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Abstract
This paper is concerned with the abstract quasilinear hyperbolic equations of Kirchhoff type

with perturbation. We show the existence of the wave operators and the scattering operator for
small data, and that these operators are homeomorphic with respect to a suitable metric in a
neighborhood of the origin.

Introduction

Let H be a separable complex Hilbert space H with the inner product (·, ·)H and the norm
‖ · ‖. Let A be a non-negative injective self-adjoint operator with domain D(A), and let m be
a function satisfying

m ∈ C2([0,∞); [m0,∞)),

with a positive constant m0. Let b(t) be a C1 function on R. We consider the initial value
problem of the abstract quasilinear hyperbolic equations of Kirchhoff type with perturbation

u′′(t) + b(t)u′(t) + m(‖A1/2u(t)‖2)2Au(t) = 0,(0.1)

u(0) = φ0, u′(0) = ψ0.(0.2)

The asymptotic behavior of the solution of the equation above depends on the integrability
of b with respect to t.

If b(t) = (1 + t)−p with 0 ≤ p ≤ 1, it is known that the global solution of (0.1)-(0.2) exists
uniquely and behaves like solutions of a corresponding parabolic equation, for small initial
data (φ0, ψ0) ∈ D(A) × D(A1/2) (see Yamazaki [14] for 0 ≤ p < 1 and Ghisi and Gobbino
[7] for p = 1, and see Ghisi [6] for a mildly degenerate case m(λ) = λγ with γ ≥ 1 and
0 ≤ p ≤ 1). There are no result about the global solvability for large initial data in Sobolev
spaces, even for the constant dissipation term.

On the other hand, if b satisfies the assumptions

lim
t→±∞ b(t) = 0,(0.3)

〈t〉ptb′(t) ∈ L1(R),(0.4)

where p ≥ 0 is a constant and 〈t〉 := (1+ |t|2)1/2, the author [15] showed the global existence
of a solution for small data in some class and showed the following (see Theorems B and
C):
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(i) The solution of the Cauchy problem for the perturbed Kirchhoff equation has the
same asymptotic behavior of a function obtained by a transformation of time vari-
able from a solution of the free wave equation with an appropriate wave speed.

(ii) Conversely, there exists a solution of the Kirchhoff equation which has the same
asymptotic behavior of a function obtained by a transformation of the time vari-
able from the solution of the Cauchy problem of the free wave equation with an
appropriate wave speed.

However, these facts do not imply that solutions of the perturbed Kirchhoff equation are not
asymptotically free, in the sense that it has the same asymptotic behavior as that of solutions
of free wave equations, since the transformation of time variable is used. The author [16]
showed the following: If b satisfies (0.3) and (0.4) with p = 0 and does not change sign for
sufficient large |t|, and there exists a solution with small data which is asymptotically free,
then tb(t) must be integrable (see Theorem D). The integrability of tb(t) is equivalent to the
condition (0.3) and (0.4) with p = 1 if b is monotone for sufficiently large |t| (see remark 3).
Hence, in order to show that the solutions are asymptotically free, it is necessary to assume
that p ≥ 1 in the assumption (0.4), if b is monotone for sufficiently large |t| (see remark 3).

The purpose of this paper is to show the following assertions under the assumption that b
satisfies (0.3) and (0.4) with p ≥ 1.

(iii) The solutions of the perturbed Kirchhoff equation with small data in some class are
asymptotically free.

(iv) For small initial data in some class and the solution of the free wave equation with
an appropriate wave speed, there exists a solution of perturbed Kirchhoff equation
which approaches to the solution.

(v) The wave operators exist and they are homeomorphic in a neighborhood of the
origin with respect to a metric given in Notation 5 in Section 1. It follows that the
scattering operator is also homeomorphic in a neighborhood of the origin.

Last we list previous results on the asymptotic behavior or scattering, in the case b ≡ 0
and A = −Δ on L2(Rn). Ghisi [5] first showed (iii) above. The author [11] showed (iii)
and (iv). However [11] did not prove (v), but proved the existence of the wave and its
inverse operators for initial data in some class, and the continuity of the scattering operator
only at the origin with respect to a metric somewhat different from the one in this paper,
together with the continuity from a neighborhood of the origin in this topology to a Sobolev
space with weaker norm. Kajitani [8, 9] considered the Kirchhoff equation of the type
m(λ) = 1 + ελ, where A is an elliptic differential operator with coefficients depending on
space variables and he showed that, for every initial data in a class, there exists a positive
constant ε0 > 0 such that for every ε ∈ (0, ε0) the property (i) and (ii) above hold. Hence,
even in the case b ≡ 0 and A = −Δ on L2(Rn), our result (v) is new.

The outline of this paper is as follows: In section 1, we state notations and results. In
section 2, we state some examples of Sobolev spaces included in the spaces we consider. In
section 3, we transform original problem. In section 4, we prove propositions. In section 5,
we prove Theorem 1. In section 6, we prove Theorems 2 and 3.

1. Results

1. Results
For a closed operator B in a Hilbert space H, D(B) and R(B) denote the domain of B and
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the range of B, respectively.
For a non-negative number J, the domain of AJ/2 becomes a Hilbert space D(AJ/2)

equipped with the inner product

( f , g)J := (AJ/2 f , AJ/2g)H + ( f , g)H .

and the norm ‖ f ‖2J = ( f , f )J . We note that ‖ f ‖0 = ‖ f ‖.
Notation 1. Let (H) denote the space of all bounded linear operator on Hilbert space H

equipped with the operator norm ‖·‖(H).

We state notations and some classes of functions as in [15].

Notation 2. Let p be a non-negative number. For a continuous function f on R, put

| f |p =
∫
R

〈r〉p| f (r)|dr.

Notation 3. For every α > 0, let α denote the completion of D(Aα) by the norm ‖Aα · ‖.
Let α be the extension of Aα on α. The fact that Aα is an injective self-adjoint operator
implies that the range R(Aα) is dense in H, and thus α : α → H is surjective. From this
fact and the definition, it follows that α : α → H is an isometric isomorphism.

For example, if H = L2(Rn) and A = −Δ with D(A) = H2(Rn), then α is equal to the
homogeneous Sobolev space Ḣ2α.

