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Abstract
It is proved that if two quasitoric manifolds of dimension ≤ 2p2 − 4 for a prime p have

isomorphic cohomology rings, then they have the same p-local stable homotopy type.

1. Introduction

1. Introduction
A class  of spaces is called cohomologically rigid if any spaces in  having isomorphic

cohomology rings are homeomorphic with each other. It is well known that cohomology
rings do not distinguish closed manifolds up to homeomorphism (or even homotopy equiva-
lence), so the class of all closed manifolds is not cohomologically rigid. But what can we say
about the cohomological rigidity if we restrict to a class of manifolds with good symmetries?
The manifolds that we consider in this paper are quasitoric manifolds which were introduced
by Davis and Januszkiewicz [6] as a topological counterpart of smooth projective toric va-
rieties. Since their introduction, quasitoric manifolds have been prominent objects which
produce fruitful interactions of algebra, combinatorics, geometry, and topology. Formally,
a quasitoric manifold is defined by a 2n-dimensional manifold M with a locally standard
n-dimensional torus, say T n, action such that the orbit space M/T n is identified with a sim-
ple polytope as manifolds with corners, where a locally standard T n-action means that it is
locally a coordinatewise T n-action on Cn. We refer to [2] for details.

The cohomological rigidity problem for quasitoric manifolds was originally posed by
Masuda, where there is a good survey [4]. For several simple quasitoric manifolds, the
cohomological rigidity problem was affirmatively solved as in [6, 3, 5, 7, 8], but their ap-
proaches are quite ad-hoc. So we would like to consider the cohomological rigidity probem
for general quasitoric manifolds. In general, we can approach to the cohomological rigidity
in two steps which are quite different in nature: the first step is to show that spaces in ques-
tion with isomorphic cohomology rings are homotopy equivalent, and the second step is to
convert the homotopy equivalences obtained in the first step into homeomorphisms. In this
paper, we study the first step for quasitoric manifolds from homotopy theoretical point of
view. We will actually consider the following problem.

Problem 1.1. Do quasitoric manifolds with isomorphic cohomology rings have the same
p-local stable homotopy type?

As a first step to attack this problem, the authors and Sato [9] obtained the following result
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which is a consequence of the p-local splitting of ΣM and ΣN in [9]; under the assumption
of the theorem, the splitting shows that ΣM(p) and ΣN(p) are wedges of p-local spheres.

Theorem 1.2 (Hasui, Kishimoto, and Sato [9]). If M,N are quasitoric manifolds with the
same betti numbers and dim M = dim N < 2p, then ΣM(p) � ΣN(p).

This paper shows a much more general p-local stable cohomological rigidity of quasitoric
manifolds by considering K-theory, where we do not employ the p-local stable splitting of
quasitoric manifolds. We say that an isomorphism θ : H∗(X) �−→ H∗(Y) is p-locally realized
by a stable map if there is a stable map h : Σ∞Y(p) → Σ∞X(p) which is θ ⊗ Z(p) in cohomology
with Z(p)-coefficient. Note in particular that h is a p-local stable homotopy equivalence by
the J.H.C. Whitehead theorem whenever X, Y are CW-complexes. We now state our main
result.

Theorem 1.3. Any cohomology isomorphism between quasitoric manifolds of dimension
≤ 2p2 − 4 is p-locally realized by a stable map.

Corollary 1.4. If two quasitoric manifolds of dimension ≤ 2p2 − 4 have isomorphic
cohomology rings, then they have the same p-local stable homotopy type.

Hereafter, let p denote an odd prime unless otherwise specified. The 2-primary case will
be dealt with only at the end of this paper.

2. Adams e-invariant

2. Adams e-invariant
In this section, we recall the definition of the (complex) Adams e-invariant and its prop-

erties, and generalize it to maps from an odd sphere into a CW-complex without odd dimen-
sional cells, where we refer to [1] for details. Let πS∗ denote the stable homotopy groups
of spheres. Take f ∈ πS

2k−1. Then it is a map f : S 2n+2k−1 → S 2n for n large. We now
consider the K-theory of the mapping cone of f . Since there is a homotopy cofibration
S 2n → C f → S 2n+2k, K(C f ) is a free abelian group of rank 2, and we can choose gener-
ators ξ, η of K(C f ) such that ch(ξ) = u2n + au2n+2k and ch(η) = u2n+2k for a ∈ Q, where
ch: K(X) → H∗(X) ⊗ Q and ui denote the Chern character and a generator of Hi(C f ) � Z
respectively. Then the assignment

e : πS
2k−1 → Q/Z, f 	→ [a]

turns out to be a well-defined homomorphism, which is the Adams e-invariant. The property
of the complex Adams e-invariant that we are going to use is the following.

