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Abstract
We classify two-dimensional complex tori admitting automorphisms with posi-

tive entropy in terms of the entropies they exhibit. For each possible positive value
of entropy, we describe the set of two-dimensional complex tori admitting auto-
morphisms with that entropy.

1. Overview1. Overview

Two-dimensional complex tori provide many basic examples of compact complex sur-
faces admitting (biholomorphic) automorphisms with positive topological entropy. Ghys
and Verjovsky [8] describe the circumstances under which a torus C2/Λ admits an infinite-
order automorphism in terms of conditions on the lattice Λ. Fujiki [7] describes the auto-
morphism groups that can arise on two-dimensional complex tori, and indicates which types
of tori allow which automorphism groups. Here, we characterize tori in terms of the en-
tropies that they permit: for any fixed positive value that is the entropy of an automorphism
on some two-dimensional complex torus, we describe the set of all such tori admitting auto-
morphisms with the given entropy.

Suppose that f is an automorphism of a two-dimensional complex torus X = C2/Λ,
and let γ1 and γ2 be the eigenvalues of f ∗ on H1,0(X) � C2. So the eigenvalues of f ∗ on
H0,1(X) are γ1 and γ2. Since f ∗ is invertible on H1(X,Z) � Z4, we must have |γ1|2|γ2|2 = 1.
Moreover, since H∗(X,C) is generated by H1(X,C) via the cup product, f ∗ has the following
eigenvalues on H2(X,C): γ1γ2 on H2,0(X); λ = |γ1|2, γ1γ2, γ1γ2, and λ−1 = |γ2|2 on H1,1(X);
and γ1γ2 on H0,2(X). Take γ1 and γ2 to be chosen so that λ ≥ 1. When f is homomorphic
(so f is the quotient of some F ∈ GL2(C) with F(Λ) = Λ), it follows from a result of Sinai
([22],[21]) (applied to the four-dimensional real torus underlying X) that the topological
entropy of f is log(λ); in fact, the entropy is log(λ) even if f is not homomorphic. (See §2.2
below.)

Since f ∗ has at most one eigenvalue with magnitude greater than one on H2(X,Z), it
follows from a result of Kronecker [12] that the irreducible factors of the characteristic
polynomial for f ∗ on H2(X,Z) can only be cyclotomic polynomials and at most one Salem
polynomial (an irreducible polynomial that is monic and reciprocal and has exactly two roots
with magnitude not equal to one); thus f has positive entropy if and only if λ is a Salem
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number (the largest real root of a Salem polynomial). In [18], we characterized all of the
Salem polynomials that give entropies of two-dimensional complex torus automorphisms.
This paper completes that effort by describing the tori on which these Salem polynomials
arise. Note that the degree of any such polynomial must be two, four, or six.

Theorem 1.1. Suppose λ is a Salem number such that log(λ) is the entropy of some two-
dimensional complex torus automorphism, and let S (t) be the minimal polynomial for λ.

1) If deg(S (t)) = 6, then any two-dimensional complex torus automorphism on which
log(λ) is the entropy of an automorphism must be non-projective.

2) If deg(S (t)) = 4, then log(λ) is the entropy of an automorphism of an abelian surface
and the entropy of an automorphism of a non-projective two-dimensional complex
torus.

3) If deg(S (t)) = 2, then any two-dimensional complex torus automorphism on which
log(λ) is the entropy of an automorphism must be projective.

a) If either λ + λ−1 + 2 or λ + λ−1 − 2 is the square of an integer, then log(λ) is the
entropy of an automorphism of a simple abelian surface and the entropy of an
automorphism of a product of isogenous elliptic curves.

b) Otherwise, any abelian surface on which log(λ) is the entropy of an automor-
phism must be a product of isogenous elliptic curves with complex multiplica-
tion.

(See §3.2 below for the proof.)
Note that (1) actually follows from a straightforward observation: for an automorphism

f of a two-dimensional complex torus X with NS(X) � {0}, the characteristic polynomial
for f ∗ on NS(X) ⊆ H1,1(X) must be a factor (of degree at most four) in the characteristic
polynomial for f ∗ on H2(X,Z). Indeed, every torus in (1) must have Picard rank zero. On the
other hand, every non-projective torus in (2) has Picard rank two. These tori turn out to be
generalizations of examples developed by Zucker [26] to show that a non-projective compact
Kähler manifold can have a non-trivial Néron-Severi group without having any divisors.
(See §4.3 below.) Every abelian surface in (2) has Picard rank four; by work of Shioda
and Mitani [20], it follows that each such torus is a product of isogenous elliptic curves
with complex multiplication. Every abelian surface in (3) is either simple or isogenous to
a product of isogenous elliptic curves (possibly without complex multiplication). (See §4.1
below.)

