agent than those above

Figure 4.4: An example of Case 3

Fig.@2 (d)).

Now, let us consider ¢;. In ¢, there exist two waiting agents a7 and a3 (a7 and a3,
respectively) at vy (vh). In addition, since a? (a3) is the first agent that enters a waiting
state at vy (vh), a? (a?) can leave vy (v}). However we consider the execution E, similarly
to EC™i that is, agents by and b}, by and b, ..., by_1 and bj,_, are activated and behave

symmetrically in this order, while agents a2 and a%l are not activated. Finally, agents b;,_1

64 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

and b)_, enter waiting states at vy and vj, respectively. We call such a configuration
cz.@ Then in c,, there exist three waiting agents a?,a3, and by, 4 (a%l,a%/, and b},
respectively) at vy (vh), and agents a3 and b,_; (a3 and b} _,, respectively) never leave
the current node by Lemma BEZ2. For example in Fig.B4, agents ai and a%/ move
symmetrically and enter waiting states at vs and vj, respectively (Fig.B4 (e) to Fig. 02
(f)), and after this, agents a$ and ai’/ move symmetrically and enter waiting states at vo
and vh, respectively (Fig.B3 (g) to Fig.B4 (h)). Then there exist three waiting agents
a?,a3, and a? (a?, a3, and a¥', respectively) at vy (v}), and agents a3 and a3 (a3 and a?,
respectively) never leave the current node by Lemma B2, Note that, agents a%, aé, a%/
and a}’ also never leave the current node. Thus in ¢,, there exist four nodes where agents
exist and never leave the current nodes (three-node three-waiting-agent configuration),

which is a contradiction.

From Case 4 to Case 6, we consider cases that there exist at least two waiting agents
al and a} (a}’ and ad’, respectively) at vy (v}), and there exists at most one waiting agent

at the other nodes.

(Case 4: 2 < Ny < (g+1)/2 and Ny =1 hold.)

In this case, we consider the initial configuration cglimi obtained from ¢y by eliminating
agents a3, . .. ,a}\,l, a%’, ceey a}\;{. Note that, the number of eliminated agents a3, ..., a}vl,
ad’, ..., a}\;{ is 2N} —2 < g—1since N; < (¢g+1)/2 holds. Then from Lemma B3, there
exists an execution E™ from c§™ to £l where there exists at most one waiting
agent at each node in cf“mi. This configuration is the same as the Case 2 and agents

cannot solve the g-partial gathering problem.

(Case 5: (g +3)/2 < Ny <gand Ny =1 hold.)
In this case, we consider the initial configuration c§®™ obtained from co by eliminating

agents al, . .. ,a}\,l. Note that, the number of eliminated agents a3 . . ., a}vl isN—1<g-—1

4 Execution E, is fair because the system reaches configuration ¢, in finite number of agents’ steps.

Similarly, we can show that schedulers or executions we consider in the rest of this section are fair.

4.4. WEAK MULTIPLICITY DETECTION AND NON-TOKEN MODEL 65

since N7 < g holds. Then from Lemma B3, there exists an execution E{"™ from cglimi

to ¢ where there exist N| waiting agents at v] and at most one waiting agent at

the other nodes in c{/™. Since agents are allowed to meet at one or two nodes and only

a%/ can leave the current node in this configuration, it is necessary that agent a%/ firstly

leaves v] and enters a waiting state at some node where a waiting agent exists to make
the waiting agent leave there. Without loss of generality, we assume that a%/ enters a

elimsi

et and

waiting state at v;- where waiting agent a{/ exists. We call such a configuration ¢

elimi

xT

elimi
i to ¢

define E¢"™i as an execution from c . Moreover after this, agents need to
make the configuration such that some agent @’ enters a waiting state at v; in order to
meet there or make agent a{ leave there. We call such a configuration czlimi and define

Eg“mz as an execution from ¢ to c‘;“ml

. For example in Fig. B3, agent a%/ moves and
enters a waiting state at vy (Fig.BE3 (a) to Fig. &3 (b)), and after this, agent a3 moves

and enters a waiting state at vz (Fig. B3 (c)).

Now let us consider ¢;. In ¢;, agents al and a%/ can leave the current nodes and the
other agents cannot leave the current nodes. Then we consider an execution F, under the
fair scheduler oy, where a} and a%/ are activated at the same time, behave symmetrically
and enter waiting states at v; and v}, respectively. We call such a configuration ¢,. Then,

the local configurations of a{ and aji/ change and they can leave v; and v/

i respectively.

However, we consider the execution £, similarly to E;limi, that is, agent a{/ leaves v}
and some agent o’ enters a waiting state at v;, while a{ is not activated. Then there exist
three waiting agents a{, al, and o at v;, and agents a} and a’ never leave v; by Lemma
B2, For example in Fig. AH, agents ai and a%/ move and enter waiting states at vz and
v}, respectively (Fig. B3 (d) to Fig.E (e)), and after this, agent a3 leaves v} and enters
a waiting state at vs (Fig.Z3 (f)). Then there exist three waiting agents a3, ai, and ai”/
at v3, and agents a} and a3 never leave v3. Note that, agents a},al, al and a} also
never leave the current node. Thus in ¢y, there exist three nodes where agents exist at
the end of algorithm execution (three-node three-waiting-agent configuration), which is

a contradiction.

(Case 6: N1 > g+ 1 and Ny =1 hold.)

66 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

Behavior in Ey and Ej,

Behavior in Ey and E,,

(d (e) ® ®

’ : eliminated agent ’ : agent that never leave the current node

g : agent than those above

Figure 4.5: An example of Case 5

In this case, agents are allowed to meet at v; or v]. As a one way to satisfy this, we
consider an execution E, from ¢; to c,, where each agent moves symmetrically until they
enter waiting states at v; or v} in ¢;. Then, there exist (3g — 1)/2 agents at v; and v],

respectively.

Now let us consider the initial configuration cS”mi obtained from ¢y by eliminating

agents al, ... ,a}l Hg41)/2-1" Then from Lemma 273, there exists an execution E¢lime

4.4. WEAK MULTIPLICITY DETECTION AND NON-TOKEN MODEL 67

from c§l™ to cfli™ where there exist N1 — (g + 1)/2 waiting agents at v1, N] (= Ny)

elimi \oreover

waiting agents at v}, and at most one waiting agent at the other nodes in ¢

elimsi

°Mt as the configuration

we consider the execution E<" similarly to E,, and we define ¢
that all agents meet at vy or vj. Then since (g + 1)/2 agents aj, .. "a}l+(g71)/271 are
eliminated, the number of agents that meet at vy is (3¢ —1)/2 — (¢ +1)/2 = g — 1. This

contradicts that agents can solve the g-partial gathering problem.

In the Cases 7 and 8, we consider the case that there exist at most two waiting agents

at each node.

(Case 7: N = Ny =2 and N3 =1 hold.)
In this case, there are two waiting agents at v1, va, v}, and v}, and at most one waiting

elimi obtained

agent at the other nodes in ¢;. Now we consider the initial configuration ¢
from ¢y by eliminating agents a}, a3, a}’, and a3". Then from Lemma BEZ3, there exists
an execution EF™ from ¢ to ¢ where there exists at most one waiting agent at
each node in ¢, This configuration is the same as the Case 2 and agents cannot solve

the g-partial gathering problem.

(Case 8: N1 = Ny = N3 = 2 holds.)
In this case, there are two waiting agents at vy, va, v, v}, v5, and v§ in ¢;. Now we consider

o ey . i / /
the initial configuration c§/™ obtained from ¢y by eliminating agents a2, a3, a3, and a3 .

Then from Lemma BZ73, there exists an execution Ef™ from c§™ to g™ where
there exist two waiting agents a and a} (al” and a}’, respectively) at v1 (v]) and one
waiting agent at ve, vs, vh, and vh, respectively. In this configuration, it is necessary that
some agent enters a waiting state at vo, v3, vé and Ug in order to meet there or to make
the waiting agents leave the current nodes. Without loss of generality, we assume that
at first some agents enter waiting states at vy and v}, respectively, and after this, some
agents enter waiting states at vz and v, respectively. To do this, we consider an execution
Ef;”mi under the scheduler o™ similarly to Case 3. That is, there exist the sequence

T

of agents by, ..., by (b],...,0)) such that agent by, (b},) is in the waiting state at vy (v5).

68 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

elimi

Then in af

, agents b; and b; (1 <j < h—1) are activated at the same time, behave

symmetrically, and enter waiting states at vy(;41) and Ué(respectively. Remind that

j+1)’
at node vy(;j11), there exists a waiting agent b(j + 1). Then, local configurations of agents

bj+1 and b}, change. Finally, agents by—1 and bj _; enter waiting states at vz and vj,

elimi

climi Then, local configurations of a2 and

respectively, and we call such a configuration ¢
a%/ change and they can leave the current nodes. For example in Fig. A8, agent al (a%/)
leaves at vy (v]) and directly enters a waiting state at vy (v5) (Fig.E® (a) to Fig.A@
elimi

(b)). Moreover after cZ/™ we consider an execution Eyehm’ under the scheduler o

similarly to ai”mi, that is, there exists the sequence of agents di,...,d; (d},...,d}) such

that agent d; (d}) is in the waiting state at v (v5). Then in agm

, agents d; and d
(1 <j <i—1) are activated at the same time, behave symmetrically, and enter waiting
states at vy(;41) and ”Zi(j+1)7 respectively. Note that at node vg(;;1), we assume that
there exists a waiting agent d;yi. Then, local configurations of agents d;i; and d;- 41
change. Finally, agents d;—1 and d;_, enter waiting states at vs and vj, respectively, and

elimi

we call such a configuration ¢j*™". For example in Fig. I8, agent a? (a?') leaves vy (v})

and directly enters a waiting state at vs (v5) (Fig.@@ (b) to Fig. @8 (c)).

. / / /
Now let us consider ¢;. In ¢, agents al,a?,a$,ai,a? and a3 can leave the current

nodes. However we consider the execution E, similarly to ES"™ that is, agents b; and
Y, by and bf, ..., bp_1 and bj,_, are activated and behave symmetrically in this order,
while agents a3 and a%/ are not activated. Finally, agents b,—1 and bj,_, enter waiting
states at vy and v}, respectively. We call such a configuration ¢,. Then there exist three
waiting agents a?, a3, and by,_1 (a%l,agl, and bj,_,, respectively) at vy (v}), and a3 and
br_1 (a%/ and b)_,, respectively) never leave the current node. For example in Fig. B,
agent al (al’) leaves v (v}) and directly enters a waiting state at vy (vh) (Fig. BT (d)
to Fig.E® (e)). Then there exist three waiting agents af, a3, and a} (a?, a3, and al,
respectively) at vy (v), and a3 and al (a3 and al’, respectively) never leave the current
node. Moreover after this, we consider the execution £, similarly to E;“mi, that is,
agents di and dy, dg and d), ..., d;_1 and d_; are activated and behave symmetrically

in this order, while agents a3 and a} are not activated. Finally, agents b;_; and b]_,

enter waiting states at vz and v§, respectively. We call such a configuration ¢,. Then

4.4. WEAK MULTIPLICITY DETECTION AND NON-TOKEN MODEL

Behavior in Ey and E),

v ! v
1 yl 1 vi
af af’
g’z v§2 V2 v,
. !
3 1 1 U3 U3 1 U3
@) (b) ©

Behavior in E, and E,,

Ct Cx Cy
1 1’
a; aj
Uy ’ V1 v’ 2 v
'Ul 1) 1
af af
!
V. !) v
v, v} gz 1722 2
v % b
3 H H V3 3 ! HE V3 1 1 ‘Ué
(d) (e ®

* : eliminated agent ’ : agent that never leave the current node

g : agent than those above

Figure 4.6: An example of Case 8

there exist three waiting agents ai’,ag’, and d;_1 (ai’/,agl, and d;_,, respectively) at v
(v4), and a3 and d;_; (a3 and d}_,, respectively) never leave the current node. For
example in Fig. BB, agent a? (a?) leaves vy (vh) and directly enters a waiting state at
vs (v4) (Fig. B8 (e) to Fig. BB (f)). Then there exist three waiting agents a3, a3, and a?
(a¥',a3 , and a? , respectively) at vz (v4), and a3 and a3 (a3 and a?’, respectively) never

leave the current node. Thus in ¢, there exist four nodes where agents exist at the end

69

70 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

of algorithm execution (three-node three-waiting-agent configuration). This contradicts
that agents can solve the g-partial gathering problem.

Therefore, we have the theorem.]

4.5 Strong Multiplicity Detection and Non-Token Model

In this section, we consider a deterministic algorithm to solve the g-partial gathering
problem for Model 2 in Table B, that is, the strong multiplicity detection and non-
token model. We propose a deterministic algorithm to solve the g-partial gathering
problem in O(kn) total moves. Recall that, in the strong multiplicity detection model,
each agent can count the number of agents at the current node.

At the beginning, each agent performs a basic walk [A6]. In the basic walk, each agent
ayp, leaves the initial node through the port 0. Later, when aj, visits a node v; through
the port p of vj, aj leaves v; through the port (p 4+ 1) mod d,;. The basic walk allows
each agent to traverse the tree in the DFS-traversal. Hence, when each agent visits nodes
2(n —1) times, it visits all the nodes and returns to the initial node. Remind that nodes
are anonymous and agents do not know the number n of nodes. However, if an agent
records the topology of the tree it ever visits, it can detect that it visits all the nodes
and returns to the initial node. Concretely, in the DFS-traversal, if agent ap, visits some
node far (resp., closer) from its initial node, it memorizes “+” (resp., “—"). When the
number of “+” and “—” that aj ever memorized are the same, it can recognize that it
returns to its initial node. Moreover, if there exists no port p incident to its initial node
such that a, does not leave its initial node through p, it can detect that it observed all
the nodes in the tree.

The idea of the algorithm is as follows: First, each agent performs the basic walk until
it obtains the whole topology of the tree. Next, each agent computes a center node of the
tree and moves there to meet other agents. If the tree has exactly one center node, then
each agent moves to the center node and terminates the algorithm. If the tree has two
center nodes, then each agent moves to one of the center nodes so that at least g agents

meet at each center node. Concretely, agent aj, first moves to the closer center node v;.

4.5. STRONG MULTIPLICITY DETECTION AND NON-TOKEN MODEL 71

Algorithm 4.1 The behavior of active agent aj, (v; is the current node of ay.)

Main Routine of Agent ay
1: perform the basic walk until it obtains the whole topology of the tree
2: if there exists exactly one center node then
3: go to the center node via the shortest path and terminate the algorithm
4: else
5: go to the closest center node via the shortest path

6: if there exist at most g — 1 agents except for aj then

7 terminate the algorithm

8 else

9: move to the other center node
10: terminate the algorithm

11: end if

12: end if

If there exist at most g — 1 agents except for aj, then a; terminates the algorithm at v;.
Otherwise, aj, moves to another center node v; and terminates the algorithm.

The pseudocode is described in Algorithm BZ1. We have the following theorem.

Theorem 4.5.1. In the strong multiplicity detection and non-token model, agents solve

the g-partial gathering problem in O(kn) total moves.

Proof. At first, we show the correctness of the algorithm. From Algorithm BT, if the
tree has one center node, agents go to the center node and agents solve the g-partial
gathering problem obviously. Otherwise, each agent aj first moves to one of the center
nodes. If there already exist g or more agents at the center node, aj moves to the other
center node. Since k > 2g holds, agents can solve the g-partial gathering problem.
Next, we analyze the total number of moves. At first, agents perform the basic walk
and record the topology of the tree. This requires at most 2(n — 1) total moves for each
agent. Next, each agent moves to one of the center nodes, and terminates the algorithm.
This requires at most 4 + 1 moves for each agent. Hence, each agent requires O(n) total

moves. Therefore, agents require O(kn) total moves. O

72 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

4.6 Weak Multiplicity Detection and Removable-Token Model

In this section, we consider the g-partial gathering problem for Model 3 in Table B,
that is, the weak multiplicity detection and removable-token model. We show that agents
can achieve the g-partial gathering in asymptotically optimal total moves (i.e., O(gn))
by using only one removable token of each agent. Recall that, in the removable-token
model, each agent has a token. In the initial configuration, each agent leaves a token at
the initial node. We define a token node (resp., a non-token node) as a node that has a
token (resp., does not have a token). In addition, when an agent visits a token node, the

agent can remove the token.

