|

) <

The University of Osaka
Institutional Knowledge Archive

. MIDPOINTS FOR THOMPSON’ S METRIC ON SYMMETRIC
Title CONES

Author(s) |Lemmens, Bas; Roelands, Mark

Osaka Journal of Mathematics. 2017, 54(1), bp.

Citation 197-208

Version Type|VoR

URL https://doi.org/10.18910/61900

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Lemmens, B. and Roelands, M.
Osaka J. Math.
54 (2017), 197-208

MIDPOINTS FOR THOMPSON’S METRIC ON
SYMMETRIC CONES

Bas LEMMENS and Mark ROELANDS

(Received July 9, 2015, revised February 5, 2016)

Abstract
We characterise the affine span of the midpoints sets, M(x, y), for Thompson’s
metric on symmetric cones in terms of a translation of the zero-component of the
Peirce decomposition of an idempotent. As a consequence we derive an explicit
formula for the dimension of the affine span of M(x, y) in case the associated Eu-
clidean Jordan algebra is simple. In particular, we find for A and B in the cone
positive definite Hermitian matrices that

dim(aff M(A, B)) = ¢°,
where ¢ is the number of eigenvalues u of A~! B, counting multiplicities, such that
p # max{d,(A”'B), A-(A”'B)'},

where 1, (A™'B) := max{1: 1 € 0(A"'B)} and 1_(A"'B) := min{1: 1 € o(A"'B)}.
These results extend work by Y. Lim [18].

1. Introduction

The space of n X n Hermitian matrices contains a cone I1,,(C) of all positive-semidefinite
matrices. Its interior, I1,(C)°, consists of all invertible elements, and is a prime example of
a symmetric cone. It is well know, see for example [4], that IT,(C)° can be equipped with a
Riemannian metric

n

1/2
52(A, B) := || log(A™' B)ll» = (Zaog A,-(A—IB»Z) ,
i=1

where the 1;(A~!B)’s are the eigenvalues of A~!'B. The metric space (I1,(C)°, 6,) is geodesic,
i.e., any two points are connected by a geodesic. In fact, in this case the geodesic is unique
and given by the path,

t > AV2AT12BA12y A2,

where t € [0, 1], and the geometric mean
AHB = AV2(AT12BAT12)12 7172

is the unique midpoint of A and B.
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Another natural metric on I1L,(C)° is Thompson’s metric,
dr(A, B) := ||1og(A™" B)|ls = max [log 1:(A™'B)|.

The space (I1,,(C)°, dr) is a geodesic Finsler metric space, see [17, 21], in which the path
t— AY2(A"12BA~1/2)' A12 is also a geodesic, but in general not unique.

Thompson’s metric, which was introduced in [24], is a useful metric that can be defined
on the interior of any closed cone in a normed space. It is widely applied in the spectral
theory of linear and nonlinear operators on cones [1, 8, 9, 14, 15, 22, 24].

It is also studied in the geometry of spaces of positive operators, where it provides a useful
alternative for the usual Riemannian metric, see [3, 5, 6, 10, 20]. Unlike the Riemannian
case, Thompson’s metric is not uniquely geodesic. Understanding the geodesic structure of
these metric spaces is not only of geometric interest, but also plays an important role in the
study of operator means [11, 12, 13, 19, 23]. Motivated by understanding the properties of
various matrix means, Lim studied in [18] the geometry of the midpoints set

M(A, B) := {C e I1,(C)°: dr(A,C) = %dT(A,B) =dy(C, B)}

for A, B € I1,,(C)°. Among other results Lim [18, Theorem 5.2] showed that M(A, B) is a
singleton if, and only if, the spectrum of A~!B satisfies 0(A~'B) C {a, @~} for some a > 0.
This result has been generalised by the authors in [16] to the cone of positive self-adjoint
elements in a unital C* algebra and symmetric cones.

