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0. Introduction

The purpose of this paper is to classify those Riemannian manifolds with
parallel Ricci tensor which arise as hypersurfaces in real space forms. H. B.
Lawson, Jr. [1] performed this classification under the assumption of constant
mean curvature. Lawson’s result may be divided into two parts-determination
of the local geometry on the hypersurface, and a rigidity theorem.

In the following, we prove that no assumption on the mean curvature is neces-
sary unless the dimension is 2 or the hypersurface and the ambient space have the
same constant curvature. See Theorem 10.

1. The standard examples

We consider first some special complete hypersurfaces which will serve as
models in our discussion. M is the ambient space, M is the hypersurface and f:
M —M is an isometric immersion. In each of the examples, M is a submanifold
of M and f is the inclusion mapping.

For M=E"*, we have as our model hypersurfaces, hyperplanes, spheres, and
cylinders over spheres.

For M=S"*'(¢), we have great spheres, small spheres, and products of
spheres. The latter may also be thought of as the intersection of two cylinders
over spheres in E"+2,

All of the above are explicitly written out in [2] together with their second
fundamental forms. We consider the real hyperbolic space of curvature ¢<0
(which we denote by H"*(¢)) in more detail here since the analogous facts are
omitted from [2].

For vectors X and Y in R"**) we set g(X, V)= ’i‘: X{Yi-X"?Y"2  For
1=1

given ¢<0, we define R= 1— Then
vV —¢

H"'(¢) = {x€R"**|g(x, x) = —R* and «,,,>0}

*) This work has been supported in part by the National Science Foundation under
Grant GP-7403.
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H"*'(¢) is connected, simply-connected submanifold of R"** and it is not too
hard to show that the restriction of g to tangent vectors yields a (positive-definite)
Riemannian metric for H"*'(¢). Furthermore, H"*'(7) is complete and has
constant curvature ¢ in this metric. We thus have a model for real hyperbolic
space.

We will be interested in the following hypersurfaces of H"*(¢).

(i) M={x|x,=0}. In this case, the second fundamental form 4 is zero,
M is totally goedesic and is in fact just H"(Z).

(i) M={x|x,—=r>0}, A=Vc¢—¢ 1 where ¢<c¢<0 and c=—i2. M is
7

isometric to H™(c).
(i) M={x|%p1, =%y, +R}, A=/ —¢ I, M is isometric to E”.
(iv) M={x|x>+ai+ad=r}, A=Ve—t I and c=1>0. M is
r

isometric to S” (¢).

V) M={x|x>4x"+ -+ &b, =1 x}i,+ - —xm,——(*+R*}. Thinking
of R**? as Rk*' X R*~*+! we see that M is a subset of H""'(¢) for any >0 and
the inclusion mapping is the product of the imbeddings S*(c,)—R**' and

H" *c,)—>Rr~*¥*1, Here ¢,=— and ¢,=—— .
rz 72+R2
The second fundamental form may be calculated easily and it is given by
A=A, Pul,_, where A =\/c,—¢ and p=+/'c,—¢. 'This may be simplified to
A= VRSP, VPR
R’ R(**+R?)
Note that Ap-+¢=0.

The eigenvalues A and p may also be expressed in terms of ¢, and ¢, as
follows

¢ —c,

MVt T Vete

We note that in all of the above cases, either of the following is true:
(i) M is umbilic in M, that is, 4 is a constant multiple A of the identity
I, and M is of constant curvature c=\*+-C.

(i) A has exactly two distinct eigenvalues A >y at each point and they
are constant over M. M is the Riemannian product of spaces of constant curvature

¢, = N+¢, ¢, = p*+¢ where Au+¢=0.
The converse of the above remarks also holds in the following sense.

Theorem 1. Suppose M is a real space form and M a hypersurface in M.
Suppose the principal curvatures are constant and at most two are distinct. Then M
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is congruent to an open subset of one of the standard examples.

Proof. Theorem 2.5 of [2] followed by the arguments of Lemma 2 of [1]
give the desired result.

