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ISUM (Idealized Structural Unit Method)

Applied to Marine Structures’

Yukio UEDA* and Sherif M. H. RASHED**

Abstract

The idealized structural unit method (ISUM) has been developed to efficiently and accurately analyse the
behavior of large size structures up to and post their ultimate strength. Several ISUM elements have been
Sformulated and used to analyse the behaviour of actual large complex structures. In this paper, the basic theory
and five ISUM elements are outlined and examples of recent applications to actual marine structures are
presented demonstrating the effectiveness of the method.

KEY WORDS:
(Ultimate Strength}

Introduction

Despite the rapid development in the areas of non-linear
structural analysis, powerful computers and CAE software,
including FE mesh generators and CAD interfaces, the
analysis of nonlinear behavior of a large structure by the
Finite Element Method is a major job requiring extensive
human resources and computer time. Unlike FEM, which
requires to divide each structural component into many
small elements, in the Idelized Structural Unit Method
(ISUM) a structural component such as a part of a girder
between two transverses, or a stiffened plate bounded by
four primary supporting members is modeled by one
element with only a few nodal points. Therefore, the size of
the numerical problem is much reduced leading to drastic
saving of human and computer resources. The nonlinear
behaviour of each type of elements is idealized and expres-
sed in the form of a set of failure functions defining the
necessary: conditions for different failures which may take
place in the element, and a set of stiffness matrices defining
the relationship between nodal force increments and nodal
displacement increments before and after different failures.
These elements are used in the framework of the matrix
displacement method with loads applied incrementally
until (and post) ultimate strength. At present, five elements
are available, a deep girder element’?, a beam-column
element®, a joint element®, a plate element and a stiffened
plate element>®. Special elements for damaged and locally
buckled tubular members are also available™®. ISUM has

(ISUM) (Marine Structures) (Nonlinearity) (Plastic Node Method) (Buckling) (Collapse)

been successfully applied to analyse shiphull strength in
wavest#%19 in grounding and collision!*!?, strength of
offshore structures'®'¥ offshore collisions!®'® and other
marine and land structural problems.

In this paper the five main available elements are briefly
described, an academic example and three actual applica-
tions are presented.

Treatment of Nonlinearities in ISUM

ISUM takes account of geometric and material non-
linearities. In ISUM, geometric nonlinearity may be
divided into two classes, local and global. By local geomet-
ric nonlinearity, it is referred to the nonlinear effects of
large deflection and internal stresses of each element inside
its boundaries regardless of the displacements of nodal
points. Buckling of a plate element inside its boundaries is
a typical example of this class. These local geometric
nonlinear effects are included in the formulation of the
stiffness equation of the ISUM elements by different
methods as may be seen in the following sections. These
effects are included in K,, the small deflection stiffness
matrix of an element since they do not involve large nodal
displacements.

Global geometric nonlinearity is composed of those
large displacement and internal stress effects directly
related to nodal points displacements in the same sense as
in the finite element method. These effects are essential in
evaluating the behavior of slender structures and structures
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having slender substructures. These effects are also includ-
ed in some ISUM elements as may be seen in the following
sections.

Material nonlinearity is handled by the Plastic Node
Method (PNM)(17). PNM is an extention of the plastic
flow theory in which nodal forces and displacements are
used instead of stresses and strains. Since this method is
used with all ISUM elements, it is briefly described here.

Theory of the plastic node method’”

Basic assumptions: The plastic node method is devel-
oped by introducing a new mechanism of plastic deforma-

tion into the finite element method under the following

assumptions.

(1) Plastification in an element is examined by whether or
not stresses or resultant stresses at designated checking

. points in the element satisfy the plasticity condition.

(2) Regarding the plasticity condition, which is expressed
as a function of the nodal forces, as a plastic potential
and applying the theory of plastic potential, the formu-
lation of the basic theory is performed. As a result, the
plastic deformation is concentrated only at the nodes,
whereas the inside of the element is always elastic.
In this paper, although materials are assumed to be
elastic-perfectly plastic, the effects of strain-hardening
can be taken into account!®,

Elastic stiffness equation: Here, a finite element with n
nodes is considered. The nodal force x and the elastic

nodal displacement u® can be represented as follows,
x=[Xx1,X5-+,%,] " 1)
ue=[ug, us..ugl’ )

where x; and u¢ express the nodal forces and the elastic
nodal displacements at the /~th node in the element, respec-
tively. An incremental form of the elastic stiffness equation
of element then can be expressed as,

dx=K¢edu° (3)

where, K¢ is the elastic stiffness matrix.

