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Abstract
The tail of the colored Jones polynomial of an alternating link is a q-series invariant whose

first n terms coincide with the first n terms of the n-th colored Jones polynomial. Recently,
it has been shown that the tail of the colored Jones polynomial of torus knots give rise to
Ramanujan type identities. In this paper, we study q-series identities coming from the colored
Jones polynomial of pretzel knots. We prove a false theta function identity that goes back to
Ramanujan and we give a natural generalization of this identity using the tail of the colored
Jones polynomial of Pretzel knots. Furthermore, we compute the tail for an infinite family of
Pretzel knots and relate it to false theta function-type identities.
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1. Introduction

1. Introduction
The discovery of the Jones polynomial using Von Neumann algebras [14, 13] and its gen-

eralizations [8] and [23] lead to quantum invariants of knots and 3-manifolds. The Kauffman
bracket polynomial [16] is the simplest interpretation of the Jones polynomial using knot di-
agrams. Reshetikhin and Turaev [24] gave the first rigorous construction of quantum invari-
ants as linear sums of quantum invariants of framed links. Soon after, various approaches
of constructing quantum invariants were developed using different methods such as using
surgery along links [5, 18, 26] and simplicial complexes [25].

The colored Jones polynomial Jn,L(q) of a link L can be understood as a sequence of
polynomials with integer coefficients that take values in Z[q, q−1]. The label n stands for the
coloring. The polynomial J2,L(q) is the original Jones polynomial. Recently, there has been
a growing interests in the coefficient of the colored Jones polynomial. Dasbach and Lin [6]
used the definition of the colored Jones polynomial coming from Kauffman bracket skein
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theory to show that for an alternating link L the absolute value of the first and the last three
leading coefficients of Jn,L(q) are independent of the color n, for large values of n. As a
consequence, they obtained lower and upper bounds for the volume of the knot complement
for an alternating prime non-torus knot K in terms of the leading two and last two coefficients
of J2,K(q) extending their previous result from [7]. In [6] it was conjectured that the first n
coefficients of Jn,L(q) agree with the first n coefficients of Jn+1,L(q) for any alternating link
L. This gives rise to a q-power series called the tail of the colored Jones polynomial of
the alternating link L with many interesting properties. Using skein theory, Armond gave a
proof in [2] for the existence of the tail of the colored Jones polynomial of adequate links,
hence alternating links and also for closures of positive braids in [3]. Garoufalidis and Lê
[9] used R-matrices to prove the existence of the tail of the colored Jones polynomial of
alternating links and proved that higher order stabilization also occur. An alternative proof
for the stability was also given in [10]. In [12], the second author investigated certain skein
element in the relative Kauffman bracket skein module of the disk with some marked points
in order to compute the head and the tail of the colored Jones polynomial obtaining a simple
q-series for the tail of the knot 85, the first knot in the knot table that is not directly obtained
from the work in [4]. This investigation was generalized to the study of tail of quantum spin
networks in [11].

One of the earliest connection between the colored Jones polynomial and Ramanujan type
q-series was made in [15] in which the author investigated the asymptotic behaviors of the
colored Jones polynomials of torus knots. However, the point of view in [15] is different
from the point of view of [12, 11] that we shall adopt here. This point of view allows us to
prove more q-series identities in a structured manner. Among many interesting properties
that the tail of the colored Jones polynomial enjoys as q-series is that it is equal to theta
functions or false theta functions for many knots with small crossing numbers. For instance
all knots in the knots table up to 84, the tail of their colored Jones polynomial are Ramanujan
theta, false theta functions or a product of these functions as demonstrated in [4]. This does
not seem to be the case of knot 85 whose tail is computed in [12]. More interestingly, the
study of the tail has been used to prove Andrews-Gordon identities for the two variable
Ramanujan theta function in [4] and a corresponding identities for the false theta function in
[11]. These two families of q-series identities were obtained from investigating (2, p)-torus
knots. For q-series techniques proving these identities refer to [17].