The idea of the algorithm is similar to Chapter B33, which considers the g-partial
gathering problem for distinct agents (i.e. having IDs) in unidirectional ring networks
with whiteboards. In Chapter B33, agents execute the leader agent election algorithm
partially, and then leader agents instruct non-leader agents which node they should meet
at. When applying the above idea in Chapter B33 to the model in this section, there
exist two problems. The first is the difference of network topology, that is, Chapter B=3
considers unidirectional ring networks but in this paper we consider tree networks. The
second is the difference of agents’ and nodes’ ability, that is, in Chapter B=3 agents have
distinct IDs and each node has a whiteboard but in this paper agents have no IDs and
each node is allowed to only have at most one removable token. The first problem is
solved by embedding the unidirectional ring in the tree network, and we explain this in
the next paragraph. The second problem is solved by the combination of port numbers

and removable-tokens, and we explain this in Section E61 and EG2.

Now, we explain the way to embed the ring from the tree network. Agents perform
the basic walk and embed a unidirectional ring network in the tree network by the Euler
tour technique. Concretely, letting vy, va,...,vy,,—1) be the node sequence such that
agent ap, visits the nodes in this order in the basic walk starting at vy, we can regard
that ap moves in the unidirectional ring network with 2(n — 1) nodes. Later, we call
this ring the virtual ring. In the virtual ring, we define the direction from v; to vy

as a forward direction, and the direction from v;4+1 to v; as a backward direction. For

4.6. WEAK MULTIPLICITY DETECTION AND REMOVABLE-TOKEN MODELT3

simplicity in the virtual ring, operations to an index of a node assume calculation under
modulo 2(n — 1), that i, v(;41) mod 2(n—1) 15 simply represented by v;+1. In addition in
the virtual ring, we define the neighboring agent of ay as the first agent in aj’s forward
(backward) direction, i.e., there exist no agents between them. Moreover, when ay, visits
a node v; through a port p of v; from a node v;_1 in the virtual ring, agents also use p
as the port number of (v;_1,v;) at v;. For example, let us consider a tree in Fig. 077 (a).
Agent aj, performs the basic walk and visits nodes a, b, ¢, b,d, b in this order. Then, the
virtual ring of Fig. 272 (a) is shown in Fig. 272 (b). Each number in Fig. 872 (b) represents
the port number through which aj visits each node in the virtual ring. Next, we define
a token node in a virtual ring as follows. At the beginning of the algorithm, each agent
ap, leaves its token node through the port 0 in the basic walk. Thus, when aj visits
some token node in the tree such that ap leaves there through the port 0 in the next
movement, that is, when a; visit some token node v; through the port (dvj —1), ap
regards the node as the token node in the virtual ring. In Fig.B77 (a), if nodes a and b
are token nodes, then in Fig.B7 (b), nodes a and b” are token nodes. By this definition,
a token node in the tree network is mapped to exactly one token node in the virtual ring.
Thus, by performing the basic walk, we can regard that all agents move in the same
virtual ring although agents start the algorithm at different nodes. This is because the
virtual ring starting at some node in the tree is actually represented by a port sequence
P, and the virtual ring starting at other nodes in the same tree can be represented by the
lexicographically transformation of P. In Fig. B4, the virtual ring starting at ap’s initial
node is represented by 001020. On the other hand, the virtual ring starting at another
token node is represented by 000102, and this sequence can be also represented by the
lexicographically transformation of 001020. Moreover, in the virtual ring, each agent also
moves in a FIFO manner, that is, when an agent aj, leaves some node v; before another

agent a;, aj arrives at v;11 before a;.

In the following section, we explain the algorithm on the virtual ring. Note that we
can show the asymptotically equivalence in terms of total moves between a tree and a
virtual ring, because a tree with n nodes is regarded as a virtual ring with 2n — 1 nodes.

The algorithm consists of two parts. In the first part, agents elect some leader agents by

74 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

\

Mo

[@): node with atoken () : node with no token]

Figure 4.7: An example of the basic walk

partially executing the leader agent election algorithm. In the second part, the leader

agents instruct the other agents which node they should meet at, and the other agents
move to the node.

4.6.1 The first part: leader election

In this section, we explain how to elect multiple leader agents. Note that, in this part no

token is removed. In the leader agent election, each agent takes a state from the following
three states:

e active: The agent is performing the leader agent election as a candidate for leaders.
e inactive: The agent has dropped out from the set of the leader candidates.
e leader: The agent has been elected as a leader.

The aim of the first part is similar to Chapter BZ3, that is, to elect some leaders and

satisfy the following two properties: 1) At least one agent is elected as a leader, and 2)

in the virtual ring, there exist at least g — 1 inactive agents between two leader agents.

4.6. WEAK MULTIPLICITY DETECTION AND REMOVABLE-TOKEN MODELT5

In the following, we explain the way to apply the idea of the leader election using
distinct IDs of agents and whiteboards of nodes in Chapter BZ3 to anonymous agents
in the weak multiplicity detection and removable-token model. First, we explain the
treatment about IDs. For explanation, let active nodes be nodes where active agents
start execution of each phase. In this section, agents use virtual IDs in the virtual ring.
Concretely, when agent a; moves from an active node v; to v;’s forward active node v,
ap, observes port sequence pi,ps2,...p;, where p,, is the port number at v;;,, through
which aj, visits m-th node v;4,, after leaving v;. In this case, aj uses this port sequence
p1, P2, ... p as its virtual ID. For example, in Fig. @72 (b), when a; moves from a to ",
ap, observes the port numbers 0,0, 1,0, 2 in this order. Hence, ap, uses 00102 as a virtual
ID from a to b”. Similarly, aj uses 0 as a virtual ID from b” to a. Note that, multiple

agents may have the same virtual IDs, and we explain the behavior in this case later.

Next, we explain the treatment of whiteboards by using removable tokens. Fortu-
nately, we can easily overcome this problem if agents can detect active nodes. Concretely,
each active agent aj, moves until aj visits three active nodes. Then, aj; observes its own
virtual ID, the virtual ID of a;’s forward active agent a;, and the virtual ID of a;’s for-
ward active agent aj. Thus, a; can obtain three virtual IDs idy,id2,id3 without using
whiteboards. Therefore, agents can use the above approach for a unidirectional ring, that
is, ap behaves as if it would be an active agent with ID ids in a bidirectional ring. In
the rest of this paragraph, we explain how agents detect active nodes. In the beginning
of the algorithm, each agent starts the algorithm at a token node and all token nodes
are active nodes. After each agent ap visits three active nodes, a; decides whether ap,
remains active or drops out from the set of leader candidates at the active (token) node.
If aj, remains active, then ay, starts the next phase and leaves the active node. Thus, in
some phase, when some active agent a; visits a token node v; where no agents exist, ay,

knows that a; visits an active node and the other nodes are not active in the phase.

After observing three virtual IDs idy,ids, id3, each active agent aj compares virtual
IDs and decides whether aj, remains active (as a candidate for leaders) in the next phase
or not. Different from Chapter B33, multiple agents may have the same IDs. To treat

this case, if idy < min(idy,ids) or idy = ids < id; holds, then aj remains active as

76 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

a candidate for leaders. Otherwise, a; becomes inactive and drops out from the set
of leader candidates. For example, let us consider the initial configuration like Fig. I8
(a). In the figure, black nodes are token nodes and the numbers near communication
links are port numbers. The virtual ring of Fig.Z=® (a) is shown in Fig.B8 (b). For
simplicity, we omit non-token nodes in Fig.@8 (b). The numbers in Fig.BR (b) are
virtual IDs. Each agent a; continues to move until a; visits three active nodes. By
the movement, a; observes three virtual IDs (01,01,01), as observes three virtual IDs
(01,01, 1000101010), ag observes three virtual IDs (01,1000101010,01), and a4 observes
three virtual IDs (1000101010,01,01), respectively. Thus, a4 remains as a candidate for
leaders, and a1, a9, and a3 drop out from the set of leader candidates. Note that, like
Fig. @R, if an agent observes the same virtual IDs three times, it drops out from the
set of leader candidates. This implies, if all active agents have the same virtual IDs,
all agents become inactive. However, we can show that, when there exist at least three
active agents, it does not happen that all active agents observe the same virtual IDs.
Thus in each phase, at least the half of active agents become inactive, and we show this
later (Lemma B652). Moreover, if there are only one or two active agents in some phase,
then the agents notice the fact during the phase. In this case, the agents immediately
become leaders. By executing [log ¢g] phases, agents complete the leader agent election.

Pseudocode. The pseudocode to elect leaders is given in Algorithm EZ2. All agents
start the algorithm with active states. The pseudocode describes the behavior of active
agent ay, and v; represents the node where agent aj, currently stays. If agent a;, becomes
inactive or a leader, a; immediately moves to the next part and executes the algorithm
for an inactive state or a leader state in Section EBHA. In Algorithm E=4, aj uses the

following variables:
e idy,ido, and id3 are variables for storing three virtual IDs.
e phase is a variable for storing its own phase number.

In Algorithm B=2, each active agent a; moves until a; observes three virtual IDs and
decides whether a; remains active as a candidate for leaders or not on the basis of

virtual IDs. Note that, since each agent moves in a FIFO manner, it does not happen

4.6. WEAK MULTIPLICITY DETECTION AND REMOVABLE-TOKEN MODELT7

a az as ay

&-0-8-0-8-0-8-0-0

0071170011 0011701700

1000101010
(@ (b)

[@ : node with a token O : node with no token]

Figure 4.8: An example that agents observe the same port sequence

that some active agent passes another active agent in the virtual ring, and each active
agent correctly observes three neighboring virtual IDs in the phase. In Algorithm B2, ay,
uses procedure NeztActive(), by which a; moves to the next active node and returns the
port sequence as a virtual ID. The pseudocode of NextActive() is described in Procedure

E1. In NextActive, ay, uses the following variables:
e port is an array for storing a virtual ID.
e move is a variable for storing the number of nodes it visits.

During the basic walk, each active agent visits active node v; through the port (d,, —1).
Thus, when agent aj, leaves active node vj, it always uses the port 0 and leaves there
(line 2 in Procedure BT).

Note that, if there exist only one or two active agents in some phase, then the agent
travels once around the virtual ring before getting three virtual IDs. In this case, the
active agent knows that there exist at most two active agents in the phase and they
become leaders (lines 5 to 8 in Algorithm B2). To do this, agents record the topology

every time they visit nodes, but we omit the description of this behavior in Algorithm

78 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

Algorithm 4.2 The behavior of active agent ay, (v; is the current node of ay.)

Variables for Agent ay
int phase = 0;
int idy, ido, ids;
Main Routine of Agent ay,
1: phase = phase + 1
2: id; = NextActive()
3: idy = NextActive()
4: ids = NextActive()
5. if the number of active agent in the tree is two or less then
6: change its state to a leader state
7 break Algorithm B2
8: end if
9: if (idy < min(idy,ids))V(idy = ids < id;) then
10: if (phase = [logg]) then

11: change its state to a leader state
12: break Algorithm B2

13: else

14: go to line 1

15: end if

16: else

17: change its state to an inactive state

18: end if

£ and Procedure EI.
First, we show the following lemma to show that at least one agent remains active or

becomes a leader in each phase.

Lemma 4.6.1. When there exist three or more active agents, there exist two active

agents having different virtual IDs.

Proof. To show the lemma, we use the theorem from [I5]. Let ¢[1..¢] be a port sequence

4.6. WEAK MULTIPLICITY DETECTION AND REMOVABLE-TOKEN MODELT9

Procedure 4.1 int NextActive() (v; is the current node of ay.)

Variables for Agent ay,
array port| |;
int move;
Behavior of Agent ay,
1: move =0
2: leave v; through the port 0
// arrive at the forward node
3: let p be the port number through which a;, visits v;
4: port[move] = p
5: move = move + 1
6: while (there does not exist a token) V
(p # dy; — 1) V (there exists another agent) do
7. leave v; through the port (p +1) mod dy,
// arrive at the forward node
8: let p be the port number through which a;, visits v;
9: port[move] =p
10 move = move + 1
11: end while

12: return port| |

that an agent observes in visiting ¢ nodes by performing the basic walk. In our algorithm,
t[1..q] represents a virtual ID that the agent gets in traverse from an active node to the
next active node. Moreover, (#[1..q])* denotes the concatenation of k copies of t[1..q]. If
t[1..q) = (t[1..¢'])* holds some positive integers ¢’ and k (¢’ < q), we call t[1..q] is periodic.
Otherwise, we call ¢[1..q] is not periodic. In addition, the length of an n-node tree T is

the length of its Euler tour, that is, 2(n — 1). Then, we use the following theorem.

Theorem 4.6.1. [I5] Let T be a tree of length at least ¢ > 1. Assume that t[1..q] is not
periodic and t[1..kq] = (t[1..q))* for some k > 3. Then one of the following three cases
must hold.

80 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

1. The length of T is q.
2. The length of T is 2q.
3. The length of T is greater than kq. O

We show the lemma by contradiction, that is, assume that there exist k' > 3 active
agents in some phase and all " active agents have the same virtual IDs. Let x be the
virtual ID. Then, ¢[1..|z|] = x holds. In addition, when each active agent moves in the
tree and observes one virtual ID «, each link in the virtual link is passed by exactly once.
Hence, t[(¢|z| + 1)..(¢ + 1)|z|] = z holds (0 < £ < k' — 1) and t[1..K|z]] = (¢[1..|z])¥
holds. Moreover, in this case the total number of their moves (i.e., k'|z|) is equal to
the length of the tree. If z is not periodic, the length of the tree is k’'|z|. However
from Theorem BTG, the length of the tree is never k’|z|, which is a contradiction. If
x is periodic, t[1..|z|] = (¢[1..]2|])® holds for some ' and s (2’ is not periodic). Then,
t[1..K|z|] = t([1..|]2']])¥"® holds and the length of the tree is k’s|2’|(= k’|x|). However, from

Theorem BB, the length of the tree is never k’s|z’|, which is also a contradiction. [J
Next, we have the following lemmas about Algorithm Z=2.

Lemma 4.6.2. Algorithm 23 eventually terminates, and satisfies the following two prop-

erties.
o There exists at least one leader agent.

o In the virtual ring, there exist at least g — 1 inactive agents between two leader

agents.

Proof. We show the lemma in the virtual ring. Obviously, Algorithm E=A eventually
terminates. In the following, we show the above two properties.

At first, we show that there exists at least one leader agent. From lines 5 to 7 of
Algorithm B=2, when there exist only one or two active agents in some phase, the agents
become leaders. We assume that in some phase, active agent a; observes three IDs

ap.idy, ap.ids, and ap.ids in this order. When there are three or more active agents in

4.6. WEAK MULTIPLICITY DETECTION AND REMOVABLE-TOKEN MODELS81

some phase, if ap.ide < min(ay.idy,ap.ids) or ap.ide = ap.ids < ap.id; holds, agent ay,
remains as a candidate for leaders, and otherwise a; drops out from the set of leader
candidates. Thus, unless all agents observe the same virtual IDs, at least one agent
remains active as a candidate for leaders. From Lemma BTG, it does not happen that

all agents observe the same virtual IDs. Therefore, there exists at least one leader agent.