Theorem 2.1 (Adams [1, Example 12.8] and Toda [10, Theorem 4.15]). The Adams e-
invariant e : πS

2k−1 → Q/Z is injective for k ≤ p2 − 3 when localized at the prime p.

We call a CW-complex consisting only of even dimensional cells evenly generated. We
generalize the Adams e-invariant for maps from odd dimensional spheres into evenly gener-
ated CW-complexes. Let X be a connected evenly generated finite CW-complex of dimen-
sion 2d, and let X(r) denote its r-skeleton. We choose a basis of K(X(2k)) called an admissible
basis by induction on k:

• Fix a basis xi
1, . . . , x

i
ni

of H2i(X) for i > 0.
• Choose a basis 1 := {ξ11 , . . . , ξ1n1

} of K̃(X(2)) satisfying ch(ξ1i ) = x1
i .
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• Choose a basis k := ̂
k−1 ∪ {ξk1, . . . , ξknk

} of K̃(X(2k)) such that ̂k−1 restricts to 
k−1

and ch(ξki ) = xk
i , where the element of ̂k−1 restricting to ξij ∈ k−1 is denoted by ξij.

The following property of admissible bases is clear from the definition.

Proposition 2.2. Let X, Y be connected evenly generated finite CW-complexes. For a
homotopy equivalence h : X �−→ Y and an admissible basis  of K̃(Y), h∗() is an admissible
basis of K̃(X), where h∗() := {h∗(ξ) | ξ ∈ }.

For a map f : S 2r−1 → X, we define a basis 
d( f ) of K̃(C f ) from an admissible basis


d of K̃(X) by 

d( f ) := ̂
d ∪ {η} such that ̂d restricts to 

d and ch(η) = u2r, where u2r

represents the cell attached by f and ξij ∈ ̂d denotes the element restricting to ξij ∈ d. We
now define e(d( f ))i

j ∈ Q by

ch(ξij) = e(d( f ))i
ju2r + other terms ∈ H∗(C f ) ⊗ Q

which is a generalization of the Adams e-invariant that we are going to use to detect the
triviality of f . We observe basic properties of our generalization of the Adams e-invariant.
Note that X/X(2d−2) � ∨nd

S2d such that jth sphere S2d corresponds to the cohomology class

xd
j . Let π j be the composite X

proj−−−→ X/X(2d−2) � ∨nd
S2d → S2d, where the last arrow is the

pinch map onto the jth sphere. By definition, we immediately have the following.

Lemma 2.3. For r > d, e(d( f ))d
j ≡ e(π j ◦ f ) mod 1.

When f deforms into the 2k-skeleton X(2k), we can construct both e(k( f ))i
j and e(d( f ))i

j

for i ≤ k by regarding f as a map into X(2k) and X, respectively. By construction, we have
the following.

Lemma 2.4. If f deforms into X(2k), then e(k( f ))i
j = e(d( f ))i

j for i ≤ k.

Proposition 2.5. If e(d( f ))i
j is an integer for all i, j and d ≤ p2 − 2, then the p-

localization of f is stably null homotopic.

Proof. Localize everything at the prime p, so we abbreviate the notation −(p) for the p-
localization. By the cellular approximation theorem, f deforms into X(2r−2), so we consider
a map f : S2r−1 → X(2r−2) for which we can assume the same condition on the generalized
Adams e-invariant by Lemma 2.4. Consider the composite

f̄ : S2r−1 f−→ X(2r−2) proj−−−→ X(2r−2)/X(2r−4) �
∨
nr−1

S2r−2

where the jth sphere in the last space corresponds to xr−1
j . Let π j :

∨
nr−1

S2r−2 → S2r−2 be the
pinch map onto the jth sphere. Then by Lemma 2.3 and the assumption, we have e(π j◦ f̄ ) ≡ 0
mod 1, implying π j◦ f̄ is stably null homotopic by Theorem 2.1. Thus we obtain that f̄ itself
is stably null homotopic. Consider the exact sequence of the stable homotopy groups

πS
2r−1(X(2r−4))→ πS

2r−1(X(2r−2))→ πS
2r−1(X(2r−2)/X(2r−4)).

