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Abstract

A distributed system consists of autonomous computers (nodes) and communication links.

In recent years, distributed systems have become large and design of distributed systems

has become complicated. As a promising design paradigm of distributed systems, (mo-

bile) agent systems have attracted a lot of attention. Agents can traverse the system,

collect information and execute tasks on nodes. Hence, we can encapsulate data and algo-

rithms in agents, which simplifies design of distributed systems. Actually agent systems

have many applications such as network exploration, network management, electronic

commerce and so on.

The total gathering problem (usually it is simply called the gathering problem) is a

fundamental and deeply investigated problem for coordination of agents. This problem

requires all the agents to meet at a single node. By meeting at a single node, agents can

share information or synchronize their behavior. Hence, after the gathering agents can

determine their behavior so that they can execute tasks collaboratively and efficiently.

Solving the total gathering problem implies completely symmetry breaking when the

initial locations of agents have symmetry. It is known that the symmetry breaking is

difficult and sometimes impossible. Due to its difficulty, there are two problems about

the total gathering problem. The first is about the total moves, that is, agents require

more total moves to solve the total gathering problem, which causes high network loads.

The second is about the solvability, that is, if agents do not have distinct IDs, they cannot

solve the total gathering problem from several initial configurations.

In this dissertation, we introduce two problems for coordination of agents that require

less (or no) symmetry breaking than the total gathering. We investigate the problems

v
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especially in terms of the total moves or solvability and compare them with the total

gathering.

First, we introduce a variation of the total gathering problem, called the g-partial

gathering problem. The g-partial gathering problem is a generalization (or relaxation) of

the total gathering problem. This problem requires, for a given positive integer g, that

each agent should move to a node so that at least g agents should meet at each of the nodes

they terminate at. In the g-partial gathering problem, we investigate the total moves

compared with the total gathering problem. While the total gathering problem requires

all the agents to meet at the same node, the g-partial gathering problem allows agents

to meet at multiple nodes. Hence, the requirement for the g-partial gathering problem is

weaker than that for the total gathering problem, that is, the g-partial gathering problem

requires less symmetry breaking than the total gathering problem. Thus, agents aim to

solve the g-partial gathering problem with fewer total than the total gathering problem.

We consider the g-partial gathering problem in ring networks (Chapter 3) and tree

networks (Chapter 4). In ring networks, we assume that each node has a whiteboard

where agents can read and write information. Then, if the algorithm is deterministic

and assumes unique ID of each agent, or the algorithm is randomized and assumes no

IDs of each agent (i.e., anonymous), agents can achieve the g-partial gathering in O(gn)

(expected for the randomized algorithm) total moves, where n is the number of nodes.

Note that in ring networks, the total gathering problem requires Ω(kn) total moves,

where k is the number of agents. Since g < k holds, we show that agents can achieve

the g-partial gathering in fewer total moves than the total gathering problem. Note

that agents can attain this improvement of the total moves since the g-partial gathering

requires less symmetry breaking than the total gathering problem.

In tree networks, since trees have lower symmetry than rings, we aim to solve the

g-partial gathering problem in weaker models than the whiteboard model used in rings.

We consider the model such that each agent has one removable token and ability to

detect whether there is at least one agent at the current node or not. Note that this

model is weaker than the whiteboard model considered in a ring scenario. Then, agents

can achieve the g-partial gathering in O(gn) total moves. Note that agents require Ω(kn)
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total moves to solve the total gathering problem also in tree networks. Thus, we show

that also in tree networks, agents can achieve the g-partial gathering in fewer total moves

than the total gathering problem

Second, we introduce the uniform deployment problem in ring networks, which re-

quires agents to spread uniformly in the ring network (Chapter 5). In the uniform

deployment problem, we investigate the solvability compared with the total gathering

problem. Remind that in the total gathering problem, agents need to completely break

the symmetry. On the other hand, in the uniform deployment problem agents need to at-

tain the symmetry (i.e., require no symmetry breaking), and attaining symmetry is easier

than breaking symmetry. Hence, there is possibility that agents can achieve the uniform

deployment in several configurations from which the total gathering can not be achieved.

As our result, if agents have knowledge of k and the algorithm requires termination detec-

tion, or agent do not have any knowledge and the algorithm does not require termination

detection, even for agent with no distinct IDs our proposed algorithms achieve the uni-

form deployment from any initial configuration, including configurations such that the

total gathering cannot be achieved. Note that agents can attain this solvability since the

uniform deployment problem requires no symmetry breaking.
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Chapter 1

Introduction

A distributed system [1] consists of autonomous computers (nodes) and communication

links. Nodes execute a distributed algorithm [2] to solve a problem and provide a service.

To design distributed algorithms, symmetry breaking is one of fundamental concepts [3].

This is a technique to select several (possibly one) nodes as special nodes from candidate

nodes. When symmetry breaking is achieved, nodes can provide a service based on the

selected nodes. There are a lot of researches for symmetry breaking. For example, the

leader election problem [1] requires to select the exactly one node as a leader node among

all nodes. When the leader election is achieved, the selected node can instruct the other

node to coordinate. Themaximal independent set problem [7] requires to select a maximal

set of nodes such that there are no link connecting two nodes included in the set. When

the maximal independent set is achieved, the selected nodes can behave as local base

stations. Symmetry breaking is considered in various networks (e.g., rings [3, 4, 5] and

general graphs [6, 7]), and is achieved by using distinct IDs [3, 4], network topology [6]

or random numbers [6, 7, 5]. Symmetry breaking has been extensively studied, and it

has been known to be difficult, and sometimes impossible from several settings.

In recent years, distributed systems have become large and design of distributed

systems (e.g., symmetry breaking) has become complicated. As a promising paradigm

of distributed systems, (mobile) agent systems have attracted a lot of attention [8, 9].

Agents can traverse the system, collect information and execute tasks on nodes. Hence,

1
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Figure 1.1: An example of the total gathering

we can encapsulate data and algorithms in agents, which simplifies design of distributed

systems [10, 11]. Actually agent systems have many applications such as network explo-

ration, network management, electronic commerce and so on.

The total gathering problem (or the rendezvous problem) [22] is a fundamental prob-

lem for coordination of agents.1 This problem requires all the agents to meet at a single

node. By meeting at a single node, agents can share information or synchronize their

behavior. For example in Fig. 1.1 (a), we assume that nodes v and v′ have troubles.

When agents meet at a single node, agents can share such information (Fig. 1.1 (a) to

(b)). Hence, after the gathering agents can determine their behavior so that they can

execute tasks collaboratively and efficiently (Fig. 1.1 (b) to (c)).

Even though the achievement of the total gathering can simplify the distributed

1Usually it is simply called the gathering problem. In this dissertation, we call it the total gathering

problem in contrast to the partial gathering problem we introduce.
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Figure 1.2: The symmetry each problem eventually requires

system, the problem also requires to break (or reduce) the symmetry as mentioned before.

Since symmetry breaking is known to be difficult and sometimes impossible, there are two

problems about the total gathering problem. The first is about the total moves, that is,

agents require more total moves to solve the total gathering problem, which causes high

network loads. The second is about the solvability, that is, if agents do not have distinct

IDs, they cannot solve the total gathering problem from several initial configurations.

1.1 Overview of This Dissertation

In this dissertation, we introduce two problems for coordination of agents, called the g-

partial gathering problem and the uniform deployment problem, which require less or no

symmetry breaking than the total gathering problem. For such problems, we investigate

the total moves and the solvability compared with the total gathering problem. Fig. 1.2

shows the symmetry each problem eventually requires.

1.1.1 Partial Gathering

First, we introduce the variation of the total gathering problem, called the g-partial gath-

ering problem. The g-partial gathering problem is a generalization of the total gathering

problem. This problem does not always require all agents to meet at a single node, but

requires agents to gather partially at several nodes. More precisely, the g-partial gath-

ering problem requires, for a given positive integer g, that each agent should move to a
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Figure 1.3: An example of the g-partial gathering (g = 3)

node so that at least g agents should meet at each of the nodes they terminate at. From

a practical point of view, the g-partial gathering problem is still useful especially in large-

scale networks. This is because, when agents achieve the g-partial gathering, agents can

share information and execute tasks with collaboration among at least g agents (Fig. 1.3

(a) to Fig. 1.3 (b)). In addition, while in the total gathering agents meet at a single

node, in the g-partial gathering agents meet at multiple nodes separately. This means

that each group with at least g agents can partition the network and own its area that

they should monitor efficiently (Fig. 1.3 (b) to Fig. 1.3 (c)).

The g-partial gathering problem is interesting to investigate also from theoretical

point of view, and we investigate the problem in terms of the total moves and compare

it with the total gathering problem. While the total gathering problem requires all the

agents to meet at the same node, the g-partial gathering problem allows agents to meet

at multiple nodes. Hence, the g-partial gathering problem has a weaker requirement

than the total gathering problem, that is, the g-partial gathering problem requires less

symmetry breaking than the total gathering problem. Thus, agents aim to solve the

g-partial gathering problem with fewer total moves (i.e. lower costs) than the total

gathering problem.
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Figure 1.4: An example of the uniform deployment

1.1.2 Uniform Deployment

Second, we introduce the uniform deployment problem in ring networks, which requires

agents to spread uniformly in the network like Fig. 1.4. From a practical point of view,

the uniform deployment is useful for the network management. For instance, if agents

with ability to repair faulty nodes are deployed uniformly, such agents can quickly reach

and repair faulty nodes after the faults are detected. If agents with database replicas are

deployed uniformly, each node can quickly access the database. Hence, we can regard the

uniform deployment problem as a kind of the resource allocation problem. The uniform

deployment is interesting to investigate also from a theoretical point of view, and we

investigate the solvability compared with the total gathering problem. The problem

exhibits a striking contrast to the total gathering: the uniform deployment aims to

attain the symmetry of agent locations (i.e., requires no symmetry breaking) while the

total gathering aims to break the symmetry. Remind that the symmetry breaking is

difficult (and sometimes impossible) in distributed systems. Hence, it is interesting to

clarify how easily the uniform deployment can be achieved compared with the total

gathering.
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1.2 Related Works

There exist a lot of researches for coordination of agents. In the following, we explain

several problems in each subsection.

1.2.1 Exploration Problem

The exploration problem requires that every node is visited at least once by some agent.

For a single agent, Sudo at el. [12] considered it under the assumption that each node

has a whiteboard, and Dieudonné at el. [13] considered it with Byzantine tokens, that

is, tokens on nodes continues to appear and disappear. For multiple agents placed at

distinct nodes in the initial configuration, Chalopin at el. [14] considered it using tokens

in arbitrary networks, and Gasieniec at el. [15] considered the memory requirement in

tree networks. For multiple agents placed at the same node in the initial configuration,

Dereniowski et al. [16] considered the trade-off between the upper bound of time and the

number of agents in tree networks and arbitrary networks, and Yann et al [17] considered

the trade-off between the lower bound of time and the number of agents in tree networks.

1.2.2 Leader Agent Election Problem

The leader agent election problem is a fundamental problem that requires symmetry

breaking. This problem requires agents to select one common agent as a leader among

all agents. The leader agent election problem is considered in ring networks for agents

using tokens [18], in arbitrary networks under the assumption that each node has a

whiteboard [19], in arbitrary networks for agents that cannot mark nodes in any way

but can communicate with other agents staying at the same node [20]. The gossip

problem requires all agents to share information that each agent initially has. Suzuki

et al. [21] considered it under the assumption that each node has a whiteboard and

agents can communicate with other agents staying at the same node. They showed that

if agents solve the leader agent election problem, agents can solve the gossip problem

asymptotically optimal in terms of total moves.
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1.2.3 Total Gathering Problem

The total gathering problem has been extensively studied. Kranakis at el. [22] considered

the total gathering problem for the first time. They considered it for two agents in

ring networks, and this work has been extended to consider multiple agents [23, 24].

While [22, 23, 24] assumed that algorithms are deterministic and each agent has a token,

Kawai at el. [25] considered a randomized algorithm to solve the total gathering problem

under the assumption that each node has a whiteboard. Kranakis at el. [26] considered

the total gathering problem in torus networks, and in [27] they conclude the results of

[22, 23, 24, 26].

1.2.3.1 Total Gathering for Synchronous Agents or Asynchronous Agents

The total gathering problem for synchronous agents is considered in [28, 29, 30]. While

[28] considered it for two agents with distinct IDs, [29] considered it for two agents with no

distinct IDs but with knowledge where they are located in the network. Dieudidonné and

Pelc [30] considered it for multiple agents with ability to communicate with the agents

at the same node. The total gathering problem for asynchronous agents is considered

in [31, 32, 33, 34]. Marco at el. [31] considered it for such agents for the first time.

Czyzowicz at el. [33] considered it for two agents with distinct IDs, and Guilbault and

Pelc [32] considered it for two agents with no distinct IDs. While in [32, 33] agents

require exponential total moves to solve the problem, Dieudonné and Pelc [34] proposed

an algorithm to solve the problem in polynomial total moves.

1.2.3.2 Fault Tolerant Gathering

A fault tolerant gathering problem is considered in [35, 36, 37, 38, 39]. Flocchini at el.

[35] considered the total gathering in ring networks with faulty tokens, where tokens may

disappear during the execution of the algorithm. In [35], they consider it for synchronous

agents, and this work was extended to consider asynchronous agents [36]. Das at el. [37]

considered such a problem in arbitrary networks. A Byzantine gathering problem is

considered in [38, 39], where there exist Byzantine agents that execute any malicious
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behavior. Dieudonné at el. [38] proposed an algorithm with the minimum number of

non-faulty agents under the assumption that Byzantine agents execute any malicious

behavior except for changing their IDs. Bouchard at el. [39] proposed an algorithm with

the minimum number of non-faulty agents under the assumption that Byzantine agents

execute any malicious behavior, including changing their IDs.

1.2.4 Relation Between the Total Gathering Problem and Symmetry

As mentioned before, to solve the total gathering problem, agents need to break (or

reduce) the symmetry. It is known that the symmetry breaking is difficult and some-

times impossible. Due to its difficulty, there are two problems about the total gathering

problem. The first is about the total moves, that is, agents require more total moves to

solve the total gathering problem, which causes high network loads. The second is about

the solvability, that is, if agents do not have distinct IDs, they cannot solve the total

gathering problem from several initial configurations.

1.3 Organization of This Dissertation

This dissertation consists of six chapters. In Chapter 2, we describe definitions of our

system model, agent model, and each problem. In Chapter 3, we propose algorithms

to solve the g-partial gathering problem in ring networks. In Chapter 4 we propose

algorithms to solve the g-partial gathering problem in tree networks. In Chapter 5

we propose algorithms to solve the uniform deployment problem in ring networks. We

conclude this dissertation in Chapter 6.



Chapter 2

Preliminary

In this chapter, we describe a general definition of a agent model. A network is modeled as

a undirected graphG = (V, L), where V is a set of nodes and L is a set of a communication

links. We denote by n (= V ) the number of nodes. We assume that nodes are anonymous

(i.e., have no distinct IDs), but each node vj ∈ V has a whiteboard that agents on node

vi can read from and write on. We assume that each link l incident to v is uniquely

labeled at v with a label chosen from the set {0, 1, . . . , dv − 1}. We call this label port

number. Since each communication link connects two nodes, it has two port numbers.

However, port numbering is local, that is, there is no coherence between the two port

numbers. The path P (v0, vk) = (v0, v1, . . . , vk) with length k is a sequence of nodes from

v0 to vk such that {vi, vi+1} ∈ L (0 ≤ i < k) and vi ̸= vj if i ̸= j. The distance from u

to v is the length of the shortest path from u to v.

Let A = {a0, a1, . . . , ak−1} be a set of k agents. For simplicity, operations to an

index of an agent assume calculation under modulo k. We consider two problem set-

tings: agents with communication capability and agents without communication capabil-

ity. Agents with communication capability can send a message of any size to agents at

the same node. Agents without communication capability can not communicate with

other agents directly, but instead they communicate via whiteboards. An agent is a state

machine having an initial state sinitial. Agents move in the network according to its state

transition function. An agent executes the following seven operations in an atomic step:

9
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1. The agent reaches some node v (or starts operation at v).

2. For the case of agents with communication capability, the agent receives all the

messages (if any).

3. The agent obtains information at v (e.g., the state of the whiteboard and agents

staying at v).

4. The agent executes local computation at v.

5. For the case of agents with communication capability, the agent broadcast a message

to all the agents staying at v (if any ) if it decides to send a message.

6. The agent updates the contents of v’s whiteboard.

7. The agent moves to the next node or stays at v.

A (global) configuration c is defined as a product of states of agents, states of nodes,

messages reached some agent but not consumed yet (for agents with communication

capability), and location of agents. We denote by C the set of all possible configurations,

In initial configuration c ∈ C, all agents are in the initial state and placed at distinct

nodes. In Chapters 3 and 4, we consider the following scheduler and execution (In

Chapter 5, we consider another scheduler and execution, and we explain the detail in

Chapter 5). When configuration ci changes to ci+1, a scheduler activates a non-empty

set of agents, say Ai, and each agent in Ai takes a step as mentioned before. We denote

by such a transition ci
Ai−→ ci+1. We assume that the scheduler is fair, that is, each

agent is activated after a finite (unknown) amount of time and infinitely many times. If

several agents at the same node are included in Ai, the scheduler activates the agents

in an arbitrary exact order. When Ai = A holds for every i, all agents take steps

every time. This model is called the synchronous model. Otherwise, the model is called

the asynchronous model. In this dissertation, we consider the asynchronous system. If

sequence of configurations E = c0, c1, . . . satisfies ci
Ai−→ ci+1 (i ≥ 0), E is called an

execution starting from c0. We assume that any execution E is maximal in the sense

that E is infinite, or ends in final configuration cfinal where every agent’s state is sfinal.



Chapter 3

Partial Gathering in Ring

Networks

3.1 Introduction

In this chapter, we present algorithms to achieve the g-partial gathering problem in

asynchronous unidirectional rings with whiteboards on nodes. The aim in this chapter

is to clarify the difference on the move complexity between the total gathering problem

and the g-partial gathering problem.

3.1.1 Contribution

The contribution of this paper is summarized in Table 3.1, where k is the number of

agents and n is the number of nodes. First, we propose a deterministic algorithm to

solve the g-partial gathering problem for the case that agents have distinct IDs. This

algorithm requires O(gn) total moves. Second, we propose a randomized algorithm to

solve the g-partial gathering problem for the case that agents have no IDs but agents

know the number k of agents. This algorithm requires expected O(gn) total moves.

Third, we consider a deterministic algorithm to solve the g-partial gathering problem

for the case that agents have no IDs but agents know the number k of agents. In this

case, we show that there exist initial configurations for which the g-partial gathering

11



12 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

Table 3.1: Results in each model

Model 1
(Section 3.3)

Model 2
(Section 3.4)

Model 3
(Section 3.5)

Unique agent ID Available Not available Not available

Deterministic

/Randomized
Deterministic Randomized Deterministic

Knowledge of k Not available Available Available

The total moves O(gn) O(gn) O(kn)

Note - - There exist
unsolvable configurations

n: number of nodes, k: number of agents, g: minimum number of agents at each node where

agents exist

problem is unsolvable. Next, we propose a deterministic algorithm to solve the g-partial

gathering problem for any solvable initial configuration. This algorithm requires O(kn)

total moves. Note that the total gathering problem requires Ω(kn) total moves regardless

of deterministic or randomized settings. This is because in the case that all the agents

are uniformly deployed, at least half agents require O(n) moves to meet at one node.

Hence, the first and second algorithms imply that the g-partial gathering problem can be

solved with fewer total moves than the total gathering problem for the both cases. Note

that agents can attain this improvement of the total moves since the g-partial gathering

requires less symmetry breaking than the total gathering problem. In addition, we show

a lower bound Ω(gn) of the total moves for the g-partial gathering problem if g ≥ 2. This

means the first and second algorithms are asymptotically optimal in terms of the total

moves.

3.1.2 Related works

The gathering problem for rings has been extensively studied [27, 22, 23, 18, 24, 35, 40, 25]

because algorithms for such highly symmetric topologies give techniques to treat the

essential difficulty of the gathering problem such as breaking symmetry.
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For example, Kranakis et al. [22] considered the gathering problem for two mobile

agents in ring networks. This algorithm allows each agent to use a token to select

the gathering node based on the token locations. Later this work has been extended

to consider any number of agents [23, 24]. Flocchini et al. [23] showed that if one

token is available for each agent, the lower bound on the space complexity per agent is

Ω(log k + log log n) bits, where k is the number of agents and n is the number of nodes.

Later, Gasieniec et al. [24] proposed the asymptotically space-optimal algorithm for

uni-directional ring networks. Barriere et al. [18] considered the relationship between

the gathering problem and the leader agent election problem. They showed that the

gathering problem and the leader agent election problem are solvable under only the

assumption that the ring has sense of direction and the numbers of nodes and agents are

relatively prime.

A fault tolerant gathering problem is considered in [35, 41]. Flocchini et al. [35]

considered the gathering problem when tokens fail and showed that knowledge of n

(number of agents) allows better time complexity than knowledge of k (number of agents).

Dobrev et al. [41] considered the gathering problem for the case that there exists a

dangerous node, called a black hole. A black hole destroys any agent that visits there.

They showed that it is impossible for all agents to gather and they considered how many

agents can survive and gather.

A randomized algorithm to solve the gathering problem is shown in [25]. Kawai

et al. considered the gathering problem for multiple agents under the assumption that

agents know neither k nor n, and proposed a randomized algorithm to solve the gathering

problem with high probability in O(kn) total moves.

3.1.3 Organization

This chapter is organized as follows. In Section 3.3 we consider the first model, that is,

the algorithm is deterministic and each agent has a distinct ID. In Section 3.4 we consider

the second model, that is, the algorithm is randomized and agents are anonymous. In

Section 3.5 we consider the third model, that is, the algorithm is deterministic and agents

are anonymous. Section 3.6 concludes this chapter.
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3.2 Preliminary

3.2.1 System Model

In this chapter, we restrict the network topology only to unidirectional ring networks.

Then, ring R = (V,L) is defined as follows:

• V = {v0, v1, . . . , vn−1}

• L = {(vi, v(i+1) mod n) | 0 ≤ i ≤ n− 1}

For simplicity, operations to an index of a node assume calculation under modulo n, that

is, v(i+1) mod n is simply represented by vi+1. We define the direction from vi to vi+1

as the forward direction, and the direction from vi+1 to vi as the backward direction.

Note that the ring is unidirectional, agents staying at some node can move only in the

forward direction. In addition, we define the i-th (i ̸= 0) forward (resp., backward) agent

a′h of agent ah as the agent such that there are i − 1 agents between ah and ah′ in the

ah
′s forward (resp., backward) direction. Moreover, we call the ah’s 1-st forward and

backward agents neighboring agents of ah respectively.

3.2.2 Agent Model

We consider three model variants. In the first model, we consider agents that are distinct

(i.e., agents have distinct IDs) and execute a deterministic algorithm. We model an

agent ah as a finite automaton (S, δ, sinitial, sfinal). The first element S is the set of

the ah’s all states, which includes initial state sinitial and final state sfinal. When ah

changes its state to sfinal, it terminates the algorithm. The second element δ is the

state transition function. We denote by W a set of all state (contents) of a whiteboard.

Then, since we treat deterministic algorithms, δ is a mapping S × W → S × W × M ,

where M = {1, 0} represents whether the agent makes a movement or not in the step.

The value 1 represents movement to the next node and 0 represents stay at the current

node. Since rings are unidirectional, each agent moves only to its forward node. Note

that if the state of ah is sfinal and the state of its current node’s whiteboard is wi, then

δ (sfinal, wi) = (sfinal, wi, 0) holds. In addition, we assume that each agent cannot detect
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whether other agents exist at the current node or not. Moreover, we assume that each

agent knows neither the number of nodes n nor agents k. Notice that S, δ, sinitial, and

sfinal can be dependent on the agent’s ID.

In the second model, we consider agents that are anonymous (i.e., agents have no

IDs) and execute a randomized algorithm. We model an agent similarly to the first

model except for state transition function δ. Since we treat randomized algorithms, δ is

a mapping S ×W ×R → S ×W ×M , where R represents a set of random values. Note

that if the state of some agent is sfinal and the state of its current node’s whiteboard is

wi, then δ (sfinal, wi, R) = (sfinal, wi, 0) holds. In addition, we assume that each agent

cannot detect whether other agents exist at the current node or not, but we assume that

each agent knows the number of agents k. Notice that all the agents are modeled by the

same state machine since they are anonymous.

In the third model, we consider agents that are anonymous and execute a deterministic

algorithm. We also model an agent similarly to the first model. We assume that each

agent knows the number of agents k. Note that all the agents are modeled by the same

state machine. In each model, each agent executes the following three operations in

an atomic step: 1) The agent reads the contents of its current node’s whiteboard, 2)

the agent executes local computation, 3) the agent updates the contents of the node’s

whiteboard, and 4) moves to the next node or stays at the current node. We assume

that agents move instantaneously, that is, agents always exist at nodes (do not exist at

links).

3.2.3 System Configuration

In this chapter, a (global) configuration c is defined as a product of states of agents,

states of nodes (whiteboards’ contents), and locations of agents. In initial configuration

c0 ∈ C, we assume that each node vj has boolean variable vj .initial at the whiteboard

that indicates existence of agents in the initial configuration. If there exists an agent on

node vj in the initial configuration, the value of vj .initial is true. Otherwise, the value of

vj .initial is false. We consider a fair scheduler defined in Chapter 2, that is, it activates

a non-empty set of agents Ai, and each agent in Ai takes a step as mentioned in Section
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3.2.3. We also consider execution E = c0, c1, . . . defined in Chapter 2.

3.2.4 Problem Definition

The g-partial gathering problem requires, for a given positive integer g, each agent to

move to a node and terminate so that at least g agents should meet at the node. Formally,

we define the g-partial gathering problem as follows.

Definition 3.2.1. Execution E solves the g-partial gathering problem when the following

conditions hold:

• Execution E is finite.

• In the final configuration, for any node vj such that there exists an agent on vj,

there exist at least g agents on vj.

For ring networks, we have the following lower bound on the total number of agent

moves. This theorem holds in both deterministic and randomized algorithms.

Theorem 3.2.1. The total number of agent moves required to solve the g-partial gath-

ering problem is Ω(gn) if g ≥ 2.

Proof. We consider an initial configuration such that all agents are scattered evenly (i.e.,

all the agents have the same distances to their nearest agents). We assume n = ck holds

for some positive integer c. Let V ′ be the set of nodes where agents exist in the final

configuration, and let x = |V ′|. Since at least g agents meet at vj for any vj ∈ V ′, we

have k ≥ gx.