In this paper we show that similar observations hold for other natural family of knots,
namely Pretzel knots. In particular, we show that pretzel knots give rise to a natural family
of q-series identities. The paper is organized as follows. In section 2 we review the basics
of skein theory, some number theory relevant to our work, and some review of the colored
Jones polynomial. In section 3 we list the main results of this paper. Section 4 is devoted to
Ramanujan type identities that were recovered in the literature using the tail of the colored
Jones polynomial and we show how our contribution here fits in this literature. In section
5 we give an explicit formula for the tail of colored Jones polynomial of the Pretzel knots
P(2u + 1, 2, 2k + 1) where k, u ≥ 1 . In section 6 we use two skein theoretic techniques to
compute the tail of the colored Jones polynomial of a certain family of pretzel knots and we
show that these computations give rise to a Ramanujan type identities.
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2. Background

2. Background
Let Z̃[A, A−1] denotes the set of rational functions P

Q where P,Q ∈ Z[A, A−1]. Let M
be an orientable 3-manifold. We will denote the Kauffman bracket skein module of the
3-manifold M and the ring Z̃[A, A−1] by (M). When M = I × F where F is a surface
we will denote the Kauffman bracket of M by (F). We will assume that the reader is
familiar with linear skein theory associated with the Kauffman bracket skein module [22, 18]
and quantum spin networks [19]. In particular we assume that the reader is familiar with
the graphical definition of the Jones-Wenzl projector, its properties and its connection with
trivalent graphs [19]. We will follow the notations and definitions of [18, 19].

Recall that, for any integers l, i such that 0 ≤ i ≤ l, the quantum binomial coefficients are
defined by : [

l
i

]
q
=

(q; q)l

(q; q)i(q; q)l−i
.

where (a; q)n is q-Pochhammer symbol which is defined as

(a; q)n =

n−1∏
j=0

(1 − aq j).

We will need the following identity [12].

Theorem 2.1. (The bubble expansion formula) Let m, n,m′, n′ ≥ 0, and k ≥ l; k, l ≥ 1.
Then

(2.1)

where

⌈
m n
k l

⌉
i

:= (−A2)i(i−l)

l−i−1∏
j=0

Δk− j−1

i−1∏
s=0

Δn−s−1Δm−s−1

l−1∏
t=0

Δn+k−t−1Δm+k−t−1

[
l
i

]
A4

l−i−1∏
j=0

Δm+n+k−i− j.

We will denote the skein element on the right handside of (2.1) by 
m,n
m′,n′(k, l) and we will

call it the bubble skein element.

2.1. The Tail of The Colored Jones Polynomial.
2.1. The Tail of The Colored Jones Polynomial. We briefly review the basics of the

head and the tail of the colored Jones polynomial. For more details see [12, 11].
Let L be a framed link in S 3. Decorate every component of L, according to its framing, by

the nth Jones-Wenzl idempotent and consider the evaluation of the decorated framed link as
an element of (S 3). Up to a power of ±A, that depends on the framing of L, the value of this
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element is defined to be the nth (unreduced) colored Jones polynomial J̃n,L(A). Recovering
the reduced Jones polynomial is a matter of changing a variable and dividing by Δn. Namely,