Then f belongs to the middle group and is mapped to f̄ by the last arrow, so it deforms into
X(2r−4) stably. Hence, to continue the induction, it suffices to consider a map f : S 2r−1 →
X(2r−4) for which we can assume the same condition on the generalized Adams e-invariant
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by Lemma 2.4 as well. Thus by iterating this procedure, we obtain that f deforms stably
into X(2k) for any k, implying f is stably null homotopic. Therefore the proof is completed.

�

3. Realization of cohomology isomorphisms and K-theory

3. Realization of cohomology isomorphisms and K-theory
This section studies the p-local stable realizability of cohomology isomorphisms between

evenly generated CW-complexes by using K-theory. Throughout this section, let X1, X2 be
connected evenly generated finite CW-complexes. We say that θ : K(X1) → K(X2) is a lift
of θ̄ : H∗(X1)→ H∗(X2) if the equality

ch ◦ θ = (θ̄ ⊗ Q) ◦ ch

holds. For the rest of this section, we assume that there are isomorphisms

θ : K(X1) �−→ K(X2) and θ̄ : H∗(X1) �−→ H∗(X2)

which are compatible with the Chern character. We consider the p-local realizability of
the isomorphism θ by a stable homotopy equivalence between X1 and X2. We first observe
induced maps of θ, θ̄ on subcomplexes and their quotinets.

Proposition 3.1. Let Yi be a subcomplex of Xi for i = 1, 2 such that θ̄ restricts to an
isomorphism θ̂|Y1 : H∗(Y1) �−→ H∗(Y2). Then θ, θ̄ induce

(1) an isomorphism θ|Y1: K(Y1) �−→ K(Y2) which is a lift of θ̄|Y1 , and
(2) isomorphisms Θ : K(X1/Y1) �−→ K(X2/Y2) and Θ : H∗(X1/Y1) �−→ H∗(X2/Y2) such

that Θ is a lift of Θ.

Proof. We first show (2). Note that Xi/Yi is an evenly generated CW-complex since so
are Xi, Yi and Yi is a subcomplex of Xi. Then there is a commutative diagram of solid arrows

(3.1) 0 �� H∗(X1/Y1)

Θ̄�
��
�
�
�

�� H∗(X1)

θ̄�
��

�� H∗(Y1)

θ̄|Y1�
��

�� 0

0 �� H∗(X2/Y2) �� H∗(X2) �� H∗(Y2) �� 0

with exact rows, so we get a dotted isomorphism Θ. As well as (3.1), there is a commutative
diagram

0 �� K(Xi/Yi) ��

ch
��

K(Xi)

ch
��

�� K(Yi) ��

ch
��

0

0 �� H∗(Xi/Yi) ⊗ Q �� H∗(Xi) ⊗ Q �� H∗(Yi) ⊗ Q �� 0

with exact rows. Notice that the Chern character ch : K(Xi)→ H∗(Xi) ⊗ Q is injective since
H∗(Xi) is a free abelian group. Then it follows that K(Xi/Yi) is the kernel of the composite

fi : K(Xi)
ch−→ H∗(Xi) ⊗ Q→ H∗(Yi) ⊗ Q. So since there is a commutative diagram

K(X1)
f1

��

θ�
��

H∗(Y1) ⊗ Q
θ̄|Y1⊗Q�
��

K(X2)
f2

�� H∗(Y2) ⊗ Q,



p-local Stable Rigidty of QuasitoricManifolds 347

we get an injection Θ : K(X1/Y1) → K(X2/Y2) which becomes an isomorphism after ten-
soring Q. Since K(Xi/Yi) is a direct summand of the free abelian group K(Xi), we conclude
that Θ is an isomorphism. Moreover, by a straightforward diagram chasing, we see that Θ is
a lift of Θ. Therefore the proof of (2) is done. We finally prove (1). There is a commutative
diagram of solid arrows

0 �� K(X1/Y1)

Θ�
��

�� K(X1)

θ�
��

�� K(Y1)

��
�
�
�

�� 0

0 �� K(X2/Y2) �� K(X2) �� K(Y2) �� 0

with exact rows. Then there is a dotted arrow which makes the diagram commute and is an
isomorphism. Therefore (1) is proved. �

The cases to which we apply Proposition 3.1 are:
(1) Yi = X(2k)

i for i = 1, 2, and
(2) Yi is a subcomplex X(2k)

i ∪ ei for i = 1, 2 such that θ̄ sends the cohomology class of
e1 to that of e2.

We now prove the p-local realizability of θ̄ by a stable map.