In general cones the midpoints set M(x,y) :={z € K°: dr(x,2) = %dT(x, y) =dr(z,y)} is
convex, as it is the intersection of the Thompson metric balls B(x, 1/2) and B(y, 1/2), which
are both convex, see [14, Lemma 2.6.2]. The main goal of this paper is to characterise
the affine span of the midpoints set M(x,y) for x and y in a symmetric cone in terms of
a translation of the zero-component of the Peirce decomposition of an idempotent. As a
corollary we obtain an explicit formula for the dimension of M(x, y), which is equal to the
dimension of its affine span (M(x, y) is convex), in case the associated Euclidean Jordan
algebra is simple. In the special case where A, B € I1,(C)° we find that

dim(M(4, B)) = ¢,
where ¢ is the number of eigenvalues y of A~! B, counting multiplicities, such that
u # max{1,(A"'B), A_(A"'B)7!}
and A,(A'B) := max{1: 1 € 0(A"'B)} and A1_(A"'B) := min{1: 1 € 0(A"'B)}.
To obtain the results we first prove a characterisation of the midpoints set in a general
cone in terms of its faces, see Theorem 3.2. This result is subsequently used in Section 4 to

find the affine span of the midpoints set, and its dimension, in symmetric cones. We begin
by recalling some basic definitions.
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2. Preliminaries

A cone K in a vector space V is a convex subset such that K N (—K) = {0} and AK C K
for all 4 > 0. It induces a partial ordering <x on V by putting x <g y if y — x € K. Given
x <k y in V we denote the order interval by [x,ylx :={z € V: x <k z <k y}. A non-empty
convex subset F C K is said to be a face of K if x,y € K such that Ax + (1 — Ay € F for
some 0 < A < 1 implies that x,y € F. The face generated by z € K is denoted F, i.e.,

F,={yeK: Ay+ (1 — )z € K for some 4 < 0}.

The faces can be characterised as follows.

Lemma 2.1. If (V, K) is a partially ordered vector space and 7 € K, then

F, = U[O,nz]K.

n>1

Proof. Note that Ay + (1 — A)z € K for some A < 0 if and only if —uy + (1 + u)z € K for
some u > 0, which is equivalent to y <x az € K for some a > 0. Thus, F, = U,>1[0, az]x =
U110, nz]k. m]

We say that a cone K is Archimedean if for all x € V and y € K with nx <g y forn > 1
we have that x <g 0. An element u € K is called an order unit if for each x € V there
exists 4 > 0 such that x <g Au. The triple (V, K, u) is called an order unit space if K is
Archimedean and u is an order unit.

An order unit space (V, K, u) can be equipped with the order unit norm || - ||, which is
defined by

[|x]l, := inf{Ad > 0 : —Au <k x <k Au}.

With respect to this norm, the cone K is closed by [2, Theorem 2.55(2)]. Furthermore, the
norm || - ||, is monotone, that is, ||x||, < |lyll, for all 0 <g x <g y. In particular, K is a normal
cone with respect to || - ||, i.e., there exists a constant ¥ > 0 such that ||x||, < «||y||, whenever
x <k yin V. It is known, see [2, Lemma 2.5], that each interior point of K is an order unit
of K. On the other hand, if x € K is an order unit of K, then there exists M > 0O such that
u <g Mx. So, for y € V with ||y||, < 1/M we have that 0 <g x —u/M <k x —y, which show
that x € K°. Thus, the interior K° coincides with the set of order units of K.

We see that given an order unit space (V, K, u) and x,y € K°, there are constants 0 < 8

such that x <k By, and hence we can define
M(x/y) ;= inf{B > 0 : x <g By} < oo.
Now Thompson’s metric on K° is given by

dr(x,y) := log(max{M(x/y), M(y/x)})

and was introduced in [24]. The set of midpoints is denoted

1
M(x,y) = {z € K°:dr(x,z) = EdT(x’ y) = dr(z, y)}.
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Thompson’s metric spaces (K°,dr) are geodesic spaces, see [14, Section 2.6], that is to
say, any two points in K° are connected by a geodesic segment. Recall that a map y from
an (open, closed, bounded, or, unbounded) interval I C R into a metric space (X, d) is called
a geodesic path if d(y(s),y(t)) = |s — | for all s,¢ € I. The image of vy is called a geodesic
segment in (X, d), and for x,y € (X, d).

3. Midpoints in general cones

Before we give the characterisation of the midpoints set in (K°, dr), where (V, K, u) is an
order unit space, we make some preliminary observations. To begin, we note thatif x,y € K°
are linearly dependent, then the straight-line segment connecting x and y is a unique geodesic
segment for Thompson’s metric, see [16, Lemma 3.3], and hence the midpoints set is a
singleton in that case. So, in the sequel we only need to consider the midpoints sets of
linearly independent elements of K°.