For each vj ∈ V ′, we define Aj as the set of agents that meet at vj and Tj as the total

number of moves of agents in Aj . Then, among agents in Aj , the i-th smallest number

of moves to get to vj is at least (i− 1)n/k. Hence, we have

Tj ≥
|Ai|∑
i=1

(i− 1) · n
k

≥
g∑

i=1

(i− 1) · n
k
+ (|Aj | − g) · gn

k

=
n

k
· g(g − 1)

2
+ (|Aj | − g) · gn

k
.
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Therefore, the total number of moves is at least

T =
∑
vj∈V ′

Tj

≥ x · n
k
· g(g − 1)

2
+ (k − gx) · gn

k

= gn− gnx

2k
(g + 1).

Since k ≥ gx holds, we have

T ≥ n

2
(g − 1).

Thus, the total number of moves is at least Ω(gn).

3.3 The First Model: A Deterministic Algorithm for Dis-

tinct Agents

In this section, we propose a deterministic algorithm to solve the g-partial gathering

problem for distinct agents (i.e., agents have distinct IDs). The basic idea is that agents

elect a leader and then the leader instructs other agents which nodes they meet at.

However, since Ω(n log k) total moves are required to elect one leader [21], this approach

cannot lead to the g-partial gathering in asymptotically optimal total moves (i.e., O(gn)).

To achieve the partial gathering in O(gn) total moves, we elect multiple agents as leaders

by executing the leader agent election partially. By this behavior, the number of moves

for the election can be bounded by O(n log g). In addition, we show that the total number

of moves for agents to move to their gathering nodes by leaders’ instruction is O(gn).

Thus, our algorithm solves the g-partial gathering problem in O(gn) total moves.

The algorithm consists of two parts. In the first part, multiple agents are elected

as leader agents. In the second part, the leader agents instruct the other agents which

nodes they meet at, and the other agents move to the nodes by the instruction.

3.3.1 The first part: leader election

The aim of the first part is to elect leaders that satisfy the following conditions called

leader election conditions: 1) At least one agent is elected as a leader, and 2) there exist
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at least g − 1 non-leader agents between two leader agents. To attain this goal, we use

a traditional leader election algorithm [42]. However, the algorithm in [42] is executed

by nodes and the goal is to elect exactly one leader. Hence we modify the algorithm

to be executed by agents, and then agents elect multiple leader agents by executing the

algorithm partially.

During the execution of leader election, the states of agents are divided into the

following three types:

• active: The agent is performing the leader agent election as a candidate of leaders.

• inactive: The agent has dropped out from the candidate of leaders.

• leader: The agent has been elected as a leader.

For an intuitive understanding, we first explain the idea of leader election by assuming

that the ring is synchronous and bidirectional. Later, the idea is applied to our model,

that is, asynchronous unidirectional rings. The algorithm consists of several phases. In

each phase, each active agent compares its own ID with IDs of its backward and forward

neighboring active agents. More concretely, each active agent ah writes its own ID id2 to

the whiteboard of its current node, and moves backward and forward. Then, ah observes

ID id1 of its backward active agent and id3 of its forward active agent. After this, ah

decides if it remains active or drops out from the candidates of leaders. Concretely, if

its own ID id2 is the smallest among the three IDs, ah remains active (as a candidate of

leaders) in the next phase. Otherwise, ah drops out from the candidate of leaders and

becomes inactive. Note that, in each phase, neighboring active agents never remain as

candidates of leaders. Thus, at least half active agents become inactive in each phase.

Moreover from [42], after executing j phases, there exist at least 2j − 1 inactive agents

between two active agents. Thus, after executing ⌈log g⌉ phases, the following properties

are satisfied: 1) At least one agent remains as a candidate of leaders, and 2) the number

of inactive agents between two active agents is at least g − 1. Therefore, all remaining

active agents become leaders since they satisfy the leader election conditions. Note that,

before executing ⌈log g⌉ phases, the number of active agents may become one. In this

case, the active agent immediately becomes a leader.
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Figure 3.1: An execution example of the leader election part (k = 8, g = 3)

In the following, we implement the above algorithm in asynchronous unidirectional

rings. First, we implement the above algorithm in a unidirectional ring by applying a

traditional technique [42]. Let us consider the behavior of active agent ah. In unidirec-

tional rings, ah cannot move backward and cannot observe the ID of its backward active

agent. Instead, ah moves forward until it observes IDs of two active agents. Then, ah

observes IDs of three successive active agents. We assume ah observes id1, id2, id3 in

this order. Note that id1 is the ID of ah. Here this situation is similar to that the active

agent with ID id2 observes id1 as its backward active agent and id3 as its forward active

agent in bidirectional rings. For this reason, ah behaves as if it would be an active agent

with ID id2 in bidirectional rings. That is, if id2 is the smallest among the three IDs,

ah remains active as a candidate of leaders. Otherwise, ah drops out from the candidate

of leaders and becomes inactive. After the phase if ah remains active as a candidate, it

assigns id2 to its ID and starts the next phase.1

For example, consider the initial configuration in Fig. 3.1 (a). In the figures, the

number near each agent is the ID of the agent and the box of each node represents the

whiteboard. In the first phase, each agent writes its own ID to the whiteboard on its

initial node. Next, each agent moves forward until it observes two IDs, and then the

configuration is changed to the one in Fig. 3.1 (b). In this configuration, each agent

1We imitate the way in [42], but active agent ah may still use its own ID id1 in the next phase.
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compares three IDs. The agent with ID 1 observes IDs (1, 8, 3), and hence it drops out

from the candidate because the middle ID 8 is not the smallest. The agents with IDs

3, 2, and 5 also drop out from the candidates. The agent with ID 7 observes IDs (7, 1,

8), and hence it remains active as a candidate because the middle ID 1 is the smallest.

Then, it updates its ID to 1 and starts the next phase. The agents with IDs 8, 4, and

6 also remain active as candidates and similarly update their IDs and start the next

phase. In the second phase, active agents with updated IDs with 1,2,3, and 5 move until

they observe two IDs of active agents respectively, and then the configuration change is

changed to the one in Fig. 3.1 (c). In this configuration, the agent with ID 2 observes IDs

(2, 5, 1), and it drops out from the candidate because the middle ID is not the smallest.

Similarly, the agent with ID 1 also drops out from the candidate. On the other hand,

the agent with ID 5 observes IDs (5, 1, 3), and it remain active because the middle ID is

the smallest. Similarly, the agent with ID 3 remains active. Since agents with IDs 5 and

3 execute 2 (= ⌈log g⌉) phases, they become leaders.

Next, we explain the way to treat asynchronous agents. To recognize the current

phase, each agent manages a phase number. Initially, the phase number is zero, and

it is incremented when each phase is completed. Each agent compares IDs with agents

that have the same phase number. To realize this, when each agent writes its ID to the

whiteboard, it also writes its phase number. That is, at the beginning of each phase,

active agent ah writes a tuple (phase, idh) to the whiteboard on its current node, where

phase is the current phase number and idh is the current ID of ah. After that, ah moves

until it observes two IDs with the same phase number as that of ah. Note that, some

agent ah may pass another agent ai. In this case, ah waits until ai catches up with ah.

We explain the details later. Then, ah decides whether it remains active as a candidate

or becomes inactive. If ah remains active, it updates its own ID. Agents repeat these

behaviors until they complete the ⌈log g⌉-th phase.

Pseudocode. The pseudocode to elect leader agents is given in Algorithm 3.1 and 3.2.

All agents start the algorithm with active states, and the behavior of active agent ah is

described in Algorithm 3.1. We describe vj by the node that ah currently exists. If ah

changes its state to an inactive state or a leader state, ah immediately moves to the next
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part and executes the algorithm for an inactive state or a leader state in Section 3.3.2.

Agent ah and node vj have the following variables:

• ah.id1, ah.id2, and ah.id3 are variables for ah to store IDs of three successive active

agents. Agent ah stores its ID on ah.id1 and initially assigns its initial ID ah.id to

ah.id1.

• ah.phase is a variable for ah to store its own phase number.

• vj .phase and vj .id are variables for an active agent to write its phase number and

its ID. For any vj , initial values of these variables are 0.

• vj .inactive is a variable to represent whether there exists an inactive agent at

vj or not. That is, agents update the variable to keep the following invariant:

If there exists an inactive agent on vj , vj .inactive = true holds, and otherwise

vj .inactive=false holds. Initially vj .inactive = false holds for any vj .

In Algorithm 3.1, ah uses procedure BasicAction(), by which agent ah moves to node

vj′ satisfying vj′ .phase = ah.phase.

The pseudocode of BasicAction() is described in Algorithm 3.2. In BasicAction(),

the main behavior of ah is to move to node vj′ satisfying vj′ .phase = ah.phase. To

realize this, ah skips nodes where no agent initially exists (i.e., vj .initial = false) or an

inactive agent whose phase number is not equal to ah’s phase number currently exists

(i.e., vj .inactive = true and ah.phase ̸= vj .phase), and continues to move until it reaches

a node where some active agent starts the same phase (lines 2 to 4). Note that during

the execution of the algorithm, it is possible that ah becomes the only one candidate of

leaders. In this case, ah immediately becomes a leader (line 6 of Algorithm 3.1).

In the following, we explain the details of the treatment of asynchronous agents.

Since agents move asynchronously, agent ah may pass some active agents. To wait for

such agents, agent ah makes some additional behavior (lines 5 to 8). First, consider the

transition from the configuration of Fig. 3.2 (a) to that of Fig. 3.2 (b) and consider the

case that ah passes ab with a smaller phase number. Let x = ah.phase and y = ab.phase

(y < x). In this case, ah detects the passing when it reaches a node vc such that
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Algorithm 3.1 The behavior of active agent ah (vj is the current node of ah)

Variables in Agent ah

int ah.phase;

int ah.id1,ah.id2,ah.id3;

Variables in Node vj

int vj .phase;

int vj .id;

boolean vj .inactive = false;

Main Routine of Agent ah

1: ah.phase = 1

2: ah.id1 = ah.id

3: vj .phase = ah.phase

4: vj .id = ah.id

5: BasicAction()

6: if (vj .phase = ah.phase) ∧ (vj .id = ah.id1) then change its state to a leader state

7: ah.id2 = vj .id

8: BasicAction()

9: ah.id3 = vj .id

10: if ah.id2 ≥ min(ah.id1, ah.id3) then

11: vj .inactive = true

12: change its state to an inactive state

13: else

14: if ah.phase = ⌈log g⌉ then

15: change its state to a leader state

16: else

17: ah.phase = ah.phase+ 1

18: ah.id1 = ah.id2

19: end if

20: return to step 3

21: end if

ah.phase > vc.phase holds. Hence, ah can wait for ab at vc. Since ab increments vc.phase

or becomes inactive at vc, ah waits at vc until either vc.phase = x or vc.inactive = true
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Algorithm 3.2 Procedure BasicAction() for ah
1: move to the forward node

2: while (vj .initial = false) ∨ (vj .inactive = true ∧ ah.phase ̸= vj .phase) do

3: move to the forward node

4: end while

5: if ah.phase > vj .phase then

6: wait until vj .phase = ah.phase or vj .inactive = true

7: return to step 2

8: end if

holds (line 6). After ab updates the value of either vc.phase or vc.inactive, ah resumes

its behavior.

Next, consider the case that ah passes ab with the same phase number. In the

following, we show that agents can treat this case without any additional procedure.

Note that, because ah increments its phase number after it collects two other IDs, this

case happens only when ab is a forward active agent of ah. Let x = ah.phase = ab.phase.

Let ah, ab, ac, and ad are successive agents that start phase x. Let vh, vb, vc, and vd

are nodes where ah, ab, ac, and ad start phase x, respectively. Note that ah (resp., ab)

decides whether it becomes inactive or not at vc (resp., vd). We consider further two cases

depending on the decision of ah at vc. First, in the transition from the configuration of

Fig. 3.3 (a) to that of Fig. 3.3 (b), consider the case ah becomes inactive at vc. In this

case, since ah does not update vc.id, ab gets ac.id at vc and moves to vd and then decides

its behavior at vd. Next, in the transition from the configuration of Fig. 3.4 (a) to that

of Fig. 3.4 (b), consider the case ah remains active at vc. In this case, ah increments its

phase (i.e., ah.phase = x+1) and updates vc.phase and vc.id. Note that, since ah remains

active, ah.id2 = ab.id is the smallest among the three IDs. Hence, vc.id is updated to

ab.id by ah. Then, ah continues to move until it reaches vd. If ah reaches vd before ab

reaches vd, both vd.phase < ah.phase and vd.inactive = false hold at vd. Hence, ah waits

until ab reaches vd. On the other hand when ab reaches vc, since ab.phase < vc.phase

holds, ab continues to move without waiting for the update of vc.phase. In addition since
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Figure 3.2: The first example of agent ah that passes other agents (e.g, ab)
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Figure 3.3: The second example of agent ah that passes other agents (e.g., ab)

ah has updated vc.id, ah sees vc.id = ab.id. Thus since ab.id1 = ab.id2 holds, ab becomes

inactive when it reaches vd. After that, ah resumes the movement.

We have the following lemma about Algorithm 3.1 similarly to [42].

Lemma 3.3.1. Algorithm 3.1 eventually terminates, and the configuration satisfies the



3.3. THE FIRSTMODEL: A DETERMINISTIC ALGORITHM FORDISTINCT AGENTS25

following properties.

• There exists at least one leader agent.

• There exist at least g − 1 inactive agents between two leader agents.

Proof. At first, we show that Algorithm 3.1 eventually terminates. After executing ⌈log g⌉

phases, agents that have dropped out from the candidates of leaders are inactive states,

and agents that remain active changes their states to leader states. In addition if agent

ah passes another agent ah′ , ah waits for ah′ at some node vj until either vj .phase

or vj .inactive is updated (lines 5 to 8 in Algorithm 3.2). Since the passed agent ah′

eventually reaches vj and updates either vj .phase or vj .inactive, it does not happen that

ah waits at vj forever. Moreover, by the time executing ⌈log g⌉ phases, if there exists

exactly one active agent and the other agents are inactive, the active agent changes its

state to a leader state. Therefore, Algorithm 3.1 eventually terminates. In the following,

we show the above two properties.

First, we show that there exists at least one leader agent. From Algorithm 3.1, in each

phase if ah.id2 is smallest of the three IDs, ah remains active. Otherwise, ah becomes

inactive. Since each agent uses a unique ID, if there exist at least two active agents in

some phase i, at least one agent remains active after executing the phase i. Moreover,

from line 6 of Algorithm 3.1, if there exists exactly one candidate of leaders and the other

agents remain inactive, the candidate becomes a leader. Therefore, there exists at least

one leader agent.

Next, we show that there exist at least g − 1 inactive agents between two leader

agents. At first, we show that after executing j phases, there exist at least 2j−1 inactive

agents between two active agents. We show it by induction on the phase number and by

using the fact that in each phase if an agent ah remains as a candidate of leaders, then

its backward and forward active agents drop out from candidates of leaders. For the case

j = 1, there exists at least 1 = 21 − 1 inactive agents between two active agents. For the

case j = l, we assume that there exist at least 2l − 1 inactive agents between two active

agents. Then, after executing l+1 phases, since at least one of neighboring active agents

becomes inactive, the number of inactive agents between two active agents is at least
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Figure 3.4: The third example of agent ah that passes other agents (e.g, ab)

(2l−1)+1+(2l−1) = 2l+1−1. Hence, we can show that after executing j phases, there

exist at least 2j −1 inactive agents between two active agents. Therefore, after executing

⌈log g⌉ phases, there exist at least g − 1 inactive agents between two leader agents.

In addition, we have the following lemma similarly to [42].

Lemma 3.3.2. The total number of agent moves to execute Algorithm 3.1 is O(n log g).

Proof. In each phase, each active agent moves until it observes two IDs of active agents.

This costs O(n) moves in total because each communication link is passed by two agents.

Since agents execute ⌈log g⌉ phases, we have the lemma.

3.3.2 The second part: movement to gathering nodes

The second part achieves the g-partial gathering by using leaders elected in the first

part. Let leader nodes (resp., inactive nodes) be the nodes where agents become leaders

(resp., inactive agents) in the first part. In this part, states of agents are divided into

the following three types:

• leader: The agent instructs inactive agents where they should move.
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Figure 3.5: The realization of partial gathering (g = 3)

• inactive: The agent waits for the leader’s instruction.

• moving: The agent moves to its gathering node.

The idea of the algorithm is to divide agents into groups each of which consists of

at least g agents. Concretely, first each leader agent ah writes 0 to the whiteboard on

the current node (i.e., the leader node). Next, ah moves to the next leader node, that

is, the node where 0 is already written to the whiteboard. While moving, whenever ah

visits an inactive node vj , it counts the number of inactive nodes that ah has visited. If

the number plus one is not a multiple of g, ah writes 0 to the whiteboard. Otherwise,

ah writes 1 to the whiteboard. These numbers are used to indicate whether the node

is a gathering node or not. The number 0 means that agents do not meet at the node

and the number 1 means that at least g agents meet at the node. When ah reaches the

next leader node, it changes its own state to a moving state, and we explain the behavior

of moving agents later. For example, consider the configuration in Fig. 3.5 (a). In this

configuration, agents a1 and a2 are leader agents. First, a1 and a2 write 0 to their current

whiteboards (Fig. 3.5 (b)), and then they move and write numbers to whiteboards until

they visit the node where 0 is already written to the whiteboard. Then, the system

reaches the configuration in Fig. 3.5 (c).

Each non-leader (i.e., inactive agent) ah waits at the current node until the value

of the whiteboard is updated. When the value is updated, ah changes its own state
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Algorithm 3.3 Initial values needed in the second part (vj is the current node of agent

ah)

Variable in Agent ah

int ah.count = 0;

Variable in Node vj

int vj .isGather =⊥;

to a moving state. Each moving agent moves to the nearest node where 1 is written

to the whiteboard. For example, after the configuration in Fig. 3.5 (c), each non-leader

agent moves to the node where 1 is written to the whiteboard and the system reaches the

configuration in Fig. 3.5 (d). After that, agents can solve the g-partial gathering problem.

Pseudocode. The pseudocode to achieve the partial gathering is described in Algo-

rithm 3.3 to 3.6. In this part, agents continue to use vj .initial and vj .inactive. Remind

that vj .initial = true if and only if there exists an agent at vj initially. In addition,

vj .inactive = true if and only if there exists an inactive agent at vj . Note that, since

each agent becomes inactive or a leader at a node such that there exists an agent initially,

agents can ignore and skip every node vj′ such that vj′ .initial = false holds.

At first, the variables needed to achieve the g-partial gathering are described in Al-

gorithm 3.3. For leader agents instructing inactive agents gathering nodes, agent ah and

node vj have the following variables:

• ah.count is a variable for ah to count the number of inactive nodes ah visits (The

counting is done modulo g). The initial value of ah.count is 0.

• vj .isGather is a variable for leader agents to write values to indicate whether node

vj is a gathering node or not. That is, when a leader agent ah visits an inactive

node vj , ah writes 1 to vj .isGather to indicate vj is a gathering node if ah.count = 0,

and ah writes 0 to vj .isGather otherwise. The initial value of vj .isGather is ⊥.

The pseudocode of leader agents is described in Algorithm 3.4. Since agents move

asynchronously, it is possible that there exists active agents executing the first part and

leader agents executing the second part at the same time. Hence, it may happen that
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Algorithm 3.4 The behavior of leader agent ah (vj is the current node of ah)

1: vj .isGather = 0

2: ah.count = ah.count+ 1

3: move to the forward node

4: while vj .isGather =⊥ do

5: while vj .initial = false do

6: move to the forward node

7: end while

8: if (vj .inactive = false) ∧ (vj .isGather =⊥) then

9: wait until vj .inactive = true or vj .isGather ̸=⊥

10: end if

11: if vj .inactive = true then

12: if ah.count = 0 then

13: vj .isGather = 1

14: else

15: vj .isGather = 0

16: end if

17: // an inactive agent at vj changes to a moving state

18: ah.count = (ah.count+ 1) mod g

19: move to the forward node

20: end if

21: end while

22: change to a moving state

some leader agent ah may pass some active agent ai. In this case, ah waits until ai catch

up with ah and ai becomes a leader or inactive. More precisely, when leader agent ah

visits the node vj such that vj .initial = true and vj .inactive = false and vj .isGather =⊥

hold, it detects that it passes some active agent ai. This is because vj .inactive = true

should hold if some agent becomes inactive at vj , and vj .isGather ̸=⊥ holds if some agent

becomes leader at vj . In this case, ah waits there until the agent caches up with it and
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Algorithm 3.5 The behavior of inactive agent ah (vj is the current node of ah)

1: wait until vj .isGather ̸=⊥

2: change to a moving state

Algorithm 3.6 The behavior of moving agent ah (vj is the current node of ah)

1: while vj .isGather ̸= 1 do

2: move to the forward node

3: if (vj .initial = true) ∧ (vj .isGather =⊥) then

4: wait until vj .isGather ̸=⊥

5: end if

6: end while

either vj .inactive = true or vj .isGather ̸=⊥ holds (lines 8 to 10). When the leader agent

updates vj .isGather, an inactive agent on node vj changes to a moving state (line 17).

After a leader agent reaches the next leader node, it changes its own state to a moving

state (line 22). The behavior of inactive agents is described in Algorithm 3.5.

The pseudocode of moving agents is described in Algorithm 3.6. Moving agent ah

moves to the nearest node vj such that vj .isGather = 1 holds. When all agents complete

such moves, the g-partial gathering problem is solved. In asynchronous rings, a moving

agent may pass leader agents. To avoid this, the moving agent waits until the leader

agent catches up with it. More precisely, if moving agent ah visits node vj such that

vj .initial = true and vj .isGather =⊥ hold, ah detects that it passed a leader agent.

Then, ah waits there until the leader agent comes and updates vj .isGather (lines 3 to 5).

We have the following lemma about the algorithm in Section 3.3.2.

Lemma 3.3.3. After the leader agent election, agents solve the g-partial gathering prob-

lem in O(gn) total moves.

Proof. At first, we show the correctness of the proposed algorithm. Let vg0 , v
g
1 , . . . , v

g
l be

nodes such that vgj .isGather = 1 holds (0 ≤ j ≤ l) after all leader agents complete their

behaviors, and we call these nodes gathering nodes. From Algorithm 3.6, each moving

agent moves to the nearest gathering node vgj . By Lemma 3.3.1, there exist at least
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g− 1 moving agents between vgj and vgj+1 Hence, agents can solve the g-partial gathering

problem. In the following, we consider the total number of moves required to execute

the algorithm.

First, the total number of moves required for each leader agent to move to its next

leader node is obviously n. Next, let us consider the total number of moves required for

each moving agent to move to nearest gathering node vgj (For example, the total moves

from Fig 3.5 (c) to Fig 3.5 (d)). Remind that there are at least g − 1 inactive agents

between two leader agents and each leader agent ah writes 1 to vj .isGather after writing

0 g − 1 times. Hence, there are at most 2g − 1 moving agents between vgj and vgj+1.

Thus, the total number of these moves is O(gn) because each link is passed by at most

2g agents. Therefore, we have the lemma.

From Lemmas 3.3.2 and 3.3.3, we have the following theorem.

Theorem 3.3.1. When agents have distinct IDs, our deterministic algorithm solves the

g-partial gathering problem in O(gn) total moves.

3.4 The SecondModel: A Randomized Algorithm for Anony-

mous Agents

In this section, we propose a randomized algorithm to solve the g-partial gathering prob-

lem for anonymous agents under the assumption that each agent knows the total number

k of agents. The idea of the algorithm is the same as that in Section 3.3. In the first

part, agents execute the leader election partially and elect multiple leader agents. In

the second part, the leader agents determine gathering nodes and all agents move to the

nearest gathering nodes. In the previous section each agent uses distinct IDs to elect

multiple leader agents, but in this section each agent is anonymous and uses random

IDs. We also show that the g-partial gathering problem is solved in O(gn) expected total

moves.
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3.4.1 The first part: leader election

In this subsection, we explain a randomized algorithm to elect multiple leaders by using

random IDs. Similarly to Section 3.3.1, the aim in this part is to satisfy the following

conditions (leader election conditions): 1) At least one agent is elected as a leader, and

2) there exist at least g− 1 non-leader agents between two leader agents. The basic idea

is the same as Section 3.3.1, that is, each active agent moves in the ring and compares

three random IDs. If the ID in the middle is the smallest of the three random IDs, the

active agent remains active. Otherwise, the active agent drops out from the candidate of

leaders.

Now we explain details of the algorithm. In the beginning of each phase, each active

agent selects 3 log k random bits as its own ID. After this, each agent executes in the same

way as Section 3.3.1, that is, each active agent moves until it observes two random IDs

of active agents and compares three random IDs. If the observed three IDs are distinct,

the agent can execute the leader agent election similarly to Section 3.3.1. In addition

to the behavior of the leader election in Section 3.1, when an agent becomes a leader at

node vj , the agent sets a leader-flag at vj , and we explain how leader-flags are used later.

If no agent observes a same random ID, the total number of moves for the leader agent

election is the same as in Section 3.3.1, that is, O(n log g). In the following, we consider

the case that some agent observes a same random ID.

Let ah.id1, ah.id2, and ah.id3 be random IDs that an active agent ah observes in some

phase. If ah.id1 = ah.id3 ̸= ah.id2 holds, then ah behaves similarly to Section 3.3.1,

that is, if ah.id2 < ah.id1 = ah.id3 holds, ah remains active and ah becomes inactive

otherwise. For example, let us consider a configuration of Fig. 3.6 (a). Each active agent

moves until it observes two random IDs (Fig. 3.6 (b)). Then, agent a1 observes three

random IDs (2,1,2) and remains active because a1.id2 < a1.id1 = a1.id3 holds. On the

other hand, agent a2 observes three random IDs (3,4,3) and becomes inactive because

a2.id2 > a2.id1 = a2.id3 holds. The other agents do not observe same random IDs and

behave similarly to Section 3.3.1, that is, if their middle IDs are the smallest, they remain

active and execute the next phase. If their middle IDs are not the smallest, they become
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Figure 3.6: An example that some agent observes the same random IDs

inactive.

Next, we consider the case that either ah.id2 = ah.id1 or ah.id2 = ah.id3 holds. In

this case, ah changes its own state to a semi-leader state. A semi-leader is an agent that

has a possibility to become a leader if there exists no leader agent in the ring. When at

least one agent becomes a semi-leader, each active agent becomes inactive. The outline

of the behavior of each semi-leader agent is as follows: First each semi-leader travels a

round in the ring. After this, if there already exists a leader agent in the ring, each

semi-leader becomes inactive. Otherwise, the leader election is executed among all semi-

leader agents, and exactly one semi-leader is elected as a leader and the other agents

become inactive (including active agents). Note that, we can show that the probability

some active agent becomes a semi-leader is sufficiently low and the expected number of

semi-leader agents during the leader election is also sufficiently small. Hence even when

each semi-leader travels a round in the ring several times, the expected total moves to

complete the leader agent election can be bounded by O(n log g).