Notation 4. Let k and p be non-negative numbers and let ε be a positive number. We put

Xk,p :={( f , g) ∈ 1/2 × H; (1/2 f , g) ∈ D(Ak/4) × D(Ak/4),

|( f , g)|2Xk,p
:= |(Ak/4e2irA1/2


1/2 f , Ak/4


1/2 f )H |p

+ |(Ak/4e2irA1/2
g, Ak/4g)H |p

+ 2|(Ak/4e2irA1/2


1/2 f , Ak/4g)H |p < ∞},
and

Yk,p := Xk,p ∩ (H × H).

We abbreviate k if k = 1 as

Xp := X1,p, Yp := Y1,p.

We put

Ỹp :={( f , g) ∈ Yp; ( f , g) satisfies the following (1.1)},

lim
t→±∞(eitA1/2

A1/2 f , A1/2 f )H = lim
t→±∞(eitA1/2

g, g)H(1.1)

= lim
t→±∞(eitA1/2

A1/2 f , g)H = 0.

Remark 1. Kajitani [9] introduced notation Yk,p and noted

Yp ∩ Y0,p = Y1,p ∩ Y0,p ⊂ Ỹp,
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since the functions in (1.1) and their derivatives with respect to t are integrable.

Remark 2. In the case H = L2(Rn) and A = −Δ with D(A) = H2(Rn), we can prove that
(1.1) holds for every ( f , g) ∈ 1/2×H, in the same way as in the proof of Riemann-Lebesgue
Theorem.

Notation 5. For J ≥ 0, we put

XJ
p = {( f , g) ∈ Xp; (1/2 f , g) ∈ D(AJ/2) × D(AJ/2)},

Y J
p = Yp ∩ (D(A(J+1)/2) × D(AJ/2)),

Ỹ J
p = Ỹp ∩ (D(A(J+1)/2) × D(AJ/2)),

and put

|( f , g)|XJ
p

:= |( f , g)|Xp
+

∥∥∥1/2 f
∥∥∥

J + ‖g‖J for ( f , g) ∈ XJ
p

|( f , g)|Y J
p

:= |( f , g)|XJ
p
+ ‖ f ‖ = |( f , g)|Xp

+ ‖ f ‖J+1 + ‖g‖J for ( f , g) ∈ Y J
p .

We define a metric on XJ
p as

dJ
p(( f1, g1), ( f2, g2)) := dp(( f1, g1), ( f2, g2)) +

∥∥∥1/2( f1 − f2)
∥∥∥

J + ‖g1 − g2‖J
for ( f1, g1), ( f2, g2) ∈ XJ

p, where

dp(( f1, g1), ( f2, g2))2

:= |(A1/4e2irA1/2


1/2 f1,3/4 f1)H − (A1/4e2irA1/2


1/2 f2,3/4 f2)H |p
+ |(A1/4e2irA1/2

g1, A1/4g1)H − (A1/4e2irA1/2
g2, A1/4g2)H |p

+ 2|(A1/4e2irA1/2


1/2 f1, A1/4g1)H − (A1/4e2irA1/2


1/2 f2, A1/4g2)H |p.
We define a metric on Y J

p as

dJ
Yp

(( f1, g1), ( f2, g2)) := dJ
p(( f1, g1), ( f2, g2)) + ‖ f1 − f2‖

for ( f1, g1), ( f2, g2) ∈ Y J
p .

It is easy to see that dJ
p and dJ

Yp
become metrics on XJ

p and Y J
p respectively, and thus, XJ

p

and Y J
p become metric spaces with the metrics dJ

p and dJ
Yp

respectively.

Notation 6. For J ≥ 0 and ε > 0, we define a subset XJ
p(ε) of XJ

p by

XJ
p(ε) :={( f , g) ∈ XJ

p; |( f , g)|Xp
+ ‖1/2 f ‖ + ‖g‖ ≤ ε}.

We define subsets Y J
p(ε) and Ỹ J

p(ε) of Y J
p by

Y J
p(ε) := XJ

p(ε) ∩ Yp = XJ
p(ε) ∩ (H × H),

Ỹ J
p(ε) := XJ

p(ε) ∩ Ỹp,

In [15], we extended the space considered in problem (0.1)–(0.2) to a larger one, namely,
we consider the problem

u′′(t) + b(t)u′(t) + m(‖1/2u(t)‖2)2A1/2


1/2u(t) = 0, t > 0,(1.2)
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u(0) = φ0, u′(0) = ψ0,(1.3)

for (φ0, ψ0) ∈ 1/2 × D(A1/2) satisfying 1/2φ0 ∈ D(A1/2).

Notation 7. Let I be one of the interval R, (0,∞) or (−∞, 0) and let b(t) ∈ C(I). We say
that u is a solution of

u′′(t) + b(t)u′(t) + m(‖1/2u(t)‖2)2A1/2


1/2u(t) = 0, t ∈ I,(1.4)

if

u ∈ C1 (
I;1/2

)
, (1/2u, u′) ∈

⋂
j=0,1

C j
(
I; D(A(1− j)/2) × D(A(1− j)/2)

)
,

and (1.4) holds in H.

The author showed the following global existence of solution.

Theorem A (Theorem 1 of [15]). Let J ≥ 1 and p ≥ 0. Assume that b satisfies (0.3)
and (0.4). Then there exist a positive number ε1 such that the following holds. For every
(φ0, ψ0) ∈ XJ

p(ε1), perturbed Kirchhoff equation (1.2)–(1.3) has a unique global solution
u ∈ C

(
R;1/2

)
satisfying

(1.5) (1/2u, u′) ∈
⋂
j=0,1

C j
(
R; D(A(1− j)/2) × D(A(1− j)/2)

)
.

Furthermore, the following holds.

(u, u′) ∈ C
(
R; XJ

p

)
,

(1/2u, u′) ∈ C1
(
R; D(A(J−1)/2) × D(A(J−1)/2)

)
.

If (φ0, ψ0) ∈ Y J
p(ε1), then u ∈ ⋂

j=0,1,2 C j
(
R; D(A(J+1− j)/2)

)
.

The global solutions of Kirchhoff equation given by Theorem A has the same asymptotic
behavior as time-transformed function of the solution of a free equation:

Theorem B (Theorem 2 of [15]). Let J ≥ 1 and p ≥ 0. Assume that b satisfies (0.3) and
(0.4). Let ε1 be the positive constant in Theorem A.

