
Title Research on Continuous Preference Query
Processing in Distributed Environments

Author(s) Udomlamlert, Kamalas

Citation 大阪大学, 2017, 博士論文

Version Type VoR

URL https://doi.org/10.18910/61865

rights

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Research on Continuous Preference Query

Processing in Distributed Environments

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2017

Kamalas UDOMLAMLERT

i

List of Publications

1. Journal Paper
1. Kamalas Udomlamlert, Takahiro Hara, and Shojiro Nishio: Subscription-

based Data Aggregation Techniques for Top-k Monitoring Queries, World
Wide Web, (accepted).

2. Kamalas Udomlamlert, Takahiro Hara, and Shojiro Nishio: Threshold-based
Distributed Continuous Top-k Query Processing for Minimizing Communica-
tion Overhead, IEICE Transactions on Information and Systems, Vol.E99-D,
No.2, pages 383–396 (2016).

2. International Conference Paper
1. Kamalas Udomlamlert, Takahiro Hara, and Shojiro Nishio: Communication-

Efficient Preference Top-K Monitoring Queries via Subscriptions, in Proc.
of the 26th International Conference on Scientific and Statistical Database
Management (SSDBM), pages 44:1–-44:4 (2014).

2. Kamalas Udomlamlert, Takahiro Hara, and Shojiro Nishio: Candidate Prun-
ing Technique for Skyline Computation Over Frequent Update Streams, in
Proc. of the 26th International Conference on Database and Expert Systems
Applications (DEXA), pages 93–108 (2015).

3. Kamalas Udomlamlert, Cosmas Krisna Adiputra, and Takahiro Hara: Grand
Challenge: Monitoring Top-k on Real-time Dynamic Social-network Graphs,
in Proc. of the 10th ACM International Conference on Distributed and
Event-Based Systems (DEBS), pages 317–321 (2016).

4. Kamalas Udomlamlert and Takahiro Hara: Reducing Expenses of Top-k
Monitoring in Sensor Cloud Services, in Proc. of the 10th ACM International
Conference on Distributed and Event-Based Systems (DEBS), pages 187–198
(2016).

ii

3. Domestic Conference Paper (with review)
1. Kamalas Udomlamlert, Takahiro Hara, and Shojiro Nishio: データ更新が
頻繁な環境におけるスカイラインデータ計算アルゴリズムの提案, in
Proc. of IPSJ DPS Workshop, pages 17–25 (2014).

4. Domestic Conference Paper (without review)
1. Kamalas Udomlamlert, Takahiro Hara, and Shojiro Nishio: Continuous Top-

k Query Processing on Horizontally-Distributed Data, in Proc. of Forum on
Information Technology, pages 379–382 (2013).

2. Kamalas Udomlamlert, Takahiro Hara, and Shojiro Nishio: Reducing Ex-
penses of Sensor-Cloud Services for Dynamic Skyline Monitoring, in Proc.
of DEIM Forum, online (2016).

iv

Abstract

We are witnessing the era that many things around us (for example, smart-
phones, watches, cars and cameras) start generating data likewise sensors in tra-
ditional sensor network, and especially these are mostly generated in a distributed
manner. Many of instruments continuously create data in real-time and become
vast streams of data. Monitoring on these streams of data enables many promising
and useful applications such as environmental monitoring, smart cities and indus-
trial monitoring. However, it is no use exploring everything in a huge flood of data.
On the contrary, end-users are more interested in and want to get informed only a
few of most important data that match to their preference (objectives). Therefore,
continuous preference query processing does the job to return only a small num-
ber of potential data from immense data space. Although, the straightforward
implementations of continuous query processing can be achieved by repeatedly
executing snapshot query processing of such queries which have been extensively
studied, most of them do not perfectly fit because they cannot reduce the critical
costs that matter to distributed environments.

In this thesis, we focus on monitoring of two fundamental preference queries
including top-k and skyline queries. We begin with the proposal of subscription-
based top-k query processing in 2-tier distributed systems, as often seen in tradi-
tional sensor networks and peer-to-peer systems (P2Ps). Even though there are
existing solutions for this problem, they fail to efficiently reduce the number of
sent data or yield too much overhead to support users in a large scale. Our pro-
posed method not only keeps the number of sent data low by using subscriptions
but also carefully minimizes the number of subscriptions to be maintained. As a
result, the total communication cost, which is a severe factor in sensor networks,
can be largely reduced. The results through simulation experiments confirm the
advantages of our proposed method over the existing methods.

In skyline processing, a single data update may totally change the skyline
set (result set); therefore, for monitoring purposes, it needs to be re-computed
periodically to detect changes of the skyline set. However, skyline query processing
is a computationally intensive task. Therefore, in the second part of the thesis, we

v

propose an efficient algorithm to process skyline monitoring queries on frequent
updates. Minimum bounding rectangles (MBRs) are used to summarize data
movement in each snapshot. This approach enables us to identify a smaller set
of candidates for skyline computation. Through the experiments, our proposed
method shows the better results in terms of total execution time (computation
cost) compared with other methods.

Regarding scalability, the way we manage, collect and utilize data recently has
been altered to cloud (a specialized form of distributed computing). Everything
in the cloud has been abstracted and provided as convenient services on a pay-as-
you-go basis, and data access is not an exception. Running continuous preference
queries that need to access a lot of data for comparisons in such a system is high-
priced (expense or monetary cost). In the last part of the thesis, we describe
cost-minimizing methods for monitoring queries in cloud (i.e., sensor cloud) where
the cost is denoted by the expense of data access. Instead of requesting all the
latest data in each timestamp, we present a cost-minimizing framework for top-k
monitoring – a novel ε-top-k query processing delivering approximate top-k an-
swers with a probabilistic guarantee. The extensive experiments on the real-world
datasets demonstrate that our approach can reduce the expense by more than half
with desirable accuracy. In addition, we show that the underlying concepts of this
method can be easily extended to be used in skyline monitoring, which also gives
the same promising results as that of top-k monitoring.

Contents

1 Introduction 1
1.1 Research Issues . 4

1.1.1 Data Transfer Cost Reduction 5

1.1.2 Computation Cost Reduction 6

1.1.3 Data Access Cost Reduction 6

1.2 Research Contents . 7

1.3 Organization of Thesis . 8

2 Subscription-based Continuous Top-k Query Processing 11
2.1 Introduction . 11

2.2 Related Work . 14

2.3 Preliminaries . 15

2.3.1 System environments . 15

2.3.2 Top-k query model . 16

2.3.3 Problem definition . 16

2.3.4 Distributed continuous top-k query processing 17

2.4 Proposed Algorithms . 21

2.4.1 Main idea . 21

2.4.2 Algorithm explanation . 22

2.5 A Minimal Set of Subscriptions S(M) 26

2.5.1 Negative attribute values . 26

2.5.2 A set of dominating subscriptions S(D) 27

2.5.3 Linear-optimization based method 28

2.5.4 Geometry-based method . 28

1

2 CONTENTS

2.5.5 Updated procedure . 31

2.5.6 Running time . 32

2.5.7 Handling too many false positives 33

2.6 Simulation Experiments . 34

2.6.1 Proposed method analysis . 34

2.6.2 Communication cost analysis 37

2.6.3 Computation cost analysis . 46

2.7 Conclusions . 50

3 Candidate Pruning Techniques for Skyline Monitoring 53
3.1 Introduction . 53

3.2 Related Work . 55

3.3 Preliminaries . 56

3.3.1 Data model and its update model 56

3.3.2 Summarizing consecutive data snapshots with minimum

bounding rectangles (MBRs) 57

3.3.3 Dominance region and anti-dominance region 58

3.3.4 Pruning candidates for skyline calculation using MBRs 59

3.3.5 Changes of MBRs when considering a new data snapshot 60

3.4 Proposed Algorithms . 61

3.4.1 Overview . 61

3.4.2 Intialization (t = 0) . 63

3.4.3 Data updates at snapshot t > 0 64

3.4.4 Skyline calculation . 65

3.4.5 Post-computation maintenance 65

3.5 Simulation Experiments . 68

3.5.1 Datasets . 68

3.5.2 Comparison methods . 69

3.5.3 Measurements . 70

3.5.4 Results of the synthetic datasets 70

3.5.5 Results of the real datasets . 72

3.6 Conclusions . 74

CONTENTS 3

4 Cost-minimizing methods for top-k and skyline monitoring 75
4.1 Introduction . 75

4.2 Related Work . 78

4.3 Preliminaries . 79

4.3.1 Sensor Cloud . 79

4.3.2 Data Model . 79

4.3.3 Data Access . 80

4.3.4 Top-k monitoring query model 80

4.4 Cost Minimizing Framework . 81

4.4.1 Problem Statement . 82

4.4.2 Observations . 82

4.4.3 Uncertain data model . 82

4.4.4 Epsilon top-k query processing (ε-top-k) 84

4.4.5 Multidimensional Integration 86

4.5 Proposed Algorithms . 87

4.5.1 Multiple-round evaluation . 87

4.5.2 Single-round evaluation . 88

4.6 Spark-based Implementation . 90

4.7 Enhanced Approach . 93

4.7.1 Cache-based evaluation . 94

4.7.2 Cache selection . 94

4.8 Simulation Experiments . 95

4.8.1 Experiment setup . 95

4.8.2 Datasets . 97

4.8.3 Methods . 98

4.8.4 Benchmarks . 99

4.8.5 Results of NOAA dataset . 100

4.8.6 Result of WN dataset . 106

4.9 Extension to Skyline Monitoring . 111

4.9.1 Expense analysis . 111

4.10 Conclusions . 112

4 CONTENTS

5 Summary 115
5.1 Summary of Contributions . 115

5.2 Future Work . 117

Acknowledgment 119

Chapter 1

Introduction

Nowadays, there are increasing demands to store massive yet complex data. The mag-

nitude of data to be stored becomes impossible to fit in a single machine, so modern

data storage for dealing such big data is becoming more distributed (distributed data

stores), i.e., data records are partitioned and stored in multiple machines (in this thesis,

we call them nodes). Lately, not only data storage but also data generation also turns

distributed. In other words, the distributed nodes start generating or updating their own

data as time passes (streaming data sources). The most obvious system that share this

behavior is sensor networks (SNs) where a number of sensors perform data sensing and

enable us to acquire various kinds of latest information from physical world in real time.

Base station

Monitor locations at risk of flooding the most

Monitor locations with extreme conditions of toxic gases

M1
M2

M3

M4

M5

M6

M7

Figure 1.1: Sensor networks for environmental monitoring

1

2 CHAPTER 1. INTRODUCTION

The conventional way to perform data processing is to aggregate generated data

from sensors (nodes) to a centralized server called the base station (BS), then end-users

can derive benefits by performing data analytic as shown in Fig. 1.1. Even though

we often exemplify scenarios of sensor networks in this thesis, this architecture can

be generalized to highly distributed systems (client/server systems, hybrid peer-to-peer

(P2P) systems and other collaborative distributed systems).

Due to the outgrowth of these sensors including public/private sensor networks and

smart phones via participatory sensing [18, 23, 43], they create a massive amount of data

records continuously. Data sensing from sensors in each location is associated with an

identifier (e.g., id and location), timestamp and multiple values (i.e., data records, mul-

tidimensional data, data objects or data tuples). For example, a sensing report from a

weather station in San Francisco at 10.00AM consisting of temperature from a ther-

mometer sensor and humidity from a hygrometer sensor. In addition, in its nature, these

data are generated in a distributed fashion, i.e., distributed data sources.

Even though these nodes take actions on data generation and data acquisition, but

not all data are created equal. In other words, we normally do not look with attention

into every single data that are generated. Especially, in the era of Big data [4], it would

be very difficult, if not impossible, to do so. On the contrary, we are more likely to

observe or monitor only data that truly have high impacts and values to draw any useful

conclusions. These conclusions can lead us to better decision making. Besides, such

monitoring applications need to be done in real time. The examples of crucial applica-

tions include as follows:

1. Landslide and avalanche prevention– monitor of soil moisture, snow level and

vibrations to evaluate risks in land conditions

2. River flood risk monitoring– monitor of water level, water flow and precipitation

rate to monitor highly-hazardous locations

3. Air pollution monitoring– monitor the high values of dangerous toxic pollutants

of air conditions in diverse areas

If these monitoring systems are effectively deployed, life-saving countermeasures

can be properly imposed to prevent catastrophic situations. To perform these tasks,

preference query processing plays important roles on qualifying and returning only a

3

Rain (x1) Wind (x2) 0.6x1 + 0.4x2

A 39.18 83.25 56.808

B 73.08 68.75 71.348

C 54.91 54.25 54.646

D 94.87 53.85 78.462

E 82.97 38.05 65.002

(a) Table of data tuples

Rain

W
in

d
 s

p
e
e
d

B
C

A

D

E

C

A

(b) Example top-2 query

Rain

W
in

d
 s

p
e
e
d

B

C

A

D

E

(c) Example skyline

Figure 1.2: Top-2 includes B and D while skyline set includes A, B and D

small number of potential data from massive generated data to users based on users’

preferences or objectives. It helps users narrow down the scope of abundant data and

provides the insights about how to deal with the situations that are happening.

To specifically illustrate, for example, given some examples of the air pollution

monitoring, experts may need to keep an eye on some distinct conditional locations

using queries as follows:

1. Top-3 locations that contain the combinations of 6 common dangerous air pollu-

tants1 the most

2. All locations that contain dangerous air pollutants in unique extreme conditions

(Pareto optimal candidates)

The first exemplified query is classified as a top-k query. By using top-k query

processing, users can acquire k-best score data with regards to a pre-defined preference

scoring function (i.e., weightings of each attribute), where k and a scoring function are

the input parameters from users. This helps users limit the number of returning results

(at most k), which are best matched to the given objective. Fig.1.2b shows an example

of top-k query processing at one snapshot over multi-attribute data in Table 1.2a.

The second query is called a skyline query where the problem is long known as

the Maxima vector problem [26, 27, 41], which is directly related to the concept of

Pareto efficiency in economics and business management field [51]. In this query, none

of parameters is required except for a set of attributes. One of the useful properties
1https://www.epa.gov/criteria-air-pollutants

4 CHAPTER 1. INTRODUCTION

Sensor cloud services

Request (d1, t1)

+ payment

Continuous
query process

Monitoring queries Results at t1,t2,…

Data
marketplace

Computing
Resources

Physical sensor
network 1

Physical sensor
network 2

Physical sensor
network 3

Figure 1.3: Sensor cloud services where users can easily request shared paid sensor data

of this query is that a skyline set (a set of skyline data points) contains any possible

top-1 answers (for monotonic scoring functions), so skyline monitoring gives users the

insight of all possible extreme conditions dynamically. This will be explained in detail

in Chapter 3. It is noted that the size of a skyline set mainly depends on the number of

attributes (dimensionality) and data distribution, nevertheless the size of a skyline set is

expectedly much smaller than the size of entire dataset. Fig.1.2c shows an example of

the skyline set over data points in Table 1.2a.

1.1 Research Issues

A large number of works have focused on diverse variants of query processing methods

in centralized databases and distributed databases, but these query processing methods

for monitoring purposes introduced in the previous section, where their executions con-

tinuously run on dynamic data in distributed environments, still have many open issues

to be studied. Even though we can employ some of existing works for snapshot queries

(as opposed to continuous queries) in the context of continuous queries by repeating

it every short period of time, but they are inappropriate and raise problems including

communication cost and high response time. In addition, because data management

1.1. RESEARCH ISSUES 5

changes gradually with modern technologies, distributed environments here cover not

only the traditional schemes of highly distributed environments (e.g., centralized P2P

systems and sensor network deployments illustrated in Fig.1.1) but also cloud-extended

infrastructure, e.g., Sensor cloud [3, 48] where sensor data are aggregated from diverse

sensor networks, shared and accessed in the cloud (Fig.1.3). The latter setting, to the

best of our knowledge, this thesis is the first one to addressed this issue.

These settings bring a couple of major challenges because of some limitations that

are worth considering as follows:

1. Some distributed systems especially wireless sensor networks (WSNs) have lim-

ited data bandwidth and limited battery capacities, which are majorly consumed

by their data transmission components. Large communication overhead among

nodes from performing many continuous queries, which is referred to data trans-

fer cost, can negatively affect scalability, network lifetime and response time.

2. The performance of the base station (or servers) may slow down resulting in

higher response time if it needs to compute a large amount of aggregated data

for answering continuous queries (computation cost).

3. Cloud-based infrastructure, e.g., sensor cloud services, is based on pay-as-you-go

basis; running continuous queries can be costly in terms of the number of data

accesses (data access cost).

Therefore, in this section, three research objectives are described to alleviate those

limitations for preference query processing in such distributed environments.

1.1.1 Data Transfer Cost Reduction

A communication component of a sensor node, which takes a role of receiving and

sending data messages among nodes and the base station, consumes non-trivial amount

of battery power [19, 33, 67]. In order to carry data to the base station, intermediate

nodes (e.g., nodes M1 and M5 in Fig.1.1) take more burden relaying data on behalf of

other nodes to the base station, and are likely to run out of battery first. Running out of

battery of such nodes in the system negatively affects network connectivity as well as

overall network lifetime. In P2P systems, this can cause data bottlenecks at such nodes

6 CHAPTER 1. INTRODUCTION

while excessive data transfer is a major cause of packet losses in systems, for instance,

MANET [40]. Furthermore, to maximize energy efficiency is one of the best practices

for green computing [89].

Therefore, there is a demand for efficient continuous query processing methods in

distributed environments that are able to save the cost of data transfer by avoiding send-

ing redundant data objects, messages and overhead involved in query processing (for

example, data filters [91] and subscription messages in publish-subscribe-based query

processing [58]).

1.1.2 Computation Cost Reduction

In the perspective of the base station, even though the base station is often assumed to

be more powerful than other nodes in both terms of computing and power resources,

the base station must be able to rapidly process frequent streams of data coming from

many nodes and finally report up-to-date continuous query answers to the end-users.

Failing to do so brings about high response time and inability to detect or report the

critical events to users in time, although the specifications of latencies of data updates

in streams and response time are varied based on the types of applications. This problem

can be alleviated by designing efficient algorithms to handle frequent data updates at the

base station. It is noted that pruning out the irrelevant data to be sent to the base station

at the edge (shared the same idea with Section 1.1.1) is also helpful in computation cost

reduction.

1.1.3 Data Access Cost Reduction

Data access cost must be taken into account when executing continuous preference

queries in highly abstract distributed environments, for example, sensor cloud where all

physical development details have been abstracted and made easy for users to request

desirable data objects on demand as a service. The provided service accepts requests

from users and responds with values or data tuples with regards to the specified requests.

Most of preference queries are rank-aware queries, i.e., result determination involv-

ing positions (ranking) or interactions among data in the dataset. To be aware of the

positions or ranks of all data is to pay the price for requesting all data and then per-

1.2. RESEARCH CONTENTS 7

form sorting or comparisons, even though, after all, some paid data are not included in

the final results. In commercial sensor cloud, this incurs a huge sum of expense (i.e.,

monetary cost, payment to data providers) especially when running continuous queries,

which keep requesting data for every timestamp.

1.2 Research Contents

Subscription-based continuous top-k query processing

In Chapter 2, we address the issues when using the concept of publish-subscribe (pub/sub)

model to aggregate only data that are potentially matched to the end-users’ preferences

for processing continuous top-k queries in distributed environments such as sensor net-

works and peer-to-peer systems. In the scheme, nodes are taken as publishers, and

users at the base station (centralized server) are taken as subscribers. We propose our

subscription-based continuous top-k query processing requires 2-round communication

(2 rounds of subscription dissemination) between the base station and nodes. Then, we

show that the number of subscriptions can be further reduced to save data transfer (data

transfer cost or communication cost). We introduce the concepts of a set of dominating

subscriptions and a set of minimal subscriptions. Instead of disseminating all subscrip-

tions of all queries, disseminating only a set of minimal subscriptions, which is much

smaller, is enough to guarantee the completeness of the answers. Additionally, adaptive

strategies to renew subscription are proposed to avoid excess maintenance cost.

Skyline monitoring for frequent update streams

Skyline computation is a computationally intensive task – high computation cost, and a

single data update can totally change the final skyline set. In skyline monitoring where

many cases require the response latency to be small as close as real-time, it is obviously

not effective to naively calculate skyline result from the scratch upon every data up-

date. In Chapter 3, an efficient algorithm to fast process up-to-date skyline on incoming

frequent data steams at the base station is proposed. The main concept is to use min-

imum bounding rectangles (MBRs) to dynamically prune out unnecessary candidates

from skyline re-calculation. In addition, the proposed strategy for maintaining MBRs

8 CHAPTER 1. INTRODUCTION

enables our approach to be adaptive to the changes of data dynamicity resulting in faster

computation.

Cost-minimizing methods for preference query monitoring

As stated in Section 1.1, due to the advancement of internet connectivity, the paradigm

of how we manage sensor data has shifted to the cloud. Even though its hidden un-

derlying implementations are still distributed, query processing from the viewpoint of

users on such systems has data access cost which is different from the traditional sensor

networks.

In Chapter 4, we propose a variant of a top-k query called ε-top-k query which

returns an approximate result set with controllable errors for continuous queries while

the cost of data access can be significantly reduced.

Clearly, more complicated calculations bring about more computing complexity. We

also enhance our methods by using cache pruning techniques and show that this expen-

sive computation can be alleviated by well-known distributed and parallel computing

framework, i.e., MapReduce and Spark. In addition, using the same fundamental of

ε-top-k query, we can easily extend this idea for continuously computing approximate

skyline in lower cost called ε-skyline.

1.3 Organization of Thesis

This thesis consists of five chapters, and the rest of this thesis is organized as follows.

In the next chapter, we introduce and discuss about continuous top-k query pro-

cessing in distributed systems in Section 2.1 and review the prior works related to this

topic in Section 2.2. Section 2.3 describes the preliminaries of our work including

our assumed system architecture, query model and problem definitions. Our proposed

methods for continuous top-k query processing, which are based on publish-subscribe

models, and the techniques to fast identify the minimal set of subscriptions to decrease

the number of subscriptions resulting in significant lower communication overhead are

described in Section 2.4 and Section 2.5 respectively. The experiment setup and the

simulation results to exhibit the performance of our proposed methods are described

and discussed in Section 2.6. Finally, we conclude our work in this Chapter in Section

1.3. ORGANIZATION OF THESIS 9

2.7. The research in this chapter is based on our works published in [79, 80, 81, 85]2.

In Chapter 3, we explain the skyline monitoring problem and its issue for processing

frequent update streams in Section 3.1 and then review the related work in this topic in

Section 3.2. Section 3.3 explains the preliminaries of our work including data model,

the properties of minimum bounding rectangles (MBRs) and their usage. Then, Sec-

tion 3.4 describes our proposed algorithm for skyline monitoring aiming at speeding

up computation. Our proposed method has advantages over other methods in terms of

adaptivity over dynamic data. We compare our proposed method by conducting the ex-

periments using both synthetic and real datasets. The details are discussed in Section

3.5. Finally, this chapter is summarized in Section 3.6. The research in this chapter is

based on our works published in [82, 83]3.

In Chapter 4, unlike Chapter 2 and Chapter 3, we consider continuous query process-

ing in more-abstracted distributed architectures, e.g., sensor cloud services. We firstly

introduce the motivation and point out some given example scenarios in Section 4.1 as

well as the related work in Section 4.2. The system architecture, its data model, its data

access model and the query model are exemplified in Section 4.3. In Section 4.4, we

illustrate our ideas as well as the basic framework on how to achieve lower data access

cost. Then, we propose two algorithms and also their enhancements in Section 4.5 and

Section 4.6 respectively. The experiments are conducted to examine the benefits of our

proposed algorithms in Section 4.8. In addition, we also briefly introduce the approach

to extend our proposed methods for skyline monitoring, and we also show the obtained

results for that application in Section 4.9. Finally, we conclude Chapter 4 in the last

Section 4.10. The research in this chapter is based on our works published in [78, 84].

2[85] is available at Springer via http://dx.doi.org/10.1007/s11280-016-0385-1
3[83] is available at Springer via http://dx.doi.org/10.1007/978-3-319-22852-5 9

10 CHAPTER 1. INTRODUCTION

Chapter 2

Subscription-based Continuous Top-k
Query Processing

2.1 Introduction

In recent years, the amount of digital data is surging tremendously because of the rapid

population of mobile and sensor devices, which continuously generate and store those

generated data. Therefore, to process a top-k query which is a rank-aware query over

those distributed data sources, naively we need to aggregate all those distributed data

to a single server. In the perspectives of green IT or some deployments, e.g., wireless

sensor networks, the constraint of bandwidth consumption, which directly affects bat-

tery lifetime, is often stressed. Therefore, it is not feasible to aggregate all data. The

paradigm is shifted to the concept of query-then-store which users define their set of

top-k preferences beforehand and then the system will aggregate only a sufficient set of

data from multiple data sources. Due to a characteristic of a top-k query, a rank-aware

query, it is challenging to request a partial set of data from the entire data without losing

the accuracy of the delivered final answers. In addition, more complicated requirements

of data model and query model are also taken into account.

In this chapter, we address the problem of continuous top-k data aggregation given

by an example application in Fig.2.1. A possible application of this research is to mon-

itor the latest weather information to record only some attentive events in real-time,

e.g., the risk of heavy rain, heatstroke, storm surge and avalanche. The weather infor-

11

12 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

aggregator

Station ID Timestamp Temp(x1) Wind Speed(x2)

001 10.00AM 25.6 3.2

Base station (BS)

Top-2 : f(x1,x2) = 0.9x1 + 0.1x2

Top-5 : f(x1,x2) = 0.3x1 + 0.7x2

AnswersTop-k queries

ID:001

ID:002

ID:003

ID:004

ID:005

Figure 2.1: Example scenario: data aggregation via aggregators to answer top-k queries

registered at the base station (BS)

mation of each site is composed of multiple numerical values (multi-dimensional data)

including temperature, wind speed, precipitation, snow depth, humidity and so forth in

each timestamp, and the attentive events are evaluated from this information by giving

different weightings on each factor. Traditionally, these sources of the weather data,

e.g., weather stations, need to report their own real-time data values to the centralized

server, and these values keep changing every fixed time period, for example, record ev-

ery 10 minutes. The officials at the centralized server keep observing and prioritizing

the first few sites which yield high potential of occurrences with the additional analysis

from various factors by the experts, while the rest of the list seems benign. Top-k query

processing is helpful in this task to report only k most attentive sites in response to the

query preferences. Furthermore, this kind of situation can be seen in a modern system

like smart meters which are setup at each household to measure and report the electric,

water and gas usage to be analyzed and for improving the efficiency and reliability of

resource and supply distribution.

While the experts tend to be interested in a few candidates at a time, the centralized

scheme which aggregates all data readings back to the centralized server in every epoch

is impractical in both terms of communication cost and scalability. Traditional snapshot

top-k query processing is definitely inefficient in this case because, by dealing a lot of

queries, it can incur a large delay as well as redundant data records to be returned.

2.1. INTRODUCTION 13

In a large scale deployment such as P2Ps, data are sent by relaying from data sources

to a centralized server (a base station). Therefore, in each epoch, an intermediate node

which helps relay data to the base station will incur more load than others. Such inter-

mediate nodes can be found as cluster heads in a cluster topology, high-level nodes in

a hierarchical topology, nodes which are close to the base station in a mesh topology

and even regional data aggregation server on the Internet. Here, we will call a node

behaving this as an aggregator. If these aggregators also have same battery power and

bandwidth as other local nodes, they are likely to be put off first. This obviously reduces

the network lifetime in the system.

To solve the problem above, we propose a method to reduce the number of reported

data records which are accumulated at the aggregators before relaying to the terminal

base station. Obviously, of all aggregated data, they contain both data records that

finally belong to final top-k answers and not ones (larger set). Our method prevents

intermediate nodes from relaying unnecessary data to suppress communication cost.

Our method adopts the concept of a publish-subscribe model for continuous queries

which refer aggregators as publishers and many users at the base station as subscribers.

Therefore, the base station has to issue queries’ meta-data to register their areas of

interests called subscriptions to each aggregator. Then the aggregators need to send

their holding data records which match with one of the registered subscriptions in each

timestamp. However, directly adopting this idea is inefficient because the overhead of

subscription dissemination can be extremely high when dealing with a large number of

queries. Apart from the issue of scalability, subscriptions can become less accurate or

invalid if global data distribution has been changed. New subscription reconstruction

and new dissemination must be executed, and the additional communication cost due

to its maintenance is non-trivial. Perhaps, the cost of subscription maintenance may

overcome the cost of transferring data records, so using this scheme naively may not be

feasible in the real practice.

Therefore, our proposed method adopts techniques to manage these subscriptions

by reducing the number of subscriptions to be disseminated while guaranteeing the

completeness of the final top-k answers of all queries. We identify a minimal set of

subscriptions instead of sending entire of queries’ subscriptions as well as the way to

decide an appropriate time to renew those subscriptions to save further communication

cost.

14 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

In summary, the contributions of this chapter are as follow:

• We formulate the requirements of continuous top-k data aggregation in distributed

data sources.

• We extend the basic concept of publish-subscribe for executing continuous top-k

data aggregation with our proposed techniques to save a large amount of commu-

nication overhead.

• We conduct experiments in various settings by using both synthetic and real

dataset to show that our proposed method can achieve lower communication cost

and outperform the other aggregation techniques.

The remainder of this chapter is organized as follows. In Section 2.2, we introduce

related work of this chapter. Section 2.3 presents preliminaries explaining system envi-

ronments, query model and problems. In Section 2.4, we present our proposed method

and its enhancement in Section 2.5. In Section 2.6, we discuss the results of the simula-

tion experiments, and in Section 2.7, we summarize the chapter.

2.2 Related Work

Top-k query processing has been widely researched in the database community. Fun-

damentally, it has been implemented in centralized databases to return only k most

favorable ranked records. Many studies aim to improve the efficiency of various kinds

of top-k queries by limiting scans, using indexes [42, 96, 101] and cache [6, 11, 20, 30].

Moreover, efficient top-k query processing for data streams has also been researched

[50, 65, 94]. All of them are focusing on reducing the number of scans and computation

time for fast computation.

In the viewpoints of distributed systems, a top-k query is also demanded especially

in peer-to-peer networks (P2Ps) and wireless sensor networks (WSNs). However, differ-

ent assumptions have been made based on data models, and their requirements. [64, 91]

are interested in querying on single-value data while reducing the amount of transferred

data. For multidimensional data, they can be mainly divided into two categories includ-

ing vertically-partitioned data [5, 62] and horizontally-partitioned data. In this research,

2.3. PRELIMINARIES 15

we focus on the latter case. In either case, most of studies so far focused on snap-

shot queries on static distributed data and aim to reduce the amount of transferred data

records by using various techniques, for example, caching [86, 87, 100], progressive

query [61] and estimation from historical data [67]. In the case of dynamic data which

are frequently found in WSNs, [39] proposes a method to prune irrelevant data records

by constructed filters and aggregate only a partial set of data.