(2.2) Jn+1,L(q) =
J̃n,L(A)
Δn

∣∣∣∣∣
A=q1/4

If P1(q) and P2(q) are elements in Z[q−1][[q]], we write P1(q) �n P2(q) if their first n
coefficients agree up to a sign. It was proven in [4] that the coefficients of the colored Jones
polynomial of an alternating link L stabilize in the following sense: For every n ≥ 2, we
have Jn+1,L(q) �n Jn,L(q). This motivated the authors of [4] to define the tail of the colored
Jones polynomial of a link. More precisely, define the q-series series associated with the
colored Jones polynomial of an alternating link L whose nth coefficient is the nth coefficient
of Jn,L(q). Stated differently, the tail of the colored Jones polynomial of a link L is defined
to be a series TL(q), that satisfies TL(q) �n Jn,L(q) for all n ≥ 1. In the same way, the
head of the colored Jones polynomial of a link L is defined to be the tail of Jn,L(q−1). The
head and the tail of the colored Jones polynomial of an alternating link L can be recovered
from a sequence of skein elements in (S 2). The study of this sequence of skein elements
is relatively easier than the study of the entire colored Jones polynomial. For more details
see [4] and [11]. We recall this fact here. Let L be a link in S 3 and D be an alternating
knot diagram of L. Consider the all B-smoothings state of D, the state obtained by replacing
each crossing by a B-smoothing. We record the places of this smoothing by a dashed line
as can be seen in Figure 1 for an example. Write S (n)

B (D) for the all B-smoothing state and
consider the skein element obtained from S B(D) by decorating each circle in S B(D) with
the nth Jones-Wenzl idempotent and replacing each dashed line in S B(D) with the (2n)th

Jones-Wenzl idempotent. See Figure 1.

Fig. 1. A link diagram D, its all-B state S B(D), the skein element S (n)
B (D),

the B-graph GB(D), and the reduced all B-graph G′B(D).

The following theorem from [4] relates the tail of the colored Jones polynomial of an
alternating link D to the skein element S (n)

B (D).

Theorem 2.2. Let L be an alternating link in S 3 and let D be an alternating diagram of
L. Then

J̃n,L(A) �4(n+1) S (n)
B (D)

This theorem states basically that the study of the tail of the colored Jones polynomial
of the alternating knot D can be reduced to the study of the tail of the sequence of skein
elements S (n)

B (D). This theorem also implies that the tail of the colored Jones polynomial
depends on the so called the reduced B-graph of the diagram D. The B-graph of the diagram
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D, denoted GB(D) is the graph whose vertices are the circles of S B(D) and whose edges are
the dashed lines. The reduced B-graph of D, denoted by G′B(D), is obtained from GB(D) by
replacing parallel edges by a single edge. See the most right two drawings in Figure 1.

Remark 2.3. Since the colored Jones polynomial of a diagram D depends only on its
reduced B-graph, we will sometimes use the term the tail a graph G to refer to the tail of
colored Jones polynomial of an alternating knot diagram D such that G′B(D) = G. Con-
versely, Given a planar graph G, we can obtain an alternating knot diagram D such that
G
′
B(D) = G by replacing every edge in G by a crossing as illustrated in Figure 2. For this

reason, if G is a planar graph then the tail of G will be denoted by TG. Furthermore, the no-
tation S (n)

B (G) will refer to the skein element obtained from the reduced graph G by replacing
each vertex with a circle and each edge with the 2nth Jones-Wenzl projector.

Fig.2. Obtaining an alternating knot from a graph.

Remark 2.4. In general the computations of the tail of the colored Jones polynomial is
done for the reduced case. In order to use Theorem 2.2 one needs to do a change of variable
and normalize by Δ as can be seen from the relation (2.2).

The tail of the colored Jones polynomial has been computed for all knots in the knot table
up to the knot 84 by Armond and Dasbach in [4]. In [11], the second author gave a formula
for 85.

3. Main Results

3. Main Results
In this section we list the main results of the paper. Let a1, . . . , an be positive integers.

Denote by P(a1, . . . , an) the pretzel knot with n crossing regions given in Figure 3.

Fig.3. Pretzel knot P(a1, . . . , an)

In the following theorem, we give a formula for the tail of the colored Jones polynomial
of the pretzel knot P(2k + 1, 2, 2u + 1) for u, k ≥ 1.

Theorem 3.1. The tail of the pretzel knot P(2k + 1, 2, 2u + 1) is given by
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TP(2k+1,2,2u+1)(q) = (q; q)2
∞
∞∑

l1=0

...

∞∑
lk=0

∞∑
p1=0

...