When the element is accompanied by large deformation,
eqn(3) can be rewritten by replacing K¢ by the tangential
elastic stiffness matrix including the effects of geometrical
nonlinearity K¢

Plasticity Condition at a Checking Point and Plastic
Nodal Displacement:
examined at several designated checking points. The plas-

Plastic zone in an element is

ticity condition f; at the i-th checking point can be expres-
sed in terms of the stress components, y;, Oy ***s Tayi> **

in the following form.
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ﬁ(di' GY):O (4)
where,
o'i:[o'xn Oyir *** Txyis ]t

oy; yield stress

In general, ¢; in eqn.(4) can be represented as a function
of nodal force vectors at j nodes of the element. They are
Xy, X, o+, X; (< n, n; the total number of element nodes).
The number j depends on the displacement function
assumed in the element. The plasticity condition f{ may be

rewritten in the following form.

Fi(xi, Xp w0y X, 04)=0 (j=1) (5)

The nodal force x; (i=1 to j) can be regarded as the
generalized stress. According to the theory of plastic poten-
tial, the plastic nedal displacement increment du’ is the
corresponding generalized plastic strain increment and can
be expressed as follows,

du” =[duf, i, ---, du}]*

6
_dhg, (6)

where, dA,; positive scalar

bim { «aF; } _ [ aF; aF,;

aF; .
QAL Ly
axXx aX; aX;

axX,

In the vector @, (n-j) terms vanish when the differentiation
is taken with respect to the nodal forces which are not
associated with the plasticity condition F,. Also eqn(6)
shows that when the plasticity condition at checking point
i is satisfied, the resulting plastic deformation is produced
at the nodes whose nodal forces are associated with the
plasticity condition F;. :

Elasto-plastic stiffness equation:. As a general case, it is
assumed that the plasticity condition at the 1st to the k-th
checking points in an element are satisfied.

Based on eqn(6), the plastic nodal displacement incre-
ment can be obtained as follows,

k
daf = 2 | A= pdA @)
1=
where,
¢:[¢1¢2 Pl
dA =[dA,, dAy, -+, dA4]"

As long as these k checking points in the plastic state are
under loading, the following conditions must be satisfied,

dF;=¢;dx=0 (i=1, 2, -+, k) (8)
Equation (8) may be rewritten as,

$tdx=0 ©)
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The total nodal displacement increment du is expressed
by the summation of the elastic and plastic components.

du=du®+ du’ (10)

Equations (3), (8), (10) and (11) may be combined and the
elasto-plastic stiffness equation is finally obtained as

follows,
dx=K" du (1)
K" =K*—K°$($'K°$)"'$ K"

where
K’ elasto-plastic stiffness matrix

Unloading may be detected by di as
dl=(¢‘Ke¢)“‘¢‘K“du<0 (12)

It is to be pointed out that in the plastic node method the
elestic-plastic stiffness matrix K® is obtained simply by
matrix calculation and no integration over the element is
necessary.

ISUM Elements

In the following, the five main ISUM elements are
briefly described. Details of each element and assessment of
its accuracy may be found in the corresponding references.

ISUM Deep Girder Element!?

The ISUM deep girder element is a prismatic part of a deep
I girder with unequal flanges. Two vertical stiffeners are
assumed to bound the element as shown in Fig. 1. These
two stiffeners are assumed not to fail during loading.
Further, the flanges are assumed not to buckle in a tor-
sional mode. The element has two nodes, i and j, located
at the mid-hight of each end. Axial force, bending moment
and shearing force in the plane of the web are considered.
Therefore, three degrees of freedom are considered at each

—
ei’”i/'| :l ej’Hj
u‘,l‘{i \ l - l/\ "J'Nj
w4 ,\I1 ' wJ,\I‘j
c— ——
CROSS-SECTION i §

Fig. 1 The deep girder elemen, nodal points and degrees of
freedom.
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Fig. 2 Behavior of a deep girder element subjected to an increas-
ing load.

nodal point, axial displacement u, bending rotation § and
deflection w (Fig. 1). Accordingly, the nodal displacement
vector U may be expressed as follows.

U=[U.U)"

13)
- Ui=[u.6w]% Uj:[ngjwj]t (

The associated nodal forces are axial force N, bending
moment M and shearing force V. The nodal force vector
R may then be expressed as,

R=[R:R;]",

14
Ri:[:NiMiVi:]t’ Rjz[NijI/j]t o

The behavior of the deep girder element under an
increasing load is illustrated in Fig. 2. As the nodal forces
increase, the web of the element may buckle in the elastic
range, or in the elastic-plastic range after yielding has
started. If the web is thick enough, or if the nodal force
vector is such, yielding may proceed until the element
reached its full plastic strength without buckling.