The set of entropies arising on a torus of the form E × E, where E is an elliptic curve, is
complicated–especially when E has complex multiplication; on the other hand, the set of en-
tropies exhibited by the automorphism group of a non-projective two-dimensional complex
torus is either trivial or equal to

{k log(λ)|k ∈ N0}
for some Salem number λ. (See §5.1 below.) In the opposite direction, we show that the
entropy of a two-dimensional complex torus automorphism will typically only occur on
finitely many two-dimensional complex tori.

Theorem 1.2. Let λ be a Salem number such that log(λ) is the entropy of some two-
dimensional complex torus automorphism. Then either:

1) One of λ + λ−1 + 2 or λ + λ−1 − 2 is the square of an integer; or
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2) The set of two-dimensional complex tori that admit automorphisms whose entropies
are log(λ) is finite.

(See §5.3 below for the proof.)
For each λ in (1), there is a positive-dimensional set of parameters defining abelian

surfaces–including both simple and non-simple abelian surfaces–that admit automorphisms
whose entropies are log(λ); indeed, there is a Hilbert modular surface which parametrizes
a subset of all such abelian surfaces. (See §4.1 below.) The finite number of isomorphism
classes of tori in (2) can be arbitrarily large as λ varies. However, the number of isogeny
classes of tori in (2) is uniformly bounded for all λ; this follows from the fact that the
isogeny class of a torus X admitting an automorphism f in (2) is uniquely determined by the
eigenvalues of f ∗ on H1,0(X). (See §5.3 below.)

2. Topological Entropy on Compact Kähler Surfaces2. Topological Entropy on Compact Kähler Surfaces

The following theorem is a special case of a compilation of results by Gromov [9] and
Yomdin [24]. (See also [10], §2.)

Theorem 2.1. Let f be an automorphism of a compact Kähler surface X. Then the
topological entropy of f is the logarithm of the spectral radius of f ∗ on H1,1(X).

The conclusion that the entropy of f is either zero or the logarithm of a Salem number is
not special to the case where X is a torus; indeed, the irreducible factors of the characteristic
polynomial for f ∗ on H2(X,Z) can only be cyclotomic polynomials and at most one Salem
polynomial for any f and X in Theorem 2.1. (See, e.g., [6], §5, [14], §3.)

2.1. Positive Entropy on Compact Kähler Surfaces. Given an automorphism f of
a compact Kähler surface X, we can use the following theorem to determine whether X
is projective or not based solely on the cohomological behavior of f ; the statement that
(2) implies (1) is new, while the statement that (1) implies (2) follows immediately from
previously known results.

Theorem 2.2. Let f be an automorphism of a compact Kähler surface X. Suppose that
the entropy of f is log(λ) > 1, and let S (t) be the minimal polynomial for λ. Then the
following two statements are equivalent:

1) H2,0(X) � {0} and some root of S (t) is an eigenvalue for f ∗ on H2,0(X); and
2) X is non-projective.

Proof. Each root of S (t) is a simple eigenvalue for f ∗ on H2(X,Z). If X is projective, then
λ is an eigenvalue for f ∗ on NS(X); but then every root of S (t) is an eigenvalue for f ∗ on
NS(X) (and hence not an eigenvalue for f ∗ on H2,0(X)). (See [19], §3.2, and [14], §3.) So
(1) implies (2).

Since S (t) is the only non-cyclotomic factor for f ∗ on H2(X,Z), there is a subspace
W ⊆ H2(X,Q) such that f ∗(W) = W and the characteristic polynomial for f ∗ on W is
S (t). (See [19], §3.2.) So W ⊗ C is the span of the set of all eigenvectors for f ∗ on H2(X,C)
corresponding to eigenvalues which are roots of S (t). If every root of S (t) is an eigenvalue
for f ∗ on H1,1(X), then W⊗C is a subspace of H1,1(X); it follows from the Lefschetz theorem
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on (1, 1)-classes that W is a subspace of NS(X) ⊗ Q. Thus, since f ∗ preserves the intersec-
tion pairing on NS(X), NS(X) ⊗ R must contain two distinct totally isotropic subspaces of
dimension one (consisting of the eigenvectors corresponding to the eigenvalues λ and λ−1);
since the signature of the real part of H1,1(X) is (1, h1,1(X) − 1), it follows that NS(X) must
contain some element with positive self-intersection and hence that X must be projective.
(See [19], §3.1.) So (2) implies (1). �

Remark 2.3. Cantat [4] showed that any compact Kähler surface admitting an automor-
phism with positive entropy must be bimeromorphic to a torus, a K3 surface, an Enriques
surface, or P2. This result limits the scope of Theorem 2.2 to (blow-ups of) tori and K3
surfaces. However, the proof of Theorem 2.2 does not rely a priori on any constraint on X.