If x,y € K° are linearly independent, then we write V(x,y) = span(x,y) and we let
K(x,y) := V(x,y) N K be the 2-dimensional cone containing x and y, which has relative
interior K(x,y)° in V(x, y). Note that for w, z € K(x, y)° the distance dr(w, z) with respect to
K(x,y) is the same as dy(w, z) with respect to K. As K(x, y) is a closed cone in V(x, y) and
K(x,y)° is non-empty, we know [14, Theorem A.5.1] that there exist linearly independent
linear functionals ¥; and ¥, on V(x, i) such that

K(x,y) ={z€ V(x,y): ¥1(2) = 0 and ¥»(z) = 0}.

The linear map ¥: V(x,y) — R? given by, Y(z) = (W1(2),¥2(2)) for z € V(x,y), maps
K(x,y) onto the standard positive cone Ri = {(wy,wy): w; > 0and w, > 0}. Furthermore
for u,v € K(x,y)° we have that M(u/v) = M(¥Y(u)/'P(v)), and hence Y is a dr-isometry. One
can verify that in ((R2)°, dr) the path t — ¥(x)!""P(y)', for t € [0, 1], where ¥(x)! "W (y)’ :=
(Y)W, Y(x), " W(y),) € (RI)°, is a geodesic path from ¥(x) to ¥(y). The pull-
back of this geodesic path under the isometry W is an geodesic path connecting x and y in
(K(x,y)°,dr). We will call it the canonical geodesic connecting x and y and denote it by
Yxy- Moreover, the midpoint
My 1= 7xy(1/2)
is said to be the canonical midpoint of x and y. Note that

M(x/my) = MCP(x)/P(x) 2 P(y)' %) = MCP)'2 /P W)'?) = M(x/y)'2,
so that M(x/y) = M(x/ mxy)z. Likewise it can be shown that
3.1 M(my,[y)* = M(x/y) and  M(m,,/x)* = M(y/x) = M(y/m,,)*.

Given x,y € K°, we let {3, := {dy + (1 — A)x: A > 0} be the half-line emanating from x
through y. The following basic observation will be useful.

Lemma 3.1. Let (V, K, u) be an order unit space and x,y € K°. If M := M(x/y) > 1, then
ty, intersects 0K in

(3.2) y = Y+ X.
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Proof. Note that, as K is closed in (V, K, u), we have that y — M~'x € K. This implies
that iy’ := %y + ﬁx € 0K. As y' is also on €5, the result follows. O

Similarly, if M = M(y/x) > 1, we get that £, intersects 9K in the point

,._ M 1
3.3) x' = M_1x+ l—My'

For a non-empty subset W C V we will denote the affine span of W in V by aftf W.

Theorem 3.2. Let (V, K, u) be an order unit space and x,y € K° be linearly independent.
Then the affine span of M(x, y) satisfies:
(i) aff M(x, ) = my, + span Fy, if M(x/y) > M(y/x);
(ii) aft M(x,y) = my, + span Fy, if M(y/x) > M(x/y);
(iii) aff M(x,y) = my, + span F N span F, if M(x/y) = M(y/x),
where x' and y’ are as in (3.3) and (3.2), respectively.
Proof. Note that case (ii) follows from case (i) by symmetry. So, suppose that M(x/y) >

M(y/x) and write M := M(x/y). As dr(x,y) = log M, we see that M > 1. It now follows
from Lemma 3.1 that £}, intersects K in

Let z € M(x, y). We deduce from
dr(x,y) < log M(x/z) +log M(z/y) < dr(x,2) + dr(z,y) = dr(x,y)

that d7(x, z) = log M(x/z) = log M(z/y) = dr(z, y), so that M(x/z)> = M(z/y)* = M. Write
N := M(x/z) > 1. Again using Lemma 3.1 the half-line £}, intersects 9K in

_ N ]
SENSTUTToNT
and ¢}, intersects 9K in
_ N ]
2N T TN
see Figure 1.
K K
0K 0K
21 22

Fic. 1. Endpoints
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Working out the following convex combination
1 N (N 1 N? N
N+ TN T et e T e T T
N? L] M1
= X = X
T L B oA VR L 7
=y

shows that z; and z, both belong to the face F,.
Write z := my, + v for some v € V. Let m,, € F, be the points of intersection of €,*,'lw,/ and

OK. So,
N 1

N1V TN
by Lemma 3.1. It follows that v = (N — 1)(in,, — z2) € span F,, which yields the inclusion

My, = My

aff M(x,y) €S my, +spanF,.