2.3 Preliminaries

2.3.1 System environments

System model

The distributed network consists of NA aggregators (M1,M2, . . . ,MNA
) and a single

base station (BS) which is more powerful than aggregators in both terms of computing

capability and storage. An aggregator Mi takes a role of accumulating data records

from neighbor nodes in every epoch. Therefore, we simply assume that, at each epoch,

an aggregator holds a set of data records DMi
. Each aggregator logically connects and

collaborates withBS. BS takes a role of taking queries from all end-users and performs

data aggregation. BS can be seen as a centralized coordinator server to relay and deliver

the final result to end-users. The system architecture is similar to [46], but they aim to

monitor skyline queries while we focus on top-k queries.

Data model

Each data record from a local node is attached with id which we can assign in the

initialization of the system deployment. Each data record generated at timestamp t

is composed of a tuple of m + 2 numerical values including id, timestamp and m-

dimensional attribute values. Those m-dimensional attribute values are represented in

m-dimensional Euclidean space ((x1, x2, . . . , xm) ∈ Rm). At timestamp t, each aggre-

gator holds only a partial set DMi,t of all dynamic data records (Dt =
⋃NA

i=1DMi,t). It

holds that DMi,t ⊆ Dt and
⋂NA

i=1DMi,t = ∅. In the system, the number of dynamic

data records of each aggregator is constant, and only their values are changed. Let ND

stand for the total number of data records in the system, ND = |Dt| = |
⋃NA

i=1DMi,t|.

16 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

Basically, only m-dimensional attributes of each data record are used for ranking, and

we represent it as di,t = (di,t[1], di,t[2], , di,t[m]) where i = {1, 2, . . . , ND} and t is

a positive number of timestamp. Therefore, ∀di,t ∈ Dt and DMi,t ⊆ Dt. It is noted that,

at different times t, the values of attributes are possibly changed.

2.3.2 Top-k query model

A multidimensional top-k query q = (fq, kq) from a user is defined by a linear scoring

function in which its weightings can be represented as a vector f = (w1, w2, . . . , wm)

where wj stands for positive weighting at j-th dimension while a parameter k stands for

the number of desired data records. We focus on linear functions such that a score of a

data record di is f(di) =
∑j=m

j=1 wjdi[j]. This class of functions is common because it

represents how a user gives priority (weighting) to each factor. A set of weightings can

be acquired by many possible ways, for example, given directly by users, adapted from

the studies of each objective or suggested by the system via a questionnaire. A scoring

function is monotonic, that is if da[i] ≤ db[i] for all 1 ≤ i ≤ m, then f(da) ≤ f(db).

The value k defines the number of desired data records. Users must define their query

preferences a priori to BS, and BS records these queries in the query list (Q).

The final top-k answers of query q at timestamp t are denoted by Tq,t = {aq,1, aq,2,
. . . , aq,kq} where aq,i ≥ aq,j when i > j and Tq,t ⊆ Dt. By the definition of final top-k

answers, ∀dx,t, dy,t : dx,t ∈ Tq,t, dy,t ∈ Dt\Tq,t → fq(dx,t) ≥ fq(dy,t).

2.3.3 Problem definition

To answer all top-k queries stored in the query list Q at timestamp t (Tq,t for each

q ∈ Q), BS must receive a sufficient set of data records from each aggregator Mi – say

LMi
such that ∀q ∈ Q : Tq,t ⊆

⋃NA

i=1 LMi
.

In this research, we aim to minimize the communication cost for answering all top-k

queries in Q for each timestamp t. The communication cost for querying involves not

only the cost of transferring data items from aggregators (
∑NA

i=1 |LMi
|) but also the cost

of transferring query messages, filters or other communication overhead involving in

any specific processing methods, e.g., subscriptions and their updates.

2.3. PRELIMINARIES 17

2.3.4 Distributed continuous top-k query processing

Traditional snapshot top-k query processing

In this section, we discuss about traditional distributed top-k query processing methods

on horizontally-partitioned databases. Since a top-k query is a rank-aware query, it is

very challenging to reduce transferred data in distributed systems. The basic method

for a snapshot top-k query is to issue the query from BS to every node in the network.

To guarantee the completeness of the final answers, each node must send its own data

records of k highest scores back to BS. This procedure can be finished in a single

round, but the number of returned data records is kNA objects. In a large scale system,

this is unacceptable because k(NA − 1) data records not included in the final answers

are wastefully transmitted to BS.

The drawback of the method explained above is due to the number of contacted local

nodes because it has to contact to all nodes in order to request final answers whether

nodes do not contribute final answers.

[86] proposed a method to prevent BS from contacting all nodes by utilizing the

concept of skyline points. BS initially caches all skyline points of local nodes’ data

records, and they are used for deciding the order of nodes to be requested. The query

will be processed at one local node at a time by choosing the most promising node first

based on the maximum score of its skyline points stored at BS. In the first round, first k

items will be returned, and then it compares k-th highest score of data records retrieved

so far with the skyline points of the next promising node. If those skyline points of

the next are not better than ones retrieved so far, the final results are complete and the

processing can be stopped. The trade-off of this method is that it requires multiple

iterations to finish (up to k iterations in the worst case), so the latency until the end of

processing can be high.

The idea to derive a benefit of caches (previously-posed queries) is found in [61,

100]. [61] proposed a method to identify whether the answers of previously-posed

queries processed before are included in final results of a new query. If they are not

enough, the query continues requesting remaining data records from local nodes. [100]

lets local nodes cache some queries with the answers to quickly response to the popular

query patterns. As a result, the number of contacted nodes can be reduced, because the

final answers can potentially be reached from neighbor nodes.

18 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

All traditional methods described above are not applicable to continuous queries,

because they have to repeatedly query (proactive methods) for the latest final results

every time epoch, and the appropriate query interval is difficult to be determined. This

causes a lot of query messages to be forwarded and redundant results to be returned.

Existing methods for continuous queries

Instead of repeatedly querying like traditional methods for continuous queries, the re-

active scheme, local nodes sending only data records which are likely to be included in

the final answers back to BS (potential data records), is more promising. In the idea

of [87], we can retrieve a part of local dataset from each node which satisfies the com-

pleteness of final answers back to BS called K-skyband. K-skyband returns a set of

data records that are dominated by at most K − 1 other data records. An data record

dominates another if it is as good as or better in all attributes and better in at least one

attribute. The accumulation of these data can sufficiently answer all monotonic top-k

queries where k ≤ K. The definition of K-skyband is referred to [52]. When a data

update occurs at a local node, if it affects local K-skyband, that data update must be

reported to BS. It can prune a lot of unnecessary updates, but the efficiency becomes

worse in a skew-data distribution and a large-scale system.

According to too large K-skyband, the method in [39] solves this problem by using

a more efficient global filter. BS retrieves kmax-dominant data records first, then it

constructs the filter. Any data records which are dominated by this filter is impossible

to be included in the final answers of any top-k queries where k ≤ kmax. The same

filter will be setup at all local nodes to prevent unnecessary data updates. The obvious

drawback is the maintenance cost because, when a data record that is a part of the filter

or inside the filter is changed or removed, it gradually invalidates filter points and the

pruning efficiency is degraded. As a result, false positive data records are leaked to BS

when being used in long terms. The way to handle this problem is to re-construct and

disseminate a new global filter to all nodes, but this is costly.

Subscription model

The novel concept, query-then-store, is an alternative method for executing continuous

queries. The idea to perform information filtering at information generating sources to

2.3. PRELIMINARIES 19

x1

x2

d1

d2

d4
d3

d5
d6

d8

d7

q1(top-4)

q2
(top-4)

𝜃q1

𝜃q2

(a) Weighting vectors and their thresholds

x1

x2
q1

q2

Affected area
of q1

Affected area of q1

and q2

Affected
area of q2

𝜃q1

𝜃q2

(b) Affected areas

Figure 2.2: Example of two top-4 queries including q1 and q2

prevent overwhelming data updates has been studied in [58, 97] by announcing the spec-

ification of interests to the information sources. That set of specifications are defined in

subscriptions. However, the content in a subscription depends on query types and data

models. Here, a subscription for top-k query processing is bound to each aggregator to

inform it of which data updates should be notified to BS since we know that most of

generating new data updates are not included in final top-k answers.

Given a set of final results of a top-k query q, top-k answers and non-top-k answers

can be easily divided by setting the score of k-ranked data record (fq(aq,kq); aq,kq ∈ Tq,t)
as the actual threshold θq,t as the following equation.

θq,t = (fq.w1)aq,kq [1] + (fq.w2)aq,kq [2] + . . .+ (fq.wm)aq,kq [m] (2.1)

We refer (fq.w1)x1 + (fq.w2)x2 + . . .+ (fq.wm)xm = θq,t as the threshold line of query

q of timestamp t.

In addition, we define the area where is above the hyperplane (fq.w1)x1+(fq.w2)x2+

. . . + (fq.wm)xm ≥ θq which is a half space as the affected area, because any changes

of data values outside this area definitely do not affect the query’s final answers as well

as the threshold and vice versa. We omit t in θq,t or Tq,t if the statement does not imply

any specific timestamp. An example of two top-4 queries is shown in Fig.2.2.

Seeing that the final top-k answers can be correctly retrieved by using any traditional

top-k query processing methods, k-th ranked data record is certainly known. The system

20 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

can create a top-k subscription denoted by a scoring function/preference function fq and

a threshold θq,t in response to every single query and bind it to every node to suppress

the number of transferred data records to be sent to BS. The aggregators only need

to send data items di,t which fq(di,t) ≥ θq,t. We call that a data record matches with

a subscription. In the same way, we also call a subscription matches a data record.

Therefore, the number of disseminated subscription messages will be NA|Q|.
None of the researches above concern about query management at BS to improve

the performance in terms of communication cost when dealing with many queries for

numerous users. Looking into the relations among those queries, some queries (sub-

queries) are fully contained in other queries (dominating queries). In other words, one

query may be subsumed by other queries (Query subsumption [37, 76]). Being able to

identify the relation of these queries can lead to the capability of disseminating only

some potential subscriptions instead of subscriptions of all queries. This can save cost

of communication and cost of maintenance.

Answering top-k queries using multiple views

Basically BS is able to identify whether a given subjective query can be answered by

previously-posed queries’ answers (materialized views). For example, let us assume that

a list of nv existing queries QV = {q1, q2, . . . , qnv} with their complete final answers is

given, each query qi ∈ QV consists of (fi, ki, θi, Tqi), and we want to test whether or not

subjective query q∗ with scoring function f∗ = (w1, w2, . . . , wm) and value k∗ can share

the answers with the queries in QV . The linear optimization method can be used for

such that test by finding x1, x2, . . . , xm that maximizes θm using the following program.

maximize θm = (f∗.w1)x1 + (f∗.w2)x2 + . . .+ (f∗.wm)xm

subject to (f1.w1)x1 + (f1.w2)x2 + . . .+ (f1.wm)xm ≤ θ1

(f2.w1)x1 + (f2.w2)x2 + . . .+ (f2.wm)xm ≤ θ2
...

(fnv .w1)x1 + (fnv .w2)x2 + . . .+ (fnv .wm)xm ≤ θnv

x1, x2, . . . , xm ≥ 0

(2.2)

If θm ≤ θ∗ where θ∗ is the k-ranked score of the available data records from the

2.4. PROPOSED ALGORITHMS 21

x1

x2

d1

d2

d4

d5

d6

d8

d7

𝜃q1

𝜃q2

𝜃m

𝜃𝑞∗

d3

Figure 2.3: Example of 2 materialized views (q1, q2) and a subjective query (q∗)

queries in QV (
⋃nv

i=1 Tqi), then the queries in QV subsume q∗. In other words, q∗ is

answerable by the answer sets of existing queries QV , i.e., Tq∗ ⊂
⋃nv

i=1 Tqi without

additional data retrieval from distributed data nodes.

To illustrate, given 2 existing queries from Fig.2.2a and a subjective query q∗ with

fq∗ = (0.5, 0.5) and kq∗ = 2, the resulting θm w.r.t q∗ is as shown in Fig.2.3 while

θq∗ = fq∗(aq∗,2) = fq∗(d3) ≥ θm. Hence, {q1, q2} subsumes q∗ and Tq∗ ⊂
⋃2

i=1 Tqi .

The methods to improve the executing performance by proposing view selection

algorithms and indexing techniques have been studied in [20, 92].

2.4 Proposed Algorithms

2.4.1 Main idea

According to the assumed environment and its application, data records are aggregated

periodically at every periodic timestamp to answer the posed continuous queries. Tra-

ditionally, BS aggregates entire data records. However, receiving all data records as

mentioned above is too expensive. To prevent BS from receiving unnecessary data

records, BS disseminates a set of subscriptions which contains scoring functions and

thresholds of each query. This is to limit the number of returned data records for the

next iteration.

22 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

The concept of publish-subscribe scheme for continuous queries introduced in Sec-

tion 2.3.4 can be implemented in BS and aggregators by initially aggregating all data

records at timestamp t = 0, and BS constructs a set of subscriptions of the queries in

Q and disseminate them to aggregators.

After that, on a new periodic update at timestamp t where t > 0, aggregators will

send a set of data records which are potentially included in top-k answers to BS based

on a set of existing subscriptions. Once BS receives this set of data records, BS checks

whether the set of subscription needs to be updated. If yes, this also means the set of

data records is possibly insufficient to answer top-k queries. Then, a set of updated

subscriptions is disseminated to aggregators (first round of subscription dissemination).

Once aggregators receive a new set of subscriptions, they send an additional set of

data records to BS based on the new set of subscriptions. The same procedure at BS

is repeated when it receives the additional set of data records. If the data records BS

has received so far are still insufficient, another time of subscription from BS may be

required.

The algorithm for aggregators and BS after t = 0 are described in Algorithms 1

and 2 respectively. We later proof that, for each iteration t, BS requires at most 2 times

of subscription dissemination (2 rounds of communication) to be able to sufficiently

answer top-k queries.

2.4.2 Algorithm explanation

On a new periodic update of timestamp t, aggregators need to execute the procedure

in lines 4-10, Algorithm 1 to report latest updates of data records to BS. We select

data recorded to be included in the set of data records to be sent to BS (LMi
) with 2

following criteria. a) The data records which matched with at least one subscription

in the subscription list of the previous iteration (t − 1); and b) The data records which

matched with at least one subscription in the current subscription list SMi
. The reason

behind the design choice of criterion a) is that the data records which matched with one

of the previous subscriptions at iteration (t − 1), even though their data values have

already been updated, are potentially and likely to be included in top-k answers in the

current iteration t compared to the rest of the data records in the dataset Dt. In the case

that data updates are not significant, the combination of the data records sent by both

2.4. PROPOSED ALGORITHMS 23

Algorithm 1: Procedure for aggregator Mi

On receiving subscriptions from BS
1: Replace SMi

with new subscriptions

2: Execute check()

On a new periodic update for iteration t
3: Execute check()

Function check()
4: LMi

← ∅
5: for dj,t ∈ DMi,t which is not yet sent to BS do
6: if dj,t−1 matches with ∃s ∈ SMi

in (t− 1) iteration then
7: LMi

← LMi
∪ {dj,t}

8: else if ∃si ∈ SMi
(fsi(dj,t) ≥ θsi) – subscription matching then

9: LMi
← LMi

∪ {dj,t}

10: Send LMi
to BS

Algorithm 2: Procedure for the base station (BS)

On receiving new data records
⋃NA

i=1 LMi

1: Let R be a set of data records BS has received so far in iteration t (also include⋃NA

i=1 LMi
)

2: for q ∈ Q do
3: Execute top-k processing for the current Tq,t using data records in R

4: Update θq,t ← aq,kq (k-ranked data score)

5: if θq,t < θq,t−1 then
6: B ← true

7: if B = true then
8: Construct and issue an updated set of subscriptions

24 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

criteria a) and b) together should be sufficient for answering all top-k queries upon BS

received them.

On the BS’s side, in each iteration, BS receives many data records from the aggre-

gators (
⋃NA

i=1 LMi
). Algorithm 2 expects that those data can sufficiently answer latest

top-k answers for iteration t. We update the final top-k answers of each query in Q by

using those data. However,
⋃NA

i=1 LMi
is possibly not sufficient to guarantee the correct-

ness if it is detected that the new threshold is lower than the previous threshold which

is used in its disseminated subscription. In that case, issuing a new set of current sub-

scriptions is needed, and it triggers the procedure of aggregators when receiving new

subscriptions from BS (lines 1–2, Algorithm 1), and more than one round of commu-

nications is required to get sufficient data records for answering top-k queries.

This algorithm guarantees that, in each iteration, the process can be finished within

2-round communications (2 times of subscription dissemination) and assures the com-

pleteness of final top-k answers (no false negatives).

Lemma 1. The algorithm can return the sufficient top-k answers (no false negatives) for

all queries in Q to BS within 2 times of subscription dissemination for each iteration.

Proof. Let R and R′ be the data records BS has received so far in the first and second

times of subscription dissemination for iteration t respectively. We make a proof by

contradiction. Assume that, the subscription constructed in the second round cannot

request sufficient answers in response to query q. In other words, Tq,t 6⊂ R′.

The algorithm guarantees that |R| ≥ kmax; kmax = maxq∈Q kq because it is designed

to send at least the answers of the previous round which are used to satisfy the complete

set of answers in the previous round. In the second time, the threshold θq,t of each query

q is set as k-ranked data score in R.

Thus, | {di,t|di,t ∈ R ∧ fq(di,t) ≥ θq,t} | = kq. By issuing these subscriptions to ev-

ery aggregator, the set {di,t|di,t ∈ Dt ∧ fq(di,t) ≥ θq,t} will be returned in R′. Due to

the fact that R ⊂ Dt, it holds |{di,t|di,t ∈ Dt ∧ fq(di,t) ≥ θq,t}| ≥ kq as well as

{di,t|di,t ∈ Dt ∧ fq(di,t) ≥ θq,t} ⊂ R′. Therefore, by the definition of a top-k query, it

shows that Tq,t ⊂ {di,t|di,t ∈ Dt ∧ fq(di,t) ≥ θq,t} ⊂ R′ which contradicts our assump-

tion.

Nevertheless, this algorithm may incur some false positives which are data records

2.4. PROPOSED ALGORITHMS 25

sent to BS but not belong to top-k answers. The set of false positives at iteration t is as

defined in the following equation.

Ft =

NA⋃
i=1

LMi
\
⋃
q∈Q

Tq,t (2.3)

We partially use an example of query q1 in Fig.2.4 and consider 2 consecutive it-

erations, i.e., iteration t and iteration t + 1. Given that at iteration t, a subscription of

q1 matched d1,t, d2,t, d5,t and d4,t respectively resulting in Tq1,t = {d1,t, d2,t, d5,t, d4,t}.
Assume that at iteration t+ 1, this subscription matched d1,t+1, d2,t+1, d5,t+1 and d3,t+1.

In this case,
⋃NA

i=1 LMi
at iteration t+1 consists of 5 items including d1,t+1, d2,t+1, d5,t+1,

d4,t+1 and d3,t+1. If finally Tq1,t+1 = {d1,t+1, d2,t+1, d5,t+1, d3,t+1}, then we can calculate

the θq1,t+1 (if changed) and d4,t+1 is a false positive. The reason we allow some false

positives is because of Lemma 1, i.e., guaranteeing the completeness of the answers

within 2 iterations. We will latter show in the experiments that the number of false pos-

itives incurred by our procedures is not significantly larger than the other filter-based

method.

Apart from the overhead due to false positives, the cost of subscription and its main-

tenance cost can be expensive and non-trivial. In the case that global data distribution

is not changed much or unchanged, the disseminated subscriptions can be used in long

term. On the other hand, if data are dynamically changed, this cost must be concerned

especially when dealing with many concurrent queries. This is because we have to

construct and disseminate subscriptions for every single query in Q.

For this aim, we propose a solution to reduce the number of subscriptions to be

disseminated. It is noted that some queries with different query preferences in terms

of both scoring function f and value k can share common answers, or even subsume

to each other (query subsumption). Therefore, the subscriptions of some queries can

be neglected to be disseminated. The proposed method aims to find a minimal set

of subscriptions while keeping the same idea and guaranteeing the accuracy of top-k

answers.

26 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

x1

x2

d1,t
d2,t

d4,t

d8,t

d7,t

d9,t

d3,t

d5,t

d6,td10,td11,t

q1: top-4 : f(x1,x2) = 0.2x1 + 0.8x2

q2: top-5 : f(x1,x2) = 0.9x1 + 0.1x2

q3: top-4 : f(x1,x2) = 0.5x1 + 0.5x2

Tq1,t = {d1,t, d2,t, d5,t, d4,t}

Tq2,t = {d3,t, d1,t, d5,t, d6,t, d8,t}

Tq3,t = {d1,t, d3,t, d5,t, d2,t}

q1

q3 q2

q4: top-2 : f(x1,x2) = 0.8x1 + 0.2x2

Tq4,t = {d3,t, d1,t}

q4

fq1 = 0.2x1 + 0.8x2 = fq1(d4,t) = 𝜃q1,t

At timestamp t

Figure 2.4: Example of 4 queries with different preferences having different affected

areas and threshold lines

2.5 A Minimal Set of Subscriptions S(M)

We try to find a minimal set of queries that the combination of these queries’ answers

can sufficiently satisfy any other queries in Q. A minimal set of subscriptions consists

of the smallest set of subscriptions of queries which a part of their hyperplanes can be

seen and not covered by other hyperplanes from the origin, for example, {q1, q2} in

Fig.2.4. The hyperplanes of the queries that are not able to be seen (ray shooting) from

the origin, i.e., subsumed queries, are unnecessary to be created and issued as top-k

subscriptions. To issue only this minimal set can relieve the number of messages of

issued subscriptions as well as messages for subscription updates that cost communi-

cation overhead. Therefore, how to compute and handle it efficiently when data are

updated is an interesting issue, because a minimal set of subscriptions will dynamically

go in and out. Moreover, it is desirable to support a lot of queries at a time (scalability)

while keeping low computation cost.

2.5.1 Negative attribute values

The example as shown in Fig.2.4 as well as our following proposed techniques, only

positive attribute values will be discussed. In the case of dealing with negative attribute

values, translations of axes [72] must be applied to translate those negative values to

2.5. A MINIMAL SET OF SUBSCRIPTIONS S(M) 27

X

Y

q1

q3

q2

int-x1

int-y1

int-y3

int-y2

int-y4
q4

int-x3 int-x2 int-x4

(a) The threshold lines of the 4 queries

X-intercept
Y
-i
n
te

rc
e
p
t

(int-x3, int-y3)
(int-x1, int-y1)

(int-x2, int-y2)

(int-x4, int-y4)

q1

q2

q3

q4

(b) The intercept space of the 4 queries

Figure 2.5: Example of representing 4 queries including q1, q2, q3 and q4

positive values.

Each data record (di,t[1], di,t[2], . . . , di,t[m]) will be translated to (di,t[1]+C, di,t[2]+

C, . . . , di,t[m] + C) in the translated m-dimensional Euclidean space where C ∈ R>0

and C must be large enough so that all attribute values in the current timestamp and

latter timestamps are not negative after the translation, i.e., ∀di,t ∈ Dt, ∀j ∈ [1,m] :

di,t[j] + C ≥ 0.

We use the new translated attribute values instead of original attribute values. Be-

cause this translation preserves the distances between every pair of data points, it will

not affect the final results as well as their ranks in top-k queries, but only the raw score

and the threshold have a surplus of a constant value compared with that of original

Euclidean space.

2.5.2 A set of dominating subscriptions S(D)

Obviously, the subscriptions of the queries whose top-k answers are fully included in

other queries are not needed to be disseminated. In Fig.2.4, we can see that the answer

set of query q4 is a subset of the answer set of query q2. To be precise, the answer space

of query q2 fully covers the answer space of query q4. In this case, we can say that query

q2 dominates query q4. Here, we call the set of queries that are not fully dominated by

28 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

any queries as dominating queries.

To identify a set of dominating subscriptions, we solve the axis intercepts of the

linear equations (the scoring functions with their thresholds in Fig.2.5a), then those axis

intercepts are plotted in the new space called the intercept space as shown Fig.2.5b. We

define a set of dominating subscriptions S(D) as the queries lying on the skyline [10] (the

lower the better) in the intercept space. Therefore, only acquiring the top-k answers of

S(D) ({q2, q3, q4}) also ensures the sufficiency of top-k answers for remaining queries

Q\S(D) ({q1}) in Q.

Definition 2.5.1. (Dominating subscriptions) A set of dominating subscriptions S(D)

contains all the queries that belong to the skyline in the intercept space.

As a result, unnecessary overhead can be saved, but in high dimensionality, it rarely

occurs that queries are fully-covered to each other. Moreover, as in the given example

in Fig.2.5a, query q2 can also be eliminated because query q3 and query q4 together can

subsume it. The following solutions in Section 2.5.3 and 2.5.4 try to eliminate that case.

2.5.3 Linear-optimization based method

Given a query list Q with their final answers, we can identify a set of minimal subscrip-

tions S(M) by utilizing the linear optimization method in Eq.2.2 as shown in Algorithm

3. However, the computational complexity is very high because every query has to be

tested repetitively. In practice, when there is an data update that affects the final an-

swers and makes the thresholds of some queries change, all have to be re-computed. It

is unacceptable when BS dealing with a numerous number of queries at a time.

2.5.4 Geometry-based method

Instead of using the linear optimization-based method, we adapted the geometric rela-

tion, a point-line duality [12], for identifying a set of minimal subscriptions.

In earlier works, a point-line duality has been used for efficient top-k and reverse

top-k query processing such as mapping data points in the Euclidean space to lines in

the dual space [17, 96]. The authors in [14] proposed a geometric unified framework to

answer k-snippet, k-depth contour and reverse top-k queries by utilizing their proposed

2.5. A MINIMAL SET OF SUBSCRIPTIONS S(M) 29

Algorithm 3: Linear optimization-based S(M)

Input: Query list Q

Output: A minimal set of subscriptions S(M)

1: S(M)← ∅
2: for query q in Q do
3: Q′ ← Q\{q}
4: Maximize θm in Eq.2.2 by using Q′ as constraints and fq as an objective

function

5: if θq < θm then
6: S(M)← S(M) ∪ {q}

I/O efficient k-lower envelope algorithm. In [16], the authors used a duality transforma-

tion to produce an efficient indexing scheme for efficiently reporting vectors with large

projection for a given query direction q. Our work transforms queries in Q into points

similar to [16], but we use it to identify a smaller set of subscriptions.

Query’s hyperplane and its duality

Point-line duality [12] is a transformation that maps lines and points between a primal

plane (m-dimensional space) and a dual plane (another m-dimensional space). We de-

note this transformation using a asterisk (*) as a superscript as defined in Eq.2.4. A

top-k subscription of query q forms a threshold line `q : fq(x) = θq which can be de-

rived to a dual plane as in Eq.2.5 (let wi be a query weighting of i-th dimension of query

q).

` : xm = −
m−1∑
i=1

aixi − b⇔ `∗ = (a1, a2, . . . , b) (2.4)

`q : xm = −
m−1∑
i=1

wi

wm

xi +
θq
wm

⇔ `∗q = (
w1

wm

, . . . ,
wm−1

wm

,− θq
wm

) (2.5)

It is noted that, for a point in a dual plane `∗q , first m − 1 coordinates purely represent

the preferential functions which are fixed for a single query, but m-th coordinate de-

pends on the threshold θq,t, i.e., the k-th ranked final answer aq,kq ∈ Tq,t, which can be

dynamically changed when affected by data updates.

30 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

a*
b*

a b

Lines in a primal plane Points in a dual plane

Upper hull

Lower envelope

Figure 2.6: Lower envelope in a primal plane and upper hull in a dual plane

Lower envelopes of functions and convex hulls of their dual points

Consider a set of hyperplanes H in Rm. The lower envelope of H in (+xm)-direction

is a set of all points that lie on the hyperplanes of H with the property that the vertical

ray from those points along (−xm)-direction does not intersect any of the hyperplanes

in H . Here, we focus on finding which hyperplane participates in the lower envelope as

an example of lower envelope in 2D shown in Fig.2.6. In the given example, there are 6

hyperplanes that participate in the lower hull with 5 intersection points and in the primal

plane. It is noted that a part of the lower envelope will switch from one hyperplane to

another according to 5 intersection points. With two non-parallel hyperplanes, there

must be one intersection between them.

In geometry, hyperplanes of a lower envelope in a primal plane is an upper part of

convex hull (upper hull) in a +xm-directional dual plane. As illustrated in Fig.2.6, those

6 hyperplanes in the primal plane are equivalent to 6 points of the upper hull in the dual

plane. Therefore, a method to identify the lower envelope is mapped to finding an upper

hull in the dual plane. There are many efficient algorithms to find convex hull, e.g.,

Quickhull [7] which also supports high dimensional data.

Identify a minimal set of subscriptions

We can see that finding a minimal set of subscriptions is strongly similar to finding a

lower envelope, but finding the lower envelope of all queries in Q includes the lower

envelopes outside positive planes (e.g., the first quadrant in 2D) which are undesirable.

2.5. A MINIMAL SET OF SUBSCRIPTIONS S(M) 31

Here, we claim that finding a lower envelope of a set of dominating subscriptions S(D)

instead of using all queries can resolve that problem, and the outcome is exactly what

we want. This procedure is shown in Algorithm 4.

Lemma 2. Only a minimal set of subscriptions will be the output of finding a lower

envelope by using a set of dominating subscriptions S(D).

Proof. Given an example in a 2 dimensional plane, only one possible way to disprove

is that some hyperplanes in the lower envelope includes some outside the first quadrant

Q1. Therefore, there must be an intersection between two hyperplanes belonging to the

lower envelope outsideQ1 because to generate a new segment of the envelope must have

an intersection point. This leads to the contradiction because if the intersection occurs

outside Q1, then either of the corresponding two hyperplanes must not be included in

a set of dominating subscriptions S(D) in the first place because either of them will

be dominated. In addition, if a dominating subscription has an intersection with other

dominating subscriptions insideQ1 and it does not become a lower hull, it cannot belong

to a set of minimal subscriptions definitely.

Algorithm 4: Geometric-based S(M)

Input: Query list Q

Output: A minimal set of subscriptions S(M)

1: S(D)← find S(D)(Q) // described in Section 2.5.2

2: S(M)← find S(M)(S(D)) // described in Section 2.5.4

2.5.5 Updated procedure

We updated the algorithm for BS as explained in Algorithm 2 to be able to support the

proposed idea of using a set of minimal subscriptions while the algorithm for aggrega-

tors remains unchanged. The new algorithm is shown in Algorithm 5.