Next, we show that there exist at least ¢ — 1 inactive agents between two leader
agents in the virtual ring. At first, we show that in each phase, at least half of active
agents become inactive. In each phase, if ap.ide < min (ap.idy, ap.ids) or ap.ide =
ap-ids < ap.idy holds, ap remains as a candidate for leaders. If the agent aj satisfies
ap.idy < min(ap.idy, ap.ids), then the ap’s backward and forward active agents drop out
from the set of leader candidates. In the following, we consider the case that agent ay
satisfies ap.ids = ap.ids < ap.idi. Let ap be a ap’s backward active agent and ap» be
a ay’s forward active agent. Agent ay observes three virtual IDs ays.idy, ap.ids, apy .ids,
and both ap/.ido = ap.idy and apr.idg = ap.ido hold. Hence, ap/.ido > aps.ids holds,
and ap drops out from the set of leader candidates. Next, ap» observes three virtual
IDs apr.idy, aprr.ids, apr.ids, and both apr.id; = ap.idy and apr.ide = ap.ids hold. Since
apr.idy = apr.ids holds, ap» does not satisfy the condition to remain as a candidate for
leaders and drops out from the candidate. Thus in each phase, at least half of active
agents drop out from the set of leader candidates and become inactive. Now, we show
that there exist at least g — 1 inactive agents between two leader agents. We firstly show
that after executing j phases, there exist at least 2/ —1 inactive agents between two active
agents. We show this by induction. For the case of j = 1, there exists at least 2! —1 =1
inactive agent between two active agents as mentioned above. For the case of j = k, we
assume that there exist at least 2% — 1 inactive agents between two active agents. After
executing k 4+ 1 phases, since at least one of neighboring active agents becomes inactive,
the number of inactive agents between two active agents is at least (2% — 1)+ 1+ (2% — 1)
= 2F+1 _ 1. Hence, after executing j phases, there exist at least 2/ — 1 inactive agents
between two active agents. Therefore, after executing [log g] phases, there exist at least

g — 1 inactive agents between two leader agents in the virtual ring.

82 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

Lemma 4.6.3. Algorithm [-3 requires O(nlogg) total moves.

Proof. In the virtual ring, each active agent moves until it observes three virtual IDs in
each phase. This requires at most O(n) total moves because each communication link of
the virtual ring is passed at most three times and the length of the ring is 2(n —1). Since

agents execute [log ¢g| phases, we have the lemma. O

4.6.2 The second part: leaders’ instruction and agents’ movement

In this section, we explain the second part, i.e., an algorithm to achieve the g-partial
gathering by using the elected agents. Let leader nodes (resp., inactive nodes) be the
nodes where agents become leaders (resp., inactive agents). Note that all leader nodes
and inactive nodes are token nodes. In this part, each agent takes one of the following

three states:
e [eader: The agent instructs inactive agents where they should move.
e inactive: The agent waits for the leader’s instruction.
e moving: The agent moves to its gathering node.

We explain the idea of the algorithm in the virtual ring. The basic movement is also
similar to Chapter B33, that is, to divide agents into groups each of which consists of at
least g agents. While in Chapter B33, each node has a whiteboard, in this section each
node is allowed to only have a removable token. Each leader agent a; moves to the next
leader node, and during the movement aj repeats the following behavior: aj removes
tokens of inactive nodes g — 1 times consecutively and then aj does not remove a token of
the next inactive node. The behavior guarantees that at least g — 1 agents exist between
any two token nodes when all the leaders complete the behavior. After that, agents move
to the nearest token nodes, which guarantees that at least g agents meet at each token
node.

First, we explain the behavior of leader agents. Whenever leader agent aj visits an
inactive node vj, it counts the number of inactive nodes (including the current node) that

ap, has visited. If the number plus one is not a multiple of g, aj, removes a token at v;.

4.6. WEAK MULTIPLICITY DETECTION AND REMOVABLE-TOKEN MODELS3

Otherwise, ap does not remove the token and continues to move. Agent aj continues this
behavior until a;, visits the next leader node v; (Later, explain how a;, detects whether
it visits the next leader node vj or not). After that, aj removes a token at v;;. When
all the leaders complete this behavior, there exist at least g — 1 inactive agents between
two token nodes. Hence, agents solve the g-partial gathering problem by moving to the
nearest token node (This is done by changing their states to moving states). For example,
let us consider the configuration like Fig.Bd (a) (g = 3). We assume that a; and ay are
leader agents and the other agents are inactive agents. In Fig. B9 (b), a1 visits node v
and ag visits node vy, respectively. The number near each node represents the number
(modulo g¢) of inactive nodes that a; or ag has ever visited. Then, agents a; and as
remove tokens at v; and v3, and do not remove tokens at vy and vy, respectively. After
that, a1 and as continue this behavior until they visit the next leader nodes. At the

leader nodes, they remove the tokens (Fig.@d (c)).

When a token at v; is removed, an inactive agent at v; changes its state to a moving
state and starts to move. Concretely, each moving agent moves to the nearest token
node v;. Note that, since each agent moves in a FIFO manner, it does not happen that
a moving agent passes a leader agent and terminates at some token node before the
leader agent removes the token. After all agents complete their own movements, the
configuration changes from Fig.B9 (c) to Fig.Z9 (d) and agents can solve the g-partial
gathering problem. Note that, since each agent moves in the same virtual ring in a FIFO
manner, it does not happen that an active agent executing the leader agent election

passes a leader agent and that a leader agent passes an active agent.

Pseudocode. In the following, we show the pseudocode of the algorithm. The pseu-
docode of leader agents is described in Algorithm BZ3. Variable tC'ount is used to count
the number of inactive nodes a;, has ever visited. When a;, visits a token node v; where
another agent exists, v; is an inactive node because an inactive agent becomes inactive at
a token node and agents move in a FIFO manner. Whenever each leader agent aj visits
an inactive node, aj increments the value of tCount. At inactive node vj, aj removes
a token at v; if tCount # g — 1 (does not remove a token otherwise) and continues to

move (lines 5 to 9). This guarantees that, if a token at inactive node v; is not removed,

84 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

g : leader ‘ : non-leader

@ : node with a token O : node with no token

Figure 4.9: Partial gathering in the removable-token model for the case of g = 3 (a1 and

ay are leaders, and black nodes are token nodes)

at least g agents meet at v;. When a; removes a token at v;, an inactive agent at v;
changes its state to a moving state (line 7). When ay, visits a token node v;; where no
agents exist, v; is the next leader node. This is because token nodes are leader nodes
or inactive nodes, and from an atomicity of the execution there exist no agents at each
leader node. Note that also from an atomicity of the execution, it does not happen that
some leader agent visits a leader node v such that another agent becomes a leader at v
but still stays at v. When leader agent a; moves to the next leader node v;, aj removes
a token at v;; and changes its state to a moving state. In Algorithm EZ3, aj, uses the
procedure NextToken() to move to the next token node. The pseudocode of NextToken()
is described in Procedure E2. In Procedure B3, aj, performs the basic walk until ay, visits
a token node v; through the port (d,, —1).

The pseudocode of inactive agents is described in Algorithm 4. Inactive agent aj
waits at v; until either a token at v; is removed or aj observes another agent. If the
token is removed, a; changes its state to a moving state (lines 4 to 6). If aj observes

another agent, the agent is a moving agent and terminates the algorithm at v; (lines 7

4.6. WEAK MULTIPLICITY DETECTION AND REMOVABLE-TOKEN MODEL85

Algorithm 4.3 The behavior of leader agent ay, (v; is the current node of ay)

Variable in Agent ay
int tCount = 0;
Main Routine of Agent ay
1: NextToken()
2: while there exists another agent at v; do
3: //this is an inactive node
4: tCount = (tCount + 1) mod g
5. if tCount # g — 1 then

6: remove a token at v;
7: //an inactive agent at v; changes its state to a moving state
8: end if

9: NextToken()
10: end while
11: remove a token at v;

12: change its state to a moving state

to 9). This means v; is selected as a token node where at least g agents meet in the end
of the algorithm. Hence, aj terminates the algorithm at v;.

The pseudocode of moving agents is described in Algorithm EZ3. In the virtual ring,
each moving agent aj, moves to the nearest token node by using NextToken().

We have the following lemma about the algorithms.

Lemma 4.6.4. After the leader agent election, agents solve the g-partial gathering prob-

lem in O(gn) total moves.

Proof. We show the lemma in the virtual ring. At first, we show the correctness of the
proposed algorithms. Let vf, v, ... ,vzq be inactive nodes that still have tokens after all
leader agents complete their behaviors, and we call these nodes gathering nodes. From
Algorithm B=3, each leader agent aj removes the tokens at the consecutive g — 1 inactive
nodes and does not remove the token at the next inactive node. By this behavior and

Lemma A63, there exist at least g — 1 moving agents between v{ and v +1- Moreover,

86 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

Procedure 4.2 void NextToken() (v; is the current node of ay.)

1: leave v; through the port 0

[\

: let p be the port number through which a), visits v;

w

while (there does not exist a token) V (p # d,; — 1) do
4: leave v; through the port (p+ 1) mod d,,
5. let p be the port number through which aj, visits v;

6: end while

Algorithm 4.4 The behavior of inactive agent ay, (v; is the current node of ay)

Main Routine of Agent ay
1: while (there does not exist another agent at v;)V(there exists a token at v;) do
2: walt at v
3: end while
4: if there exists another agent at v; then
5: terminate the algorithm
6: end if
7: if there does not exist a token then
8: change its state to a moving state

9: end if

Algorithm 4.5 The behavior of moving agent a;, (v; is the current node of ay,)

Main Routine of Agent ay
1. NextToken()

2: terminate the algorithm

these moving agents move to the nearest gathering node v +1- Therefore, agents solve
the g-partial gathering problem.

In the following, we evaluate the total number of moves required for the algorithms.
At first, let us consider the total number of moves required for leader agents to move to
the next leader nodes. This requires 2(n — 1) total moves since all leader agents travel
once around the virtual ring. Next, let us consider the total number of moves required

for moving (inactive) agents to move to the nearest token nodes (For example, the total

4.7. CONCLUDING REMARKS 87

number of moves form Fig.BZd (c) to Fig.B9 (d)). From Algorithm BT, each moving
agent moves to the nearest gathering node. In the following, we show that the number
of moving agents between some gathering node v{ and its forward gathering node v/ 1

is O(g). From Algorithm EZ3, the moving agents between v{ and v 1 consist of inactive

agents and leader agents between v and v 1~ Since there exists at least one gathering
node between two leader nodes, there exists at most one leader node between v{ and

vd

i1+ If there exist no leader node between v{ and vf 1, then clearly there exist g — 1

g

HRE If there exists one leader node v; between vf and

inactive nodes between v{ and v
vy 1, there exist at most g — 1 inactive nodes between v{ and v, and at most g — 1
inactive nodes between v, and v/ 1, respectively. Thus, there exist at most O(g) moving
agents between gathering nodes v¢ and v/ +1, and the total number of moves required for
moving (inactive) agents to move to the nearest gathering nodes is at most O(gn) since

each communication link is passed by at most O(g) times.

Therefore, we have the lemma.]

From Lemma B63 and Lemma BG4, we have the following theorem.

Theorem 4.6.2. In the weak multiplicity detection and the removable-token model, our

algorithm solves the g-partial gathering problem in O(gn) total moves.

4.7 Concluding Remarks

In this chapter, we considered the g-partial gathering problem in asynchronous tree
networks. At first, in the non-token model we showed that agents require Q(kn) total
moves to solve the g-partial gathering problem. After this, we considered three model
variants. First, in the weak multiplicity detection and non-token model, for asymmetric
trees agents can solve g-partial gathering problem in O(kn) total moves from the past
result, and we showed that there exist no algorithms to solve the g-partial gathering
problem for symmetric trees. Second, in the strong multiplicity detection and non-token
model, we proposed a deterministic algorithm to solve the g-partial gathering problem

in O(kn) total moves. Finally, in the weak multiplicity detection and removable-token

88 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

model, we proposed a deterministic algorithm to solve the g-partial gathering problem

in O(gn) total moves.

Chapter 5

Uniform Deployment in Ring
Networks

5.1 Introduction

In this chapter, we present algorithms to achieve the uniform deployment in asynchronous
unidirectional rings. In [49, b0, 51], the uniform deployment problem is considered under
the assumption that agents are oblivious (or memoryless) but can observe multiple node
within its visibility range. This assumption is often called a Look-Compute-Move model.
In this chapter, we assume agents that have memory but cannot observe nodes except for
their currently visiting nodes. To our best knowledge, this is the first research considering

the uniform deployment for such agents.

5.1.1 Contribution

Contributions of this paper are summarized in Table b. We assume that each agent
initially has a token and can release it on a visited node. After a token is released at
some node, agents cannot remove the token. In addition, we assume that agents can send
a message of any size to agents at the same node. We consider two problem settings.
First, we consider agents with knowledge of k, where k is the number of agents. In this

case, we propose two algorithms. The first algorithm solves the uniform deployment with

89

90 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

Table 5.1: Results in each model

Result 1 Result 2 Result 3 Result 4
(Section B3| (Section B=32) | (Section BA) | (Section BAA)
Knowledge of k Available Available Not Available Not Available
Termination detection Required Required Required Not Required
Solvable / Unsolvable Solvable Solvable Not Solvable Solvable
Agent memory O(klogn) O(logn) - O((k/1)1og(n/l))
Time complexity O(n) O(nlogk) - O(n/l)
Total agent moves O(kn) O(kn) - O(kn/l)

n: number of nodes, k: number of agents, I: symmetry degree of the initial configuration

termination detection. This algorithm requires O(klogn) memory space per agent, O(n)
time, and O(kn) total moves, where n is the number of nodes. The second algorithm
also solves the uniform deployment problem with termination detection. This algorithm
reduces the memory space per agent to O(logn), but allows O(nlog k) time, and requires
O(kn) total moves. Note that agents require 2(kn) total moves to solve the problem.
Hence, we can show that the both proposed algorithms are asymptotically optimal in

terms of total moves.

Next, we consider agents with no knowledge of k or n. In this case, we show that,
when termination detection is required, there exists no algorithm to solve the uniform
deployment problem. Intuitively, it is due to impossibility of finding k or n when some
part of the initial configuration has symmetry: when an agent misestimates these at
smaller numbers than actual ones, it prematurely terminates and the uniform deploy-
ment cannot be achieved. For this reason, we consider the relaxed uniform deployment
problem that does not require termination detection, and we propose an algorithm to
solve the relaxed uniform deployment problem. In this algorithm, each agent estimates
k and n (possibly at smaller values than actual ones) and behaves based on the esti-
mation. Thus, the efficiency of the algorithm depends on the estimation. To evaluate
the efficiency, we introduce the following parameter [to denote the symmetry degree

of an initial configuration: we say that an initial configuration has symmetry degree [

5.1. INTRODUCTION 91

2 1
@ (b)

Figure 5.1: An example of the symmetry degree

when its distance sequence can be represented as [-times repetition of some aperiodic
sequence. For example, the initial configuration in Fig.b (a) has symmetry degree 1
since its whole distance sequence (1,4,2,1,2,2) is aperiodic, and the initial configuration
in Fig.60 (b) has symmetry degree 2 since its whole distance sequence (1,2,3,1,2,3) is
represented as 2-times repetition of aperiodic sequence (1,2,3). Hence, the symmetry de-
gree becomes larger for a higher symmetric initial configuration. Note that agents cannot
know [but the efficiency depends on it. Using the symmetry degree parameter [, the
efficiency of the algorithm is denoted as follows: this algorithm requires O((k/1) log(n/l))
memory space per agent, O(n/l) time, and O(kn/l) total moves. At fist glance, the upper
bound O(kn/l) of the total moves may seem to violate the lower bound Q(kn) of the
total moves. However, for some initial configuration with [> 2, the location is closer
to the uniform deployment configuration and agents require less than 2(kn) total moves
to solve the problem. Hence, from such initial configurations agents can make adaptive
movement and can solve the problem in less than Q(kn) total moves. Thus, the algo-
rithm achieves the uniform deployment more efficiently when the initial configuration
has higher symmetry degree. This is a natural but interesting property. For example,

for an asymmetric initial configuration this algorithm requires O(klogn) memory space

92 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

per agent, O(n) time, and O(kn) total moves. However, when [is w(1), this algorithm
requires o(klogn) memory space per agent, o(n) time, and o(kn) total moves. When [is
Q(n), this algorithm requires O(1) memory space per agent, O(1) time, and O(k) total
moves.