Theorem 3.2. For dim X1 = dim X2 ≤ 2p2 − 4, θ̄ is p-locally realized by a stable map.

Proof. We put dim X1 = X2 = 2d, and denote the induced maps in Proposition 3.1 by
the same symbols θ, θ̄. We prove the p-local realizability of θ̄ by a stable map inductively
on skeleta. We assume all spaces and maps are stabilized and p-localized, so we omit the
stabilization functor Σ∞ and the p-localization −−(p).

The case k = 1 is trivial since the spaces are wedges of S2 for which any self-maps in
homology is realizable. We now assume k > 1 and there is a stable map h : X(2k−2)

2 → X(2k−2)
1

such that h∗ = θ̄ ⊗ Z(p). By arranging 2k-cells of X2, we may assume that θ, θ̄ induce the
identity map on X(2k)

i /X
(2k−2)
i :=

∨
a S2k. Let ϕi :

∨
a S2k−1 → X(2k−2)

i be the attaching map
of the 2k-dimensional cells of Xi, and let ι� : S2k−1 → ∨a S2k−1 denote the inclusion of the
�th sphere. Then by Proposition 3.1 there are commutative diagrams

0 �� K(S2k) �� K(Cϕ1◦ι�)

θ

��

�� K(X(2k−2)
1 )

θ

��

�� 0

0 �� K(S2k) �� K(Cϕ2◦ι�) �� K(X(2k−2)
2 ) �� 0

and

0 �� H∗(S2k) �� H∗(Cϕ1◦ι�)

θ̄

��

�� H∗(X(2k−2)
1 )

h∗=θ̄
��

�� 0

0 �� H∗(S2k) �� H∗(Cϕ2◦ι�) �� H∗(X(2k−2)
2 ) �� 0

with exact rows which are compatible by the Chern character. Since the Chern characters
on these two diagrams are injective, we see that h∗ = θ in the first diagram. Then we obtain
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(3.2) e(k−1(ϕ1 ◦ ι�))i
j = e(h∗(k−1)(ϕ2 ◦ ι�))i

j

for any i, j, where h∗(k−1) is the admissible basis of K̃(X(2k−2)
2 ) as in Proposition 2.2. On the

other hand, it immediately follows from the definition of the generalized Adams e-invariant
that

(3.3) e(h∗(k−1)(ϕ2 ◦ ι�))i
j = e(k−1(h ◦ ϕ2 ◦ ι�))i

j

for any i, j. We now consider a map

f := ϕ1 − h ◦ ϕ2 :
∨

a

S2k−1 → X(2k−2)
1 .

By definition of the generalized Adams e-invariant, we have

e(k−1( f ◦ ι�))i
j = e(k−1(ϕ1 ◦ ι�))i

j − e(k−1(h ◦ ϕ2 ◦ ι�))i
j

for any i, j, so by (3.2) and (3.3) we obtain e(k−1( f ◦ ι�))i
j = 0 for any i, j. Then by

Proposition 2.5, ϕ1 and h ◦ ϕ2 are stably homotopic, implying that there is a stable map
h̃ : X(2k)

2 → X(2k)
1 satisfying a homotopy commutative diagram

∨
a S2k−1 ϕ1

�� X(2k−2)
1

�� X(2k)
1

∨
a S2k−1 ϕ1

�� X(2k−2)
2

h

��

�� X(2k)
2 .

h̃

��

Therefore by the Puppe exact sequence, we see that h̃ realizes θ̄, completing the proof. �

4. Proof of Theorem 1.3

4. Proof of Theorem 1.3
This section applies Theorem 3.2 to quasitoric manifolds, and then proves Theorem 1.3.

We recall from [6] properties of quasitoric manifolds that we are going to use.

Proposition 4.1 (Davis and Januszkiewicz [6]). For a quasitoric manifold M, the follow-
ing hold:

(1) M is a connected evenly generated finite CW-complex;
(2) H∗(M) is generated by 2-dimensional elements.

Theorem 4.2. For quasitoric manifolds M1,M2, any isomorphism θ̄ : H∗(M1) �−→ H∗(M2)
lifts to an isomorphism θ : K(M1) �−→ K(M2).