Failure-free stiffness matrix: Before any local failures
have taken place, the relation of the increment AR of the
nodal force vector R to the increment AU of the nodal
displacement vector U may be expressed in terms of a

tangential stiffness matrix K as follows:

AR=K AU (15)

K is evaluated based on the beam theory taking shear
deflection into consideration.

Buckling condition: A condition for web buckling may
be expressed with the aid of a buckling function Iy,

I'y=f3(R)20 (16)

Post-buckling stiffness matrix: If eqn(16) is satisfied, i.e.




(126)

the web has buckled, the stiffness matrix relating the nodal
force increments to the nodal displacement increments
changes depending on the mode of web buckling. Denoting
the new tangential stiffness matrix by K,, eqn(15) may
then be rewritten as;

AR=K® AU (17

where, K* is derived in Ref.(1,2).

After the web has buckled, when the shearing force is
smaller than the pure shear buckling force V., (i.. the
shear buckling force when the girder is subjected to shear
only), the shearing force is supported by the web, while the
axial force and bending moment are supported by the
flanges and the web. As the shearing force increases a
redistribution of normal stress takes place by which a part
of the axial force and bending moment originally support-
~ed by the web are transferred to the flanges. Considering
this stress redistribution and the effectiveness of the web
after buckling a post-buckling stiffness matrix K?' is der-
ived. Once the shearing force exceeds the pure shear buck-
ling force, the web is assumed to sustain no normal stresses.
The increments of the compressive force and bending
moment are supported by the flanges only. The increments
of shearing force are supported by a tension field devel-
oped in the web. In this case, the stiffness matrix K?* is
similar in form to K, however, effective section properties
are used.

Ultimate strength condition: The element may continue
to carry further loading until it reaches its ultimate
strength. Again, a condition for ultimate strength may be
represented by an ultimate strength function /7,

I"y=fuR)=0 (18)

Here, ultimate strength is also dependent upon the value of
the shearing force V. When V < V., post-buckling stress
distributions are established for different load combina-
tions. Ultimate strength in a certain combination is consid-
ered to be reached when at least a flange and the adjacent
web fiber yield. When V = V., ultimate strength is assumed
to be reached at collapse of a flange under axial force,
caused by axial force and bending moment acting on the
element, and lateral load caused by the tension field in the
web, or yielding of the web under the effect of the tension
field.

_1f the web does not buckle, the element may reach its full
plastic strength. The fully plastic strength condition may be
expressed as follows.

Le=fp(R)=0 (19)

the fully plastic strength of a cross-section is evaluated by
integrating the fully plastic stress distribution over this
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section.

Elasto-Plastic Stiffness Matrix: When the ultimate
strength condition (or the fully plastic strength condition)
is satisfied at a nodal point, a plastic node is inserted at this

node and an elasto-plastic stiffness matrix KY(or K7) is

derived as shown in the previous section.

AR=KY AU (20)

K¢ which appears in the expression of K” in the previous
chapter is K, K®' or K?* depending on the state of the
element.

ISUM Tubular Beam-Column Element?

The ISUM Tubular Beam-Column element is a prizmatic
circular tube. Six degrees of freedom are considered at each
of two nodal point i and j located at the ends of the element
as shown in Fig. 3. Nodal displacement and force vectors,
U and R may be expressed as

U=[U, U]}, R=[RR;]*

where

(2D

Uy= [uxkv Uypy Uz Oxir Oyir ezk] Lo k=i J
R,= [ka: Pylz: P My, Myk: Mzk] L k=i J

[ ]*=transposed matrix of [ ]

A distributed lateral load q is taken into consideration.

Elastic stiffness matrix: In order to accurately deal with
the geometrical nonlinearity using one element to model
one whole member, an exact solution of the displacement
along the element should be used.

Before buckling or yielding, the elastic large deflection
behavior of the element is dealt with as a beam-column and
may be expressed by the following differential equations:

dw, deWy_Lq
dx* dx*  EI @2
dtw,  d*w, :‘1_q
dx* dxt  Egr *
2 Z
/ Y
Mxi’exi I:‘xi'uxi <
/ /
iy 7 7
Tyirtyi qi‘f
P..,u_.
M .,0 . it zi 93
yiyi
/// A
fMzi’ezi
i b

Fig. 3 The tubular beam-column element.
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where,
w, and w, = lateral deflections in the xy and zx planes
p¥=internal axial force (compression is positive)
k =(P/EI)"? is a common variable in the two equations
E =Young’s modulus
1 =cross-sectional moment of interia
g, and g, =components of the lateral load q in y and z

directions

The above two equations may be solved independently.
The general solution of the first of eqn(22) may be written
as

wy=a cos kx+b sin kx+cx+d+f(qy,) (23)

f(gy) is dependent on the distribution of the lateral load
qy. The constants of integration a, b, ¢ and d are deter-
mined from the boundary conditions at nodal points i/ and
J, in terms of the nodal displacement U. Based on this
displacement function, the relationship between nodal
force R and nodal displacement U may be obtained.