∞∑
pu=0

g(q; l1, ..., lk)g(q; p1, ..., pu)(q; q)i+ j

where

g(q; l1, ..., lk) =
q

k∑
j=1

(i j(i j+1))

(q; q)2
lk

k−1∏
j=1

(q; q)l j

with i j =
k∑

s= j
ls.

This formula generalizes the one of the tail of colored Jones polynomial of the knot 85

given in [12]. Furthermore, we give a formula for the tail of the colored Jones polynomial
of the pretzel knot P(2, . . . , 2) with k + 1 crossing regions.

Proposition 3.2. Let k ≥ 1 and let Pk denotes P(2, . . . , 2) with k + 1 crossing regions.
Then

TPk (q) = (q; q)k
∞
∞∑

i=0

qi

(q; q)k
i

.

We use skein theoretic techniques to give another method to compute TPk (q) and we
obtain the following identity.

Corollary 3.3. For k ≥ 1 we have

(q; q)∞
∞∑

i=0

qi

(q; q)k+1
i

=

∞∑
i1=0

...

∞∑
ik=0

q
∑k

j=1 i j+i2j+
∑k

s=2
∑k

j=s is−1i j∏k
j=1(q; q)i j(q; q)∑ j

s=1 is

.

This gives a natural generalization of the following well-known false theta function iden-
tity (by letting a = 1 in Entry 6.7.1 on page 169 of [1] or see page 200 in [27]):

(q; q)2
∞
∞∑

i=0

qi

(q; q)2
i

= (q; q)∞
∞∑

i=0

qi2+i

(q; q)2
i

.

4. Alternating Knots and Rogers-Ramanujan Type Identities

4. Alternating Knots and Rogers-Ramanujan Type Identities
In this section, we review the Rogers-Ramanujan type identities that were recovered in the

literature using techniques related to the tail of the colored Jones polynomial of alternating
links. Furthermore, we show the false theta function type identities that we recover in this
paper from Pretzel knots.

The general two variable Ramanujan false theta function is given by (e.g. [1]):

(4.1) Ψ(a, b) =
∞∑

i=0

a
i(i+1)

2 b
i(i−1)

2 −
∞∑

i=1

a
i(i−1)

2 b
i(i+1)

2 .

When a = q3 and b = q, we obtain the following well-known identities:
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Ψ(q3, q) =
∞∑

k=0

(−1)kq
k2+k

2 = (q; q)∞
∞∑

k=0

qk2+k

(q; q)2
k

= (q; q)2
∞
∞∑

k=0

qk

(q; q)2
k

.(4.2)

In [12], the second author recovered the second identity in 4.2 using the tail of the (2, 4)-
torus link. Furthermore, the tail of the colored Jones polynomial of (2, 2k)-torus links, where
k ≥ 2, to give a natural extension of the same identity 4.2. For all k ≥ 2, this identity is given
by:

Ψ(q2k−1, q) = (q; q)∞
∞∑

l1=0

∞∑
l2=0

...

∞∑
lk−1=0

q
k−1∑
j=1

(i j(i j+1))

(q; q)2
lk−1

k−2∏
j=1

(q; q)l j

,(4.3)

where i j =
k−1∑
s= j

ls. On the other hand, a similar identity for the theta function, known as

Roger-Ramanujan identity for the two-variable theta function, can be recovered from the
tail of the colored Jones polynomial of (2, 2k + 1)-torus knots. Recall that the general two
variable Ramanujan theta function is defined by:

(4.4) f (a, b) =
∞∑

i=0

ai(i+1)/2bi(i−1)/2 +

∞∑
i=1

ai(i−1)/2bi(i+1)/2.

The function f (a, b) specializes to:

(4.5) f (−q2k,−q) =
∞∑

i=0

(−1)iqk(i2+i)qi(i−1)/2 +

∞∑
i=1

(−1)iqk(i2−i)qi(i+1)/2.

For k ≥ 1 the Roger-Ramanujan identity for the theta function is given by:

f (−q2k,−q) = (q; q)∞
∞∑

l1=0

∞∑
l2=0

...