Firstly, each query q must be attached with another threshold value apart from θq,t

called lower-bound threshold θq,lb. This threshold represents the lowest score that the

data requested by the current S(M) so far is sufficient to answer the query q. Therefore,

32 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

as long as θq,t ≥ θq,lb for all query q ∈ Q, BS does not need to reconstruct and dissem-

inate a new set of S(M) (lines 4–5). We calculate this threshold every time when S(M)

is updated by using linear optimization as shown in lines 9–10. It is noted that, in low

dimensionality, the size of S(M) is comparatively small compared with that ofQ. There-

fore, the number of constraints in the linear programming will be reduced resulting in

faster computation.

Algorithm 5: Updated procedure for the base station (BS)

On receiving new data records
⋃NA

i=1 LMi

1: for q ∈ Q using data in
⋃NA

i=1 LMi
do

2: Execute top-k processing for the current Tq,t
3: Update θq,t
4: if θq,t < θq,lb then
5: B ← true

6: if B = true then
7: S(M) ← find minsub(Q) // Algorithm 4

8: Issue S(M) to aggregators

9: for q ∈ Q using data in
⋃NA

i=1 LMi
do

10: θq,lb ←Maximize θm in Eq.2.2 using S(M) as constrains and fq as an

objective function

2.5.6 Running time

The running time of our proposed method for each iteration can be divided into 2 sep-

arate parts. Firstly, the procedure at aggregators checks whether there exists at least

one subscription in a list of minimal subscriptions which matches for each local data

record. This takes O(|DMi,t||SMi
|) time. Secondly, in the procedure at BS, top-

k query processing can be naively computed for all queries in O(|Q|(|
⋃NA

i=1 LMi
| +

k log |
⋃NA

i=1 LMi
|)) time. However, some additional index structures can be improved

this computation cost, e.g., using the branch and bound algorithm in R-tree [73]. Iden-

tifying a set of minimal subscriptions (if necessary) takes O(|Q|2) time in the worst

case for finding S(D) (skyline calculation) [26] and takes O(|Q|bm/2c+ |Q| log |Q|) time

2.5. A MINIMAL SET OF SUBSCRIPTIONS S(M) 33

for finding S(M) [12]. In background, calculating a lower-bound threshold for each

query calls a linear program with |S(M)| + m constraints and m variables which is in

O(m|S(M)|2) time [9].

2.5.7 Handling too many false positives

Due to data dynamicity, a set of subscriptions which is disseminated so far possibly

guarantees that it does not cause any false negative, but it may cause too many false

positives. It is a trade-off between paying cost of updating subscriptions frequently

to reduce false positives and using old valid subscriptions that may cause the cost of

sending many false positives. For this aim, we design heuristic rules to decide when a

new set of subscriptions should be renewed.

The number of false positives at iteration t (Ft) is calculated by using Eq.2.3. As

a consequence, the observation of this value is varied by time (time series data) and is

possibly highly fluctuated. Considering average case of false positives is more suitable.

Therefore, we single out the exponential moving average to be used for this aim. The

average number of false positives at iteration t is calculated by following formula.

Favg,t =

αfFt + (1− αf)Favg,t−1 , if t ≥ 1.

F1 , otherwise.
(2.6)

where αf is a smoothing factor and 0 < αf < 1.

This is to prioritize the latest information than the past average. Therefore, the

average number of false positives will be adaptive in response to new data changes.

There is a break-even point where the cost due to false positives is over the cost of

renewing subscriptions. For this aim, BS decides to renew subscriptions at iteration t

when the following criteria is satisfied.

((Favg,t)Bdata)−
(
|S(M)|BsubNA

)
> 0 (2.7)

where Bdata, |S(M)| and Bsub are the size of data record, the cardinality of the set of

minimal subscriptions and the size of a single subscription respectively.

34 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

2.6 Simulation Experiments

In this section, we setup a set of experiments to show the advantages of our proposed

methods in each aspect by dividing into 3 subsections. In Section 2.6.1, we conduct ex-

periments to evaluate our proposed algorithms in terms of execution time of identifying

sets of subscriptions and their cardinality. In Section 2.6.2, we shows the analysis of

communication cost among each method. Finally, we setup experiments and compare

the performance of our proposed method with the others in terms of computation cost

in Section 2.6.3.

2.6.1 Proposed method analysis

We preliminarily test the performance of our proposed technique to reduce the cardinal-

ity of the subscription set. Obviously, introducing more complicated algorithms yields

more computation cost and latency as drawbacks. However, the aggregators’ loads on

receiving and transmitting data are largely reduced. In this experiment, we simulate a

snapshot of the uniform data distribution in various dimensionality and various num-

bers of initial queries (NQ). Query preferences are uniformly random and their value

k is randomly drawn between 1 and kmax. We set the default parameters as follows,

m = 3, NQ = 1000 and |Dt| = 500. This setting is to show the scalability on high

dimensionality and the number of queries.

Execution time

We compare the average execution time to identify a set of minimal subscriptions S(M)

one time by using the linear optimization method and the proposed geometric-based

method explained in Section 2.5.3 and 2.5.4 respectively implemented by using C# and

the libraries1,2.

Fig.2.7a shows the execution time in millisecond (log scale) on the impact of in-

creasing number of queries when fixing dimensionality. The geometric-based method

(geometric) runs faster than the linear optimization method (linear-op) significantly de-

noted by its growth rate. Therefore, the geometric-based method has a scalability on the

1Microsoft Solver Foundation: https://msdn.microsoft.com/en-us/library/ff524509(v=vs.93).aspx
2MIConvexHull: http://miconvexhull.codeplex.com/

2.6. SIMULATION EXPERIMENTS 35

10−1

100

101

102

103

104

105

106

0 2000 4000 6000 8000 10000

E
xe

cu
tio

n
tim

e
(m

s)

Number of queries (NQ)

linear-op
geometric

dom

(a) Varying NQ

100

101

102

103

104

105

2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(m

s)

Dimensionality (m)

linear-op
geometric

dom

(b) Varying m

Figure 2.7: The execution time for identifying S(D) (dom) and S(M) using the linear

optimization method (linear-op) and the geometric-based method (geometric)

number of queries. We also compare the execution time to identify S(D) (dom) which is

skyline execution as shown in the figure.

In Fig.2.7b, we test the impact of increasing dimensionality with fixed number of

queries. The geometric-based method runs faster than the linear optimization method in

most cases. Due to high complexity of the convex hull in higher dimensionality, unlike

Fig.2.7a, the computation cost of computing convex hulls increases rapidly compared

with the cost of skyline computation. As a result, the geometric-based method spends

more time than the linear optimization method when m > 7. Nevertheless, as surveyed,

a large number of acquired real-world datasets in the related research in query pro-

cessing as appeared in [6, 39, 58, 61, 87, 96, 100] mostly have dimensionality ranging

between 2 to 5. It is noted that the execution time for identifying S(D) (dom) does not

increase much and converges when m > 3.

Even though, in high dimensionality, the execution time for identifying S(M) is com-

paratively high, but the period length of update time depends on applications and data

models, for example, weather information in the example aggregating data every 10

minutes or a smart meter which may probe the current resource usage every hour. The

2 times of execution time of identifying S(M) must be finished within the given period

length of time. Therefore, we have to consider the proper dimensionality and the num-

36 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

10

100

1000

10000

0 2000 4000 6000 8000 10000

C
ar

di
na

lit
y

Number of queries (NQ)

cardinality of Q
cardinality of S(D)
cardinality of S(M)

(a) Varying NQ

10

100

1000

2 3 4 5 6 7 8
C

ar
di

na
lit

y
Dimensionality (m)

cardinality of Q
cardinality of S(D)
cardinality of S(M)

(b) Varying m

Figure 2.8: Comparison of the sizes of query list Q, a set of dominating subscriptions

S(D) and a set of minimal subscriptions S(M)

ber of queries regarding to the available amount of computation time. It is noted that,

if data in that iteration are unchanged or changed a little from the previous iteration, a

procedure for identifying S(M) is possibly unnecessary to execute in that iteration.

Subscription reduction rate

Both linear optimization method (linear-op) and geometric-based method (geometric)

give the same output. This time, we show how many subscriptions can be reduced com-

pared with naively send all subscriptions in Fig.2.8. The vertical axis shows the number

of subscriptions, and the horizontal axis represents the initial number of queries. In

Fig.2.8a, increasing the number of queries with fixed dimensionality, the number of

minimal subscriptions is very small compared with a set of full queries and dominant

queries. In Fig.2.8b, as dimensionality increases while fixing the number of queries,

the cardinality of minimal subscriptions S(M) and the cardinality of dominating sub-

scriptions S(D) also increase significantly because the cardinality of skyline, and the

cardinality of a lower hull increases exponentially and converges to the sizes of Q and

S(D).

Nevertheless, at m = 8, the cardinality of S(M) is still lower than the full set of

queries while only a set of dominant queries itself is very close to entire queries since

2.6. SIMULATION EXPERIMENTS 37

Table 2.1: Simulation parameters for Section 2.6.2

Parameter Default Range

kmax 20 5–60

ND in the SYN dataset 1000 200–4000

NQ 250 10–10000

NA 4 -

Dimensionality m 3 2–8

No. of iterations in the SYN dataset 2000 -

αf (Eq.2.6) 0.1 -

p (Eq.2.8) 0.3 -

m = 5. Therefore, identifying S(M) can reduce the number of subscriptions to be

forwarded to aggregators numerously when there are a large number of queries and

especially in low dimensionality.

2.6.2 Communication cost analysis

Experiment setup

Some experiments are conducted by using an event-based simulator implemented in

Java for measuring communication cost. We assumed that the coordinator server (BS)

can directly communicate with all aggregators. The range and default setting of the pa-

rameters are expressed in Table 2.1. Each aggregator Mi equally holds |Di| = ND/NA

data records. Firstly we initially inject NQ queries into the system. The weighting of

each dimension of a query (wi) is uniformly-random and normalized with
∑i=m

i=1 wi re-

sulting
∑i=m

i=1 wi = 1. Our proposed method can support any arbitrary k for each query,

but for fair comparison with other methods, value k of each query is a uniformly-random

integer between 1 to kmax. Afterward, we simulate the dynamic changes periodically

occurring in the system as events.

38 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

Measurement

We record the final cost of communication defined by volume of transferred data in the

system as a metric to compare the performance. The cost of communication is counted

by how many data records and subscriptions transmitted between BS and aggregators.

We define the size of floating point and integer equal to 8 bytes and 4 bytes respectively.

Therefore, a top-k subscription consisting of id (integer), a scoring function (m floating

points), value k (integer) and a threshold (floating point) is (8(m + 1) + 4(2)) bytes

while a data record consisting of id (integer), timestamp (integer) and data values is

(8m+ 4(2)) bytes.

Datasets

In this experiment, we use both synthetic and real datasets to simulate and show our

proposed method’s performance.

1. Synthetic dataset (SYN): Firstly, each data record di,1 is uniformly random on

each dimension as a point on the m-dimensional data space. In the real practice,

data at each epoch di,t, are likely to be changed a little bit from its previous value

di,t−1 or unchanged. We model a data value on each dimension as a Gaussian ran-

dom walk pattern following di,t[j] = di,t−1[j] + λi,tet[j] where et[j] ∼ N (0, 0.1)

(normal distribution), 1 ≤ j ≤ m and

λi,t =

1 ,with probability p.

0 ,with probability 1− p.
(2.8)

2. Weathernews (WN): Weathernews consists of the history of weather informa-

tion which is recorded every 10 minutes and aggregated from 821 weather sta-

tions across Japan. We chose 3 attributes to be used including, temperature, wind

speed and precipitation of 10 minutes. Each aggregator holds a set of data records

equally split from 821 data records of weather information. We simulate the sys-

tem by using this dataset for 1 week which consists of 2020 iterations of updates.

This dataset represents the characteristics of high dynamic data changes espe-

cially in some attributes, e.g., wind speed.

2.6. SIMULATION EXPERIMENTS 39

Comparison methods

We implemented the following methods for comparing with our proposed method.

1. Centralized method (CEN): The baseline which all data records and information

of updates are sent to BS regardless of queries.

2. K-skyband (SKYB): The data records which belong to K-skyband are suffi-

ciently enough for answering any top-k queries where k ≤ K. BS simply aggre-

gates K-skyband from every local node, so any top-k queries at BS can be an-

swered intermediately by the aggregated data records. Due to the data dynamicity,

each node continuously maintains the K-skyband and sends a new data update to

BS when that new data update belongs to its local K-skyband. It is noted that the

size of K-skyband is bigger than the real necessity, and in high dimensionality

and high value k, K-skyband of node Mi possibly includes all data records Di,

i.e., transferring all data records like the CEN method.

3. FILA [91]: We implemented this method by constructing filters for each individ-

ual query (NQ filters in total) and applied them to every aggregators. For a fair

comparison, the eager-update uniform filters for order-insensitive top-k monitor-

ing were used. In each iteration, the data records which do not pass the filter will

not be sent toBS. BS needs to probe some additional data records and update the

filter bounds if those values have changed. Hence, the cost of filter updates and

probes cannot be neglected. In the experiment, we include the number of probes

in the number of filter updates due to the same message size.

4. MINDOM: Our proposed method described in Section 2.5.5 by disseminating

dominating subscriptions S(D) as a list of subscriptions instead of minimal sub-

scriptions S(M) (note that S(M) ⊆ S(D)).

5. MINSUB: Our proposed method described in Section 2.5.5 by disseminating

minimal subscriptions S(M).

We also have tested the performance of naively disseminating subscriptions described

in Section 2.4.1, but the performance is worse than others significantly.

40 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

To
ta

lc
om

m
un

ic
at

io
n

co
st

(M
B

)

Maximum of desired data items (kmax)

FILA
CEN

MINDOM

SKYB
MINSUB

(a) SYN: Impact of value k

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

N
um

be
ro

ft
ra

ns
fe

rr
ed

da
ta

(m
ill

io
n)

Maximum of desired data items (kmax)

CEN
SKYB

MINDOM

FILA
MINSUB

(b) SYN: Impact of value k

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60N
o.

of
tra

ns
fe

rr
ed

su
bs

cr
ip

tio
ns

/fi
lte

rs
(m

ill
io

n)

Maximum of desired data items (kmax)

FILA
MINDOM
MINSUB

(c) SYN: Impact of value k

0
20
40
60
80

100
120
140
160
180
200

2 3 4 5 6 7 8

To
ta

lc
om

m
un

ic
at

io
n

co
st

(M
B

)

Dimensionality (m)

FILA
CEN

MINDOM

SKYB
MINSUB

(d) SYN: Impact of value m

0

0.5

1

1.5

2

2.5

3

2 3 4 5 6 7 8

N
um

be
ro

ft
ra

ns
fe

rr
ed

da
ta

(m
ill

io
n)

Dimensionality (m)

CEN
SKYB

MINDOM

FILA
MINSUB

(e) SYN: Impact of value m

0

0.5

1

1.5

2

2.5

2 3 4 5 6 7 8N
o.

of
tra

ns
fe

rr
ed

su
bs

cr
ip

tio
ns

/fi
lte

rs
(m

ill
io

n)

Dimensionality (m)

FILA
MINDOM
MINSUB

(f) SYN: Impact of value m

0

10

20

30

40

50

60

70

80

10 100 1000 10000

To
ta

lc
om

m
un

ic
at

io
n

co
st

(M
B

)

Number of queries (NQ)

CEN
SKYB
FILA

MINDOM
MINSUB

(g) SYN: Impact of NQ

0

0.5

1

1.5

2

2.5

3

10 100 1000 10000

N
um

be
ro

ft
ra

ns
fe

rr
ed

da
ta

(m
ill

io
n)

Number of queries (NQ)

CEN
SKYB

MINDOM

FILA
MINSUB

(h) SYN: Impact of NQ

0

0.5

1

1.5

2

2.5

3

3.5

4

10 100 1000 10000N
o.

of
tra

ns
fe

rr
ed

su
bs

cr
ip

tio
ns

/fi
lte

rs
(m

ill
io

n)

Number of queries (NQ)

FILA
MINDOM
MINSUB

(i) SYN: Impact of NQ

0

50

100

150

200

250

200 1000 2000 3000 4000

To
ta

lc
om

m
un

ic
at

io
n

co
st

(M
B

)

The number of entire data records (ND)

FILA
MINDOM

CEN
SKYB

MINSUB

(j) SYN: Impact of ND

0

1

2

3

4

5

6

7

8

200 1000 2000 3000 4000

N
um

be
ro

ft
ra

ns
fe

rr
ed

da
ta

(m
ill

io
n)

The number of entire data records (ND)

CEN
SKYB

MINDOM
FILA

MINSUB

(k) SYN: Impact of ND

0

0.5

1

1.5

2

200 1000 2000 3000 4000N
o.

of
tra

ns
fe

rr
ed

su
bs

cr
ip

tio
ns

/fi
lte

rs
(m

ill
io

n)

The number of entire data records (ND)

FILA
MINDOM

MINSUB

(l) SYN: Impact of ND

Figure 2.9: Results from the synthetic dataset (SYN) showing the total communication

cost in the first column, the number of transferred data in the second column and the

number of transferred subscriptions/filters in the third column

2.6. SIMULATION EXPERIMENTS 41

Results of the synthetic dataset (SYN)

Impact of the number of desired data records kmax The results of the total commu-

nication cost, the total number of sent data records and the total number of transferred

subscriptions or filter updates are shown in Fig.2.9a, Fig.2.9b and Fig.2.9c respectively.

In Fig.2.9a, the total communication cost of the CEN method is constant regardless

of kmax because it sends all data records in every epoch to BS. As kmax increases, the

number of data records inK-skyband to be sent toBS increases dramatically (Fig.2.9b)

and causes a huge communication cost.

Even though the number of transferred data records of the FILA, MINDOM and

MINSUB methods also gets increasing with kmax, their increments are much slower

than the SKYB method. The FILA method which maintains and keep updating many

filters for every query as well as the MINDOM method which disseminates all dom-

inating subscriptions if they have changed suffer from sending a massive amount of

those messages compared with the MINSUB method shown in Fig.2.9c. This makes

the total communication cost of the FILA and MINDOM methods worse than the CEN

method for kmax > 5 while the MINSUB method outperforms the others. It is noted

that, when kmax is high, the number of sent data records increases certainly, but this

reduces the chance that the previous disseminated subscriptions become invalid. There-

fore, the number of times of subscription reconstruction and dissemination becomes

lower resulting in a slight decrease of total number of sent subscriptions as shown in

Fig.2.9c.

Impact of dimensionalitym In Fig.2.9d, the total communication cost of all methods

surges dramatically with dimensionality. The communication cost of the CEN method

increases linearly due to the larger size of data records. The cardinality of K-skyband

also increases numerously. At m > 6, the cardinality of K-skyband is almost the same

as the size of the entire dataset. Therefore, the number of transferred data records shown

in Fig.2.9e of the SKYB method increases significantly while this number that of the

FILA, MINDOM and MINSUB methods slightly increases.

In Fig.2.9f exhibits more details about the huge cost of the FILA, MINDOM and

MINSUB methods. The number of transferred subscriptions grows significantly espe-

cially in the MINDOM method because of the less chance of query domination in high

42 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

dimensionality. Disseminating only a set of minimal subscriptions can relieve this over-

head, but its cardinality tends to increase with dimensionality. Though the number of

filter updates of the FILA method is not affected much by the dimensionality unlike

the MINDOM and MINSUB methods, this number is high due to the usage of multiple

filters for multiple continuous queries. As a result, when m > 3, the FILA method

performs the worst whereas the MINSUB method outperforms the others in low dimen-

sionality (m < 6). Nonetheless, in the real practices, the number of dimensions, the

number of queries or even the dynamicity of data changes are likely to be less than this

experimental setup, The performance can vary based on the application. It is noted that

the size of data records is set as small as the size of subscription, but in some applica-

tions data records are attached with other explanatory metadata. Due to the capability

of the MINSUB method to keep small transferred data records, the MINSUB method is

more beneficial than the other methods in the case that the size of a data record is larger

than the size of a subscription.

Impact of the number of queries NQ In this setting, we vary the number of con-

tinuous queries injected to the system at the initialization from 10 to 10000 (shown in

a log scale). Only the FILA, MINDOM and MINSUB methods have an effect on this

factor illustrated in Fig.2.9g. Though these methods can always keep the number of

transferred data records low (Fig.2.9h), the number of transferred subscriptions or filter

updates causes the huge sum of total communication cost (Fig.2.9i). It is noted that

these numbers rise with NQ. Therefore, the MINDOM and FILA methods cannot out-

perform the SKYB method if NQ > 100 while the MINSUB method performs worse

than the SKYB method when NQ > 2000.

This can be a trade-off of the filter-based and subscription-based methods that in the

case of large number of continuous queries, not only the communication cost but also

the computation cost to create the subscriptions or to maintain valid filters are possibly

higher than the naive method.

It is noted that the number of combinations of preferences can be limited, for ex-

ample, when users adjust the weightings via questionnaires. Those users who share the

same preference can share the final result of a single query with regard to that preference

without issuing a query for each user.

In addition, in some cases such as correlated data, the top-k results of various queries

2.6. SIMULATION EXPERIMENTS 43

1

10

100

0 10 20 30 40 50 60

Pr
ec

is
io

n
(p

er
ce

nt
ag

e)

Maximum of desired data items (kmax)

MINSUB
MINDOM

FILA
SKYB

CEN

(a) SYN: Impact of value k

1

10

100

200 1000 2000 3000 4000

Pr
ec

is
io

n
(p

er
ce

nt
ag

e)

The number of entire data records (ND)

MINSUB
MINDOM

FILA

SKYB
CEN

(b) SYN: Impact of value ND

Figure 2.10: Precision evaluation showing the outperformed MINSUB and MINDOM

methods and other 3 comparison methods using the synthetic dataset (SYN)

are likely to share the same set of ranked results. Users should be advised to pose

queries in the system because some queries are possibly semantically redundant. To

be able to avoid this redundancy, we can further avoid unnecessary computational and

communication costs for a large number of queries.

Impact of the number of data recordsND In this setting, we vary the number of data

records in each aggregator (|DMi,t| = ND/4), and the results are presented in Fig.2.9j,

Fig.2.9k and Fig.2.9l. In Fig.2.9j, the total communication cost of the CEN method

goes up linearly as increasing the number of data records in the system while the total

communication cost of the SKYB method gradually increases and converges. Still, the

MINSUB method is outstanding from the other methods because its total communica-

tion cost remains almost constant regardless of ND. Fig.2.9k shows that the number

of sent data records of the FILA, MINDOM and MINSUB methods is nearly constant.

This is because these methods issue the set of subscriptions/filters which denotes and

customizes the space of users’ interest in order to answer the queries individually. In

contrast to the SKYB method, it greedily aggregates all data records by considering the

dominant property, but this can cause more false positives to be returned than the MIN-

SUB method. However, the number of transferred subscriptions or filters of the FILA

and MINDOM methods shown in Fig.2.9l is obviously high. The MINSUB method

can reduce this cost around 70% from the FILA method. Hence, the result stresses the

strength of the MINSUB method on data scalability.

44 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

The number of false positives The filter-based and subscription-based methods, i.e.,

FILA, MINDOM and MINSUB, were designed to prevent unnecessary data records

(false positive data, FP). In this setting, we aim to evaluate the number of false positive

data of each method by evaluating their precision (Eq.2.9).

precision =
TP

#data
=

TP

TP + FP
(2.9)

where TP is the total number of actual top-k answers and #data is the total number of

received data records at BS. Therefore, the higher the precision, the lower the number

of false positives.

Showing the impacts of only two parameters in Fig.2.10, the overall precisions of

the SKYB method and the CEN method get better when increasing k, but they get lower

when increasing ND. Even though our proposed method possibly incurs false positives,

we found that the overall precision of the MINSUB method is kept high around 98% in

all experiments unlike the CEN and SKYB methods whose precisions are below 25%.

Comparing the results in Fig.2.10 with Fig.2.9b and Fig.2.9k respectively, we can

see that most of data records sent by the SKYB method and the CEN method are waste-

fully transferred while paying the cost of setting filters and subscriptions can success-

fully prevents sending such undesired data records. In addition, the MINSUB method

can further cut that cost resulting in saving more total communication cost.

Results of Weathernews dataset (WN)

Impact of the number of desired data records kmax The results of the total commu-

nication cost, total number of sent data records and total number of transferred subscrip-

tions or filter updates are shown in Fig.2.11a, Fig.2.11b and Fig.2.11c respectively. In

this dataset, each data record in the Weathernews dataset is periodic weather informa-

tion from each location. Therefore, the data values of some attributes in the consecutive

timestamp can be sharply changed which is different from Gaussian random walk in

the SYN dataset. Unlike the SYN dataset, the total communication cost of the FILA

method is distinctively higher than the rest. This is because, in this dataset, the FILA

method sends a lot of probe messages counted as filter updates shown in Fig.2.11c to

ensure the correctness of the answers explained in [91].

2.6. SIMULATION EXPERIMENTS 45

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60

To
ta

lc
om

m
un

ic
at

io
n

co
st

(M
B

)

Maximum of desired data items (kmax)

FILA
CEN

MINDOM

SKYB
MINSUB

(a) WN: Impact of value k

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60

N
um

be
ro

ft
ra

ns
fe

rr
ed

da
ta

(m
ill

io
n)

Maximum of desired data items (kmax)

CEN
SKYB

MINDOM

FILA
MINSUB

(b) WN: Impact of value k

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60N
o.

of
tra

ns
fe

rr
ed

su
bs

cr
ip

tio
ns

/fi
lte

rs
(m

ill
io

n)

Maximum of desired data items (kmax)

FILA
MINDOM

MINSUB

(c) WN: Impact of value k

0

20

40

60

80

100

10 100 1000 10000

To
ta

lc
om

m
un

ic
at

io
n

co
st

(M
B

)

Number of queries (NQ)

FILA
CEN

MINDOM
SKYB

MINSUB

(d) WN: Impact of NQ

0

0.5

1

1.5

2

2.5

10 100 1000 10000

N
um

be
ro

ft
ra

ns
fe

rr
ed

da
ta

(m
ill

io
n)

Number of queries (NQ)

CEN
SKYB

MINDOM

FILA
MINSUB

(e) WN: Impact of NQ

0

0.5

1

1.5

2

2.5

3

10 100 1000 10000N
o.

of
tra

ns
fe

rr
ed

su
bs

cr
ip

tio
ns

/fi
lte

rs
(m

ill
io

n)

Number of queries (NQ)

FILA
MINDOM
MINSUB

(f) WN: Impact of NQ

Figure 2.11: Results from Weathernews dataset (WN) showing the total communication

cost in the first column, the number of transferred data in the second column and the

number of transferred subscriptions/filters in the third column

In the MINSUB method, it has benefits from receiving some data updates which

used to be included in the subscription of the previous iteration (lines 6–7, Algorithm

1). Together with the capability to identify a smaller number of minimal subscriptions

and the sufficiency of data records in BS for answering top-k queries, these can use-

fully avoid the necessity of the second round communication efficiently unlike issuing

probe messages in the FILA method. As a result, the MINSUB method is able to save

the total communication cost by keeping the number of transferred data records and

subscriptions low.

Impact of the number of queries NQ We vary the number of continuous queries

injected to the system at the initialization from 10 to 10000. In this real dataset, even

46 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

we increase NQ to the maximum value at 10000, the total communication cost of the

MINSUB method is still lower than that of the SKYB method as shown in Fig.2.11d.

For the same reason, Fig.2.11e shows that the number of transferred data records is

always kept low for the subscription-based and filter-based methods while the number

of sent subscriptions of the MINSUB method is very small compared with the other

methods in Fig.2.11f.

2.6.3 Computation cost analysis

In this section, we evaluate the main computation cost incurred at the aggregators which

are assumed to be much less powerful than the single coordinator server (BS) in terms

of computational capability and power resources (e.g., battery-powered sensor nodes)

and also show the main computation cost at BS.

Apart from the communication cost, the aggregators need to forward the data records

that are matched to the subscriptions or filters. Therefore, the computation cost at the

aggregators is represented by the total subscription/filter matching time at aggregators

for the MINSUB, MINDOM and FILA methods and byK-skyband calculation time for

the SKYB method for each iteration. In the MINSUB, MINDOM and FILA methods,

BS has to iteratively construct a set of filters/subscriptions considered as main computa-

tion cost atBS. The same environment as in Section 2.6.2 including default parameters,

implemented methods and datasets is used in these experiments. We perform them in a

virtual machine with 2GB and a single core of a 3.60GHz CPU. Because the computa-

tional time at both aggregators and BS can vary in each iteration depending on the data

updates, parameters, etc., we report average computational time of all iterations.

Among 5 methods listed in Section 2.6.2, only the CEN method does not do any data

processing at the aggregators. Also, only the CEN and SKYB methods do not incur any

computation cost at BS for constructing a set of filters/subscriptions. Actually, the

CEN and SKYB method have to perform top-k computation at BS. However, this

computation time is comparatively small, so we neglect this cost and omit from the

results.