Note that, for any initial configuration such that all agents are in the initial states and
placed at the distinct nodes, all proposed algorithms achieve the uniform deployment,
which is a striking difference from the total gathering problem because the total gathering
problem is not solvable from some initial configurations. Note that agents can attain this

solvability since the uniform deployment problem requires no symmetry breaking.

5.1.2 Related works

There are several researches considering the uniform deployment problem in a Look-
Compute-Move model. Flocchini et al. [49] considered it in a cycle environment of length
m (m is a real number). They considered the two types of uniform deployment: ezact
and e-approzimate. In the exact uniform deployment, agents move in the ring so that the
distance between any two consecutive agents is the same, say d. In the e-approximate
uniform deployment, agents move in the ring so that the distance is between d — ¢ and
d + €. They showed that if agents do not have common sense of direction, agents cannot
solve the exact uniform deployment problem even if agents have unlimited memory and
visibility range. If agents have common sense of direction, they proposed an algorithm to
solve the exact uniform deployment problem for agents with knowledge of d. In addition,
for any € > 0 they proposed an algorithm to solve the e-approximate uniform deployment
problem for agents without knowledge of d. Elor et al. [b0] considered the uniform
deployment also in the ring networks. They considered agents without knowledge k or
n, but with visibility range VR. They considered a semi-synchronous model, that is, a
subset of all agents execute a behavior in each round. They showed that, if VR < |n/k|
holds, agents cannot solve the uniform deployment problem. If VR > |[n/k| holds,
they proposed an algorithm to solve the balanced uniform deployment problem without
quiescence. That is, agents eventually satisfy the condition of the uniform deployment

and continue to move in the ring satisfying the condition. In addition, they proposed

5.2. PRELIMINARY 93

an algorithm to solve the semi-balanced uniform deployment problem with quiescence.
That is, agents eventually terminate the algorithm satisfying the condition such that the
distance between any two adjacent agents is between n/k — k/2 and n/k + k/2. On the
other hand, Barriere et al. [51] considered the uniform deployment in the grid networks
and proposed an algorithm to achieve the uniform deployment in O(n/d) time, where d

is the interval of the uniform deployment.

5.1.3 Organization

The Chapter is organized as follows. In Section b=3 we consider agents with knowledge of
k. In Section b4 we consider agents with no knowledge of k£ or n. Section B3 concludes

this chapter.

5.2 Preliminary

5.2.1 System Model

In this chapter, we restrict the network topology only to ring networks. We use the
same definition of a ring R = (V, L) as in Section B=Z1. In this chapter, we assume that
whiteboards are allowed to have only tokens. We define T as a set of all states (i.e.,

number of tokens) of a node.

5.2.2 Agent Model

We consider two problem settings: agents with knowledge of k and agents with no knowl-
edge of k or n. We assume that each agent initially has a token and can release it on
a node that it is visiting. The token on an agent or a node can be realized in one bit
that denotes existence of the token, and thus, the token cannot carry any additional
information. Note that if agents are not allowed to have tokens, they cannot mark nodes
in any way and this means that the uniform deployment problem cannot be solved. This
is because if all agents move in a synchronous manner, they cannot get any information

of other agents. After a token is released at some node, agents cannot remove the token.

94 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

Note that since agents are anonymous, they cannot recognize the owner of each token.
In addition, we assume that agents can send a message of any size to agents at the same
node. Similarly to Section 222, we assume that agents move through a link in a FIFO
manner. Each agent aj executes the following five operations in an atomic step: 1) The
agent reaches a node v (when ay, is in transit toward v), or it starts operations at v (when
ap is at v), 2) the agent receives all the messages (if any), 3) the agent executes local
computation, 4) the agent broadcasts a message to all the agents staying at the same
node v (if any) if it decides to send a message, and 5) the agent leaves v if it decides to

move. After taking an atomic step, a; has no message.

5.2.3 System Configuration

In this chapter, a (global) configuration c¢ is defined as a 5-tuple ¢ = (S,T, M, P, Q)
and the correspondence table is given in Table 2. The first element S is a k-tuple
S = (s0,81,.--,8¢1), where s; is the state (including the state to denote whether it
holds a token or not) of agent a; (0 < i < k —1). The second element T' is an n-tuple
T = (to,t1,...,tn—1), where t; is the state (i.e., the number of tokens) of node v; (0 < i <
n—1). The third element M is a k-tuple M = (mg, my, ... mg_1), where m; is a sequence
of messages reached a; but not consumed yet by a;. The remaining elements P and @
represent the positions of agents. The element P is an n-tuple P = (po,p1,-..,Pn—1),
where p; is a sequence of agents staying at node v; (0 < i < n —1). The element Q is
an n-tuple @ = (qo,q1,-.-,qn—1), where ¢; is a sequence of agents residing in the FIFO
queue corresponding to link (v;—1,v;) (0 < i < n —1). Hence, agents in ¢; are those in
transit from v;_1 to v;.

In initial configuration ¢y € C, we assume that no node has any token. In addition, in
¢p the node where agent a stays is called the home node of a and denoted by vgoymr(a).
We assume that in ¢ agent a is stored at a buffer of its home node vgonr(a). This assures
that agent a starts the algorithm at vgoyg(a) before any other agent visits vgonmre(a),
that is, a is the first agent that takes an action at vgoyg(a). Next, we define symmetry
degree [more precisely. For periodic rings, that is, for rings such that shift(Dg,x) = Dy

holds for some = (0 < z < k), we define | = n/k. For aperiodic rings, we define | = 1.

5.2. PRELIMINARY 95

Table 5.2: Meaning of each element in configuration ¢ = (S, T, M, P, Q)

’ Element H Meaning and example ‘
S =(80,81,--,8k-1) Set of agent states (s;: the state of agent a;)
T = (to,t1,...,tn-1) Set of node states (¢;: the state of node v;)
M = (mo,m1,...,mi_1) || Set of message sequences

(m;: a sequence of massages sent to a; and not received by a;)

P = (po,p1,---,Pn-1) Set of agents staying at nodes

(ps: a sequence of agents staying at node v;)

Q= 1(go0,q1,---,qn-1) Set of agents residing on links

(gi: a sequence of agents in transit from v;—1 to v;)

A schedule is an infinite sequence of agents. A schedule X = p1, po, ... is fair if every
agent appears in X infinitely often. An infinite sequence of configurations F = ¢g, ¢y, . . .
is called an execution from c¢q if there exists a fair schedule X = p1, ps, ... that satisfies

the following conditions for each h (h > 0):

o If p,_1 € p; holds for some ¢ in a configuration cp, the states of pp_1 and v; in
cnh—1 are changed to those in ¢j, by a local computation of p,_1. Let aj = pp—1. If
m; # (), all messages in m; are delivered to a; and consumed, that is, m; becomes
(). In addition, if py_1 sends a message, the message is appended to each tail of my
such that agent q; is at v;. Moreover if py_ releases its token at v;, the value of ¢;
increases by one. After this if p,_1 decides to move to v;41, pp—1 is removed from
p; and is appended to the tail of sequence ¢;+1. If pp_1 decides to stay, pp_1 is still

in p;. The other elements in ¢,_; are the same as those in c.

e If pp_1 is at the head of g; for some i in a configuration ¢y, pn_1 moves to v;, that
is, pp_1 is removed from ¢;. Then, the states of p,_1 and v; in ¢;,_1 are changed to
those in ¢p, by a local computation of pp_1. If pp_1 sends a message, the message is
appended to each tail of m; such that agent q; is at v;. In addition, if p,_1 releases
its token at v;, the value of t; increases by one. After this if p,_; decides to move
to vit1, prn—1 is appended to the tail of sequence ¢;+1. If pp_1 decides to stay, pp_1

is inserted in p;. The other elements in c,_1 are the same as those in ¢y,.

96 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

We consider an asynchronous system, that is, the time for each agent to transit to
the next node and to wait until execution of the next operation (when staying at a node)

is finite but unbounded.

5.2.4 Problem Definition

The uniform deployment problem in a ring network requires k (> 2) agents to spread
uniformly in the ring, that is, the distance between any two adjacent agents should become
identical. Here, we say two agents are adjacent when there exists no agent between them.
However, we should consider the case that n is not a multiple of k. In this case, we aim to
distribute the agents so that the distance d of any two adjacent agents should be |n/k|
or [n/k].

We consider the uniform deployment problem with termination detection and the uni-
form deployment problem without termination detection. At first, we define the uniform
deployment problem with termination detection. In this case, a halt state is defined as
follows: when agent a;, enters a halt state, it terminates the algorithm, that is, a, neither
changes its state nor leaves the current node even if another agent sends a message to
ap. Hence if an agent enters a halt state, it can detect its termination. Now, we define

the uniform deployment problem with termination detection as follows.

Definition 5.2.1. An algorithm solves the uniform deployment problem with termination

detection if any execution satisfies the following conditions.

e All agents change their states to the halt states in finite time.

e When all agents are in the halt states, ¢; = 0 holds for any q; € Q and each distance
d of two adjacent agents is |n/k] or [n/k]. O

Next, we define the uniform deployment problem without termination detection. In
this case, a suspended state is defined as follows: when agent a;, enters a suspended state,
it neither changes its state nor leaves the current node unless another agent sends a
message to ap. If aj, receives a message, it can resume its behavior and leave the current
node. The uniform deployment problem without termination detection allows all agents

to stop in suspended states, which is also known as communication deadlock.

5.2. PRELIMINARY 97

E R
E R

Figure 5.2: The initial configuration to derive a lower bound Q(kn) of the total moves

Definition 5.2.2. An algorithm solves the uniform deployment problem without termi-

nation detection if any execution satisfies the following conditions.

o All agents change their states to the suspended states in finite time.

e When all agents are in the suspended states, q; = () holds for any q; € Q and each
distance d of two adjacent agents satisfies |n/k| or [n/k]. O

For the uniform deployment problem, we have the following lower bound of total

moves. this lower bound holds even if agents have knowledge of k.

Theorem 5.2.1. When k < pn holds for some constant p(p < 1), a lower bound of
the total moves to solve the uniform deployment problem (with or without termination

detection) is Q(kn) even if agents have knowledge of k.

Proof. We assume for simplicity that k& < n/4 holds and consider the initial configuration
such that all agents stay in a quarter part of the ring like Fig. B2. In such an initial
configuration, the ring is aperiodic and [= 1 holds. Then, the ring is divided into four
quarter parts, and in the initial configuration, all agents are in the part a. To achieve the
uniform deployment, k/4 agents need to move to the part ¢, the opposite part of a, and
each of them must move at least n/4 times. Thus the total number of moves is at least
(k/4) x (n/4) = kn/16. This argument can be easily extended to any constant p(p < 1)
satisfying k < pn. O

98 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

Next, we evaluate the time complexity as the time required to achieve the uniform
deployment. Since there is no on time in asynchronous systems, it is impossible to
measure the exact time. Instead we consider the ideal time complezity, which is defined
as the execution time under the following assumptions: 1) The time required for an agent
to move from a node to its neighboring node or to wait until execution of the next action
is at most one, and 2) the time required for local computation is ignored (i.e., zero)o.
Note that these assumptions are introduced only to evaluate the time complexity, that
is, algorithms are required to work correctly in asynchronous systems. In the following,

we simply use terms “time complexity” and “time” instead of “ideal time complexity”.

Then, we can show the following theorem similarly to Theorem B2

Theorem 5.2.2. A lower bound of the time complexity to solve the uniform deployment

problem (with or without termination detection) is 2(n). O

5.3 Agents with knowledge of k

In this section, we consider the uniform deployment problem for agents with knowledge
of k.2 We propose two algorithms to solve the uniform deployment problem with termi-
nation detection. The first algorithm is trivial one and requires O(klogn) memory space
per agent, O(n) time, and O(kn) total moves. The second algorithm reduces the memory

space per agent to O(logn), but allows O(nlogk) time, and requires O(kn) total moves.

5.3.1 A trivial algorithm with O(klogn) agent memory

In this section, we propose an algorithm to solve the uniform deployment problem with
termination detection which requires O(klogn) memory space per agent, O(n) time,
O(kn) total moves. For simplicity, we assume n = ck for some positive integer ¢, and we
can remove this assumption in Section BZ30l. The algorithm consists of the following two

phases: the selection phase and the deployment phase. In the selection phase, each agent

1This definition is based on the ideal time complexity for asynchronous message-passing systems [62].
2We assume agents with knowledge of k, but agents with knowledge of n can similarly solve the

problem.

5.3. AGENTS WITH KNOWLEDGE OF K 99

@ :node with a token
(] : target nodes

Figure 5.3: The base nodes and the target nodes

travels once around the ring and selects a base node as a reference node of the uniform
deployment. In the deployment phase, based on the base node, each agent determines a
target node where it should stay and moves there.

In the selection phase, each agent aj firstly releases its token at its home node
vgome(ar), and after this travels once around the ring. Note that since agents have
knowledge of k, they can detect they travelled once around the ring or not. During the
traversal, a;, memorizes the distance dis between two adjacent token nodes, and stores
dis to an array D for memorizing the distance sequence. When finishing travelling the
ring, aj, gets the value of n and the distance sequence D = (dy,ds, ...,dy_1), where d; is
is the distance from the j-th token node it found to the (j + 1)-th token node. Note that
ap’s home node vgoyg(ap) is considered as the 0-th token node. Let x be the minimum
number such that shift(D,z) = Dy, holds, where D,y is the lexicographically mini-
mum distance sequence among {shift(D,z)|0 < x < k — 1}. Then, a; selects base node
Upase Where the agent whose distance sequence is D,y initially stays. If D is aperiodic,
all the agents select the same node as a base node. If D is periodic, multiple nodes are
selected as base nodes (Fig.b23). However in this case, each agent can determine its base
node and target node uniquely, and we explain this later.

In the deployment phase, each agent aj, determines its target node and moves there.

Let disBase be the distance from its home node vgoag(apn) to vpase. In addition, ay,

100 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

considers that it is the rank-th agent (0 < rank < k — 1) from vpse (the agent staying
at Upgse is considered as the 0-th agent). Then, agents firstly moves disBase times and
reaches vpgse. After this, aj; moves its target node by moving rank x n/k times and
terminates the algorithm. Note that if multiple base nodes are selected like Fig. 623, the
following properties are satisfied: 1) The distance between every pair of two adjacent
base nodes is identical, and 2) the number of agents and their locations between every
pair of adjacent base nodes are also identical. Thus the base nodes can be reference nodes
of the uniform deployment, and each agent can determine its base node and target node
uniquely.

The pseudocode is described in Algorithm BTl. We have the following theorem.

Theorem 5.3.1. For agents with knowledge of k, Algorithm B solves the uniform de-
ployment problem with termination detection. This algorithm requires O(klogn) memory

space per agent, O(n) time, and O(kn) total moves.

Proof. 1t is obvious that Algorithm BT solves the uniform deployment problem, and in
the following we analyze the complexity measures.

At first, we evaluate the memory requirement per agent. Each agent eventually gets
the distance sequence D = (dy,d1,...,dg_1). Since each d; is at most n, this sequence
requires O(klogn) memory space . Moreover, the other variables require O(logn) bit
memory. Therefore, the memory requirement per agent is O(klogn).