Conversely, suppose v € span F,,, with v # 0. Define z := m,, + v. By Lemma 3.1 the
point
— N 1
My 1= Y + TN
lies in K. Asy,, lies in K(x, y), we see that m,, is a positive scalar multiple of y’, and hence
my, lies in the relative interior of F,,. Lett = (1 - N )~! and note that

— N
Myy +tv = my + m(mw + l)).
As m,, is in the relative interior of F,,, we can replace v by ev for some € > 0 sufficiently
small, and assume that m,, + tv € F, and m,, + v € K°. We know from [14, pp. 28-29] that
|y 11|

and M(z/y) = —|Z(ﬁxy * )l

M(@my/y) = —— — ,
Y lym,| ly(m,, + tv)]

where |uw’|/lww’| denotes the ratio of the lengths of the straight-line segments [u, w’] and
[w,w’], see Figure 2. Using similarity of triangles we conclude that M(m.,/y) = M(z/y).

Myy

Ty + 10 \ y/(
4

FiG. 2. The endpoints in F,



MippoinTs FOR THOMPSON’s METRIC 203

Similarly, let
R N 1
Myy = mmw + mx.
Note that 771,, € K by Lemma 3.1 and is a positive scalar multiple of y’, as yy, is contained

in K(x,y). By possibly further reducing € > 0 we may assume for s := N/(N — 1) that

xekF,

. N 1
mxy+su= m(mxy'i‘l))'F m

and my, + v € K°. Again using similarity of triangles, see Figure 3, we get that

[x772 4 | |x(1,, + sv)|
M(x/my) = ——— = —— = M(x/z).
|mxymxy| |Z(mxy + sv)|
Ty \ My -
X
Z
Py + 1o

Fy,

FiG. 3. The endpoints in F,

It now follows from (3.1) that
M(x/2)* = M(x/my,)* = M(x/y) > M(y/x) = M(m,/x)*.

As the map (1, w) — M(u/w) is continuous on K°XK°, see [15, Lemma 2.2], we can assume,
after possibly further reducing € > 0, that M(z/x)*> < M(x/y). It now follows that dr(x, z) =
dr(x,my) = %dT(x, y). In the same way it can be shown that d7(z,y) = dr(my,y) =
%dT(x, y). We conclude that z € M(x, y) and hence m,, + span F,, C aff M(x, y).

Finally, suppose that M(x/y) = M(y/x). We have already shown that the inclusions
aff M(x,y) € my, + spanF, and aff M(x,y) € m,, + spanF,, hold, which immediately
implies that

aff M(x,y) C my, + span Fy N span F,.

Moreover, if v € span Fy N span F, and z := my, + €v, then we have also shown that for
small enough € > 0, the equalities log M(x/z) = log M(z/y) = %dr(x, y) hold. Now since
M(x/y) = M(y/x), we can apply the same argument to show that log M(z/x) = log M(y/z) =
%dr(x, y), and hence

My, + span Fy N span F,, C aff M(x,y),

which proves the last assertion. O
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4. Midpoints in symmetric cones

The interior K° of a closed cone K in a finite-dimensional inner-product space (V, (-, -)) is
called a symmetric cone if the dual cone, K* := {y € V: (y,x) > 0 for all x € K} satisfies
K* = K, and the automorphism group Aut(K) := {A € GL(V): A(K) = K} acts transitively
on K°. A prime example is the cone of positive definite Hermitian matrices.

It is well known that the symmetric cones in finite dimensions are precisely the interiors
of the cones of squares of Euclidean Jordan algebras. We will follow the notation and
terminology from [7], which gives detailed account of the theory of symmetric cones.

A Euclidean Jordan algebra is a finite-dimensional real inner-product space (V, (-, ))
equipped with a bilinear product (x,y) — x e y from V X V into V such that for each
x,yeVv:

(i) xey=yex,
(i) xe (x*> e y) = x*> e (x ®y), and
(iii) for each x € V, the linear map L(x): V — V given by L(x)y := x e y satisfies

(L(x)y,z) =y, L(x)z) forally,zeV.

A Euclidean Jordan algebra is not associative in general, but it is commutative. The unit in
a Euclidean Jordan algebra is denoted by e. An element ¢ € V is called an idempotent if
c? =c. Aset{ci,...,c}is called a complete system of orthogonal idempotents if

(i) ¢ = ¢; forall i,

(ii) ciecj=0foralli # j, and

(fi)) c1+---+cp=e.