Now, we explain the detailed behavior for semi-leader agents. When an active agent

ah becomes a semi-leader, it sets a semi-leader-flag on its current whiteboard. In the

following, the node where the semi-leader flag is set (resp., not set) is called a semi-

leader node (resp., a non-semi-leader node). After that, semi-leader agent ah travels a

round in the ring. In the travel, when ah visits a non-semi-leader node vj where there

exists an agent in the initial configuration, that is, a non-semi-leader node vj such that
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vj .initial = true holds, ah sets the tour-flag at vj . This flag is used so that other agents

notice the existence of a semi-leader and become inactive. Moreover when ah visits a

semi-leader node, ah compares its random ID with the random ID written to the current

whiteboard. Then, ah memorizes whether its random ID is smaller or not and whether

another semi-leader has the same random ID as its random ID or not.

After traveling a round in the ring, ah decides if it becomes a leader or inactive. While

traveling in the ring, if ah observes a leader-flag, it learns that there already exists a leader

agent in the ring. In this case, ah becomes inactive. Otherwise, ah decides if it becomes

a leader or inactive depending on random IDs. Let ah.id be ah’s random ID and Amin

be the set of semi-leaders such that each semi-leader ah ∈ Amin has the smallest random

ID idmin among all semi-leaders. In this case, each semi-leader ah /∈ Amin clears a semi-

leaders-flag and becomes inactive. On the other hand, if ah has the unique minimum

random ID (i.e., |Amin| = 1), ah becomes a leader. Otherwise, ah selects a random ID

again, writes the ID to the current whiteboard, travels a round in the ring. Then, ah

obtains new random IDs of semi-leaders. Each semi-leader ah repeats such a behavior

until |Amin| = 1 holds.

Pseudocode. The pseudocode to elect leader agents is given in Algorithm 3.7 to

3.11. Algorithm 3.7 represents variables required for the behavior of active agents, and

Algorithm 3.8 represents the behavior of active agents. Agent ah and node vj have the

following variables:

• ah.id1, ah.id2, and ah.id3 are variables for ah to store random IDs of three successive

active agents. Note that ah stores its own random ID on ah.id1.

• ah.phase is a variable for ah to store its phase number.

• vj .phase and vj .id are variables for an active agent to write its phase number and

its random ID. For every vj , initial values of these variables are 0.

• vj .tour-flag and vj .leader-flag are variables to represent whether there exists an

semi-leader agent and a leader agent or not respectively. The initial values of these

variables are false.
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Algorithm 3.7 Values required for the behavior of active agent ah (vj is the current

node of ah)

Variables for Agent ah

int ah.phase;

int ah.id1,ah.id2,ah.id3;

boolean ah.semiObserve = false

Variables for Node vj

int vj .phase;

int vj .id;

boolean vj .inactive = false;

boolean vj .tour-flag = false;

boolean vj .leader-flag = false;

• ah.semiObserve is a variable for ah to decide whether it observes a tour-flag or not.

The initial value of ah.semiObserve is false.

In addition to these variables, agents ah uses the procedure random(l) to get its own

random ID. This procedure returns l random bits.

In each phase, each active agent selects its own random ID of 3 log k bits length

through random(3 log k), and moves until it observes two random IDs by BasicAction()

in Algorithm 3.2. If each active agent ah neither observes a tour-flag nor observes phase

numbers and random IDs such that (ah.phase = vj .phase) ∧ (ah.id2 = ah.id1 ∨ ah.id2 =

ah.id3) holds, this pseudocode works similarly to Algorithm 3.3.1. In this case when an

agent becomes a leader, the agent sets a leader-flag at vj (lines 20 to 23). If an active

agent ah observes a tour-flag, then ah moves until it observes two random IDs of active

agents and becomes inactive (lines 11 to 14). Remind that vj .inactive is a variable to

represent whether there exists an inactive agent or not. If an active agent ah observes

three random IDs such that (ah.phase = vj .phase) ∧ (ah.id2 = ah.id1 ∨ ah.id2 = ah.id3)

holds, then ah changes its own state to a semi-leader state (line 15).

Algorithm 3.9 represents variables required for the behavior of semi-leader agents,

and Algorithm 3.10 and Algorithm 3.11 represent the behavior of semi-leader agents.
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Algorithm 3.8 The behavior of active agent ah (vj is the current node of ah)

1: ah.phase = 1

2: ah.id1 = random(3 log k)

3: vj .phase = ah.phase

4: vj .id = ah.id1

5: BasicAction()

6: if vj .tour = true then ah.semiObserve = true

7: ah.id2 = vj .id

8: BasicAction()

9: if vj .tour = true then ah.semiObserve = true

10: ah.id3 = vj .id

11: if ah.semiObserve = true then

12: vj .inactive = true

13: change its state to an inactive state

14: end if

15: if (ah.phase = vj .phase) ∧ (ah.id1 = ah.id2 ∨ ah.id2 = ah.id3) then change its state

to a semi-leader state

16: if ah.id2 ≥ min(ah.id1, ah.id3) then

17: vj .inactive = true

18: change its state to an inactive state

19: else

20: if ah.phase = ⌈log g⌉ then

21: vj .leader-flag = true

22: change its state to a leader state

23: else

24: ah.phase = ah.phase+ 1

25: end if

26: return to step 2

27: end if
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Algorithm 3.9 Values required for the behavior of semi-leader agent ah (vj is the current

node of ah)

Variables for Agent ah

int ah.semiPhase;

int ah.semiID;

int ah.agentCount;

boolean ah.isMin = true

boolean ah.isUnique = true

boolean ah.leaderObserve = false

Variables for Node vj

int vj , semiPhase;

int vj .id;

boolean vj .leader-flag;

boolean vj .semi-leader-flag;

boolean vj .tour-flag;

Semi-leader-agent ah and node vj have the following variables:

• ah.semiID is a variable for ah to store its random ID.

• ah.agentCount is a variable for ah to detect the completion of one round of the ring

travel.

• ah.isMin is a variable for ah to detect whether its random ID is the smallest or not.

The initial value of ah.isMin is true.

• ah.isUnique is a variable for ah to detect whether another semi-leader has the same

random ID as its random ID. The initial value of ah.

isUnique is true.

• ah.leaderObserve is a variable for ah to detect whether there exists a leader agent

in the ring or not. The initial value of ah.leaderObserve is false.

• ah.semiPhase is a variable for ah to store its phase number in the semi-leader state.



38 CHAPTER 3. PARTIAL GATHERING IN RING NETWORKS

Algorithm 3.10 The first half behavior of semi-leader agent ah (vj is the current node

of ah)

1: if vj .tour-flag = true then

2: vj .inactive = true

3: change its state to an inactive state

4: end if

5: vj .semi-leader-flag = true

6: ah.semiPhase = 1

7: vj .semiPhase = ah.semiPhase

8: vj .id = random(3 log k)

9: ah.semiID = vj .id

10: while ah.agentCount ̸= k do

11: move to the forward node

12: while vj .initial = false do move to the forward node

13: ah.agentCount = ah.agentCount+ 1

14: if vj .leader-flag = true then ah.leaderObserve = true

15: if vj .semi-leader-flag = true then

16: if ah.semiPhase ̸= vj .semiPhase then wait until ah.semiPhase = vj .semiPhase

17: if vj .id < ah.semiID then ah.isMin = false

18: if vj .id = ah.semiID then ah.isUnique = false

19: else

20: vj .tour-flag = true

21: end if

22: end while

• vj .semiPhase is a variable for a semi-leader agent to write its phase number in the

semi-leader state.

Variables ah.semiPhase and vj .semiPhase are used for the case that there exist several

semi-leaders having the same smallest random IDs. In addition to these variables, each

node vj has variables vj .id, vj .leader-flag, vj .semi-leader-flag, and vj .tour-flag as defined
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Algorithm 3.11 The latter half behavior of semi-leader agent ah (vj is the current node

of ah)

1: if ah.leaderObserve = true then

2: vj .inactive = true

3: change its state to an inactive state

4: end if

5: if ah.isMin = false then

6: vj .semi-leader-flag = false

7: vj .inactive = true

8: change its state to an inactive state

9: end if

10: if ah.isUnique = true then

11: change its state to a leader state

12: else

13: ah.semiPhase = ah.semiPhase+ 1

14: ah.agentCount = 0

15: return to step 7 of Algorithm 3.10

16: end if

in Algorithm 3.7.

Before semi-leader ah begins moving in the ring (from vj), if it detects tour-flag at vj ,

another semi-leader ah′ has already visited vj . Then ah becomes inactive and does not

start the travel in the ring (lines 1 to 4 of Algorithm 3.10). This is because, otherwise,

each semi-leader cannot share the same random IDs. After each semi-leader travels a

round in the ring, if there exists exactly one semi-leader whose random ID is the smallest,

the semi-leader becomes a leader and the other semi-leaders become inactive. Otherwise,

each semi-leader ah whose random ID is the smallest updates its phase and random ID

again, and travels a round in the ring (lines 12 to 15 of Algorithm 3.11). Then, ah obtains

new value of random IDs. Each semi-leader ah repeats such a behavior until exactly one

semi-leader has the smallest random ID.
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We have the following lemmas similarly to Section 3.3.1.

Lemma 3.4.1. Algorithm 3.8 eventually terminates, and the configuration satisfies the

following properties.

• There exists at least one leader agent.

• There exist at least g − 1 inactive agents between two leader agents.

Proof. The above properties are the same as Lemma 3.1. Thus, if no agent becomes

a semi-leader during the algorithm, each agent behaves similarly to Section 3.3.1 and

the above properties are satisfied. Moreover if at least one agent becomes a semi-leader,

exactly one semi-leader is elected as a leader and the other agents become inactive. Then,

the above properties are clearly satisfied.

Therefore, we have the lemma.

Lemma 3.4.2. The expected total number of agent moves to elect multiple leader agents

is O(n log g).

Proof. If there exist no neighboring active agents having the same random IDs, Algo-

rithms 3.8 works similarly to Section 3.3.1, and the total number of moves is O(n log g).

In the following, we consider the case that some neighboring active agents have the same

random IDs.

Let l be the length of a random ID. Then, the probability that two active neighboring

active agents have the same random ID is (12)
l. Thus, when there exist ki active agents in

the i-th phase, the probability that there exist neighboring active agents having the same

random IDs is at most ki×(12)
l. Since at least half active agents drop out from candidates

in each phase, the probability that neighboring active agents have the same random IDs

until the end of the ⌈log g⌉ phases is at most k× (12)
l + k

2 × (12)
l + · · ·+ k

2⌈log g⌉−1 × (12)
l <

2k × (12)
l. Since l = 3 log k holds, the probability is at most 2

k2
< 1

k . We assume that k

active agents become semi-leaders and circulate around the ring because this case requires

the most total moves. Then, each semi-leader ah compares its random ID with random

IDs of each semi-leader. Let Amin be the set of semi-leader agents whose random IDs
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are the smallest. If |Amin| = 1 holds, agents finish the leader agent election and the total

number of moves is at most O(kn). Otherwise, at least two semi-leaders have the same

smallest random IDs. This probability is at most k× (12)
l. In this case, each semi-leader

ah updates its phase and random ID again, travels a round in the ring, and obtains

new random IDs of each semi-leader. Each semi-leader ah repeats such a behavior until

|Amin| = 1 holds. We assume that t = k × (12)
l and semi-leaders complete the leader

agent election after they circulate around the ring s times. In this case, before they

circulate around the ring s− 1 times, |Amin| ̸= 1 holds every time they circulate around

the ring. In addition when they circulate around the ring s times, |Amin| = 1 holds, and

the probability such that |Amin| = 1 holds is clearly less than 1. Hence, the probability

such that agents complete the leader election after they circulate around the ring s times

is at most ts−1 × 1 = ts−1, and the total number of moves is at most skn. Since the

probability that at least one agent becomes a semi-leader is at most 1
k , the expected total

number of moves for the case that some agents become semi-leaders and complete the

leader agent election is at most O(n log g) + 1
k ×

∑∞
s=1 t

s−1 × skn = n
∑∞

s=1 st
s−1. Let

Sn be 1× 1 + 2× t+ · · ·+ ntn−1. Then, we have Sn = (ntn+1 − (n− 1)tn + 1)/(1− t)2.

When n = ∞, we have Sn = 1/(1− t)2. Moreover since t = k× (12)
l and l = 3 log k hold,

we have t < 1
2 and Sn < 4. Furthermore, the expected total number of moves is at most

O(n). Since the total moves to elect multiple leaders for the case that no agent becomes

a semi-leader is O(n log g), the expected total moves for the leader election is O(n log g).

Therefore, we have the lemma.

3.4.2 The second part: movement to gathering nodes

After executing the leader agent election in Section 3.4.1, the conditions shown by Lemma

3.4.1 is satisfied, that is, 1) At least one agent is elected as a leader, and 2) there exist

at least g − 1 inactive agents between two leader agents. Thus, we can execute the

algorithms in Section 3.3.2 after the algorithms in Section 3.4.1. Therefore, agents can

solve the g-partial gathering problem.

From Lemmas 3.3.3, 3.4.1, and 3.4.2, we have the following theorem.
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Theorem 3.4.1. When agents have no IDs, our randomized algorithm solves the g-

partial gathering problem in expected O(gn) total moves.

3.5 The Third Model: A Deterministic Algorithm for Anony-

mous Agents

In this section, we consider a deterministic algorithm to solve the g-partial gathering

problem for anonymous agents. At first, we show that there exist unsolvable initial

configurations in this model. Later, we propose a deterministic algorithm that solves the

g-partial gathering problem in O(kn) total moves for any solvable initial configuration.

3.5.1 Existence of Unsolvable Initial Configurations

To explain unsolvable initial configurations, we define the distance sequence of the ini-

tial configuration. For initial configuration c0, we define the distance sequence of agent

ah as Dh(c0) = (dh0(c0), . . . , d
h
k−1(c0)), where dhi (c0) is the distance between the i-th

forward agent of ah and the (i + 1)-th forward agent of ah in c0. Then, we define

the distance sequence of configuration c0 as the lexicographically minimum sequence

among {Dh(c0)|ah ∈ A}, and we denote it by D(c0). In addition, we define sev-

eral functions and variables for sequence D = (d0, d1, . . . , dk−1). Let shift(D,x) =

(dx, dx+1, . . . , dk−1, d0, d1, . . . , dx−1) and when D = shift(D,x) holds for some x such

that 0 < x < k holds, we say D or the ring is periodic (Otherwise, we say D or the ring is

aperiodic). Moreover, we define period of D as the minimum (positive) value such that

shift(D, period) = D holds.

Then, we have the following theorem.

Theorem 3.5.1. Let c0 be an initial configuration. If D(c0) is periodic and period is

less than g, the g-partial gathering problem is not solvable.

Proof. Let m = k/period. Let Aj (0 ≤ j ≤ period − 1) be a set of agents ah such

that Dh(c0) = shift(D(c0), j) holds. Then, when all agents move in the synchronous

manner, all agents in Aj continue to do the same behavior and thus they cannot break
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the periodicity of the initial configuration. Since the number of agents in Aj is m and

no two agents in Aj stay at the same node, there exist m nodes where agents stay in

the final configuration. However, since k/m = period < g holds, it is impossible that at

least g agents meet at the m nodes. Therefore, the g-partial gathering problem is not

solvable.

3.5.2 Proposed Algorithm

In this section, we propose a deterministic algorithm to solve the g-partial gathering

problem in O(kn) total moves for solvable initial configurations. Let D = D(c0) be the

distance sequence of initial configuration c0. From Theorem 3.5.1, the g-partial gathering

problem is not solvable if period < g. On the other hand, our proposed algorithm solves

the g-partial gathering problem if period ≥ g holds. In this section, we assume that each

agent knows the number k of agents.

The idea of the algorithm is as follows: First each agent ah travels a round in the

ring and obtains the distance sequence Dh(c0). After that, ah computes D and period.

If period < g holds, ah terminates the algorithm because the g-partial gathering problem

is not solvable. Otherwise, agent ah identifies nodes such that agents in {aℓ|D = Dℓ(c0)}

initially exist. Then, ah moves to the nearest node among them. Clearly period (≥ g)

agents meet at the node, and the algorithm solves the g-partial gathering problem.

We have the following theorem about Algorithm 3.12.

Theorem 3.5.2. When agents have no IDs, our deterministic algorithm solves the g-

partial gathering problem in O(kn) total moves if the initial configuration is solvable.

Proof. At first, we show the correctness of the algorithm. Each agent ah moves around

the ring, and computes the distance sequence Dmin and its period. If period < g holds,

the g-partial gathering problem is not solvable from Theorem 3.5.1 and ah terminates

the algorithm. In the following, we consider the case that period ≥ g holds. From line 20

in Algorithm 3.12, each agent moves to the forward node
∑ah.x−1

i=0 ah.D[i] times. By this

behavior, each agent ah moves to the nearest node such that agent aℓ with aℓ.D = D(c0)

initially exists. Since period(≥ g) agents move to the node, the algorithm solves the
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Algorithm 3.12 The behavior of active agent ah (vj is the current node of ah.)

Variables in Agent ah

int ah.total;

int ah.dis;

int ah.x;

array of int ah.D[ ];

array of int Dmin[ ];

Main Routine of Agent ah

1: ah.total = 0

2: ah.dis = 0

3: while ah.total ̸= k do

4: move to the forward node

5: while vj .initial = false do

6: move to the forward node

7: ah.dis = ah.dis+ 1

8: end while

9: ah.D[ah.total] = ah.dis

10: ah.total = ah.total+ 1

11: ah.dis = 0

12: end while

13: let Dmin be a lexicographically minimum sequence among {shift(ah.D, x)|0 ≤ x ≤

k − 1}.

14: period = min{x > 0|shift(Dmin, x) = Dmin}

15: if (g > period) then

16: terminate the algorithm

17: // the g-partial gathering problem is not solvable

18: end if

19: ah.x = min{x ≤ 0|shift(ah.D, x) = Dmin}

20: move to the forward node
∑ah.x−1

i=0 ah.D[i] times
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g-partial gathering problem.

Next, we analyze the total moves required to solve the g-partial gathering problem.

In Algorithm 3.12, all agents circulate the ring. This requires O(kn) total number of

moves. After this, each agent moves at most n times to meet other agents. This requires

O(kn) total moves. Therefore, agents solve the g-partial gathering problem in O(kn)

total moves.

3.6 Concluding Remarks

In this chapter, we proposed three algorithms to solve the g-partial gathering problem

in asynchronous unidirectional rings. The first algorithm is deterministic and works for

distinct agents. The second algorithm is randomized and works for anonymous agents

under the assumption that each agent knows the total number of agents. The third

algorithm is deterministic and works for anonymous agents under the assumption that

each agent knows the total number of agents. In the first and second algorithms, several

agents are elected as leaders by executing the leader agent election partially. The first

algorithm uses agents’ distinct IDs and the second algorithm uses random IDs. In the

both algorithms, after the leader election, leader agents instruct the other agents where

they meet. On the other hand, in the third algorithm, each agent moves around the ring

and moves to a node and terminates so that at least g agents should meet at the same

node. We have showed that the first and second algorithms requires O(gn) total moves,

which is asymptotically optimal.





Chapter 4

Partial Gathering in Tree

Networks

4.1 Introduction

In this chapter, we present algorithms to achieve the g-partial gathering in asynchronous

tree network. In Chapter 3, agents achieve the g-partial gathering in asynchronous rings

under the assumption that each node has a whiteboard. In this chapter, since trees have

lower symmetry than rings, we aim to solve the g-partial gathering problem in models

weaker than the whiteboard model considered in Chapter 3’s ring scenario.

4.1.1 Contribution

The contribution of this paper is summarized in Table 4.1. We consider two multiplicity

detection models and two token models. Note that any combination of these multiplicity

detection models and token models is weaker than the whiteboard model. First, we

consider the non-token model. In this case, we show that agents require Ω(kn) total moves

to solve the g-partial gathering problem even for the strong multiplicity detection model.

We omit this result in Table 4.1. Next, we consider the case of the weak multiplicity

detection and non-token model, where the weak multiplicity detection model assumes

that each agent can detect whether another agent exists at the current node or not but

47
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Table 4.1: Results in each model

Model 1 (Section 4.4)
Model 2

(Section 4.5)
Model 3

(Section 4.6)

Token model Non-token Non-token Removable-token

Multiplicity detection Weak Strong Weak

Tree topology Asymmetric Symmetric Arbitrary Arbitrary

Solvability Solvable Insolvable (g ≥ 5) Solvable Solvable

The total moves Θ(kn) [46] - Θ(kn) Θ(gn)

cannot count the exact number of the agents. In this case, for asymmetric trees, from

[46] agents can achieve the g-partial gathering problem in O(kn) total moves. From the

lower bound of the total moves for non-token model, this algorithm is asymptotically

optimal in terms of total moves. In addition, for that case that the tree is symmetric

and g ≥ 5 holds, we show that there exist no algorithms to solve the g-partial gathering

problem. Hence, we need to relax the restriction of either the multiplicity detection

or the token model. Next, we consider the case that the restriction of the multiplicity

detection is relaxed: the strong multiplicity detection and non-token model, where the

strong multiplicity detection model allows each agent to count the number of agents at

the current node. In this case, we propose a deterministic algorithm to solve the g-partial

gathering problem in O(kn) total moves. From the lower bound of the total moves for

the non-token model, this algorithm is also asymptotically optimal in terms of the total

moves. Finally, we consider the case that the restriction of the token model is relaxed:

the weak multiplicity detection and removable-token model. In this case, we propose a

deterministic algorithm to solve the g-partial gathering problem in O(gn) total moves.

This result shows that the total moves can be reduced by using tokens. Note that in

this model, agents require Ω(gn) total moves to solve the g-partial gathering problem.

Hence, this algorithm is also asymptotically optimal in terms of the total moves.
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4.1.2 Related works

Recently, the total gathering problem for trees has been extensively studied because

tree networks are utilized in a lot of applications. For example, Fraigniaud and Pelc

[43] considered the gathering problem in tree networks for the first time. This algorithm

achieves the gathering for two synchronous agents with an arbitrary delay in starting time.

The space complexity for each agent is O(log n) bits, which is asymptotically optimal [44].

Later, they considered the space complexity for the case that two synchronous agents

start the algorithm at the same time [44]. In this case, they proposed an algorithm to

achieve the gathering for O(log l+ log log n) memory per agent, where l is the number of

leaves.

The time complexity required for two agents’ gathering in tree networks is considered

in [45, 46]. Czyzowicz et al. [45] considered the trade-off between time and space com-

plexities for two synchronous agents’ gathering for the case that each agent has k ≥ c log n

memory bits (c is some constant). In this case, they proposed an algorithm to solve the

gathering problem in O(n + n2/k) time, which is asymptotically optimal. Elouasbi and

Pelc [46] considered the time complexity trade-off between determinism and randomiza-

tion. They proposed a deterministic algorithm for two synchronous agents’ gathering in

O(n) time. On the other hand, when agents know the maximum degree of the tree and

the upper bound of the initial distance between two agents, they proposed a random-

ized algorithm to achieve the two synchronous agents’ gathering with high probability in

O(log n) time.

Asynchronous gathering for two or more agents is considered in [47]. Baba et al.

showed a lower bound of space complexity for time-optimal algorithms, that is, they

showed that each agent requires Ω(n) memory bits to solve the gathering problem in

O(n) time. In addition, they proposed a space-optimal algorithm to solve the gathering

problem on the condition that the time complexity is asymptotically optimal, that is,

both the time complexity and the space complexity are O(n).
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4.1.3 Organization

This chapter is organized as follows. In Section 4.3 we show the lower bound of total

moves for the non-token model. In Section 4.4 we consider the first model, that is, the

weak multiplicity detection and non-token model. In Section 4.5 we consider the second

model, that is, the strong multiplicity detection and non-token model. In Section 4.6 we

consider the third model, that is, the weak multiplicity detection and removable-token

model. Section 4.7 concludes this chapter.

4.2 Preliminary

4.2.1 System Model

In this chapter, we restrict the network topology only to a tree network T = (V,L). We

describe several definition about T . First, we explain about center nodes. Let us consider

the following sequence of trees constructed recursively as follows: T0 = T and Ti+1 is

obtained from Ti by removing all its leaves. Let j be the minimum value such that Tj

has at most two nodes. Then, we call such nodes center nodes. We use the following

theorem about center nodes later.

Theorem 4.2.1. [48] There exist one or two center nodes in a tree. If there exist two

center nodes, they are neighbors.

Next we define symmetry of trees, which is important to consider solvability in Chap-

ter 4.4.

Definition 4.2.1. A tree T is symmetric iff there exists a function λ : V → V such that

all the following conditions hold (See Fig. 4.1):

• For any v ∈ V , v ̸= λ(v) holds.

• For any u, v ∈ V , u is adjacent to v iff λ(u) is adjacent to λ(v).

• For any link {u, v} ∈ L, the port number assigned to {u, v} at u is equal to the port

number assigned to link {λ(u), λ(v)} at λ(u).
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(a) A non-symmetric tree (b) A symmetric tree

Figure 4.1: Asymmetric and symmetric trees

When tree T is symmetric, we say nodes u and v in T are symmetric if u = λ(v)

holds. When tree T is not symmetric, we say tree T is asymmetric.

4.2.2 Agent Model

We assume that agents know neither n nor k. We consider the strong multiplicity detection

model and the weak multiplicity detection model. In the strong multiplicity detection

model, each agent can count the number of agents at the current node. In the weak

multiplicity detection model, each agent can recognize whether another agent stays at

the same node or not, but cannot count the number of agents at its current node. In both

models, each agent cannot read the state of any other agent. In this chapter, we assume

that each whiteboard has only 0 or 1 bit memory, that is, we consider the non-token

model and the removable-token model. In the non-token model, agents cannot mark the

nodes or the edges in any way. In the removable-token model, each agent initially leaves

a token on its initial node at the beginning of the algorithm, and agents can remove any

owner’s token during the execution of the algorithm.

We assume that agents are anonymous (i.e., agents have no IDs) and execute a de-

terministic algorithm. Similarly to Section 3.2.2, We model an agent as a finite state

machine (S, δ, sinitial, sfinal). In the weak multiplicity detection and non-token model, δ

is described as δ : S×MT×RA → S×MT . In the definition, setMT = {⊥, 0, 1, . . . ,∆−1}

represents the agent’s movement, where ∆ is the maximum degree of the tree. In the left

side of δ, the value of MT represents the port number assigned at the current node to the
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link the agent used in visiting the current node (The value is ⊥ in the first activation).