2.2. Positive Entropy on Two-Dimensional Complex Tori. The following proposition
shows that we may restrict our attention to homomorphic automorphisms when considering
two-dimensional complex torus automorphisms with positive entropy. An automorphism
of a torus X = C2/Λ is homomorphic if it is the quotient of some F ∈ GL2(C) satisfying
F(Λ) = Λ–or, equivalently, if it respects the group structure on X inherited from C2.

Proposition 2.4. Let f be an automorphism of a two-dimensional complex torus X =
C2/Λ, let γ1 and γ2 be the eigenvalues of f ∗ on H1,0(X), and suppose that |γ1| > 1. Then f
is conjugate by a translation on X to a homomorphic automorphism of X.

Proof. There is a homomorphic automorphism φ f : X → X and an element x f ∈ X such
that

f (x) = φ f (x) + x f

for any x ∈ X. (See, e.g., [3], §1.1.) The Lefschetz number for f is∑
(−1) j Tr( f ∗ : H j(X,Z)→ H j(X,Z)) = (1 − γ1)(1 − γ2)(1 − γ1)(1 − γ2) � 0.

Thus the Lefschetz fixed-point theorem guarantees that f (x0) = x0 for some x0 ∈ X. (See
also [25], §2.1.) So

f (x + x0) − x0 = φ f (x) + φ f (x0) + x f − x0 = φ f (x)

for any x ∈ X; that is, f is conjugate (by translation by x0) to φ f . �

Remark 2.5. Berg [1] showed that Haar measure is always a measure of maximal entropy
for a homomorphic automorphism of a real torus; thus the work of Sinai ([22],[21]) on en-
tropies of homomorphic automorphisms with respect to Haar measure gives the conclusion
of Theorem 2.1 for homomorphic automorphisms of two-dimensional complex tori. Propo-
sition 2.4 then gives this conclusion for any two-dimensional complex torus automorphism
with cohomological eigenvalues which are not roots of unity. So, for the proofs of Theorems
1.1 and 1.2, the general statement of Theorem 2.1 is necessary only for the conclusion that
any two-dimensional complex torus automorphism (homomorphic or not) whose cohomo-
logical eigenvalues are all roots of unity has entropy zero.
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3. Types of Tori Exhibiting Positive Entropies3. Types of Tori Exhibiting Positive Entropies

Suppose that f is a homomorphic automorphism with positive entropy of a torus X =
C2/Λ; so f is the quotient of some F ∈ GL2(C) satisfying F(Λ) = Λ. Since H1,0(X) is
spanned by dz1 and dz2 (for any choice of coordinate system {z1, z2} on C2), it follows that
f ∗ = FT on H1,0(X).

3.1. Reorientations of Tori by Automorphisms.

Definition 3.1. Suppose that F ∈ GL2(C) satisfies F(Λ) = Λ for some lattice Λ ⊆ C and
has eigenvalues with magnitude different from one, and let f be the automorphism (with
positive entropy) of X = C2/Λ which is the quotient of F. Choose a basis for C2 with
respect to which

F =
(
γ1 0
0 γ2

)

(where γ1 and γ2 are the eigenvalues of F), and set

Λ′ = {(z1, z2)|(z1, z2) ∈ Λ}

in this basis. Then

F′ =
(
γ1 0
0 γ2

)

satisfies F′(Λ′) = Λ′, and hence induces an automorphism f ′ of X′ = C2/Λ′. We say that f ′

is the reorientation of f , and that X′ is the reorientation of X by f .

In Definition 3.1, the reorientations f ′ and X′ are independent of the choice of basis
diagonalizing F. Note that f and f ′ have the same entropy.

Proposition 3.2. Suppose that f is a homomorphic automorphism of a two-dimensional
complex torus X whose entropy is the logarithm of a degree-four Salem number λ, and let
X′ be the reorientation of X by f . Then exactly one of X or X′ is projective.

Proof. Let S (t) be the minimal polynomial for λ; so the characteristic polynomial for f ∗

on H2(X,Z) has the form

S (t)(t2 + at + 1)

for some a ∈ {−2,−1, 0, 1, 2}. Let γ1 and γ2 be the eigenvalues for f ∗ on H1,0(X); then
exactly one of γ1γ2 or γ1γ2 is a root of unity. Since γ1γ2 is the eigenvalue for f ∗ on H2,0(X)
and γ1γ2 is the eigenvalue for ( f ′)∗ on H2,0(X′) (where f ′ is the reorientation of f ), it follows
from Theorem 2.2 that exactly one of X of X′ is projective. �

3.2. Proof of Theorem 1.1. If a two-dimensional complex torus admits an automorphism
whose entropy is log(λ), then it follows from Proposition 2.4 that the torus also admits a
homomorphic automorphism whose entropy is log(λ). Suppose that X is one such torus, and
that f is one such homomorphic automorphism. Since the real part of
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H2,0(X) ⊕ H0,2(X)

has signature (2, 0), the eigenvalue for f ∗ on H2,0(X) must have magnitude one. (See,
e.g., [14], §3.) Let Q(t) and P(t) be the characteristic polynomials for f ∗ on H2(X,Z) and
H1(X,Z), respectively. Since the roots of Q(t) are precisely the products of distinct pairs of
roots of P(t), we can compute the coefficients of Q(t) in terms of the coefficients of P(t) and
observe that there are integers m and n such that Q(1) = −m2 and Q(−1) = n2; we have also
that Q(t) is monic and reciprocal. (See [18], §3.)