(i) There exists a positive constant ε2(≤ ε1) such that the following holds. Suppose
that (φ0, ψ0) ∈ XJ

p(ε2), and that u(t) ∈ C1 (
R;1/2

)
is the solution of (1.2)–(1.3) satisfy-

ing (1/2u, u′) ∈ ⋂
j=0,1 C j

(
R; D(A(1− j)/2) × D(A(1− j)/2)

)
. Then the limits

C±∞ = lim
t→±∞m(‖A1/2u(t)‖2)

exist and satisfy

lim
t→±∞〈t〉

p|m(‖A1/2u(t)‖2) −C±∞| = 0,

and there uniquely exist global solutions v+, v− ∈ C1 (
R;1/2

)
of

v′′+(t) +C2
+∞A1/2


1/2v+ = 0, t ∈ R,

v′′−(t) +C2
−∞A1/2


1/2v− = 0, t ∈ R,
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satisfying

(1/2v±, v′±) ∈
⋂
j=0,1

C j
(
R; D(A(1− j)/2 × D(A(1− j)/2)

)

and

lim
t→±∞

(
‖1/2u(t) −1/2v±(C−1

±∞τ(t))‖ + ‖u′(t) − v′±(C−1
±∞τ(t))‖

)
= 0,

where

τ(t) :=
∫ t

0
m(‖A1/2u(s)‖2)ds for t ∈ R.

Furthermore, it holds that

(v±, v′±) ∈ C
(
R; XJ

p

)
,(1.6)

(1/2v±, v′±) ∈ C1
(
R; D(A(J−1)/2) × D(A(J−1)/2)

)
,(1.7)

lim
t→±∞〈t〉

p
(
‖1/2u(t) −1/2v±(C−1

±∞τ(t))‖J + ‖u′(t) − v′±(C−1
±∞τ(t))‖J

)
= 0.

(ii) Assume moreover that (φ0, ψ0) satisfies (1.1). Then

(1.8) C±∞ = m
(
1
2
‖1/2φ±‖2 + 1

2C2±∞
‖ψ±‖2

)
,

and the limits limt→±∞ ‖1/2u(t)‖2 and limt→±∞ ‖u′(t)‖2 exist and satisfy the equality

lim
t→±∞ ‖u

′(t)‖2 = m( lim
t→±∞ ‖

1/2u(t)‖2)2 lim
t→±∞ ‖

1/2u(t)‖2.
Conversely to Theorem B, [15] showed the existence of the solution of perturbed Kirch-

hoff equation which has similar asymptotic behavior as that of the solution of the free equa-
tion. By (1.8), it is necessary to assume the relation (1.9) below.

Theorem C (Theorem 3 of [15]). Let J ≥ 1 and p ≥ 0. Assume that b satisfies (0.3) and
(0.4). Then there exist a positive constant ε3 such that the following holds. Suppose that
(φ, ψ) ∈ XJ

p(ε3) satisfies (1.1). Then there uniquely exists a positive number c∞ satisfying the
equality

(1.9) c∞ = m
(
1
2
‖1/2φ‖2 + 1

2c2∞
‖ψ‖2

)
.

Let v be the solution of

v′′(t) + c2
∞A1/2


1/2v = 0 t ∈ R

with v(0) = φ, v′(0) = ψ. Then there uniquely exist global solutions u±(t) ∈ C1 (
R;1/2

)
of

(1.2) satisfying

(1/2u±, u′±) ∈
⋂
j=0,1

C j
(
R; D(A(1− j)/2) × D(A(1− j)/2)

)
,

lim
t→±∞

(
‖1/2u±(t) −1/2v(C−1

±∞τ(t))‖ + ‖u′±(t) − v′(C−1
±∞τ(t))‖

)
= 0,
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and that
d
dt
‖1/2u±(t)‖2 is integrable on R.

Furthermore, u± satisfy the following.

(u±, u′±) ∈ C
(
R; XJ

p

)
,

(1/2u±, u′±) ∈ C1
(
R; D(A(J−1)/2) × D(A(J−1)/2)

)
.

lim
t→±∞〈t〉

p
(
‖1/2u±(t) −1/2v(C−1

±∞τ(t))‖J + ‖u′±(t) − v′(C−1
±∞τ(t))‖J

)
= 0,

〈t〉p d
dt
‖1/2u±(t)‖2 ∈ L1(R).

Theorem C does not mean that the non-trivial solutions of Kirchhoff equation which is
given by Theorem A are asymptotically free, since the transformation τ(t) is used. Different
from the linear wave equation, we need more decay condition on b for the asymptotically
free property, in view of the next theorem.

Theorem D (Theorem, its proof and Remark 2 of [16]). Assume that m satisfies

m′(x) � 0 for every x > 0.

Assume that b satisfies (0.3) and (0.4) with p = 0 and

b(t) does not change sign for every t ≤ −T0,

and

b(t) does not change sign for every t ≥ T0,

for a positive constant T0. Let ε2 be a positive constant given by Theorem B. If there exists
a solution u ∈ C

(
R;1/2

)
of perturbed Kirchhoff equation (1.2)–(1.3) with initial value

(φ0, ψ0)(� (0, 0)) ∈ X1
0(ε2) ∩ X0,0 which is asymptotically free as t → ±∞, in the sense that

there exist positive constants c+∞, c−∞ and global solutions v+, v− of

v′′+(t) + c2
+∞A1/2


1/2v+ = 0, t ∈ R,

v′′−(t) + c2
−∞A1/2


1/2v− = 0, t ∈ R,

such that

lim
t→±∞

(
‖1/2u(t) −1/2v±(t)‖ + ‖u′(t) − v′±(t)‖

)
= 0,

then

tb(t) ∈ L1(R).

Remark 3. If b satisfies (0.3) and (0.4), then Lemma 3 in section 4 with f = b and
α±∞ = 0 implies

(1.10) 〈t〉pb(t) ∈ L1(R).