In the right side of δ, the value of MT represents the port number through which the

agent leaves the current node to visit the next node. If the value is ⊥, the agent does

not move and stays at the current node. In addition, RA = {0, 1} represents whether

another agent stays at the current node or not. The value 0 represents that no other

agents stay at the current node, and the value 1 represents that another agent stays at

the current node.

In the strong multiplicity detection and non-token model, δ is described as δ : S ×

MT ×{0, 1, . . . , k−1} → S×MT . In the definition, {0, 1, . . . , k−1} represents the number

of other agents at the current node. In the weak multiplicity detection and removable-

token model, δ is described as δ : S×MT ×RA ×RT → S×RT ×MT . In the definition,

in the left side of δ, RT = {0, 1} represents whether a token exists at the current node or

not. The value 0 of RT represents that there does not exist a token at the current node,

and the value 1 of RT represents that there exists a token at the current node. In the

right side of δ, RT = {0, 1} represents whether the agent removes a token at the current

node or not. If the value of RT in the left side is 1 and the value of RT in the right side

is 0, it means that the agent removes a token at the current node. Otherwise, it means

that an agent does not remove a token at the current node. Note that, in both models,

we assume that each agent is not imposed any restriction on the memory.

During the execution of the algorithm, agents are located either on nodes or links.

Each agent ah executes the following three operations in an atomic step: 1) Agent ah

reaches some node v, 2) agent ah executes local computation at v, and 3) agent ah leaves

v or stays there. In the local computation, agent ah executes the following operations: 1)

Agent ah obtains information about its local configuration (i.e., the states of all agents

at the current node v and the token state at v for the removable-token model) 2) agent

ah executes some computation at v, 3) agent ah decides whether ah removes the token

or not for the case of the removable-token model, 4) agent ah decides whether ah moves

to the next node or not, and 5) agent ah decides the port number to leave from (in the

case that it decides to move). We assume that ah completes possible local computation

at each step, that is, at the end of a step, ah either leaves v or decides to stay at v.
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If ah decides to stay at v, after the decision ah does nothing (i.e., does not change its

state, does not remove the token at v, and does not leave v) unless other agents change

ah’s local configuration. Note that the above atomic actions can be easily implemented

if each node has a buffer that stores agents visiting the node and makes them execute

processes in a FIFO order, and this assumption is very natural in a distributed system.

In addition we assume that agents move in the tree network in a FIFO manner, that is,

when agent ah leaves some node vj before another agent ai leaves vj through the same

communication link as ah, then ah reaches vj ’s neighboring node v′j before ai. Note that

such FIFO assumptions are natural because 1) agents are implemented as messages in

practice, and 2) FIFO assumptions of messages are natural and can be easily realized in

distributed systems.

4.2.3 System Configuration

In the non-token model, a global configuration c is defined as a product of states of agents,

states of links, and locations of agents. Here, the state of link (vj , v
′
j) is a sequence of

agents that are in transit from vj to v′j in this order. In the removable-token model,

configuration c is defined as a product of states of agents, states of nodes (tokens), states

of links, and locations of agents. Note that in both models, the locations of agents are

either on nodes or links. In addition, in the initial configuration c0, we assume that node

vj has a token if there exists an agent at vj , and vj does not have a token if there exists

no agent at vj .

We consider a fair scheduler defined in Chapter 2, that is, it activates a non-empty

set of agents Ai, and each agent in Ai takes a step as mentioned in Section 4.2.3. We

assume that if the scheduler activates some agent aj that is 1) in a sequence of agents

that are in transit in some link (vl,v
′
l), but 2) not in the head of the sequence, then aj

does not take a step (i.e., does not reach v′l). We also consider execution E = c0, c1, . . .

defined in Chapter 2.
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4.2.4 Problem Definition

In Definition 3.2.1, we defined the g-partial gathering problem in ring networks. We

can use this definition also in tree networks. In addition, in Theorem 3.2.1 we showed

that agent require Ω(gn) total moves to solve the g-partial gathering problem in ring

networks. We can show that this lower bound holds also in tree networks by considering

a line network such that ⌊g/2⌋ agents are placed at consecutive nodes starting from one

endpoint and the other k − ⌊g/2⌋ agents are placed at consecutive nodes starting from

the other endpoint. Then, clearly at least ⌊g/2⌋ agents need to move to the center node.

This requires ⌊g/2⌋ × ⌊n/2⌋ = ⌊gn/4⌋ moves.

4.3 Lower Bound of the Total Moves for the Non-Token

Model

For the non-token model, we have the following lower bound of the total moves. This

results holds even for the strong-multiplicity detection model.

Theorem 4.3.1. In the non-token model, agents require Ω(kn) total moves to solve the

g-partial gathering problem even if agents know k.

Proof. To show the theorem by contradiction, we assume that there exists an algorithm

A to solve the g-partial gathering problem in o(kn) total moves. Let a local configuration

of agent a staying at node v be a boolean value indicating whether another agent stays

at v or not. Then, we define a waiting state of agents as follows: an agent a is in the

waiting state at node v if a never leaves v before the local configuration of a changes.

Concretely, there are two cases. The first case is that, when a visits node v and enters

a waiting state at v, there exist no other agents at v. In this case, a neither changes

its waiting state nor leaves v until another agent visits v. When the scheduler activates

a and a observes such an agent, a can break its waiting state and leave v. The second

case is that, when a visits v and enters a waiting state at v, there exists another agent at

v. In this case, a neither changes its waiting state nor leaves v until there are no other
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agents at v. When the scheduler activates a and a detects such a situation, a can break

its waiting state and can leave v.1

Let us consider the initial configuration c0 such that k agents are placed in tree T

with n nodes. We claim that some agent enters a waiting state in o(n) moves without

meeting other agents. Consider the execution that repeats a phase in which every agent

not in a waiting state: 1) makes a movement, and 2) visits a node. Let ai be the first

agent that enters a waiting state in this execution. Clearly, ai does not meet other agents

unless it enters a waiting state. If ai makes Ω(n) moves before it enters a waiting state,

each of the other agents makes Ω(n) moves. This implies the total number of moves is

Ω(kn), which contradicts to the assumption of A. Hence, ai enters a waiting state in

o(n) moves without meeting other agents. This implies there exists a node vx which ai

does not visit before it enters a waiting state. Let vw be the node where ai is placed in

the initial configuration c0.

Next, we construct tree T ′ with kn′ + 1 nodes as follows: Let T 1, . . . , T k be k trees

with the same topology as T and vjx (1 ≤ j ≤ k) be the node in T j corresponding to vx

in T . Tree T ′ is constructed by connecting a node v′ to vjx for every j (Fig. 4.2). Let vjw

(1 ≤ j ≤ k) be the node in T j corresponding to vw in T . Consider the configuration c′0

such that k agents are placed at v1w, v
2
w, . . . , v

k
w, respectively. Since agents do not have

1 The final state of an agent after gathering is a waiting state. Hence, the final state is a kind of the

waiting state.
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knowledge of n, each agent performs the same behavior as ai in T (note that they do

not visit vjx). Hence, each agent placed in T j (1 ≤ j ≤ k) enters a waiting state without

moving out of T j . Thus, each agent enters a waiting state at different nodes and does

not resume its execution. Therefore, algorithm A cannot solve the g-partial gathering

problem in T ′. This is a contradiction.

4.4 Weak Multiplicity Detection and Non-Token Model

In this section, we consider the g-partial gathering problem for Model 1 in Table 4.1,

that is, the weak multiplicity detection and non-token model. First, we consider the case

for asymmetric trees, and agents can achieve the g-partial gathering problem in O(kn)

total moves from the past result. Next, we consider the case that the tree symmetric and

agents are placed symmetrically in the initial configuration. In this case, we show that

there exist no algorithms to solve the g-partial gathering problem if g ≥ 5 holds.

4.4.1 Proposed algorithm for asymmetric trees

From [46], for asymmetric tree agents can achieve the total gathering in O(kn) total

moves, and this result can be clearly applied to the g-partial gathering. Hence, we have

the following theorem.

Theorem 4.4.1. In the weak multiplicity detection and non-token model, agents solve

the g-partial gathering problem in O(kn) total moves for asymmetric trees.

4.4.2 Impossibility result for symmetric trees

In this section, we show that there exist no algorithms to solve the g-partial gathering

problem for symmetric trees. We consider the case such that in the initial configuration

even agents are placed symmetrically in a symmetric tree, that is, if there exists an agent

at node v, there also exists an agent at node v′, where v and v′ are symmetric. Then, we

have the following theorem.
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Theorem 4.4.2. Let us consider the initial configuration such that agents are placed

symmetrically in a symmetric tree. Then, in the weak multiplicity detection and non-

token model, there exist no algorithms to solve the g-partial gathering problem if g ≥ 5

holds.

Proof. For contradiction, we assume that the g-partial gathering problem can be solved.

We prove the theorem for the case that g is an odd number (we can also prove the theorem

similarly for the case that g is an even number). We assume that the tree network is

symmetric, and for any node v, we denote by v′ the node symmetric to v. We consider the

initial configuration c0 such that 3g−1 agents are placed symmetrically in the symmetric

tree, that is, if there exists an agent at v, there also exists an agent at v′. For any agent

a located at a node v in c0, let a
′ denote the agent that is located at v′ in c0. Note that

since 2g < k = 3g− 1 < 3g holds, agents are allowed to meet at one or two nodes. Then,

we have the following lemma [43].

Lemma 4.4.1. Assume that each pair of nodes v1 and v′1, v2 and v′2, . . . vm and v′m is

symmetric in tree T . If agents ai and a′i (1 ≤ i ≤ m) start an algorithm from vi and

v′i, respectively, there exists an execution in which each pair acts in a symmetric manner

even in an asynchronous model.

We consider a waiting state defined in Section 4.3. Then, the definition means that

even when the local configuration of some waiting agent changes, the agent does not

change its state unless the scheduler activates the agent. Note that, if an agent is staying

at some node, then it is either in an initial state or a waiting state. Then, we have the

following lemma about a waiting state.

Lemma 4.4.2. At any node vj where at least three waiting agents exist, at least two of

the agents never leave vj by the end of the algorithm.

Proof. We assume that agents aj1, a
j
2, a

j
3 enter waiting states at vj in this order. Since

aj1 is the first agent that enters a waiting state at vj , when aj2 enters a waiting state

at vj , the local configuration of aj1 changes, and aj1 can leave vj . Since we consider the

weak multiplicity detection model, even if aj1 leaves vj , a
j
2 and aj3 cannot detect the fact
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and local configurations of aj2 and aj3 do not change. Thus, agents aj2 and aj3 never leave

vj .

Let us consider a configuration such that there exist at least three nodes where there

exist at least three waiting agents, respectively. We call such a configuration a three-node

three-waiting-agent configuration. Then in three-node three-waiting-agent configurations,

by Lemma 4.4.2 there exist at least three nodes where agents exist at the end of the

algorithm execution. In addition since agents are allowed to meet at one or two nodes

because of k < 3g, agents cannot solve the g-partial gathering problem when the system

reaches a three-node three-waiting-agent configuration. This is the key idea of the proof.

We consider an adversarial scheduler such that once some agent enters a waiting state,

the scheduler never activates the agent until all agent enter waiting states. When all

agents are in waiting state, we denote by such a configuration ct. Note that ct is the

configuration such that all agents’ states are waiting states and each agent enters a waiting

state exactly once. Then, the outline of the proof is described as follows. At first, we

construct configuration ct by considering the adversarial scheduler. Then, we consider

the placement of waiting agents in ct and show the unsolvability in any placement. If ct

is a three-node three-waiting-agent configuration or a configuration such that there exists

at most one waiting agent at each node, we can clearly show that agents cannot solve

the g-partial gathering problem. Otherwise, we show that, in any placement of waiting

agents in ct, there exists an execution by an adversarial scheduler such that the system

reaches either 1) a three-node three-waiting-agent configuration, 2) a configuration such

that there exists at most one waiting agent at each node, or 3) a configuration such that

there exist two nodes with agents but there exist at most g − 1 waiting agents at one of

them.

At first, we consider the execution until the system reaches the first configuration ct

such that all agents are in waiting states. We consider an execution Et under the following

fair scheduler αt that makes agents’ movements as follows: 1) When αt activates some

agent a whose initial node is v, αt also activates the agent a′ whose initial node v′ at the

same time, and 2) if an agent a enters a waiting state at node v, αt never activates a and
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Figure 4.3: Classification depending on values of N1 and N2 (N1 ≥ N2)

a never leaves v until all agents enter waiting states.2

Note that, in any algorithm, each agent necessarily enters a waiting state (otherwise,

if an agent never enters a waiting state, the agent moves in the tree network forever).

Agents execute such behaviors until they reach ct. Then, since agents are initially placed

symmetrically and move symmetrically, it follows that if there exist l waiting agents at

a node v in ct, there also exist l waiting agents at node v′. Thus we can denote the

nodes where agents exist in ct by v1, . . . , vs, v
′
1, . . . , v

′
s. In addition, let Nl (resp., N

′
l ) be

the number of waiting agents at vl (resp., v
′
l) in ct. Clearly, Nl = N ′

l (1 ≤ l ≤ s) and

N1 +N2 + · · ·+Ns = k/2 hold. Without loss of generality, we assume that N1 ≥ N2 ≥

· · · ≥ Ns holds. Moreover, we assume that agents aj1, a
j
2, . . . , a

j
Nj

(resp., aj
′

1 , a
j′

2 , . . . , a
j′

N ′
j
)

enter waiting states at vj (resp., v′j) in this order.We consider the following eight cases

depending on values of N1, N2, . . . , Ns (N ′
1, N

′
2, . . . , N

′
s), and show that agents cannot

solve the g-partial gathering problem in any case (contradiction). Fig. 4.3 represents

the classification depending on values of N1 and N2. In addition, Case 7 considers

N1 = N2 = 2 and N3 = 1, and Case 8 considers N1 = N2 = N3 = 2.

⟨Case 1: N2 ≥ 3 holds.⟩

2 Scheduler αt is fair because the system reaches configuration ct in finite number of agents’ steps.
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In this case, there exist at least three waiting agents at each of v1, v2, v
′
1 and v′2 (three-

node three-waiting-agent configuration). Hence from Lemma 4.4.2, there exist at least

four nodes where agents exist at the end of algorithm execution. However, since k = 3g−1

holds, agents are allowed to meet at one or two nodes. This contradicts the assumption

that agents can solve the g-partial gathering problem.

⟨Case 2: N1 = N2 = · · · = Ns = 1 holds.⟩

In this case, there exist no nodes where more than one agent exists in ct. From the

definition of a waiting state, the local configuration of each agent does not change and

each agent never leaves the current node. This contradicts the assumption.

Before considering Case 3, we introduce the notion of elimination. Let us select a

set of agents Aelimi such that both |Aelimi| ≤ g − 1 and Aelimi ⊆ {aji |1 ≤ j ≤ s, 2 ≤

i ≤ Nj} ∪ {aj
′

i |1 ≤ j′ ≤ s, 2 ≤ i ≤ N ′
j} hold. In addition, let celimi

0 be the configuration

obtained from c0 by eliminating all agents in Aelimi in c0. Moreover we define an execution

Eelimi
t as follows: When in Et the scheduler activates sets of agents A0, A1, . . . , At−1 in

this order and the system reaches ct, then in Eelimi
t the scheduler activates sets of agents

A0 − Aelimi, A1 − Aelimi, . . . , At−1 − Aelimi in this order and the system reaches celimi
t .

Then, we have the following lemma.

Lemma 4.4.3. The locations and states of agents in A − Aelimi in celimi
t are the same

as those in ct.

Proof. We prove the lemma for the case of |Aelimi| = 1. Then, we can similarly prove the

lemma for the case |Aelimi| ≥ 2 by applying the following argument to each of Aelimi one

by one. Let aji (2 ≤ i ≤ Nj) be the unique agent in Aelimi. In this case, we show that the

locations and states of agents in A−Aelimi in celimi
l (0 ≤ l ≤ t) are equal to those in cl. At

first, we denote by cp the configuration in Et immediately after aji enters a waiting state

at vj . Note that aji enters a waiting state without being observed by any other agents.

This is because until cp, a
j
i reaches some node v, executes local computation, and leaves

the current node in an atomic step, that is, aji never waits at any node before cp. In
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addition, in cp there already exist waiting agents aj1, . . . , a
j
i−1. Moreover, we denote by

cq (p < q) the configuration in which some agent a visits vj for the first time after cp.

Now let us consider Eelimi
t . First we can show that, except for aji , the locations and

states of agents in each of celimi
0 , celimi

1 , . . . celimi
p in Eelimi

t are the same as those in each

of c0, c1, . . . , cp in Et. This is because in Et, a
j
i moves without being observed by any

other agents. Similarly, we can show that the locations and states of agents in each of

celimi
p+1 , . . . , celimi

q−1 are the same as those except for aji in each of cp+1, . . . , cq−1. Next, we

consider the locations and states of agents in celimi
q . In celimi

q , some agent a visits vj and

then there exist i − 1 waiting agents aj1, . . . , a
j
i−1 at vj . On the other hand in cq, there

exist waiting agents aj1, . . . , a
j
i at vj . Then, agent a cannot distinguish the difference

between cq and c′q because i ≥ 2 holds and we consider the weak multiplicity detection

model. Thus, agent a behaves in the same way as in Et and the locations and states of

agents in celimi
q are the same as those in cq, except for a

j
i .

In the following, we show by induction that the locations and states of agents in each

of celimi
q+1 , . . . , celimi

t are the same as those except for aji in each of cq+1, . . . , ct. We assume

that the locations and sates of agents in each of celimi
r (q + 1 ≤ r ≤ t − 1) are the same

as those except for aji in each of cr. Then, in celimi
t if there exists no agent that visits

vj , the locations and states of agents in celimi
r+1 in Eelimi

r+1 are the same as those in each

of cr+1 in Et. This is because between cr and cr+1 in Et, a
j
i stays at vj and it is never

observed by agents except for agents already staying at vj . In celimi
r+1 if there exists some

agent a that visits vj , there exist i′ (i′ ≥ i) waiting agents at vj . Then, agent a cannot

distinguish the difference between cr+1 and celimi
r+1 because i′ ≥ 2 holds and we consider

the weak multiplicity detection model. Hence, agent a behaves in the same way as in Et

and the locations and states of agents in celimi
r+1 are the same as those in cr+1, except for

aji . Thus, we can show that the locations and states of agents in each of celimi
q+1 , . . . , celimi

t

are also the same as those except for aji in each of cq+1, . . . , ct. Therefore, the locations

and states of agents in A − Aelimi in celimi
t are equal to those in ct, and we have the

lemma.
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By Lemma 4.4.3 and the fact that in ct all agents are in waiting states, we can clearly

show that in celimi
t all agents are in waiting states. We use this lemma to show the

contradiction in the remaining cases.3

⟨Case 3: N1 ≥ 3 and N2 = 2 hold.⟩

In this case, there exist three waiting agents a11, a
1
2, and a13 (a1

′
1 , a

1′
2 , and a1

′
3 , respectively)

at v1 (v′1), and agents a12 and a13 (a1
′

2 and a1
′

3 , respectively) never leave v1 (v′1) by Lemma

4.4.2. Since k = 3g − 1 holds and agents are allowed to meet at one or two nodes, all

agents must meet at v1 or v′1.

Now let us consider the initial configuration celimi
0 obtained from c0 by eliminating

agents a22 and a2
′

2 . Then from Lemma 4.4.3, there exists an execution Eelimi
t from celimi

0

to celimi
t , where there exists exactly one waiting agent a21 (a2

′
1 ) at v2 (v′2) in celimi

t . In

this configuration, agents a21 and a2
′

1 need to meet at v1 or v′1. To do this, it is necessary

that some agent enters a waiting state at v2 and v′2 in order to make a21 and a2
′

1 observe

changes of local configurations and leave there. We consider an execution Eelimi
x under the

scheduler αelimi
x deciding agents and their behavior as follows. Let b1, . . . , bh (b′1, . . . , b

′
h)

be the sequence of agents such that 1) b1 (b′1) is an agent that can leave the current node

in celimi
t , 2) bi (b′i) (2 ≤ i ≤ h − 1) is an agent in the waiting state at some node vbi

(v′bi) where no other agents exist (note that bi can leave vbi when bi−1 arrives at vbi and

enters a waiting state), and 3) bh (b′h) is an agent in the waiting state at v2 (v′2), that

is, bh = a21 (b′h = a2
′

1 ). Then in αelimi
x , agents bj and b′j (1 ≤ j ≤ h− 1) are activated at

the same time, and behave symmetrically. Finally, agents bh−1 and b′h−1 enter waiting

states at v2 and v′2, respectively, and we call such a configuration celimi
x . An example is

shown in Fig. 4.4. In the figure, we assume that agents a22 and a2
′

2 of the dotted lines are

eliminated. In addition, the black agents a12, a
1
3, a

1′
2 , and a1

′
3 never leave the current nodes

by the end of the algorithm. In Fig. 4.4, agents a11 and a1
′

1 move symmetrically and enter

waiting states at v3 and v′3, respectively (Fig. 4.4 (b)), and after this, agents a31 and a3
′

1

move symmetrically and enter waiting states at v2 and v′2, respectively (Fig. 4.4 (c) to

3From Case 6 to Case 8, we consider a configuration obtained from c0 by eliminating at least four

agents, and we cannot apply this way for the case of 2 ≤ g ≤ 4.
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Figure 4.4: An example of Case 3

Fig. 4.4 (d)).

Now, let us consider ct. In ct, there exist two waiting agents a21 and a22 (a2
′

1 and a2
′

2 ,

respectively) at v2 (v′2). In addition, since a21 (a2
′

1 ) is the first agent that enters a waiting

state at v2 (v
′
2), a

2
1 (a

2′
1 ) can leave v2 (v

′
2). However we consider the execution Ex similarly

to Eelimi
x , that is, agents b1 and b′1, b2 and b′2, . . . , bh−1 and b′h−1 are activated and behave

symmetrically in this order, while agents a21 and a2
′

1 are not activated. Finally, agents bh−1
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and b′h−1 enter waiting states at v2 and v′2, respectively. We call such a configuration

cx.
4 Then in cx, there exist three waiting agents a21, a

2
2, and bh−1 (a2

′
1 , a

2′
2 , and b′h−1,

respectively) at v2 (v′2), and agents a22 and bh−1 (a2
′

2 and b′h−1, respectively) never leave

the current node by Lemma 4.4.2. For example in Fig. 4.4, agents a11 and a1
′

1 move

symmetrically and enter waiting states at v3 and v′3, respectively (Fig. 4.4 (e) to Fig. 4.4

(f)), and after this, agents a31 and a3
′

1 move symmetrically and enter waiting states at v2

and v′2, respectively (Fig. 4.4 (g) to Fig. 4.4 (h)). Then there exist three waiting agents

a21, a
2
2, and a31 (a

2′
1 , a

2′
2 , and a3

′
1 , respectively) at v2 (v

′
2), and agents a22 and a31 (a

2′
2 and a3

′
1 ,

respectively) never leave the current node by Lemma 4.4.2. Note that, agents a12, a
1
3, a

1′
2

and a1
′

3 also never leave the current node. Thus in cx, there exist four nodes where agents

exist and never leave the current nodes (three-node three-waiting-agent configuration),

which is a contradiction.

From Case 4 to Case 6, we consider cases that there exist at least two waiting agents

a11 and a12 (a
1′
1 and a1

′
2 , respectively) at v1 (v

′
1), and there exists at most one waiting agent

at the other nodes.

⟨Case 4: 2 ≤ N1 ≤ (g + 1)/2 and N2 = 1 hold.⟩

In this case, we consider the initial configuration celimi
0 obtained from c0 by eliminating

agents a12, . . . , a
1
N1

, a1
′

2 , . . . , a
1′

N ′
1
. Note that, the number of eliminated agents a12, . . . , a

1
N1

,

a1
′

2 , . . . , a
1′

N ′
1
is 2N1−2 ≤ g−1 since N1 ≤ (g+1)/2 holds. Then from Lemma 4.4.3, there

exists an execution Eelimi
t from celimi

0 to celimi
t , where there exists at most one waiting

agent at each node in celimi
t . This configuration is the same as the Case 2 and agents

cannot solve the g-partial gathering problem.

⟨Case 5: (g + 3)/2 ≤ N1 ≤ g and N2 = 1 hold.⟩

In this case, we consider the initial configuration celimi
0 obtained from c0 by eliminating

agents a12, . . . , a
1
N1

. Note that, the number of eliminated agents a12 . . . , a
1
N1

isN1−1 ≤ g−1

4 Execution Ex is fair because the system reaches configuration cx in finite number of agents’ steps.

Similarly, we can show that schedulers or executions we consider in the rest of this section are fair.
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since N1 ≤ g holds. Then from Lemma 4.4.3, there exists an execution Eelimi
t from celimi

0

to celimi
t , where there exist N ′

1 waiting agents at v′1 and at most one waiting agent at

the other nodes in celimi
t . Since agents are allowed to meet at one or two nodes and only

a1
′

1 can leave the current node in this configuration, it is necessary that agent a1
′

1 firstly

leaves v′1 and enters a waiting state at some node where a waiting agent exists to make

the waiting agent leave there. Without loss of generality, we assume that a1
′

1 enters a

waiting state at v′j where waiting agent aj
′

1 exists. We call such a configuration celimi
x and

define Eelimi
x as an execution from celimi

t to celimi
x . Moreover after this, agents need to

make the configuration such that some agent a′ enters a waiting state at vj in order to

meet there or make agent aj1 leave there. We call such a configuration celimi
y and define

Eelimi
y as an execution from celimi

x to celimi
y . For example in Fig. 4.5, agent a1

′
1 moves and

enters a waiting state at v3′ (Fig. 4.5 (a) to Fig. 4.5 (b)), and after this, agent a3
′

1 moves

and enters a waiting state at v3 (Fig. 4.5 (c)).

Now let us consider ct. In ct, agents a
1
1 and a1

′
1 can leave the current nodes and the

other agents cannot leave the current nodes. Then we consider an execution Ex under the

fair scheduler αx, where a
1
1 and a1

′
1 are activated at the same time, behave symmetrically

and enter waiting states at vj and v′j , respectively. We call such a configuration cx. Then,

the local configurations of aj1 and aj
′

1 change and they can leave vj and v′j , respectively.

However, we consider the execution Ey similarly to Eelimi
y , that is, agent aj

′

1 leaves v′j

and some agent a′ enters a waiting state at vj , while a
j
1 is not activated. Then there exist

three waiting agents aj1, a
1
1, and a′ at vj , and agents a11 and a′ never leave vj by Lemma

4.4.2. For example in Fig. 4.5, agents a11 and a1
′

1 move and enter waiting states at v3 and

v′3, respectively (Fig. 4.5 (d) to Fig. 4.5 (e)), and after this, agent a3
′

1 leaves v′3 and enters

a waiting state at v3 (Fig. 4.5 (f)). Then there exist three waiting agents a31, a
1
1, and a3

′
1

at v3, and agents a11 and a3
′

1 never leave v3. Note that, agents a12, a
1
3, a

1′
2 and a1

′
3 also

never leave the current node. Thus in cy, there exist three nodes where agents exist at

the end of algorithm execution (three-node three-waiting-agent configuration), which is

a contradiction.