2.6. SIMULATION EXPERIMENTS 47

10−1

100

101

102

10 100 1000 10000

M
at

ch
in

g
tim

e
at

ag
gr

eg
at

or
s

(m
s)

Number of queries (NQ)

MINSUB
MINDOM

FILA
SKYB

(a) SYN: Impact of value NQ

10−1

100

101

102

103

200 1000 2000 3000 4000
M

at
ch

in
g

tim
e

at
ag

gr
eg

at
or

s
(m

s)
The number of entire data records (ND)

MINSUB
MINDOM

FILA
SKYB

(b) SYN: Impact of value ND

0

1

2

3

4

5

6

7

2 3 4 5 6 7 8

M
at

ch
in

g
tim

e
at

ag
gr

eg
at

or
s

(m
s)

Dimensionality (m)

MINSUB
MINDOM

FILA
SKYB

(c) SYN: Impact of value m

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60

M
at

ch
in

g
tim

e
at

ag
gr

eg
at

or
s

(m
s)

Maximum of desired data items (kmax)

MINSUB
MINDOM

FILA
SKYB

(d) SYN: Impact of value k

10−1

100

101

102

10 100 1000 10000

M
at

ch
in

g
tim

e
at

ag
gr

eg
at

or
s

(m
s)

Number of queries (NQ)

MINSUB
MINDOM

FILA
SKYB

(e) WN: Impact of NQ

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60
M

at
ch

in
g

tim
e

at
ag

gr
eg

at
or

s
(m

s)
Maximum of desired data items (kmax)

MINSUB
MINDOM

FILA
SKYB

(f) WN: Impact of k

10−1

100

101

102

103

104

105

106

10 100 1000 10000

C
on

st
ru

ct
io

n
tim

e
at

B
S

(m
s)

Number of queries (NQ)

MINSUB
MINDOM

FILA

(g) SYN: Impact of value NQ

100

101

102

103

104

200 1000 2000 3000 4000

C
on

st
ru

ct
io

n
tim

e
at

B
S

(m
s)

The number of entire data records (ND)

MINSUB
MINDOM

FILA

(h) SYN: Impact of value ND

100

101

102

103

104

105

2 3 4 5 6 7 8

C
on

st
ru

ct
io

n
tim

e
at

B
S

(m
s)

Dimensionality (m)

MINSUB
MINDOM

FILA

(i) SYN: Impact of value m

100

101

102

103

104

0 10 20 30 40 50 60

C
on

st
ru

ct
io

n
tim

e
at

B
S

(m
s)

Maximum of desired data items (kmax)

MINSUB
MINDOM

FILA

(j) SYN: Impact of value k

10−1

100

101

102

103

104

105

10 100 1000 10000

C
on

st
ru

ct
io

n
tim

e
at

B
S

(m
s)

Number of queries (NQ)

MINSUB
MINDOM

FILA

(k) WN: Impact of NQ

100

101

102

103

0 10 20 30 40 50 60

C
on

st
ru

ct
io

n
tim

e
at

B
S

(m
s)

Maximum of desired data items (kmax)

MINSUB
MINDOM

FILA

(l) WN: Impact of k

Figure 2.12: Results of subscription/filter matching time at aggregators (a–f) and sub-

scription/filter construction time at BS (g–l) at each iteration

48 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

Results of subscription/filter matching time at aggregators

Impact of the number of queriesNQ The computation cost at aggregators is directly

affected by this factor for all methods because increasing NQ feasibly yields the incre-

ment of the number of filters/subscriptions disseminated to each aggregator. At each

iteration in the MINSUB, MINDOM and FILA methods, each aggregator has to verify

which existing data record is matched to the stored subscriptions or filters. In the result

of the SYN and WN datasets as shown in Fig.2.12a and Fig.2.12e respectively, even

though the MINSUB method can largely reduce the number of subscriptions compared

with the number of filters in the FILA method (Fig.2.9i), subscription matching in the

MINSUB and MINDOM method checks more conditions (Algorithm 1 lines 6–9) than

filtering of the FILA method. Therefore, for small NQ, the FILA method takes less

computation time than others. However, when NQ increases, this computation time of

the MINDOM and FILA methods grows rapidly with NQ because of the higher number

of subscriptions/filters in accordance with Fig.2.9i and Fig.2.11f. The SKYB method

executes local K-skyband of a set of local data records regardless of NQ, so the com-

putation time varies at a small degree. When NQ > 500, the computation time of

both MINDOM and FILA methods surpasses that of the SKYB method in both datasets

while, at very high NQ = 10000, the computation cost of the MINSUB method just

comes close to that of the SKYB method in the SYN dataset and still below in the WN

dataset.

Impact of the number of data records ND Increasing ND certainly affects the com-

putation cost at aggregators for every method especially in the SKYB method due to

K-skyband executions. As shown in Fig.2.12b, while the subscription/filter matching

time of the MINSUB, MINDOM and FILA methods grows linearly in linear scale with

ND, this computation time of the SKYB method grows faster than the others signifi-

cantly. It is noted that the MINSUB method incurs the lowest computation cost in this

result because of a smaller set of subscriptions.

Impact of dimensionality m As m increases, subscription/filter matching time also

increases due to more data attribute comparisons. According to Fig.2.12c, the com-

putation time for all methods gets higher as expected. Even though the MINSUB and

2.6. SIMULATION EXPERIMENTS 49

MINDOM methods can reduce the number of subscriptions to be less than NQ unlike

the FILA method, when m ≥ 5, both MINSUB and MINDOM methods perform worse

than the FILA method. This is because, as m gets higher, the subscription reduction

rate gets lower. Additionally, subscription matching is more complex than filtering. As

a result, the computation cost of the FILA method is cheaper than others.

Nevertheless, the communication cost of the FILA method is the highest. It is noted

that the SKYB method outperforms the MINSUB and MINDOM methods in terms of

computation cost and communication cost in very high dimensionality (m ≥ 7).

Impact of the number of desired data records kmax The computation cost varies

directly with the number of subscriptions/filters, and kmax has an effect on the number

of subscriptions. According to Fig.2.9c, the number of transferred subscriptions of the

MINSUB method gets smaller when kmax > 20. Fig.2.12f shows the concordant result

for the SYN dataset. In the same way, the result of the WN dataset in Fig.2.12l also

corresponds to the result of the number of transferred subscriptions in Fig.2.11c.

Results of subscription/filter construction time at BS

Most of processing time at BS is due to subscription/filter construction at each itera-

tion. The MINSUB method takes a large amount of time to identify a set of minimal

subscriptions discussed in Section 2.5.6 resulting in a smaller set of subscriptions and

lower computation cost at aggregators which have limitations in terms of computing

capability, network resources and possibly battery power.

In all experimental results in this section, the FILA method outperforms other meth-

ods because the filter construction is not complex unlike identifying S(D) and S(M) in

the case of the MINSUB method and only S(D) in the case of the MINDOM method.

All results in various parameters and datasets are shown in Fig.2.12g–Fig.2.12l.

In summary, the computation cost at BS is directly affected by NQ and m as shown

in Fig.2.12g, Fig.2.12k and Fig.2.12i because the computational complexity of subscrip-

tion/filter construction depends on the number of queries and dimensionality. Increas-

ing ND also increases the probability of frequent changes of threshold and frequent

subscription/filter updates resulting in the increment of the average construction time

in Fig.2.12h. The impact of kmax affects the computation cost at BS for all methods

50 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

because the cost of calculating k-ranked score gets higher. However, in Fig.2.12j and

Fig.2.12l, this issue can be obvious seen only in the FILA method because the y-axis has

been plotted on a log-scale, and the computation cost of the MINSUB and MINDOM

methods instead relies much on the cardinality of NQ and S(M).

Although, the computation cost at the MINSUB method is more expensive than

the others, the MINSUB method provides much lower communication cost and lower

computation cost at aggregators which are more crucial. It is noted that subscription

construction at BS is executed in the time-gap between 2 iterations. Therefore, the

available time to calculate depends on the applications and use cases (e.g., data update

every 5 minutes, every 3 hours and every day). Nevertheless, the computational capabil-

ity of BS can be easily enhanced to meet the requirements, i.e., the number of queries,

dimensionality, time-gap between 2 iterations and so forth.

2.7 Conclusions

In this chapter, we addressed the issue of preference top-k monitoring queries which

many users declare their continuous top-k queries on a 2-tier distributed system con-

sisting of a coordinator server as a base station (BS) and data aggregators. A set of

dynamic data records are aggregated at each aggregator, and these data records are up-

dated periodically. Because each user desires a different set of top-k answers, the basic

scheme for this problem is to aggregate all data records and relay them to BS in every

epoch. To suppress massive wasteful data transmission, the objective of this work is to

lessen the total communication cost between BS and data aggregators.

The proposed method constructs and issues a set of subscriptions to represent the

limited data space of users’ interest, so the aggregators relay only potential top-k candi-

dates back toBS. Without any techniques,BS needs to issue excessive subscriptions of

all queries which incur additional non-trivial communication cost. Hence, we propose

a method to identify a set of minimal subscriptions to prevent this case, and proof that

the method can give the perfect accuracy on data aggregation. Furthermore, we also

propose how efficiently manage and maintain subscriptions while optimizing the low

communication cost.

We showed the performance of our method through the simulation results on both

2.7. CONCLUSIONS 51

synthetic and real datasets. The results explicitly indicate that our method is more

preferable to the comparative methods on various factors in most cases.

As mentioned in Chapter 1, save communication cost by using our proposed method

can increase network lifetime in power constrained systems while our design helps them

support more concurrent queries and alleviate data bottlenecks at aggregators resulting

in longer network lifetime and more scalability in terms of the number of users.

52 CHAPTER 2. SUBSCRIPTION-BASED CONTINUOUS TOP-K QUERY

Chapter 3

Candidate Pruning Techniques for
Skyline Monitoring

3.1 Introduction

Recently, many query processing methods have been developed and gained a lot of at-

tentions in database researches in order to deliver most satisfactory results to various

classes of end-users. Considering the dominance relations among objects (the com-

petitiveness of each object), skyline computation [10], which represents a result set in

which each result item is not worse than others, is also one of popular queries so far. An

example usage of this query is commonly referred to to multi-criteria decision making

of hotel selection [10].

In this chapter, we focus on skyline monitoring queries which deliver up-to-date

skyline answers over frequent update streams. We stress this problem on frequent up-

date streams where a large portion of observing data objects change their values in each

timestamp (interchangeably called a snapshot). The data streams like this can be of-

ten seen in many real-life situations, for example, environmental monitoring and stock

market analysis.

Environmental monitoring: Data readings from distributed weather stations are re-

trieved periodically to the server. An expert may observe and prioritize the region

which has a flood risk noticed by high precipitation rate and water level by cal-

culating skyline of those regions. However, the reading data can be fluctuated by

53

54 CHAPTER 3. CANDIDATE PRUNING FOR SKYLINE MONITORING

time, weather conditions, errors of sensors and so forth; thus, stable data readings

across time cannot be expected. The skyline of those data must be calculated and

observed continuously.

Stock market analysis: An investor tries to find interesting defensive stocks, i.e., not

fluctuating with the market and increasing gains. He/she may be interested in a

list of stocks performing this behavior for a long period of time (e.g., last 200

days) from the historical stock prices. Considering a day-time-frame snapshot,

normally many stocks are changed in statistics. This model also accounts for

a task to analyze other data archives such as sport data archives or web archives

where many properties are expected to be changed in a consecutive points of time.

In skyline monitoring, a single data update can totally change a final skyline set,

so handling multiple data updates at a time is challenging. Without any technique, to

guarantee the correctness, the new skyline set must be computed from the entire set of

data objects.

In this chapter, we propose an efficient method based on the properties of a bounding

box (a minimum bounding rectangle in the case of 2 dimensions). We utilize bounding

boxes to capture and prune unnecessary data candidates as well as neglect no-effect data

updates. Therefore, we can identify a smaller candidate set in skyline computation in

consecutive data snapshots resulting in saving overall execution time.

In summary, the contributions of this chapter are as follows:

• We formulate the problem definition of skyline computation on frequent data up-

date streams as well as illustrate example applications of this problem.

• We propose an efficient algorithm and index structures to identify a smaller set of

data candidates before skyline calculation, and the cost of maintenance is paid in

according with degree of data changes (pay as you go).

• We conduct some experiments in various settings by using both synthetic and real

datasets to show that our proposed method can run faster than the baseline and

the comparison methods.

The organization of this chapter is as follows. The related work is explained in

Section 3.2. In Section 3.3, we introduce the assumptions of the data model and re-

3.2. RELATED WORK 55

lated background knowledge for this chapter. In Section 3.4, we describe our proposed

method. The performance of our proposed method through experiments is shown and

discussed in Section 3.5. Finally, this chapter is summarized in Section 3.6.

3.2 Related Work

Skyline computation in database research was firstly introduced in [10]. The authors

proposed two skyline algorithms including BNL skyline and D&C skyline algorithms.

After that, numerous research papers tried to enhance the performance by using more

complicated index structures such as Branch-and-Bound skyline algorithm [52].

Apart from the traditional skyline processing in databases, skyline processing for

distributed systems has been studied as described in the survey [29]. Moreover, many

interesting variants of skyline processing methods have also been studied for example,

reverse skyline query [21], fragmented skyline [53], subspace skyline [74], uncertain

skyline [22] and interval skyline [38].

The papers in [13, 34, 44] studied skyline monitoring over moving objects. They

assume a kinetic model of moving data objects aiming to find the skyline objects (static

attributes) when some dynamic attributes (locations or query points) are movable. These

are quite different from ours, and their techniques are not suitable to solve our context’s

problems because a kinetic model is not assumed.

Some existing works [31, 45, 49, 71, 93] proposed efficient methods to continuously

calculate skyline results over data streams. These aim to efficiently monitor the latest

skyline set in sliding windows where window-range, data arrival time and data expira-

tion time are given. Some algorithms together with indexing techniques are used to deal

with data insertion and deletion into the assumed sliding windows. For the case of data

modification assumed in this chapter, a single data modification (a data update) can be

taken as two consecutive operations - insertion then deletion. This can incur a very large

cost because there can be multiple data updates at each timestamp.

[75] assumed a very close problem to ours according to its data model. This work

tries to monitor the latest modification of the skyline set when each data object is up-

dated by the information from update streams. Its main contribution relies on allocating

data into grid cells and consider the dominance relations between those grids to prune

56 CHAPTER 3. CANDIDATE PRUNING FOR SKYLINE MONITORING

unnecessary candidates from skyline calculation. Therefore, our experiment also adopts

this technique as well as the method in [49] as the representative of its group to compare

to our proposed method.

3.3 Preliminaries

3.3.1 Data model and its update model

We assume that the system analyzes a skyline set over a fixed number of data ob-

jects. Each data object is comprised of m numerical values as attributes and data

id i as an object’s identifier. Data attributes of data object i at the initialization (the

first snapshot in the historical archive, snapshot 0) are represented as a tuple p0i =

(p0i [1], p0i [2], . . . , p0i [m]). Let N be the number of all data objects in the system, a

set of all data objects at snapshot t is denoted by P t = {pt1, pt2, . . . , ptN}, where t =

{0, 1, . . . , T}, and T is the total number of snapshots in the archive.

Definition 3.3.1. (Point dominance) A data point pti dominates ptj (pti ≺ ptj) if and only

if ∀k ∈ {1, 2, . . . ,m} : pti[k] ≤ ptj[k], and ∃l ∈ {1, 2, . . . ,m} : pti[l] < ptj[l].

Definition 3.3.2. (Weakly point dominance) A data point pti weakly dominates ptj (pti �
ptj) if and only if ∀k ∈ {1, 2, . . . ,m} : pti[k] ≤ ptj[k].

In this research, we assume that at each timestamp (snapshot) t, only a partial set

of data objects changes their attributes’ values from the previous timestamp t − 1. An

update model like this can be often found in pull-based data delivery model that the

server pulls new updates from data sources periodically.

How data change their values is described by an update tuple which can be de-

fined in many ways based on applications, for example, a new value update defined

by a 3-tuple u = (i, t, (p[1], p[2], . . . , p[m])) that means pti = (p[1], p[2], . . . , p[m]) and

a modification update defined by a 3-tuple u = (i, t, (∆p[1],∆p[2], . . . ,∆p[m])) that

means pti = (pt−1i [1] ⊗ ∆p[1], pt−1i [2] ⊗ ∆p[2], . . . , pt−1i [m] ⊗ ∆p[m]) where ⊗ is an

operator, such as addition, multiplication and average. This changes the corresponding

data object pt−1i to pti.

A list of updates of snapshot t (update streams) is a list of update tuples U t =

{ut1, ut2, . . .} where |U | ≤ N . Therefore, data objects which are not modified by any

3.3. PRELIMINARIES 57

𝑀1 0,6 . 𝑅
(−)

𝑀1 0,6 . 𝑅
(+)

𝑝1
0

𝑝1
1

𝑝1
2

𝑝1
3

𝑝1
4

𝑝1
6

𝑀1(0,6)

𝑝1
5 𝑀1 0,6 . 𝑝(+)

𝑀1 0,6 . 𝑝(−)

x[1]

x[2]

(a) An example MBR M1(0, 6) summarizing
{p01, p12, . . . , p61}

𝑀5(0,6)

𝑀1(0,6)

𝑀2(0,6)

𝑀3(0,6)𝑀4(0,6)

𝑝4
6

𝑝3
6

𝑝1
6

𝑝2
6

𝑝5
6

𝑝5
5

𝑝4
5

𝑝3
5 𝑝2

5

𝑝1
5

x[1]

x[2]

𝑆6 = {𝑝3
6, 𝑝4

6, 𝑝5
6}

𝑆5 = {𝑝4
5}

(b) An example of 2 skylines in snapshot t = 5

and t = 6

Figure 3.1: An example of MBRs and an example of skyline sets in the space

update tuples remain the same values that are pti = pt−1i . Since our model embodies both

multidimensional attributes (space) and time-series data (temporal data), it also works

with spatio-temporal applications.

In this research, we aim to continuously calculate a set of skyline (St) efficiently

from P t at each consecutive snapshot t.

Definition 3.3.3. (Skyline set) Given a set of data points at snapshot t (P t), pti ∈ P t is

included in the skyline set St if and only if ∀ptj ∈ (P t\{pti}), ptj does not dominate pti
(ptj ⊀ pti).

3.3.2 Summarizing consecutive data snapshots with minimum
bounding rectangles (MBRs)

A minimum bounding rectangle (MBR) is the smallest oriented rectangle enclosing a

set of points which is a 2-dimensional case of a minimum bounding box in a coordinate

system. Our proposed solution can deal with any number of dimensions by using the

same idea. According to all examples in this chapter illustrated in a 2-dimensional

space, for simplicity, we use the term MBRs to refer to this expression in general.

58 CHAPTER 3. CANDIDATE PRUNING FOR SKYLINE MONITORING

While each data object possibly changes its attributes’ values at every timestamp t,

those tracing data points can be seen as a set of points which can be summarized and

represented as an MBR. Therefore, we use an MBR to summarize the space that a data

object changes its values between consecutive snapshot a to b, i.e., {pai , pa+1
i , . . . , pbi}

where a ≤ b.

An MBR of data object i from consecutive snapshot a to b is represented by a 3-tuple

Mi(a, b) = (i, p(+), p(−)) where p(+)[l] = maxj∈[a,b] p
j
i [l] and p(−)[l] = minj∈[a,b] p

j
i [l]

when l ∈ {1, 2, . . . ,m}. We represent a list of MBRs which ends at snapshot t as

M t = {M1(a1, t),M2(a2, t), . . . ,MN(aN , t)}where ai is a number of the start snapshot

of MBR i. Fig.3.1a exemplifies 7 consecutive data snapshots of a data object (i =

1) denoted by {p01, p12, . . . , p61} while the arrows express their trajectories between two

consecutive data snapshots. Their MBR is a box M1(0, 6) shown in the figure. For

short, M t
i refers to the latest MBR of object i at timestamp t regardless of the beginning

timestamp (Mi(∗, t)).

3.3.3 Dominance region and anti-dominance region

A dominance region of an MBR (M t
i .R

(+)) is a subspace where x[l] ≥ M t
i .p

(+)[l] for

all l ∈ {1, 2, . . . ,m}. Any data points or MBRs that fully fall within this region will be

weakly dominated byM t
i . In the contrary, an anti-dominance region of MBR (M t

i .R
(−))

is a subspace where x[l] ≤ M t
i .p

(−)[l] for all l ∈ {1, 2, . . . ,m}. Any data points or

MBRs that fully fall within this region weakly dominate M t
i .

Definition 3.3.4. (MBR Dominance) An MBR M t
i dominates M t

j (M t
i ≺ M t

j) if and

only if ∀l ∈ {1, 2, . . . ,m} : M t
i .p

(+)[l] ≤M t
j .p

(−)[l], i.e., M t
i .p

(+) �M t
j .p

(−) (M t
j fully

falls in M t
i .R

(+)).

Due to M t
i .p

(−)[l] = minj∈[a,b] p
j
i [l] when l ∈ {1, 2, . . . ,m}, we conclude that a

pointM t
i .p

(−) weakly dominates every point pki where k = {a, a+1, . . . , b}. We further

define a definition of a set of skyline MBRs at snapshot t (St
M).

Definition 3.3.5. (Skyline MBR) Given a set of MBRs at snapshot t (M t), M t
i ∈ M t

is included in the set of skyline MBRs St
M if and only if ∀M t

j ∈ (M t\{M t
i }),M t

j does

not dominate M t
i .

3.3. PRELIMINARIES 59

In addition, we denote a set of MBRs that do not belong to St
M as a set of non-skyline

MBRs (N t
M = M t\St

M).

Lemma 3. ∀M t
i ∈ N t

M : there must be at least one MBR which is inside M t
i .R

(−).

Proof. (Proof by contradiction) Assume that M t
i ∈ N t

M , but there is no MBR inside

M t
i .R

(−). Due to M t
i ∈ N t

M and Definition 3.3.5, there exists at least one MBR M t
j

dominating M t
i . As a result, M t

j .p
(+)[l] ≤ M t

i .p
(−)[l] for ∀l ∈ {1, 2, . . . ,m}. From

the explanation in Section 3.3.3, this leads to the contradiction because M t
j must be

contained in M t
i .R

(−).

3.3.4 Pruning candidates for skyline calculation using MBRs

At each snapshot, instead of finding a skyline set from all data points P t, we find the

skyline by using only candidates in the skyline MBRs ({pti|M t
i ∈ St

M}). The cardinal-

ity of St
M is likely to be much smaller than that of P t, so skyline calculation can be

computed faster.

Lemma 4. Skyline calculation from {pti|M t
i ∈ St

M} produces the correct skyline set

(St) as same as using all data points P t.

Proof. (Proof by contradiction) In order to produce incorrect St, there must be at least

a point pti where M t
i ∈ N t

M ∧ pti ∈ St. By Lemma 3, there exists M t
j : M t

j ≺ M t
i . This

leads to contradiction that pki /∈ St because ∀k : M t
j .p

(+) � pki .

Running Example in Fig.3.1b

Fig.3.1b illustrates series of 7 data snapshots (data points) of 5 data objects (i = {1, 2, 3,
4, 5}) with their MBRs (Mi(0, 6)). By Definition 3.3.5, M1(0, 6) and M2(0, 6) are not

skyline MBRs because they are dominated by {M3(0, 6),M4(0, 6)} and {M4(0, 6)}
respectively. Therefore, dt1 and dt2 are guaranteed not to include the final skyline at

t ∈ {0, 1, . . . , 6} that we can safely remove them from skyline calculation. As in the

example, consider only t = {5, 6}, while the final skyline at t = 5 (S5) includes only

{p54}, S6 includes {p63, p64, p65}.

60 CHAPTER 3. CANDIDATE PRUNING FOR SKYLINE MONITORING

𝑀1
6. 𝑅

(+)

x[1]

𝑀1
6 = 𝑀1(0,6)

𝑝1
0

𝑝1
2 𝑝1

3

𝑝1
4𝑝1

6

𝑝1
5

𝑀1
7. 𝑅

(+)

𝑝1
7

𝑀1
7

x[2]

𝑝1
1

𝑀1
6. 𝑅

(−)

=
𝑀1

7. 𝑅
(−)

(a) Case I

x[1]

𝑀1
6

𝑝1
0

𝑝1
2 𝑝1

3

𝑝1
4𝑝1

6

𝑝1
5

𝑀1
7

x[2]

𝑝1
1

𝑝1
7

(b) Case II

x[1]

𝑀1
6

𝑝1
0

𝑝1
2 𝑝1

3

𝑝1
4𝑝1

6

𝑝1
5

𝑀1
7

x[2]

𝑝1
1

𝑝1
7

𝑀1
6. 𝑅

(+)

𝑀1
7. 𝑅

(+)

(c) Case III

x[1]

𝑀1
7 = 𝑀1

6

𝑝1
0

𝑝1
2 𝑝1

3

𝑝1
4𝑝1

6

𝑝1
5

x[2]

𝑝1
1

𝑝1
7

𝑀1
6. 𝑅

(−)

=
𝑀1

7. 𝑅
(−)

𝑀1
6. 𝑅

(+)

=
𝑀1

7. 𝑅
(+)

(d) Case IV

Figure 3.2: MBR updates before including p71 and after including p71

3.3.5 Changes of MBRs when considering a new data snapshot

We start considering how a list of new updates at the next snapshot (U t+1) affects the

current MBRsM t
i . Certainly, including a new snapshot of data can makeM t

i changed in

size as well as their properties, i.e., p(+), p(−), R(+) and R(−). Consider an MBR of data

object i at snapshot t and its update tuple ut+1
j where ut+1

j .i = i and l ∈ {1, 2, . . . ,m},
M t+1

i .p(+)[l] = max(M t
i .p

(+)[l], pt+1
i [l]) and M t+1

i .p(−)[l] = min(M t
i .p

(−)[l], pt+1
i [l]).

The effects of the data updates to M t+1
i can be classified into 4 cases as follows:

(Case I) M t+1
i .p(−) = M t

i .p
(−) and M t+1

i .p(+) �M t
i .p

(+)

This case happens when pt+1
i falls in gray-shaded area at the right-top corner illus-

trated in Fig.3.2a. M t+1
i .R(−) remains the same as M t

i , but M t+1
i .R(+) becomes

3.4. PROPOSED ALGORITHMS 61

smaller.

(Case II) M t+1
i .p(−) ≺M t

i .p
(−) and M t+1

i .p(+) = M t
i .p

(+)

This case happens when pt+1
i falls in the gray-shaded area at the left-bottom corner

illustrated in Fig.3.2b. In addition, M t+1
i .R(−) becomes smaller than that of M t

i

while M t+1
i .R(+) remains the same as M t

i .

(Case III) M t+1
i .p(−) ≺M t

i .p
(−) and M t+1

i .p(+) �M t
i .p

(+)

If pt+1
i falls in the gray-shaded areas at the right-top and left-bottom corners illus-

trated in Fig.3.2c., this changes both lb and ub. In the same way, both M t+1
i .R(+)

and M t+1
i .R(−) are degraded compared to that of M t

i .

(Case IV) M t+1
i .p(−) = M t

i .p
(−) and M t+1

i .p(+) = M t
i .p

(+)

M t+1
i and M t

i are identical if pt+1
i falls inside M t

i (gray-shaded area) illustrated

in Fig.3.2d.

According to Definition 3.3.5, the membership of MBRs in St
M and N t

M possibly no

longer holds for snapshot t + 1 due to the changes of its R(+) and R(−). Therefore, our

proposed method introduces an efficient method to maintain the consistency in order to

identify St+1
M as well as N t+1

M . We describe details in the next section.

3.4 Proposed Algorithms

3.4.1 Overview

From the preliminaries in Section 3.3, we proved that only the data objects whose

current MBR belongs to St
M are a sufficient candidate set for skyline calculation of

each snapshot t. This can significantly reduce the cardinality of data candidates to

be calculated in skyline computation. Therefore, we propose an efficient method to

maintain those MBRs by keeping two separated lists including St
M and N t

M where

M t = St
M ∪N t

M and St
M ∩N t

M = φ.

Our proposed method can be divided into 3 steps.

1. Pre-computation maintenance (PRE)
According to new data updates from the stream at t, the MBRs at t − 1 can be

62 CHAPTER 3. CANDIDATE PRUNING FOR SKYLINE MONITORING

Table 3.1: Notation Summary

Notation Description

pti a data tuple of data object i at snapshot t

P t a set of data tuples at snapshot t

uti an i-th new update tuple at snapshot t

U t a set of new update tuples at snapshot t

Mi(a, b) an MBR summarizing consecutive data snapshots between

a and b of data object i

M t
i ,

Mi(∗, t)
refer to a current Mi(a, b) where b = t and a is neglected

St a set of skyline points at snapshot t

St
M a list of skyline MBRs at snapshot t

N t
M a list of non skyline MBRs at snapshot t

possibly changed in terms of physical MBRs and their pruning capability. This

step tries to identify the correct St
M by paying low maintenance cost as much as

necessary before skyline calculation.

2. Skyline calculation (SKY)
This process is straight-forward. We calculate a final skyline result (St) by one

of many state-of-the-art skyline computation methods but using a smaller set of

candidates.

3. Post-computation maintenance (POST)
Regarding to the final skyline result, we are able to detect some data objects whose

MBR belongs to St
M but does not appear in St. In other words, these MBRs

produce unpleasant false positives degrading overall the pruning capability. In

this process, we propose a heuristic rule to solve this problem.

A brief pseudo-code of our proposed algorithm is shown in Algorithm 6. We ex-

plain the details of pre-computation maintenance (lines 1–9) in Section 3.4.3 and post-

computation maintenance (lines 11–12) in Section 3.4.5.

3.4. PROPOSED ALGORITHMS 63

Algorithm 6: Brief algorithm at snapshot t > 0

Data: The list of update tuples at snapshot t (U t)
Result: The skyline set at snapshot t (St)

1 VL ← ∅
2 foreach Update tuple uti ∈ U t do
3 Update M t

i

4 Add some MBRs needed to be further verified to VL

5 foreach M t
i in VL do

6 if there exists M t
j ∈ St

M : M t
j ≺M t

i then
7 N t

M ← N t
M ∪ {M t

i }
8 else
9 St

M ← St
M ∪ {M t

i }

10 Calculate a skyline set St from {pti|M t
i ∈ St

M}
11 Check the false positives from St

M and St

12 Reconstruct MBRs in St
M that incur too many consecutive false positives

3.4.2 Intialization (t = 0)

At the initialization (t = 0), we have to construct the initial MBRs (M0) of all data

objects (P 0). That means, in each MBR M0
i , M0

i .p
(−) = M0

i .p
(+) = p0i for all i ∈

{1, 2, . . . , N}. Hence, we calculate the first skyline set of P 0 and classify MBRs into 2

lists as S0
M = {M0

i |p0i ∈ S0} and N0
M = M0\S0

M .

Moreover, we additionally introduce two important elements to help easily iden-

tifying the relations between MBRs in St
M and N t

M including an i list of MBRs in a

dominance region of each MBR (M t
i .M

(+)) and a single i of MBR which is in an anti-

dominance region (M t
i .d

(−)). These relations can be established while executing skyline

calculation by using the following rules:

1. If M t
i is dominated by M t

j , then M t
i ∈ N t

M , M t
i .d

(−) = j and i ∈M t
j .M

(+).

2. If M t
i is not dominated by any other MBRs, then M t

i ∈ St
M and M t

i .d
(−) = nil

(not applicable).

According to Definition 3.3.5 and Lemma 3, we conclude that ∀M t
i ∈ N t

M : M t
i 6=

nil while ∀M t
i ∈ St

M : M t
i = nil, and as long as M t

j where j = M t
i .d

(−) dominates

M t
i , M t

i must belong to N t
M .

64 CHAPTER 3. CANDIDATE PRUNING FOR SKYLINE MONITORING

3.4.3 Data updates at snapshot t > 0

When receiving or considering a list of data updates U t = {ut1, ut2, . . .}, each update

tuple describes how a new data tuple pt can be generated while the rest (not indicated in

U t) pti = pt−1i . For those unchanged data tuples, their MBRs are also unchanged, so the

system does nothing in such a case.

However, we need to verify some affected MBRs both in St−1
M and N t−1

M whether

they are still in the correct lists at snapshot t due to new data updates. Therefore, we

create an additional list called a verification list (VL) containing MBRs whose elements

are needed to be further investigated. This process included in the pre-calculation main-

tenance checks the following conditions.

1. M t−1
i ∈ N t−1

M and M t
i affected by pti fall in either Case II or Case III (referred to

Section 3.3.5).

Because M t
i .R

(−) is deteriorating, M t−1
Mt

i .d
(−) may no longer dominate M t

i . There-

fore, we check if it still dominates, and if not, M t
i is pushed to VL.