2. The curvature operator

In [2] we considered the action of the derivation R(X,Y) on the algebra of
tensor fields of a Riemannian manifold. We recall that if T is a tensor field of type
(r,8), and X and Y are vector fields,

R(X, Y)‘ T = vayT —VyVXT _V[X,Y]T .
For brevity of notation, we denote by RT the tensor of type (7, s12) defined by
(RT)(X,, X, X, X, V) = (R(X, Y)-T)(X,, X3, -+, X,).

Concerning hypersurfaces which satisfy RA=0 where A4 is the second
fundamental form, we have

Proposition 2. Let M be a hypersurface in a space of constant curvature C.
If RA=0, then

AN+ (Ai—2;) =0
for all i and j, where {\;}:-, are the eigenvalues of A.

Proof. Let x&M be arbitrary and let {¢;}7_, be an orthonormal basis for
T.(M) such that Ae;=n.e;. For each \, let Th={X |AX=1X}.

Since A4 is symmetric, 75 T, whenever A#p. Since RA=0, we have
that R(X, Y) and 4 commute for all X and Y. In particular,

R(e;, e;)(Ae;) = AR(e;, e;)e;
A,jR(ek ) ej)ej = AR(e" > ej)ej

Thus, R(e;, e,)e; is a member of T,;, and hence <R(e;, ¢;)e;, e,>=0
whenever \;+X;. Here <, > denotes the Riemannian metric of M. On the
other hand, the Gauss equation

R(e;, e;) = (Man;+-C)(ei ne;)
shows that

{R(e;, €;)e;, 6> = AN ;+-C .
This completes the proof.

Corollary 3. A has at most two distinct eigenvalues at each point.



254 P. J. Ryan

Corollary 4. If RA=0 is replaced by the stronger condition, VA=0, the
eigenvalues of A are constant on M.

Proof. Suppose A >y are eigenvalues of 4 at x. Let y be any point of M.
Join x to y by a smooth curve  and let E; be the vector field along v obtained
by parallel translation of e;. We compare AE; and \,E; along v. They agree
at x and if X is the tangent vector to 7, we have

Vx(AE;) = (VxA)E;+A(VxE;) = 0
and
Vx(x'-E,) = X;VXE,' = 0 .

By the uniqueness of parallel translation, AE;,=;E; at y. Thus, A4 has
the same eigenvalues at y as it has at x.

Lawson’s classification now follows directly from the following proposition
which may be found in [1].

Proposition 5. Suppose the Ricci tensor S is parallel (VS =0) and trace A
is constant on M. Then VA=0 on M.

3. The condition RS=0

In order to avoid any assumption about the mean curvature, we first examine
hypersurfaces satisfying RS=0. We will show that when ¢=:0, such hyper-
surfaces must also satisfy RR=0. Since this condition has been examined in [2],
we make use of results from this source. Since we are ultimately interested in the
condition V.S=0, we may make use of the constancy of the scalar curvature s to
take care of troublesome cases.

Proposition 6. Let M be a hypersurface in a space of constant curvature ¢.
Then RS=0 if and only if at each point of M,

(7\.,-— Xj)(xixj—{—z)(trace A— 7\/,"'“ 7\,]) =0
for 1<, j<m.
Proof. Let S denote the tensor field of type (1,1) satisfying (SX, VD=
S(X, Y). Clearly R5=0 if and only if RS=0.
Now SX=(n— 1)eX + (trace A)4X — A*X, and thus, Se i=((n—1)c+mx;—

A,%)e;. Assuming that RS=0, we have R(e;, e;) commutes with S. (Here m
is, by definition, equal to trace A4.)

Now éR(e,-, e;)e;
= SOun+8)e;
= (M 42)(n— 1)e+mr; — N)e;
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But R(e;, ¢;)Se; = ((n—1)e+mn,;— 2 )R(e;, e,)e;
= ((n—1)c+mn ;— N )N j+-C)e;
The two quantities are equal if and only if
(M4mO =2 )= (AP =25 =0
ie. (7\.,7\.,—}—5)(7\,, - 7\.])("1—' Ai— 7\.1) =0.

Furthermore, if this condition is satisfied, R(e;, ¢;) commutes with S and this
implies RS=0. We denote this condition by *x.

Proposition 7. If ¢+0, RR=0 if and only if RS=0.