⟨Case 6: N1 ≥ g + 1 and N2 = 1 hold.⟩
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Figure 4.5: An example of Case 5

In this case, agents are allowed to meet at v1 or v′1. As a one way to satisfy this, we

consider an execution Ex from ct to cx, where each agent moves symmetrically until they

enter waiting states at v1 or v′1 in cx. Then, there exist (3g − 1)/2 agents at v1 and v′1,

respectively.

Now let us consider the initial configuration celimi
0 obtained from c0 by eliminating

agents a14, . . . , a
1
4+(g+1)/2−1. Then from Lemma 4.4.3, there exists an execution Eelimi

t
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from celimi
0 to celimi

t , where there exist N1 − (g + 1)/2 waiting agents at v1, N
′
1 (= N1)

waiting agents at v′1, and at most one waiting agent at the other nodes in celimi
t . Moreover

we consider the execution Eelimi
x similarly to Ex, and we define celimi

x as the configuration

that all agents meet at v1 or v′1. Then since (g + 1)/2 agents a14, . . . , a
1
4+(g−1)/2−1 are

eliminated, the number of agents that meet at v1 is (3g− 1)/2− (g+ 1)/2 = g− 1. This

contradicts that agents can solve the g-partial gathering problem.

In the Cases 7 and 8, we consider the case that there exist at most two waiting agents

at each node.

⟨Case 7: N1 = N2 = 2 and N3 = 1 hold.⟩

In this case, there are two waiting agents at v1, v2, v
′
1, and v′2, and at most one waiting

agent at the other nodes in ct. Now we consider the initial configuration celimi
0 obtained

from c0 by eliminating agents a12, a
2
2, a

1′
2 , and a2

′
2 . Then from Lemma 4.4.3, there exists

an execution Eelimi
t from celimi

0 to celimi
t , where there exists at most one waiting agent at

each node in celimi
t . This configuration is the same as the Case 2 and agents cannot solve

the g-partial gathering problem.

⟨Case 8: N1 = N2 = N3 = 2 holds.⟩

In this case, there are two waiting agents at v1, v2, v3, v
′
1, v

′
2, and v′3 in ct. Now we consider

the initial configuration celimi
0 obtained from c0 by eliminating agents a22, a

3
2, a

2′
2 , and a3

′
2 .

Then from Lemma 4.4.3, there exists an execution Eelimi
t from celimi

0 to celimi
t , where

there exist two waiting agents a11 and a12 (a1
′

1 and a1
′

2 , respectively) at v1 (v′1) and one

waiting agent at v2, v3, v
′
2, and v′3, respectively. In this configuration, it is necessary that

some agent enters a waiting state at v2, v3, v
′
2 and v′3 in order to meet there or to make

the waiting agents leave the current nodes. Without loss of generality, we assume that

at first some agents enter waiting states at v2 and v′2, respectively, and after this, some

agents enter waiting states at v3 and v′3, respectively. To do this, we consider an execution

Eelimi
x under the scheduler αelimi

x similarly to Case 3. That is, there exist the sequence

of agents b1, . . . , bh (b′1, . . . , b
′
h) such that agent bh (b′h) is in the waiting state at v2 (v′2).
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Then in αelimi
x , agents bj and b′j (1 ≤ j ≤ h− 1) are activated at the same time, behave

symmetrically, and enter waiting states at vb(j+1) and v′b(j+1), respectively. Remind that

at node vb(j+1), there exists a waiting agent b(j+1). Then, local configurations of agents

bj+1 and b′j+1 change. Finally, agents bh−1 and b′h−1 enter waiting states at v2 and v′2,

respectively, and we call such a configuration celimi
x . Then, local configurations of a21 and

a2
′

1 change and they can leave the current nodes. For example in Fig. 4.6, agent a11 (a1
′

1 )

leaves at v1 (v′1) and directly enters a waiting state at v2 (v′2) (Fig. 4.6 (a) to Fig. 4.6

(b)). Moreover after celimi
x , we consider an execution Eelimi

y under the scheduler αelimi
y

similarly to αelimi
x , that is, there exists the sequence of agents d1, . . . , di (d

′
1, . . . , d

′
i) such

that agent di (d′i) is in the waiting state at v3 (v′3). Then in αelimi
y , agents dj and d′j

(1 ≤ j ≤ i− 1) are activated at the same time, behave symmetrically, and enter waiting

states at vd(j+1) and v′d(j+1), respectively. Note that at node vd(j+1), we assume that

there exists a waiting agent dj+1. Then, local configurations of agents dj+1 and d′j+1

change. Finally, agents di−1 and d′i−1 enter waiting states at v3 and v′3, respectively, and

we call such a configuration celimi
y . For example in Fig. 4.6, agent a21 (a2

′
1 ) leaves v2 (v′2)

and directly enters a waiting state at v3 (v′3) (Fig. 4.6 (b) to Fig. 4.6 (c)).

Now let us consider ct. In ct, agents a11, a
2
1, a

3
1, a

1′
1 , a

2′
1 and a3

′
1 can leave the current

nodes. However we consider the execution Ex similarly to Eelimi
x , that is, agents b1 and

b′1, b2 and b′2, . . . , bh−1 and b′h−1 are activated and behave symmetrically in this order,

while agents a21 and a2
′

1 are not activated. Finally, agents bh−1 and b′h−1 enter waiting

states at v2 and v′2, respectively. We call such a configuration cx. Then there exist three

waiting agents a21, a
2
2, and bh−1 (a2

′
1 , a

2′
2 , and b′h−1, respectively) at v2 (v′2), and a22 and

bh−1 (a2
′

2 and b′h−1, respectively) never leave the current node. For example in Fig. 4.6,

agent a11 (a1
′

1 ) leaves v1 (v′1) and directly enters a waiting state at v2 (v′2) (Fig. 4.6 (d)

to Fig. 4.6 (e)). Then there exist three waiting agents a21, a
2
2, and a11 (a2

′
1 , a

2′
2 , and a1

′
1 ,

respectively) at v2 (v′2), and a22 and a11 (a2
′

2 and a1
′

1 , respectively) never leave the current

node. Moreover after this, we consider the execution Ey similarly to Eelimi
y , that is,

agents d1 and d′1, d2 and d′2, . . . , di−1 and d′i−1 are activated and behave symmetrically

in this order, while agents a31 and a3
′

1 are not activated. Finally, agents bi−1 and b′i−1

enter waiting states at v3 and v′3, respectively. We call such a configuration cy. Then
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Figure 4.6: An example of Case 8

there exist three waiting agents a31, a
3
2, and di−1 (a3

′
1 , a

3′
2 , and d′i−1, respectively) at v3

(v′3), and a32 and di−1 (a3
′

2 and d′i−1, respectively) never leave the current node. For

example in Fig. 4.6, agent a21 (a2
′

1 ) leaves v2 (v′2) and directly enters a waiting state at

v3 (v′3) (Fig. 4.6 (e) to Fig. 4.6 (f)). Then there exist three waiting agents a31, a
3
2, and a21

(a3
′

1 , a
3′
2 , and a2

′
1 , respectively) at v3 (v′3), and a32 and a21 (a3

′
2 and a2

′
1 , respectively) never

leave the current node. Thus in cy there exist four nodes where agents exist at the end
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of algorithm execution (three-node three-waiting-agent configuration). This contradicts

that agents can solve the g-partial gathering problem.

Therefore, we have the theorem.

4.5 Strong Multiplicity Detection and Non-Token Model

In this section, we consider a deterministic algorithm to solve the g-partial gathering

problem for Model 2 in Table 4.1, that is, the strong multiplicity detection and non-

token model. We propose a deterministic algorithm to solve the g-partial gathering

problem in O(kn) total moves. Recall that, in the strong multiplicity detection model,

each agent can count the number of agents at the current node.

At the beginning, each agent performs a basic walk [46]. In the basic walk, each agent

ah leaves the initial node through the port 0. Later, when ah visits a node vj through

the port p of vj , ah leaves vj through the port (p + 1) mod dvj . The basic walk allows

each agent to traverse the tree in the DFS-traversal. Hence, when each agent visits nodes

2(n− 1) times, it visits all the nodes and returns to the initial node. Remind that nodes

are anonymous and agents do not know the number n of nodes. However, if an agent

records the topology of the tree it ever visits, it can detect that it visits all the nodes

and returns to the initial node. Concretely, in the DFS-traversal, if agent ah visits some

node far (resp., closer) from its initial node, it memorizes “+” (resp., “−”). When the

number of “+” and “−” that ah ever memorized are the same, it can recognize that it

returns to its initial node. Moreover, if there exists no port p incident to its initial node

such that ah does not leave its initial node through p, it can detect that it observed all

the nodes in the tree.

The idea of the algorithm is as follows: First, each agent performs the basic walk until

it obtains the whole topology of the tree. Next, each agent computes a center node of the

tree and moves there to meet other agents. If the tree has exactly one center node, then

each agent moves to the center node and terminates the algorithm. If the tree has two

center nodes, then each agent moves to one of the center nodes so that at least g agents

meet at each center node. Concretely, agent ah first moves to the closer center node vj .
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Algorithm 4.1 The behavior of active agent ah (vj is the current node of ah.)

Main Routine of Agent ah

1: perform the basic walk until it obtains the whole topology of the tree

2: if there exists exactly one center node then

3: go to the center node via the shortest path and terminate the algorithm

4: else

5: go to the closest center node via the shortest path

6: if there exist at most g − 1 agents except for ah then

7: terminate the algorithm

8: else

9: move to the other center node

10: terminate the algorithm

11: end if

12: end if

If there exist at most g− 1 agents except for ah, then ah terminates the algorithm at vj .

Otherwise, ah moves to another center node vj′ and terminates the algorithm.

The pseudocode is described in Algorithm 4.1. We have the following theorem.

Theorem 4.5.1. In the strong multiplicity detection and non-token model, agents solve

the g-partial gathering problem in O(kn) total moves.

Proof. At first, we show the correctness of the algorithm. From Algorithm 4.1, if the

tree has one center node, agents go to the center node and agents solve the g-partial

gathering problem obviously. Otherwise, each agent ah first moves to one of the center

nodes. If there already exist g or more agents at the center node, ah moves to the other

center node. Since k ≥ 2g holds, agents can solve the g-partial gathering problem.

Next, we analyze the total number of moves. At first, agents perform the basic walk

and record the topology of the tree. This requires at most 2(n− 1) total moves for each

agent. Next, each agent moves to one of the center nodes, and terminates the algorithm.

This requires at most n
2 +1 moves for each agent. Hence, each agent requires O(n) total

moves. Therefore, agents require O(kn) total moves.
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4.6 WeakMultiplicity Detection and Removable-Token Model

In this section, we consider the g-partial gathering problem for Model 3 in Table 4.1,

that is, the weak multiplicity detection and removable-token model. We show that agents

can achieve the g-partial gathering in asymptotically optimal total moves (i.e., O(gn))

by using only one removable token of each agent. Recall that, in the removable-token

model, each agent has a token. In the initial configuration, each agent leaves a token at

the initial node. We define a token node (resp., a non-token node) as a node that has a

token (resp., does not have a token). In addition, when an agent visits a token node, the

agent can remove the token.

The idea of the algorithm is similar to Chapter 3.3, which considers the g-partial

gathering problem for distinct agents (i.e. having IDs) in unidirectional ring networks

with whiteboards. In Chapter 3.3, agents execute the leader agent election algorithm

partially, and then leader agents instruct non-leader agents which node they should meet

at. When applying the above idea in Chapter 3.3 to the model in this section, there

exist two problems. The first is the difference of network topology, that is, Chapter 3.3

considers unidirectional ring networks but in this paper we consider tree networks. The

second is the difference of agents’ and nodes’ ability, that is, in Chapter 3.3 agents have

distinct IDs and each node has a whiteboard but in this paper agents have no IDs and

each node is allowed to only have at most one removable token. The first problem is

solved by embedding the unidirectional ring in the tree network, and we explain this in

the next paragraph. The second problem is solved by the combination of port numbers

and removable-tokens, and we explain this in Section 4.6.1 and 4.6.2.

Now, we explain the way to embed the ring from the tree network. Agents perform

the basic walk and embed a unidirectional ring network in the tree network by the Euler

tour technique. Concretely, letting v1, v2, . . . , v2(n−1) be the node sequence such that

agent ah visits the nodes in this order in the basic walk starting at v0, we can regard

that ah moves in the unidirectional ring network with 2(n − 1) nodes. Later, we call

this ring the virtual ring. In the virtual ring, we define the direction from vi to vi+1

as a forward direction, and the direction from vi+1 to vi as a backward direction. For
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simplicity in the virtual ring, operations to an index of a node assume calculation under

modulo 2(n − 1), that is, v(i+1) mod 2(n−1) is simply represented by vi+1. In addition in

the virtual ring, we define the neighboring agent of ah as the first agent in ah’s forward

(backward) direction, i.e., there exist no agents between them. Moreover, when ah visits

a node vj through a port p of vj from a node vj−1 in the virtual ring, agents also use p

as the port number of (vj−1, vj) at vj . For example, let us consider a tree in Fig. 4.7 (a).

Agent ah performs the basic walk and visits nodes a, b, c, b, d, b in this order. Then, the

virtual ring of Fig. 4.7 (a) is shown in Fig. 4.7 (b). Each number in Fig. 4.7 (b) represents

the port number through which ah visits each node in the virtual ring. Next, we define

a token node in a virtual ring as follows. At the beginning of the algorithm, each agent

ah leaves its token node through the port 0 in the basic walk. Thus, when ah visits

some token node in the tree such that ah leaves there through the port 0 in the next

movement, that is, when ah visit some token node vj through the port (dvj − 1), ah

regards the node as the token node in the virtual ring. In Fig. 4.7 (a), if nodes a and b

are token nodes, then in Fig. 4.7 (b), nodes a and b′′ are token nodes. By this definition,

a token node in the tree network is mapped to exactly one token node in the virtual ring.

Thus, by performing the basic walk, we can regard that all agents move in the same

virtual ring although agents start the algorithm at different nodes. This is because the

virtual ring starting at some node in the tree is actually represented by a port sequence

P , and the virtual ring starting at other nodes in the same tree can be represented by the

lexicographically transformation of P . In Fig. 4.7, the virtual ring starting at ah’s initial

node is represented by 001020. On the other hand, the virtual ring starting at another

token node is represented by 000102, and this sequence can be also represented by the

lexicographically transformation of 001020. Moreover, in the virtual ring, each agent also

moves in a FIFO manner, that is, when an agent ah leaves some node vj before another

agent ai, ah arrives at vj+1 before ai.

In the following section, we explain the algorithm on the virtual ring. Note that we

can show the asymptotically equivalence in terms of total moves between a tree and a

virtual ring, because a tree with n nodes is regarded as a virtual ring with 2n− 1 nodes.

The algorithm consists of two parts. In the first part, agents elect some leader agents by
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Figure 4.7: An example of the basic walk

partially executing the leader agent election algorithm. In the second part, the leader

agents instruct the other agents which node they should meet at, and the other agents

move to the node.

4.6.1 The first part: leader election

In this section, we explain how to elect multiple leader agents. Note that, in this part no

token is removed. In the leader agent election, each agent takes a state from the following

three states:

• active: The agent is performing the leader agent election as a candidate for leaders.

• inactive: The agent has dropped out from the set of the leader candidates.

• leader: The agent has been elected as a leader.

The aim of the first part is similar to Chapter 3.3, that is, to elect some leaders and

satisfy the following two properties: 1) At least one agent is elected as a leader, and 2)

in the virtual ring, there exist at least g − 1 inactive agents between two leader agents.
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In the following, we explain the way to apply the idea of the leader election using

distinct IDs of agents and whiteboards of nodes in Chapter 3.3 to anonymous agents

in the weak multiplicity detection and removable-token model. First, we explain the

treatment about IDs. For explanation, let active nodes be nodes where active agents

start execution of each phase. In this section, agents use virtual IDs in the virtual ring.

Concretely, when agent ah moves from an active node vj to vj ’s forward active node vj′ ,

ah observes port sequence p1, p2, . . . pl, where pm is the port number at vj+m through

which ah visits m-th node vj+m after leaving vj . In this case, ah uses this port sequence

p1, p2, . . . pl as its virtual ID. For example, in Fig. 4.7 (b), when ah moves from a to b′′,

ah observes the port numbers 0, 0, 1, 0, 2 in this order. Hence, ah uses 00102 as a virtual

ID from a to b′′. Similarly, ah uses 0 as a virtual ID from b′′ to a. Note that, multiple

agents may have the same virtual IDs, and we explain the behavior in this case later.

Next, we explain the treatment of whiteboards by using removable tokens. Fortu-

nately, we can easily overcome this problem if agents can detect active nodes. Concretely,

each active agent ah moves until ah visits three active nodes. Then, ah observes its own

virtual ID, the virtual ID of ah’s forward active agent ai, and the virtual ID of ai’s for-

ward active agent aj . Thus, ah can obtain three virtual IDs id1, id2, id3 without using

whiteboards. Therefore, agents can use the above approach for a unidirectional ring, that

is, ah behaves as if it would be an active agent with ID id2 in a bidirectional ring. In

the rest of this paragraph, we explain how agents detect active nodes. In the beginning

of the algorithm, each agent starts the algorithm at a token node and all token nodes

are active nodes. After each agent ah visits three active nodes, ah decides whether ah

remains active or drops out from the set of leader candidates at the active (token) node.

If ah remains active, then ah starts the next phase and leaves the active node. Thus, in

some phase, when some active agent ah visits a token node vj where no agents exist, ah

knows that ah visits an active node and the other nodes are not active in the phase.

After observing three virtual IDs id1, id2, id3, each active agent ah compares virtual

IDs and decides whether ah remains active (as a candidate for leaders) in the next phase

or not. Different from Chapter 3.3, multiple agents may have the same IDs. To treat

this case, if id2 < min(id1, id3) or id2 = id3 < id1 holds, then ah remains active as
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a candidate for leaders. Otherwise, ah becomes inactive and drops out from the set

of leader candidates. For example, let us consider the initial configuration like Fig. 4.8

(a). In the figure, black nodes are token nodes and the numbers near communication

links are port numbers. The virtual ring of Fig. 4.8 (a) is shown in Fig. 4.8 (b). For

simplicity, we omit non-token nodes in Fig. 4.8 (b). The numbers in Fig. 4.8 (b) are

virtual IDs. Each agent ah continues to move until ah visits three active nodes. By

the movement, a1 observes three virtual IDs (01,01,01), a2 observes three virtual IDs

(01, 01, 1000101010), a3 observes three virtual IDs (01, 1000101010, 01), and a4 observes

three virtual IDs (1000101010,01,01), respectively. Thus, a4 remains as a candidate for

leaders, and a1, a2, and a3 drop out from the set of leader candidates. Note that, like

Fig. 4.8, if an agent observes the same virtual IDs three times, it drops out from the

set of leader candidates. This implies, if all active agents have the same virtual IDs,

all agents become inactive. However, we can show that, when there exist at least three

active agents, it does not happen that all active agents observe the same virtual IDs.

Thus in each phase, at least the half of active agents become inactive, and we show this

later (Lemma 4.6.2). Moreover, if there are only one or two active agents in some phase,

then the agents notice the fact during the phase. In this case, the agents immediately

become leaders. By executing ⌈log g⌉ phases, agents complete the leader agent election.

Pseudocode. The pseudocode to elect leaders is given in Algorithm 4.2. All agents

start the algorithm with active states. The pseudocode describes the behavior of active

agent ah, and vj represents the node where agent ah currently stays. If agent ah becomes

inactive or a leader, ah immediately moves to the next part and executes the algorithm

for an inactive state or a leader state in Section 4.6.2. In Algorithm 4.2, ah uses the

following variables:

• id1, id2, and id3 are variables for storing three virtual IDs.

• phase is a variable for storing its own phase number.

In Algorithm 4.2, each active agent ah moves until ah observes three virtual IDs and

decides whether ah remains active as a candidate for leaders or not on the basis of

virtual IDs. Note that, since each agent moves in a FIFO manner, it does not happen
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Figure 4.8: An example that agents observe the same port sequence

that some active agent passes another active agent in the virtual ring, and each active

agent correctly observes three neighboring virtual IDs in the phase. In Algorithm 4.2, ah

uses procedure NextActive(), by which ah moves to the next active node and returns the

port sequence as a virtual ID. The pseudocode of NextActive() is described in Procedure

4.1. In NextActive, ah uses the following variables:

• port is an array for storing a virtual ID.

• move is a variable for storing the number of nodes it visits.

During the basic walk, each active agent visits active node vj through the port (dvj − 1).

Thus, when agent ah leaves active node vj , it always uses the port 0 and leaves there

(line 2 in Procedure 4.1).

Note that, if there exist only one or two active agents in some phase, then the agent

travels once around the virtual ring before getting three virtual IDs. In this case, the

active agent knows that there exist at most two active agents in the phase and they

become leaders (lines 5 to 8 in Algorithm 4.2). To do this, agents record the topology

every time they visit nodes, but we omit the description of this behavior in Algorithm



78 CHAPTER 4. PARTIAL GATHERING IN TREE NETWORKS

Algorithm 4.2 The behavior of active agent ah (vj is the current node of ah.)

Variables for Agent ah

int phase = 0;

int id1, id2, id3;

Main Routine of Agent ah

1: phase = phase+ 1

2: id1 = NextActive()

3: id2 = NextActive()

4: id3 = NextActive()

5: if the number of active agent in the tree is two or less then

6: change its state to a leader state

7: break Algorithm 4.2

8: end if

9: if (id2 < min(id1, id3))∨(id2 = id3 < id1) then

10: if (phase = ⌈log g⌉) then

11: change its state to a leader state

12: break Algorithm 4.2

13: else

14: go to line 1

15: end if

16: else

17: change its state to an inactive state

18: end if

4.2 and Procedure 4.1.

First, we show the following lemma to show that at least one agent remains active or

becomes a leader in each phase.

Lemma 4.6.1. When there exist three or more active agents, there exist two active

agents having different virtual IDs.

Proof. To show the lemma, we use the theorem from [15]. Let t[1..q] be a port sequence
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Procedure 4.1 int NextActive() (vj is the current node of ah.)

Variables for Agent ah

array port[ ];

int move;

Behavior of Agent ah

1: move = 0

2: leave vj through the port 0

// arrive at the forward node

3: let p be the port number through which ah visits vj

4: port[move] = p

5: move = move+ 1

6: while (there does not exist a token) ∨

(p ̸= dvj − 1) ∨ (there exists another agent ) do

7: leave vj through the port (p+ 1) mod dvj

// arrive at the forward node

8: let p be the port number through which ah visits vj

9: port[move] = p

10: move = move+ 1

11: end while

12: return port[ ]

that an agent observes in visiting q nodes by performing the basic walk. In our algorithm,

t[1..q] represents a virtual ID that the agent gets in traverse from an active node to the

next active node. Moreover, (t[1..q])k denotes the concatenation of k copies of t[1..q]. If

t[1..q] = (t[1..q′])k holds some positive integers q′ and k (q′ < q), we call t[1..q] is periodic.

Otherwise, we call t[1..q] is not periodic. In addition, the length of an n-node tree T is

the length of its Euler tour, that is, 2(n− 1). Then, we use the following theorem.

Theorem 4.6.1. [15] Let T be a tree of length at least q ≥ 1. Assume that t[1..q] is not

periodic and t[1..kq] = (t[1..q])k for some k ≥ 3. Then one of the following three cases

must hold.
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1. The length of T is q.

2. The length of T is 2q.

3. The length of T is greater than kq.

We show the lemma by contradiction, that is, assume that there exist k′ ≥ 3 active

agents in some phase and all k′ active agents have the same virtual IDs. Let x be the

virtual ID. Then, t[1..|x|] = x holds. In addition, when each active agent moves in the

tree and observes one virtual ID x, each link in the virtual link is passed by exactly once.

Hence, t[(ℓ|x| + 1)..(ℓ + 1)|x|] = x holds (0 ≤ ℓ ≤ k′ − 1) and t[1..k′|x|] = (t[1..|x|])k′

holds. Moreover, in this case the total number of their moves (i.e., k′|x|) is equal to

the length of the tree. If x is not periodic, the length of the tree is k′|x|. However

from Theorem 4.6.1, the length of the tree is never k′|x|, which is a contradiction. If

x is periodic, t[1..|x|] = (t[1..|x′|])s holds for some x′ and s (x′ is not periodic). Then,

t[1..k′|x|] = t([1..|x′|])k′s holds and the length of the tree is k′s|x′|(= k′|x|). However, from

Theorem 4.6.1, the length of the tree is never k′s|x′|, which is also a contradiction.

Next, we have the following lemmas about Algorithm 4.2.

Lemma 4.6.2. Algorithm 4.2 eventually terminates, and satisfies the following two prop-

erties.

• There exists at least one leader agent.

• In the virtual ring, there exist at least g − 1 inactive agents between two leader

agents.

Proof. We show the lemma in the virtual ring. Obviously, Algorithm 4.2 eventually

terminates. In the following, we show the above two properties.

At first, we show that there exists at least one leader agent. From lines 5 to 7 of

Algorithm 4.2, when there exist only one or two active agents in some phase, the agents

become leaders. We assume that in some phase, active agent ah observes three IDs

ah.id1, ah.id2, and ah.id3 in this order. When there are three or more active agents in
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some phase, if ah.id2 < min(ah.id1, ah.id3) or ah.id2 = ah.id3 < ah.id1 holds, agent ah

remains as a candidate for leaders, and otherwise ah drops out from the set of leader

candidates. Thus, unless all agents observe the same virtual IDs, at least one agent

remains active as a candidate for leaders. From Lemma 4.6.1, it does not happen that

all agents observe the same virtual IDs. Therefore, there exists at least one leader agent.