Next, we analyze the time complexity and the total moves. In the selection phase,
each agent travels once around the ring to get D, which takes n unit times and n moves.
In the deployment phase, each agent moves to its own target node, which takes at most
2n unit times and 2n moves. Thus, the time complexity is O(n) and the total number of

moves is O(kn). O

The uniform deployment for the case of n # ck

To remove the restriction of n = ck imposed in Section BZ3, only the parts for deter-
mining the target nodes and for moving to a target node should be modified. In the case

that n is not a multiple of k, the distance between some adjacent target nodes should be

5.3. AGENTS WITH KNOWLEDGE OF K 101

Algorithm 5.1 A time optimal algorithm for agents with knowledge of k
Main behavior of Agent ay,

1: /* selection phase */

2: =0

3: release a token at its home node vgomg(an)

4: while i # k do

5: move to the nearest token node and get the distance dis between two token nodes

6: D[i] = dis

oi=i41

8: end while

9: // a; completes travelling once around the ring and gets the number of nodes

10: n = D[0] + D[1] 4+ ---+ D[k — 1]

11:

12: /* deployment phase */

13: let Dy be the lexicographically minimum sequence among {shift(D,x)|0 < = <
kE—1}

14: rank = min{z > O|shift(D, x) = Dpmin}

15: disBase = D[0] + D[1] + --- + D[k — 1 — rank]

16: move disBase + rank x n/k times

17: terminate the algorithm

[n/k] or [n/k|.

The target nodes should be determined by each agent so that the decisions of different
agents should be identical. Since all the agents recognize the same nodes as the base
nodes, the common target nodes can be determined using the base nodes as reference
nodes: Let b be the number of the base nodes, and »r = n mod k. The distance of
every pair of adjacent base nodes is identical even in the case of n # ck, and is n/b =
(In/k] xk+7r)/b=|n/k] xk/b+7r/b (notice that k/b and r/b are integers). This implies
that we should select k/b — 1 target nodes between two adjacent base nodes so that the

first /b intervals between adjacent target nodes should be [n/k| and others should be

102 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

Figure 5.4: An example of the base node condition (n = 18,k = 9,d = 2)

|n/k]. With considering the above, each agent can determine its own target node by
local computation so that all the agents can spread over the ring to achieve the uniform

deployment.

5.3.2 An algorithm with O(logn) agent memory

In this section, we propose an algorithm to solve the uniform deployment problem with
termination detection which reduces the memory space per agent to O(logn), but allows
O(nlogk) time, and requires O(kn) total moves. The algorithm consists of two phases:
selection phase and deployment phase. For simplicity we assume n = ck for some positive
integer c in the following description, and this restriction is removed similarly in Section

b3

Selection phase

In this phase, some of home nodes are selected as the base nodes, and they are used as
reference nodes for the uniform deployment. The selected base nodes should satisfy the
following condition called the base node condition: 1) There exists at least one base node,

2) the distance between every pair of adjacent base nodes is identical, and 3) the number

5.3. AGENTS WITH KNOWLEDGE OF K 103

of home nodes between every pair of adjacent base nodes is identical. The last condition
is introduced to guarantee that the number of the selected base nodes is a divisor of k.
For example, let us consider the initial locations of agents like Fig. b4. Then, distances
from vyome(ar) to veome(az), veome(az) to vaome(as), and vaome(as) to veome(ar)
are all 6, and the number of home nodes between vgonr(a1) and vgome(az), vrome(as)
and vgome(as), and vgoyme(as) and vgome(ar) are all 2. Thus, vgome(al), veome(asz),
and vgomg(as) satisfy the base node condition. Agents select such base nodes with
O(logn) memory. When the selection phase is completed, each agent stays at its home
node and knows whether its home node is selected as a base node or not. We call an
agent a leader (but probably not unique) when its home node is selected as a base node,
and call it a follower otherwise.

Now, we explain the way to select the base nodes satisfying the base node condition.
The state of an agent is active, leader or follower. Active agents are candidates for leaders,
and initially all agents are active. Once an agent becomes a follower or a leader, it never
changes its state. In the following, we say that a node v is active (resp., a follower)
when v is the home node of an active (resp., a follower) agent. At the beginning of the
algorithm, each agent aj, releases its token at its home node vgonmg(ar). The selection
phase consists of at most [log k]| sub-phases. At the beginning of each sub-phase, each
agent stays at its own home node. During the sub-phase, if the agent is a follower, it
stays at its home node. If the agent is active, it travels once around the ring and decides
whether it remains active or not in the next sub-phase using IDs.® Concretely, the ID
(not necessarily unique) of an active agent ay is given as (dp, fNumy,), where dy, is the
distance from its home node vgoumg(arn) to the next active node in the sub-phase, say
Unext, and fNumy, is the number of follower nodes between vyoyr(ap) and vpeyt. For
example in Fig.B3, when agent a; moves from its home node v; to the next active

node v’;, it visits five nodes and observes two follower nodes. Hence, a; gets its own ID

]7
ID; = (5,2). We compare two IDs by the lexicographical order: for ID; = (dy, fNum,)
and IDy = (dg, fNum,), we say IDy < IDy if (dy < d2) V ((d1 = d2) A (fNum; < fNums))

holds. Each active agent decides whether it remains active or not using such IDs. Notice

3 Active agents can detect they traveled once around the ring or not since they have knowledge of k.

104 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

IDy, = (5,2)

Figure 5.5: An ID of an active agent ay,

that in different sub-phases, the IDs of the same agent are different since the number of
active agents is reduced in every sub-phase.

In the following, we explain the implementation of the sub-phase. In the sub-phase,
each active agent a; travels once around the ring. While travelling, a; executes the

followings:

1. Get its own ID IDy, = (dp, fNumy,):
Agent aj, gets its own ID IDj;, by moving from its home node vgopg(ap) to the next
active node vy with counting the numbers of nodes and follower nodes (Fig. B3).
Since all active agents are traversing the ring and all follower agents are staying at
their home nodes, ap can detect its arrival at the next active node when it visits
a node with a token but with no agent. Note that this statement holds even in
asynchronous systems because active agents do not pass other active agents from

the FIFO property of links and the atomicity of the execution.

2. Get the ID IDyept = (dnegt, fNum,,,.,;) of its next active agent:
Similarly, with counting the numbers of nodes and follower nodes, a;, moves from
Unext tO the next active node (i.e., the node with a token but with no agent). Then,

ap, gets the ID of ap’s next active agent and stores it to ID,,e.

3. Compare IDp with those of all active agents:
During the traversal of the ring, a; compares ID, with IDs of all active agents
one by one, and checks 1) whether IDj, is the minimum and 2) whether the IDs

of all active agents are identical. To check these, agent a; keeps boolean variables

5.3. AGENTS WITH KNOWLEDGE OF K 105

Algorithm 5.2 The behavior of active agent ay,

Behavior of Agent ay,

1: /*selection phase®/

2: phase = 1, identical = true, min = true

3: release a token at its home node vgomg(an)

4: while phase # [logk] do

5:

6:

7

10:

11:

12:

13:

14:

15:

16:

17:

move to the next active node and get its own ID IDy, = (dp,, fNumy,)
if aj, is at vgoume(an) then change its state to a leader state // only ay, is active

move to the next active node and get ID IDyert = (dnest, fNum of the next

neat)
active agent
if IDy, # IDyeqt then identical = false
if IDy, > IDpeyr then min = false // there exists an agent with smaller ID
while a;, is not at vgour(ay) do
move to the next active node and get ID IDyper = (dother, fNumype,) Of the next
active agent
if Dy, # IDyiher then identical =false
if 1Dy, > IDype, then min = false // there exists an agent with smaller ID
end while
if identical = true then change its state to a leader state // all active agents have
the same IDs

if (min = false) V (IDy, = I Dyeyt) then change its state to a follower state

phase = phase + 1, identical = true, min = true

18: end while

min (min = true means IDj is the minimum among ever-found IDs) and identical
(identical = true means that ever-found IDs are identical), and it updates the

variables (if necessary) every time it finds an ID of another active agent.

When a;, completes the traversal, it determines its state for the next sub-phase. If

identical = true holds, this means that all active agents have the same IDs. In this

case, ap (and the other active agents) becomes a leader and completes the selection

106 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

phase. If identical = false holds, ay remains active if min = true and IDy, < ID;¢.+ hold.
The second condition means that, when active agents with the minimum ID appear
consecutively, only one of them (or the last agent in the consecutive agents) remains
active. This guarantees that the number of active agents is at least halved in each sub-
phase. If ap does not satisfy any of the above conditions, it becomes a follower. By
repeating such sub-phase at most [log k] times, all the remaining active agents have the
same IDs in some phase and they are selected as leaders so that their home nodes (or
the base nodes) should satisfy the base node condition.

The pseudocode is described in Algorithm B2. Note that in the first sub-phase of
Algorithm B2, each agent can get the number n of nodes when it finishes travelling once

around the ring, but we omit the description.

Deployment phase

In this phase, each agent determines its target node and moves there. From the base
node conditions, the base nodes are first selected as the target nodes. Hence, letting b be
the number of the base nodes, other k — b target nodes are selected so that the distance
between two adjacent target nodes should be n/k.

While the leaders know the completion of the selection phase, followers do not know
the fact. Hence, at the beginning of the deployment phase, each leader notifies followers
that the selection phase is completed. To do this, each leader moves to the next base
node. During the movement, if there exists an agent, the leader informs the agent of
the number of tokens tBase to the next base node. If the leader arrives at the next base
node, it terminates the algorithm there since the current base node is its target node.

When each follower receives the value of tBase, it knows the completion of the se-
lection phase. Then, it starts the deployment phase. Each follower moves in the ring
until it observes tBase tokens, and then it reaches the nearest base node. After this, the
agent traverses the ring until it finds a vacant target node: every time the agent moves
n/k times, it reaches a target node and stays there if the node is vacant (i.e., no agent
is staying), otherwise (i.e., when the target node is already occupied by another agent)

it keeps moving to the next target node. Note that from the atomicity of the execution,

5.3. AGENTS WITH KNOWLEDGE OF K 107

Algorithm 5.3 The behavior of leader or follower agent ay,

Behavior of Agent ay,

1

. /*deployment phase*/

2: // the behavior of leader agents
3: if ay, is in the leader state then
4: t=0
5. while t # fNum,, do
6: move to the next node where a token exists // look for a follower agent
7: send tBase (= fNumy, — t) to the agent at the current node
8: t=t+1
9: end while
10: move to the next node where a token exists // move to the next base node
11: terminate the algorithm
12: end if
13:
14: // the behavior of follower agents
15: if ap is in the follower state then
16: wait at the current node until a;, receives the value of tBase
17: move until it observes tBase tokens // aj, reaches the nearest base node
18: while true do
19: move n/k times // move to the next target node
20: if there exists no agent at the current node then terminate the algorithm
21: end while
22: end if
it does not happen that two follower agents arrive at the same target node at the same

time, that is, exactly one follower stays at each target node. The pseudocode is described

in

Algorithm BZ3. We have the following theorem about the presented algorithm.

Theorem 5.3.2. For agents with knowledge of k, Algorithms B2 and B=3 solve the uni-

form deployment problem with termination detection. This algorithm requires O(logn)

108 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

memory space per agent, O(nlogk) time, and O(kn) total moves.

Proof. 1t is obvious that Algorithms b2 and B33 solve the uniform deployment problem

even in periodic rings, and in the following we analyze the complexity measures.

At first, we evaluate the memory requirement per agent. Each agent aj has three
variables ID;, IDpext IDgiher to store IDs, each of which requires O(logn) memory. Since

other variables require O(logn) memory or less, each agent requires O(logn) memory.

Next, we consider the time complexity. The selection phase requires at most n[log k|
unit times because each sub-phase requires n unit times and agents execute at most
[log k] sub-phases. In addition, the deployment phase requires at most 2n unit times.
Hence, the time complexity is O(nlog k).

Lastly, we consider the total moves. First, we consider the selection phase. In each
sub-phase, each active agent travels once around the ring, and then at least half active
agents become followers or all active agents become leaders. Hence, in the beginning of
the x-th sub-phase, the number of active agents is at most k/2%~1. Since follower agents
and leader agents never move in the selection phase, the total number of moves in the
selection phase is at most Zlg:pglogk(k/ 22=1)p < 2kn. In the deployment phase, each
leader moves to the next base node and each follower moves to a target node to achieve
the uniform deployment. Each leader obviously moves at most n times, and each follower
moves at most 2n times since it first moves to the nearest base node, which requires at
most n moves, and then moves to a vacant target node, which requires at most n moves.
Thus, the total moves in the deployment phase is O(kn). Therefore, the total moves is

O(kn). 0

5.4 Agents with no knowledge of k or n

In this section, we consider the uniform deployment problem for agents with no knowl-
edge of k or n. We consider cases with termination detection and without termination

detection in this order.

54. AGENTS WITH NO KNOWLEDGE OF K OR N 109

5.4.1 TUniform deployment problem with termination detection

When termination detection is required, we show that there exists no algorithm to solve
the problem. Intuitively, it is due to impossibility of finding correct k or n when some part
of the initial configuration has symmetry: when an agent misestimates these at smaller
numbers than actual ones, it prematurely terminates and the uniform deployment cannot

be achieved.

Theorem 5.4.1. There exists no algorithm to solve the uniform deployment problem
with termination detection even if agents can communicate with another agent at the

same node.

Proof. We use the similar idea in [25], which shows that for agents without any knowledge
there exist no algorithms to solve the rendezvous problem with termination detection.
We prove the theorem by contradiction, that is, we assume that there exists algorithm
A to solve the uniform deployment problem with termination detection.

At first, let us consider n-node ring R and the initial configuration Cy such that k
agents ag, ai,...,a,—1 exist in this order. Let V' = {vg,v1,...,v,—1} and assume that
d = n/k is a positive integer. From hypothesis, there is an execution Eg of A to solve
the uniform deployment problem in R. We define T'(ER) as the length of Er and denote
Er = Co,C1,...,Cp(gp)- Note that in Cp(gy,), all agents are in the halt states and every
distance between two adjacent agents is d.

Next, let us consider a larger ring R’ consisting of 2gn + 2n nodes, where ¢ is the
minimum integer such that gn > T'(Eg) holds. Let V' = {vg,v],..., 09,40, 1} We
consider the initial configuration Cjj such that kg + k agents ag, @y, ...ap, ., exist in
this order in R’. Then in R’, the interval of the uniform deployment is 2d. In addition,
we define the initial position of each agent in R’ as follows. Let vy be the node
where agent aj, initially stays in R. Then, we assume that agent aj initially stays at
node ”}(h mod k)+n-/k]" That is, the initial positions for R are repeated from v} to
Vgntn—1, and there is no agent from vy, , to vy, o, ;. For each node v} in R, we
define C’v(v;.) = ¥ mod n @s the corresponding node of v; in R. In the following, we show

that each agent aj, (0 < h < k — 1) behaves in the exactly same way as agent aj, in R

110 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

and aj, enters a halt state at the same time as aj. Then, the distance between the two
adjacent agents is d, which contradicts that the interval of the uniform deployment in R’
is 2d.

At first, we have the following lemma. We define the local configuration of node v as

the 2-tuple that consists of the state of v and the states of all agents at v.

Lemma 5.4.1. Let us consider execution Er = Cy,CY,. .., }(ER)’ ... for ring R'. We
define V{ = {v, V1115 s Vypyp_1}. For any t < T(ER), configuration C} satisfies the
following condition: for each v; € V/, the local configuration of v} in Cy is the same as

that of Cy(vj) in C. O

Proof. We prove Lemma b2 by induction on ¢t. For ¢t = 0, Lemma b2 holds from the
definition of R’. Next, we show that when Lemma 5271 holds for ¢ (¢t < T(ERg)), Lemma
B2 holds for ¢ + 1.