This relation is also seen in the proof of Lemma 5 in [15].
If b is monotone for sufficiently large |t|, then the converse holds, that is, (1.10) implies

(0.3) and (0.4).
In fact, if b(t) is monotone-decreasing on [T0,∞) for sufficiently large T0 and satisfies

(1.10), then it follows that b satisfies (0.3), b(t) ≥ 0 on [T0,∞) and
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∫ R

T0

〈t〉p+1|b′(t)| dt = −
∫ R

T0

〈t〉p+1b′(t) dt

= −
[
〈t〉p+1b(t)

]R

t=T0
+ (p + 1)

∫ R

T0

〈t〉p−1tb(t) dt

≤ 〈T0〉p+1b(T0) + (p + 1)
∫ R

T0

〈t〉p−1tb(t) dt < ∞,

for every R ≥ T0. Hence, 〈t〉ptb′ ∈ L1((0,∞)). In the same way, we can treat the case
b(t) is monotone-increasing on [T0,∞) for sufficiently large T0. In the same way, we can
prove that the integrability of 〈t〉pb(t) on (−∞, 0) implies 〈t〉ptb′(t) ∈ L1((−∞, 0)), under the
assumption that b is monotone on (−∞,−T0) for sufficiently large T0, which completes the
proof.

In view of Theorem D and Remark 3, it is natural to assume that b satisfies the decay
condition (0.4) with p ≥ 1, for solutions of perturbed Kirchhoff equation to be asymptotic
free.

On the other hand, let us consider the case H = L2(Rn), A = −Δ with D(A) = H2(Rn).
For every p ∈ [0, 1), we see from Matsuyama [10] that there exists a small initial data (φ, 0)
in Yp such that Kirchhoff equation (0.1)–(0.2) with b ≡ 0 has a solution whose asymptotic
behavior is different from that of solutions of the corresponding free equations. In view of
this fact, it is natural to assume that initial data belong to Yp with p ≥ 1, for solutions of
Kirchhoff equation to be asymptotic free.

Hence assuming p ≥ 1, we show that the global solutions of perturbed Kirchhoff equa-
tion given by Theorem A has the same asymptotic behavior of that of the solutions of free
equations.

Theorem 1. Let J ≥ 1 and p ≥ 1. Assume that b satisfies (0.3) and (0.4). Then there
exist positive constants ε4 and K±2 (≥ 1) such that the following holds for every ε ∈ (0, ε4].
Suppose that (φ0, ψ0) ∈ Y J

p(ε), and that u(t) be the solution of (0.1)–(0.2). Then the limit

C±∞ = lim
t→±∞m(‖A1/2u(t)‖2),

whose existence is guaranteed by Theorem B, satisfies decay estimates∫ 0

−∞
〈t〉p−1|m(‖A1/2u(t)‖2) −C−∞|dt < ∞,(1.11)

∫ ∞

0
〈t〉p−1|m(‖A1/2u(t)‖2) −C+∞|dt < ∞,(1.12)

and there uniquely exist global solutions

v+, v− ∈
⋂

j=0,1,2

C j
(
R; D(A(J+1−i)/2)

)

of

v′′+(t) +C2
+∞Av+ = 0, t ∈ R,(LE:C+∞)

v′′−(t) +C2
−∞Av− = 0, t ∈ R,(LE:C−∞)
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such that

(1.13) lim
t→±∞

(
‖A1/2u(t) − A1/2v±(t)‖ + ‖u′(t) − v′±(t)‖

)
= 0.

Furthermore it holds that

(1.14) lim
t→±∞

(‖u(t) − v±(t)‖J+1 + ‖u′(t) − v′±(t)‖J) = 0,

(1.15) lim
t→±∞〈t〉

p−1 (‖u(t) − v±(t)‖J + ‖u′(t) − v′±(t)‖J−1
)
= 0.

The operators

(1.16) Υ± : (u(0), u′(0)) = (φ0, ψ0) �→ (φ±, ψ±) = (v±(0), v′±(0))

are continuous from Y J
p(ε) to Y J

p(K±2 ε) for every ε ∈ (0, ε4].
If p ≥ 2, then ∫ 0

−∞
〈t〉p−2 (‖u(t) − v±(t)‖J + ‖u′(t) − v′±(t)‖J−1

)
dt < ∞,(1.17)

∫ ∞

0
〈t〉p−2 (‖u(t) − v±(t)‖J + ‖u′(t) − v′±(t)‖J−1

)
dt < ∞.(1.18)

Remark 4. Assume that b is monotone for sufficiently large |t|. Then in view of Theorems
D and 1 together with Remark 3, the assumption (0.3) and (0.4) with p = 1 is necessary and
sufficient condition for solutions of perturbed Kirchhoff equation with small initial data in
Y1

1 to be asymptotic free.

Remark 5. The operator Υ± is the inverse of the wave operator W±, as is seen in the next
theorem.

Conversely, we show the existence of the solution of perturbed Kirchhoff equation which
converges to the solution of the free equation. For this purpose, it is necessary to assume the
relation (1.9) in view of (1.8) as well as Theorem C. Here we note that 1/2φ = A1/2φ in
(1.8) and (1.9) if (φ, ψ) ∈ Y1

p.

Theorem 2. Let J ≥ 1 and p ≥ 1. Assume that b satisfies (0.3) and (0.4). Then there
exist positive constants ε5 and K±3 (≥ 1) such that the following holds for every ε ∈ (0, ε5]:
Suppose that (φ, ψ) ∈ Ỹ J

p(ε). Let c∞ be a uniquely determined positive number satisfying the
equality (1.9) in Theorem C, and let v be the solution of

v′′(t) + c2
∞Av = 0 (t ∈ R),(LE:c∞)

v(0) = φ, v′(0) = ψ.

Then there uniquely exist global solutions

u+, u− ∈
2⋂

j=0

Ci(
R; D(A(J+1− j)/2)

)

of (0.1) such that

(1.19) lim
t→±∞

(
‖A1/2u±(t) − A1/2v(t)‖ + ‖u′±(t) − v′(t)‖

)
= 0,
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and that

(1.20)
d
dt
‖A1/2u±(t)‖2 ∈ L1(Rn).