Next, we show that there exist at least g − 1 inactive agents between two leader

agents in the virtual ring. At first, we show that in each phase, at least half of active

agents become inactive. In each phase, if ah.id2 < min (ah.id1, ah.id3) or ah.id2 =

ah.id3 < ah.id1 holds, ah remains as a candidate for leaders. If the agent ah satisfies

ah.id2 < min(ah.id1, ah.id3), then the ah’s backward and forward active agents drop out

from the set of leader candidates. In the following, we consider the case that agent ah

satisfies ah.id2 = ah.id3 < ah.id1. Let ah′ be a ah’s backward active agent and ah′′ be

a ah’s forward active agent. Agent ah′ observes three virtual IDs ah′ .id1, ah′ .id2, ah′ .id3,

and both ah′ .id2 = ah.id1 and ah′ .id3 = ah.id2 hold. Hence, ah′ .id2 > ah′ .id3 holds,

and ah′ drops out from the set of leader candidates. Next, ah′′ observes three virtual

IDs ah′′ .id1, ah′′ .id2, ah′′ .id3, and both ah′′ .id1 = ah.id2 and ah′′ .id2 = ah.id3 hold. Since

ah′′ .id1 = ah′′ .id2 holds, ah′′ does not satisfy the condition to remain as a candidate for

leaders and drops out from the candidate. Thus in each phase, at least half of active

agents drop out from the set of leader candidates and become inactive. Now, we show

that there exist at least g− 1 inactive agents between two leader agents. We firstly show

that after executing j phases, there exist at least 2j−1 inactive agents between two active

agents. We show this by induction. For the case of j = 1, there exists at least 21− 1 = 1

inactive agent between two active agents as mentioned above. For the case of j = k, we

assume that there exist at least 2k − 1 inactive agents between two active agents. After

executing k + 1 phases, since at least one of neighboring active agents becomes inactive,

the number of inactive agents between two active agents is at least (2k−1)+1+(2k−1)

= 2k+1 − 1. Hence, after executing j phases, there exist at least 2j − 1 inactive agents

between two active agents. Therefore, after executing ⌈log g⌉ phases, there exist at least

g − 1 inactive agents between two leader agents in the virtual ring.
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Lemma 4.6.3. Algorithm 4.2 requires O(n log g) total moves.

Proof. In the virtual ring, each active agent moves until it observes three virtual IDs in

each phase. This requires at most O(n) total moves because each communication link of

the virtual ring is passed at most three times and the length of the ring is 2(n−1). Since

agents execute ⌈log g⌉ phases, we have the lemma.

4.6.2 The second part: leaders’ instruction and agents’ movement

In this section, we explain the second part, i.e., an algorithm to achieve the g-partial

gathering by using the elected agents. Let leader nodes (resp., inactive nodes) be the

nodes where agents become leaders (resp., inactive agents). Note that all leader nodes

and inactive nodes are token nodes. In this part, each agent takes one of the following

three states:

• leader: The agent instructs inactive agents where they should move.

• inactive: The agent waits for the leader’s instruction.

• moving: The agent moves to its gathering node.

We explain the idea of the algorithm in the virtual ring. The basic movement is also

similar to Chapter 3.3, that is, to divide agents into groups each of which consists of at

least g agents. While in Chapter 3.3, each node has a whiteboard, in this section each

node is allowed to only have a removable token. Each leader agent ah moves to the next

leader node, and during the movement ah repeats the following behavior: ah removes

tokens of inactive nodes g−1 times consecutively and then ah does not remove a token of

the next inactive node. The behavior guarantees that at least g− 1 agents exist between

any two token nodes when all the leaders complete the behavior. After that, agents move

to the nearest token nodes, which guarantees that at least g agents meet at each token

node.

First, we explain the behavior of leader agents. Whenever leader agent ah visits an

inactive node vj , it counts the number of inactive nodes (including the current node) that

ah has visited. If the number plus one is not a multiple of g, ah removes a token at vj .
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Otherwise, ah does not remove the token and continues to move. Agent ah continues this

behavior until ah visits the next leader node vj′ (Later, explain how ah detects whether

it visits the next leader node vj′ or not). After that, ah removes a token at vj′ . When

all the leaders complete this behavior, there exist at least g − 1 inactive agents between

two token nodes. Hence, agents solve the g-partial gathering problem by moving to the

nearest token node (This is done by changing their states to moving states). For example,

let us consider the configuration like Fig. 4.9 (a) (g = 3). We assume that a1 and a2 are

leader agents and the other agents are inactive agents. In Fig. 4.9 (b), a1 visits node v2

and a2 visits node v4, respectively. The number near each node represents the number

(modulo g) of inactive nodes that a1 or a2 has ever visited. Then, agents a1 and a2

remove tokens at v1 and v3, and do not remove tokens at v2 and v4, respectively. After

that, a1 and a2 continue this behavior until they visit the next leader nodes. At the

leader nodes, they remove the tokens (Fig. 4.9 (c)).

When a token at vj is removed, an inactive agent at vj changes its state to a moving

state and starts to move. Concretely, each moving agent moves to the nearest token

node vj . Note that, since each agent moves in a FIFO manner, it does not happen that

a moving agent passes a leader agent and terminates at some token node before the

leader agent removes the token. After all agents complete their own movements, the

configuration changes from Fig. 4.9 (c) to Fig. 4.9 (d) and agents can solve the g-partial

gathering problem. Note that, since each agent moves in the same virtual ring in a FIFO

manner, it does not happen that an active agent executing the leader agent election

passes a leader agent and that a leader agent passes an active agent.

Pseudocode. In the following, we show the pseudocode of the algorithm. The pseu-

docode of leader agents is described in Algorithm 4.3. Variable tCount is used to count

the number of inactive nodes ah has ever visited. When ah visits a token node vj where

another agent exists, vj is an inactive node because an inactive agent becomes inactive at

a token node and agents move in a FIFO manner. Whenever each leader agent ah visits

an inactive node, ah increments the value of tCount. At inactive node vj , ah removes

a token at vj if tCount ̸= g − 1 (does not remove a token otherwise) and continues to

move (lines 5 to 9). This guarantees that, if a token at inactive node vj is not removed,
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Figure 4.9: Partial gathering in the removable-token model for the case of g = 3 (a1 and

a2 are leaders, and black nodes are token nodes)

at least g agents meet at vj . When ah removes a token at vj , an inactive agent at vj

changes its state to a moving state (line 7). When ah visits a token node vj′ where no

agents exist, vj′ is the next leader node. This is because token nodes are leader nodes

or inactive nodes, and from an atomicity of the execution there exist no agents at each

leader node. Note that also from an atomicity of the execution, it does not happen that

some leader agent visits a leader node v such that another agent becomes a leader at v

but still stays at v. When leader agent ah moves to the next leader node vj′ , ah removes

a token at vj′ and changes its state to a moving state. In Algorithm 4.3, ah uses the

procedure NextToken() to move to the next token node. The pseudocode of NextToken()

is described in Procedure 4.2. In Procedure 4.2, ah performs the basic walk until ah visits

a token node vj through the port (dvj − 1).

The pseudocode of inactive agents is described in Algorithm 4.4. Inactive agent ah

waits at vj until either a token at vj is removed or ah observes another agent. If the

token is removed, ah changes its state to a moving state (lines 4 to 6). If ah observes

another agent, the agent is a moving agent and terminates the algorithm at vj (lines 7



4.6. WEAK MULTIPLICITY DETECTION AND REMOVABLE-TOKEN MODEL85

Algorithm 4.3 The behavior of leader agent ah (vj is the current node of ah)

Variable in Agent ah

int tCount = 0;

Main Routine of Agent ah

1: NextToken()

2: while there exists another agent at vj do

3: //this is an inactive node

4: tCount = (tCount+ 1) mod g

5: if tCount ̸= g − 1 then

6: remove a token at vj

7: //an inactive agent at vj changes its state to a moving state

8: end if

9: NextToken()

10: end while

11: remove a token at vj

12: change its state to a moving state

to 9). This means vj is selected as a token node where at least g agents meet in the end

of the algorithm. Hence, ah terminates the algorithm at vj .

The pseudocode of moving agents is described in Algorithm 4.5. In the virtual ring,

each moving agent ah moves to the nearest token node by using NextToken().

We have the following lemma about the algorithms.

Lemma 4.6.4. After the leader agent election, agents solve the g-partial gathering prob-

lem in O(gn) total moves.

Proof. We show the lemma in the virtual ring. At first, we show the correctness of the

proposed algorithms. Let vg0 , v
g
1 , . . . , v

g
l be inactive nodes that still have tokens after all

leader agents complete their behaviors, and we call these nodes gathering nodes. From

Algorithm 4.3, each leader agent ah removes the tokens at the consecutive g− 1 inactive

nodes and does not remove the token at the next inactive node. By this behavior and

Lemma 4.6.2, there exist at least g − 1 moving agents between vgi and vgi+1. Moreover,
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Procedure 4.2 void NextToken() (vj is the current node of ah.)

1: leave vj through the port 0

2: let p be the port number through which ah visits vj

3: while (there does not exist a token) ∨ (p ̸= dvj − 1) do

4: leave vj through the port (p+ 1) mod dvj

5: let p be the port number through which ah visits vj

6: end while

Algorithm 4.4 The behavior of inactive agent ah (vj is the current node of ah)

Main Routine of Agent ah

1: while (there does not exist another agent at vj)∨(there exists a token at vj) do

2: wait at vj

3: end while

4: if there exists another agent at vj then

5: terminate the algorithm

6: end if

7: if there does not exist a token then

8: change its state to a moving state

9: end if

Algorithm 4.5 The behavior of moving agent ah (vj is the current node of ah)

Main Routine of Agent ah

1: NextToken()

2: terminate the algorithm

these moving agents move to the nearest gathering node vgi+1. Therefore, agents solve

the g-partial gathering problem.

In the following, we evaluate the total number of moves required for the algorithms.

At first, let us consider the total number of moves required for leader agents to move to

the next leader nodes. This requires 2(n − 1) total moves since all leader agents travel

once around the virtual ring. Next, let us consider the total number of moves required

for moving (inactive) agents to move to the nearest token nodes (For example, the total



4.7. CONCLUDING REMARKS 87

number of moves form Fig. 4.9 (c) to Fig. 4.9 (d)). From Algorithm 4.5, each moving

agent moves to the nearest gathering node. In the following, we show that the number

of moving agents between some gathering node vgi and its forward gathering node vgi+1

is O(g). From Algorithm 4.3, the moving agents between vgi and vgi+1 consist of inactive

agents and leader agents between vgi and vgi+1. Since there exists at least one gathering

node between two leader nodes, there exists at most one leader node between vgi and

vgi+1. If there exist no leader node between vgi and vgi+1, then clearly there exist g − 1

inactive nodes between vgi and vgi+1. If there exists one leader node vl between vgi and

vgi+1, there exist at most g − 1 inactive nodes between vgi and vl, and at most g − 1

inactive nodes between vl and vgi+1, respectively. Thus, there exist at most O(g) moving

agents between gathering nodes vgi and vgi+1, and the total number of moves required for

moving (inactive) agents to move to the nearest gathering nodes is at most O(gn) since

each communication link is passed by at most O(g) times.

Therefore, we have the lemma.

From Lemma 4.6.3 and Lemma 4.6.4, we have the following theorem.

Theorem 4.6.2. In the weak multiplicity detection and the removable-token model, our

algorithm solves the g-partial gathering problem in O(gn) total moves.

4.7 Concluding Remarks

In this chapter, we considered the g-partial gathering problem in asynchronous tree

networks. At first, in the non-token model we showed that agents require Ω(kn) total

moves to solve the g-partial gathering problem. After this, we considered three model

variants. First, in the weak multiplicity detection and non-token model, for asymmetric

trees agents can solve g-partial gathering problem in O(kn) total moves from the past

result, and we showed that there exist no algorithms to solve the g-partial gathering

problem for symmetric trees. Second, in the strong multiplicity detection and non-token

model, we proposed a deterministic algorithm to solve the g-partial gathering problem

in O(kn) total moves. Finally, in the weak multiplicity detection and removable-token
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model, we proposed a deterministic algorithm to solve the g-partial gathering problem

in O(gn) total moves.



Chapter 5

Uniform Deployment in Ring

Networks

5.1 Introduction

In this chapter, we present algorithms to achieve the uniform deployment in asynchronous

unidirectional rings. In [49, 50, 51], the uniform deployment problem is considered under

the assumption that agents are oblivious (or memoryless) but can observe multiple node

within its visibility range. This assumption is often called a Look-Compute-Move model.

In this chapter, we assume agents that have memory but cannot observe nodes except for

their currently visiting nodes. To our best knowledge, this is the first research considering

the uniform deployment for such agents.

5.1.1 Contribution

Contributions of this paper are summarized in Table 5.1. We assume that each agent

initially has a token and can release it on a visited node. After a token is released at

some node, agents cannot remove the token. In addition, we assume that agents can send

a message of any size to agents at the same node. We consider two problem settings.

First, we consider agents with knowledge of k, where k is the number of agents. In this

case, we propose two algorithms. The first algorithm solves the uniform deployment with

89
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Table 5.1: Results in each model

Result 1
(Section 5.3.1)

Result 2
(Section 5.3.2)

Result 3
(Section 5.4.1)

Result 4
(Section 5.4.2)

Knowledge of k Available Available Not Available Not Available

Termination detection Required Required Required Not Required

Solvable / Unsolvable Solvable Solvable Not Solvable Solvable

Agent memory O(k log n) O(log n) - O((k/l) log(n/l))

Time complexity O(n) O(n log k) - O(n/l)

Total agent moves O(kn) O(kn) - O(kn/l)

n: number of nodes, k: number of agents, l: symmetry degree of the initial configuration

termination detection. This algorithm requires O(k log n) memory space per agent, O(n)

time, and O(kn) total moves, where n is the number of nodes. The second algorithm

also solves the uniform deployment problem with termination detection. This algorithm

reduces the memory space per agent to O(log n), but allows O(n log k) time, and requires

O(kn) total moves. Note that agents require Ω(kn) total moves to solve the problem.

Hence, we can show that the both proposed algorithms are asymptotically optimal in

terms of total moves.

Next, we consider agents with no knowledge of k or n. In this case, we show that,

when termination detection is required, there exists no algorithm to solve the uniform

deployment problem. Intuitively, it is due to impossibility of finding k or n when some

part of the initial configuration has symmetry: when an agent misestimates these at

smaller numbers than actual ones, it prematurely terminates and the uniform deploy-

ment cannot be achieved. For this reason, we consider the relaxed uniform deployment

problem that does not require termination detection, and we propose an algorithm to

solve the relaxed uniform deployment problem. In this algorithm, each agent estimates

k and n (possibly at smaller values than actual ones) and behaves based on the esti-

mation. Thus, the efficiency of the algorithm depends on the estimation. To evaluate

the efficiency, we introduce the following parameter l to denote the symmetry degree

of an initial configuration: we say that an initial configuration has symmetry degree l
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Figure 5.1: An example of the symmetry degree

when its distance sequence can be represented as l-times repetition of some aperiodic

sequence. For example, the initial configuration in Fig. 5.1 (a) has symmetry degree 1

since its whole distance sequence (1,4,2,1,2,2) is aperiodic, and the initial configuration

in Fig. 5.1 (b) has symmetry degree 2 since its whole distance sequence (1,2,3,1,2,3) is

represented as 2-times repetition of aperiodic sequence (1,2,3). Hence, the symmetry de-

gree becomes larger for a higher symmetric initial configuration. Note that agents cannot

know l but the efficiency depends on it. Using the symmetry degree parameter l, the

efficiency of the algorithm is denoted as follows: this algorithm requires O((k/l) log(n/l))

memory space per agent, O(n/l) time, and O(kn/l) total moves. At fist glance, the upper

bound O(kn/l) of the total moves may seem to violate the lower bound Ω(kn) of the

total moves. However, for some initial configuration with l ≥ 2, the location is closer

to the uniform deployment configuration and agents require less than Ω(kn) total moves

to solve the problem. Hence, from such initial configurations agents can make adaptive

movement and can solve the problem in less than Ω(kn) total moves. Thus, the algo-

rithm achieves the uniform deployment more efficiently when the initial configuration

has higher symmetry degree. This is a natural but interesting property. For example,

for an asymmetric initial configuration this algorithm requires O(k log n) memory space
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per agent, O(n) time, and O(kn) total moves. However, when l is ω(1), this algorithm

requires o(k log n) memory space per agent, o(n) time, and o(kn) total moves. When l is

Ω(n), this algorithm requires O(1) memory space per agent, O(1) time, and O(k) total

moves.

Note that, for any initial configuration such that all agents are in the initial states and

placed at the distinct nodes, all proposed algorithms achieve the uniform deployment,

which is a striking difference from the total gathering problem because the total gathering

problem is not solvable from some initial configurations. Note that agents can attain this

solvability since the uniform deployment problem requires no symmetry breaking.

5.1.2 Related works

There are several researches considering the uniform deployment problem in a Look-

Compute-Move model. Flocchini et al. [49] considered it in a cycle environment of length

m (m is a real number). They considered the two types of uniform deployment: exact

and ϵ-approximate. In the exact uniform deployment, agents move in the ring so that the

distance between any two consecutive agents is the same, say d. In the ϵ-approximate

uniform deployment, agents move in the ring so that the distance is between d − ϵ and

d+ ϵ. They showed that if agents do not have common sense of direction, agents cannot

solve the exact uniform deployment problem even if agents have unlimited memory and

visibility range. If agents have common sense of direction, they proposed an algorithm to

solve the exact uniform deployment problem for agents with knowledge of d. In addition,

for any ϵ > 0 they proposed an algorithm to solve the ϵ-approximate uniform deployment

problem for agents without knowledge of d. Elor et al. [50] considered the uniform

deployment also in the ring networks. They considered agents without knowledge k or

n, but with visibility range VR. They considered a semi-synchronous model, that is, a

subset of all agents execute a behavior in each round. They showed that, if VR < ⌊n/k⌋

holds, agents cannot solve the uniform deployment problem. If VR ≥ ⌊n/k⌋ holds,

they proposed an algorithm to solve the balanced uniform deployment problem without

quiescence. That is, agents eventually satisfy the condition of the uniform deployment

and continue to move in the ring satisfying the condition. In addition, they proposed
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an algorithm to solve the semi-balanced uniform deployment problem with quiescence.

That is, agents eventually terminate the algorithm satisfying the condition such that the

distance between any two adjacent agents is between n/k − k/2 and n/k + k/2. On the

other hand, Barriere et al. [51] considered the uniform deployment in the grid networks

and proposed an algorithm to achieve the uniform deployment in O(n/d) time, where d

is the interval of the uniform deployment.

5.1.3 Organization

The Chapter is organized as follows. In Section 5.3 we consider agents with knowledge of

k. In Section 5.4 we consider agents with no knowledge of k or n. Section 5.5 concludes

this chapter.

5.2 Preliminary

5.2.1 System Model

In this chapter, we restrict the network topology only to ring networks. We use the

same definition of a ring R = (V,L) as in Section 3.2.1. In this chapter, we assume that

whiteboards are allowed to have only tokens. We define T as a set of all states (i.e.,

number of tokens) of a node.

5.2.2 Agent Model

We consider two problem settings: agents with knowledge of k and agents with no knowl-

edge of k or n. We assume that each agent initially has a token and can release it on

a node that it is visiting. The token on an agent or a node can be realized in one bit

that denotes existence of the token, and thus, the token cannot carry any additional

information. Note that if agents are not allowed to have tokens, they cannot mark nodes

in any way and this means that the uniform deployment problem cannot be solved. This

is because if all agents move in a synchronous manner, they cannot get any information

of other agents. After a token is released at some node, agents cannot remove the token.
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Note that since agents are anonymous, they cannot recognize the owner of each token.

In addition, we assume that agents can send a message of any size to agents at the same

node. Similarly to Section 4.2.2, we assume that agents move through a link in a FIFO

manner. Each agent ah executes the following five operations in an atomic step: 1) The

agent reaches a node v (when ah is in transit toward v), or it starts operations at v (when

ah is at v), 2) the agent receives all the messages (if any), 3) the agent executes local

computation, 4) the agent broadcasts a message to all the agents staying at the same

node v (if any) if it decides to send a message, and 5) the agent leaves v if it decides to

move. After taking an atomic step, ah has no message.

5.2.3 System Configuration

In this chapter, a (global) configuration c is defined as a 5-tuple c = (S, T,M,P,Q)

and the correspondence table is given in Table 5.2. The first element S is a k-tuple

S = (s0, s1, . . . , sk−1), where si is the state (including the state to denote whether it

holds a token or not) of agent ai (0 ≤ i ≤ k − 1). The second element T is an n-tuple

T = (t0, t1, . . . , tn−1), where ti is the state (i.e., the number of tokens) of node vi (0 ≤ i ≤

n−1). The third element M is a k-tuple M = (m0,m1, . . .mk−1), where mi is a sequence

of messages reached ai but not consumed yet by ai. The remaining elements P and Q

represent the positions of agents. The element P is an n-tuple P = (p0, p1, . . . , pn−1),

where pi is a sequence of agents staying at node vi (0 ≤ i ≤ n − 1). The element Q is

an n-tuple Q = (q0, q1, . . . , qn−1), where qi is a sequence of agents residing in the FIFO

queue corresponding to link (vi−1, vi) (0 ≤ i ≤ n − 1). Hence, agents in qi are those in

transit from vi−1 to vi.

In initial configuration c0 ∈ C, we assume that no node has any token. In addition, in

c0 the node where agent a stays is called the home node of a and denoted by vHOME(a).

We assume that in c0 agent a is stored at a buffer of its home node vHOME(a). This assures

that agent a starts the algorithm at vHOME(a) before any other agent visits vHOME(a),

that is, a is the first agent that takes an action at vHOME(a). Next, we define symmetry

degree l more precisely. For periodic rings, that is, for rings such that shift(D0, x) = D0

holds for some x (0 < x < k), we define l = n/k. For aperiodic rings, we define l = 1.
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Table 5.2: Meaning of each element in configuration c = (S, T,M,P,Q)

Element Meaning and example

S = (s0, s1, . . . , sk−1) Set of agent states (si: the state of agent ai)

T = (t0, t1, . . . , tn−1) Set of node states (ti: the state of node vi)

M = (m0,m1, . . . ,mk−1) Set of message sequences

(mi: a sequence of massages sent to ai and not received by ai)

P = (p0, p1, . . . , pn−1) Set of agents staying at nodes

(pi: a sequence of agents staying at node vi)

Q = (q0, q1, . . . , qn−1) Set of agents residing on links

(qi: a sequence of agents in transit from vi−1 to vi)

A schedule is an infinite sequence of agents. A schedule X = ρ1, ρ2, . . . is fair if every

agent appears in X infinitely often. An infinite sequence of configurations E = c0, c1, . . .

is called an execution from c0 if there exists a fair schedule X = ρ1, ρ2, . . . that satisfies

the following conditions for each h (h > 0):

• If ρh−1 ∈ pi holds for some i in a configuration ch, the states of ρh−1 and vi in

ch−1 are changed to those in ch by a local computation of ρh−1. Let aj = ρh−1. If

mj ̸= ∅, all messages in mj are delivered to aj and consumed, that is, mj becomes

∅. In addition, if ρh−1 sends a message, the message is appended to each tail of ml

such that agent al is at vi. Moreover if ρh−1 releases its token at vi, the value of ti

increases by one. After this if ρh−1 decides to move to vi+1, ρh−1 is removed from

pi and is appended to the tail of sequence qi+1. If ρh−1 decides to stay, ρh−1 is still

in pi. The other elements in ch−1 are the same as those in ch.

• If ρh−1 is at the head of qi for some i in a configuration ch, ρh−1 moves to vi, that

is, ρh−1 is removed from qi. Then, the states of ρh−1 and vi in ch−1 are changed to

those in ch by a local computation of ρh−1. If ρh−1 sends a message, the message is

appended to each tail of ml such that agent al is at vi. In addition, if ρh−1 releases

its token at vi, the value of ti increases by one. After this if ρh−1 decides to move

to vi+1, ρh−1 is appended to the tail of sequence qi+1. If ρh−1 decides to stay, ρh−1

is inserted in pi. The other elements in ch−1 are the same as those in ch.
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We consider an asynchronous system, that is, the time for each agent to transit to

the next node and to wait until execution of the next operation (when staying at a node)

is finite but unbounded.

5.2.4 Problem Definition

The uniform deployment problem in a ring network requires k (≥ 2) agents to spread

uniformly in the ring, that is, the distance between any two adjacent agents should become

identical. Here, we say two agents are adjacent when there exists no agent between them.

However, we should consider the case that n is not a multiple of k. In this case, we aim to

distribute the agents so that the distance d of any two adjacent agents should be ⌊n/k⌋

or ⌈n/k⌉.

We consider the uniform deployment problem with termination detection and the uni-

form deployment problem without termination detection. At first, we define the uniform

deployment problem with termination detection. In this case, a halt state is defined as

follows: when agent ah enters a halt state, it terminates the algorithm, that is, ah neither

changes its state nor leaves the current node even if another agent sends a message to

ah. Hence if an agent enters a halt state, it can detect its termination. Now, we define

the uniform deployment problem with termination detection as follows.

Definition 5.2.1. An algorithm solves the uniform deployment problem with termination

detection if any execution satisfies the following conditions.

• All agents change their states to the halt states in finite time.

• When all agents are in the halt states, qi = ∅ holds for any qi ∈ Q and each distance

d of two adjacent agents is ⌊n/k⌋ or ⌈n/k⌉.

Next, we define the uniform deployment problem without termination detection. In

this case, a suspended state is defined as follows: when agent ah enters a suspended state,

it neither changes its state nor leaves the current node unless another agent sends a

message to ah. If ah receives a message, it can resume its behavior and leave the current

node. The uniform deployment problem without termination detection allows all agents

to stop in suspended states, which is also known as communication deadlock.
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Figure 5.2: The initial configuration to derive a lower bound Ω(kn) of the total moves

Definition 5.2.2. An algorithm solves the uniform deployment problem without termi-

nation detection if any execution satisfies the following conditions.

• All agents change their states to the suspended states in finite time.

• When all agents are in the suspended states, qi = ∅ holds for any qi ∈ Q and each

distance d of two adjacent agents satisfies ⌊n/k⌋ or ⌈n/k⌉.

For the uniform deployment problem, we have the following lower bound of total

moves. this lower bound holds even if agents have knowledge of k.

Theorem 5.2.1. When k ≤ pn holds for some constant p (p < 1), a lower bound of

the total moves to solve the uniform deployment problem (with or without termination

detection) is Ω(kn) even if agents have knowledge of k.

Proof. We assume for simplicity that k ≤ n/4 holds and consider the initial configuration

such that all agents stay in a quarter part of the ring like Fig. 5.2. In such an initial

configuration, the ring is aperiodic and l = 1 holds. Then, the ring is divided into four

quarter parts, and in the initial configuration, all agents are in the part a. To achieve the

uniform deployment, k/4 agents need to move to the part c, the opposite part of a, and

each of them must move at least n/4 times. Thus the total number of moves is at least

(k/4)× (n/4) = kn/16. This argument can be easily extended to any constant p(p < 1)

satisfying k ≤ pn.
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Next, we evaluate the time complexity as the time required to achieve the uniform

deployment. Since there is no on time in asynchronous systems, it is impossible to

measure the exact time. Instead we consider the ideal time complexity, which is defined

as the execution time under the following assumptions: 1) The time required for an agent

to move from a node to its neighboring node or to wait until execution of the next action

is at most one, and 2) the time required for local computation is ignored (i.e., zero)1.