The spectral theorem [7, Theorem III.1.1] says that for each x € V there exist unique real
numbers Ay, ..., A, all distinct, and a complete system of orthogonal idempotents cy, ..., cx
such that x = Ajcy +- - - + Axcx. The numbers A; are called the eigenvalues of x. The spectrum
of x is denoted by o(x) = {4: A eigenvalue of x}, and we write

Ai(x) =max{l: 1 € o(x)} and A_(x) =min{d: 1 € o(x)}.

The spectral decomposition gives rise to a functional calculus on V. For example, for x =
Aici+- -+ Akcp with A; > Oforalli = 1,.. ., k, we can define x /2 := /III/ZC] +-- -+/1,;l/2ck.

For x € V the linear mapping, P(x) = 2L(x)*>—L(x?), is called the quadratic representation
of x. Note that P(x~'/?)x = e for all x € K°. It is known that P(x!) = P(x)~! for all x € K°
and P(x) € Aut(K) whenever x € K°, see [7, Proposition II1.2.2]. So, P(x) is an isometry of
(K°,dry)if x € K° by [14, Corollary 2.1.4]. For x,y € K° we write

(e y) = (PG~ P2 and  A-(xy) = (P~ ).
Note that for x,y € K°, x <x By if and only if 0 <x Be — P(y~'/?)x, and hence
M(x/y) = 1:(x, y).
Similarly, ay <g x is equivalent with 0 <x P(y~'/?)x — ae, and hence

M(y/x)" = A_(x, p).
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So, for x,y € K° the Thompson metric distance is given by
dr(x,y) = log (max{,(x, ), A-(x.)™"}).
For A, B € I1,,(C)° we have that P(B‘%)A = B‘%AB‘%; S0, in that case

dr(A, B) = max {max log /l,»(BféAB*% ), max — log /li(Bf%ABfé )}
= max |1og /ll-(B_lA)| .
1

The quadratic representation P(y~!/?) of y € K° is an isometry with respect to Thomp-
son’s metric, and hence z € M(x, y) if and only if P(y‘%)z € M(P(y‘%)x, e). Thus, without
loss of generality, we may consider midpoints sets of the form M(x, e) where x € K°.

The following lemma, which is Exercise II1.3 in [7] will be useful in the sequel. A proof
can be found in [16, Lemma 6.1].

Lemma 4.1. Let K° be a symmetric cone. For x,y € K we have (x,y) = 0 if and only if
xeoy=0.

Given an idempotent ¢ € K we have the Peirce decomposition
V=V(,0e V(1) e V,1)

where V(c, 1) are the corresponding eigenspaces of the only possible eigenvalues A that the
linear operator L(c) can have, see [7, Proposition III.1.3]. Although this is a direct sum of
vector spaces, both components V(c,0) and V(c, 1) are Jordan subalgebras [7, Proposition
IV.1.1], and for A4 = 0, 1 we will denote the cone of squares in V(c, 1) by K(c, 4). Regarding
the midpoint sets, we are particularly interested in V(c, 0). Note that this subalgebra has e—c
as a unit.

For x € K° with spectral decomposition x = Zle Aic; we let

Cei={er € fer.. . a) : max{d;, 47"} = max{A, (x), A-(x) ")}

Note that after reordering the eigenvalues 4; < A, < .-+ < A we have that C, C {cy, ¢,}.
Before we characterise the affine span of the midpoints set M(x, e) for x € K°, we first prove
the following lemma.

Lemma 4.2. Let V be a Euclidean Jordan algebra with cone of squares K and let c € K
be an idempotent. Then K(c,0) is a face of K with relative interior

K(c,0)° = Inv(V(c, 0)) N K(c, 0),
where Inv(V(c, 0)) denotes the set of invertible elements in the subalgebra V(c, 0).