∞∑
lk−1=0

q
k−1∑
j=1

(i j(i j+1))

k−1∏
j=1

(q; q)l j

,(4.6)

where i j =
k−1∑
s= j

ls. The identities 4.3 and 4.6 were recovered using a unified skein theoretic

method in [12]. Note that the identities (4.6) and (4.3) are coming from cyclic graphs with
odd and even number of vertices respectively. It is plausible to think that a natural family
of knots, or graphs, gives rise to a natural family of q-series identities. In this paper we
recover the third identity (4.2) using the tail of the colored Jones polynomial. This q-series
correspond to the graph given in the following Figure.
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Furthermore, we give a natural generalization of this identity using the tail of the graph
Lk, where k ≥ 1, given in Figure 8. Note that the graph Lk−1 corresponds to the the pretzel
knot Pk in Proposition 6.2.

Fig.4. The graph Lk

We show that this generalization is given by:

(4.7) (q; q)∞
∞∑

i=0

qi

(q; q)k+1
i

=

∞∑
i1=0

...

∞∑
ik=0

q
∑k

j=1 i j+i2j+
∑k

s=2
∑k

j=s is−1i j∏k
j=1(q; q)i j(q; q)∑ j

s=1 is

.

5. The Tail of the Colored Jones Polynomial of the Pretzel Knots P(2k + 1, 2, 2u + 1)

5. The Tail of the Colored Jones Polynomial of the Pretzel Knots P(2k + 1, 2, 2u + 1)
In [12], the second author computed the tail of the knot 85. The tail of this knot is given

by:

(5.1) T85(q) = (q; q)2
∞
∞∑

i=0

∞∑
j=0

q(i+i2+ j+ j2)(q; q)i+ j

(q; q)2
i (q; q)2

j

.

The series T85 is similar to the following q-series:

(5.2) TΓ = (Ψ(q3, q))2 = (q; q)2
∞
∞∑

i=0

∞∑
j=0

q(i+i2+ j+ j2)

(q; q)2
i (q; q)2

j

,

where Γ is the graph shown on the right handside of Figure 5. This similarity is not surprising
since the graph associated to the knot 85 is given in left handside of the Figure 5.

Fig.5. The reduced B-graph for 85 on the left and the graph Γ on the right.

Motivated by this observation, in this section we will study the tail of the family of graphs
given in Figure 6 and show the relation between this q-series and the false theta function.
Note that this graph corresponds to pretzel knots (2k + 1, 2, 2u + 1) where u, k ≥ 1.
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Fig.6. The graph Φk,u

For our tail computations, we will study the element for t ≥ 1. Note that

when t = 2 we obtain the bubble element n,n
n,n(n, n).

Lemma 5.1. Let n ≥ 1, then we have

(1) For k ≥ 1, we have

where

(5.3) En,i1,...,ik =

⌈
n n
n n

⌉
i1

Δ2n

Δn+i1

k∏
j=2

⌈
n i j−1

n n

⌉
i j

Δ2n

Δn+i j

(2) For k ≥ 2, we have

where

(5.4) Pn,i1,...,ik =

⌈
n n
n n

⌉
i1

Δ2n

Δn+i1

k−1∏
j=2

⌈
n i j−1

n n

⌉
i j

Δ2n

Δn+i j

⌈
n ik−1

n n

⌉
ik

.

Proof. (1) Note first that

We apply the bubble expansion formula k times on the previous equation to obtain:
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the result then follows.
(2) We apply the bubble expansion formula k − 1 times and we obtain:

�

Lemma 5.2. (1) Let k ≥ 1. Then,

Moreover,

En,i1,..,ik = (−1)
kn+

k∑
j=1

i j

q
kn/2+

k∑
j=1

(i j(i j/2+1))

× (q; q)4k+2
n (q; q)3n−i1+1

(q; q)k+1
2n (q; q)2n+1(q; q)n−i1 (q; q)2

n−ik
(q; q)2

ik

k∏
j=2

(q; q)i j−1−i j+2n+1

(q; q)i j−1−i j(q; q)n+i j−1 (q; q)2
n−i j−1

(q; q)n+i j−1+1

k∏
j=1

Δ2n

Δn+i j

(2) For k ≥ 1, we have
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Moreover,