Note that these assumptions are introduced only to evaluate the time complexity, that

is, algorithms are required to work correctly in asynchronous systems. In the following,

we simply use terms “time complexity” and “time” instead of “ideal time complexity”.

Then, we can show the following theorem similarly to Theorem 5.2.1.

Theorem 5.2.2. A lower bound of the time complexity to solve the uniform deployment

problem (with or without termination detection) is Ω(n).

5.3 Agents with knowledge of k

In this section, we consider the uniform deployment problem for agents with knowledge

of k.2 We propose two algorithms to solve the uniform deployment problem with termi-

nation detection. The first algorithm is trivial one and requires O(k log n) memory space

per agent, O(n) time, and O(kn) total moves. The second algorithm reduces the memory

space per agent to O(log n), but allows O(n log k) time, and requires O(kn) total moves.

5.3.1 A trivial algorithm with O(k log n) agent memory

In this section, we propose an algorithm to solve the uniform deployment problem with

termination detection which requires O(k logn) memory space per agent, O(n) time,

O(kn) total moves. For simplicity, we assume n = ck for some positive integer c, and we

can remove this assumption in Section 5.3.1. The algorithm consists of the following two

phases: the selection phase and the deployment phase. In the selection phase, each agent

1This definition is based on the ideal time complexity for asynchronous message-passing systems [52].
2We assume agents with knowledge of k, but agents with knowledge of n can similarly solve the

problem.
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Figure 5.3: The base nodes and the target nodes

travels once around the ring and selects a base node as a reference node of the uniform

deployment. In the deployment phase, based on the base node, each agent determines a

target node where it should stay and moves there.

In the selection phase, each agent ah firstly releases its token at its home node

vHOME(ah), and after this travels once around the ring. Note that since agents have

knowledge of k, they can detect they travelled once around the ring or not. During the

traversal, ah memorizes the distance dis between two adjacent token nodes, and stores

dis to an array D for memorizing the distance sequence. When finishing travelling the

ring, ah gets the value of n and the distance sequence D = (d0, d1, . . . , dk−1), where dj is

is the distance from the j-th token node it found to the (j+1)-th token node. Note that

ah’s home node vHOME(ah) is considered as the 0-th token node. Let x be the minimum

number such that shift(D,x) = Dmin holds, where Dmin is the lexicographically mini-

mum distance sequence among {shift(D, x)|0 ≤ x ≤ k − 1}. Then, ah selects base node

vbase where the agent whose distance sequence is Dmin initially stays. If D is aperiodic,

all the agents select the same node as a base node. If D is periodic, multiple nodes are

selected as base nodes (Fig. 5.3). However in this case, each agent can determine its base

node and target node uniquely, and we explain this later.

In the deployment phase, each agent ah determines its target node and moves there.

Let disBase be the distance from its home node vHOME(ah) to vbase. In addition, ah
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considers that it is the rank-th agent (0 ≤ rank ≤ k − 1) from vbase (the agent staying

at vbase is considered as the 0-th agent). Then, agents firstly moves disBase times and

reaches vbase. After this, ah moves its target node by moving rank × n/k times and

terminates the algorithm. Note that if multiple base nodes are selected like Fig. 5.3, the

following properties are satisfied: 1) The distance between every pair of two adjacent

base nodes is identical, and 2) the number of agents and their locations between every

pair of adjacent base nodes are also identical. Thus the base nodes can be reference nodes

of the uniform deployment, and each agent can determine its base node and target node

uniquely.

The pseudocode is described in Algorithm 5.1. We have the following theorem.

Theorem 5.3.1. For agents with knowledge of k, Algorithm 5.1 solves the uniform de-

ployment problem with termination detection. This algorithm requires O(k log n) memory

space per agent, O(n) time, and O(kn) total moves.

Proof. It is obvious that Algorithm 5.1 solves the uniform deployment problem, and in

the following we analyze the complexity measures.

At first, we evaluate the memory requirement per agent. Each agent eventually gets

the distance sequence D = (d0, d1, . . . , dk−1). Since each di is at most n, this sequence

requires O(k log n) memory space . Moreover, the other variables require O(log n) bit

memory. Therefore, the memory requirement per agent is O(k log n).

Next, we analyze the time complexity and the total moves. In the selection phase,

each agent travels once around the ring to get D, which takes n unit times and n moves.

In the deployment phase, each agent moves to its own target node, which takes at most

2n unit times and 2n moves. Thus, the time complexity is O(n) and the total number of

moves is O(kn).

The uniform deployment for the case of n ̸= ck

To remove the restriction of n = ck imposed in Section 5.3.1, only the parts for deter-

mining the target nodes and for moving to a target node should be modified. In the case

that n is not a multiple of k, the distance between some adjacent target nodes should be
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Algorithm 5.1 A time optimal algorithm for agents with knowledge of k

Main behavior of Agent ah

1: /* selection phase */

2: i = 0

3: release a token at its home node vHOME(ah)

4: while i ̸= k do

5: move to the nearest token node and get the distance dis between two token nodes

6: D[i] = dis

7: i = i+ 1

8: end while

9: // ai completes travelling once around the ring and gets the number of nodes

10: n = D[0] +D[1] + · · ·+D[k − 1]

11:

12: /* deployment phase */

13: let Dmin be the lexicographically minimum sequence among {shift(D,x)|0 ≤ x ≤

k − 1}

14: rank = min{x ≥ 0|shift(D,x) = Dmin}

15: disBase = D[0] +D[1] + · · ·+D[k − 1− rank]

16: move disBase+ rank× n/k times

17: terminate the algorithm

⌈n/k⌉ or ⌊n/k⌋.

The target nodes should be determined by each agent so that the decisions of different

agents should be identical. Since all the agents recognize the same nodes as the base

nodes, the common target nodes can be determined using the base nodes as reference

nodes: Let b be the number of the base nodes, and r = n mod k. The distance of

every pair of adjacent base nodes is identical even in the case of n ̸= ck, and is n/b =

(⌊n/k⌋×k+r)/b = ⌊n/k⌋×k/b+r/b (notice that k/b and r/b are integers). This implies

that we should select k/b− 1 target nodes between two adjacent base nodes so that the

first r/b intervals between adjacent target nodes should be ⌈n/k⌉ and others should be
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Figure 5.4: An example of the base node condition (n = 18, k = 9, d = 2)

⌊n/k⌋. With considering the above, each agent can determine its own target node by

local computation so that all the agents can spread over the ring to achieve the uniform

deployment.

5.3.2 An algorithm with O(log n) agent memory

In this section, we propose an algorithm to solve the uniform deployment problem with

termination detection which reduces the memory space per agent to O(log n), but allows

O(n log k) time, and requires O(kn) total moves. The algorithm consists of two phases:

selection phase and deployment phase. For simplicity we assume n = ck for some positive

integer c in the following description, and this restriction is removed similarly in Section

5.3.1.

Selection phase

In this phase, some of home nodes are selected as the base nodes, and they are used as

reference nodes for the uniform deployment. The selected base nodes should satisfy the

following condition called the base node condition: 1) There exists at least one base node,

2) the distance between every pair of adjacent base nodes is identical, and 3) the number
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of home nodes between every pair of adjacent base nodes is identical. The last condition

is introduced to guarantee that the number of the selected base nodes is a divisor of k.

For example, let us consider the initial locations of agents like Fig. 5.4. Then, distances

from vHOME(a1) to vHOME(a2), vHOME(a2) to vHOME(a3), and vHOME(a3) to vHOME(a1)

are all 6, and the number of home nodes between vHOME(a1) and vHOME(a2), vHOME(a2)

and vHOME(a3), and vHOME(a3) and vHOME(a1) are all 2. Thus, vHOME(a1), vHOME(a2),

and vHOME(a3) satisfy the base node condition. Agents select such base nodes with

O(log n) memory. When the selection phase is completed, each agent stays at its home

node and knows whether its home node is selected as a base node or not. We call an

agent a leader (but probably not unique) when its home node is selected as a base node,

and call it a follower otherwise.

Now, we explain the way to select the base nodes satisfying the base node condition.

The state of an agent is active, leader or follower. Active agents are candidates for leaders,

and initially all agents are active. Once an agent becomes a follower or a leader, it never

changes its state. In the following, we say that a node v is active (resp., a follower)

when v is the home node of an active (resp., a follower) agent. At the beginning of the

algorithm, each agent ah releases its token at its home node vHOME(ah). The selection

phase consists of at most ⌈log k⌉ sub-phases. At the beginning of each sub-phase, each

agent stays at its own home node. During the sub-phase, if the agent is a follower, it

stays at its home node. If the agent is active, it travels once around the ring and decides

whether it remains active or not in the next sub-phase using IDs.3 Concretely, the ID

(not necessarily unique) of an active agent ah is given as (dh, fNumh), where dh is the

distance from its home node vHOME(ah) to the next active node in the sub-phase, say

vnext, and fNumh is the number of follower nodes between vHOME(ah) and vnext. For

example in Fig. 5.5, when agent ah moves from its home node vj to the next active

node v′j , it visits five nodes and observes two follower nodes. Hence, ah gets its own ID

IDi = (5, 2). We compare two IDs by the lexicographical order: for ID1 = (d1, fNum1)

and ID2 = (d2, fNum2), we say ID1 < ID2 if (d1 < d2) ∨ ((d1 = d2) ∧ (fNum1 < fNum2))

holds. Each active agent decides whether it remains active or not using such IDs. Notice

3 Active agents can detect they traveled once around the ring or not since they have knowledge of k.
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Figure 5.5: An ID of an active agent ah

that in different sub-phases, the IDs of the same agent are different since the number of

active agents is reduced in every sub-phase.

In the following, we explain the implementation of the sub-phase. In the sub-phase,

each active agent ah travels once around the ring. While travelling, ah executes the

followings:

1. Get its own ID IDh = (dh, fNumh):

Agent ah gets its own ID IDh by moving from its home node vHOME(ah) to the next

active node vnext with counting the numbers of nodes and follower nodes (Fig. 5.5).

Since all active agents are traversing the ring and all follower agents are staying at

their home nodes, ah can detect its arrival at the next active node when it visits

a node with a token but with no agent. Note that this statement holds even in

asynchronous systems because active agents do not pass other active agents from

the FIFO property of links and the atomicity of the execution.

2. Get the ID IDnext = (dnext, fNumnext) of its next active agent:

Similarly, with counting the numbers of nodes and follower nodes, ah moves from

vnext to the next active node (i.e., the node with a token but with no agent). Then,

ah gets the ID of ah
′s next active agent and stores it to IDnext.

3. Compare IDh with those of all active agents:

During the traversal of the ring, ah compares IDh with IDs of all active agents

one by one, and checks 1) whether IDh is the minimum and 2) whether the IDs

of all active agents are identical. To check these, agent ah keeps boolean variables
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Algorithm 5.2 The behavior of active agent ah
Behavior of Agent ah

1: /*selection phase*/

2: phase = 1, identical = true, min = true

3: release a token at its home node vHOME(ah)

4: while phase ̸= ⌈log k⌉ do

5: move to the next active node and get its own ID IDh = (dh, fNumh)

6: if ah is at vHOME(ah) then change its state to a leader state // only ah is active

7: move to the next active node and get ID IDnext = (dnext, fNumnext) of the next

active agent

8: if IDh ̸= IDnext then identical = false

9: if IDh > IDnext then min = false // there exists an agent with smaller ID

10: while ah is not at vHOME(ah) do

11: move to the next active node and get ID IDother = (dother, fNumother) of the next

active agent

12: if IDh ̸= IDother then identical =false

13: if IDh > IDother then min = false // there exists an agent with smaller ID

14: end while

15: if identical = true then change its state to a leader state // all active agents have

the same IDs

16: if (min = false) ∨ (IDh = IDnext) then change its state to a follower state

17: phase = phase+ 1, identical = true, min = true

18: end while

min (min = true means IDh is the minimum among ever-found IDs) and identical

(identical = true means that ever-found IDs are identical), and it updates the

variables (if necessary) every time it finds an ID of another active agent.

When ah completes the traversal, it determines its state for the next sub-phase. If

identical = true holds, this means that all active agents have the same IDs. In this

case, ah (and the other active agents) becomes a leader and completes the selection
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phase. If identical = false holds, ah remains active if min = true and IDh < IDnext hold.

The second condition means that, when active agents with the minimum ID appear

consecutively, only one of them (or the last agent in the consecutive agents) remains

active. This guarantees that the number of active agents is at least halved in each sub-

phase. If ah does not satisfy any of the above conditions, it becomes a follower. By

repeating such sub-phase at most ⌈log k⌉ times, all the remaining active agents have the

same IDs in some phase and they are selected as leaders so that their home nodes (or

the base nodes) should satisfy the base node condition.

The pseudocode is described in Algorithm 5.2. Note that in the first sub-phase of

Algorithm 5.2, each agent can get the number n of nodes when it finishes travelling once

around the ring, but we omit the description.

Deployment phase

In this phase, each agent determines its target node and moves there. From the base

node conditions, the base nodes are first selected as the target nodes. Hence, letting b be

the number of the base nodes, other k − b target nodes are selected so that the distance

between two adjacent target nodes should be n/k.

While the leaders know the completion of the selection phase, followers do not know

the fact. Hence, at the beginning of the deployment phase, each leader notifies followers

that the selection phase is completed. To do this, each leader moves to the next base

node. During the movement, if there exists an agent, the leader informs the agent of

the number of tokens tBase to the next base node. If the leader arrives at the next base

node, it terminates the algorithm there since the current base node is its target node.

When each follower receives the value of tBase, it knows the completion of the se-

lection phase. Then, it starts the deployment phase. Each follower moves in the ring

until it observes tBase tokens, and then it reaches the nearest base node. After this, the

agent traverses the ring until it finds a vacant target node: every time the agent moves

n/k times, it reaches a target node and stays there if the node is vacant (i.e., no agent

is staying), otherwise (i.e., when the target node is already occupied by another agent)

it keeps moving to the next target node. Note that from the atomicity of the execution,
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Algorithm 5.3 The behavior of leader or follower agent ah
Behavior of Agent ah

1: /*deployment phase*/

2: // the behavior of leader agents

3: if ah is in the leader state then

4: t = 0

5: while t ̸= fNumh do

6: move to the next node where a token exists // look for a follower agent

7: send tBase (= fNumh − t) to the agent at the current node

8: t = t+ 1

9: end while

10: move to the next node where a token exists // move to the next base node

11: terminate the algorithm

12: end if

13:

14: // the behavior of follower agents

15: if ah is in the follower state then

16: wait at the current node until ah receives the value of tBase

17: move until it observes tBase tokens // ah reaches the nearest base node

18: while true do

19: move n/k times // move to the next target node

20: if there exists no agent at the current node then terminate the algorithm

21: end while

22: end if

it does not happen that two follower agents arrive at the same target node at the same

time, that is, exactly one follower stays at each target node. The pseudocode is described

in Algorithm 5.3. We have the following theorem about the presented algorithm.

Theorem 5.3.2. For agents with knowledge of k, Algorithms 5.2 and 5.3 solve the uni-

form deployment problem with termination detection. This algorithm requires O(log n)



108 CHAPTER 5. UNIFORM DEPLOYMENT IN RING NETWORKS

memory space per agent, O(n log k) time, and O(kn) total moves.

Proof. It is obvious that Algorithms 5.2 and 5.3 solve the uniform deployment problem

even in periodic rings, and in the following we analyze the complexity measures.

At first, we evaluate the memory requirement per agent. Each agent ah has three

variables IDi, IDnext IDother to store IDs, each of which requires O(log n) memory. Since

other variables require O(log n) memory or less, each agent requires O(log n) memory.

Next, we consider the time complexity. The selection phase requires at most n⌈log k⌉

unit times because each sub-phase requires n unit times and agents execute at most

⌈log k⌉ sub-phases. In addition, the deployment phase requires at most 2n unit times.

Hence, the time complexity is O(n log k).

Lastly, we consider the total moves. First, we consider the selection phase. In each

sub-phase, each active agent travels once around the ring, and then at least half active

agents become followers or all active agents become leaders. Hence, in the beginning of

the x-th sub-phase, the number of active agents is at most k/2x−1. Since follower agents

and leader agents never move in the selection phase, the total number of moves in the

selection phase is at most
∑

1≤x≤log k(k/2
x−1)n ≤ 2kn. In the deployment phase, each

leader moves to the next base node and each follower moves to a target node to achieve

the uniform deployment. Each leader obviously moves at most n times, and each follower

moves at most 2n times since it first moves to the nearest base node, which requires at

most n moves, and then moves to a vacant target node, which requires at most n moves.

Thus, the total moves in the deployment phase is O(kn). Therefore, the total moves is

O(kn).

5.4 Agents with no knowledge of k or n

In this section, we consider the uniform deployment problem for agents with no knowl-

edge of k or n. We consider cases with termination detection and without termination

detection in this order.
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5.4.1 Uniform deployment problem with termination detection

When termination detection is required, we show that there exists no algorithm to solve

the problem. Intuitively, it is due to impossibility of finding correct k or n when some part

of the initial configuration has symmetry: when an agent misestimates these at smaller

numbers than actual ones, it prematurely terminates and the uniform deployment cannot

be achieved.

Theorem 5.4.1. There exists no algorithm to solve the uniform deployment problem

with termination detection even if agents can communicate with another agent at the

same node.

Proof. We use the similar idea in [25], which shows that for agents without any knowledge

there exist no algorithms to solve the rendezvous problem with termination detection.

We prove the theorem by contradiction, that is, we assume that there exists algorithm

A to solve the uniform deployment problem with termination detection.

At first, let us consider n-node ring R and the initial configuration C0 such that k

agents a0, a1, . . . , ak−1 exist in this order. Let V = {v0, v1, . . . , vn−1} and assume that

d = n/k is a positive integer. From hypothesis, there is an execution ER of A to solve

the uniform deployment problem in R. We define T (ER) as the length of ER and denote

ER = C0, C1, . . . , CT (ER). Note that in CT (ER), all agents are in the halt states and every

distance between two adjacent agents is d.

Next, let us consider a larger ring R′ consisting of 2qn + 2n nodes, where q is the

minimum integer such that qn ≥ T (ER) holds. Let V ′ = {v′0, v′1, . . . , v′2qn+2n−1}. We

consider the initial configuration C ′
0 such that kq + k agents a′0, a

′
1, . . . a

′
kq+k−1 exist in

this order in R′. Then in R′, the interval of the uniform deployment is 2d. In addition,

we define the initial position of each agent in R′ as follows. Let vf(h) be the node

where agent ah initially stays in R. Then, we assume that agent a′h initially stays at

node v′f(h mod k)+n·⌊h/k⌋. That is, the initial positions for R are repeated from v′0 to

v′qn+n−1, and there is no agent from v′qn+n to v′2qn+2n−1. For each node v′j in R′, we

define Cv(v
′
j) = vj mod n as the corresponding node of v′j in R. In the following, we show

that each agent a′h (0 ≤ h ≤ k − 1) behaves in the exactly same way as agent ah in R
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and a′h enters a halt state at the same time as ah. Then, the distance between the two

adjacent agents is d, which contradicts that the interval of the uniform deployment in R′

is 2d.

At first, we have the following lemma. We define the local configuration of node v as

the 2-tuple that consists of the state of v and the states of all agents at v.

Lemma 5.4.1. Let us consider execution ER′ = C ′
0, C

′
1, . . . , C

′
T (ER), . . . for ring R′. We

define V ′
t = {v′t, v′t+1, . . . , v

′
qn+n−1}. For any t ≤ T (ER), configuration C ′

t satisfies the

following condition: for each v′j ∈ V ′
t , the local configuration of v′j in C ′

t is the same as

that of Cv(v
′
j) in Ct.

Proof. We prove Lemma 5.4.1 by induction on t. For t = 0, Lemma 5.4.1 holds from the

definition of R′. Next, we show that when Lemma 5.4.1 holds for t (t < T (ER)), Lemma

5.4.1 holds for t+ 1.

From the hypothesis, for each v′j ∈ V ′
t+1 the local configurations of v′j−1 and v′j in

C ′
t are the same as those of Cv(v

′
j−1) and Cv(v

′
j) in Ct respectively. Hence, agents at

v′j−1 and v′j in C ′
t behave in the exactly same way as those at Cv(v

′
j−1) and Cv(v

′
j) in

Ct. Since only agents at nodes v′j−1 and v′j can change the local configuration of v′j in

unidirectional rings, the local configuration of v′j in C ′
t+1 is the same as that of Cv(v

′
j) in

Ct+1.

Therefore, we have the lemma.

From Lemma 5.4.1, in C ′
T (ER) local configuration of each node in V ∗ = {v′qn, v′qn+1, . . .

, v′qn+n−1} ⊆ V ′
T (ER) is the same as that of the corresponding node in CT (ER). Note that

the set of nodes corresponding to nodes in V ∗ is equal to V , and every agent in V ∗ also

stops in the halt state in configuration C ′
T (ER). Hence in C ′

T (ER), there exist k agents in

the halt states in V ∗. Then, the distance between the adjacent agents in V ∗ is d, which

is a contradiction.

Therefore, we have the theorem.
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5.4.2 Uniform deployment problem without termination detection

In this section, we propose an algorithm to solve the uniform deployment problem without

termination detection which requires O((k/l) log(n/l)) memory space per agent, O(n/l)

time, and O(kn/l) total moves, where l is the symmetry degree of the initial configuration.

This result means that when the initial configuration has higher symmetry degree, agents

can solve the problem more efficiently. At first, we consider the case for aperiodic rings

(The definitions of periodic and aperiodic rings are described in Section 3.5.1). After this,

we show that our proposed algorithm achieves the uniform deployment also in periodic

rings.

Case for aperiodic rings

In Section 5.3, since agents have knowledge of k, they can detect whether they traveled

once around the ring or not. However in this section, agents cannot do this since they

have no knowledge of k or n. Hence, at first agents estimate the number of nodes

in the ring, and after this they move to their target nodes based on the estimations.

Concretely, the algorithm consists of three phases: estimating phase, patrolling phase,

and deployment phase. In the estimating phase, each agent ah moves in the ring and

estimates the number of nodes. At the end of this phase, we can show that at least one

agent estimates the correct number n of nodes. In the patrolling phase, ah moves in the

ring several times depending on its estimated number of nodes. During the movement, if

ah visits the node where another agent exists, this agent may misestimate the number of

nodes and prematurely stop at an incorrect target node. Hence, ah sends its estimated

number of nodes (with some information) to the agent. By this behavior, we can show

that every agent eventually gets the correct number n of nodes and the location of its

correct target node. In the deployment phase, ah moves to its target node and enters a

suspended state. After this, if ah receives a message and recognizes that it misestimates

the number of nodes, ah decides its new target node from the message and moves there.

For simplicity we assume n = ck for some positive integer c in the following description,

and this restriction can be removed similarly as in Section 5.3. In addition for sequence
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Figure 5.6: An example that an agent estimates the number of nodes

Y, we define Y 1 = Y and Y l+1 = Y l · Y (or concatenation of (l + 1) Y s).

Estimating phase. In this phase, each agent ah firstly releases its token at its home

node vHOME(ah). After this, ah moves in the ring, memorizes the distance dis between two

adjacent token nodes, and stores dis to an array D for memorizing the distance sequence.

Agent ah continues such a behavior until it completes estimating the number of nodes.

Concretely, ah continues to move until it observes the same distance sequence four times

consecutively. Let 4n′ be the number of nodes that ah ever visited by the time. Then, ah

considers it travelled four times around the ring and estimates the number of nodes in the

ring at n′. For example, let us consider Fig. 5.6. Each number in the figure represents

the distance between two adjacent token nodes. Agent ah moves from node vj to v′j

and gets the distance sequence D = (1, 3, 1, 3, 1, 3, 1, 3) = (1, 3)4. Then, ah estimates

the number of nodes at 4. By this behavior, we can show that 1) at least one agent

estimates the correct number n of nodes (in the aperiodic ring), and 2) if the estimated

number n′ is not correct, n′ ≤ n/2 holds. The pseudocode is described in Algorithm 5.4.

During the estimating phase, ah uses a variable k′ for storing the estimated number of

agents (tokens) and a variable nodes for storing the number of nodes that ah has ever

visited. These variables (including n′ and D) are also used in the patrolling phase and

the deployment phase.

Patrolling phase. In this phase, ah moves 8n′ times. Then, ah considers it traveled

twelve times around the ring from the beginning with respect to its estimated number of

nodes n′. During the movement, ah may observe some agent ah staying at some node. In
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Algorithm 5.4 The behavior of agent ah in the estimating phase

Behavior of Agent ah

1: /* estimating phase */

2: n′ = 0, k′ = 0,nodes = 0, i = 0

3: release a token at its home node vHOME(ah)

4: while n′ = 0 do

5: move to the next token node and get the distance dis between two token nodes

6: D [i] = dis, i = i+ 1

7: if (i mod 4 = 0) ∧ (∀x (0 ≤ x ≤ i/4− 1)

D[x] = D[x+ i/4] = D[x+ 2× i/4] = D[x+ 3× i/4]) then

8: // completing the estimation of the numbers of nodes and tokens

9: k′ = i/4

10: n′ = D[0] +D[1] + · · ·+D[k′ − 1]

11: nodes = 4n′

12: end if

13: end while

14: change to the patrolling phase

this case, ah may misestimate the number of nodes and prematurely stop at an incorrect

target node. Hence if ah observes such an agent, ah sends n′, k′,nodes, and D to ah.

By this behavior, we can show that every agent eventually gets the correct number n

of nodes and the location of its correct target node. The pseudocode is described in

Algorithm 5.5.

Deployment phase. In this phase, ah selects its target node and moves there as

follows. Let D = (d0, d1, . . . , dk′−1)
4 be the distance sequence that ah obtained in the

estimating phase. Then, ah selects its base node similarly to Section 5.3.1, that is, letting

Dmin be the lexicographically minimum distance sequence among {shift(D,x)|0 ≤ x ≤

k′ − 1}, ah selects base node vbase where the agent whose distance sequence is Dmin

initially stays. In addition, ah determines its target node and moves there similarly

to Section 5.3.1. Let disBase be the distance from the current node to vbase, and ah
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Algorithm 5.5 The behavior of agent ah in the patrolling phase

Behavior of Agent ah

1: /* patrolling phase */

2: while nodes ̸= 12n′ do

3: move to the forward node

4: nodes = nodes+ 1

5: if there exists another agent ah then send (n′, k′,nodes, D[ ]) to ah

6: end while

7: change to the deployment phase

considers that it is rank-th agent (0 ≤ rank ≤ k′ − 1) from vbase (the agent staying at

vbase is considered as the 0-th agent). Then, ah firstly moves disBase times and reaches

vbase. After this, ah moves to its target node by moving rank × n′/k′ times and enters

a suspended state. When all agents enter suspended states, agents solve the uniform

deployment problem.