Proof. Let z € K(c,0). If £1,& € K and 0 < t < 1 are such that z = & + (1 — 1)&;, then

0<t{c,&1)+ (1 =1)(c,62) ={c,2) =0,

so £1,& € K(c,0) by Lemma 4.1, and hence K(c,0) is a face of K. Note that the Jordan
subalgebra V(c, 0) has unit e — ¢ € K(c,0), since (e — ¢)? = e — c¢. The fact that K(c, 0)° =
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Inv(V(c,0)) N K(c,0) now follows from [7, Theorem III.2.1]. m]

Note that K(c,0) = F._.. Indeed, if x € K(c,0), then x < n(e —c) forsomen > 1,as e —c¢
is an order unit in V(c,0). So, K(c,0) € F._. by Lemma 2.1. Conversely, if y € F,_., then
0 <k y <k n(e — c) for some n > 1. It now follows that

0 <{c,y) ={c,y) = {c,n(e = ¢)) = {c,y —n(e - ¢)) < 0,

and hence y € K(c,0) by Lemma 4.1.
We can now prove the characterisation of the midpoints set in symmetric cones.

Theorem 4.3. Let K° be a symmetric cone. For x € K° \ {e} let C, be defined as above
and put ¢ := }.cc, ci. The affine span of M(x, e) satisfies

aff M(x, e) = m,. + V(c,0).
Proof. Let x = Ajc; + - -+ + Axcy be the spectral decomposition of x with 4} < --- < 4.
First suppose that C, = {c;}. Note that 4; > 1, as dr(x, e) = log A4; > 0. The endpoint
k-1

Lk 1 S a-a
a1 Ak—lx_zg/u—lc“

i=

where e is between x’ and x, is in the relative interior of K(c,0) by Lemma 4.2, as it is
invertible in V(c, 0) with respect to e — ¢, = ¢; +- - - + ¢x—1. The desired equality now follows
from Theorem 3.2 since K(c,0) is generating in V(c,0). In the same way it can be shown
that the assertion holds if C, = {c;}. Finally, if C, = {cy, ¢}, then ¢ = ¢; + ¢, and it follows
from Theorem 3.2 that

aff M(x,e) = my, + V(cy,0) N V(cy, 0).

Clearly V(c,0) 2 V(c1,0) N V(ck,0). As V(c;,0) = ker L(c;) for i = 1,k and K(c,0) C
ker L(cy) N ker L(cy), we must have that V(c,0) = V(c1,0) N V(ey, 0), since span K(c,0) =
V(c,O0).

O

It follows from Theorem 4.3 that dim aff(M(x, e)) = dim V(c,0). If V is a simple n-
dimensional Euclidean Jordan algebra, i.e., V has no non-trivial ideals, then for any two
orthogonal primitive idempotents ¢, and ¢, in V the dimension

d:=dimV(cr, 1) nVies, b
is independent of ¢; and c;. In fact, if rank(V) = r, then
n=r+ gr(r -1

by [7, Corollary IV.2.6].

Now let us decompose x with respect to a Jordan frame, for details see [7, Theorem
II1.1.2], where we might have different primitive idempotents corresponding to the same
eigenvalues, so

x=Aicy + -+ A
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We can rearrange the eigenvalues in such a way that

“4.1) X = Z/lej‘l‘ Z/lici.

jeCs c;€Cy
It follows that for g := |C¢| the dimensional formula
dim V(c,0) = dim V(e — ¢, 1) = g + $q(g - 1)

holds by [7, Proposition IV.3.1]. As dim M(x, e¢) = dim aff(M(x, e)), this immediately gives
the following corollary.

Corollary 4.4. Let V be a simple n-dimensional Euclidean Jordan algebra with cone of
squares K and rank r > 1. If x € K°, then the affine dimension of the midpoints set satisfies

n—r
r(r—1)

As an example, let us consider the Hermitian matrices H,(C) and compute
dim(aff M(A, I,)) for A € I1,(C)° and I, the n X n identity matrix. There exists a unitary
matrix U such that UAU* = D where D is a diagonal matrix with the eigenvalues on the
diagonal arranged as in (4.1). Conjugating with U is a linear automorphism of I1,,(C), and
B e M(A, I,)if and only if U*BU € M(D, I,). So, to compute the dimension of aff M(A, I,,)
we may assume without loss of generality that A is a diagonal matrix as described above. In
that case the projection C is of the form

$ 0 0
c-5me0 L)

i=q+1

) d
dim M(x,e) = g + 5‘1(‘]_ =g+ q(g—1).

where g = |C{|. It is easily checked that V(C, 0) equals

V(C,0) = {(%q 8) DAy € Hq(C)},

see [7, p. 63], and dim(V(C, 0)) = ¢*. Since rank(V) = n and dim(V) = #n?, it follows from
Corollary 4.4 that
dim M(A,L,) = g +g(g - 1) = ¢*.