From the hypothesis, for each v} € V;.; the local configurations of v;_; and v} in
C} are the same as those of Cy(vj_;) and Cy(vj) in Cy respectively. Hence, agents at

/
vj—l

and v; in C} behave in the exactly same way as those at Cy(v)_;) and Cy(v}) in
Ct. Since only agents at nodes v;_; and v} can change the local configuration of v} in
unidirectional rings, the local configuration of v} in Cy,, is the same as that of C,(v}) in

Ciy1-

Therefore, we have the lemma.]

From Lemma BZ71, in C”T(ER) local configuration of each node in V* = {vj,,, v;nH, ..
’vtlm—l-n—l} C VC;(ER) is the same as that of the corresponding node in Cr(g,). Note that
the set of nodes corresponding to nodes in V* is equal to V', and every agent in V* also
stops in the halt state in configuration C/T(Er)" Hence in C{F(Er)’ there exist k agents in
the halt states in V*. Then, the distance between the adjacent agents in V* is d, which

is a contradiction.

Therefore, we have the theorem.]

54. AGENTS WITH NO KNOWLEDGE OF K OR N 111

5.4.2 Uniform deployment problem without termination detection

In this section, we propose an algorithm to solve the uniform deployment problem without
termination detection which requires O((k/1)log(n/l)) memory space per agent, O(n/l)
time, and O(kn/1) total moves, where [is the symmetry degree of the initial configuration.
This result means that when the initial configuration has higher symmetry degree, agents
can solve the problem more efficiently. At first, we consider the case for aperiodic rings
(The definitions of periodic and aperiodic rings are described in Section B5l). After this,
we show that our proposed algorithm achieves the uniform deployment also in periodic

rings.

Case for aperiodic rings

In Section B33, since agents have knowledge of k, they can detect whether they traveled
once around the ring or not. However in this section, agents cannot do this since they
have no knowledge of k£ or n. Hence, at first agents estimate the number of nodes
in the ring, and after this they move to their target nodes based on the estimations.
Concretely, the algorithm consists of three phases: estimating phase, patrolling phase,
and deployment phase. In the estimating phase, each agent a; moves in the ring and
estimates the number of nodes. At the end of this phase, we can show that at least one
agent estimates the correct number n of nodes. In the patrolling phase, a; moves in the
ring several times depending on its estimated number of nodes. During the movement, if
ay, visits the node where another agent exists, this agent may misestimate the number of
nodes and prematurely stop at an incorrect target node. Hence, aj sends its estimated
number of nodes (with some information) to the agent. By this behavior, we can show
that every agent eventually gets the correct number n of nodes and the location of its
correct target node. In the deployment phase, a; moves to its target node and enters a
suspended state. After this, if aj receives a message and recognizes that it misestimates
the number of nodes, a; decides its new target node from the message and moves there.
For simplicity we assume n = ck for some positive integer c¢ in the following description,

and this restriction can be removed similarly as in Section b=3. In addition for sequence

112 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

Figure 5.6: An example that an agent estimates the number of nodes

Y, we define Y' =Y and Y+ = Y'. Y (or concatenation of (14 1) Ys).

Estimating phase. In this phase, each agent ay, firstly releases its token at its home
node vgoue(ap). After this, ap moves in the ring, memorizes the distance dis between two
adjacent token nodes, and stores dis to an array D for memorizing the distance sequence.
Agent aj continues such a behavior until it completes estimating the number of nodes.
Concretely, a;, continues to move until it observes the same distance sequence four times
consecutively. Let 4n’ be the number of nodes that aj, ever visited by the time. Then, ay,
considers it travelled four times around the ring and estimates the number of nodes in the
ring at n’. For example, let us consider Fig. E6. Each number in the figure represents
the distance between two adjacent token nodes. Agent aj moves from node v; to v}
and gets the distance sequence D = (1,3,1,3,1,3,1,3) = (1,3)*. Then, a;, estimates
the number of nodes at 4. By this behavior, we can show that 1) at least one agent
estimates the correct number n of nodes (in the aperiodic ring), and 2) if the estimated
number n’ is not correct, n’ < n/2 holds. The pseudocode is described in Algorithm B3.
During the estimating phase, aj uses a variable k' for storing the estimated number of
agents (tokens) and a variable nodes for storing the number of nodes that a;, has ever
visited. These variables (including n’ and D) are also used in the patrolling phase and

the deployment phase.

Patrolling phase. In this phase, a;, moves 8n' times. Then, aj, considers it traveled
twelve times around the ring from the beginning with respect to its estimated number of

nodes n/. During the movement, a; may observe some agent aj, staying at some node. In

54. AGENTS WITH NO KNOWLEDGE OF K OR N 113

Algorithm 5.4 The behavior of agent a; in the estimating phase
Behavior of Agent ay,

1: /* estimating phase */
2: n/ =0,k =0,n0des=0,i =0
3: release a token at its home node vgomg(an)
4: while ' =0 do
5: move to the next token node and get the distance dis between two token nodes
6: Dli] =dis,i=1i+1
7 if (i mod4d=0)A(Vzr (0<z<i/4-1)
Dz] = D[z +i/4] = D[z + 2 x i/4] = D[z + 3 x i/4]) then

8: // completing the estimation of the numbers of nodes and tokens
9: K =i/4

10: n’ = D[0] + D[1] +--- + D[k — 1]

11: nodes = 4n/

12: end if

13: end while

14: change to the patrolling phase

this case, a; may misestimate the number of nodes and prematurely stop at an incorrect
target node. Hence if a; observes such an agent, a; sends n', k', nodes, and D to ay,.
By this behavior, we can show that every agent eventually gets the correct number n
of nodes and the location of its correct target node. The pseudocode is described in

Algorithm BT5.

Deployment phase. In this phase, a; selects its target node and moves there as
follows. Let D = (dg,ds,...,dw_1)* be the distance sequence that a; obtained in the
estimating phase. Then, aj, selects its base node similarly to Section B3, that is, letting
Dy, be the lexicographically minimum distance sequence among {shift(D,z)|0 < z <
k' — 1}, ay selects base node vpqsc where the agent whose distance sequence is Dyin
initially stays. In addition, a; determines its target node and moves there similarly

to Section B30, Let disBase be the distance from the current node to vp.ee, and ay,

114 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

Algorithm 5.5 The behavior of agent aj in the patrolling phase
Behavior of Agent aj,

1. /* patrolling phase */

2: while nodes # 12n’ do

3: move to the forward node

4: nodes = nodes + 1

5. if there exists another agent aj, then send (n’, k', nodes, D[]) to ay,
6: end while

7: change to the deployment phase

considers that it is rank-th agent (0 < rank < k' — 1) from wvp,s (the agent staying at
Upase 18 considered as the O-th agent). Then, a; firstly moves disBase times and reaches
Upgse- After this, a, moves to its target node by moving rank x n'/k’ times and enters
a suspended state. When all agents enter suspended states, agents solve the uniform

deployment problem.

However, ap may stay at an incorrect target node when it misestimates the number
of nodes. In this case, aj eventually receives a message from another agent a,. Let nj,
kj, nodes;, and Dy be the estimated number of nodes, the estimated number of agents,
the number of nodes ever visited, and the distance sequence included in a message from
a¢ respectively. If n’ < nj/2 holds and there exists ¢ such that (Vi(0 < i < 4k —1)
DJi] = Dy[i+t]) A(Dg[0] +- - - D[t — 1] = nodesy — nodes) hold, it means that a, estimates
at least twice number of nodes than a; and memorizes a’s whole distance sequence
D as a part of Dy. Then, aj recognizes that it misestimates the number of nodes and
resumes its behavior. Concretely, ay, firstly moves 12n) — nodes times. We can show that
12n, — nodes is always positive, and the proof is described in Lemma 5Z3. Then, ap
considers it traveled twelve times around the ring from the beginning with respect to the
new estimated number of nodes nj. This guarantees that agents can achieve the uniform
deployment even in periodic rings, and we explain this later. After this, it decides the
new base node and its new target node from nj, kj, nodes, and D;, moves to its new

target node as mentioned before, and enters a suspended state again. The pseudocode

54. AGENTS WITH NO KNOWLEDGE OF K OR N 115

Algorithm 5.6 The behavior of agent aj in the deployment phase

Behavior of Agent ay,

1:

2:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

/* deployment phase */

let Dy be the lexicographically minimum sequence among {shift(D,z)|0 < x <
K —1}

rank = min{x > 0|shift(D, x) = Dyin}

disBase = D[0] + D[1] + - - - + D[k — 1 — rank]

move disBase times

nodes = nodes + disBase

move rank X n' [k’ times

nodes = nodes + rank x n' [k’

change its state to a suspended state

/* behavior in the suspended state */
wait at the current node until aj, receives (nj, kj, nodesy, D¢[]) from some agent ay
if (n’ <nj/2) A (there exists ¢ such that (Vi (0 <¢ <4k —1)
Dli] = Dy[i +t]) A (Dg[0] + - - - D[t — 1] = nodesy — nodes) hold) then
// ap recognizes that it misunderstands the number of nodes
n' =ny, k' = kj, D[] = shift(D,]],t)
move 12n" — nodes times
nodes = 12n/
go to line 2
end if

is described in Algorithm B®B. When all agents enter suspended states, agents solve the

uniform deployment problem.

An example As an example, let us consider the ring in Fig.B™. This ring is

aperiodic but has some periodic subsequence, that is, some agent observes a 4-times

repeated subsequence before it travels once around the ring. In such a ring, some agent

misestimates the number of nodes and enters a suspended state at an incorrect target

116 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

Figure 5.7: An example in the ring having some periodic subsequence (n = 27,k = 9,d =

3)

node. However in this case, we can show that at least one agent a;, estimates the correct
number n of nodes and informs prematurely suspending agents of n during the patrolling
phase. Let us consider the behavior of agents a; and ao. For simplicity, we assume
that they behave in a synchronous manner. In the estimating phase, agent as gets the
distance sequence D = (1,3,1,3,1,3,1,3) = (1,3)* and estimates the number of nodes
at 4, which is incorrect (Fig.572 (a) to Fig.57 (b)). After this ay executes the patrolling
and deployment phases, and enters a suspended state at incorrect target node v} (Fig.6m
(b) to Fig.6 (c)). On the other hand, agent a; is still in the estimating phase. When
a1 observes D = (11,1,3,1,3,1,3,1,3)*%, it completes the estimating phase and estimates
the correct number of nodes 27. After this in the patrolling phase, a; observes as at v},
sends its estimated number of nodes with other information to a2 (Fig. 57 (c) to Fig. 57
(d)), and moves to its target node. When ay receives the message from a;, it recognizes
that it misestimates the number of nodes and resumes its behavior.

In the following, we show that every agents eventually gets the correct number n of

nodes and its correct target node. To show this, we use the following lemma.

Lemma 5.4.2. [25] Consider an p-length sequence A = ay,...,ap—1 and an p'-length
sequence B = by, ...by_1 such that p' < p holds. If B3 is the prefix of A3, either
p' < p/2 holds or B is periodic.

54. AGENTS WITH NO KNOWLEDGE OF K OR N 117

Then, we have the following lemmas.

Lemma 5.4.3. If agent a, estimates the incorrect number of nodes ng (i.e., ng # n

holds), ny < n/2 holds.

Proof. Let k; (< k) be the number of agents (tokens) estimated by a,. Since a; observes
4ky tokens in the estimating phase, it stores the same distance sequence (D[0],. .., D[k;—
1]) four times, that is, (D[0],... , D[4k, — 1]) = (D]0],..., D[k¢ — 1])* holds. Then,
ng = D[0] + - -+ 4+ D[k¢ — 1] holds. On the other hand since the number of tokens in the
ring is k > ky, sequence (DI[0], ..., D[k, — 1])* is the prefix of (D[0],..., D[k —1])*. Note
that, n = D[0] + --- + D[k — 1] holds. Then from Lemma 5232, (D[0],..., D[k, — 1])
is periodic or k¢ < k/2 holds. If D([0],..., D[k, — 1]) is periodic, there exists kj, < k¢
such that (D[0],..., D[4k, — 1]) = (D[0],..., D[k, — 1])* holds. This is a contradiction
because ay should estimate the number of nodes at ny. Hence, ky < k/2 holds. Then
since (D[0],...,D[k¢ — 1]) is the prefix of (D[0],...,D[k —1]), (DI[0],...,D[k —1]) =
(D[0],...,Dlk;—1],D|0],..., D[k¢— 1], D[2k¢], D[2k¢ +1],...) holds. Thus, (D[0]+---+
Dlky—1]) < (D[0] +---+ D[k — 1])/2 holds, that is, ny < n/2 holds. Therefore, we have

the lemma. 0

Lemma 5.4.4. If ring R is aperiodic, at least one agent estimates the correct number n

of nodes and gets distance sequence D of the initial configuration in R.

Proof. We show that at least one agent estimates the correct number n of nodes. Then
from Algorithm B3 to B8, the agent clearly gets the distance sequence D for the initial
configuration in R. We prove the lemma by contradiction, that is, we assume that the
number of nodes estimated by each agent is less than n. We assume that in the initial
configuration agents ag, a1, ...,ar_1 exist in this order. We define n; as the number of
nodes estimated by ap and D; as the distance sequence observed by aj. In addition, let
S; be the distance sequence such that D; = Sf‘ holds.

Let a,, be the agent that estimates the maximum number of nodes n,, (< n) among
all agents, and let £ = |S;,| (< k). We assume that the distance sequence a,, observes

in Algorithm B34 is D, = (dy*, ... ,d}",,d)*, ... ,dy,_,d5y, ... ,d5,_y,dyy, ... djj_q) =

118 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

(dm,...,dp)% = Sa. Note that, S, = (dt, ... ,d7*) is aperiodic and Vj (0 < j < £—1)
di' = dj' = d7 5, = di 5, holds.

Next, let us consider the agent a,,+¢. Then, either n,,1¢ < 1y, Or Ny ¢ = Ny holds be-
cause n,, is the maximum. We show that n,,+¢ = n,, always holds by contradiction, that
is, we assume that n,,4¢ < n,, holds. Then, |S;,1¢| < |Sm| clearly holds. Consequently,
Sng is the prefix of S2, because a,, s gets the distance sequence (dy,...,d5_1) = Sm
when it observes ¢ tokens. Then from Lemma 5272, either |S,,4+¢ < |Smn|/2 holds or
Smte is periodic. If |Sy1¢] < [Sm|/2 holds, agent a,, observes an ¢ before observing
S, because (df',...,d5,_,) = (dj",...,dj,_,) contains Sy, as its prefix. Consequently,
am, estimates the number of nodes at n,,1¢ < ng,, , which is a contradiction. If Sy,+¢
is periodic, Sy = (S, M)t holds for some distance sequence S; 4 and some positive
integer ¢ (S, , is aperiodic and |5/, ,| < |Sp4¢|/2 holds). Hence, a., observes (S, ,)*
before observing S# and the number of nodes a,, estimates is less than n,,, which is also
a contradiction. Therefore, n,,+¢ = 1y, holds.