2. M t−1
i ∈ St−1

M and M t
i affected by pti fall in either Case I or Case III (referred to

Section 3.3.5).

Because the dominance capability of M t
i (M t

i .R
(+)) has been reduced, some

MBRs inM t−1
i .M (+) may no longer be dominated byM t

i . We move j ∈M t−1
i .M (+)

which is not dominated by M t
i to VL.

3. Otherwise: No change of MBRs’ status (neglected).

Verification of MBRs in VL

We can see that all listed MBRs in VL used to be in N t−1
M , but possibly they are no

longer able to be in N t
M . This will increase the number of MBRs in St

M resulting in

increasing in the number of candidates in skyline calculation. At this process, we try to

check these MBRs again whether there exists at least an MBR in St
M dominating them

before including them into St
M . Therefore, for each M t

i ∈ VL, we search for any first

M t
j ∈ St

M that dominates M t
i . If found, M t

i is pushed back to N t
M and set M t

i .d
(−) = j.

Otherwise, it is swapped to St
M .

3.4. PROPOSED ALGORITHMS 65

It is noted that there may be more than one M t
j dominating M t

i . In best practice,

M t
j to be chosen should be an MBR in St

M which gives the longest distance between

M t
i .p

(−) and M t
j .p

(+) (M t
i .d

(−) = arg max∀j:Mt
j≺Mt

i
d(M t

i .p
(−),M t

j .p
(+))). However, to

do this approach consumes more time because we cannot avoid scanning the entire list

of St
M . Heuristically, we may choose M t

j having more pruning power than the others,

i.e., M t
j .p

(+) near the origin. Using the Manhattan distance, we choose M t
i .d

(−) =

arg min∀j:Mt
j≺Mt

i

∑m
l=1M

t
j .p

(+)[l]. Maintaining a list of St
M sorted by

∑m
l=1M

t
j .p

(+)[l],

we can simply choose the first found dominating MBR in the list without scanning the

entire list.

3.4.4 Skyline calculation

Because the main objective of this research aims to reduce the number of candidates

to be calculated in skyline computation regardless of skyline computation algorithms.

Therefore, we simply adopt the state-of-the-art Block-Nested-Loop skyline computation

as default. According to Lemma 4, we calculate the final skyline set at snapshot t (St) by

using a set of data points whose MBRs belong to St
M . Nevertheless, other complicated

skyline computation algorithms can be used for further improvements, but this is out of

the scope of this research.

3.4.5 Post-computation maintenance

After St has been calculated, it is possible that some of candidates from St
M do not

finally belong to St (false positives). If Mi(∗, t) = M t
i usually incurs a false posi-

tive for a long period (too many consecutive snapshots), it is worth considering paying

maintenance cost to reconstruct and newly start an MBR from the current snapshot t

(M t
i = Mi(t, t)) because of the possible higher gains of pruning capability in the next

iteration.

Lemma 5. The dominance and anti-dominance regions of a newly-reconstructed MBR

M ′
i = Mi(t, t) are not smaller than the old Mi = M t

i (a, t) where a < t.

Proof. The dominance region ofMi (Mi.R
(+)) is x[l] ≥Mi.p

(+)[l] for l ∈ {1, 2, . . . ,m}.
However, M ′

i .p
(+) = pti and pti[l] ≤ maxk∈[a,t] p

k
i [l] = M ′.p(+). Hence, M ′

i .R
(+) must

66 CHAPTER 3. CANDIDATE PRUNING FOR SKYLINE MONITORING

𝑀1
𝑡

𝑀2
𝑡

𝑀3
𝑡

𝑀4
𝑡

𝑀5
𝑡

𝑀10
𝑡

𝑀6
𝑡 𝑀9

𝑡

𝑀8
𝑡

𝑀7
𝑡

𝑀11
𝑡

𝑀1
𝑡

𝑀2
𝑡

𝑀3
𝑡

𝑀4
𝑡

𝑀5
𝑡

𝑀11
𝑡

𝑀6
𝑡

𝑀7
𝑡

𝑀8
𝑡

𝑀9
𝑡

𝑀10
𝑡

𝑆𝑀
𝑡 𝑁𝑀

𝑡

𝑝2
𝑡

x[1]

x[2]

(a) Before M t
2 reconstruction

𝑀1
𝑡

𝑀3
𝑡

𝑀4
𝑡

𝑀5
𝑡

𝑀11
𝑡

𝑀6
𝑡

𝑀2
𝑡

𝑀7
𝑡

𝑀8
𝑡

𝑀9
𝑡

𝑀10
𝑡

𝑀1
𝑡

𝑀3
𝑡

𝑀4
𝑡

𝑀5
𝑡

𝑀10
𝑡

𝑀6
𝑡 𝑀9

𝑡

𝑀8
𝑡

𝑀7
𝑡

𝑀11
𝑡

x[1]

x[2]

𝑀2
𝑡 . 𝑝(−) = 𝑀2

𝑡 . 𝑝(+) = 𝑝2
𝑡

𝑆𝑀
𝑡 𝑁𝑀

𝑡

(b) After M t
2 reconstruction

Figure 3.3: Running example of an MBR reconstruction illustrating that M t
2 is swapped

to N t
M after reconstruction

not be smaller than that of Mi. In the same way, the anti-dominance region of Mi

(Mi.R
(−)) is x[l] ≤ Mi.p

(−)[l] for l ∈ {1, 2, . . . ,m}. However, M ′
i .p

(−) = pti and

pti[l] ≥ mink∈[a,t] p
k
i [l] = M ′.p(−). Hence, M ′

i .R
(−) must not be smaller than that of

Mi.

MBR reconstruction strategy

MBR M t
i that belongs to St

M but pti is not included in St for a long period should

be lowered the rank to N t
M to decrease the cardinality of skyline calculation in each

3.4. PROPOSED ALGORITHMS 67

snapshot. In this section, we discuss about a heuristic rule to decide which MBR should

be reconstructed followed by a running example.

Firstly, a record of the number of consecutive false positives of each MBR should

be tracked by adding a new MBR attribute called M t
i .fp. At each iteration, we calculate

this parameter for all MBRs in St
M as follows:

M t
i .fp =

M t−1
i .fp + 1 ; M t

i ∈ St
M ∧ pti /∈ St

0 ; otherwise
(3.1)

We decide to reconstruct an MBR M t
i when

M t
i .fp ≥ θf (3.2)

where θf is a false positive tolerance threshold, i.e., M t
i : ∀k ∈ [t − θf , t] : Mk

i ∈
Sk
M ∧ pki /∈ Sk.

Lemma 6. If M t
i is reconstructed, a list of MBRs M t

i dominates (M t
i .M

(+)) remains

the same.

Proof. Due to Lemma 5, the dominance region of M t
i does not become smaller. There-

fore, all MBRs that M t
i dominated before reconstruction are still dominated by M t

i after

the reconstruction.

Lemma 7. After M t
i ∈ St

M is reconstructed, M t
i may change its membership to N t

M

Proof. According to Lemma 5, the anti-dominance region of M t
i may become larger.

Therefore, it is possible that some M t
j ∈ St

M can dominate M t
i .

Running example Fig.3.3 illustrates an example of an MBR reconstruction. In Fig

3.3a, there are 11 different MBRs in the space which can be classified to St
M and N t

M .

An arrow fromM t
i toM t

j shows the relation thatM t
i dominatesM t

j , i.e.,M t
j ∈M t

i .M
(+)

and M t
j .d

(−) = M t
i . Assume that M t

2 is decided to be reconstructed at snapshot t and

the recent data point pt2 is as shown in Fig.3.3a. After M t
2’s reconstruction (Fig.3.3b),

both dominance and anti-dominance region of M t
2 have changed, and M t

2 is no longer

in St
M because it is dominated by M t

3 while M t
2.M

(+) ({7, 8}) remains the same (no

additional cost of finding). Note that M t
i ∈ N t

M can be dominated by some M t
j ∈ N t

M

(not only limited to M t
j ∈ St

M).

68 CHAPTER 3. CANDIDATE PRUNING FOR SKYLINE MONITORING

In summary, while the process in pre-calculation maintenance swaps some MBRs

from N t
M to St

M , the process in post-calculation maintenance dynamically swaps back

some MBRs from St
M to N t

M . This responses to behaviors of data movement in an

adaptive way.

3.5 Simulation Experiments

In this section, we conducted some experiments by implementing algorithms using C#

on a single commodity PC. We tested our proposed algorithm as well as other compet-

itive methods on the same environment. The system was to process a large file dataset

which contains a series of (D0, U1, U2, . . . , UT) and find the desired output which is

(S0, S1, . . . ST). We evaluated the performance by measuring the wall clock time of to-

tal execution time in each method. In the results, only synthetic datasets were generated

3 times in each case, and the results report the average case of them.

3.5.1 Datasets

In this experiment, we used both synthetic and real datasets to simulate and show our

proposed method’s performance.

1. Synthetic dataset (SYN): Firstly, each data record p0i is uniformly random on

each dimension as a point on them-dimensional data space [0, 100]m. We model a

data value on each dimension as a Gaussian random walk pattern following pti[l] =

pt−1i [l] + uti[l] where uti[l] = λti · et[l], et[l] ∼ N (0, 0.5) (normal distribution),

1 ≤ l ≤ m and

λti =

1 ,with probability p.

0 ,with probability 1− p.
(3.3)

The synthetic datasets are generated by varying each parameter from default set-

ting. We assign the default setting for parameters as follows, N = 5000, m = 3,

T = 10000, and p (in Eq.3.3)= 0.05.

2. Stock dataset (STK): This stock dataset aggregated from Yahoo! Finance 1 con-

sists of the daily information of all stocks in NYSE between 2004 and 2013. For
1Yahoo! Finance: http://finance.yahoo.com/

3.5. SIMULATION EXPERIMENTS 69

the scenario that we want to form a defensive investment portfolio, stocks that

have a lower beta (not fluctuate with the market) and a trend of increasing in price

than other stocks for a long period of time in the market are preferable. Therefore,

we extract only 2 attributes including 200-day beta (β) and a 200-day slope of a

regression line of close price (2 decimal precision). The system analyzes daily

which stock acts or holds this characteristic for a long period of time and no better

other choices in the market (skyline). Therefore, we take a daily change of these

attributes as a snapshot. After data cleansing, this dataset contains 1630 stocks,

2000 snapshots and 1531069 update tuples (averagely 47% of entire monitored

stocks).

3. NBA dataset (NBA): This NBA dataset aggregated by the authors in [70] con-

sists of all historical NBA information on both game plays and player statistics

between 1991 and 2004. We aim to find the skyline of players being active over

that time period. By taking the end of each game as one snapshot, we need to

compute the skyline after every game play. In summary, there are 1225 players

to be monitored, 16423 matches played (snapshots) and 312086 update tuples

in total. We selected 5 useful attributes from a record of each player in each

match including play time in minutes (MIN), points made (PTS), total rebounds

(TOT), field goal made (FGM) and field goal attempts (FGA). However, we ex-

tracted 3 attributes to evaluate players including PTSA =
∑
PTS/

∑
MIN ,

TOTA =
∑
TOT/

∑
MIN and FGR =

∑
FGM/

∑
FGA. In this dataset,

we can see that there are only at most 24 players changed (about 2% of entire

monitored players) their statistics in a consecutive snapshot.

3.5.2 Comparison methods

We implemented the following methods for comparing with our proposed method.

1. Naive method (baseline): Compute the skyline by the default skyline algorithm

using entire data objects in every snapshot (D0, D1, . . . , DT).

2. Grid-based method (Grid-n): We implemented the technique in [75] to prune

by dividing the m-dimensional data space into nm cells. Each cell is large (cw)m

units. In our experiments, we define cw = max pti[k]/n;∀t ∈ {0, 1, . . . , T}, ∀i ∈

70 CHAPTER 3. CANDIDATE PRUNING FOR SKYLINE MONITORING

{1, 2, . . . , N} and ∀k ∈ {1, 2, . . . ,m}. We varied n from 10, 30 and 50 respec-

tively in each experiment. Then the candidates only in the grid cells that are not

dominated by other cells are computed for skyline calculation while the rest can

be safely pruned. This method is obviously not scalable because the number of

grid cells can be tremendous in higher dimensionality. Also, this method requires

the knowledge of data distribution, types of data attributes, data space to define

proper values of grid cells’ granularity and the space size. As in our experiments

on real datasets, we had to find the maximum possible value in each attribute

in advance to normalize the attribute values in order to fit in the specified data

space. However, doing like this is not applicable in some real-life and real time

applications, because this can be difficult and impossible for open-bounded value

attributes. On the contrary, our proposed method has no restriction about the data

space.

3. LookOut [49]: The continuous skyline computation method for single data in-

sertion and deletion.

3.5.3 Measurements

We evaluated the performance by measuring the wall clock time of total execution time

as well as counting the total number of processed candidates in each method. Nor-

mally, the skyline computation time is directly proportional to the number of processed

candidates. In the naive method, there is only computation time due to skyline compu-

tation (SKY), but the grid-based method and our proposed method include both skyline

computation time (SKY) and maintenance time (PRE and POST).

3.5.4 Results of the synthetic datasets

Parameter Tuning: The false positive tolerance threshold (θf) is only one system

parameter in the proposed method. Here, as a preliminary experiment, we studied an

effect of this parameter to decide a suitable value. At low θf , it incurred frequent MBR

reconstructions while the size of candidates is reduced because of less false positives in

St
M , and vice versa. It shows that setting low θf around 10–100 gives more preferable

outcome than higher θf (1000–10000). In other words, paying some maintenance cost to

3.5. SIMULATION EXPERIMENTS 71

100

1000

10000

100000

1e+06

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

To
ta

le
xe

cu
tio

n
tim

e
(m

s)

Number of data objects (N)

Naive

Proposed

Grid-10

Grid-30

Grid-50

LookOut

(a) Impact of N

0

10000

20000

30000

40000

50000

2 3 4 5 6

To
ta

le
xe

cu
tio

n
tim

e
(m

s)

Dimensionality

Naive

Proposed

Grid-10

Grid-30

Grid-50

(b) Impact of m

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

5000 10000 20000 30000 40000 50000

To
ta

le
xe

cu
tio

n
tim

e
(m

s)

Number of snapshots (T)

Naive

Proposed

Grid-10

Grid-30

Grid-50

(c) Impact of T

0

1000

2000

3000

4000

5000

6000

7000

0.05 0.1 0.15 0.2

To
ta

le
xe

cu
tio

n
tim

e
(m

s)

Moving Probability (p)

Naive
Proposed

Grid-10
Grid-30
Grid-50

(d) Impact of p

Figure 3.4: Results of the synthetic dataset

renew non-potential MBRs in St
M is worthy and able to reduce the overall computation

time. Therefore, we assign θf equal to 50 as the default parameter in all experiments.

Impact of N : Increasing the number of objects, N , to be monitored directly affects

the skyline computation time because of more candidates to be processed in each snap-

shot. As shown in Fig.3.4a, our proposed method runs faster than the others. As ex-

pected, the LookOut method performed worst than the others by a number of magni-

tudes, so we left out this method for the rest of the results. Even though Grid-10 can

prune some candidates, their maintenance time is high due to the large number of blocks

to be maintained. Its result turned poorer than the naive method. Regardless of the set-

ting of the grid-based method, our proposed method processes less candidates (results

omitted) compared with other methods and still outperforms the other methods in the

72 CHAPTER 3. CANDIDATE PRUNING FOR SKYLINE MONITORING

total computation time. This result ensures that our proposed method is scalable on a

large number of data objects.

Impact of m: Normally, the cardinality of a skyline set is increasing exponentially

with the number of dimensions,m, resulting in slower skyline computation. In Fig.3.4b,

our proposed method outperforms the grid-based method because increasing the dimen-

sionality also increases exponentially the number of maintained cells in the grid-based

method, i.e., nm. We also tried experimenting on higher dimensionality than 5, but

the grid-based method faces the errors due to the overflow of grid index number. At

m = 7 (not shown in the figure), our proposed method still saves total computation time

compared to the naive method by 20.5%.

Impact of T : In this setting, we simulated the result of all methods when using for

long periods of time by increasing the number of snapshots, T . Normally, the total

computation time grows linearly with this factor. However, in practice, it also depends

on the cardinality of output affected by data distribution and data updates. The results

show that our proposed method is more efficient than the others in long-term usage

denoted by more gradual slope in Fig.3.4c.

Impact of p: In this setting, we study the effect when many data objects change their

attribute values in each snapshot by increasing the probability of data object moving in a

consecutive snapshot, p. According to the random walk model, increasing this probabil-

ity scatters and deviates more data further from the initial points and produces different

skyline output in each setup. However, this puts more work on the grid-based method

to verify the correctness of membership in each cell as well as their cell dominance

relationships and on our proposed method to verify the changes of MBRs in shape and

dominance relationships. This maintenance cost worsens the grid-based method, and

they become worse than the naive method as p increasing.

3.5.5 Results of the real datasets

We examine our proposed method’s performance on 2 different real-life datasets, NBA

and STK, which have totally different characteristics. NBA is quite larger than STK

3.5. SIMULATION EXPERIMENTS 73

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Naive Grid-10 Grid-30 Grid-50 Proposed

To
ta

le
xe

cu
tio

n
tim

e
(m

s)

Skyline time

Update time

(a) STOCK dataset (STK)

0

5000

10000

15000

20000

25000

Naive Grid-10 Grid-30 Grid-50 Proposed

To
ta

le
xe

cu
tio

n
tim

e
(m

s)

Skyline time

Update time

(b) NBA dataset (NBA)

Figure 3.5: Results of the real datasets

in terms of the number of snapshots and the number of dimensions, but the moving

probability (update ratio in each snapshot) is quite low averagely at only 2% for each

snapshot while STK is at 47.6%. In this subsection, the results are reported in more

details about the skyline computation time and the maintenance time.

In STK dataset, the data objects are frequently changed (many update tuples at a day

tick) by its nature, and the moving probability is quite high averagely at 47%. Therefore,

very high cost of maintenance for the grid-based method and our proposed method

should be anticipated. As expected, the result of this dataset in Fig.3.5a reports the

huge cost of maintenance time (Update time) in our proposed method and especially in

the grid-based method. However, it is obvious that the more grid partitions, the higher

cost of maintenance. Grid-30 and Grid-50 incur high cost of maintenance (Update time

shown in Fig.3.5a), so the total execution time for these 2 methods eventually cannot

beat the naive method. Nevertheless, our proposed method still saves the computation

cost by 20% compared with the naive method.

Unlike STK, the NBA dataset consists of 3 attributes and more snapshots with lower

average update rate. In Fig.3.5b, our proposed method achieves the best result among

other comparison methods in both skyline calculation time (Skyline time) and mainte-

nance time (Update time). Using the grid-based method can help pruning a lot in the

STK dataset, but the pruning capability in this dataset is quite poor due to higher dimen-

sionality and data distribution. In spite of lower number of candidates to be computed,

74 CHAPTER 3. CANDIDATE PRUNING FOR SKYLINE MONITORING

the cost of maintenance of Grid-50 makes it underperformed even the naive method.

3.6 Conclusions

In this chapter, we proposed an efficient method for skyline calculation when there are

many data updates at each snapshot (timestamp). This is useful for analyzing historical

(time-series) data archive as well as skyline computation on data update streams. In the

assumed historical data series, the changes of data between consecutive timestamps are

expressed and kept as update tuples. In practice, data insertion, deletion or any modi-

fication of a single data object between timestamp can totally change the final skyline

set. Therefore, the naive method for this problem is to re-compute the new skyline set

every timestamp (snapshot). This can be very expensive and time-consuming.

Our proposed method makes use of bounding boxes, i.e., MBRs to summarize and

represent a series of data snapshots of each data object. Due to the properties of MBRs

and our technique to manage them, we can identify a smaller set of candidates for sky-

line computation by pruning non-potential data objects while the accuracy can be guar-

anteed. Moreover, we also discuss about the maintenance of our technique which is

adaptive to the data changes in terms of temporal updates and data distribution.

We compared the performance of our proposed method through the experiments by

using both synthetic dataset and 2 real datasets. The results obviously showed the ben-

efits of our proposed method over the other methods by measuring the total execution

time.

Reducing the response time in skyline monitoring through the algorithmic improve-

ment in our proposed method has an impact on increasing user experience. Otherwise,

our propose method is more scalable in terms of the number of data objects to be ob-

served.

Chapter 4

Cost-minimizing methods for top-k
and skyline monitoring

4.1 Introduction

A monitoring query is one of primitive tasks in sensor networks (SNs) for various appli-

cations, e.g., environmental monitoring, disaster prevention and industrial monitoring.

Consequently, monitoring query processing, i.e., continuous query processing, has been

extensively investigated in the research community, for example, skyline monitoring,

top-k monitoring and kNN monitoring to name a few. Much research focuses on the

problem of how to efficiently answer those diverse types of queries.

In terms of local computation, researchers aim to improve computation time and I/O

to process acquired sensor data streams. In the aspect of SNs, they focus on reducing

communication cost (data transfer) because sensors mostly have limited bandwidth and

battery power, and communication cost directly affects battery lifetime. Therefore, the

conventional techniques include dedicated in-network data aggregation and filtering.

Note that, each proposed solution is application-specific, i.e., the usage of SNs is limited

to the agenda of the owners or organizations. In other words, the techniques are different

based on the types of queries, so these methods are applicable for task-specific sensor

networks and rarely used across types. As a result, the utilization of the sensors is not

maximized.

With the development of cloud computing, a new paradigm computation for SNs

75

76 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

called sensor cloud aims to integrate multiple SNs and to deal with a massive volume

and various fields of sensor data from forthcoming technologies of Internet of Things

(IoT) [28], Smart Cities [56], etc. Such valuable sensor data can be commercialized as

Sensing as a Service (S2aaS).

S2aaS [66] in sensor cloud abstracts all physical layers of sensor network integration.

It provides users with the capability to effectively utilize provisioning virtual sensors,

so the users can perform their desired sensing tasks by using various kinds of sensors

in available wide-spread areas without technical difficulties. In commercial services

[48], users pay the usage cost based on the amount of utilization (pay as you go) with-

out the necessity of deploying their own infrastructure, while SNs providers and data

contributors may receive rewards in the forms of rental fee or the cost of requested data.

With S2aaS, a monitoring task can be processed with ease. This chapter firstly fo-

cuses on top-k monitoring query which delivers the best k-rank objects to a user peri-

odically. This is substantial in view of the fact that a user would be interested in only a

few best data objects (say k objects) at a time.

An application scenario is to monitor the k most vulnerable locations where a risk

(e.g., flood) is evaluated by precipitation, water level and wind speed in each region

by using a sensor cloud service in (near) real-time. In addition, not only real-time

applications but some analytic queries, for example, durable top-k query [88], also need

to access historical time series data which can be provided by sensor cloud services.

In such a scenario, values of data records in consecutive timestamps rarely jump but

gradually change. Our work also employs this observation as an underlying assumption.

However, many of the conventional queries including top-k query and skyline query

[10] are rank-aware queries where the calculation involves with comparisons between

objects (aggregate query). This means all objects need to be retrieved and compared

in order to give the correct answer in each timestamp even though in top-k query, for

example, the cardinality of the answer set is only k that is much smaller than the total

number of objects. Because we need to pay the cost of utilization based on the amount

of requested data, this can cost a huge sum of expense.

In this chapter, we first tackle this problem and propose a cost-minimization mon-

itoring framework for top-k queries where cost is referred to the expense for data ac-

cess in sensor cloud services. To reduce the expense, our designed framework skips

retrieving actual data tuples of unpromising objects to save the cost. Those skipped

4.1. INTRODUCTION 77

data objects are modeled with the proposed uncertainty model, and data requests are

issued based on the necessity on querying. We then develop efficient approximate top-k

processing methods with a quality guarantee on those uncertain and actual data ob-

jects. Unlike the work in [1] which tries to answer approximate aggregate queries with

bounded response times, our goal is to answer continuous top-k queries with bounded

expense budgets.

Even though our proposed top-k processing method brings about more computa-

tional complexity, in this chapter, we also presents an implementation of our framework

on well-known and de facto parallel-distributed frameworks for cloud computing, i.e.

Hadoop MapReduce and Spark, as well as its enhanced scheme to further speed up cal-

culation time and reduce computation loads on the cloud. The results from extensive

experiments on two real datasets show that, by employing our framework, the expense

can be cut at least by half while the accuracy gets a perfect score. Furthermore, the

additional computation time compared with that of a traditional exact method can be

suppressed by using parallel computing on the cloud.

We also shows that this similar framework can also be applied to the case of skyline

monitoring without difficulties, and the proposed method yields the same benefits as

same as that of top-k monitoring.

In summary, the contributions of this paper are as follow:

• We design a framework to reduce the expense for top-k monitoring in sensor

cloud services.

• We developed efficient methods of approximate top-k query processing with a

probabilistic guarantee on the designed framework.

• We thoroughly conduct extensive experiments to study the efficiencies in terms

of expense, time and accuracy on two real-world datasets.

• We also show that the same underlying framework can be easily extended to be

used for skyline monitoring.

78 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

4.2 Related Work

Top-k query processing has been actively researched for many years. At first, many

techniques in top-k query processing on centralized databases have been proposed [36].

Later, there have been a number of works on top-k query processing in different contexts

such as continuous top-k [91], distributed top-k [87], top-k dominating [95] and durable

top-k [88].

All of the works mentioned above can be roughly classified as either centralized

or distributed systems. The works for centralized systems concentrate on indexing,

caching and pruning methods to reduce computations resulting in more efficient top-

k processing in terms of number of I/O and execution time. For distributed systems,

e.g., wireless sensor networks (WSNs) [91] and peer-to-peer systems (P2P) [87], the

objectives are to reduce the response time, the number of contacted nodes and the traffic

incurred by in-network top-k processing. In sensor cloud services, these specific issues

no longer exist because data can be accessed directly from the cloud. To the extent of our

knowledge, we are the first to address the problem of cost minimization of monitoring

queries in sensor cloud services.

Data collection can be inaccurate due to reading errors, inaccurate sensors, etc. Due

to the existence of data uncertainty, a new class of query called probabilistic query has

been actively studied [2]. The definition of uncertain data can be roughly divided into

two categories: (1) tuple-level uncertainty (sometimes called existential probability) –

the probability of presence or absence of a data tuple found in [32, 59, 69] and (2)

attribute-level uncertainty – uncertainty of an attribute represented by probability mass

functions, parametric statistical models, etc. [54, 68, 98].

Our assumed uncertainty model is classified in the attribute-level uncertainty. How-

ever, the source of uncertainty in our work is different from the works above that assume

the uncertainty happens to data at the source of information while our work assumes the

collected data are accurate but the uncertainty of data occurs because of the oldness (age

of data). Our data model is similar to moving objects, i.e., spatio-temporal data. There

are various models to represent uncertain moving objects, for example, free moving

region [15], diamond [24] and bivariate normal distribution [57].

4.3. PRELIMINARIES 79

4.3 Preliminaries

4.3.1 Sensor Cloud

Sensor cloud is a model extended from cloud computing to manage and integrate phys-

ical sensors and turn them into a number of services. Likewise cloud computing, sensor

cloud is scalable in terms of storage, computing capability, the number of users and

services. Sensor cloud, unlike general cloud computing, not only providing on-demand

computing and storage resources but also convenient access to sensor data on a pay-as-

you-go basis. Definitely, the expense of using cloud services can be divided into many

categories, e.g., the expenses of computing cores, storage, backups and databases. In

this paper, we focus on the expense which is additionally included apart from the base

costs of computing and storage in sensor cloud, i.e., the expense of sensor data access.

This expense can be very high because sensor data are generated with different costs,

e.g., types of sensors, maintenance cost, deployment difficulty and data acquisition.

Therefore, in this paper, the word expense refers to the cost of data access incurred in

sensor cloud services regardless of other expenses.

4.3.2 Data Model

Sensor cloud integrates multiple-attribute data, i.e., a single data object represented by

a tuple of values, from many diverse physical sensors, and then performs data pre-

processing on those data before storing into the storage and opening on-demand or

real-time access to users/applications. Normally, for power-efficient data aggregations

in sensor networks, sensors perform data sensing in duty-cycle, i.e., sensors periodically

sense values when they are active and put themselves to sleep, so the availability of data

in sensor cloud services is not continuous but snapshot-like that each data record is asso-

ciated with a timestamp. In addition, sensor data provided in sensor cloud services can

be from other sources beyond physical sensors, i.e., virtual sensors where data collected

from social networks and web data. For a specific application, we are usually interested

in the same set of attributes from a number of sensors rather than considering them as

heterogeneous sensors. Hence, we assume that sensors supply values of the same set of

attributes in each timestamp.

Given a set of m attributes including AT = {A1, A2, . . . , Am}, at each timestamp

80 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

t, a physical/virtual sensor Mi dynamically generates a data record dti where i is the

unique identifier (id) of the sensor i, and dti = (dti[0], dti[1], . . . , dti[m]) ∈ Rm is a data

tuple where each element respectively represents the values of each attribute in AT .

Taking only the first attribute in a sensor into account, a sequence of {d0i [0], d1i [0], . . .}
is time series. We define Dt =

⋃ND

i=1 d
t
i as a set of actual data tuples of all ND sensors at

timestamp t. It is noted that the actual values of data tuples from one sensor vary with

t. Nonetheless, in the two consecutive snapshot t and t+ 1, the values of the data tuples

can be changed or unchanged.

4.3.3 Data Access

In a sensor cloud service, we assume that the cost of data access is charged per tuple

to the users/applications. A user requests a data tuple via API by a key which is a

pair of (i, t) where i indicates the sensor identifier and t indicates the timestamp of the

data tuple the user wants to acquire. Based on the applications, t is decided by users

(pull-based access), e.g. event monitoring (requesting latest t) or historical data analysis

(requesting old timestamp t). We assume that users know the data availability at time

t, e.g., data update on the hour. Then the sensor cloud service will reply back with an

augmented tuple (i, t, dti) where dti is an m-dimensional tuple of attribute values. This

model is commonly found in key-value databases, e.g., HBase1, MongoDB2, etc., and

commercial data vendors, e.g., Microsoft Azure Marketplace3 (Fig.4.1).

4.3.4 Top-k monitoring query model

A top-k query q = (f, k) from a user is defined by a linear scoring function f in which

its weightings can be represented as a vector w = (w1, w2, . . . , wm) where wj stands for

positive weighting at j-th dimension and a parameter k. We focus on linear combination

functions such that a score of a data record di is f(dti) =
∑j=m

j=1 wjd
t
i[j]. This class of

functions is common because it represents how a user gives priority (weighting) to each

factor. A set of weightings can be acquired by many possible ways, for example, given

directly by users and adapted from the studies of each objective. A scoring function is

1http://hbase.apache.org/
2https://www.mongodb.org/
3https://datamarket.azure.com/browse/data

4.4. COST MINIMIZING FRAMEWORK 81

Data marketplace

Figure 4.1: Microsoft Azure Marketplace providing data access service charged by the

number of requests

monotonic, that is if da[i] ≤ db[i] for all 1 ≤ i ≤ m, then f(da) ≤ f(db). The value k

defines the number of desired data records.