The bending moment M, and axial force P, may be
expressed as

M,= — Eld*w,/dx? (24)

.Pxi: _ij: EA(uxi_ uxj—ub)/L (25)

where
u, =the axial shortening due to bending of the element
(see Ref.(3))

Neglecting small terms of higher order, an increment of
the nodal force 4R may be expressed as follows.

dR+dQ=K dU (26)

where
K =the tangential stiffness matrix
dQ=a load vector associated with the distributed load
applied on the element

The explicit forms of K and dQ are given in Ref.(3).

It is to be noted that the effect of the lateral load appears
not only in dQ, but also in K. Since, the exact solution,
eqn(23), of the large deflection differential equations is
employed as the displacement function of the element, the
effect of elastic large deflection is taken into account.

Ultimate strength: The nodal force-displacement rela-
tionship, eqn(26) holds until the element buckles and/or
yielding starts. After yielding has started, even locally, the

stiffness of the element decreases. However, eqn(26) is
assumed to hold in the analysis until the element buckles,
or one or more full plastic cross sections are developed.
In the following, the conditions of the buckling strength
and the full plastic strength of a cross section are represent-

127

(127)

ed and the ultimate strength condition is constructed as a
combination of these.

Considering buckling strength, since one member is
modeled by one element, initial out-of-straightness and
residual stresses may not be explicitly considered. These
have no effect on the full plastic strength of cross-sections.
However they have an effect on buckling strength, which
may be taken into account by using a suitable column
curve. In this study, one of these presented in Ref.(19) is
used. The buckling condition may then be represented in
terms of a buckling function I7, as,

I'y=P—P,=0 @n

In the case of three dimensional frame structures, deter-
mination of the plane of minimum restraint and the buck-
ling configuration requires a complicated and time con-
suming process. However, the restraining stiffness at nodal
points i and j about y and z axes may be obtained from the
global tangential stiffness matrix and then the effective
buckling length may be determined (20).

In evaluating the full plastic strength, the effect of shear-
ing stresses on plastic strength is assumed to be negligible.
Therefore, the internal shearing forces Py, and P,, and the
internal twisting moment M, do not affect the full plastic
strength interaction relationship. This is expressed by the
fully plastic strength function I, as,

Fo=(| vVMi+M%|/M,)—cos P /2P, =0 (28)
where
M. = the fully plastic bending moment of the cross-
section

p
- P
T BUCKLING STRENGTH
p et PalS

FULL PLASTIC
STRENGTH

-M HP

-p

Fig. 4 Ultimate strength interaction relationship.



(128)

P?=the fully plastic axial force of the cross-section

Equation (28) may be represented as shown in Fig. 4.

Depending on the mechanical properties of the element
and the nature of the increasing load vector applied on it,
it reaches either the buckling strength, or the plastic
strength.

The assembly of these conditions represents the ultimate
strength function I", of the tubular element as shown in
Fig.4.

ry=rT,or I'y="", (29)

Elasto-plastic stiffness matrix: As the load increases, the
ultimate strength condition, (buckling or full plastic

strength) may be satisfied at nodal point 1, nodal point j
“and/or the location of maximum bending moment along -

the element. The following three cases are considered.

(a) First, let an element in which eqn(29) is satisfied at
nodal points i or/and j be considered. A plastic node!” is
inserted there. Equation (29) is regarded as a plastic
potential and the elestic plastic stiffness metrix is derived as
shown in the section of plastic node method.

(b) ‘If the condition of ultimate strength is satisfied at
point a, which is the position of maximum bending
moment along the length of the element, the element is
divided at this position into two beam-column elements, ia
and aj. A plastic node is inserted at point a on either
element ia or element aj. Considering the condition of
nodal points i and j, elastic or elasto-plastic stiffness
matrices and distributed load vectors are evaluated for the
two elements. Then the extra nodal displacements at point
a are eliminated in the normal way.

(c) If the magnitude of the axial compressive force
reaches that of buckling, the element is allowed to buckle.
The axial force being maintained at the buckling load, the
bending moment increases due to the increase of deflection
until eqn(29) is satisfied at one or both ends and/or any
point along the element’s length, where a plastic node is
then inserted as in (a) and/or (b).