Proof. Let x1, . . . , x� be a basis of H2(M1). Then θ̄(x1), . . . , θ̄(x�) is a basis of H2(M2).
Put ρ1 := x1 × · · · × x� : M1 → (CP∞)� and ρ2 := θ̄(x1) × · · · × θ̄(x�) : M2 → (CP∞)�. By
definition, we have

ρ∗2 = θ̄ ◦ ρ∗1
in cohomology. By considering the induced map between the Atiyah-Hirzebruch spectral
sequences, we see that ρ∗i : K((CP�))→ K(Mi) is surjective for i = 1, 2. Then in order to get
a map θ : K(M1)→ K(M2), it is sufficient to show that Ker ρ∗1 ⊂ Ker ρ∗2. For x ∈ K((CP∞)�),
we suppose ρ∗1(x) = 0. Then we have
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0 = (θ ⊗ Q) ◦ ch(ρ∗1(x)) = (θ ⊗ Q) ◦ ρ∗1(ch(x)) = ρ∗2(ch(x)) = ch(ρ∗2(x)),

implying ρ∗2(x) = 0 since ch: K(M2) → H∗(M2) ⊗ Q is injective by Proposition 4.1. Then
we get a map θ : K(M1) → K(M2) such that θ(ρ∗1(y)) = ρ∗2(y) for any y ∈ K((CP∞)�). We
have that θ is a lift of θ̄. Indeed, for any y ∈ K((CP∞)�),

ch(θ(ρ∗1(y))) = ch(ρ∗2(y)) = ρ∗2(ch(y)) = (θ̄ ⊗ Q) ◦ ρ∗1(ch(y)) = (θ̄ ⊗ Q)(ch(ρ∗1(y)))

where ρ∗1 : K((CP∞)�) → K(M1) is surjective. It remains to show that θ is an isomorphism.
Since ρ∗2 : K((CP∞)�)→ K(M2) is surjective, so is θ. If θ(x) = 0 for x ∈ K(M1), we have

0 = ch(θ(x)) = (θ̄ ⊗ Q)(ch(x)),

implying x = 0 since θ̄ ⊗ Q is an isomorphism and ch: K(M1) → H∗(M1) ⊗ Q is injective.
Thus θ is injective, completing the proof. �

Proof of Theorem 1.3. Combine Theorems 3.2 and 4.2 when p is odd. For p = 2
we only need to consider the case dim M1 = dim M2 = 4 since dim M1 = dim M2 implies
M1 = M2 = S 2. The case dim Mi = 4 is proved in [6]. Here is an alternative proof: Mi has
the stable homotopy type of a wedge of S 2 and S 4 or CP2 which is distinguished by mod 2
cohomology together with the action of the Steenrod operation Sq2. By Proposition, 4.1, θ̄
respects Sq2, and therefore the proof is completed. �

References

[1] J.F. Adams: On the groups J(X) IV, Topology 5 (1996), 21–71.
[2] V.M. Buchstaber and T.E. Panov: Torus actions and their applications in topology and combinatorics,

University Lecture Series 24, American Mathematical Society, Providence, RI, 2002.
[3] S. Choi, M. Masuda and D.Y. Suh: Quasitoric manifolds over a product of simplices, Osaka J. Math. 47

(2010), 109–129.
[4] S. Choi, M. Masuda and D.Y. Suh: Rigidity problems in toric topology, a survey, Proc. Steklov Inst. Math.

275 (2011), 177–190.
[5] S. Choi, S. Park and D.Y. Suh: Topological classification of quasitoric manifolds with the second Betti

number 2, Pacific J. Math. 256 (2012), 19–49.
[6] M.W. Davis and T. Januszkiewicz: Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J.

62 (1991), 417–452.
[7] S. Hasui: On the classification of quasitoric manifolds over dual cyclic polytopes, Algebr. Geom. Topol.

15 (2015), 1387–1437.
[8] S. Hasui: On the cohomology equivalences between bundle-type quasitoric manifolds over a cube, Algebr.

Geom. Topol. 17 (2017), 25–64.
[9] S. Hasui, D. Kishimoto and T. Sato: p-local stable splitting of quasitoric manifolds, Osaka J. Math. 53

(2016), 843–854.
[10] H. Toda: p-primary components of homotopy groups IV. Compositions and toric constructions, Mem. Coll.

Sci. Kyoto, Ser. A 32 (1959), 297–332.



350 S. Hasui and D. Kishimoto

Sho Hasui
Faculty of Liberal Arts and Sciences
Osaka Prefecture University
Osaka 599-8531
Japan
e-mail: s.hasui@las.osakafu-u.ac.jp

Daisuke Kishimoto
Department of Mathematics
Kyoto University
Kyoto 606-8502
Japan
e-mail: kishi@math.kyoto-u.ac.jp



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.53333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 150
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