The final top-k answers of query q at timestamp t are denoted by T t
k = topk(Dt) =

{at1, at2, ..., atk} where ati ≤ atj , i > j and T t
k ⊆ Dt. By the definition of final top-k

answers, ∀dtx, dty : dtx ∈ T t
k, d

t
y ∈ Dt\T t

k → f(dtx) ≤ f(dty). It is noted that we prefer

to objects whose scores are lower. Top-k monitoring aims to identify T 0
k , T

1
k , . . . , T

Nt
k

where Nt is the number of snapshots.

4.4 Cost Minimizing Framework

Top-k query is a rank-aware query. Even though the cardinality of the final top-k an-

swers is exactly equal to k, but, to calculate the correct answers, Dt which has a size of

ND must be retrieved in each timestamp t. This means that ND − k retrieved objects

are wastefully collected but never used for top-k monitoring purposes. Remind that data

access is charged per tuple, this costs a huge amount of money.

82 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

4.4.1 Problem Statement

In this paper, we investigate the problem of reducing the expense in sensor cloud ser-

vices for top-k monitoring queries. The objectives are to keep the accuracy of the final

top-k results high while the expense must be significantly reduced compared with the

baseline approach.

4.4.2 Observations

A sensor generates a sequence of data points (time series). In many contexts, e.g.,

finance and meteorology, time series analysis is used for representing trends and predic-

tion. Therefore, we may be able to predict with high confidence based on the historical

records that dti is very unlikely to be included in the top-k results T t
k because dt−1i is too

far from becoming top-k answers compared with other candidates. From this observa-

tion, we may skip fetching dti to save cost, while the last known value of this object is

dt−1i . Definitely, if we keep deciding not to fetch this object in the next snapshot, i.e.,

dt+1
i , dt+2

i , . . ., we gradually lose the confidence that dt+1
i , dt+2

i , . . . are unlikely to be

included in T t+1
k , T t+2

k , ... because the values may have been changed significantly from

the latest-retrieved value. Eventually, dt′i must be retrieved to ensure the confidence of

the status of dt′i in T t′

k at some t′ ≥ t. For example, let t′ = t + 5, this means we can

save cost not to access 4 times.

4.4.3 Uncertain data model

In this section, we illustrate how to model the uncertainty of data tuples with respect

to their oldness. The oldness is defined as the difference of timestamps between latest-

retrieved timestamp and the current timestamp.

Considering only a single attribute, we model the change in values of the attribute in

2 consecutive snapshots following a normal distribution N (µ, σ2) where µ is the mean

and σ2 is the variance as shown in Eq.4.1.

dt+1
i [j] ∼ N (dti[j], σ[j]2) = dti[j] +N (0, σ[j]2) (4.1)

This time series form a Gaussian random walk which is a random walk model hav-

ing a step size that is based on Gaussian distribution. Random walk model is used or

4.4. COST MINIMIZING FRAMEWORK 83

Table 4.1: Example of D5 and U of 8 objects at t = 5

D5 U and t = 5

i d5i i t′ dt
′
i ∆t

1 (18.42, 6.21) 1 5 (18.42, 6.21) 0

2 (10.77, 30.03) 2 5 (10.77, 30.03) 0

3 (20.14, 55.45) 3 5 (20.14, 55.45) 0

4 (48.12, 13.15) 4 4 (46.78, 10.58) 1

5 (39.05, 42.14) 5 3 (41.25, 48.98) 2

6 (18.82, 91.11) 6 2 (28.65, 86.01) 3

7 (72.25, 29.86) 7 2 (86.09, 26.60) 3

8 (82.00, 72.66) 8 2 (82.56, 72.64) 3

underlying in real world time series data, e.g., financial data [35].

From Eq.4.1, let n be the number of steps from t then

dt+n
i [j] ∼ dti[j] +N (0, nσ[j]2) (4.2)

Therefore, considering m independent attributes

dt+n
i ∼ dti +N (0, nΣ) (4.3)

where Σ =


σ[1]2

. . .

σ[m]2

 is a covariance matrix and σ[i]2 is the variance of

attribute i.

We use this explained model to define uncertainty of the data objects at timestamp t

when the latest-retrieved timestamp is t′, so the oldness is defined as ∆t = t− t′ where

t ≥ t′. To distinguish between the actual values at the present timestamp and the values

with uncertainty, we define a new table called U . The cardinality of U is ND as same as

Dt. The data objects in U includes {u1, u2, . . . , uND
} which each element ui is a tuple

of (t′, dt
′
i) indicating that the object di was latest-retrieved at timestamp t′ having values

dt
′
i .

Table 4.1 depicts an example of D5 (the list of actual data at t = 5) and U . They

contain 8 objects including i = {1, 2, . . . , 8}. Each record has different degrees of

uncertainty. In the table, u1, u2 and u3 have been retrieved in this timestamp, so their

84 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

values are exactly the same as d51, d52 and d53. On the other hand, u6, u7 and u8, for

instance, have not been retrieved since timestamp 2 (∆t = 3).

Variances from datasets

Because the uncertain data model is designed based on the assumption that values

change following the Gaussian model, an important component for this model is the

covariance matrix Σ, i.e., the variances of each independent attribute. In other words,

these define the expected step size in each change of attribute data. In some cases, we

can roughly predict or approximate the acceptable variance for an attribute. For exam-

ple, temperature generally does not change more than 5 degrees (positive and negative)

in the next timestamp (e.g., within 10 mins). We may presume that 95% the step size

is between [0,5] (ranging between [-5,5]) that means 2σ = 5. Therefore, we may set

σ2 = 25/4 = 6.25 as a variance of this attribute.

However, for unfamiliar or unknown attributes, the variance can be approximated

from the existing historical records using Eq.4.4.

σ2[j] = V ar({∆d|∆d = |dti[j]− dt−1i [j]|}) (4.4)

where j ∈ {1, 2, . . . ,m}, i ∈ {1, 2, . . . , ND} and t > 0.

In addition, for more or less precision, we attached the multiplier factor τ where

τ > 0 to reflect more/less safety margin from the estimated variances resulting in Eq.4.5.

Σ = diag(τσ2[1], τσ2[2], . . . , τσ2[m]) (4.5)

4.4.4 Epsilon top-k query processing (ε-top-k)

Unlike traditional query processing which works on a complete set of actual data values

(Dt), we suppose that, in each timestamp, some data tuples are not retrieved in order

to save cost, so some data tuples are not up-to-date and contain uncertainty due to the

oldness as explained in Section 4.4.3. Therefore, in this section, we propose an approx-

imate top-k query processing method working on such a situation. Nonetheless, the

approximate top-k answers must satisfy the statistical error bound.

Definition 4.4.1. An ε-top-k query returns the up-to-date answer set T t
ε,k that, based on

a given uncertain model, with the probability higher than ε that T t
ε,k calculated from U

is not different from T t
k calculated from Dt.

4.4. COST MINIMIZING FRAMEWORK 85

In top-k query processing, top-k answers (T t
k) and non-top-k objects (Dt\T t

k) can

be divided by a hyperplane H : (w1)x1 + (w2)x2 + . . . + (wm)xm = θ where θ =

f(atk). We define the subspace S : (w1)x1 + (w2)x2 + . . . + (wm)xm ≤ θ as the

top-k subspace because only and all top-k answers must fall in this linear subspace.

Considering only an uncertain object ui ∈ U and a ranked list of k certain objects I tk
(alike T t

k), the probability that ui is included in I tk, i.e., the actual values of ui will

replace some intermediate answers in I tk, is equal to the following pui
.

pui
=

∫
S
dt
′
i +N (0, (t− t′)Σ)ds∫
Rm N (0, (t− t′)Σ)ds

(4.6)

Therefore, the probability that I tk is already the actual top-k answers is equal to

1− pui
.

This time, considering a ranked list of k certain objects I tk and the entire table U

except I tk, the probability that I tk is already the actual top-k answers is as follows:

tp =
∏

ui∈U\Itk

(1− pui
) =

∏
ui∈U\Itk

(1−
∫
S
dt
′
i +N (0, (t− t′)Σ)ds∫
Rm N (0, (t− t′)Σ)ds

). (4.7)

I tk is acceptable as the approximate top-k answers w.r.t. ε (T t
ε,k) if and only if tp ≥ ε.

Running example: Fig.4.2 illustrates an example of uncertain objects from Table 4.1

(t = 5) with uncertainties denoted by circles around those points. At t = 5, we know

that u1, u2 and u3 have been already updated as ∆t = 0. With w = (0.7, 0.3) , k = 3,

I53 = {u1, u2, u3}, so θ = f(u3) = 20.14× 0.7 + 55.45× 0.3 = 30.733. A tuple (w, θ)
describes the subspace S as shown in the figure. The upper table on the right shows the

example calculation of pui
for each object. It is noted that pui

where ui ∈ I53 , which is

supposed to be 0, does not need to be calculated, so n/a is labeled instead. Therefore,

tp in Eq.4.6 is equal to 0.7497. This means this I53 is acceptable as εT 5
3 if ε ≤ 0.7497.

Otherwise, we need to an execution plan to update U to increase tp.

Strategies to increase tp to meet the requirement: The parameter ε controls the con-

fidence of approximate answers. It is obvious that the probability tp turns small because

of uncertainty of existing data in U\I tk. Because uncertainties of some uncertain data

objects in U\I tk can be eliminated by requesting actual values at the current timestamp

86 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

0

100

0 100

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑢6

𝑢8

𝑢7

𝑥1

𝑥2

S

𝑝𝑢6
𝑝𝑢1 n/a

𝑝𝑢2 n/a

𝑝𝑢3 n/a

𝑝𝑢4 0.15

𝑝𝑢5 0.02

𝑝𝑢6 0.10

𝑝𝑢7 0.00

𝑝𝑢8 0.00

𝐼3
5 = {𝑢1, 𝑢2, 𝑢3}

𝑡𝑝 = ෑ

𝑢∈𝑈\I3
5

1 − 𝑝𝑢

= 0.7497

𝜃 = 𝑓 𝑢3 = 30.733

Figure 4.2: Illustration of uncertain objects in Table 4.1

(actual data), tp can be increased and meet the required ε. There are three possible cases

when including up-to-date values to U : (1) tp changed due to the decrease of uncer-

tainty (2) tp changed due to the changes of answers in I tk resulting in the change of θ

and consequently the change of integral domain S (3) both cases above.

4.4.5 Multidimensional Integration

Calculating tp in Eq.4.7 involves numerical integration. This is not limited to only

2-dimensional data as in Fig.4.2, but also an integral of the multivariate Gaussian distri-

bution on subspace domains. These have complex closed form expressions.

Monte Carlo integration (also used in [59]), which is a sampling-based method, is

commonly employed in such tasks. Monte Carlo integration draws random points over

some domain A which is a superset of A′. Then the area (volume, or m-dimensional

content, etc.) of A′ is estimated by the area of A multiplied by the fraction of points

falling within A′.

In the same way, we estimate pui
by drawing NS random samples (the number of

samplings) from a normal distribution N (dt
′
i , (t − t′)Σ). We estimate the probability

4.5. PROPOSED ALGORITHMS 87

pui
≈ N ′S/NS where N ′S is the number of random samples that fall in the subspace S.

This approach can be applied to other uncertainty models as long as random samples

can be drawn from the models.

4.5 Proposed Algorithms

4.5.1 Multiple-round evaluation

In this section, we propose a method to calculate T t
ε,k. The main idea is based on a

greedy approach that we try to remove the uncertainty of the data object that affects tp
most first. Then, the same procedure is re-evaluated until the probability tp meets the

requirement ε.

Algorithm 7 shows the procedure of our proposed framework. At the first timestamp

t = 0, U is constructed by requesting all data objects (line 1). This costs exactlyND data

accesses, but it is done once in the initialization. Because all data objects are certain,

T 0
k which is the actual top-k answers can be calculated and returned as T 0

ε,k (line 2). We

also initialize intermediate results I as T 0
k (line 3).

For each latter timestamp twhen t > 0, data objects in U which appear to be the top-

k answers of the previous timestamp, i.e., I are decided to be first requested and updated

on U (lines 4–7) because we suppose that the top-k answers of the previous timestamp

are potential candidates to be included in the top-k answers in the current timestamp.

After that, in lines 8–23, intermediate top-k answers denoted by I are firstly calculated

using the recently-updated U . This may also change θ and S. Then the probability tp
according to Eq.4.7 is estimated. Meanwhile, the index of the uncertain object, which

affects tp the most (uncertain object that gives minui∈U\I(1 − pui
)) is kept denoted by

im (lines 17–19).

At lines 20–22, tp is verified whether it passes the given condition ε. If not, the

data object im in U is requested and updated on U . Then, the procedure from line 9 is

repeated to calculate the new intermediate results I and re-evaluate tp until tp ≥ ε (See

Lemma 8). Finally, I is returned as the final approximate top-k answers at timestamp t

(T t
ε,k).

88 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

Lemma 8. In the loop between lines 8–23, as the algorithm requests the data object im
(lines 20–22), tp increases in every iteration.

Proof. Considering I consisting of k objects with the last-ranked element ak, if dtim has

been retrieved and updated on U , the next iteration of I , say I ′, is calculated by using

the updated U . This results in two possible cases as follows: (1) The k objects of I ′

are the same set as I – this means that the last-ranked object is still ak, and θ is still

unchanged, but (1− pim) which is used to be minui∈U(1− pui
) becomes 1. Therefore,

tp =
∏

ui∈U\I′(1− pui
) must be increased. (2) The k objects of I ′ are different from I –

this means dtim ∈ I
′, so let the last-ranked object be a′k (ak was replaced), we conclude

that f(a′k) ≤ f(ak). As a result, the subspace S ′ : (w1)x1+(w2)x2+ . . .+(wm)xm ≤ θ′

where θ′ = f(a′k) becomes a subspace of S. From Eq.4.6, ∀ui ∈ U : pui
will be

decreased and also (1− pim) = 1 resulting in higher tp =
∏

ui∈U\I′(1− pui
).

4.5.2 Single-round evaluation

An impractical drawback of Algorithm 7 is that delivering T t
ε,k requires multiple times

of pui
calculation for all ui in U\I (lines 14–19). The worst case is up to O(|U |) times

per timestamp, and this calculation involves with the multi-dimensional integration ex-

plained in Section 4.4.5 which is very computing-intensive especially in a high number

of samplings (NS) for accurate estimations.

To solve this problem, we develop another efficient algorithm which requires only

one time of pui
calculation for all ui ∈ U . In fact, the access cost of the following

algorithm is higher than Algorithm 7, but it is more practical for computing. The main

idea of this algorithm is that we try to find intermediate k certain objects stored in I first

by iteratively requesting data objects until I is fixed. Then, we calculate pui
one-time

for all ui ∈ U w.r.t I and make a table of U sorted by 1− pui
. After that, we request the

data objects by using that sorted table to update U , so that topk(U) is guaranteed to be

T t
ε,k.

The pseudo-code is shown in Algorithm 8. Lines 1–7 shares the same idea with

Algorithm 7. Lines 8–16 try to find intermediate k certain objects stored in I as well as

update U with latest data values. It ensures that, given I = topk(U), ∀ui ∈ I : ui.t
′ = t

(values at this timestamp). Then, pui
is calculated and stored in a max heap (1−pui

, ui)

for ui ∈ U by using (1−pui
) as keys (lines 17–20). In lines 21–28, tp is initialized as 1.0

4.5. PROPOSED ALGORITHMS 89

Algorithm 7: Proposed Framework: Multiple Round
Input: Nt, f, k, ε

Output: T 0
ε,k, T

1
ε,k, . . . , T

Nt
ε,k

1 U ← retrieve all data object at timestamp 0 (D0)

2 Calculate T 0
k using U and return it as T 0

ε,k

3 I ← T 0
k

4 for timestamp t = 1→ Nt do
5 for object oi ∈ I do
6 dti ← request data object i at timestamp t

7 Replace ui ∈ U with (t, dti)

8 do
9 I ← topk(U)

10 θ ← f(atk) where atk is the k-rank object in I

11 tp ← 1.0

12 pm ← 1.0

13 im ← null

14 for object ui ∈ U\I do
15 Calculate pui (Eq.4.6)

16 tp ← tp(1− pui)

17 if (1− pui) ≤ pm then
18 pm ← (1− pui)

19 im ← i

20 if tp < ε then
21 dtim ← request object im at timestamp t

22 Replace uim ∈ U with dtim

23 while tp ≥ ε
24 Return I as T t

ε,k

90 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

and the top element (the highest 1−pui
in the heap) is peeked (examined) and multiplied

by tp. If that result is still higher than ε, that top element will be polled (removed), and

tp is set to that result. Otherwise, line 29–32 are continued with remaining elements in

the heap. In lines 29–32, data objects remaining in the heap are requested and updated

on U . Finally, I is re-calculated again using the updated U and returned as T t
ε,k.

The following lemma proves that the final I calculated from U , i.e., T t
ε,k has tp that

tp ≥ ε.

Lemma 9. T t
ε,k from Algorithm 8 gives an approximate set of answers with tp ≥ ε.

Proof. We show a proof by contradiction assuming that tp < ε. From lines 23–28, let

H1 be a set of polled objects from line 25, the algorithm shows that
∏

ui∈H1
(1−pui

) ≥ ε.

Between lines 29–32, let H2 be a set of polled objects from line 30, these objects are

decided to be requested, and U is updated. Doing this also removes the uncertainty of

data objects in H2, therefore,
∏

ui∈H2
(1 − pui

) = 1. It is noted that U = H1 ∪H2 and

H1 ∩ H2 = ∅. This can be divided into 2 cases: (1) All updated data objects in H2

do not belong to topk(U), this means the original I after line 16 is equal to topk(U).

Therefore, tp =
∏

ui∈H1
(1− pui

)
∏

ui∈H2
(1− pui

) ≥ ε. (2) Some updated data objects

in H2 belong to topk(U), this means the last-ranked object of topk(U) is different from

the original I after line 16. Let ak be the last ranked object of the original I and a′k be

the last ranked object of topk(U). We conclude that f(a′k) ≤ f(ak). In the same way of

the proof of Lemma 8, the subspace S ′ : (w1)x1 + (w2)x2 + . . .+ (wm)xm ≤ θ′ where

θ′ = f(a′k) becomes a subspace of S. As a result,
∏

ui∈H1
(1 − pui

), which is greater

or equal to ε, further increases while
∏

ui∈H2
(1 − pui

) = 1. Therefore, in both cases,

tp =
∏

ui∈H1
(1− pui

)
∏

ui∈H2
(1− pui

) ≥ ε. This contradicts the assumption.

4.6 Spark-based Implementation

According to Algorithm 8, lines 18–20, the calculation of pui
is computing-intensive.

In a cloud platform, MapReduce is a common computing model, and that calculation

can be computed in parallel as well as distributed.

Recently, Apache Spark4, which has been developed to overcome traditional MapRe-

duce’s shortcomings that it is not optimized for iterative algorithms, has been often com-
4https://spark.apache.org/

4.6. SPARK-BASED IMPLEMENTATION 91

Algorithm 8: Proposed Framework: Single Round
Input: Nt, f, k, ε

Output: T 0
ε,k, T

1
ε,k, . . . , T

Nt
ε,k

1 U ← retrieve all data objects at timestamp 0

2 Calculate T 0
k using U and return it as T 0

ε,k

3 I ← T 0
k

4 for timestamp t = 1→ Nt do
5 for object oi ∈ I do
6 dti ← request data object i at timestamp t

7 Replace ui ∈ U with dti

8 do
9 I ← topk(U)

10 F ← false

11 for object ui ∈ I do
12 if ui.t′ − t > 0 then
13 dti ← request data object i at timestamp t

14 Replace ui ∈ U with dti
15 F ← true

16 while F = true

17 H ← an empty max-heap (p, u) using p as a key

18 for object ui ∈ U do
19 Calculate pui (Eq.4.6)

20 H.insert((1− pui), ui)

21 tp ← 1.0

22 F ←true

23 while F = true do
24 if (H.peek().p)tp ≥ ε then
25 (p, ui)← H.poll()

26 tp ← (p)tp

27 else
28 F ←false

29 while H is not empty do
30 (p, ui)← H.poll()

31 dti ← request data object i at timestamp t

32 Replace ui ∈ U with dti

33 I ← topk(U)

34 Return I as T t
ε,k

92 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

𝑖𝑑 𝑡′ 𝑑𝑖
𝑡′ Δ𝑡

1 5 18.42,6.25 0

2 5 10.77,30.03 0
3 5 20.14,55.45 0
4 4 46.78,10.58 1

5 3 41.25,48.98 2
6 2 28.65,86.01 3

7 2 86.09,26.60 3
8 2 82.56,72.64 3

𝑖𝑑 𝑡′ 𝑑𝑖
𝑡′ Δ𝑡

4 4 46.78,10.58 1

5 3 41.25,48.98 2
6 2 28.65,86.01 3

𝑖𝑑 𝑡′ 𝑑𝑖
𝑡′ Δ𝑡

7 2 86.09,26.60 3

8 2 82.56,72.64 3

Parallelize MapToPair

4 , 𝑂4
5 ,𝑂5

6 ,𝑂6

7 , 𝑂7

8 , 𝑂8

MapToPair

1 − 𝑝𝑢4 , 4

1 − 𝑝𝑢5 , 5

1 − 𝑝𝑢6 , 6

1 − 𝑝𝑢7 , 7

1 − 𝑝𝑢8 , 8

1 − 𝑝𝑢𝑖 𝑖𝑑

1.00 7

1.00 8
0.98 5
0.90 6
0.85 4

SortByKeyTable 𝑼

Figure 4.3: Workflow of Spark-based single round evaluation at timestamp 5

pared with MapReduce in terms of ease of use and performance. It turns that Spark is

better than MapReduce according to lazy computation and use of main memory. Thus,

in this paper, the implementation, operations are based on Apache Spark, even though

both can be applied.

Fig.4.3 (the same values used in Fig.4.2) shows the workflow how to compute tp
in Spark which is equivalent to Algorithm 8 lines 17–32. In the first step, table U

(only ∆t > 0) is partitioned and parallelized across working nodes (distributed dataset

creation). Then, in each parallelized table, each record is transformed to a pair of id i

and its corresponding object (collections, e.g., dt′i ,∆t,Σ,w, θ and NS). After that, each

pair is calculated for pui
and transformed to a pair of (1 − pui

) and its id i. Finally, the

final output is collected by descending order of keys (SortByKey). Using this table (as

if it is the max heap in line 17), we can easily identify which data object needs to be

retrieved in lines 29–32. In Fig.4.3, given ε = 0.9, u6 and u4 need to be retrieved to

ensure the requirement.

According to the experiment results described in details in Section 4.8, our pro-

posed framework can reduce the expenses, i.e., reducing the number of data accesses.

Surprisingly, even though, our proposed framework incurs huge additional computation

workloads, using multiple nodes to help computing intensive tasks can shorten the exe-

cution time, and, with enough computing resources, the total execution time is less than

the conventional exact method because of less number of data accesses (lower total data

access time).

4.7. ENHANCED APPROACH 93

4.7 Enhanced Approach

As mentioned, the calculation of pui
is a key time-consuming task. This task is repeti-

tively executed though with different parameters in each iteration. It is noted that can-

didates which are still far from becoming the top-k answers will have pui
= 0. Since

the size of k is supposed to be much smaller than ND, a lot of pairs after pui
calculation

get pui
= 0, i.e., (1 − pui

= 1.0). Those objects are not taken into consideration and

wastefully utilize the computing resources. Especially in a cloud which is physically a

computer cluster, this incurs communication between nodes resulting in long latency.

The main concept of the following enhancement is to reduce the number of unnecessary

calculations of some pairs (pruning) by using existing knowledge from the historical

calculation, i.e., views and indexes.

Before introducing the algorithms, the following definition and lemmas are the basis

of the techniques.

Definition 4.7.1. (Dominance of points) [8, 54] The object d1 dominates d2 denoted by

d1 � d2 if and only if d1[j] ≤ d2[j] for all j ∈ {1, 2, . . . ,m} and t1 ≥ t2.

Lemma 10. For any monotonic function f , if d1 dominates d2, then f(d1) < f(d2)

(Proof omitted).

Definition 4.7.2. (Dominance of uncertain objects) An uncertain object u1 dominates

u2 denoted by u1 � u2 if and only if u1.dt11 [j] ≤ u2.d
t2
2 [j] for all j ∈ {1, 2, . . . ,m} and

t1 ≥ t2.

Lemma 11. Given 2 pairs, (pu1 , u1) and (pu2 , u2) evaluated in the same subspace S

which is described by (w, θ), if pu1 = 0 and u1 � u2, then pu2 = 0

Proof. Given the same seed to draw Gaussian random points, let a set of random points

from u1 and u2 beL1 andL2 respectively, the point d1 where d1 = arg mind∈L1

∑j=m
j=1 wjd[j],

does not fall in S. This means f(d1) > θ. According to the same seed of generating

data distribution, d2 where d2 = arg mind∈L2

∑j=m
j=1 wj · d[j] must be dominated by d1.

According to Lemma 10, θ < f(d1) < f(d2), so we can conclude that none of d ∈ L2

falls in S resulting in pu2 = 0.

Lemma 12. Given 2 subspaces S1 and S2, if pui
evaluated in S1 is equal to 0 and S2 is

a subspace of S1, then pui
evaluated in S2 is also 0.

94 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

Proof. Let a set of random points from u beL, the point dwhere d = arg mind∈L
∑j=m

j=1 wjd[j],

does not fall in S1 corresponding to (w, θ1). This means f(di) > θ1. We know that

S2 ⊆ S1 where S2 corresponds to (w, θ2), then θ2 ≤ θ1. Because f(d) > θ1 ≥ θ2, we

can conclude that none of d ∈ L falls in S2 resulting in pu2 evaluated in S2 is 0.

4.7.1 Cache-based evaluation

According to Lemmas 11 and 12, assuming that only one query is considered, that is,

w is identical among all pairs, we conclude that if (u1, θ1) gives pu1 = 0 then, for any

(ui, θi) that u1 � ui and θ1 ≥ θi, pui
= 0.

For this aim, every time we calculate pui
of (i, oi), and its result is pui

= 0. That

result can be a usable cache. We can keep or cache some potential (ui, θi) to prune and

reduce pairs in the next timestamp. Therefore, every timestamp especially in very first

time, there are possible caches to be decided whether to keep for further usage.

However, we should carefully choose the number of caches and how to select caches.

It is true that the more cache the more power to prune other pairs, but we cannot keep

all caches. This is because each cache entry needs to compare with each object in U

resulting in O(NCND) where NC is the number of caches. This can be time-consuming

as much as usual calculation of pui
. Moreover, in the case of failing to prune a tuple,

possibly because of poor cache selection, that tuple eventually needs to be estimated by

using a usual method that worsens calculation cost.

4.7.2 Cache selection

Actually, ideal caches which are able to prune a lot of other pairs should be a skyline.

The definition of a skyline of a dataset is a set of points (objects), such that any point

(object) is not dominated by any other point (object) in the dataset [54]. Therefore,

an effective way to select caches is to choose points which are potentially close to the

skyline. However, it is difficult and complex to perform skyline execution on a large set

of caches which piles up every timestamp.

The research in [8] proposed an efficient sort-based method to calculate skyline.

The key idea is to sort candidates based on scores calculated from a given monotonic

function first and then calculate the skyline. An experiment shows a promising outcome

4.8. SIMULATION EXPERIMENTS 95

that the times of dominance comparisons can be significantly reduced because low-

score candidates having high potential to prune other objects. Avoiding costly skyline

execution, we intuitively keep the best potential caches by constructing a max-heap by

letting the worst component at the top of the heap. When getting new cache candidates,

we simply push them into the heap, and polling the worst cache (high score) out one by

one until only the preferred size of caches left.

The score of a cache cannot be solely evaluated by its data point like the original

sort-based skyline, but the timestamp and threshold must be taken into account. Caches

with high thresholds, their data points that are supposed to be close to the origin and have

smaller timestamp t′ (high ∆t = t − t′) are preferred because they have more pruning

powers based on Definition 4.7.2, and Lemmas 11 and 12. Therefore, the following

scoring function which takes these three factors into account is used to rank caches for

cache selection.

score(ui, θ) = (1− γ)t−t
′

[
m∑
i=1

(wid
t′

i [i])− ωθ

]
(4.8)

where γ ∈ [0, 1) defines a decay factor of score(ui, θ) w.r.t t, and ω ∈ [0, 1] is a

weighting factor of the threshold. Caches with smaller scores calculated by using Eq.4.8

are more preferable. The outline of this method is described in Algorithm 9 which

partially modified from Algorithm 8.

4.8 Simulation Experiments

A set of experiments were conducted by varying methods, parameters, datasets and

computing environments to compare the performance of each solution.

4.8.1 Experiment setup

We ran the experiments on either a single node or a cluster of 10-node commodity PCs

(Intel i5 1.4GHz/8GB, Ubuntu 12.04) connected via a Gigabit Ethernet switch. Apache

Spark (v1.4) is installed on this cluster for parallel and distributed processing. The

datasets are stored in a key-value distributed database–Apache HBase (v1.1.1). The

programs were implemented using Java and run via Spark. In Spark, only the driver

96 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

Algorithm 9: Enhanced scheme: Cache-based method
Input: Nt, f, k, ε

Output: T 0
ε,k, T

1
ε,k, . . . , T

Nt
ε,k

/* Same as lines 1--7 in Algorithm 8 */

1 C ← an empty max-heap (s, (u, θ)) for keeping caches using s as a key

2 R← ∅
3 for object ui ∈ U do
4 if ui is not dominated by any c ∈ C then
5 R← R ∪ (ui, θ)

6 Calculate table T of ((1− pui), i) sorted by keys for each (ui, θ) ∈ R
7 H ← an empty max-heap (p, u) using p as a key

8 for (pui , i) ∈ T do
9 if (1− pui) = 1.00 then

10 C.insert(score(ui, θ), (ui, θ))

11 else if puitp ≥ ε then
12 tp ← puitp

13 else
14 H.insert((1− pui), i)

15 while |C| > NC do
16 C.poll()

/* Same as lines 29-34 in Algorithm 8 */

program (master node) can request data tuples from HBase while the rest of nodes only

help computation. Technically the total execution time not only includes computation

time but also database access time, communication and data transfer time in the cluster.

In each experiment, we simulated a single continuous query. Some default parame-

ters (e.g., τ , γ, ω) were chosen based on parameter studies. We chose moderate values

that provide satisfactory outcomes for general cases. We found that the performance on

varying some parameters can fluctuate but not to the degree that significantly changes

the interpretation. The query specification and default parameters as well as their ranges

in the experiments are shown in Table 4.2.