If deg(S (t)) = 6, then every eigenvalue for f ∗ on H2(X,Z) is a root of S (t); so the con-
clusion follows from Theorem 2.2. If deg(S (t)) = 4, then the conclusion follows from
Proposition 3.2.

If deg(S (t)) = 2, then the eigenvalues for f ∗ on H2(X,Z) are λ, λ−1, and four roots of
unity; so it follows from Theorem 2.2 that X is an abelian surface. In this case, Q(t) =
S (t)C(t) for some monic and reciprocal degree-four polynomial C(t) whose roots are all
roots of unity; specifically, C(t) must either factor as

(t2 + jt + 1)(t2 + kt + 1)

for some j and k in {−2,−1, 0, 1, 2} or be in

{t4 + t3 + t2 + t + 1, t4 + 1, t4 − t3 + t2 − t + 1, t4 − t2 + 1}.
Suppose that neither

−S (1) = λ + λ−1 − 2

nor
S (−1) = λ + λ−1 + 2

is the square of an integer. Then the conditions Q(1) = −m2 and Q(−1) = n2 imply that C(t)
must be reducible with j � k; moreover, since the eigenvalues for f ∗ on H2,0(X) and H0,2(X)
are complex conjugates of one another, j and k can be ordered so that the characteristic
polynomial for f ∗ on H1,1(X) is

Q0(t) = S (t)(t2 + kt + 1)

(and the characteristic polynomial for f ∗ on H2,0(X) ⊕ H0,2(X) is t2 + jt + 1). As in the
proof of Theorem 2.2, there is a subspace W ⊆ H2(X,Q) such that f ∗(W) = W and the
characteristic polynomial for f ∗ on W is Q0(t); it follows from the Lefschetz theorem on
(1,1)-classes that X must have Picard rank four (since W ⊗ C = H1,1(X)). So X must be
a product of isogenous elliptic curves with complex multiplication if the hypothesis of (a)
fails. (See [20], §4.) Example 4.1 below demonstrates the conclusion of (a) if its hypothesis
holds. �

Remark 3.3. Since reorientation does not change entropy, Theorem 1.1 shows that the
conclusion of Proposition 3.2 is special to the case of degree-four Salem numbers: reorien-
tation by an automorphism whose entropy is the logarithm of a degree-two Salem number
must interchange two abelian surfaces, while reorientation by an automorphism whose en-
tropy is the logarithm of a degree-six Salem number must interchange two non-projective
tori.
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4. Examples of Tori Exhibiting Positive Entropies4. Examples of Tori Exhibiting Positive Entropies

4.1. Case 3a in Theorem 1.1. Let λ be a degree-two Salem number; so

q = λ + λ−1

is an integer greater than 2, and the minimal polynomial for λ is

S (t) = t2 − qt + 1.

Suppose that q+2 = r2 (resp., q−2 = r2) for some integer r, and let A = (ai j) ∈ GL2(Z) be a
matrix with determinant 1 (resp., −1) and trace r; so the eigenvalues of A are sgn(r)

√
λ and

sgn(r)
√
λ−1 (resp., sgn(r)

√
λ and − sgn(r)

√
λ−1). Then any two-dimensional complex torus

of the form E × E, where E is an elliptic curve, admits an automorphism σ given by

σ(e1, e2) = (a11e1 + a12e2, a21e1 + a22e2)

whose entropy is log(λ). (See also [14], §4, and [11], §3.)
By the Poincaré reducibility theorem, every abelian surface is either simple or isogenous

to E1 × E2 for some elliptic curves E1 and E2. If E1 and E2 are two non-isogenous elliptic
curves, then any homomorphic endomorphism of E1 × E2 is given by

(e1, e2) = ( f1(e1), f2(e2))

for some homomorphic endomorphisms f1 and f2 of, respectively, E1 and E2; if A is an
abelian surface isogenous to E1 × E2, it follows that any homomorphic automorphism of A
must leave invariant the images of both E1×{0} and {0}×E2–and hence must have eigenvalues
on H1,0(A) which are roots of unity (since every homomorphic automorphism of an elliptic
curve has finite order). (See, e.g, [16], §IV.19, and [15], §III.1.) So every abelian surface
that admits an automorphism with entropy log(λ) is either simple or isogenous to some E×E
(with E an elliptic curve).