Proof. We recall from [2] that RR=0 if and only if condition * (A;—2X )
(Mxj+28)n=0 is satisfied for distincti,j, k. Now we assume RS=0 and work
at a particular point x. Choose 7 =j.

Assume for the moment that A=0,n;%0. Then A,=trace 4. We
conclude that all non-zero eigenvalues have the same value, trace 4. Thus, there
can be only one of them. But rank 4 =<1 implies *.

We must now consider the case rank A=n. First, we claim it is impossible
for three eigenvalues of A to be distinct. For consider the equations:

(A=n)(Ap+72) (trace A—r—u) =0
(p—v)(pr+¢) (trace A—p—v)=0
(»—A)wA+2C) (trace A—v—A) =10

In order for these to be satisfied, two factors of the same type must vanish.
But this gives a contradiction -e.g., Au+&=uv+&=0 implies A=». Thus, there
are at most 2 distinct eigenvalues, say A=y at each point. Assuming for the
moment that (A — p)(Ap~+¢)=0 at x, we let p and ¢ be the multiplicities of A and
u respectively at x. Then, as in [2], the same conditions hold in a neighborhood
of x. Furthermore, in this neighborhood, trace A=A+ u. This means that
(p— DM +(g—1)u=0.

But neither X nor p is zero and hence p and ¢ are greater than 1. The stan-
dard arguments of [2] (pp. 372-373) now apply, showing that A and p are con-
stants near x and hence, that Ap+¢=0. This again implies * and completes the
proof.

Proposition 8. If¢=0 and s is constant, RR=0 and RS=0 are equivalent.
Proof. Our conditions RR=0 and RS=0 reduce respectively to

A A=) =0
NN (N —Nj)  (trace A—n;—n ;) = 0.
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Assuming #*, let X and y be distinct non-zero principal curvatures at x. If » is
a principal curvature distinct from A and u, we have

v(trace A—A—v) =0
v(trace A—p—v)=0.

Since A= u we must conclude that »=0. But if this is true, then trace A=\+p.
On the other hand, trace A=pr+qu, where p and q are the appropriate multi-
plicities. Thus, (p—1)A4(¢—1)u=0 and hence p and ¢ are greater than 1.
Unless, of course, p=g=1 in which case * is automatically satisfied.

If p+g=n>>2, the standard argument of [2] shows that A and p are constant
near ¥. Thus, Au—+C=0 which implies that Au=0, a contradiction. Thus, at
most 2 principal curvatures are distinct and * holds.

If p4g<m, it is not clear that * is satisfied. However, computing the scalar
curvature and using the fact that

A= —;1)%1 p
we have
=2+ - (nl_ jj((trace Ay~ trace 4)
= 04 oty (O = g
= s P (= DV == 1)
- n(;—11)"2<(§>:11)2+(q_ D+ g;q_;11)>
= ,,(T_ﬁ;(—},)ﬁ‘zﬁ@ﬂ)

Thus p is constant and so is . But a theorem of E. Cartan ([2], Theorem 2.6)
says that at most two principal curvatures can be distinct. This is a contradiction.
We must conclude that p+g=mn and the proof is complete.

Note that even if s is not assumed to be constant, we must have s<0.
Thus we have also proved the following proposition, which has been proved by
S. Tanno [3] under the assumption of positive scalar curvature.

Proposition 9. For hypersurfaces in E™+' with non-negative scalar curvature,
the conditions RR=0 and RS=0 are equivalent.

As a prelude to the next theorem, we note that when V.S=0, we have also
VS=0, and hence, V(trace S)=trace(VS)=0. Hence, the scalar curvature s will
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be constant.

4. The main theorem

Theorem 10. Let M be a hypersurface of dimension >2 in a real space form
of constant curvature . If M is not of constant curvature ¢ and if VS=0 on M, then
M is an open subset of one of the standard examples or =0 and A=2 on M.