4.8. SIMULATION EXPERIMENTS 97

Table 4.2: Parameters in the experiments

Parameter Range/Value (Default)

f w = {0.2, 0.2, 0.6} -

k 30 -

NT 500 -

ε [0.1, 1.0] (0.8)

NS [1000, 50k] (10k)

τ in Eq.4.5 [0.25, 2.0] (1.0)

γ in Eq.4.8 0.2 -

ω in Eq.4.8 0.2 -

4.8.2 Datasets

We used two real-world multi-dimensional time-series datasets. The attributes to be

used were selected based on commonness, completeness of data, and types of data

(qualitative measures) as follows:

1. NOAA dataset5 This dataset contains hourly climate normal data over years from

458 US weather stations. We selected 3 attributes including temperature (temp),

dew point (dewp) and average wind speed (wavgspd). There are 8760 timestamps,

but we split the first 1000 snapshots for estimating the variances of each attribute

according to the method in Section 4.4.3.

2. Weathernews dataset6 This is also climate data updated every 15 minutes from

821 weather stations in Japan. We selected 3 attributes including temperature

(temp), wind speed (windspd) and precipitation rate (prec10). In the same way,

from available 30000 snapshots, we split the first 1000 snapshots for estimating

the variances of each attribute according to the method in Section 4.4.3.

Because the synthetic datasets with moving objects/values are usually modeled based

on Gaussian random walk which is similar to our underlying assumption of our meth-

ods, we decided to solely show the results of the real datasets without bias.

5http://www.ncdc.noaa.gov/
6https://labs.weathernews.jp/data.html

98 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

0.2 0.4 0.6 0.8 1.0
epsilon (")

103

104

105

ti
m

e
 (

m
s)

MR SR EXT

(a) Varying ε against time - showing high calcula-
tion time of the MR method

0.2 0.4 0.6 0.8 1.0
epsilon (")

0

100

200

300

400

500

e
x
p
e
n
se

EXT MR SR

(b) Varying ε against expense - showing the con-
stantly high expense of the EXT method compared
with the MR and SR methods

0 10000 20000 30000 40000 50000
NS

102

103

104

ti
m

e
 (

m
s)

SR EXT

(c) VaryingNS against time - showing that the cal-
culation time of the proposed SR method increases
significantly with the number of samplings NS

Figure 4.4: NOAA: Results of each method on a single node

4.8.3 Methods

1. Exact method (EXT) calculates exact T t
k by retrievingDt using a single machine

2. Multiple-round proposed method (MR) calculates T t
ε,k as explained in Section

4.5.1

3. Single-round proposed method (SR) calculates T t
ε,k as explained in Section

4.5.2

4.8. SIMULATION EXPERIMENTS 99

4. Cache-based single-round method (CSR) calculates T t
ε,k as explained in Section

4.7

4.8.4 Benchmarks

1. Expense: This metric counts the number of data tuple requests to the key-value

store database. Our objective is to minimize this metric as much as possible while

other metrics should be kept reasonably good.

2. Accuracy: Being able to reduce expenses, the quality of the result set cannot be

compromised. This metric shows the correctness of the final top-k answers in

each timestamp. Because a top-k query is a rank-aware query, using precision

which takes the result as an unordered set may not be appropriate. Thus, we use a

variant of Kendall tau distance [25] to indicate the degree of ordering difference

(pairwise distinct) between a given result and the exact result. Given approximate

answer set T t
ε,k and the exact answer set T t

k, the accuracy is defined as

R(T t
ε,k, T

t
k) = 1−

∑
{i,j}∈P K

′
i,j(r1, r2)

|P |
(4.9)

where P is the set of unordered pairs of elements in T t
k

7, r1 and r2 are the rankings

of objects in T t
ε,k and T t

k respectively and

K ′i,j(r1, r2) =

0 if i, j are in the same order in both lists

1 otherwise.

In our experiments, R = 1 means that the answers in T t
k and T t

ε,k are identi-

cal while R < 1 stated that T t
k\T t

ε,k 6= ∅. Given that T t
k = {o1, o2, o3}, TA =

{o4, o1, o3} and TB = {o1, o2, o5}, it is noted that R(TA, T
t
k) < R(TB, T

t
k) be-

cause the irrelevant answer o4 replaces the first rank while o5 replaces the third

rank which is less severe.

3. Execution time: The execution time to calculate T t
k or T t

ε,k in each timestamp

was measured by wall-clock time in milliseconds (ms). Since the execution time

can fluctuate on each timestamp, we generally show the average case except the

range (minimum, maximum) indicated otherwise.
7The definition here is a little different from the original Kendall tau distance in [25]

100 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

4.8.5 Results of NOAA dataset

Trade-off in each method

In this experiment, we test 3 methods including the EXT, MR and SR methods on a

single node to examine their trade-off.

For the MR and SR methods, only in this experiment, we set NS = 1000 for com-

parison purposes, in fact, this is rather small. In Fig.4.4a, we varied ε and measured

the execution time for each timestamp in each method. The graph shows the average

execution time while the upper and lower bars show the maximum and minimum exe-

cution time ever recorded in each timestamp. We obviously see that calculating T t
ε,k in

the MR method is more costly than calculating T t
k in the EXT method because the MR

method carefully retrieves a data tuple at a time and re-evaluate tp every time resulting

in significantly higher execution time. While the SR method requires a calculation of tp
only one time per snapshot and NS is small, in this case, the SR method can run even

faster than the EXT method. However, the advantages of the MR and SR methods can

be apparently seen in Fig.4.4b that the expense can be largely reduced compared with

the EXT method. Regarding the quality of the answers (accuracy), we will discuss next.

Although the MR method can save more expenses than other methods, due to the

higher order of magnitude of computation time, it is impractical when NS gets higher.

Therefore, in what follows, we omit the results of the MR method as we already know

that it outperforms the SR method in terms of expense. The SR method which is derived

from the MR method was used by default for the rest of the experiments.

Fig.4.4c shows that the average execution time of the SR method significantly grows

with the number of samplings (NS). This emphasized that calculating tp (even a single

round) is a major computing-intensive task.

Expense analysis

Increasing the confidence factors, i.e., ε and τ , definitely results in higher expense be-

cause many data tuples need to be accessed to ensure the quality of the answers. In this

experiment, we show the result of the accuracy of T t
ε,k as well as its expense by varying ε

and τ . Table 4.3 shows the minimum accuracy and the average accuracy respectively in

each cell, while Table 4.4 shows the expense and the expense reduction percentage from

4.8. SIMULATION EXPERIMENTS 101

Ta
bl

e
4.

3:
N

O
A

A
:T

he
m

in
im

um
/a

ve
ra

ge
ac

cu
ra

cy
of

th
e

SR
m

et
ho

d
-s

ho
w

in
g

th
at

,a
tt

he
de

fa
ul

ts
et

tin
g

(ε
=

0.
8,
τ

=
1.

0)
,

th
e

pr
op

os
ed

SR
m

et
ho

d
ca

n
ac

hi
ev

e
pr

om
is

in
g

ac
cu

ra
cy

w
hi

le
in

cr
ea

si
ng
ε

to
1.

0
ca

n
gi

ve
pe

rf
ec

ta
cc

ur
ac

y

ε/
τ

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

0.
1

0.
63

4/
0.

87
9

0.
74

7/
0.

97
6

0.
86

9/
0.

98
8

0.
93

3/
0.

99
9

0.
93

3/
0.

99
9

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
2

0.
63

4/
0.

88
6

0.
80

7/
0.

97
9

0.
86

9/
0.

99
2

0.
93

3/
1.

00
0

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
3

0.
63

4/
0.

89
1

0.
80

7/
0.

98
0

0.
86

9/
0.

99
4

0.
93

3/
0.

99
9

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
4

0.
69

0/
0.

90
0

0.
80

7/
0.

98
1

0.
86

9/
0.

99
6

0.
93

3/
0.

99
9

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
5

0.
69

0/
0.

90
2

0.
80

7/
0.

97
7

0.
86

9/
0.

99
7

0.
93

3/
0.

99
9

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
6

0.
69

0/
0.

91
6

0.
80

7/
0.

97
9

0.
93

3/
0.

99
8

0.
93

3/
0.

99
9

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
7

0.
69

0/
0.

92
4

0.
80

7/
0.

97
9

0.
93

3/
0.

99
9

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
8

0.
69

0/
0.

93
3

0.
80

7/
0.

98
3

0.
93

3/
1.

00
0

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
9

0.
69

0/
0.

95
2

0.
86

9/
0.

99
0

0.
93

3/
1.

00
0

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
0

0.
80

7/
0.

97
7

0.
93

3/
0.

99
9

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

102 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

Table
4.4:N

O
A

A
:T

he
expense

ofthe
SR

m
ethod

and
its

reduction
percentage

from
the

E
X

T
m

ethod
-show

ing
that,atthe

defaultsetting
(ε

=
0.8,τ

=
1.0),the

proposed
SR

m
ethod

can
cutthe

expense
by

68%

ε/τ
0.25

0.50
0.75

1.00
1.25

1.50
1.75

2.00

0.1
38139

(-83%
)

46988
(-79%

)
55118

(-76%
)

62494
(-73%

)
69336

(-70%
)

75578
(-67%

)
81468

(-64%
)

87193
(-62%

)

0.2
38679

(-83%
)

48062
(-79%

)
56646

(-75%
)

64383
(-72%

)
71516

(-69%
)

77994
(-66%

)
84282

(-63%
)

90324
(-60%

)

0.3
39128

(-83%
)

48925
(-79%

)
57866

(-75%
)

65889
(-71%

)
73198

(-68%
)

79906
(-65%

)
86417

(-62%
)

92747
(-59%

)

0.4
39630

(-83%
)

49790
(-78%

)
58977

(-74%
)

67228
(-71%

)
74708

(-67%
)

81671
(-64%

)
88416

(-61%
)

94873
(-58%

)

0.5
40066

(-82%
)

50553
(-78%

)
60057

(-74%
)

68550
(-70%

)
76214

(-67%
)

83422
(-63%

)
90400

(-60%
)

96988
(-58%

)

0.6
40563

(-82%
)

51418
(-77%

)
61182

(-73%
)

69934
(-69%

)
77778

(-66%
)

85261
(-63%

)
92518

(-60%
)

99168
(-57%

)

0.7
41084

(-82%
)

52393
(-77%

)
62446

(-73%
)

71471
(-69%

)
79581

(-65%
)

87381
(-62%

)
94854

(-58%
)

101647
(-56%

)

0.8
41726

(-82%
)

53575
(-77%

)
64068

(-72%
)

73453
(-68%

)
81886

(-64%
)

90092
(-61%

)
97748

(-57%
)

104643
(-54%

)

0.9
42791

(-81%
)

55451
(-76%

)
66531

(-71%
)

76363
(-67%

)
85359

(-63%
)

94129
(-59%

)
101997

(-55%
)

109111
(-52%

)

1.0
49268

(-78%
)

66243
(-71%

)
80603

(-65%
)

93795
(-59%

)
105640

(-54%
)

116119
(-49%

)
126273

(-45%
)

135156
(-41%

)

4.8. SIMULATION EXPERIMENTS 103

#nodes

1

2

4

8

(EXT)

#cores

1

2

4

(EXT)

ti
m

e
 (

m
s)

0

1000

2000

3000

4000

5000

6000

(a) The SR and EXT methods against time - show-
ing that increasing the number of cores and the
number of nodes in the SR method can signifi-
cantly reduce the total execution time

0 10000 20000 30000 40000 50000
NS

0

1000

2000

3000

4000

5000

ti
m

e
 (

m
s)

SR
CSR-100

CSR-1k
CSR-10k

CSR-25k
CSR-50k

(b) Varying NS against time - showing the total
execution time of the CSR method with n caches
(CSR-n) and the SR method

#nodes
1

2
4

8
#co

re
s

1

2

4

ti
m

e
 (

m
s)

500

1000

1500

2000

2500

3000

3500

(c) The CSR method (CSR-10k) against time -
showing the less total execution time compared
with Fig.4.5a

Figure 4.5: NOAA: Results of each method on a cluster

the constant expense of the EXT method in each cell. The results show that even setting

ε = 0.1 and τ = 0.5 still give promising average accuracy at 0.879, and the expense

can be largely reduced by 83%. In the case of our default setting (ε = 0.8, τ = 1.0),

even though the minimum accuracy is not 1 but its average accuracy (in 3 decimals) is

close to 1. In addition, the expense is suppressed by 68%. If we increase ε = 0.8 to

1.0, the result shows the perfect accuracy that all T t
ε,k is exactly the same as T t

k while

104 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

the expense is more than halved (−59%).

It is noted that, for applications that require high precision, setting extremely-high

parameters ε = 1.0 and τ = 2.0 which also give the perfect results can still reduce the

expense up to 41%. This is obviously better than paying the cost to access all data tuples

to calculate T t
k in the EXT method.

In-cluster Deployment

We implemented a variant of our proposed SR method to compute in a parallel and dis-

tributed fashion in Hadoop (via Spark). Fig.4.5a shows the average execution time in

each timestamp by varying the number of nodes and the number of cores in each node.

The number of virtual cores is the product of the number of nodes and the number of

cores. The isolated bar (EXT) shows the average execution time of the EXT method

computed in a local node (1 node). We can see that increasing the number of nodes

or the number of cores can speed up the task even though the improvement may not

be linear with the number of virtual cores. At higher than 8 virtual cores, the average

execution time is lower than that of the EXT method. This is because the SR method

can reduce the number of data accesses resulting in lower total data access time while

the expensive execution time of probability estimation can be relived by parallel com-

puting. This is important because, thinking about accessing external data sources which

need transferring data requests via the Internet unlike a distributed database in the same

network in this experiment, in that case, it yields a huger gap in terms of time latency.

This confirms the effectiveness of our proposed method which reduces expenses bring-

ing about more computing complexity, because, with existing computing resources, the

execution time can be relieved. Furthermore, it can further reduce the uncontrollable la-

tencies from data access and possibly becomes faster than the traditional computation.

Performance of the enhanced method

Fig.4.5b shows the results of the SR method and the CSR method with n caches (CSR-

n). The result shows that increasing the number of samplings, the average execution

time tends to increase linearly. We can see that using only a small number of caches,

i.e, CSR-100, CSR-1000, at highNS , it cannot even outperform the baseline SR method.

This is because a small number of caches cannot prune a lot of candidates while the CSR

4.8. SIMULATION EXPERIMENTS 105

0.2 0.4 0.6 0.8 1.0
epsilon (")

102

103

104

105

106

ti
m

e
 (

m
s)

MR SR EXT

(a) Varying ε against time - showing high calcula-
tion time of the MR method

0.2 0.4 0.6 0.8 1.0
epsilon (")

0

200

400

600

800

1000

e
x
p
e
n
se

EXT MR SR

(b) Varying ε against expense - showing the con-
stantly high expense of the EXT method compared
with the MR and SR methods

0 10000 20000 30000 40000 50000
NS

103

104

105

ti
m

e
 (

m
s)

SR EXT

(c) VaryingNS against time - showing that the cal-
culation time of the proposed SR method increases
significantly with the number of samplings NS

Figure 4.6: WN: Results of each method on a single node

method also incurs additional computation for cache maintenance (i.e., cache ordering

and cache selection). While using more caches, i.e., CSR-10k, CSR-25k and CSR-50k,

in small NS is worse than the others due to large overhead of cache maintenance. In

fact, it can prune a lot of unnecessary calculation tasks. However, when NS gets higher,

the benefit of using caches over not using caches or using a small number of caches can

be obviously seen. For the number of caches that is higher than 10k, their performance

is not significantly different. Therefore, we conclude that we should use a sufficiently

106 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

high number of caches to efficiently reduce the computation cost. Anyway, this also

depends on the number of attributes (dimensionality) and data distribution.

In addition, Fig.4.5c shows the execution time of the CSR method (CSR-10k) in

a cluster on various numbers of nodes and cores. Increasing the number of nodes or

cores can speed up the computation time. However, it is noted that the speed up ratio

gradually becomes not proportional to the number of virtual cores when increased.

4.8.6 Result of WN dataset

We also conducted experiments on the WN dataset by using the same environments

as Section 4.8.5. The WN dataset has the same dimensionality and larger number of

objects compared with the NOAA dataset.

Trade-off in each method

Similar to the experiments of the NOAA dataset, NS was set at 1000 for the MR and

SR methods. Fig.4.6a shows the result obtained by measuring the average execution

time on various ε. The average execution time is higher than that of the NOAA dataset

because of the higher number of data objects. However, it appears that the result is

consistent with that of the NOAA dataset, i.e., the MR method performed worse than

the other 2 methods significantly.

In terms of expense, as shown in Fig.4.6b, the SR and MR methods request data

objects significantly less than the EXT method, which constantly retrieves ND = 821

objects in each timestamp. However, it seems that the difference of expense between

the SR method and the MR method is trivial while the execution time of the MR method

is higher than that of the SR method more than an order of magnitude. Again, in what

follows, we omit the results of the MR method and used the SR method as a default

scheme. Fig.4.6c shares the same characteristics with Fig.4.4c that the execution time

in the SR method increases rapidly as increasing the number of samplings.

Expense analysis

The outcomes of the accuracy and the expense from this dataset shown in Table 4.5 and

Table 4.6 respectively are slightly poorer than that of the NOAA dataset. In our default

4.8. SIMULATION EXPERIMENTS 107

#nodes
1

2
4

8
(EXT)

#co
re

s

1

2

4

(EXT)

ti
m

e
 (

m
s)

2000

4000

6000

8000

10000

(a) The SR and EXT methods against time - show-
ing that increasing the number of cores and the
number of nodes in the SR method can signifi-
cantly reduce the total execution time

0 10000 20000 30000 40000 50000
NS

0

2000

4000

6000

8000

10000

ti
m

e
 (

m
s)

SR
CSR-100

CSR-1k
CSR-10k

CSR-25k
CSR-50k

(b) Varying NS against time - showing the total
execution time of the CSR method with n caches
(CSR-n) and the SR method

#nodes
1

2
4

8
#co

re
s

1

2

4

ti
m

e
 (

m
s)

0

1000

2000

3000

4000

5000

6000

7000

8000

(c) The CSR method (CSR-10k) against time -
showing the less total execution time compared
with Fig.4.7a

Figure 4.7: WN: Results of each method on a cluster

setting (ε = 0.8, τ = 1.0), the minimum accuracy and the average accuracy are recorded

close to the NOAA dataset at 0.933 and 0.999 respectively while the expense can be

reduced by 59% which is 9% less than that of the NOAA dataset. If ε = 0.8 is increased

to 1.0, the result also shows the perfect accuracy as same as the NOAA dataset while

the expense is suppressed by 49%. Setting extremely-high confidence factors ε = 1.0

and τ = 2.0 which definitely gives the perfect results can lessen expense up to 26%.

108 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

0

100

0 100

𝑢3

𝑢4

𝑢5

𝑢6

𝑢8

𝑢7

𝑥1

𝑥2
𝑝𝑢1 n/a

𝑝𝑢2 n/a

𝑝𝑢3 0.00

𝑝𝑢4 0.10

𝑝𝑢5 0.00

𝑝𝑢6 0.22

𝑝𝑢7 0.00

𝑝𝑢8 0.00

𝐼5 = {𝑢1, 𝑢2}

𝑡𝑝 = ෑ

𝑢∈𝑈\I5

1 − 𝑝𝑢

= 0.702

𝑝𝑢6

𝑝𝑢4

𝑢1

𝑢2

S

Figure 4.8: The illustration of uncertain objects in Table 4.1 (Skyline)

This again confirms the advantages of our method over the EXT method.

In-cluster deployment and the enhanced method

Fig.4.7a shows the same phenomenon as Fig.4.5a that the expensive calculations in the

SR method can be alleviated by using a cluster. Again, due to the reduction of data

requests, it can eventually outperform the EXT method in terms of total execution time.

In Fig.4.6c, the result is in accordance with Fig.4.4c that using the number of caches

around 10k-50k gives better result when NS > 10k. Even if the gain of using the CSR

method over the SR method seems small when NS is small, e.g., NS = 7500, this figure

shows the execution time per timestamp. Therefore, in real monitoring system/analytic

calculation, many timestamps need to be computed resulting in an apparent difference

between methods. Moreover, the performance of the CSR method can be improved by

adding more nodes as shown in Fig.4.7c.

4.8. SIMULATION EXPERIMENTS 109

Ta
bl

e
4.

5:
W

N
:T

he
m

in
im

um
/a

ve
ra

ge
ac

cu
ra

cy
of

th
e

SR
m

et
ho

d
-s

ho
w

in
g

th
at

,a
tt

he
de

fa
ul

ts
et

tin
g

(ε
=

0.
8,
τ

=
1.

0)
,

th
e

pr
op

os
ed

SR
m

et
ho

d
ca

n
ac

hi
ev

e
pr

om
is

in
g

ac
cu

ra
cy

w
hi

le
in

cr
ea

si
ng
ε

to
1.

0
ca

n
gi

ve
pe

rf
ec

ta
cc

ur
ac

y

ε/
τ

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

0.
1

0.
58

2/
0.

89
7

0.
74

7/
0.

97
2

0.
86

9/
0.

99
0

0.
86

9/
0.

99
6

0.
93

3/
0.

99
9

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
2

0.
63

4/
0.

90
3

0.
80

7/
0.

97
5

0.
86

9/
0.

99
1

0.
86

9/
0.

99
7

0.
93

3/
0.

99
9

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
3

0.
69

0/
0.

91
0

0.
80

7/
0.

97
7

0.
86

9/
0.

99
3

0.
86

9/
0.

99
7

0.
93

3/
0.

99
9

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
4

0.
69

0/
0.

91
6

0.
80

7/
0.

97
9

0.
86

9/
0.

99
3

0.
93

3/
0.

99
9

0.
93

3/
1.

00
0

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
5

0.
69

0/
0.

91
8

0.
80

7/
0.

98
3

0.
86

9/
0.

99
4

0.
93

3/
0.

99
9

0.
93

3/
1.

00
0

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
6

0.
69

0/
0.

92
1

0.
80

7/
0.

98
3

0.
86

9/
0.

99
5

0.
93

3/
0.

99
9

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
7

0.
69

0/
0.

93
3

0.
86

9/
0.

98
6

0.
86

9/
0.

99
6

0.
93

3/
0.

99
9

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
8

0.
74

7/
0.

93
7

0.
80

7/
0.

98
7

0.
86

9/
0.

99
6

0.
93

3/
0.

99
9

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

0.
9

0.
74

7/
0.

94
6

0.
80

7/
0.

99
0

0.
86

9/
0.

99
7

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
0

0.
80

7/
0.

97
3

0.
86

9/
0.

99
6

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

110 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

Table
4.6:

W
N

:T
he

expense
of

the
SR

m
ethod

and
its

reduction
percentage

from
the

E
X

T
m

ethod
-

show
ing

that,atthe

defaultsetting
(ε

=
0.8,τ

=
1.0),the

proposed
SR

m
ethod

can
cutthe

expense
by

59%

ε/τ
0.25

0.50
0.75

1.00
1.25

1.50
1.75

2.00

0.1
67910

(-83%
)

95535
(-77%

)
119033

(-71%
)

139676
(-66%

)
158378

(-61%
)

175131
(-57%

)
190510

(-54%
)

204614
(-50%

)

0.2
69688

(-83%
)

98411
(-76%

)
122853

(-70%
)

144303
(-65%

)
163569

(-60%
)

180902
(-56%

)
196665

(-52%
)

211160
(-49%

)

0.3
71147

(-83%
)

100785
(-75%

)
125886

(-69%
)

147879
(-64%

)
167659

(-59%
)

185314
(-55%

)
201439

(-51%
)

216233
(-47%

)

0.4
72426

(-82%
)

102794
(-75%

)
128610

(-69%
)

151147
(-63%

)
171268

(-58%
)

189345
(-54%

)
205749

(-50%
)

220829
(-46%

)

0.5
73618

(-82%
)

104952
(-74%

)
131218

(-68%
)

154386
(-62%

)
174845

(-57%
)

193277
(-53%

)
209990

(-49%
)

225326
(-45%

)

0.6
74837

(-82%
)

107074
(-74%

)
134128

(-67%
)

157746
(-62%

)
178634

(-56%
)

197412
(-52%

)
214422

(-48%
)

229993
(-44%

)

0.7
76384

(-81%
)

109638
(-73%

)
137337

(-67%
)

161564
(-61%

)
182923

(-55%
)

202086
(-51%

)
219495

(-47%
)

235269
(-43%

)

0.8
78301

(-81%
)

112643
(-73%

)
141296

(-66%
)

166279
(-59%

)
188211

(-54%
)

207868
(-49%

)
225718

(-45%
)

241809
(-41%

)

0.9
81125

(-80%
)

117280
(-71%

)
147340

(-64%
)

173405
(-58%

)
196170

(-52%
)

216502
(-47%

)
234775

(-43%
)

251508
(-39%

)

1.0
96927

(-76%
)

142406
(-65%

)
179578

(-56%
)

210877
(-49%

)
237923

(-42%
)

261827
(-36%

)
283005

(-31%
)

302013
(-26%

)

4.9. EXTENSION TO SKYLINE MONITORING 111

4.9 Extension to Skyline Monitoring

In this section, the cost-minimizing techniques for skyline monitoring called epsilon

skyline processing (ε-skyline processing) which is extended from the same foundation

of ε-top-k processing is proposed. For definitions and details of skyline, please refer to

Chapter 3.

Fig.4.8 shows the example of uncertain objects from Table 4.1 with various uncer-

tainties similar to Fig.4.2 and the skyline execution over those uncertain objects.

Definition 4.9.1. An ε-skyline query returns the up-to-date answer set St
ε that, based on

a given uncertain model, with the probability higher than ε that St
ε calculated from U is

not different from St calculated from Dt.

In the case of ε-skyline query processing, to calculate pui
for each ui ∈ U as well

as tp can use Eq.4.6 and Eq.4.7 respectively by defining space S as the area that is not

dominated by the intermediate answers (u1 and u2 in Fig.4.8).

Given I t be the intermediate answers, I t is acceptable as the approximate skyline

answers w.r.t ε if and only if tp ≥ ε. Otherwise, the same strategy to increase tp, i.e.,

eliminate some uncertainties, as described in Section 4.4.4 can be used until tp reaches

above ε.

4.9.1 Expense analysis

Both 2 approaches for ε-top-k processing including single-round method (SR) and

multiple-round method (MR) can be re-implemented for calculating St
ε. Because the

main objective is to reduce the expense, we analyze and report only the results regard-

ing accuracy and expense by using the WN dataset (2 attributes including temperature

and wind speed), and, in this analysis, the single-round method is chosen because of

less and reasonable execution time.

Table 4.7 shows the minimum accuracy and the average accuracy evaluated by F-

measure (F1) [60]. It is noted that this evaluation metric is different from Section 4.8.4

because the result set of skyline is unordered. Table 4.8 shows the expense and the

expense reduction percentage from the constant expense of the EXT method in each

cell.

112 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

Setting ε = 1.0 and τ = 1.0 can record the perfect accuracy while the expense can

be reduced up to 61%. In the case that some applications can tolerate some errors, the

choices of lower ε can yield more saving expense.

4.10 Conclusions

Prior works [48, 56, 66] have projected that massive sensor data generated from var-

ious fields will be collected, managed, and utilized under an umbrella of cloud-based

systems called sensor cloud. In this work, we proposed a cost-minimizing framework

for top-k monitoring in sensor cloud services. Modeling aged sensor data with uncer-

tainty, the proposed ε-top-k monitoring method can save cost by avoiding unpromising

data requests while the quality of the results can be kept very high. We have con-

firmed the effectiveness of our framework through extensive experiments on real-world

datasets. In addition, this paper has demonstrated the better computing performance of

our framework when running on well-known Hadoop which is popular to be deployed

in the cloud as well as the enhanced scheme to further decrease the computation time.

The experiment results provided compelling results that, using distributed computing on

such system, the computation time and the data access time of our more complex meth-

ods can be largely reduced and can be even faster than the conventional less complex

method due to fewer data requests. In addition, these methods can be easily adapted to

work with skyline monitoring as explained in Section 4.9.

This work is the first to consider a critical cost when processing continuous queries

in such environment. As the use of cloud computing for monitoring purpose becomes

more widespread, we have shown that our proposed framework can help users wisely

utilize their budget (more economical). However, there are some limitations, for exam-

ple, non-stationary data – possibly cannot reduce data accesses much by the assumed

model and the necessity to make parametric models as well as perform parameter stud-

ies in advance.

4.10. CONCLUSIONS 113

Ta
bl

e
4.

7:
W

N
2d

:
T

he
m

in
im

um
/a

ve
ra

ge
ac

cu
ra

cy
of

th
e

SR
m

et
ho

d
(S

ky
lin

e)
-

sh
ow

in
g

th
at

se
tti

ng
ε

=
1.

0
an

d
τ

=
1.

0

ca
n

ac
hi

ev
e

ca
n

gi
ve

pe
rf

ec
ta

cc
ur

ac
y

ε/
τ

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

0.
1

0.
42

9/
0.

94
1

0.
66

7/
0.

98
0

0.
72

7/
0.

99
2

0.
72

7/
0.

99
6

0.
72

7/
0.

99
8

0.
88

9/
1.

00
0

0.
93

3/
1.

00
0

0.
88

9/
1.

00
0

0.
2

0.
50

0/
0.

95
1

0.
75

0/
0.

98
3

0.
72

7/
0.

99
4

0.
72

7/
0.

99
7

0.
72

7/
0.

99
8

0.
88

9/
1.

00
0

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

0.
3

0.
50

0/
0.

95
3

0.
66

7/
0.

98
3

0.
72

7/
0.

99
5

0.
72

7/
0.

99
7

0.
72

7/
0.

99
9

0.
93

3/
1.

00
0

0.
93

3/
1.

00
0

0.
72

7/
0.

99
9

0.
4

0.
46

2/
0.

95
3

0.
66

7/
0.

98
4

0.
72

7/
0.

99
5

0.
72

7/
0.

99
7

0.
88

9/
0.

99
9

0.
93

3/
1.

00
0

0.
88

9/
1.

00
0

0.
88

9/
1.

00
0

0.
5

0.
50

0/
0.

95
7

0.
66

7/
0.

98
4

0.
72

7/
0.

99
5

0.
72

7/
0.

99
7

0.
88

9/
0.

99
9

0.
93

3/
1.

00
0

0.
88

9/
1.

00
0

0.
88

9/
1.

00
0

0.
6

0.
50

0/
0.

95
8

0.
75

0/
0.

98
5

0.
72

7/
0.

99
6

0.
72

7/
0.

99
8

0.
93

3/
1.

00
0

0.
93

3/
1.

00
0

0.
88

9/
1.

00
0

0.
88

9/
1.