Let γ1 and γ2 be the eigenvalues of A (so r = γ1 + γ2 and det(A) = γ1γ2), and suppose
that Λ is a lattice in C2 with a basis of the form

{(1, 1), (γ1, γ2), (z1, z2), (γ1z1, γ2z2)}
(for some complex numbers z1 and z2). Since γ1 and γ2 are both roots of t2 − rt + det(A),

(
γ1 0
0 γ2

)

restricts to ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − det(A) 0 0
1 r 0 0
0 0 0 − det(A)
0 0 1 r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
on Λ; so C2/Λ admits an automorphism whose eigenvalues on H1,0(C2/Λ) are γ1 and γ2

(and whose entropy is therefore log(λ)). Varying z1 and z2 yields a positive-dimensional set
of parameters describing abelian surfaces that admit automorphisms whose entropries are
log(λ).
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Suppose further that z1 = ı and z2 = δı for some non-zero δ ∈ R. The abelian surface
C2/Λ contains an elliptic curve if and only if there is a complex line in C2 containing a
rank-two sublattice of Λ, in which case there are elements

(ζ1, ζ2) = (k1, k1) + (k2γ1, k2γ2) + (k3ı, k3δı) ∈ Λ
(so each k j is an integer) and c + dı ∈ C with d � 0 such that (c + dı)(ζ1, ζ2) ∈ Λ. If the
equations

ck1 + ck2γ1 − dk3 + dk1ı + dk2γ1ı + ck3ı = l1 + l2γ1 + l3ı + l4γ1ı

and
ck1 + ck2γ2 − dk3δ + dk1ı + dk2γ2ı + ck3δı = l1 + l2γ2 + l3δı + l4γ2δı

have a simultaneous non-trivial solution with k1, . . . , k3, l1, . . . , l4 ∈ Z and c, d ∈ R (with
d � 0), then

l4δ(γ1 − γ2) = dk1(δ − 1) + dk2(δγ1 − γ2)

and
(ck1 + ck2γ1 − dk3)(l1 + l2γ2) = (ck1 + ck2γ2 − dk3δ)(l1 + l2γ1)

imply

cdk3(δk1 + δk2γ1 − k1 − k2γ2) = c(l2k1 − l1k2)(γ1 − γ2) = cl4k3δ(γ1 − γ2);

it then follows that δ ∈ Q or
δ(k1 + k2γ1) = k1 + k2γ2

or (if k3 = 0)
δ(l3 + l4γ2)(k1 + k2γ1) = (l3 + l4γ1)(k1 + k2γ2)

or (if c = 0)
δ(l1 + l2γ1) = l1 + l2γ2.

So C2/Λ is simple for a generic choice of δ (including, for example, any δ not contained in
Q(γ1)).

Since

λ = (q +
√

q2 − 4)/2,

the condition q ± 2 = r2 is equivalent to the condition that
√
λ is again a quadratic integer;

the minimal polynomial for
√
λ is

t2 − rt ± 1,

so that
√
λ is Galois conjugate to ±√λ−1. Thus

Q(
√
λ) = Q(λ) = Q(

√
q2 − 4) = Q(

√
D)

for some square-free D ∈ N, and
√
λ is a unit in the ring of integers for Q(

√
D). Suppose that

X = C2/Λ is an abelian surface with multiplication by
√

D; so there is a basis for C2 such
that

Fa,b =

(
a + b

√
D 0

0 a − b
√

D

)
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satisfies Fa,b(Λ) ⊆ Λ for any integer a+b
√

D ∈ Q(
√

D). (See [23], §1.) Taking
√
λ = a+b

√
D

then gives an automorphism of X whose entropy is log(λ). So the set of all abelian surfaces
with multiplication by

√
D–which is parametrized by a Hilbert modular surface–is a subset

of the set of all abelian surfaces admitting automorphisms with entropy log(λ). On the other
hand, if

F =
( √
λ 0

0 ±√λ−1

)
∈ GL2(C)

satisfies F(Λ) = Λ for some lattice Λ ⊆ C2, then there is some integer b such that

F′ =
(

b
√

D 0
0 −b

√
D

)

satisfies F′(Λ) ⊆ Λ. So any abelian surface admitting an automorphism with entropy log(λ)
must have real multiplication by b

√
D.

4.2. Case 3b in Theorem 1.1. Let λ be a degree-two Salem number that does not satisfy
the hypothesis of Example 4.1, and let S (t) be the minimal polynomial for λ. Then the proof
of Theorem 1.1 shows that the characteristic polynomial for f ∗ on H2(X,Z) is

S (t)(t2 + jt + 1)(t2 + kt + 1)

for some distinct j and k in {−2,−1, 0, 1, 2}. In fact, taking j = −2 and k = 2 will always
give a polynomial that occurs as the characteristic polynomial on the second cohomology
group for some abelian surface automorphism with positive entropy. (See [18], §3.)