Furthermore, the following holds:

lim
t→±∞m(‖A1/2u±(t)‖2) = c∞,(1.21)

lim
t→±∞

(‖u±(t) − v(t)‖J+1 + ‖u′±(t) − v′(t)‖J) = 0,(1.22)

lim
t→±∞〈t〉

p−1 (‖u±(t) − v(t)‖J + ‖u′±(t) − v′(t)‖J−1
)
= 0,(1.23)

and the wave operators

W± : (φ, ψ) = (v(0), v′(0)) �→ (φ0,±, ψ0,±) = (u±(0), u′±(0))

are continuous from Ỹ J
p(ε) to Ỹ J

p(K±3 ε).
If p ≥ 2, then∫ 0

−∞
〈t〉p−2

(
‖A1/2u±(t) − A1/2v(t)‖J−1 + ‖u′±(t) − v′(t)‖J−1

)
dt < ∞,(1.24)

∫ ∞

0
〈t〉p−2

(
‖A1/2u±(t) − A1/2v(t)‖J−1 + ‖u′±(t) − v′(t)‖J−1

)
dt < ∞.(1.25)

Assume furthermore that ε ≤ min{ε4/K±3 , ε5/K±2 }. Then W± is a homeomorphism from
Ỹ J

p(ε) to W±(Ỹ J
p(ε))(⊂ Ỹ J

p(K±3 ε) ⊂ Ỹ J
p(ε4)) with respect to the metric dJ

Yp
. Let Υ± be the

mapping defined by (1.16). Then W±Υ± and Υ±W± are the identity mappings on Ỹ J
p(ε).

The existence and the continuity of the scattering operator immediately follows from
Theorems 1 and 2.

Theorem 3. Let J ≥ 1/2 and p ≥ 1. Let ε4 and K+2 be the constants given by Theorem 1.
Let ε5 and K−3 be the constants given by Theorem 2. Then for every ε ≤ min{ε4/K−3 , ε5}, the
scattering operator S = W−1

+ W− is a homeomorphism from Ỹ J
p(ε) to S (Ỹ J

p(ε))(⊂ Ỹ J
p(K+2 K−3 ε))

with respect to the metric dJ
Yp

.

2. Examples of Sobolev spaces included in the set Ỹp

2. Examples of Sobolev spaces included in the set Ỹp
Let Ω be the whole space Rn or a non-trapping exterior domain with smooth boundary.

In this section, we give some examples of Sobolev spaces which are included in Ỹp, in the
case H = L2(Rn), A = −Δ with domain D(A) = {u ∈ H2(Ω); u(t, x) = 0 on ∂Ω}. Here
D(A) = H2(Rn) if Ω = Rn. As is noted in Remark 1, these follows from examples included
in Yk,p for k = 0, 1, which were shown in the previous papers [11, 12, 13]. Before describing
sufficient conditions, we prepare some notations.

Notation 8. Let 1 < p < ∞ and s ≥ 0. Let

W s
p(Rn) =

{
f ∈  ′(Rn)

∣∣∣−1(〈ξ〉s f̂ ) ∈ Lp(Rn)
}
,

with the norm ‖ f ‖W s
p
=

∥∥∥−1(〈ξ〉s f̂ )
∥∥∥

Lp . Let

W s
p(Ω) =

{
f
∣∣∣∃g ∈ W s

p(Rn) such that g|Ω = f
}
,
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with the norm ‖ f ‖W s
p(Ω) = inf

{
‖g‖W s

p(Rn)

∣∣∣∣ g|Ω = f
}
. Let W s

p,0(Ω) be the completion of C∞0 (Ω)
with respect to the norm ‖·‖W s

p(Ω). When p = 2, W s
2(Rn) and W s

2(Ω) are denoted by Hs(Rn)
and Hs(Ω), respectively.

Notation 9. For non-negative numbers s and p,

Hs,p = { f ; 〈x〉p f ∈ Hs(Rn)}(= { f ; 〈D〉s〈x〉p f ∈ L2(Rn)}).
Notation 10. For non-negative numbers k and q, we put

|(φ, ψ)|2Zk,q

:= sup
r∈R
〈r〉q(|(Ak/4


1/2e2irA1/2

φ, Ak/4


1/2φ)H | + |(Ak/4e2irA1/2
ψ, Ak/4ψ)H |

+ 2|(Ak/4e2irA1/2


1/2φ,k/4ψ)H |).
Here we note that |(φ, ψ)|Xk,p ≤ C|(φ, ψ)|Zk,q , if 1 ≤ p + 1 < q.

We first give examples of weighted Sololev spaces included in Yk,p. Although [11] and
[12] consider about the sufficient conditions for belonging to Z1,q, it follows from the proof
that these sufficient conditions are also sufficient conditions for belonging to Z1,q ∩ Z0,q:

Example 1 (see [3, Lemma A] for integer p, and [11, Lemma 1.1] for general p). Let
H = L2(Rn), A = −Δ with domain D(A) = H2(Rn). Let p ≥ 0 in the case n = 1 and
0 ≤ p < n in the case n ≥ 2. Let q > p + 1, and assume furthermore that q ≤ n + 1 in the
case n ≥ 2. Then the following inclusion holds.

H3/2,q(Rn) × H1/2,q(Rn) ⊂ Z1,q ∩ Z0,q ∩ (H × H) ⊂ Y1,p ∩ Y0,p ⊂ Ỹ1.

We give examples of non-weighted Sobolev spaces included in Yk,p:

Example 2 (see [12, Theorem 2]). Assume that n ≥ 4. Let 2(n − 1)/(n − 3) < q < ∞, and
let q′ be the dual exponent of q, that is, 1/q+1/q′ = 1, and let 0 ≤ p < (n−1)(1/2−1/q)−1.
Then (

Hmax{n(1/2−1/q)+1,3}(Rn) ∩W (n+1)(1/2−1/q)+1
q′ (Rn)

)
×

(
Hmax{n(1/2−1/q),2}(Rn) ∩W (n+1)(1/2−1/q)

q′ (Rn)
)

⊂ Y1,p ∩ Y0,p ⊂ Ỹp.

Example 3 (see [12, Theorem 4]). Assume that n ≥ 4 and Ω is non-trapping exterior
domain with smooth boundary. Let 2(n−1)/(n−3) < q < ∞, and let q′ be the dual exponent
of q, that is, 1/q + 1/q′ = 1, and let 0 ≤ p < (n − 1)(1/2 − 1/q) − 1. Let M be the smallest
integer such that M ≥ (n + 1)(1/2 − 1/q). Then

W2M+1
q,0 (Ω) ×W2M

q,0 (Ω) ⊂ Y1,p ∩ Y0,p ⊂ Ỹp.

In the above examples, the sufficient condition for belonging to Yp,k follows from the
condition for belonging to Zq,k. In the space dimension 3, we [13] showed that the following
unweighted Sobolev spaces are included in Y0 = Y1,0 directly, although we did not use the
notation Y1,0. It follows from the proof that these sufficient conditions are also sufficient
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conditions for belonging to Y0 ∩ Y0,0:

Example 4 (see [13, Theorem 3]).(
W2

1 (R3) ∩ H3(R3)
)2 ⊂ Y1,0 ∩ Y0,0 ⊂ Ỹ0.