00
0

0.
7

0.
54

5/
0.

96
1

0.
75

0/
0.

98
6

0.
72

7/
0.

99
6

0.
72

7/
0.

99
8

0.
93

3/
1.

00
0

0.
93

3/
1.

00
0

0.
72

7/
0.

99
9

0.
88

9/
1.

00
0

0.
8

0.
66

7/
0.

96
6

0.
75

0/
0.

98
6

0.
72

7/
0.

99
6

0.
72

7/
0.

99
8

0.
93

3/
1.

00
0

0.
88

9/
1.

00
0

0.
88

9/
1.

00
0

0.
88

9/
1.

00
0

0.
9

0.
62

5/
0.

96
7

0.
72

7/
0.

99
1

0.
72

7/
0.

99
7

0.
88

9/
0.

99
9

0.
93

3/
1.

00
0

0.
88

9/
1.

00
0

0.
88

9/
1.

00
0

1.
00

0/
1.

00
0

1.
0

0.
75

0/
0.

98
4

0.
72

7/
0.

99
6

0.
93

3/
1.

00
0

1.
00

0/
1.

00
0

0.
88

9/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

114 CHAPTER 4. COST-MINIMIZING TOP-K AND SKYLINE MONITORING

Table
4.8:

W
N

2d:
T

he
expense

of
the

SR
m

ethod
(Skyline)

and
its

reduction
percentage

from
the

E
X

T
m

ethod
-

show
ing

thatsetting
ε

=
1.0

and
τ

=
1.0

can
cutthe

expense
by

61%

ε/τ
0.25

0.50
0.75

1.00
1.25

1.50
1.75

2.00

0.1
28421

(-93%
)

50594
(-88%

)
72069

(-82%
)

90197
(-78%

)
107461

(-74%
)

124939
(-70%

)
139732

(-66%
)

153753
(-63%

)

0.2
29717

(-93%
)

53035
(-87%

)
75524

(-82%
)

94370
(-77%

)
112239

(-73%
)

130687
(-68%

)
145898

(-64%
)

160634
(-61%

)

0.3
30755

(-93%
)

54955
(-87%

)
78029

(-81%
)

97875
(-76%

)
116188

(-72%
)

134755
(-67%

)
150674

(-63%
)

166652
(-59%

)

0.4
31706

(-92%
)

56646
(-86%

)
80386

(-80%
)

100913
(-75%

)
120522

(-71%
)

138540
(-66%

)
154714

(-62%
)

171841
(-58%

)

0.5
32794

(-92%
)

58436
(-86%

)
82750

(-80%
)

103836
(-75%

)
124798

(-70%
)

142380
(-65%

)
159085

(-61%
)

176474
(-57%

)

0.6
33871

(-92%
)

60276
(-85%

)
85237

(-79%
)

106974
(-74%

)
128775

(-69%
)

146648
(-64%

)
164504

(-60%
)

181204
(-56%

)

0.7
35038

(-91%
)

62330
(-85%

)
88113

(-79%
)

110420
(-73%

)
132717

(-68%
)

151210
(-63%

)
170502

(-58%
)

186494
(-55%

)

0.8
36524

(-91%
)

64902
(-84%

)
91825

(-78%
)

114594
(-72%

)
137588

(-66%
)

156636
(-62%

)
176968

(-57%
)

193036
(-53%

)

0.9
39210

(-90%
)

70592
(-83%

)
97628

(-76%
)

123367
(-70%

)
145386

(-65%
)

167095
(-59%

)
186146

(-55%
)

204336
(-50%

)

1.0
52524

(-87%
)

93101
(-77%

)
129244

(-69%
)

159588
(-61%

)
189099

(-54%
)

215084
(-48%

)
238054

(-42%
)

261696
(-36%

)

Chapter 5

Summary

5.1 Summary of Contributions

In the era of enormous data generated every second by prevalent sensors and mobile

devices as often stressed in the contexts of Big Data and Internet of Things (IoT), we

have illustrated that a number of crucial monitoring applications to prevent undesirable

incidents require real-time data processing to acquire useful insights. Continuous pref-

erence query processing is an important part to achieve this by taking roles of process-

ing those data and delivering only a small number of insightful data to the right person.

However, data management systems to handle massive data as well as data sources are

likely to be more distributed, e.g., sensor networks and cloud, rather than centralized.

The principal objective of this thesis is to propose solutions towards the problems of

Continuous preference query processing in such distributed environments. In this thesis,

we mainly focus on two main fundamental queries including top-k queries and skyline

queries while executing these queries in different environment contexts has different

limitations and different techniques to alleviate the limitations.

In traditional highly distributed systems, where the amount of data transfer is crit-

ical, we propose a subscription-based continuous top-k query processing method. In-

stead of aggregating all dynamic data records at the base station, using subscriptions

bound to sources of data generation to indicate preferable data can intuitively reduce

the large amount of data records to be transferred, but the direct implementation can

be non-scalable in terms of the number of concurrent users because the communication

115

116 CHAPTER 5. SUMMARY

cost of subscription dissemination is non-trivial. In Chapter 2, we eliminated this weak-

ness of this scheme by pointing out that not all subscriptions need to be disseminated,

but instead only dissemination of our proposed small set of minimal subscriptions is

enough for this purpose without sacrificing the correctness. In addition, we can avoid

sending subscriptions to some unimportant nodes to further reduce more communica-

tion cost too [79]. The algorithms for this processing as well as the strategic approaches

to maintain subscriptions have been elaborated.

In Chapter 3, we focused on another preference query called skyline query process-

ing [10]. Skyline calculation is a compute-intensive task (expensive computation cost).

When this query needs to be computed repeatedly for monitoring purposes, it can take

huge amount of time which finally reflects the response time. Hence, we proposed an

algorithm for continuous skyline query processing on frequent data streams aiming at

speeding up skyline computation at the centralized server, i.e., the base station. Our

proposed method derives benefits from using minimum bounding rectangles and their

properties to summarize each data object’s changes in each snapshot and identify a

smaller set of candidates for skyline computation respectively. The advantage using this

approach is that the pruning strategy is adaptive based on data distribution and update

patterns. As a result, through the experiments, our proposed method shows the better

results in terms of total execution time over the other methods.

In Chapter 4, we focus on cost-efficient approaches to process preference queries for

more abstracted architectures, such as sensor cloud. In such systems, to acquire data is

charged by the number of data requests which is costly for continuous preference query

processing. We proposed a variant of a top-k query called ε-top-k query which returns

an approximate result set with controllable errors. The empirical experiments on the

real datasets show that the cost of data access (expense) using our proposed method can

be significantly minimized while the accuracy can be preserved at a satisfactory level.

This idea can be extended and applied to skyline query processing, and the obtained

results are also promising as that of top-k query processing. Despite calculation com-

plexity of our proposed query, using state-of-the-art distributed computing frameworks

(for instance MapReduce and Spark) and our proposed techniques to avoid unnecessary

calculations can accelerate the computation time and even faster than the conventional

method (due to the less total latency of data requests).

In summary, continuous preference query processing helps people make decisions

5.2. FUTURE WORK 117

and take actions on massive real-time data which are usually managed in distributed en-

vironments. Our proposed solutions in this thesis try to minimize the concerned costs in

each architecture, for example, communication cost which affects the network lifetime

in traditional schemes of distributed systems, computation cost which affects response

time and data access cost which reflects expense to users. Therefore, with the same

architectures, our proposed methods improve scalability – able to handle more queries

and more data as well as network lifetime – able to perform monitoring queries longer.

While, in the case of the cost of data access, with the same amount of budget, our

proposed methods make monitoring queries can run even longer than not using it.

5.2 Future Work

Through this thesis, we found the following remaining issues open to our future work.

Monitoring queries on complex data

This thesis mainly focused on two fundamental queries on multi-attribute dataset (mul-

tidimensional data), which are related to the field of multi-criteria decision making.

However, there are demands for other complex query processing on different data types

too, such as graph data and text. For example, social network monitoring, which ob-

serves community structures as well as content produced by the community, plays an

important role on understanding community characteristics and features. A marketing

person may want to monitor the evolution of the community structure (graph data) by

time to analyze meaningful users’ behaviors, e.g., k-core communities [55, 63], inter-

ests with large communities [77] and top-k influential nodes [90, 99]. In addition, he

may want to monitor on the development of the content (text data) produced by com-

munities to understand the drift of their interests (evolving concepts and topics). Seeing

that graph data can be represented by a huge matrix and text data can be represented

by very high-dimensional vectors, to put these monitoring queries in real-practice is

challenging because of its intense data dynamicity, enormous size and high calculation

complexity. A future direction on this research topic should be focused on algorithmic

improvements to enable to deliver up-to-date results in time.

118 CHAPTER 5. SUMMARY

Fog

Fog

Fog

Cloud
Core

Edge

Region 1 Region 2 Region 3 Region 4

Users in Region 2

Figure 5.1: Cloud, Fog and Edge computing

Cloud, Fog and Edge computing and their cost models

In this thesis, we consider continuous query processing on two main paradigms of dis-

tributed environments when dealing with sensor data, i.e., traditional highly distributed

systems (e.g., sensor networks, P2P systems) and cloud-extended systems (e.g., sensor

cloud). According to Fig.5.1, those can be compared as edge computing (some pro-

cesses done at local nodes) and cloud computing (processes at the core) respectively.

Processing continuous queries for such both cases have different cost models as dis-

cussed previously in Chapter 1 – 4.

Recently, fog computing has been a buzzword introduced in 2012 [47] for being a

smaller cloud that is put away from the centralized point (e.g., cloud) and closer to the

edge (e.g., sensors, mobile devices, and also users) as illustrated in Fig.5.1. This claims

benefits of better response time on location-aware applications where users or clients

and data are in proximity because a large amount of data can be served by a fog instead

of accessing data to the more expensive main cloud as a last resort,

For continuous query optimization, it is important to identify the cost model for

such mixed paradigm which is definitely unlike what it has been discussed in this thesis.

Also, the problem on how to efficiently execute and manage continuous queries on such

paradigm should be studied in order to minimize the cost.

Acknowledgment

This thesis represents not only my research at Osaka University but also a part of my

life that has a good opportunity to study and live in Japan these years. Completion of

this thesis was possible because of the supports and efforts of a number of people.

First and foremost, I would like to express my sincere gratitude to my advisor, Pro-

fessor Takahiro Hara, who always gives me countless opportunities from the first step in

this laboratory. It has been an honor to be his PhD student. He has been doing his best

cultivating me to grow as a good researcher from my Master through PhD. This thesis

would not have finished without his valuable advice and his guidance.

I am grateful to my thesis committee members, Professor Makoto Onizuka and Pro-

fessor Yasuyuki Matsushita at the Department of Multimedia Engineering, Graduate

School of Information Science and Technology, Osaka University for their valuable

time giving useful comments towards improving and sharpening this thesis.

I am thankful to Professor Shojiro Nishio, President of Osaka University who was

my advisor during my Master for being attentive and caring about my study for these

years, Professor Tomoki Yoshihisa, Professor Masumi Shirakawa and Professor Takuya

Maekawa for actively working for all students and always kindly giving the valuable

guidance as well as many opportunities.

I would like to acknowledge my research team both past and present members, Pro-

fessor Akimitsu Kanzaki, Professor Daichi Amagata, Dr. Yuya Sasaki, Dr. Keisuke

Goto, Dr. Yuka Komai, Mr. Masahiro Yokoyama, Mr. Yuki Nakayama, Mr. Boqi Gao,

Mr. Shuhei Hayashida and Mr. Syunya Nishio. Also, it is my pleasure to work with all

smart members in Hara laboratory. All of them have given me cooperative and active

supports throughout my study.

Last but not least, I would like to thank to my family who always respects my every

119

120 ACKNOWLEDGMENT

decision, stands by my side even good or bad times and wholeheartedly supports me on

every step of my life.

At the end, I am thankful to all of my acquaintances who share positive vibes and

always cheer me up. This means so much to me.

REFERENCE

[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.

BlinkDB: queries with bounded errors and bounded response times on very large

data. In Proc. of the European Conf. on Computer Systems (EuroSys), pages

29–42, 2013.

[2] C. C. Aggarwal and P. S. Yu. A survey of uncertain data algorithms and appli-

cations. IEEE Trans. on Knowledge and Data Engineering (TKDE), 21(5):609–

623, 2009.

[3] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A. Alelaiwi, and M. A.

Hossain. A survey on sensor-cloud: architecture, applications, and approaches.

International Journal of Distributed Sensor Networks, 2013.

[4] L.-M. Ang and K. P. Seng. Big sensor data applications in urban environments.

Big Data Research, 2016.

[5] B. Babcock and C. Olston. Distributed top-k monitoring. In Proc. of Int’l Conf.

on Management of Data (SIGMOD), pages 28–39, 2003.

[6] E. Baikousi and P. Vassiliadis. Maintenance of top-k materialized views. Dis-

tributed and Parallel Databases, 27(2):95–137, 2010.

[7] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for

convex hulls. ACM Trans. on Mathematical Software (TOMS), 22(4):469–483,

1996.

[8] I. Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based skyline evaluation.

ACM Trans. on Database Systems (TODS), 33(4):31, 2008.

121

122 REFERENCE

[9] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization, volume 6.

Athena Scientific Belmont, MA, 1997.

[10] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In Proc. of

Int’l Conf. on Data Engineering (ICDE), pages 421–430, 2001.

[11] K. C.-C. Chang and S.-w. Hwang. Minimal probing: supporting expensive pred-

icates for top-k queries. In Proc. of Int’l Conf. on Management of Data (SIG-

MOD), pages 346–357, 2002.

[12] B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete

& Computational Geometry, 10(1):377–409, 1993.

[13] M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang. A safe zone based approach

for monitoring moving skyline queries. In Proc. of Int’l Conf. on Extending

Database Technology (EDBT), pages 275–286, 2013.

[14] M. A. Cheema, Z. Shen, X. Lin, and W. Zhang. A unified framework for effi-

ciently processing ranking related queries. In Proc. of Int’l Conf. on Extending

Database Technology (EDBT), pages 427–438, 2014.

[15] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying imprecise data in

moving object environments. IEEE Trans. on Knowledge and Data Engineering

(TKDE), 16(9):1112–1127, 2004.

[16] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides. Indexing for vector pro-

jections. In Proc. of Int’l Conf. on Database Systems for Advanced Applications

(DASFAA), pages 367–376, 2011.

[17] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides. Indexing reverse top-

k queries in two dimensions. In Proc. of Int’l Conf. on Database Systems for

Advanced Applications (DASFAA), pages 201–208, 2013.

[18] C. T. Chou, N. Bulusu, and S. Kanhere. Sensing data market. In Proc. of Int’l

Conf. on Distributed Computing in Sensor Systems (DCOSS), 2007.

REFERENCE 123

[19] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong. Approximate data col-

lection in sensor networks using probabilistic models. In Proc. of Int’l Conf. on

Data Engineering (ICDE), pages 48–48, 2006.

[20] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis. Answering top-k queries

using views. In Proc. of Int’l Conf. on Very Large Data Bases (VLDB), pages

451–462, 2006.

[21] E. Dellis and B. Seeger. Efficient computation of reverse skyline queries. In Proc.

of Int’l Conf. on Very Large Data Bases (VLDB), pages 291–302, 2007.

[22] X. Ding, X. Lian, L. Chen, and H. Jin. Continuous monitoring of skylines over

uncertain data streams. Information Sciences, 184(1):196 – 214, 2012.

[23] P. Dutta, P. M. Aoki, N. Kumar, A. Mainwaring, C. Myers, W. Willett, and

A. Woodruff. Common sense: participatory urban sensing using a network of

handheld air quality monitors. In Proc. of Int’l Conf. on Embedded Networked

Sensor Systems (SenSys), pages 349–350, 2009.

[24] T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Züfle. Indexing uncer-

tain spatio-temporal data. In Proc. of Int’l Conf. on Information and Knowledge

Management (CIKM), pages 395–404, 2012.

[25] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM Journal on

Discrete Mathematics, 17(1):134–160, 2003.

[26] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data

sets. In Proc. of Int’l Conf. on Very Large Data Bases (VLDB), pages 229–240,

2005.

[27] P. Godfrey, R. Shipley, and J. Gryz. Algorithms and analyses for maximal vector

computation. VLDB Journal, 16(1):5–28, Jan. 2007.

[28] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of Things (IoT):

A vision, architectural elements, and future directions. Future Generation Com-

puter Systems, 29(7):1645–1660, 2013.

124 REFERENCE

[29] K. Hose and A. Vlachou. A survey of skyline processing in highly distributed

environments. VLDB Journal, 21(3):359–384, 2012.

[30] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer: A system for the ef-

ficient execution of multi-parametric ranked queries. In Proc. of Int’l Conf. on

Management of Data (SIGMOD), pages 259–270, 2001.

[31] Y.-L. Hsueh, R. Zimmermann, and W.-S. Ku. Efficient updates for continuous

skyline computations. In Proc. of Int’l Conf. on Database and Expert Systems

Applications (DEXA), pages 419–433, 2008.

[32] M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries on uncertain data: a

probabilistic threshold approach. In Proc. of Int’l Conf. on Management of Data

(SIGMOD), pages 673–686, 2008.

[33] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline queries against mo-

bile lightweight devices in manets. In Proc. of Int’l Conf. on Data Engineering

(ICDE), pages 66–66, 2006.

[34] Z. Huang, H. Lu, B. C. Ooi, and A. Tung. Continuous skyline queries for

moving objects. IEEE Trans. on Knowledge and Data Engineering (TKDE),

18(12):1645–1658, 2006.

[35] O. C. Ibe. Elements of Random Walk and Diffusion Processes. John Wiley &

Sons, 2013.

[36] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing

techniques in relational database systems. ACM Computing Surveys (CSUR),

40(4):11, 2008.

[37] H. Jafarpour, B. Hore, S. Mehrotra, and N. Venkatasubramanian. Subscription

subsumption evaluation for content-based publish/subscribe systems. In Proc. of

Int’l Conf. on Middleware (Middleware), pages 62–81, 2008.

[38] B. Jiang and J. Pei. Online interval skyline queries on time series. In Proc. of

Int’l Conf. on Data Engineering (ICDE), pages 1036–1047, 2009.

REFERENCE 125

[39] H. Jiang, J. Cheng, D. Wang, C. Wang, and G. Tan. Continuous multi-

dimensional top-k query processing in sensor networks. In Proc. of Int’l Conf.

on Computer Communications (INFOCOM), pages 793–801, 2011.

[40] Y. Komai, Y. Sasaki, T. Hara, and S. Nishio. Nn query processing methods in

mobile ad hoc networks. IEEE Trans. on Mobile Computing, 13(5):1090–1103,

2014.

[41] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of

vectors. ACM Journal, 22(4):469–476, Oct. 1975.

[42] J. Lee, H. Cho, and S.-w. Hwang. Efficient dual-resolution layer indexing for top-

k queries. In Proc. of Int’l Conf. on Data Engineering (ICDE), pages 1084–1095,

2012.

[43] J.-S. Lee and B. Hoh. Sell your experiences: a market mechanism based incentive

for participatory sensing. In Proc. of Int’l Conf. on Pervasive Computing and

Communications (PerCom), pages 60–68, 2010.

[44] M.-W. Lee and S.-W. Hwang. Continuous skylining on volatile moving data. In

Proc. of Int’l Conf. on Data Engineering (ICDE), pages 1568–1575, 2009.

[45] Y. W. Lee, K. Y. Lee, and M. H. Kim. Efficient processing of multiple continuous

skyline queries over a data stream. Information Sciences, 221:316–337, 2013.

[46] H. Lu, Y. Zhou, and J. Haustad. Efficient and scalable continuous skyline moni-

toring in two-tier streaming settings. Information Systems, 38(1):68–81, 2013.

[47] T. H. Luan, L. Gao, Z. Li, Y. Xiang, and L. Sun. Fog computing: Focusing on

mobile users at the edge. arXiv preprint arXiv:1502.01815, 2015.

[48] S. Madria, V. Kumar, and R. Dalvi. Sensor cloud: A cloud of virtual sensors.

IEEE Software, 31(2):70–77, 2014.

[49] M. Morse, J. M. Patel, and W. I. Grosky. Efficient continuous skyline computa-

tion. Information Sciences, 177(17):3411–3437, 2007.

126 REFERENCE

[50] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring of top-k

queries over sliding windows. In Proc. of Int’l Conf. on Management of Data

(SIGMOD), pages 635–646, 2006.

[51] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT press, 1994.

[52] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in

database systems. ACM Trans. on Database Systems (TODS), 30(1):41–82, 2005.

[53] O. Papapetrou and M. Garofalakis. Continuous fragmented skylines over dis-

tributed streams. In Proc. of Int’l Conf. on Data Engineering (ICDE), pages

124–135, 2014.

[54] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain data. In

Proc. of Int’l Conf. on Very Large Data Bases (VLDB), pages 15–26, 2007.

[55] C. Peng, T. G. Kolda, and A. Pinar. Accelerating community detection by using

k-core subgraphs. CoRR, abs/1403.2226, 2014.

[56] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Sensing as a ser-

vice model for smart cities supported by internet of things. Trans. on Emerging

Telecommunications Technologies, 25(1):81–93, 2014.

[57] D. Pfoser and C. S. Jensen. Capturing the uncertainty of moving-object repre-

sentations. In Proc. of Int’l Symposium on Advances in Spatial Databases (SSD),

pages 111–131, 1999.

[58] K. Pripužić, I. Podnar Žarko, and K. Aberer. Top-k/w publish/subscribe: A pub-

lish/subscribe model for continuous top-k processing over data streams. Infor-

mation Systems, 2012.

[59] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic

data. In Proc. of Int’l Conf. on Data Engineering (ICDE), pages 886–895, 2007.

[60] C. J. V. Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton,

MA, USA, 2nd edition, 1979.

REFERENCE 127

[61] N. H. Ryeng, A. Vlachou, C. Doulkeridis, and K. Nørvåg. Efficient distributed

top-k query processing with caching. In Proc. of Int’l Conf. on Database Systems

for Advanced Applications (DASFAA), pages 280–295, 2011.

[62] G. Sagy, D. Keren, I. Sharfman, and A. Schuster. Distributed threshold querying

of general functions by a difference of monotonic representation. In Proc. of Int’l

Conf. on Very Large Data Bases (VLDB), volume 4, pages 46–57, 2010.

[63] A. E. Sarı́yüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V. Çatalyürek.

Streaming algorithms for k-core decomposition. In Proc. of Int’l Conf. on Very

Large Data Bases (VLDB), volume 6, pages 433–444, 2013.

[64] Y. Sasaki, R. Hagihara, T. Hara, M. Shinohara, and S. Nishio. A top-k query

method by estimating score distribution in mobile ad hoc networks. In Proc.

of Int’l Conf. on Advanced Information Networking and Applications Workshops

(WAINA), pages 944–949, 2010.

[65] A. Shastri, Y. Di, E. A. Rundensteiner, and M. O. Ward. MTopS: scalable pro-

cessing of continuous top-k multi-query workloads. In Proc. of Int’l Conf. on

Information and Knowledge Management (CIKM), pages 1107–1116, 2011.

[66] X. Sheng, J. Tang, X. Xiao, and G. Xue. Sensing as a service: Challenges,

solutions and future directions. Sensors Journal, 13(10):3733–3741, 2013.

[67] A. S. Silberstein, R. Braynard, C. Ellis, K. Munagala, and J. Yang. A sampling-

based approach to optimizing top-k queries in sensor networks. In Proc. of Int’l

Conf. on Data Engineering (ICDE), pages 68–68, 2006.

[68] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Probabilistic top-k and ranking-

aggregate queries. ACM Trans. on Database Systems (TODS), 33(3):13, 2008.

[69] M. A. Soliman, I. F. Ilyas, and K. Chen-Chuan Chang. Top-k query processing in

uncertain databases. In Proc. of Int’l Conf. on Data Engineering (ICDE), pages

896–905, 2007.

[70] A. Sultana, N. Hassan, C. Li, J. Yang, and C. Yu. Incremental discovery of

prominent situational facts. In Proc. of Int’l Conf. on Data Engineering (ICDE),

pages 112–123, 2014.

128 REFERENCE

[71] S. Sun, Z. Huang, H. Zhong, D. Dai, H. Liu, and J. Li. Efficient monitoring

of skyline queries over distributed data streams. Knowledge and Information

systems, 25(3):575–606, 2010.

[72] E. W. Swokowski. Calculus with Analytic Geometry. Taylor & Francis, 1979.

[73] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstantinou. Branch-and-bound

processing of ranked queries. Information Systems, 32(3):424 – 445, 2007.

[74] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computation of skylines in sub-

spaces. In Proc. of Int’l Conf. on Data Engineering (ICDE), pages 65–65, 2006.

[75] L. Tian, L. Wang, A. Li, P. Zou, and Y. Jia. Continuous skyline tracking on update

data streams. In Proc. of Int’l Workshops on Advances in Web and Network Tech-

nologies, and Information Management (APWeb/WAIM), pages 192–197, 2007.

[76] P. Triantafillou and A. Economides. Subscription summarization: A new

paradigm for efficient publish/subscribe systems. In Proc. of Int’l Conf. on Dis-

tributed Computing Systems (ICDCS), pages 562–571, 2004.

[77] K. Udomlamlert, C. K. Adiputra, and T. Hara. Monitoring top-k on real-time

dynamic social-network graphs. In Proc. of Int’l Conf. on Distributed and Event-

based Systems (DEBS), pages 317–321. ACM, 2016.

[78] K. Udomlamlert and T. Hara. Reducing expenses of top-k monitoring in sensor

cloud services. In Proc. of Int’l Conf. on Distributed and Event-based Systems

(DEBS), pages 187–198, 2016.

[79] K. Udomlamlert, T. Hara, and S. N. D. Threshold-based distributed continuous

top-k query processing for minimizing communication overhead. IEICE Trans.

on Information and Systems, E99-D(2):383–396, 2 2016.

[80] K. Udomlamlert, T. Hara, and S. Nishio. Continuous top-k query processing on

horizontally-distributed data. In Proc. of Domestic Conf. on FIT, 2013.

[81] K. Udomlamlert, T. Hara, and S. Nishio. Communication-efficient preference

top-k monitoring queries via subscriptions. In Proc. of Int’l Conf. on Scientific

and Statistical Database Management (SSDBM), pages 44:1–44:4, 2014.

REFERENCE 129

[82] K. Udomlamlert, T. Hara, and S. Nishio. Skyline calculation on frequent data

updates (in japanese). In Proc. of Domestic Conf. on DPSWS, pages 252–260,

2014.

[83] K. Udomlamlert, T. Hara, and S. Nishio. Candidate pruning technique for skyline

computation over frequent update streams. In Proc. of Int’l Conf. on Database

and Expert Systems Applications (DEXA), pages 93–108, 2015.

[84] K. Udomlamlert, T. Hara, and S. Nishio. Reducing expenses of sensor-cloud

services for dynamic skyline monitoring. In Proc. of Domestic Conf. on DEIM,

2016.

[85] K. Udomlamlert, T. Hara, and S. Nishio. Subscription-based data aggregation

techniques for top-k monitoring queries. World Wide Web, (to appear).

[86] A. Vlachou, C. Doulkeridis, and K. Nørvåg. Distributed top-k query process-

ing by exploiting skyline summaries. Distributed and Parallel Databases, 30(3-

4):239–271, 2012.

[87] A. Vlachou, C. Doulkeridis, K. Nørvåg, and M. Vazirgiannis. On efficient top-k

query processing in highly distributed environments. In Proc. of Int’l Conf. on

Management of Data (SIGMOD), pages 753–764, 2008.

[88] H. Wang, Y. Cai, Y. Yang, N. Mamoulis, et al. Durable queries over historical

time series data. IEEE Trans. on Knowledge and Data Engineering (TKDE),

26(3):595–607, 2014.

[89] X. Wang, A. V. Vasilakos, M. Chen, Y. Liu, and T. T. Kwon. A survey of green

mobile networks: Opportunities and challenges. Mobile Networks and Applica-

tions, 17(1):4–20, 2012.

[90] Y. Wang, G. Cong, G. Song, and K. Xie. Community-based greedy algorithm for

mining top-k influential nodes in mobile social networks. In Proc. of Int’l Conf.

on Knowledge Discovery and Data Mining (SIGKDD), pages 1039–1048, 2010.

[91] M. Wu, J. Xu, X. Tang, and W.-C. Lee. Top-k monitoring in wireless sensor net-

works. IEEE Trans. on Knowledge and Data Engineering (TKDE), 19(7):962–

976, 2007.

130 REFERENCE

[92] M. Xie, L. V. Lakshmanan, and P. T. Wood. Efficient top-k query answering

using cached views. In Proc. of Int’l Conf. on Extending Database Technology

(EDBT), pages 489–500, 2013.

[93] J. Xin, G. Wang, L. Chen, et al. Continuously maintaining sliding window sky-

lines in a sensor network. In Proc. of Int’l Conf. on Database Systems for Ad-

vanced Applications (DASFAA), pages 509–521, 2007.

[94] D. Yang, A. Shastri, E. A. Rundensteiner, and M. O. Ward. An optimal strategy

for monitoring top-k queries in streaming windows. In Proc. of Int’l Conf. on

Extending Database Technology (EDBT), pages 57–68, 2011.

[95] M. L. Yiu and N. Mamoulis. Efficient processing of top-k dominating queries

on multi-dimensional data. In Proc. of Int’l Conf. on Very Large Data Bases

(VLDB), pages 483–494, 2007.

[96] A. Yu, P. K. Agarwal, and J. Yang. Processing a large number of continuous pref-

erence top-k queries. In Proc. of Int’l Conf. on Management of Data (SIGMOD),

pages 397–408, 2012.

[97] A. Yu, P. K. Agarwal, and J. Yang. Processing and notifying range top-k sub-

scriptions. In Proc. of Int’l Conf. on Data Engineering (ICDE), pages 810–821,

2012.

[98] Y. Zhang, R. Cheng, and J. Chen. Evaluating continuous probabilistic queries

over imprecise sensor data. In Proc. of Int’l Conf. on Database Systems for

Advanced Applications (DASFAA), pages 535–549, 2010.

[99] Y. Zhang, J. Zhou, and J. Cheng. Preference-based top-k influential nodes mining

in social networks. In Proc. of Int’l Conf. on Trust, Security and Privacy in

Computing and Communications (TrustCom), pages 1512–1518. IEEE, 2011.

[100] K. Zhao, Y. Tao, and S. Zhou. Efficient top-k processing in large-scaled dis-

tributed environments. Data and Knowledge Engineering, 63(2):315 – 335, 2007.

[101] L. Zou and L. Chen. Pareto-based dominant graph: An efficient indexing struc-

ture to answer top-k queries. IEEE Trans. on Knowledge and Data Engineering

(TKDE), 23(5):727–741, 2011.