ISUM Joint Element®

In the analysis of framed structures, members are usually
assumed to be connected rigidly to each other at nodal
points.

However, in a tubular frame with simple (unstiffened)
joints, the joint may exhibit considerable flexibility in the
elastic as well as the elasto-plastic ranges. These may cause
excessive deflections and different internal force distribu-
tion in the structure. To take these into account, one most
conventional method is to use shell finite elements for joint
cans and beam elements for the members. This treatment
introduces and excessive number of elements and nodes
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L.c.r

Y JOINT

T JOINT

Fig. 5 Modeling T and Y joints by line elements.

a SPRING
|

Fig. 6 Idealized Y joint element.

which require enormous time for modelling and computa-
tion.

In order to overcome this difficulty, in the scope of the
“Idealized Structural Unit Method (ISUM)”, a joint ele-
ment with elasto-plastic behavior has been developed®.
Joint models for T, Y, TY, K, and V joints have been
proposed based on this element. Here, the single joint
model, for T and Y joints, is described.

T and Y joints are modeled by a group of elements a, b,
and c; or ¢y as shown in Fig. 5. Elements a and b represent
the cord and brace respectively and element ¢y or cy are
joint elements to take account of wall deformation.

A joint element has 3 nodes i, s and j as shown in Fig.
6. The portion i-s is a rigid body and s-j is an elasto-plastic
spring with a length equal to zero. Each node has 6 degrees
of freedom. Nodal displacements and forces may be expres-
sed by eqn(21) where k=1 s, J

Elastic stiffness matrix: Before yielding the stiffness equa-
tion of the spring s-j may be written as

(o)=x{y)

J J

(30)

where K, =translational and rotational stiffness matrix of a
spring.

U, and R, may be expressed in terms of U, and R, thus
omitting the excessive internal node s as follows.

()= D {gh=m{y)

J 2

(3D
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{x)=lo ) &) =r{x]) @)

J

where,
—transformation matrix
I =unit matrix

The stiffness equation of the joint element may then be
derived as

R=K U . (33)
where

R=[R; R;]", U:[Ui Uz]t

K=T?* K; T =elastic stiffness matrix
The explicit expression of K, may be found in Ref.(4).

Joint yield céndiﬁb_n: The yield condition of a joint is
expressed in terms of axial force P acting in the joint
element, moment M acting at node j and axial force P,

acting in the chord. Other internal force components are
usually small enough to be neglected.

Iy=f(P, M, P,) (34)

where

I'" is a yield function.

Elasto-plastic stiffness matrix: When the components of
internal force in element ¢ or c¢, satisfy the plasticity
condition

I, =0 (35)

a plastic node is inserted at j and the stiffness equation is
expressed in an incremental form as,

dR=K’ dU (36)

where K’ =elasto-plastic stiffness matrix
The explicit form of this matrix is the same as that of case
-(b) in Appendix II of Ref.(3).

In a similar way, a joint model for K joint has been
proposed as shown in Fig. 7. In this model, in addition to
rigid elements and elasto-plastic elements, a beam element
is introduced to express the interaction between the two

Fig. 7 Idealized K joint element.

braces.
ISUM Rectangular Plate Element>%2

The element is a rectangular plate as shown in Fig. 8. Its
edges are assumed to remain straight after deformation. It
has four nodes, one at each corner. Bending stiffness of the
element is assumed to be negligible in comparison with the
bending stiffness of the whole structure. Therefore, the
element is treated as a membrane, Each node has three
translatory degrees of freedom. Nodal displacements and
forces are expressed as follows.

U={U U, U; U], U; = [uvw]t 37N
R= [Rx R; Rs RJ’: R;= [in Ry, Rzi]t (38)
~ Inplane ‘biaxial and shearing forces as shown in Fig. 8
are considered. In absence of initial imperfection, and
under increasing load the element behaves as shown in Fig.

9. The relationship between U and R may be expressed
incrementally as follows.

dR=K dU (39)

K is evaluated depending on the state of the element.

Failure-free stiffness matrix: Before buckling, mem-
brane strains are assumed to be linearly distributed, which

3’ il

oy > % o
™

lx D X

%y

Fig. 8 Rectangular plate element.