Example 5 (see [13, Theorem 5]). Let Ω be a non-trapping exterior domain in R3 with
smooth boundary. Let p, p̃, q and q̃ be real numbers such that 1 < q̃ < 3/2 < q ≤ 2, 3 < p̃.
Then there exists a positive constant C such that(

W8
p̃,0(Ω) ∩W9

q,0(Ω) ∩W9
q̃,0(Ω) ∩W2

1 (Ω)
)2 ⊂ Y1,0 ∩ Y0,0 ⊂ Ỹ0.

3. Transformed equation

3. Transformed equation
Greenberg-Hu [4] introduced a transformation from a solution u of Kirchhoff equation

into a pair of unknown functions expressed by using Fourier decomposition. D’Ancona-
Spagnolo [1, 2, 3] improved their transformation in Rn. [15] used a similar transformation
by using spectral decomposition of the operator A instead of the Fourier transform.

We first state some classes and metrics which are transformed from Xp, Yp, dp and dYp in
Section 1.

Notation 11. Let J ≥ 0, p be a non-negative number and let ε be a positive number. We
define sets p and p as

p := {(V,W) ∈ D(A1/4) × D(A1/4); |(V,W)|p
< ∞},

p := {(V,W) ∈ p; V −W ∈ R(A1/2)},
where

|(V,W)|2p
:= |(A1/4e2irA1/2

V, A1/4V)H |p + |(A1/4e2irA1/2
W, A1/4W)H |p

+ 2|(A1/4e2irA1/2
V, A1/4W)H |p,

and subsets p(ε) of p and p(ε) of p as

p(ε) := {(V,W) ∈ p; |(V,W)|p
+ ‖V‖ + ‖W‖ ≤ ε},

p(ε) := p(ε) ∩ p.

We put


J
p := p ∩ (D(AJ/2) × D(AJ/2)),  J

p (ε) := p(ε) ∩ (D(AJ/2) × D(AJ/2)),


J
p := p ∩ (D(AJ/2) × D(AJ/2)),  J

p (ε) := p(ε) ∩ (D(AJ/2) × D(AJ/2)),

and

|(V,W)| J
p
= |(V,W)|p

+ ‖V‖J + ‖W‖J ,
|(V,W)| J

p
= |(V,W)| J

p
+ ‖A−1/2(V −W)‖.

For (V1,W1), (V2,W2) ∈ p, we define
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d̃p((V1,W1), (V2,W2))2

:= |(A1/4e2irA1/2
V1, A1/4V1)H − (A1/4e2irA1/2

V2, A1/4V2)H |p
+ |(A1/4e2irA1/2

W1, A1/4W1)H − (A1/4e2irA1/2
W2, A1/4W2)H |p

+ 2|(A1/4e2irA1/2
V1, A1/4W1)H − (A1/4e2irA1/2

V2, A1/4W2)H |p,
and put

d̃J
p((V1,W1), (V2,W2)) := d̃p((V1,W1), (V2,W2)) + ‖V1 − V2‖J + ‖W1 −W2‖J ,

d̃J
Yp

((V1,W1), (V2,W2)) := d̃J
p((V1,W1), (V2,W2))

+ ‖A−1/2(V1 −W1) − A−1/2(V2 −W2)‖.
We see that d̃J

p and d̃J
Yp

become metrics on  J
p and  J

p , respectively. We equip  J
p and a

subset  J
p (ε) of  J

p with the metric d̃J
p, and  J

p and a subset  J
p (ε) of  J

p with the metric d̃J
Yp

Notation 12. Let

G0 : (0,∞) × (D(A3/4) × D(A1/4))→ D(A1/4) × D(A1/4)

be the operator defined by

G0(λ, (φ, ψ)) :=
(
λ−1/2

(
ψ − iλA1/2φ

)
, λ−1/2

(
ψ + iλA1/2φ

))
.

Notation 13. Let

0 : (0,∞) × {(V,W) ∈ D(A1/4) × D(A1/4); V −W ∈ R(A1/2)}
→ D(A3/4) × D(A1/4)

be the operator defined by

0(λ, (V,W)) :=
(

i
2
λ−1/2A−1/2 (V −W) ,

1
2
λ1/2 (V +W)

)
.

Lemma A (Lemma 2 of [15]). (i) For every positive numbers λ, p, ε, the following holds.

G0(λ, ·, ·)XJ
p(ε) ⊂ 

J
p (2ε′),

0(λ, ·, ·) J
p (ε) ⊂ XJ

p(ε′),

where ε′ =
√

max{λ, 1/λ}ε
(ii)

d̃J
p(G0(λ1, (φ1, ψ1)),G0(λ2, (φ2, ψ2))

≤ 2 max
j=1,2

(√
max{λ j, 1/λ j} + |(φ j, ψ j)| J

p

)

× (|λ1 − λ2| + dJ
p((φ1, ψ1)), (φ2, ψ2)))

for every and (λ j, (φ j, ψ j)) ∈ (0,∞) × XJ
p( j = 1, 2), and
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dJ
p(0(λ1, (V1,W1)),0(λ2, (V2,W2)))

≤ max
j=1,2

(√
max{λ j, 1/λ j} + |(VJ ,Wj)| J

p

)

× (|λ1 − λ2| + d̃J
p((V1,W1)), (V2,W2)))

for every (λ j, (Vj,Wj)) ∈ (0,∞) ×  J
p ( j = 1, 2).

Lemma 1. (i) For every positive numbers λ, p, ε, the following holds.

G0(λ, ·, ·)Y J
p(ε) ⊂ 

J
p (2ε′),

0(λ, ·, ·) J
p (ε) ⊂ Y J

p(ε′),

where ε′ =
√

max{λ, 1/λ}ε.
(ii)

d̃J
Yp

(G0(λ1, (φ1, ψ1)),G0(λ2, (φ2, ψ2))

≤ 2 max
j=1,2

(√
max{λ j, 1/λ j} + |(φ j, ψ j)| J

p

)

× (|λ1 − λ2| + dJ
Yp

((φ1, ψ1)), (φ2, ψ2)))

for every and (λ j, (φ j, ψ j)) ∈ (0,∞) × Y J
p( j = 1, 2), and

dJ
Yp

(0(λ1, (V1,W1)),0(λ2, (V2,W2)))

≤ max
j=1,2

(√
max{λ j, 1/λ j} + |(Vj,Wj)| J

p

)

× (|λ1 − λ2| + d̃J
Yp

((V1,W1)), (V2,W2)))

for every (λ j, (Vj,Wj)) ∈ (0,∞) ×  J
p ( j = 1, 2).