Pn,i1,..,ik = (−1)
kn+

k∑
j=1

i j

q
kn/2+

k∑
j=1

(i j(i j/2+1))

× (q; q)4k+2
n (q; q)3n−i1+1

(q; q)k+1
2n (q; q)2n+1(q; q)n−i1 (q; q)2

n−ik
(q; q)2

ik

k∏
j=2

(q; q)i j−1−i j+2n+1

(q; q)i j−1−i j(q; q)n+i j−1 (q; q)2
n−i j−1

(q; q)n+i j−1+1

k−1∏
j=1

Δ2n

Δn+i j

.

Proof. (1) Using the fact that
j∏

i=0

[n − i] = q(2+3 j+ j2−2n−2 jn)/4(1 − q)−1− j (q; q)n

(q; q)n− j−1

one obtains :

⌈
n a
n n

⌉
b

= (−1)n+bqb/2+b2−n/2 (q; q)2
a(q; q)4

n(q; q)1+a−b+2n

(q; q)a−b(q; q)2
b(q; q)2n(q; q)a+n(q; q)1+a+n(q; q)2

−b+n

.

This implies,

⌈
n n
n n

⌉
i1

k∏
j=2

⌈
n i j−1

n n

⌉
i j

= (−1)
kn+

k∑
j=1

i j

q
kn/2+

k∑
j=1

(i j(i j/2+1))

× (q; q)4k+2
n (q; q)3n−i1+1

(q; q)k+1
2n (q; q)2n+1(q; q)n−i1 (q; q)2

n−ik
(q; q)2

ik
k∏

j=2

(q; q)i j−1−i j+2n+1

(q; q)i j−1−i j(q; q)n+i j−1 (q; q)2
n−i j−1

(q; q)n+i j−1+1
.

On the other hand, one has
n∑

i1=0

i1∑
i2=0

...

ik−1∑
ik=0

F(i1, ..., ik) =
n∑

ik=0

n∑
ik−1=ik

...

n∑
i1=i2

F(i1, ..., ik)

The result then follows.
(2) The proof is similar to (1). �

Theorem 5.3. The tail of the graph Φk,u is given by

TΦk,u(q) = (q; q)2
∞
∞∑

l1=0

...

∞∑
lk=0

∞∑
p1=0

...

∞∑
pu=0

g(q; l1, ..., lk)g(q; p1, ..., pu)(q; q)i+ j,

where

g(q; l1, ..., lk) =
q

k∑
j=1

(i j(i j+1))

(q; q)2
lk

k−1∏
j=1

(q; q)l j
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with i j =
k∑

s= j
ls.

Proof. Using Theorem 2.2, we have

(5.5) TΦk,u(q) �n
S (n)

B (Φk,u)
Δn

∣∣∣∣∣
A=q1/4

where S (n)
B (Φk,u) is the skein element given in Figure 7.

Fig.7. The skein element S (n)
B (Φk,u).

Using Lemma 5.1, we can write

(5.6)

Denote the element on the right handside of (5.6) by Γn,ik , ju . Now, Lemma 6.6 in [12] implies:

Γn,ik , ju =

⌈
ik n
n n − ju

⌉
0

⌈
ju n
n n − ik

⌉
0

⌈
ju ik
n n

⌉
0

Δik+ ju .(5.7)

Here,

(5.8)
⌈

ju n
n n − ik

⌉
0

= (−1)n−ik q(ik−n)/2 (q; q)ik+ ju(q; q)n(q; q)n+ik (q; q)2n+ ju+1

(q; q)ik (q; q)2n(q; q) ju+n(q; q)n+ ju+ik+1
.