Let E = C/Z[
√

2 − q] (where q = λ + λ−1, as in Example 4.1). Then E has complex
multiplication (by

√
2 − q) and (

0 −1
1 (

√
q − 2)ı

)

gives an automorphism of E × E (as in Example 4.1) whose entropy is log(λ).

4.3. Case 2 in Theorem 1.1. If X is an abelian surface that admits an automorphism
whose entropy is the logarithm of a degree-four Salem number, then the proof of Theorem
2.2 shows that the Picard rank of X is four. If X is a non-projective two-dimensional complex
torus that admits an automorphism σ whose entropy is the logarithm of a degree-four Salem
number λ, so that the characteristic polynomial for σ∗ on H2(X,Z) has the form

S (t)(t2 + at + 1)

with S (λ) = 0 and a ∈ {−2,−1, 0, 1, 2}, then Theorem 2.2 shows that t2 + at + 1 is a factor in
the characteristic polynomial for σ∗ on H1,1(X); it follows that the Picard rank of X is two.

Let E = C/Z[
√−D] with D ∈ N. Then any matrix of the form

(
0 −1
1 b1 + (b2

√
D)ı

)
,
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where b1 and b2 are integers, gives an automorphism of E × E (as in Examples 4.1 and 4.2);
the characteristic polynomial for the action of the automorphism on NS(E × E) is

t4 − (b2
1 + b2

2D)t3 + (2b2
1 − 2b2

2D − 2)t2 − (b2
1 + b2

2D)t + 1,

which is a degree-four Salem polynomial whenever it does not have the form

t4 − pt3 − (2 ± 2p)t2 − pt + 1, t4 − pt3 + (1 ± p)t2 − pt + 1, or t4 − pt3 + 2t2 − pt + 1

(for p ∈ N0). (See [2], §5.2.) Let Ab1,b2 be such a matrix, and let σb1,b2 be the corresponding
automorphism of E × E. Then the eigenvectors of Ab1,b2 are

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1,
−b1 − b2ı ±

√
b2

1 − b2
2 + 2b1b2ı − 4

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and the reorientation of E × E by σb1,b2 can be given concretely via an explicit change of
basis for Ab1,b2 ; since any lattice giving E × E as a quotient of C2 is invariant under the map
that sends (z1, z2) to (

√
Dız1,

√
Dız2), the lattice giving the reorientation must be invariant

under the map that sends (z1, z2) to (
√

Dız1,−
√

Dız2).
If Λ ⊆ C2 is a lattice that is invariant under the map that sends (z1, z2) to (

√
Dız1,

−√Dız2) (with D ∈ N), so that Λ has a basis of the form

{(u1, u2), (v1, v2), (
√

Dıu1,−
√

Dıu2), (
√

Dıv1,−
√

Dıv2)},

then there is a form ω on C2/Λ such that [�ω] and [
√

D�ω] span a two-dimensional lattice
in NS(X); in terms of the chosen basis for C2,

ω = (u1v2 − v1u2)−1dz1 ∧ dz2

has this property. A torus that can be expressed as the quotient of C2 by a lattice that is
invariant under the map that sends (z1, z2) to (

√
Dız1,−

√
Dız2) is called a JD-torus; the fact

that (for any D ∈ N) certain JD-tori admit automorphisms whose entropies are logarithms of
degree-four Salem numbers shows that a generic JD torus has Picard rank two. The intersec-
tion form is negative definite on NS(X) for any JD-torus X with Picard rank two; so, since
a two-dimensional complex torus cannot contain a curve with negative self-intersection (be-
cause the adjunction formula implies that such a curve would necessarily be an embedding
of P1 into the torus), a generic JD-torus (including any JD-torus that admits an automorphism
with positive entropy) has no divisors.

Remark 4.1. Zucker ([26], Appendix B) showed that a generic J1-torus has Picard rank
two and no divisors. Thus one application of the idea of reorientation by an automorphism
with positive entropy is to give an alternate proof of Zucker’s result.
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4.4. Case 1 in Theorem 1.1. For any a ∈ N0,

S (t) = t6 − at5 − t4 + (2a − 1)t3 − t2 − at + 1

is a Salem polynomial whose roots are precisely the products of distinct pairs of roots of

P(t) = t4 + at2 + t + 1;

it follows that there is a two-dimensional complex torus with an automorphism whose en-
tropy is the logarithm of the Salem root of S (t). (See [14], §4.) Indeed, any matrix of the
form

Ab =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0
1 0 0 0
0 1 1 b
0 0 −(1 + a)/b −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where b is an integer dividing 1 + a, is an invertible transformation (among others) of Z4

with characteristic polynomial P(t); since the roots of P(t) are complex (and hence occur in
complex conjugate pairs), Z4 ⊗ R can be given a complex structure (isomorphic to C2) on
which Ab acts as an element of GL2(C) preserving the lattice which is the image of Z4. A
similar construction applies for any degree-six Salem number whose logarithm is the entropy
of some two-dimensional complex torus automorphism. (See [19], §3.)