Proof. Let (V,W) = G0(λ, (φ, ψ)). Then by definition, we have

A−1/2(V −W) = 2λ1/2φ,

with which Lemma A implies the conclusion. �

Lemma B (Lemma 3 of [15]). Let p ≥ 0, ε > 0, J ≥ 1/2 and a, b ∈ [m0,∞).
(i) If (V,W) ∈  J

p (ε), then (eiaA1/2
V, e−iaA1/2

W) ∈  J
p (2p/4〈a〉p/2ε).

(ii) The mapping

Φ0 : (a, (V,W))→ (eiaA1/2
V, e−iaA1/2

W)

is continuous from R ×  J
p to  J

p .

Lemma 2. Let p ≥ 0, ε > 0, J ≥ 1/2 and a, b ∈ [m0,∞).
(i) If (V,W) ∈  J

p (ε), then (eiaA1/2
V, e−iaA1/2

W) ∈  J
p (2p/4〈a〉p/2ε).

(ii) The mapping

Φ0 : (a, (V,W))→ (eiaA1/2
V, e−iaA1/2

W)

is continuous from R ×  J
p to  J

p .
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Proof. (i) Since

(3.1)
eiaA1/2

V − e−iaA1/2
W = eiaA1/2

(V −W) + 2iA1/2A−1/2 sin(aA1/2)W

∈ R(A1/2),

where A−1/2 sin(aA1/2) =
∫ ∞

0
sin(aλ1/2)
λ1/2 dEλ ∈ (H) is meaningful by the spectral decomposi-

tion of A with

(3.2)
∥∥∥A−1/2 sin(aA1/2)

∥∥∥
(H) =

∥∥∥∥∥∥a
∫ ∞

0

sin(aλ1/2)
aλ1/2 dEλ

∥∥∥∥∥∥
(H)
≤ |a|.

Then Lemma B (i) and (3.1) imply the conclusion.
(ii) Let (a1, (V1,W1)) be an arbitrary point of R ×  J

p , and put U1 = A−1/2(V1 −W1). By
Lemma B, we only have to prove the continuity of the mapping (a,V,W) �→
A−1/2

(
eiaA1/2

V − e−iaA1/2
W

)
from 0

p to H at the point (a1, (V1,W1)). Let (a, (V,W)) ∈ R×0
p

and put U = A−1/2(V −W), U1 = A−1/2(V1 −W1). Since (d/ds)e±isA1/2
f = ±iA1/2e±isA1/2

f for
f = V1,W1, we have

(eiaA1/2
V − e−iaA1/2

W) − (eia1A1/2
V1 − e−ia1A1/2

W1)

= eiaA1/2
((V − V1) − (W −W1)) + (eiaA1/2 − e−iaA1/2

)(W −W1)

+ (eiaA1/2 − eia1A1/2
)V1 − (e−iaA1/2 − e−ia1A1/2

)W1

= e−ia1A1/2
A1/2(U − U1) + 2i sin(aA1/2)(W −W1)

+ iA1/2
∫ a

a1

(eisA1/2
V1 + e−isA1/2

W1)ds.

Hence by using (3.2) and ‖eiaA1/2‖(H) ≤ 1, we obtain

‖A−1/2
(
(eiaA1/2

V − e−iaA1/2
W) − (eia1A1/2

V1 − e−ia1A1/2
W1)

)
‖

≤ ‖U − U1‖ + 2|a|‖W −W1‖ + 2|a − a1|(‖V1‖ + ‖W1‖),
which implies the mapping (a,V,W) �→ A−1/2

(
eiaA1/2

V − e−iaA1/2
W

)
is continuous from 0

p

to H. �

Now we transform the equation (0.1).
Assume that u(t) is a solution of (0.1). Put

c(t) := m(‖A1/2u(t)‖2), τ(t) :=
∫ t

0
c(s)ds, for t ∈ R.(3.3)

Then, τ(t) is a strictly increasing function on R. Let t(τ) be the inverse of τ(t), and put

C(τ) := c(t(τ)),(3.4)

(3.5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V(τ) := C(τ)−1/2eiτA1/2+B(t(τ))/2

(
u′(t(τ)) − iC(τ)A1/2u(t(τ))

)
,

W(τ) := C(τ)−1/2e−iτA1/2+B(t(τ))/2
(
u′(t(τ)) + iC(τ)A1/2u(t(τ))

)
,

for every τ ∈ R, where
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B(t) :=
∫ t

0
b(s)ds for t ∈ R.

By this transformation, we easily see that the equation (0.1)–(0.2) is transformed into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ′(τ) = −q(τ)e2iτA1/2
W(τ), W ′(τ) = −q(τ)e−2iτA1/2

V(τ),

C(τ) = m
(
e−B(t(τ))

4C(τ)
‖e−iτA1/2

V(τ) − eiτA1/2
W(τ)‖2

)
,

(V(0),W(0)) = G0(m(‖A1/2φ0‖2), φ0, ψ0),

where

q(τ) :=
C′(τ) + b(t(τ))

2C(τ)
(′=

d
dτ

).

The Hamiltonian H(u, t) is defined as

H(u, t) := M(‖A1/2u(t)‖2) + ‖u′(t)‖2,
where

M(ρ) =
∫ ρ

0
m(s)2ds (ρ ≥ 0).

Then we have

H(u, t) = H(u, T ) − 2
∫ t

T
b(s)‖u′(s)‖2ds,

and thus, we have by Gronwall’s inequality that

(3.6) H(u, t) ≤ exp(2‖b‖L1 )H(u, T ) for every t ∈ R.
Since M(ρ) ≥ m2

0ρ, inequality (3.6) implies

(3.7) ‖A1/2u(t)‖2 ≤ exp(2‖b‖L1 )H(u, T )/m2
0 for every t ∈ R.

Put

L := exp(2‖b‖L1 )(M(1) + 1)/m2
0.

Then (3.7) implies

‖A1/2u(t)‖2 ≤ L for every t ∈ R,
if ‖A1/2u(T )‖ + ‖u(T )‖ ≤ 1.