) K" (k& = KE)

ULTIMATE STRENGTH FULLY PLASTIC STRENGTH
ry=0 rp=0

KE

BUCKLING
rg=0

K€

FAILURE FREE ELEMENT

INCREASING LOAD
ORGSR -

Fig. 9 Local behavior of rectangular plate element.
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is reasonable for a plate field in a large structure. Using the
displacement functions shown below, a stiffness matrix is
derived in the same way as in the finite element method,
taking global large deflection effects into consideration.

u=a;+a,x+a;y+a.xy+(b,/2)(b*— y?)

v=">by+byx+ by + byxy +(a,/2)(a* — x?) (40)
W= + CX+ €y + CoXy
K=K*=[(B" DB + G" &G) dvol (41)

where B is the strain-displacement matrix (3 x 12) obtained
using large deflection strain expressions and D is the
stress-strain matrix in plane stress condition (3 X 3).

Buckling condition: Buckling takes place when the fol-

lowing buékli’ng condition is satisfied®.
PB :f(O'x’ Oy, T):O (42)

where 7, is buckling function.

Post-buckling stiffness matrix: After buckling has taken

place, strain distributions may not be assumed linear and
the displacement functions given in eqns(40) are not valid
any more. At this point, as shown in Ref.(5), the buckled
plate is replaced by an equivalent flat plate which has
linear strain distributions. Its material properties are such
that it show nodal displacement increments similar to those
which would be shown by the buckled plate under the
same nodal force increments. These properties are expres-
sed in an incremental stress-strain matrix D® (3X3) as
follows.

do=D" de (43)

in this way local geometric nonlinear effects (inside ele-
ment boundaries) are included in D®. Global nonlinear
effects (nodal large displacements) may be considered as
before buckling.

Now the displacement function given by eqn(40) may be
used together with D” to evaluate the post buckling stiff-

ness matrix,

K = K* =f(B” D B+ G" ¢G)dvol. (44)

o in the above equation is the average membrane stress. It
is to be noted that d;, d,s, d5;, and d;, in eqn(43) are
non-zero terms, reflecting the interaction between normal
and shear strains which occurs after buckling. D* is depen-
dent on the values of the acting stresses and is evaluated at
each load step.

Plasticity condition: Before, as well as after buckling,

knowing the nodal displacement and average stresses
acting on the element, the stresses at eight designated
checking points in the element are evaluated® and expres-
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sed in terms of nodal forces. These are used to check
plasticity against the Mises Yield condition, similarly
expressed in terms of nodal forces.

Pyi=f;'(R)=0, i=1, 8 (45)

Elasto-plastic stiffness matrix: When the yield condition
is satisfied at a check point, plastic nodes!? are inserted at
relevant nodal points. An elestic-plastic stiffness matrix is
derived as shown in the section on the plastic node method.
K¢ which appears in the expression of K* is K* or K*
depending on whether buckling has occurred, K?, or not,
K=,

Initial deflection and residual stresses: Effects of initial
defection and residual stresses are included®. In presence of
initial deflection, lateral deflection increases right from the
beginning of the application of the inplane load. Strains
are not linear also from the beginning. In this case an
equivalent incremental stress-strain matrix of a non-
deflecting plate is derived as before®. This matrix, natu-
rally, depends on the value of the working stresses and is
evaluated at each load step. Residual stresses are consid-
ered in two senses.

(1) Including their effect on buckling and/or out of plane
deflection, by considering an equivalent initial com-

pressive stress used when checking buckling or calcu-
lating out of plane deflections inside element bound-
aries.

(2) Considering them as initial stresses on which stress
increments are added.

ISUM Rectangular Stiffened Plate Element®%2")

The element is shown in Fig. 10. Its edges, similar to the
plate element, are assumed to remain straight after defor-
mation. It has n parallel and equi-spaced stiffeners and
four nodes, one at each corner. It is also treated as a
membrane element. Nodal displacements and forces are
expressed by eqns(37) and (38). Also here, inplane biaxial

%

4
——— ————— e

...
o~
Tx
|

Fig. 10 Rectangular stiffened plate element.
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Fig. 11 Local behavior of stiffened plate element.

and shearing forces as shown in Fig. 10 are considered. In
absence of initial deflection and under increasing load the
element behaves as shown in Fig. 11. The relationship
between U and R is expressed incrementally by eqn(39),
where K is evaluated depending on the state of the element.
In deriving the stiffness matrix K, the element is considered
as an assembly of a plate and stiffnerers.

Failure-free stiffness matrix: Before buckling, mem-
brane strains are assumed to be linearly distributed and the

displacement functions, given by eqns(40) are adopted. The
stiffness matrix K becomes as follows.

K =KE=[(B*DB+ G* ¢G)dvol.

+ [(B{EB, + G{o,sG,)dvol. (46)

where B, and G, are the first rows of B and G matrices
respectively and ¢, is the axial stress in stiffeners.