However, ah may stay at an incorrect target node when it misestimates the number

of nodes. In this case, ah eventually receives a message from another agent aℓ. Let n′
ℓ,

k′ℓ, nodesℓ, and Dℓ be the estimated number of nodes, the estimated number of agents,

the number of nodes ever visited, and the distance sequence included in a message from

aℓ respectively. If n′ ≤ n′
ℓ/2 holds and there exists t such that (∀i (0 ≤ i ≤ 4k′ − 1)

D[i] = Dℓ[i+ t])∧ (Dℓ[0]+ · · ·Dℓ[t−1] = nodesℓ−nodes) hold, it means that aℓ estimates

at least twice number of nodes than ah and memorizes ah’s whole distance sequence

D as a part of Dℓ. Then, ah recognizes that it misestimates the number of nodes and

resumes its behavior. Concretely, ah firstly moves 12n′
ℓ−nodes times. We can show that

12n′
ℓ − nodes is always positive, and the proof is described in Lemma 5.4.5. Then, ah

considers it traveled twelve times around the ring from the beginning with respect to the

new estimated number of nodes n′
ℓ. This guarantees that agents can achieve the uniform

deployment even in periodic rings, and we explain this later. After this, it decides the

new base node and its new target node from n′
ℓ, k

′
ℓ, nodesℓ and Dℓ, moves to its new

target node as mentioned before, and enters a suspended state again. The pseudocode
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Algorithm 5.6 The behavior of agent ah in the deployment phase

Behavior of Agent ah

1: /* deployment phase */

2: let Dmin be the lexicographically minimum sequence among {shift(D,x)|0 ≤ x ≤

k′ − 1}

3: rank = min{x ≥ 0|shift(D,x) = Dmin}

4: disBase = D[0] +D[1] + · · ·+D[k − 1− rank]

5: move disBase times

6: nodes = nodes+ disBase

7: move rank× n′/k′ times

8: nodes = nodes+ rank× n′/k′

9: change its state to a suspended state

10:

11: /* behavior in the suspended state */

12: wait at the current node until ah receives (n′
ℓ, k

′
ℓ,nodesℓ, Dℓ[ ]) from some agent aℓ

13: if (n′ ≤ n′
ℓ/2) ∧ (there exists t such that (∀i (0 ≤ i ≤ 4k′ − 1)

D[i] = Dℓ[i+ t]) ∧ (Dℓ[0] + · · ·Dℓ[t− 1] = nodesℓ − nodes) hold) then

14: // ah recognizes that it misunderstands the number of nodes

15: n′ = n′
ℓ, k

′ = k′ℓ, D[ ] = shift(Dℓ[ ], t)

16: move 12n′ − nodes times

17: nodes = 12n′

18: go to line 2

19: end if

is described in Algorithm 5.6. When all agents enter suspended states, agents solve the

uniform deployment problem.

An example As an example, let us consider the ring in Fig. 5.7. This ring is

aperiodic but has some periodic subsequence, that is, some agent observes a 4-times

repeated subsequence before it travels once around the ring. In such a ring, some agent

misestimates the number of nodes and enters a suspended state at an incorrect target
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Figure 5.7: An example in the ring having some periodic subsequence (n = 27, k = 9, d =

3)

node. However in this case, we can show that at least one agent ah estimates the correct

number n of nodes and informs prematurely suspending agents of n during the patrolling

phase. Let us consider the behavior of agents a1 and a2. For simplicity, we assume

that they behave in a synchronous manner. In the estimating phase, agent a2 gets the

distance sequence D = (1, 3, 1, 3, 1, 3, 1, 3) = (1, 3)4 and estimates the number of nodes

at 4, which is incorrect (Fig. 5.7 (a) to Fig. 5.7 (b)). After this a2 executes the patrolling

and deployment phases, and enters a suspended state at incorrect target node v′j (Fig. 5.7

(b) to Fig. 5.7 (c)). On the other hand, agent a1 is still in the estimating phase. When

a1 observes D = (11, 1, 3, 1, 3, 1, 3, 1, 3)4, it completes the estimating phase and estimates

the correct number of nodes 27. After this in the patrolling phase, a1 observes a2 at v′j ,

sends its estimated number of nodes with other information to a2 (Fig. 5.7 (c) to Fig. 5.7

(d)), and moves to its target node. When a2 receives the message from a1, it recognizes

that it misestimates the number of nodes and resumes its behavior.

In the following, we show that every agents eventually gets the correct number n of

nodes and its correct target node. To show this, we use the following lemma.

Lemma 5.4.2. [25] Consider an p-length sequence A = a0, . . . , ap−1 and an p′-length

sequence B = b0, . . . bp′−1 such that p′ < p holds. If B3 is the prefix of A3, either

p′ ≤ p/2 holds or B is periodic.
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Then, we have the following lemmas.

Lemma 5.4.3. If agent aℓ estimates the incorrect number of nodes nℓ (i.e., nℓ ̸= n

holds), nℓ ≤ n/2 holds.

Proof. Let kℓ (< k) be the number of agents (tokens) estimated by aℓ. Since aℓ observes

4kℓ tokens in the estimating phase, it stores the same distance sequence (D[0], . . . , D[kℓ−

1]) four times, that is, (D[0], . . . , D[4kℓ − 1]) = (D[0], . . . , D[kℓ − 1])4 holds. Then,

nℓ = D[0] + · · ·+D[kℓ − 1] holds. On the other hand since the number of tokens in the

ring is k > kℓ, sequence (D[0], . . . , D[kℓ − 1])4 is the prefix of (D[0], . . . , D[k− 1])4. Note

that, n = D[0] + · · · + D[k − 1] holds. Then from Lemma 5.4.2, (D[0], . . . , D[kℓ − 1])

is periodic or kℓ ≤ k/2 holds. If D([0], . . . , D[kℓ − 1]) is periodic, there exists k′ℓ < kℓ

such that (D[0], . . . , D[4k′ℓ − 1]) = (D[0], . . . , D[k′ℓ − 1])4 holds. This is a contradiction

because aℓ should estimate the number of nodes at nℓ. Hence, kℓ ≤ k/2 holds. Then

since (D[0], . . . , D[kℓ − 1]) is the prefix of (D[0], . . . , D[k − 1]), (D[0], . . . , D[k − 1]) =

(D[0], . . . , D[kℓ− 1], D[0], . . . , D[kℓ− 1], D[2kℓ], D[2kℓ+1], . . .) holds. Thus, (D[0]+ · · ·+

D[kℓ − 1]) ≤ (D[0] + · · ·+D[k− 1])/2 holds, that is, nℓ ≤ n/2 holds. Therefore, we have

the lemma.

Lemma 5.4.4. If ring R is aperiodic, at least one agent estimates the correct number n

of nodes and gets distance sequence D of the initial configuration in R.

Proof. We show that at least one agent estimates the correct number n of nodes. Then

from Algorithm 5.4 to 5.6, the agent clearly gets the distance sequence D for the initial

configuration in R. We prove the lemma by contradiction, that is, we assume that the

number of nodes estimated by each agent is less than n. We assume that in the initial

configuration agents a0, a1, . . . , ak−1 exist in this order. We define ni as the number of

nodes estimated by ah and Di as the distance sequence observed by ah. In addition, let

Si be the distance sequence such that Di = S4
i holds.

Let am be the agent that estimates the maximum number of nodes nm (< n) among

all agents, and let ℓ = |Sm| (< k). We assume that the distance sequence am observes

in Algorithm 5.4 is Dm = (dm0 , . . . , dmℓ−1, d
m
ℓ , . . . , dm2ℓ−1, d

m
2ℓ, . . . , d

m
3ℓ−1, d

m
3ℓ, . . . d

m
4ℓ−1) =
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(dm0 , . . . , dmℓ−1)
4 = S4

m. Note that, Sm = (dm0 , . . . ,dmℓ−1) is aperiodic and ∀j (0 ≤ j ≤ ℓ−1)

dmj = dmj+ℓ = dmj+2ℓ = dmj+3ℓ holds.

Next, let us consider the agent am+ℓ. Then, either nm+ℓ < nm or nm+ℓ = nm holds be-

cause nm is the maximum. We show that nm+ℓ = nm always holds by contradiction, that

is, we assume that nm+ℓ < nm holds. Then, |Sm+ℓ| < |Sm| clearly holds. Consequently,

S3
m+ℓ is the prefix of S3

m because am+ℓ gets the distance sequence (dmℓ , . . . , dm2ℓ−1) = Sm

when it observes ℓ tokens. Then from Lemma 5.4.2, either |Sm+ℓ| ≤ |Sm|/2 holds or

Sm+ℓ is periodic. If |Sm+ℓ| ≤ |Sm|/2 holds, agent am observes S4
m+ℓ before observing

S4
m because (dm0 , . . . , dm2ℓ−1) = (dmℓ , . . . , dm3ℓ−1) contains S

4
m+ℓ as its prefix. Consequently,

am estimates the number of nodes at nm+ℓ < nm , which is a contradiction. If Sm+ℓ

is periodic, Sm+ℓ = (S′
m+ℓ)

t holds for some distance sequence S′
m+ℓ and some positive

integer t (S′
m+ℓ is aperiodic and |S′

m+ℓ| ≤ |Sm+ℓ|/2 holds). Hence, am observes (S′
m+ℓ)

4

before observing S4
m and the number of nodes am estimates is less than nm, which is also

a contradiction. Therefore, nm+ℓ = nm holds.

Let m(i) = m + iℓ and Am = {am(i)| i ≥ 0}. As mentioned above, nm = nm+ℓ and

Sm(0) = Sm(1) = Sm hold. In addition, am(1) observes the same distance sequence of

length 4|Sm| as am(0). Hence recursively, am(i+1) observes the same distance sequence

of length 4|Sm| as am(i) and consequently each agent in Am observes Sm as the first ℓ

consecutive distances. When k is divided by ℓ, since every agent am(i) observes Sm as the

first ℓ consecutive distances and ℓ < k holds, the ring is periodic, which is a contradiction.

In the following, we consider the case that k is not divided by ℓ and show that Sm(0)(=

Sm) is periodic in this case. When k is not divided by ℓ, k = αℓ + β (0 < β < ℓ) holds

for some positive integers α and β. Then, the prefix of Sm(0) is identical to the suffix of

Sm(α) because the trajectories of am(0) and am(α) include the same part of the ring. We

assume that t elements are overlapped, that is, (d
m(0)
0 , . . . , d

m(0)
t−1 ) = (d

m(α)
ℓ−t , . . . , d

m(α)
ℓ−1 )

holds. Let be T be the sequence consisted of the t overlapped elements and T ′
0 (resp.,

T ′
α) be the sequence consisted of the other (ℓ− t) elements in Sm(0) (resp., Sm(α)). Then,

Sm(0) = TT ′
0 (resp., Sm(α) = T ′

αT ) holds (Fig. 5.8). In addition, T ′
0 = T ′

α holds because

agent am(α) observes S
4
m(α) = (T ′

αT )
4 and T ′

α that am(α) observes for the second time is

equivalent to T ′
0 that agent am(0) observes for the first time. Then, since Sm(0) = Sm(α)
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Figure 5.8: An examples of Sm(0) and Sm(α)

holds, shift(S(m(0)), t) = T ′
0T = T ′

αT = Sm(α) = Sm(0) holds. Therefore, Sm(0) is periodic

since 0 < t < ℓ holds. However, this contradicts the assumption that Sm(0) (= Sm) is

aperiodic.

Therefore, we have the lemma.

Lemma 5.4.5. If ring R is aperiodic, every agent eventually gets the correct number n

of nodes and distance sequence D of the initial configuration in R.

Proof. We show that all agents eventually get the correct number n of nodes. Then

from Algorithms 5.4 to 5.6, all agents can clearly get distance sequence D of the initial

configuration in R. We prove the lemma by contradiction, that is, we assume that when

all agents are in the suspended states, there exists at least one agent ah whose estimated

number of nodes n′ is less than n. Then from Lemma 5.4.3, n′ ≤ n/2 holds. On the other

hand from Lemma 5.4.4, at least one agent ac estimates the correct number n of nodes.

In the following we show that ac observes ah during the patrolling phase and sends its

estimated number of nodes n to ah, which contradicts the assumption of n′ < n.

At first, let us consider the number of nodes ah visits. Let n1 be the number of nodes

ah estimates in the estimating phase. From Algorithms 5.4 to 5.6, ah moves at most 14n1

times by the time ah enters a suspended state for the first time. After this, we assume that

ah receives messages and updates its estimated number of nodes to n2, n3, . . . , nl = n′

in this order. When ah updates it estimated number of node to n2, ah’s total moves at
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that point (i.e, nodes) is at most 7n2 since n1 ≤ n2/2 holds. Hence, 12n2 − nodes is

clearly positive. Then, ah firstly moves in the ring until its total moves becomes 12n2

by moving 12n2 − nodes times. After this, ah moves to a new target node and enters a

suspended state again. This requires at most 14n2 total moves. Then since n3 ≤ n2/2

holds from Algorithm 5.6, nodes is at most 7n3 and 12n3−nodes is clearly positive. Thus

recursively, we can show that 12ni − nodes is always positive (2 ≤ i ≤ l) and ah’s total

moves unless it does not get the correct number n of nodes is at most 14n′ ≤ 7n. On the

other hand, agent ac moves 8n times in the patrolling phase. Thus, ac clearly observes

ah during the patrolling phase and sends its estimated number n of nodes to ah, which

is a contradiction.

Therefore, we have the lemma.

Then, we have the following lemma for aperiodic rings.

Lemma 5.4.6. When ring R is aperiodic, agents solve the uniform deployment problem

without termination detection.

Proof. From Lemma 5.4.5, all agents eventually get the correct number n of nodes and

distance sequence D for the initial configuration in R. Then, each agent can compute its

correct target node from D and move there. Thus, we have the lemma.

Case for periodic rings

Next, we consider the case for periodic rings. Let R′ be a periodic ring and D′ be the

distance sequence of the initial configuration in R′. We say R′ is a (N, l)-node ring if

there exists an aperiodic distance sequence D such that D′ = Dl holds and the total sum

of elements of D is N . Then, n = Nl holds and l is equivalent to the symmetry degree

of the initial configuration in R′. We call the ring R with the distance sequence D the

fundamental ring of R′ (e.g., Fig. 5.9). Note that an aperiodic ring can be denoted by a

(n, 1)-node ring. In addition for each agent ah in R, there exist l agents in R′ such that

the distance sequence of each agent is l-times repetition of the distance sequence of ah.

We say such agents in R′ are corresponding agents of agent ah in R and denote by aih
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Figure 5.9: An example for the periodic ring

(0 ≤ i ≤ l− 1). We assume that agents a0i , a
1
i , . . . , a

l−1
h exist in this order and operations

to an above index of aih assume calculation under modulo l. Then, the distance from aih

to ai+1
h is N . In this case, all agents eventually estimate the incorrect number N = n/l

of nodes, but we can show that agents can achieve the uniform deployment similarly to

in R. Concretely from algorithms in Section 5.4.2, each agent moves to its target node

after considering, based on the estimated number N of nodes, it traveled twelve times

around the ring. This means that each agent stays at its target node during its twelfth or

thirteenth circulations in the ring with respect to the estimated size N , which guarantees

that when all agents are in the suspended states, no agents stay at the same node and

they can achieve the uniform deployment. For example, let us consider rings in Fig. 5.9.

Ring R′ is the (6,2)-node periodic ring and R is the fundamental ring of R′. In R, each

agent estimates the correct number 6 of nodes in the estimating phase and moves to its

correct target node (Fig. 5.9 (a)). On the other hand in R′, each agent also estimates

the number 6 of nodes, which is incorrect (Fig. 5.9 (b)). By algorithms in Section 5.4.2,

each agent moves to its target node after considering, based on the estimated size 6, it

travelled twelve times around the ring, that is, after each agent moves 72 times (actually,
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each agent travelled six times around ring R′). This guarantees that when all agents

are in the suspended states, no agents stay at the same node and they can achieve the

uniform deployment (Fig. 5.9 (c)).

Now, we have the following lemmas, which can be proved similarly to the case of

aperiodic rings.

Lemma 5.4.7. Let R′ be a (N, l)-node periodic ring and R be the fundamental ring of

R′. Let ah in R be the agent estimating the number N of nodes in the estimating phase.

Then in R′, agent aih (0 ≤ i ≤ l− 1) corresponding to ah also estimates the number N of

nodes.

Proof. From the definition of R′, aih observes the same distance sequence as that of ah. In

addition since agents have no knowledge of k or n, agents determine their estimated num-

ber of nodes depending only on the distance sequence they observe. Thus, aih estimates

the same number of nodes as that of ah.

Lemma 5.4.8. Let R′ be a (N, l)-node periodic ring and R be the fundamental ring of

R′. Then in R′, every agent eventually gets the number N of nodes and distance sequence

D of the initial configuration in R.

Proof. We show that all agents eventually get the number N of nodes. Then from Algo-

rithms 5.4 to 5.6, all agents can clearly get distance sequenceD of the initial configuration

in R. We prove the lemma by contradiction, that is, we assume that when all agents

are in the suspended states, there exists at least one agent ah whose estimated number

of nodes n′ is less than N . On the other hand from Lemma 5.4.7, there exists agent

aic (0 ≤ j ≤ l − 1) estimating the number N of nodes in the estimating phase. Let

Ac = {a0c , a1c . . . , al−1
c }. In the following, we show that some agent in Ac observes ah

during the patrolling phase and sends its estimated number N of nodes to ah, which

contradicts the assumption of n′ < N .

At first, let us consider the number of nodes ah visits. Similarly to the case for

aperiodic rings, when ah updates its estimated number of nodes from n′′ to n′, it firstly

moves in the ring until its total moves becomes 12n′ by moving 12n′−nodes times. After
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this, ah moves to a new target node and enters a suspended state again. This requires

at most 14n′ total moves. Hence unless ah does not get the number N of nodes, its total

moves is at most 14n′ ≤ 7N .

On the other hand from Lemma 5.4.7, there exists agent aic in Ac such that it estimates

the number of nodes at N and the distance from vHOME(a
i
c) to vHOME(ah) is less than N .

Recall that, vHOME(a) is the home node of agent a. Then, let us consider the behavior of

agent ai−4
c . Agent ai−4

c firstly moves 4N times and finishes the estimating phase at node

vHOME(a
i
c). After this, aj−4

c moves 8N times from vHOME(a
j
c) in the patrolling phase. On

the other hand, ah moves at most 7N times from vHOME(ah). Since the distance from

vHOME(a
i
c) to vHOME(ah) is less than N , ai−4

c observes ah during the patrolling phase

and sends the number N of nodes to ah, which is a contradiction.

Therefore, we have the lemma.

Lemma 5.4.9. Even when ring R′ is periodic, agents solve the uniform deployment

problem without termination detection.

Proof. From Lemma 5.4.8, all agents eventually get the number N of nodes and distance

sequence D of the initial configuration in R, where R is the fundamental ring of R′. From

Algorithm 5.6, when agent aih gets the number N of nodes it firstly moves in the ring

until its total moves becomes 12N . Then, aih is at vHOME(a
i+12
h ). After this, aih computes

its target node from D and moves there, which requires at most 2N moves. Hence, aih

eventually stays between vHOME(a
i+12
h ) and vHOME(a

i+14
h ). This mean that letting vbase

(resp., v′base) be the base node existing between vHOME(a
i+12
h ) and vHOME(a

i+13
h ) (resp.,

vHOME(a
i+13
h ) and vHOME(a

i+14
h )) aih eventually stays between vbase and v′base. Moreover,

it clearly holds total moves of each of aih (0 ≤ i ≤ l − 1) are the same. Thus when

all agents are in the suspended states, no agents stay at the same node and agents can

achieve the uniform deployment.

Therefore, we have the lemma.

Finally, we have the following theorem for (N, l)-node rings.
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Theorem 5.4.2. For agents with no knowledge of k or n, the proposed algorithm solves

the uniform deployment problem without termination detection. This algorithm requires

O((k/l) log(n/l)) memory space per agent, O(n/l) time, and O(kn/l) total moves.

Proof. From Lemmas 5.4.6 and 5.4.9, agents solve the uniform deployment problem. In

the following, we analyze complexity measures.

At first, we evaluate the memory requirement per agent. Each agent eventually

gets the distance sequence D = (d0, d1, . . . , d(4k/l)−1). Since each di is at most n/l,

this sequence requires O((k/l) log(n/l)) memory. Moreover, the other variables require

O(log(n/l)) bit memory. Therefore, the memory requirement per agent isO((k/l) log(n/l)).

Next, we analyze the time complexity. Let Acorrect be the set of agents that estimate

the number n/l (= N) of nodes in the estimating phase. Each agent ac ∈ Acorrect finishes

its patrolling phase in 12n/l unit times, and moves to its correct target node, which

requires at most 14n/l unit times from the beginning of the algorithm. In addition from

the proof of Lemmas 5.4.5 and 5.4.8, each agent ah /∈ Acorrect gets the number n/l of

nodes within 12n/l unit times since each ac ∈ Acorrect finishes its patrolling phase in

12n/l unit times. After this, ah requires at most 14n/l unit times to moves to its correct

target node from the beginning of the algorithm. Thus, the time complexity is O(n/l).

At last, we analyze the total number of agent moves. Each agent requires at most

14n/l moves to move to its target node. Thus, the total number of agent moves is

O(kn/l).

5.5 Concluding Remarks

In this chapter, we considered the uniform deployment problem of mobile agents in

asynchronous unidirectional ring networks. The uniform deployment problem, which is a

striking contrast to the total gathering problem, is interesting to investigate. We proposed

three algorithms to solve the uniform deployment problem from any initial configuration

such that all agents are in the initial states and placed at the distinct nodes. These

algorithms utilize the essential characteristic of the uniform deployment problem: the

problem aims to attain the symmetry, and these algorithms solve the problem without
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breaking symmetry that the initial agent locations have. Such an approach in designing

mobile agent algorithms seems to be applicable to other problems that aim to attain the

symmetry.





Chapter 6

Conclusion

6.1 Summary of the Results

In this dissertation, we focused on the coordination of mobile agents. We considered two

problems and investigated the total moves and the solvability compared with the total

gathering problem.

In Chapter 3 and Chapter 4, we considered the g-partial gathering problem. The goal

in these chapters is to clarify the difference of the move complexity between the total

gathering problem and the g-partial gathering problem. In Chapter 3, we considered

the g-partial gathering problem in ring networks under the assumption that each node

has a whiteboard. For a deterministic algorithm for distinct agents or a randomized

algorithm for anonymous agents with knowledge of k, we showed that agents achieve the

g-partial gathering in O(gn) total moves, which is asymptotically optimal. This means

that g-partial gathering problem is solvable in fewer total moves than the total gathering

problem. Agents can attain this improvement of the total moves since the g-partial

gathering requires less symmetry breaking than the total gathering problem. In Chapter

4, we considered the g-partial gathering problem in tree networks. Since trees have

lower symmetry than rings, we aimed to solve the g-partial gathering problem in weaker

models than the whiteboard model used in rings. In the case of the weak multiplicity

detection and removable-token model, we showed that the proposed algorithm achieves
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the g-partial gathering problem in O(gn) total moves, which is asymptotically optimal.

This means that also in tree networks the g-partial gathering problem is solvable in fewer

total moves than the total gathering problem. Note that in the model with the strong

multiplicity detection but without tokens, agents require Ω(kn) total moves. Hence, we

showed that the total moves can be reduced dramatically by using tokens.

In Chapter 5, we considered the uniform deployment problem in ring networks under

the assumption that each agent does not have a unique ID but has a token. We proposed

several algorithms to solve the uniform deployment problem from any initial configura-

tion, including configurations from which the total gathering cannot be achieved. Agents

can attain this solvability since the uniform deployment aims to attain the symmetry

of agent locations (i.e., requires no symmetry breaking) while the total gathering aims

to break the symmetry. Hence, this result means that, while anonymous agents cannot

decrease the symmetry degree for several (e.g., periodic) configurations, but they can

increase the symmetry degree even from periodic configurations.

6.2 Future Directions

Regarding proposed agent algorithms for a network management, there exist several

issues for improving our algorithms from both practical and theoretical points of view.

Partial Gathering In Chapter 3, we proposed two move-optimal algorithms to solve

the g-partial gathering problem, that is, a deterministic algorithm for distinct agents

and a randomized algorithm for anonymous agents with knowledge of k. However, it is

more practical if agents do not have any IDs or global knowledge (i.e., knowledge k or

n). Hence, one approach is to consider an algorithms to solve the g-partial gathering

problem for such agents. In Section 3.4, a randomized algorithm for anonymous agents

with knowledge of k achieves the g-partial gathering in O(gn) expected total moves. This

method uses knowledge of k only when consecutive active agents create the same random

IDs. Thus, we should consider such a case without knowledge of k.

Another approach is to consider the g-partial gathering problem in general networks
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since a lot of applications are used for general networks in practice. One possible ap-

proach is that agents firstly construct a spanning tree, and then execute the g-partial

gathering algorithm for trees in Chapter 4. Note that since the algorithm for construct-

ing a spanning tree [53] is executed by nodes, we modify the algorithm to be executed

by agents. However, when agents execute the algorithm for constructing a spanning tree

[53], this approach consists of at most ⌈log k⌉ phases and agents require Ω(n log k +m)

total moves, where m is the number of communication links. In addition, since we can

show clearly that agents requires Ω(gn+m) total moves to solve the g-partial gathering

problem in general networks, this approach cannot achieve the g-partial gathering in

asymptotically optimal total moves. To achieve the g-partial gathering in O(gn + m)

total moves, agents execute the algorithm [53] to construct a spanning tree partially so

that they execute ⌈log g⌉ phases. Then, the total moves in this part could be bounded

by O(n log g + m). In addition, execution of the ⌈log g⌉ phases may not complete the

spanning tree construction, and thus, the network contains several tree fragments each

of which satisfies the following two properties: 1) there exists no cycle, and 2) there

exist at least g agents. Thus, by executing the algorithm in Chapter 4 in each fragment

independently, agents can solve the g-partial gathering problem, and the total moves in

this part is O(gn). Therefore, we conjecture that agents can solve the g-partial gathering

problem asymptotically optimal in terms of total moves also in general networks.

Uniform Deployment Similarly to the second approach of the partial gathering as

mentioned above, we should consider the uniform deployment problem in networks other

than rings, such as tree networks and general networks. This problem may be achieved

by simulating the methods in Chapter 5, that is, agents first select several base nodes

and then move to their own target nodes based on the base nodes.
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