Let m(i) = m + il and Ay, = {ap)|7 > 0}. As mentioned above, ny, = Ny e and
Sm(0) = Sm(1) = Sm hold. In addition, a,,1) observes the same distance sequence of
length 4]S,,| as ap,). Hence recursively, a,,(;41) observes the same distance sequence
of length 4[S,,| as a,,(; and consequently each agent in A,, observes Sy, as the first ¢
consecutive distances. When k is divided by £, since every agent a,, ;) observes Sy, as the
first £ consecutive distances and ¢ < k holds, the ring is periodic, which is a contradiction.
In the following, we consider the case that k is not divided by ¢ and show that S,, (=
Spn) is periodic in this case. When k is not divided by ¢, k = af + (0 < 5 < £) holds
for some positive integers o and 3. Then, the prefix of S, is identical to the suffix of
Sm(a) because the trajectories of a,,) and a,,(,) include the same part of the ring. We
assume that ¢ elements are overlapped, that is, (dgn(o), . ,dﬁ(lo)) = (dzn_(?), . ,dzl_(f))
holds. Let be T be the sequence consisted of the ¢ overlapped elements and T} (resp.,
T;,) be the sequence consisted of the other (£ —t) elements in S,) (resp., Sp(a)). Then,
Sy = TTg (resp., Spa) = T, T) holds (Fig.5ER). In addition, Ty = T}, holds because
agent a,,(,) observes an(a) = (T!T)* and T/, that (o) Observes for the second time is

equivalent to Tj that agent (o) Observes for the first time. Then, since S,,) = Si(a)

54. AGENTS WITH NO KNOWLEDGE OF K OR N 119

Sm(0) I i

Figure 5.8: An examples of Sy,) and Sy, (q)

holds, shift(S(m(0)),t) = ToT = T4, T = Sp(a) = Sm(o) holds. Therefore, Sy, is periodic
since 0 < t < ¢ holds. However, this contradicts the assumption that S,y (= Sm) is
aperiodic.

Therefore, we have the lemma.]

Lemma 5.4.5. If ring R is aperiodic, every agent eventually gets the correct number n

of nodes and distance sequence D of the initial configuration in R.

Proof. We show that all agents eventually get the correct number n of nodes. Then
from Algorithms B4 to B, all agents can clearly get distance sequence D of the initial
configuration in R. We prove the lemma by contradiction, that is, we assume that when
all agents are in the suspended states, there exists at least one agent ap whose estimated
number of nodes n' is less than n. Then from Lemma 5273, n’ < n/2 holds. On the other
hand from Lemma b2, at least one agent a. estimates the correct number n of nodes.
In the following we show that a. observes a during the patrolling phase and sends its
estimated number of nodes n to ay, which contradicts the assumption of n’ < n.

At first, let us consider the number of nodes ay, visits. Let n; be the number of nodes
ap, estimates in the estimating phase. From Algorithms b4 to BH, a;, moves at most 14n;
times by the time a, enters a suspended state for the first time. After this, we assume that
ap, receives messages and updates its estimated number of nodes to ng,n3,...,n; = n’

in this order. When a;, updates it estimated number of node to no, ap’s total moves at

120 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

that point (i.e, nodes) is at most 7ng since n; < ng/2 holds. Hence, 12ns — nodes is
clearly positive. Then, a firstly moves in the ring until its total moves becomes 12n9
by moving 12ny — nodes times. After this, a; moves to a new target node and enters a
suspended state again. This requires at most 14ng total moves. Then since nz < ng/2
holds from Algorithm B8, nodes is at most Tns and 12n3 — nodes is clearly positive. Thus
recursively, we can show that 12n; — nodes is always positive (2 < ¢ <) and a;’s total
moves unless it does not get the correct number n of nodes is at most 14n’ < 7n. On the
other hand, agent a. moves 8n times in the patrolling phase. Thus, a. clearly observes
ay, during the patrolling phase and sends its estimated number n of nodes to ap, which
is a contradiction.

Therefore, we have the lemma. O
Then, we have the following lemma for aperiodic rings.

Lemma 5.4.6. When ring R is aperiodic, agents solve the uniform deployment problem

without termination detection.

Proof. From Lemma B2, all agents eventually get the correct number n of nodes and
distance sequence D for the initial configuration in R. Then, each agent can compute its

correct target node from D and move there. Thus, we have the lemma. O

Case for periodic rings

Next, we consider the case for periodic rings. Let R’ be a periodic ring and D’ be the
distance sequence of the initial configuration in R’. We say R’ is a (N,l)-node ring if
there exists an aperiodic distance sequence D such that D’ = D! holds and the total sum
of elements of D is N. Then, n = NI holds and [is equivalent to the symmetry degree
of the initial configuration in R’. We call the ring R with the distance sequence D the
fundamental ring of R’ (e.g., Fig.bd). Note that an aperiodic ring can be denoted by a
(n,1)-node ring. In addition for each agent aj in R, there exist [agents in R’ such that
the distance sequence of each agent is [-times repetition of the distance sequence of ay.

We say such agents in R’ are corresponding agents of agent aj, in R and denote by aﬁl

54. AGENTS WITH NO KNOWLEDGE OF K OR N 121

@) ©

Figure 5.9: An example for the periodic ring

(0 <i<1—1). We assume that agents a?, a}, .. ,alh_1 exist in this order and operations

to an above index of aﬁl assume calculation under modulo I. Then, the distance from aﬁl
to a;L'H is N. In this case, all agents eventually estimate the incorrect number N = n/I
of nodes, but we can show that agents can achieve the uniform deployment similarly to
in R. Concretely from algorithms in Section B4, each agent moves to its target node
after considering, based on the estimated number N of nodes, it traveled twelve times
around the ring. This means that each agent stays at its target node during its twelfth or
thirteenth circulations in the ring with respect to the estimated size N, which guarantees
that when all agents are in the suspended states, no agents stay at the same node and
they can achieve the uniform deployment. For example, let us consider rings in Fig. 54.
Ring R’ is the (6,2)-node periodic ring and R is the fundamental ring of R’. In R, each
agent estimates the correct number 6 of nodes in the estimating phase and moves to its
correct target node (Fig.6bd (a)). On the other hand in R', each agent also estimates
the number 6 of nodes, which is incorrect (Fig.69 (b)). By algorithms in Section b2,

each agent moves to its target node after considering, based on the estimated size 6, it

travelled twelve times around the ring, that is, after each agent moves 72 times (actually,

122 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

each agent travelled six times around ring R’). This guarantees that when all agents
are in the suspended states, no agents stay at the same node and they can achieve the
uniform deployment (Fig.659 (c)).

Now, we have the following lemmas, which can be proved similarly to the case of

aperiodic rings.

Lemma 5.4.7. Let R’ be a (N,l)-node periodic ring and R be the fundamental ring of
R'. Let ay, in R be the agent estimating the number N of nodes in the estimating phase.
Then in R, agent af'l (0 <i<1—1) corresponding to ay, also estimates the number N of

nodes.

Proof. From the definition of R/, aﬁl observes the same distance sequence as that of a;. In
addition since agents have no knowledge of k£ or n, agents determine their estimated num-
ber of nodes depending only on the distance sequence they observe. Thus, aﬁl estimates

the same number of nodes as that of ay,.]

Lemma 5.4.8. Let R’ be a (N,l)-node periodic ring and R be the fundamental ring of
R'. Then in R', every agent eventually gets the number N of nodes and distance sequence

D of the initial configuration in R.

Proof. We show that all agents eventually get the number N of nodes. Then from Algo-
rithms b= to b, all agents can clearly get distance sequence D of the initial configuration
in R. We prove the lemma by contradiction, that is, we assume that when all agents
are in the suspended states, there exists at least one agent a; whose estimated number
of nodes n’ is less than N. On the other hand from Lemma BEZ77, there exists agent
al (0 < j < 1 — 1) estimating the number N of nodes in the estimating phase. Let
Ae = {a%al ... al7'}. In the following, we show that some agent in A. observes ay
during the patrolling phase and sends its estimated number N of nodes to ap, which
contradicts the assumption of n’ < N.

At first, let us consider the number of nodes aj visits. Similarly to the case for

aperiodic rings, when aj, updates its estimated number of nodes from n” to n’, it firstly

moves in the ring until its total moves becomes 12n’ by moving 12n’ — nodes times. After

54. AGENTS WITH NO KNOWLEDGE OF K OR N 123

this, ap moves to a new target node and enters a suspended state again. This requires
at most 14n’ total moves. Hence unless aj, does not get the number N of nodes, its total
moves is at most 14n’ < 7N.

On the other hand from Lemma 52477, there exists agent a’, in A, such that it estimates
the number of nodes at N and the distance from vyoyg(al) to vgome(ar) is less than N.
Recall that, vgopmg(a) is the home node of agent a. Then, let us consider the behavior of
agent a’~*. Agent a’~* firstly moves 4N times and finishes the estimating phase at node
vgome(al). After this, a2™* moves 8N times from UHOME(aZ) in the patrolling phase. On
the other hand, a; moves at most 7N times from vyoyg(ap). Since the distance from
vrome(al) to vgome(ay) is less than N, ai~* observes aj during the patrolling phase
and sends the number IV of nodes to aj, which is a contradiction.

Therefore, we have the lemma. O

Lemma 5.4.9. Even when ring R’ is periodic, agents solve the uniform deployment

problem without termination detection.

Proof. From Lemma 273, all agents eventually get the number NV of nodes and distance
sequence D of the initial configuration in R, where R is the fundamental ring of R’. From
Algorithm B8, when agent aﬁl gets the number N of nodes it firstly moves in the ring
until its total moves becomes 12/N. Then, aﬁl is at UHOME(aZHQ). After this, a% computes
its target node from D and moves there, which requires at most 2N moves. Hence, aﬁl

eventually stays between UHOME(CLZJrlQ) and UHOME(CL2+14). This mean that letting vpgse

(resp., v},..) be the base node existing between vgoump(a)?) and vyous(al™?) (resp.,

viome(al™?) and vHOME(a;';FM)) a}il eventually stays between vpqse and vy, .. Moreover,
it clearly holds total moves of each of ai (0 < i < | — 1) are the same. Thus when
all agents are in the suspended states, no agents stay at the same node and agents can

achieve the uniform deployment.

Therefore, we have the lemma.]

Finally, we have the following theorem for (IV,!)-node rings.

124 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

Theorem 5.4.2. For agents with no knowledge of k or n, the proposed algorithm solves
the uniform deployment problem without termination detection. This algorithm requires

O((k/1)log(n/l)) memory space per agent, O(n/l) time, and O(kn/l) total moves.

Proof. From Lemmas 62780 and b2, agents solve the uniform deployment problem. In
the following, we analyze complexity measures.

At first, we evaluate the memory requirement per agent. Each agent eventually
gets the distance sequence D = (do,d1,...,duk/y—1). Since each d; is at most n/l,
this sequence requires O((k/1)log(n/l)) memory. Moreover, the other variables require
O(log(n/1)) bit memory. Therefore, the memory requirement per agent is O((k/1) log(n/1)).

Next, we analyze the time complexity. Let Acorrect be the set of agents that estimate
the number n/l (= N) of nodes in the estimating phase. Each agent a. € Acoprect finishes
its patrolling phase in 12n/l unit times, and moves to its correct target node, which
requires at most 14n/l unit times from the beginning of the algorithm. In addition from
the proof of Lemmas 543 and 5478, each agent ap ¢ Acorrect gets the number n/l of
nodes within 12n/l unit times since each a. € Acorrect finishes its patrolling phase in
12n/l unit times. After this, aj, requires at most 14n /I unit times to moves to its correct
target node from the beginning of the algorithm. Thus, the time complexity is O(n/I).

At last, we analyze the total number of agent moves. Each agent requires at most
14n/l moves to move to its target node. Thus, the total number of agent moves is

O(kn/l). O

5.5 Concluding Remarks

In this chapter, we considered the uniform deployment problem of mobile agents in
asynchronous unidirectional ring networks. The uniform deployment problem, which is a
striking contrast to the total gathering problem, is interesting to investigate. We proposed
three algorithms to solve the uniform deployment problem from any initial configuration
such that all agents are in the initial states and placed at the distinct nodes. These
algorithms utilize the essential characteristic of the uniform deployment problem: the

problem aims to attain the symmetry, and these algorithms solve the problem without

5.5. CONCLUDING REMARKS 125

breaking symmetry that the initial agent locations have. Such an approach in designing
mobile agent algorithms seems to be applicable to other problems that aim to attain the

symmetry.

Chapter 6

Conclusion

6.1 Summary of the Results

In this dissertation, we focused on the coordination of mobile agents. We considered two
problems and investigated the total moves and the solvability compared with the total
gathering problem.

In Chapter B and Chapter B, we considered the g-partial gathering problem. The goal
in these chapters is to clarify the difference of the move complexity between the total
gathering problem and the g-partial gathering problem. In Chapter B, we considered
the g-partial gathering problem in ring networks under the assumption that each node
has a whiteboard. For a deterministic algorithm for distinct agents or a randomized
algorithm for anonymous agents with knowledge of k, we showed that agents achieve the
g-partial gathering in O(gn) total moves, which is asymptotically optimal. This means
that g-partial gathering problem is solvable in fewer total moves than the total gathering
problem. Agents can attain this improvement of the total moves since the g-partial
gathering requires less symmetry breaking than the total gathering problem. In Chapter
A, we considered the g-partial gathering problem in tree networks. Since trees have
lower symmetry than rings, we aimed to solve the g-partial gathering problem in weaker
models than the whiteboard model used in rings. In the case of the weak multiplicity

detection and removable-token model, we showed that the proposed algorithm achieves

127

128 CHAPTER 6. CONCLUSION

the g-partial gathering problem in O(gn) total moves, which is asymptotically optimal.
This means that also in tree networks the g-partial gathering problem is solvable in fewer
total moves than the total gathering problem. Note that in the model with the strong
multiplicity detection but without tokens, agents require (kn) total moves. Hence, we
showed that the total moves can be reduced dramatically by using tokens.

In Chapter B, we considered the uniform deployment problem in ring networks under
the assumption that each agent does not have a unique ID but has a token. We proposed
several algorithms to solve the uniform deployment problem from any initial configura-
tion, including configurations from which the total gathering cannot be achieved. Agents
can attain this solvability since the uniform deployment aims to attain the symmetry
of agent locations (i.e., requires no symmetry breaking) while the total gathering aims
to break the symmetry. Hence, this result means that, while anonymous agents cannot
decrease the symmetry degree for several (e.g., periodic) configurations, but they can

increase the symmetry degree even from periodic configurations.

6.2 Future Directions

Regarding proposed agent algorithms for a network management, there exist several

issues for improving our algorithms from both practical and theoretical points of view.

Partial Gathering In Chapter B, we proposed two move-optimal algorithms to solve
the g-partial gathering problem, that is, a deterministic algorithm for distinct agents
and a randomized algorithm for anonymous agents with knowledge of k. However, it is
more practical if agents do not have any IDs or global knowledge (i.e., knowledge k or
n). Hence, one approach is to consider an algorithms to solve the g-partial gathering
problem for such agents. In Section B4, a randomized algorithm for anonymous agents
with knowledge of k achieves the g-partial gathering in O(gn) expected total moves. This
method uses knowledge of k only when consecutive active agents create the same random
IDs. Thus, we should consider such a case without knowledge of k.

Another approach is to consider the g-partial gathering problem in general networks

6.2. FUTURE DIRECTIONS 129

since a lot of applications are used for general networks in practice. One possible ap-
proach is that agents firstly construct a spanning tree, and then execute the g-partial
gathering algorithm for trees in Chapter A. Note that since the algorithm for construct-
ing a spanning tree [63] is executed by nodes, we modify the algorithm to be executed
by agents. However, when agents execute the algorithm for constructing a spanning tree
[63], this approach consists of at most [log k] phases and agents require (nlogk + m)
total moves, where m is the number of communication links. In addition, since we can
show clearly that agents requires (gn + m) total moves to solve the g-partial gathering
problem in general networks, this approach cannot achieve the g-partial gathering in
asymptotically optimal total moves. To achieve the g-partial gathering in O(gn + m)
total moves, agents execute the algorithm [563] to construct a spanning tree partially so
that they execute [log¢g| phases. Then, the total moves in this part could be bounded
by O(nlogg + m). In addition, execution of the [logg| phases may not complete the
spanning tree construction, and thus, the network contains several tree fragments each
of which satisfies the following two properties: 1) there exists no cycle, and 2) there
exist at least g agents. Thus, by executing the algorithm in Chapter B in each fragment
independently, agents can solve the g-partial gathering problem, and the total moves in
this part is O(gn). Therefore, we conjecture that agents can solve the g-partial gathering
problem asymptotically optimal in terms of total moves also in general networks.
Uniform Deployment Similarly to the second approach of the partial gathering as
mentioned above, we should consider the uniform deployment problem in networks other
than rings, such as tree networks and general networks. This problem may be achieved
by simulating the methods in Chapter B, that is, agents first select several base nodes

and then move to their own target nodes based on the base nodes.