Buckling conditions: Buckling may take place in an

overall mode (plate and stiffeners) or local mode (plates
between stiffeners) depending on which mode has a lower
buckling strength. Stiffeners are assumed to be strong
enough to prevent their local buckling modes. Buckling
occurs when one of two buckling conditions are satisfied.

so=f(0% 03 7)=0: Overall buckling
[y =f(0% oy, 7)=0:

(47)

Local buckling (48)

Explicit forms of Iy, and I',, are given in Ref.(5).

Post-buckling stiffness matrix: In case of eqn(47) being
satisfied, overall buckling occurs. The stiffened plate is
regarded as an orthotropic plate and a stiffness matrix K*°
is derived in a similar way as in the case of the plate

element and is expressed by eqn(44). Here D’ matrix
includes the contribution of stiffeners. In case of eqn(48)
being satisfied, the stiffness matrix K®* becomes as follows.
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K =K"= [(B'D’ B+ G* ¢G)dvol

(49)
+ [(B*EB, + G{0ysG,)dvol.

Here D? is that of a plate equivalent to the buckled plate
fields and is derived as in the case of the plate element.

Plasticity condition: As in the case of the plate element
stresses at eight check points are expressed in terms of
nodal forces and plasticity is checked againest Mises’ Yield
condition, similarly expressed in terms of nodal forces.

Elasto-plastic stiffness matrix K”: The plastic node

method is used as in the case of the plate element and K*
is as shown in the section on the plastic node method. Here
one of K%, K*? or K®" is used depending on the state of the
element.

Initial deflection and residual stresses: Effect of initial

defection of plate fields and residual stresses are considered
in a way similar to that used with the plate element. Initial

defection of stiffeners is not considered.

Examples of Application

In the following an example of a thin walled slender box
column is presented to demonstrate successful interaction
between local and global geometric non-linearity. Three
actual applications are also presented.

Axially Compressed Box Column

A box column with a square cross-section and both ends
simply supported as shown in Fig. 12 is subjected to axial
compression. Load-shortening and load-deflection curves
are shown in Figs. 13 and 14. In the analysis, each plate
field is modeled by one ISUM plate element (total 51
elements including 11 diaphragms, and 44 nodes). A small
initial defection in the form of a sine curve as shown in
Fig. 12 is imposed and the load applied incrementally.
Two cases are analysed, the first, without taking local
buckling of plate fields into account, whose results are
shown by dotted lines. It may be seen that the column
exhibits overall fiexural buckling with the buckling load
coincidign with Euler buckling load. In the second case,
local buckling of plates is taken into account. As local
buckling occurs, inplane tangential stiffness of plates is
reduced to one half of its original value and the overall

L =10 =18000 |
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gg= 24 kgf/om?
v = 0.3

st gin™X
WoT700 ' T

Fig. 12 Example box column and applied load.
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buckling load is reduced to one half of the Euler buckling
load as shown by the solid lines in Figs. 13 and 14.

Ship Collision Against a Leg of a Jack-up Rig

The energy absorption capacity of a jack-up rig leg in
collision is examined. The rig is a three legged platform
standing in 75 meters of water. Legs are 104.8 meters in
hight and each leg is a K braced lattice structure as shown
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Fig. 15 Leg structure, support conditions and applied load.
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Fig. 14 Load-deflection curves of example box column subject-
ed to axial compression.

in Fig. 15. Deck weight is 10000 ton and supported on the
three legs. A supply boat is assumed to collide with one leg
at a point 2 meters below the water line parallel to one face
of the leg structure.

In the analysis, considering the inertia of the deck, the
leg is assumed to be supported at the deck as well as its
lower end as shown in Fig. 15. One third of the deck
weight is applied as a soil reaction force at the lower end
as shown in the same figure. The collision load is then
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Fig. 16 Deformed shape.
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applied incrementally. Fig. 16 shows the deformed shape of

the leg where shear, bending and torsion may be identified..

In Fig. 17 the load is plotted against the horizontal dis-
placement in the direction of the load. Figure 18 shows the
location of plastic hinges at the end of the analysis.

On the load-displacement curve in Fig. 17, point a is
where brace A shown in Fig. 18 buckled causing the load
to decrease. As other members managed to provide success-
ful redistribution of internal forces, the load increased
again and at point b brace B buckled repeating the same
phenomenon.

These results indicate that jack-up lattice legs considered
in this analysis would undergo a considerable displace-
ment at loads close to ultimate strength thus absorbing a
considerable amount of energy.