References

[1] M. Akian, S. Gaubert, B. Lemmens, and R.D. Nussbaum: Iteration of order preserving subhomogeneous
maps on a cone, Math. Proc. Cambridge Philos. Soc. 140 (2006), 157-176.

[2] C.D. Aliprantis and R. Tourky: Cones and duality, Graduate Studies in Mathematics, 84. American Math-
ematical Society, Providence, RI, 2007.

[3] E. Andruchow, G. Corach and D. Stojanoff: Geometrical significance of Lowner-Heinz inequality, Proc.
Amer. Math. Soc. 128 (2000), 1031-1037.

[4] R. Bhatia: Positive definite matrices. Princeton Series in Applied Mathematics. Princeton University Press,
Princeton, NJ, 2007.



208 B. LEMMENS AND M. ROELANDS

[5] G. Corach and A.L. Maestripieri: Differential and metrical structure of positive operators, Positivity 3
(1999), 297-315.
[6] G. Corach, H. Porta, and L. Recht: Convexity of the geodesic distance on spaces of positive operators,
Ilinois J. Math. 38 (1994), 87-94.
[7] J. Faraut and A. Kordnyi: Analysis on Symmetric Cones, Oxford Mathematical Monographs, Clarendon
Press, Oxford, 1994.
[8] S. Gaubert and Z. Qu: The contraction rate in Thompson’s part metric of order-preserving flows on a cone:
application to generalized Riccati equations, J. Differential Equations 256 (2014), 2902—-2948.
[9] D.H. Hyers, G. Isac, and T.M. Rassias: Topics in nonlinear analysis & applications. World Scientific Pub-
lishing Co., Inc., River Edge, NJ, 1997.
[10] J. Lawson and Y. Lim: Metric convexity of symmetric cones, Osaka J. Math. 44 (2007), 795-816.
[11] J. Lawson and Y. Lim: Weighted means and Karcher equations of positive operators, Proc. Natl. Acad. Sci.
USA 110 (2013), 5626-5632.
[12] J. Lawson and Y. Lim: Karcher means and Karcher equations of positive definite operators, Trans. Amer.
Math. Soc. Ser. B 1, (2012), 1-22.
[13] H. Lee and Y. Lim: Carlson’s iterative mean algorithm of positive definite matrices, Linear Algebra Appl.
439 (2013), 1183-1201.
[14] B. Lemmens and R. Nussbaum: Nonlinear Perron-Frobenius theory. Cambridge Tracts in Mathematics
189, Cambridge Univ. Press, Cambridge, 2012.
[15] B. Lemmens, B. Lins, R. Nussbaum, and M. Wortel: Denjoy-Wolff theorems for Hilbert’s and Thompson’s
metric spaces, J. Anal. Math., to appear.
[16] B. Lemmens and M. Roelands: Unique geodesics for Thompson’s metric, Ann. Inst. Fourier (Grenoble) 65
(2015), 315-348.
[17] Y. Lim: Finsler metrics on symmetric cones, Math. Ann. 316, (2000), 379-389.
[18] Y. Lim: Geometry of midpoint sets for Thompson’s metric, Linear Algebra Appl., 439 (2013), 211-227.
[19] Y. Lim and M. Pélfia: The matrix power means and the Karcher mean, J. Funct. Anal. 262, (2012), 1498—
1514.
[20] L. Molnar: Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137
(2009), 3849-3859.
[21] R.D. Nussbaum: Finsler structures for the part metric and Hilbert’s projective metric and applications to
ordinary differential equations, Differential Integral Equations 7 (1994), 1649-1707.
[22] R.D. Nussbaum: Hilbert’s projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc.
391,(1988), 1-137.
[23] M. Pélfia and D.Petz: Weighted multivariable operator means of positive definite operators, Linear Algebra
Appl. 463 (2014), 134-153.
[24] A.C. Thompson: On certain contraction mappings in a partially ordered vector space, Proc. Amer. Math.
Soc. 14 (1963), 438-443.

Bas Lemmens

School of Mathematics
Statistics & Actuarial Sciences
University of Kent

CT27NF, Canterbury

United Kingdom

e-mail: B.Lemmens@kent.ac.uk

Mark Roelands

School of Mathematics
Statistics & Actuarial Sciences
University of Kent

United Kingdom

e-mail: mark.roelands @ gmail.com




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.53333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 150
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