5. Limitations on Occurences of Positive Entropies5. Limitations on Occurences of Positive Entropies

5.1. The Set of Entropies on a Fixed Torus. For a non-projective two-dimensional
complex torus X with an infinite-order automorphism, Fujiki ([7], §5) asserts (without proof)
that the homomorphic automorphism group of X is isomorphic to

Z × (Z/mZ)

for some m ∈ {2, 4, 6}–so that, in particular, there is some (infinite-order) automorphism σ0

of X such that the homomorphic automorphism group of X is generated by σ0 and finitely
many finite-order automorphisms; since any two homomorphic automorphisms of X com-
mute with one another in this case, it follows that the set of entropies exhibited by the
automorphism group of X is

{k log(λ0)|k ∈ N0},
where log(λ0) is the entropy of σ0. For completeness, we sketch an indirect proof of these
facts: Oguiso [17] showed that a non-projective K3 surface X̃ that admits an automorphism
with positive entropy must have its automorphism group map onto Z with a finite kernel;
taking X̃ to be the Kummer surface associated to X and observing that the homomorphic
automorphism group of X maps into the automorphism group of X̃ with a kernel of order
two concludes the proof; the precise possibilities for the homomorphic automorphism group
of X can be deduced from direct testing of the possible finite-order actions on H∗(X,Z).

As indicated in Examples 4.1, 4.2, and 4.3, the homomorphic automorphism group of a
torus of the form E × E, where E is an elliptic curve, is isomorphic to GL2(K), where K is
the ring of surjective homomorphic endomorphisms of E; the entropy of any homomorphic
automorphism of E × E is the logarithm of the square of the spectral radius of its image
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in GL2(K). (See also [16], §IV.19.) Example 4.1 shows that E × E always exhibits every
entropy log(λ) where λ is a degree-two Salem number which is the square of a quadratic
integer; such a λ appears in every real quadratic field. Examples 4.2 and 4.3 show that E×E
can exhibit even more positive entropies when E has complex multiplication.

5.2. The Set of Tori Exhibiting a Fixed Entropy. Suppose that σ1 and σ2 are homo-
morphic automorphisms with positive entropy of, respectively, two-dimensional complex
tori X1 and X2, and suppose further that

G =
(
γ1 0
0 γ2

)

gives the actions of both σ∗1 on H1,0(X1) and σ∗2 on H1,0(X2) (so that, for one thing, σ1 and
σ2 both have entropy log(max{|γ1|2, |γ2

2|})). So there are lattices Λ1 and Λ2 in C2 such that
G(Λ1) = Λ1, G(Λ2) = Λ2, X1 = C

2/Λ1, X2 = C
2/Λ2, and σ1 and σ2 are the quotients of G

by, respectively, Λ1 and Λ2. If there is a homomorphic isomorphism φ : X1 → X2 such that
σ2 = φ ◦σ1 ◦ φ−1, then there is a matrix Φ ∈ GL2(C) such that G ◦Φ = Φ ◦G, Φ(Λ1) = Λ2,
and φ is the quotient of Φ; so

G|Λ2 = Φ|Λ1 ◦G|Λ1 ◦ Φ−1|Λ2 .

Suppose now that γ1 and γ2 are not real. If there is a matrix B ∈ GL4(Z) such that G|Λ2 =

BG|Λ1 B−1, then there are matrices C and D in GL4(R) such that both C−1 ◦B◦G|Λ1 ◦B−1 ◦C
and D−1 ◦G|Λ1 ◦ D are equal to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�γ1 −�γ1 0 0
�γ1 �γ1 0 0

0 0 �γ2 −�γ2

0 0 �γ2 �γ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

it follows that C−1 ◦ B ◦ D defines a matrix Φ ∈ GL2(C) that commutes with G and satisfies
Φ(Λ1) = Λ2. So, since each σ∗j on H1(Xj,Z) is given by (G|Λ j)

T , σ1 and σ2 are the same
automorphism (of the same torus) if and only if σ∗1 on H1(X1,Z) and σ∗2 on H1(X2,Z) are
conjugate in GL4(Z); Example 4.1 shows that this statement does not hold when γ1 and γ2

are real. The following result by Latimer and MacDuffee characterizes the sets of GL4(Z)-
conjugacy classes of certain matrices.

Theorem 5.1 ([13]). Let P(t) ∈ Z[t] be a monic irreducible polynomial of degree r. Then
the set of GLr(Z)-conjugacy classes of matrices with characteristic polynomial P(t) is in
bijective correspondence with the set of ideal classes in Z[t]/P(t).