Ultimate Strength of Hull Girder

Recently Hitachi Zosen has developed a product oil carrier
with an intelligent unidirectional girder system and full
double shell in the cargo tanks portion of the ship. Order
for POCs with this novel structure has been received and
two ships delivered. In safety assessment, the capacity of
hull girder in vertical bending is evaluated using ISUM. A
portion of the hull between two transverse bulkheads, as
shown in Fig. 19, is considered. Its capacity is calculated in
hogging, sagging and under combined bending moment
and vertical shearing force. The ISUM model used in the
analysis is shown in Fig. 20. ISUM plate elements are used
to model the outer and inner shell plating, while stiffened
plate elements are used to model the girders. Elements with
equivalent strength and stiffness are used where manholes
exist on the girders. Stiffeners between elements are
modeled by beam elements. Due to the high aspect ratio of
the plate fields in this design, initial deflections in the same
mode as that of buckling is expected to be very small and
have negligible effect on the stiffness and the strength of the
hull. Residual stresses are partly relieved in tank testing
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and initial service.. Therefore both initial deflection and
residual stresses are disregarded in this analysis.

Transverse bulkheads are considered to be stiff enough
to be assumed rigid. Therefore, the model has been fixed at
one end and fitted with a rigid body on the other end
through which the load is applied.

Figure 21 shows the moment-curvature relationship of
the hull girder in hogging and sagging.

According to recent reports of ship accidents such as that
occurred to Onomichi-maru, jack knifing at foreship sec-
tion instead of midship section happened to occur. At
foreship section, different from midship section, consider-
able amount of shearing force is specifically acting together
with longitudinal bending moment.

Figure 22 shows the relationship between the magnitude
of a combined bending and vertical shear load, and the
vertical deflection at the free end of the considered hold.

Ultimate Strength of Bottom and Side Girders

Capacities of bottom and side girders of the same POC
mentioned in the preceding section above are evaluated
using ISUM.

ISUM models used in the analysis are shown in Fig. 23.
ISUM plate elements are used to model the web plating as
well as the inner and outer shells.

Beam elements are used to model the stiffeners. Here
also, initial deflection and residual stresses are expected to
be very small and have been disregarden in the analysis.

The girders are considered to be restrained against
rotation at transverse bulkheads.

Three loads are considered: axial compression, external
pressure and internal pressure.

Thirteen load combinations in the ratios shown in Table
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Fig. 23 ISUM model of longitudinal girders.

1 are considered. Ultimate strength is also shown in the
same table. Results of the analysis have shown that com-
pressive stresses normal to the axes of these girders are
small and have negligible effects on their capacity and that
capacity may be plotted as an interaction relationship
between the axial compressive stress and the net lateral
pressure as shown in Figs. 24 and 25.
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Table 1 Load combinations applied to longitudinal girders.

Ultimate Load Factor ; f,
Case | oL Qe q
Bottom Girder | Side Girder

1 1 025 | 0.00 20.25 20.50
2 | 0.25 1.50 19.25 17.75
3 | 025 | 6.00 8.00 6.95
4 1 1.50 | 0.00 18.25 16.60
5 I 1.50 1.50 21.25 21.50
6 | 1.50 | 6.00 9.80 8.55

7 | 6.00 | 0.00 8.20 6.60
8 | 6.00 1.50 10.40 8.55
9 ! 6.00 6.00 21.00 2225
10 1 0.00 | 3.00 13.50 —
I | 3.00 0.00 14.00 —
12 1 4.50 0.00 10.60 —
13 | 6.00 | 3.00 14.00 —

oLy=0oL x f,(kgf/mm?)
Qeu =qe X f,,(tf/m?)

Gu =q) X fy(tf/m?)
Py=(qe—aq)fy
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Fig. 24 Capacity interaction relationship of bottom girders.
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Conclusions

From the applications presented in this paper, it may be
seen that the number of nodes and elements in ISUM are
one or two orders less than those in FEM to analyse the
same phenomena. A proportional reduction in modeling
time may be expected. Necessary computer time may be
from 1/5 to 1/100000 of that required by the finite element
method. Accuracy of ISUM is checked and proved to be
sufficient for practical use as may be seen in the references
indicated above. Plasticity, one major nonlinearity, is
accounted for in all ISUM elements by one general
method, i.e. the plastic node method. On the other hand,
local geometric nonlinearity (within element boundaries),
which is another major nonlinearity, is handled differently
in each element. A solution to the differential equation for
one dimensional element is successfully applied as a defor-
mation function. However, a unified general approach to
handle local geometric nonlinearity is highly required to
make systematic development of new elements. Finally, the
authors express their thanks to Hitachi Zosen LTD. for
granting the publication of some of the examples presented
in this paper.
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