Acknowledgments

I have been fortunate to receive assistance from many people. First of all, I deeply would
like to appreciate my supervisor Professor Toshimistu Masuzawa for his guidance and
encouragement. He has always given me precious and helpful advices. Secondly, I would
like to extend my gratitude to Professor Kenichi Hagihara, Professor Shinji Kusumoto,
and Associate Professor Hirotsugu Kakugawa for their precious comments on my work
and this dissertation. I am grateful to appreciate Associate Professor Fukuhito Ooshita
at Nara Institute of Science and Technology for his daily helpful comment and advice. 1
would like to acknowledge Professor Katsuro Inoue and Professor Yasushi Yagi for their

helpful comments on my work.

I would like to thank to Professor Masafumi Yamashita at Kyushu University, Profes-
sor Koichi Wada at Hosei University, Professor Yoshiaki Katayama at Nagoya Institute of
Technology, Associate Professor Sayaka Kamei at Hiroshima University, Associate Pro-
fessor Taisuke Izumi at Nagoya Institute of Technology, Lecturer Tomoko Izumi at Rit-
sumeikan University, Assistant Professor Yukiko Yamauchi at Kyushu University for their
useful comments. In particular, I would like to appreciate Project Assistant Professor
Junya Nakamura at Toyohashi University of Technology, Assistant Professor Yonghwan
Kim at Nagoya Institute of Technology, and Dr. Yuichi Sudo at NTT Communication
Science Laboratory for their useful comments and kind supports.

I could not finish this acknowledgement without saying my appreciation for all mem-
bers of Algorithm Engineering Laboratory, Graduate School of Information Science and
Technology, Osaka University. Especially, I would like to thank to Fusami Nishioka and

Hisako Suzuki for their daily kindness. Because of their backup, I have been able to focus

131

132 CHAPTER 6. CONCLUSION

on my research. I also thank to all the great students in the laboratory, since I have been
motivated and relaxed many time by daily enjoyable activities with the students.

Finally, I strongly appreciate my parents, Yasuaki Shibata and Etsuko Shibata, and
all of my family for their kind support during my life.

Bibliography

1]

A. Hagit and W. Jennifer. Distributed computing: fundamentals, simulations, and

advanced topics, volume 19. John Wiley & Sons, 2004.
G. Sukumar. Distributed systems: an algorithmic approach. CRC press, 2014.

I. Alon and R. Michael. Symmetry breaking in distributed networks. Information

and Computation, 88(1):60-87, 1990.

G. Leszek, J. Tomasz, M. Russell, and S. Grzegorz. Deterministic symmetry breaking
in ring networks. In Proc. of the 35th International Conference on Distributed

Computing Systems, pages 517-526. IEEE, 2015.
Gerard Tel. Introduction to distributed algorithms. Cambridge university press, 2000.

B. Leonid, E. Michael, P. Seth, and S.Johannes. The locality of distributed symmetry
breaking. In Proc. of the 53rd Annual Symposium on Foundations of Computer

Science, pages 321-330. IEEE, 2012.

S. Johannes and W. Roger. A new technique for distributed symmetry breaking. In
Proc. of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed
computing, pages 257-266. ACM, 2010.

D. Kotz S. R. Gray, G. Cybenko, A.R. Peterson, and D. Rus. D’agents: Applica-
tions and performance of a mobile-agent system, Software: Practice and Experience.

32(6):543-573, 2002.

133

134

[9]

[12]

[13]

[14]

[18]

BIBLIOGRAPHY

D.B. Lange and M. Oshima. Seven good reasons for mobile agents, Communications

of the ACM. 42(3):88-89, 1999.

J. Baumann, F. Hohl, K. Rothermel, and M. Strafler. Mole—concepts of a mobile
agent system. world wide web, 1(3):123-137, 1998.

G. Cabri, L. Leonardi, and F. Zambonelli. Mobile agent coordination for distributed
network management. Journal of Network and Systems Management, 9(4):435-456,

2001.

Y. Sudo, D. Baba, J. Nakamura, F. Ooshita, H. Kakugawa, and T. Masuzawa.
A single agent exploration in unknown undirected graphs with whiteboards. IEICE
TRANSACTIONS on Fundamentals of Electronics, Communications and Computer
Sciences, 98(10):2117-2128, 2015.

Y. Dieudonné and A. Pelc. Deterministic network exploration by a single agent with

byzantine tokens. Information Processing Letters, 112(12):467-470, 2012.

J. Chalopin, S. Das, and A. Kosowski. Constructing a map of an anonymous graph:
Applications of universal sequences, Proc. of the 12th International Conference on

Principles of Distributed Systems, LNCS, Vol. 6490. pages 119-134, 2010.

L. Gasieniec, A. Pelc, T. Radzik, and X. Zhang. Tree exploration with logarithmic
memory, Proc. of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms.
pages 585-594, 2007.

D. Dereniowski, Y. Disser, A. Kosowski, D. Pajkak, and P. Uznanski. Fast collabo-
rative graph exploration, Information and Computation. 243:37-49, 2015.

D. Yann, M. Frank, N. Andreas, and S. Nemanja. A
general lower bound for collaborative tree exploration.

https://www.as.inf.ethz.ch/people/members/moussetf/exploration.pdf, 2016.

L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro. Rendezvous and elec-
tion of mobile agents: impact of sense of direction, Theory of Computing Systems.

40(2):143-162, 2007.

BIBLIOGRAPHY 135

[19]

[23]

[24]

[27]

S. Das, P. Flocchini, A. Nayak, and N. Santoro. Effective elections for anonymous
mobile agents, Proc. of the 17th International Symposium on Algorithms and Com-

putation. pages 732-743, 2006.

D. Dereniowski and A. Pelc. Leader election for anonymous asynchronous agents in

arbitrary networks, Distributing Computing. 27(1):21-38, 2014.

T. Suzuki, T. Izumi, F. Ooshita, H. Kakugawa, and T. Masuzawa. Move-optimal
gossiping among mobile agents, Theoretical Computer Science. 393(1):90-101, 2008.

E. Kranakis, N. Santoro, C. Sawchuk, and D. Krizanc. Mobile agent rendezvous in a
ring, Proc. of the 23rd International Conference on Distributed Computing Systems.

pages 592-599, 2003.

P. Flocchini, E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk. Multiple mobile
agent rendezvous in a ring, Proc. of the 6th Latin American Theoretical Informatics,

LNCS, Vol. 2976. pages 599-608, 2004.

L. Gasieniec, E. Kranakis, D. Krizanc, and X. Zhang. Optimal memory rendezvous
of anonymous mobile agents in a unidirectional ring, Proc. of the 32nd International
Conference on Current Trends in Theory and Practice of Computer Science, LNCS,

Vol. 3831. pages 282-292, 2006.

S. Kawai, F. Ooshita, H. Kakugawa, and T. Masuzawa. Randomized rendezvous
of mobile agents in anonymous unidirectional ring networks, Proc. of the 19th In-
ternational Colloquium on Structural Information and Communication Complexity,

LNCS, Vol. 7355. pages 303-314, 2012.

E. Kranakis, D. Krizanc, and E. Markou. Mobile agent rendezvous in a synchronous
torus, Proc. of the 8th Latin American Theoretical Informatics, LNCS, Vol. 3887.
pages 653-664, 2006.

E. Kranakis, D. Krozanc, and E. Markou. The mobile agent rendezvous problem in
the ring, Synthesis Lectures on Distributed Computing Theory, Vol. 1. pages 1-122,
2010.

136

[28]

[29]

32]

[37]

BIBLIOGRAPHY

A Kosowski J. Czyzowicz and A. Pelc. How to meet when you forget: Log-space

rendezvous in arbitrary graphs, Distributed Computing. 25(2):165-178, 2012.

A. Collins, J. Czyzowicz, L. Gasieniec, A. Kosowski, and R. Martin. Synchronous
rendezvous for location-aware agents, Proc. of the 25th International Symposium on

Distributed Computing, LNCS, Vol. 6950. pages 447459, 2011.

Y. Dieudonné and A. Pelc. Anonymous meeting in networks. Algorithmica,

74(2):908-946, 2016.

G. D. Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and U. Vaccaro.
Asynchronous deterministic rendezvous in graphs, Theoretical Computer Science.

355(3):315-326, 2005.

S. Guilbault and A. Pelc. Asynchronous rendezvous of anonymous agents in arbi-
trary graphs, Proc. of the 32nd International Symposium on Distributed Computing,
LNCS, Vol. 7109. pages 421-434, 2011.

J. Czyzowicz, A. Pelc, and A. Labourel. How to meet asynchronously (almost)

everywhere. ACM Transactions on Algorithms (TALG), 8(4):37, 2012.

Y. Dieudonné, A. Pelc, and V. Villain. How to meet asynchronously at polynomial

cost. STAM Journal on Computing, 44(3):844-867, 2015.

P. Flocchini, E. Kranakis, D. Krizanc, F. L. Luccio, N. Santoro, and C. Sawchuk.
Mobile agents rendezvous when tokens fail. Proc. of the 11th International Collo-
quium on Structural Information and Communication Complexity, LNCS, Vol. 3104.

pages 161-172, 2004.

S. Das. Mobile agent rendezvous in a ring using faulty tokens. In International
Conference on Distributed Computing and Networking, pages 292-297. Springer,
2008.

S. Das, M. Mihaldk, R. Srdmek, E. Vicari, and P. Widmayer. Rendezvous of mo-
bile agents when tokens fail anytime. In International Conference on Principles of

Distributed Systems, pages 463-480. Springer, 2008.

BIBLIOGRAPHY 137

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[47]

Y. Dieudonné, A. Pelc, and D. Peleg. Gathering despite mischief. ACM Transactions
on Algorithms (TALG), 11(1):1, 2014.

S. Bouchard, Y. Dieudonné, and B. Ducourthial. Byzantine gathering in networks.
In International Colloquium on Structural Information and Communication Com-

plexity , pages 179-193. Springer, 2014.

S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile search for a black hole
in an anonymous ring. Algorithmica. 48(1):67-90, 2007.

S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Multiple agents rendezvous in
a ring in spite of a black hole, Proc. of the 8th International Conference on Principles

of Distributed Systems, LNCS, Vol. 3144. pages 3446, 2004.

G. L. Peterson. An O(nlogn) unidirectional algorithm for the circular extrema
problem, ACM Transactions on Programming Languages and Systems. 4(4):758—
762, 1982.

P. Fraigniaud and A. Pelc. Deterministic rendezvous in trees with little memory
Proc. of the 22nd International Symposium on Distributed Computing, LNCS, Vol.
6950. pages 242-256, 2008.

P. Fraigniaud and A. Pelc. Delays induce an exponential memory gap for rendezvous

in trees, ACM Transactions on Algorithms. 9(2):17, 2013.

J. Czyzowicz, A. Kosowski, and A. Pelc. Time vs. space trade-offs for rendezvous in
trees, Proc. of the 24th ACM Symposium on Parallelism in Algorithms and Archi-
tectures. pages 1-10, 2012.

S. Elouasbi and A. Pelc. Time of anonymous rendezvous in trees: Determinism vs.
randomization, Proc. of the 19th International Colloquium on Structural Informa-

tion and Communication Complexity, LNCS, Vol. 7355. pages 291-302, 2012.

D. Baba, T. Izumi, F. Ooshita, H. Kakugawa, and T. Masuzawa. Linear time
and space gathering of anonymous mobile agents in asynchronous trees, Theoretical

Computer Science. 478:118-126, 2013.

138

[48]

BIBLIOGRAPHY

N. Santoro. Determining topology information in distributed networks, Proc. of
the 11th Southeaster Conference on Combinatorics, Graph Theory and Computing.
pages 869-878, 1980.

P. Flocchini, G. Prencipe, and N. Santoro. Self-deployment of mobile sensors on a

ring, Theoretical Computer Science. 402(1):67-80, 2008.

Y. Elor and A.M. Bruckstein. Uniform multi-agent deployment on a ring, Theoretical

Computer Science. 412(8):783-795, 2011.

L. Barriere, P. Flocchini, E. Mesa-Barrameda, and N. Santoro. Uniform scattering
of autonomous mobile robots in a grid, International Journal of Foundations of

Computer Science. 22(03):679-697, 2011.
G. Tel. Introduction to distributed algorithms. Cambridge university press, 2000.

G.P. Gallager, A.P. Humblet, and M.P. Spira. A distributed algorithm for minimum-
weight spanning trees. ACM Transactions on Programming Languages and systems

, 5(1):66-77, 1983.

	1 Introduction
	1.1 Overview of This Dissertation
	1.1.1 Partial Gathering
	1.1.2 Uniform Deployment

	1.2 Related Works
	1.2.1 Exploration Problem
	1.2.2 Leader Agent Election Problem
	1.2.3 Total Gathering Problem
	1.2.4 Relation Between the Total Gathering Problem and Symmetry

	1.3 Organization of This Dissertation

	2 Preliminary
	3 Partial Gathering in Ring Networks
	3.1 Introduction
	3.1.1 Contribution
	3.1.2 Related works
	3.1.3 Organization

	3.2 Preliminary
	3.2.1 System Model
	3.2.2 Agent Model
	3.2.3 System Configuration
	3.2.4 Problem Definition

	3.3 The First Model: A Deterministic Algorithm for Distinct Agents
	3.3.1 The first part: leader election
	3.3.2 The second part: movement to gathering nodes

	3.4 The Second Model: A Randomized Algorithm for Anonymous Agents
	3.4.1 The first part: leader election
	3.4.2 The second part: movement to gathering nodes

	3.5 The Third Model: A Deterministic Algorithm for Anonymous Agents
	3.5.1 Existence of Unsolvable Initial Configurations
	3.5.2 Proposed Algorithm

	3.6 Concluding Remarks

	4 Partial Gathering in Tree Networks
	4.1 Introduction
	4.1.1 Contribution
	4.1.2 Related works
	4.1.3 Organization

	4.2 Preliminary
	4.2.1 System Model
	4.2.2 Agent Model
	4.2.3 System Configuration
	4.2.4 Problem Definition

	4.3 Lower Bound of the Total Moves for the Non-Token Model
	4.4 Weak Multiplicity Detection and Non-Token Model
	4.4.1 Proposed algorithm for asymmetric trees
	4.4.2 Impossibility result for symmetric trees

	4.5 Strong Multiplicity Detection and Non-Token Model
	4.6 Weak Multiplicity Detection and Removable-Token Model
	4.6.1 The first part: leader election
	4.6.2 The second part: leaders' instruction and agents' movement

	4.7 Concluding Remarks

	5 Uniform Deployment in Ring Networks
	5.1 Introduction
	5.1.1 Contribution
	5.1.2 Related works
	5.1.3 Organization

	5.2 Preliminary
	5.2.1 System Model
	5.2.2 Agent Model
	5.2.3 System Configuration
	5.2.4 Problem Definition

	5.3 Agents with knowledge of k
	5.3.1 A trivial algorithm with O(klogn) agent memory
	5.3.2 An algorithm with O(logn) agent memory

	5.4 Agents with no knowledge of k or n
	5.4.1 Uniform deployment problem with termination detection
	5.4.2 Uniform deployment problem without termination detection

	5.5 Concluding Remarks

	6 Conclusion
	6.1 Summary of the Results
	6.2 Future Directions