Since the set of ideal classes is finite for any order in a number field, there are only finitely
many GLr(Z)-conjugacy classes of matrices with characteristic polynomial P(t) in Theorem
5.7. (See, e.g., [5], §III.20.)
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5.3. Proof of Theorem 1.2. Let S (t) be the minimal polynomial for λ. We will consider
all possible characteristic polynomials Q(t) and P(t) for the actions of σ∗ on, respectively,
H2(X,Z) and H1(X,Z), where σ is an automorphism of a two-dimensional complex torus X
with entropy log(λ).

Since there are only finitely many monic reciprocal polynomials in Z[t] of degree at most
four with no roots off the unit circle, there are only finitely many monic and reciprocal
degree-six polynomials in Z[t] with S (t) as a factor and four roots on the unit circle. Let

Q(t) = t6 + at5 + bt4 + ct3 + bt2 + at + 1

be a polynomial in Z[t] with S (t) as a factor and four roots on the unit circle such that
Q(1) = −m2 and Q(−1) = n2 for some integers m and n; then any polynomial of the form
t4 + · · · + 1 ∈ Z[t] with the property that the pairwise products of its distinct roots are the
roots of Q(t) must be one of

t4 + jt3 − at2 + kt + 1, t4 − jt3 − at2 − kt + 1,

t4 + kt3 − at2 − jt + 1, or t4 − kt3 − at2 + jt + 1,

where j = (1/2)(n + m) and k = (1/2)(n − m). (See [18], §3.)
Let P(t) be a polynomial of the form t4 + · · · + 1 ∈ Z[t] such that the roots of Q(t) are the

pairwise products of the distinct roots of P(t). Then P(t) is reducible if and only if it has a
real root, in which case the multiset of roots of P(t) must be one of

{√λ, √λ, √λ−1,
√
λ−1}, {√λ, √λ,−√λ−1,−√λ−1},

{−√λ,−√λ, √λ−1,
√
λ−1}, or {−√λ,−√λ,−√λ−1,−√λ−1}

–so that either
√
λ +
√
λ−1 or

√
λ − √λ−1 is an integer and therefore either λ + 2 + λ−1

or λ − 2 + λ−1 is the square of an integer. So, if case 1 does not hold, then it follows
from Theorem 5.1 that there are only finitely many GL4(Z)-conjugacy classes of matrices in
GL4(Z) with characteristic polynomial P(t); moreover, given such a conjugacy class and a
choice of two roots γ1 and γ2 of P(t) with |γ1γ2| = 1, there is exactly one two-dimensional
complex torus X that admits a homomorphic automorphism σ such that σ∗ on H1(X,Z) is in
the conjugacy class and the eigenvalues for σ∗ on H1,0(X) are γ1 and γ2.

If σ is an automorphism of a two-dimensional complex torus X with entropy log(λ), then
(as in the proof of Theorem 1.1) the characteristic polynomial for σ∗ on H2(X,Z) must be
some Q(t) as above, and the characteristic polynomial for σ∗ on H1(X,Z) must be some
corresponding P(t) as above. �

Remark 5.2. We observe that the finite number of distinct tori in case 2 of Theorem 1.2
can be arbitrarily large: for any n ∈ N and every k ∈ {0, . . . , n},

(
0 −1
1 1 + 2nı

)

gives an automorphism of C/Z[2kı] ×C/Z[2kı] whose entropy is the logarithm of the Salem
root of

t4 − (1 + 4n)t3 − 22n+1t2 − (1 + 4n)t + 1;
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since C/Z[2kı] has multiplication by 2kı but does not have multiplication by 2lı for any
l ∈ {0, . . . , k − 1}, each k gives a distinct torus.

Remark 5.3. All of the tori in Remark 5.2 are isogenous to one another. In fact, there are
no more than 320 isogeny classes represented in case 2 of Theorem 1.2: if

G =
(
γ1 0
0 γ2

)

satisfies |γ1|2 = λ and G(Λ j) = Λ j for two lattices Λ1 and Λ2 in C2, then G|Λ1 is conjugate
to G|Λ2 over Q; since γ1 and γ2 are not real, it follows (as above) that there is a matrix
Φ ∈ GL2(C) that commutes with G and satisfies

Φ(Λ1 ⊗ Q) = Λ2 ⊗ Q,

so that some multiple of Φ gives an isogeny from C2/Λ1 to C2/Λ2; for any Q(t) realizing
log(λ) as the entropy of an automorphism (as in the proof of Theorem 1.2), there are four
possibilities for P(t)–and for each possible P(t), there are four ways to choose roots γ1 and γ2

with |γ1γ2| = 1; one can then check that there are at most twenty possibilities for Q(t) (using
the requirements that Q(t) have only cyclotomic factors other than the minimal polynomial
for λ and satisfy Q(1) = −m2 and Q(−1) = n2 for some integers m and n).
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