Moreover Lemma 6.1 in [12] gives,
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A formula for the skein element on the right hand of the previous equation can be found
in [19]. Using this allows us to obtain:

(5.9)
⌈

ju ik
n n

⌉
0

Δi+ j = (−1)ik+ ju+nq−(ik+ ju+n)/2 (q; q)n(q; q) ju(q; q)ik (q; q)n+ ju+ik+1

(1 − q)(q; q)ik+n(q; q) ju+n(q; q) ju+ik
.

Using (5.9) and (5.8) in (5.7) we obtain :

Γn,ik , ju = (−1)nq−3n/2 (q; q)ik+ ju(q; q)3
n(q; q)1+ik+2n(q; q)1+ ju+2n

(1 − q)(q; q)2
2n(q; q)ik+n(q; q) ju+n(q; q)1+ik+ ju+n

.(5.10)

One the other hand, Lemma 5.2 implies

n∑
i1=0

...

ik−1∑
ik=0

n∑
j1=0

...

ju−1∑
ju=0

Pn,ik Pn, ju
Δ2

2n

Δn+ikΔn+ ju
Γn,ik , ju(5.11)

=

n∑
ik=0

...

n∑
i1=i2

n∑
ju=0

...

n∑
j1= j2

Pn,ik Pn, ju
Δ2

2n

Δn+ikΔn+ ju
Γn,ik , ju .

Now

(q; q)n

(q; q)2n
=

n−1∏
i=0

(1 − qi+1)

2n−1∏
i=0

(1 − qi+1)

=
1

2n−1∏
i=n

(1 − qi+1)

=

n−1∏
i=0

1
(1 − qi+n+1)

�n 1.(5.12)

Moreover,

(q; q)3n−i+1

(q; q)2n+1
= 1 − q2n+2 + O(2n + 3) =n 1(5.13)

and

(q; q)2n+i+1

(q; q)n+i
=

3n+i∏
k=0

(1 − qk+1)

n+i−1∏
i=0

(1 − qk+1)

=

3n+i∏
i=n+i

(1 − qk+1) �n 1.(5.14)

Hence, using Lemma 5.2, the equation (5.10) and the facts (5.12), (5.13) and (5.14) in 5.11



376 M. Elhamdadi andM. Hajij

yield the equation:

Φk,u(q) �n (q; q)2
n

n∑
ik=0

...

n∑
i1=i2

n∑
ju=0

...

n∑
j1= j2

q
k∑

p=1
(ip(ip+1))

(q; q)2
ik

k∏
p=2

(q; q)ip−1−ip

q
u∑

l=1
( jl( jl+1))

(q; q)2
ju

u∏
l=2

(q; q) jl−1− jl

(q; q)ik+ ju .

Now set sp = ip − ip+1 for p = 1, ..., k − 1 and sk = ik, we obtain ip =
k∑

m=p
sm. Similarly, set

hl = jl − jl+1 for l = 1, ..., u − 1 and hu = ju, we obtain jl =
u∑

r=l
hd. Changing the indexes in

the previous equation yield the result. �

6. A Family of Pretzel Knots and Rogers-Ramanunjan Type Identities

6. A Family of Pretzel Knots and Rogers-Ramanunjan Type Identities
In this section, the tail of the graph Lk, for k ≥ 1, given in Figure 8 below is computed in

two methods. Note that this graph correponds to the pretzel knot Pk+1 defined in section 4.

Fig.8. The graph Lk

The first method utilizes the algorithm given by Masbaum and Vogel in [19] to compute
the evaluation of a quantum spin network in (S 2). The second method uses the bubble
skein element (2.1). Each method give rise to one of side of the q-series identities given in
(4.7) generalizing the false theta identity given in (4.2). We start first by computing the tail
of the graph in Figure 8 using the techniques given in [19].

Lemma 6.1. Let k, n ≥ 1. Then,

where

(6.1) Cn,i =
θ(2n, 2n, 2i)k

θ(n, n, 2i)k+1 Δ2i.