Proof. We suppose first that M is simply-connected. Then, a unit normal
can be chosen consistently on M and the principal curvatures A, =N, =+ =,
are continuous functions. When ¢=0, RR=0 by Proposition 7. 'The proof of
Proposition 4.3 of [2], gives rank A=n=dim M. Now we know that at most
two principal curvatures are distinct. Denote the larger one by A and the
other by x4 so that A=u. If A>p at some point, then that condition holds
locally and A and p have the same multiplicities p and n—p nearby. If
1 <p<n—1, the standard argument of [2] shows that A and g are locally con-
stant. On the other hand, if p=1 or n— 1, the equation

1
n(n—1)

shows that A and hence p are locally constant. On the other hand {x|A=2X, and
w=p,} is closed. If Xy>pu,, we have just shown it is also open.

The alternative to this is that A=y at all points and M is umbilic.

Now, we consider the case ¢=0. Again RR=0 by proposition 8. As before,
A and g (where p=0) have respective multiplicities p and n—p. We allow
p=0,1,2, ---;n. If 2<p=<mn, \ is locally constant since

s=C+

(B(p— 1N+ (n— p)(n— p— 1)u*—2p(n— p)Z)

1 2
§= m_p( p—1\%.
Thus, a fixed value for A and for p holds on M. If p=<1 for all points of M, then
M has constant curvature 0. If p=2 somewhere, then p=2 everywhere.

We now see that the hypothesis of our theorem implies trace 4=-constant
on M. Thus, VA=0 and we are finished.

If now M is not simply-connected, let M be the simply connected Rieman-
nian covering of M with projection z which is a local isometry. If f: M—M is
the immersion defining the hypersurface, for is an isometric immersion of M into
M. By the above, f(z(M)) is just an open subset of one of the standard
examples. But n(M )=M. 'This completes the proof.

REMARK. It is possible in this proof to avoid the use of proposition 5 and
substitute more delicate topological arguments. However, the proof of proposition
5 is straight-forward and, its use seems the most efficient way of proving the more
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general result.
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Appendix-Proof of Proposition 5
The Case of Constant Mean Curvature

Proposition 5. Suppose trace A is constant and VS=0 (S is the Ricci ten-
sor). Then VA=0.

Proof. We recall that
S(X, V)= (n—1)e<X, YO+<{A4X, Y trace A—<AX, AY)>.
Let S be the tensor field of type (1,1) related to S by the formula
SX, V> = SX, 7).
Then VS$=0 if and only if VS=0. Thus, we may consider
S=n—1)el+mA—A°.
Since V$=0, we have V(mA—A*)=0. Now

(VxA)Y = Vx(A*Y)~ AV ¥)
= (VxA)AY+AVx(AY)—AVxY
= (VxA)AY+A(VxA)Y
That is,
VxA? = (VxA)A+A(VxA) .

Thus, (VxA)A+A(VxA)—mV xA=0.
Suppose now that AX=AX, AY=pY. Then

(VxA)uY+A(VxA)Y —m(VxA)Y = 0.
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That is, (VxA) Y T, ..
Similarly, (Ve A)X T, ».
But Codazzi’s equation says precisely that

(VxA)Y = (Vo A)X .
Now if A= u, both of these vectors are zero. If A=y, we still have that

(VxAYeET,, .
so that
(VxA)VxA)Y €Ty cm-> = Tu.

Thus, if p= 721’, (VxA)’Y=0. Since Vx4 is symmetric, we must have (Vx4)Y
=0.

Finally, if p= %1 , we construct the geodesic v through x with initial
tangent vector X and we extend Y by parallel translation along v. Now,

Vx(A’Y —mAY) = (A"—mA)V,Y .

But V4 Y=0 along v. We conclude that 4’Y —mAY is parallel along v. The
value of this vector at x is 7%2 Y — m<72il>Y= — 7%2 Y. But the vector — %l_z Y
is also parallel along v. Hence 4A’Y —mAY=— '%ZY all along . This means
that

(a- %’I)ZY=0 along .

Again, since <A - ’zﬁl > is symmetric, we have that AY= %’Y along 1.
Hence, along v,
(VxA)Y = Vx(AY)—AVxY
= my\—
- VX<2 Y)-0
=0.

We have shown that (VxA4)Y=0 for any pair of principal vectors X and
Y at any point x& M. Since the principal vectors span the tangent space, we have
shown that VA=0.