Proof. Note that
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where

Bn,i =

Tet
[

2i n n
n 2n 2n

]
Tet
[

2i 2n 2n
n n n

]

θ(2n, 2n, 2i)(θ(n, n, 2i))2 Δ2i.(6.2)

However,

Tet
[

2i n n
n 2n 2n

]
= Tet

[
2i 2n 2n
n n n

]
= θ(2n, 2n, 2i).(6.3)

Hence

Bn,i =
θ(2n, 2n, 2i)
θ(n, n, 2i)2 Δ2i.

Moreover,

where

Pn,i =

Tet
[

2i n n
n 2n 2n

]
Tet
[

2i 2n 2n
n n n

]

θ(2n, 2n, 2i)θ(n, n, 2i)
.

However, equation (6.3) implies:

Pn,i =
θ(2n, 2n, 2i)
θ(n, n, 2i)

.

Thus,

The result follows. �
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Proposition 6.2. For k ≥ 1 we have

TLk (q) = (q; q)k+1
∞

∞∑
i=0

qi

(q; q)k+1
i

.

Proof. By theorem 2.2 we know that the tail of the graph Lk is determined by the skein
element S (n)

B (Lk). This element is equivalent to the quantum spin network in Figure 9. Note
that there are k + 1 copies of the box graph labeled by 2n and n in Figure 9.

Fig.9. The quantum spin network corresponding to graph Lk.

�
By Lemma 6.1 we have

(6.4) S (n)
B (Lk) =

n∑
i=0

θ(2n, 2n, 2i)k+1

θ(n, n, 2i)k+1 Δ2i

However,

(6.5) θ(n, n, 2i) =
(−1)i+nq−

1
2 (n+i)(q, q)2

i (q, q)−i+n(q, q)1+i+n

(1 − q)(q, q)2i(q; q)2
n

.

Putting (6.5) in (6.4) and using Theorem 2.2 we obtain

(6.6) TLk (q) �n S (n)
B (Lk) =

1
Δn

n∑
i=0

⎛⎜⎜⎜⎜⎝ (−1)−nqn/2(q; q)2
2n(q; q)n−i(q; q)n+i+1

(q; q)2
n(q; q)2n−i(q; q)2n+i+1

⎞⎟⎟⎟⎟⎠
k+1

Δ2i.

Similar techniques to the ones used in Theorem 5.3 imply:

(6.7) TLk (q) = (q; q)k+1
∞

∞∑
i=0

qi

(q; q)k+1
i

.

Proposition 6.3. For k ≥ 1 we have

(6.8) TLk = (q; q)k
∞
∞∑

i1=0

...

∞∑
ik=0

q
∑k

j=1 i j+i2j+
∑k

s=2
∑k

j=s is−1i j∏k
j=1(q; q)i j(q; q)∑ j

s=1 is

.

Proof. We apply the bubble skein formula to obtain:
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The skein element in the last equation is obtained from the skein element in the first equation
by isotopy of the strands and the properties of the Jones-Wenzl idempotent. Similarly, we
apply the bubble skein relation ( k − 1) times on the skein element showing on the right
handside of the previous equation to obtain

(6.9)

However,
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(6.10)
⌈

n − a n − a
n + a n

⌉
i

=
(−1)i+nqi/2+ai+i2−n/2(q, q)3

n(q, q)2−a+n(q, q)a+n(q, q)1−a−i+3n

(q, q)i(q, q)a+i(q, q)2
2n(q, q)−i+n(q, q)2

−a−i+n(q, q)1−a+2n
.

Using equation (6.10) in 6.9 and using similar techniques to ones we used in Theorem 5.3
we obtain the result. �

Propositions 6.2 and 6.3 imply immediately the following

Corollary 6.4. For k ≥ 1 we have

(q; q)∞
∞∑

i=0

qi

(q; q)k+1
i

=

∞∑
i1=0

...

∞∑
ik=0

q
∑k

j=1 i j+i2j+
∑k

s=2
∑k

j=s is−1i j∏k
j=1(q; q)i j(q; q)∑ j

s=1 is

.
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