Observing the fact above, we put

m1 = sup{m(x); 0 ≤ x ≤ L}, m2 = sup{|m′(x)|; 0 ≤ x ≤ L}
m3 := sup{|m′′(x)|; 0 ≤ x ≤ L}.

Notation 14. Let

p = p(R) := {C ∈ BC1(R); |C′|p < ∞}.
Here, BC1(R) is the set of all bounded C1 functions with bounded derivatives on R. The
space p(R) becomes a Banach space with the norm
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‖C‖p
= ‖C‖p(R) := ‖C‖L∞(R) +

∥∥∥C′∥∥∥L∞(R) + |C′|p .
For a positive number δ, let

p,δ(R) := {C ∈ p(R); m0 ≤ C(τ) ≤ m1 for every τ ∈ R, |C′|p ≤ δ},
which is a closed subset of p(R).

Let T ∈ [−∞,∞]. Taking the aforementioned fact into account, we consider the following
equation:

V ′(τ) = −q(τ)e2iτA1/2
W(τ), W ′(τ) = −q(τ)e−2iτA1/2

V(τ),(3.8)

C(τ) = m
(
e−B(t(τ))

4C(τ)
‖e−iτA1/2

V(τ) − eiτA1/2
W(τ)‖2

)
,(3.9)

V(T ) = Ṽ , W(T ) = W̃,(3.10)

where

t(τ) =
∫ τ

0

1
C(σ)

dσ for τ ∈ R,(3.11)

q(τ) :=
C′(τ) + b(t(τ))

2C(τ)
(′=

d
dτ

), B(t) :=
∫ t

0
b(s)ds.(3.12)

Here, V(±∞) = Ṽ and W(±∞) = W̃ mean that

lim
t→±∞V(t) = Ṽ and lim

t→±∞W(t) = W̃ in D(AJ/2).

Lemma C (Lemma 4 of [15]). Let C,C j ∈ p(R) ( j = 1, 2). Then the functions t defined
by (3.11) and t j defined by (3.11) with C = C j for j = 1, 2 satisfy the following.

(3.13)
|τ|
m1
≤ |t(τ)| ≤ |τ|

m0
for τ ∈ R,

|(t1 − t2)(τ)| ≤ |τ|
m2

0

‖C1 −C2‖L∞ for every τ ∈ R.

Lemma D (Lemma 5 of [15]). Let T ∈ [−∞,∞] and fix it. Let J ≥ 0 and p ≥ 0. Let
C j ∈ p, and let t j and q j be the functions defined by (3.11) and (3.12) with C = C j for
j = 1, 2.

〈t〉pq j ∈ L1(R) and |q j|p ≤
1

2m0
(|C′j|p +

〈m1〉p
m0
|b|p)

for j = 1, 2 and

|q1 − q2|p ≤
⎛⎜⎜⎜⎜⎝ 1

2m0
+

m1〈m1〉p
2m2

0

(
m1|tb′|p

m0
+ |b|p) +

|C′2|p
2m2

0

⎞⎟⎟⎟⎟⎠ ‖C1 −C2‖p
.

Proposition A (Propositions 3 and 5, Proof of Proposition 5 and Lemma 3 of [15]).
Let T ∈ [−∞,∞]. Let J ≥ 1 and p ≥ 0. Then there exist positive constants ε6 and K5

such that for every (Ṽ , W̃) ∈  J
p (ε) with 0 < ε ≤ ε6, a solution (C, (V,W)) ∈ C1(R) ×

∩ j=0,1C j(R; D(A(J− j)/2) × D(A(J− j)/2)) of (3.8)–(3.10) exists and satisfies
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C ∈ p,K5ε(R),

(V,W) ∈ C(R; J
p (K5ε)),(3.14)

‖V(τ)‖J + ‖W(τ)‖J ≤ exp(‖q‖L1(R))
(
‖Ṽ‖J + ‖W̃‖J

)
.(3.15)

Furthermore, the limits

V±∞ = lim
τ→±∞V(τ) and W±∞ = lim

τ→±∞W(τ) in D(AJ/2),(3.16)

C±∞ = lim
τ→±∞C(τ) ∈ R,(3.17)

exist and satisfy the following:

lim
τ→±∞〈τ〉

p‖V(τ) − V±∞‖J = lim
τ→±∞〈τ〉

p‖W(τ) −W±∞‖J = 0,(3.18)

lim
τ→±∞〈τ〉

p|C(τ) −C±∞| = 0.(3.19)

Assume furthermore that

lim
r→±∞(e2irA1/2

Ṽ , Ṽ)H = lim
r→±∞(e2irA1/2

W̃, W̃)H(3.20)

= lim
r→±∞(e2irA1/2

Ṽ , W̃)H = 0,

which condition we denote as (Ṽ , W̃) ∈ ̃ . Then

(3.21) C±∞ = m
(

e−B±∞

4C±∞
(‖V±∞‖2 + ‖W±∞‖2)

)
,

where B±∞ =
∫ ±∞

0 b(s)ds, and (V±∞,W±∞) ∈ ̃ .

Proposition B (Proposition 4 of [15]). Let J ≥ 1, p ≥ 0. Let ε6 be a constant given
by Proposition A. There exist positive constants ε7(≤ ε6) and K6 such that the following
assertion holds. Let (Ṽ j, W̃ j) ∈  J

p,ε7
, and assume that (C j, (Vj,Wj)) ∈ C1(R) ×

∩ j=0,1C j(R; D(A(J− j)/2) × D(A(J− j)/2)) are solutions of (3.8)–(3.10) satisfying (3.33) and
(Ṽ , W̃) = (Ṽ j, W̃ j) for j = 1, 2. Assume moreover that 〈t〉pC ∈ L1(R) if T = ±∞. Then

‖C1 −C2‖p
≤ K6d̃p((Ṽ1, W̃1), (Ṽ2, W̃2)),(3.22)

d̃J
p((V1(τ),W1(τ)), (V2(τ),W2(τ))) ≤ K6d̃J

p((Ṽ1, W̃1), (Ṽ2, W̃2))(3.23)

for every τ ∈ [−∞,∞].

If initial data belongs to p for p ≥ 1, then the following propositions hold.

Proposition 1. Assume that A is injective. Let T ∈ [−∞,∞]. Let J ≥ 1 and p ≥ 1. Let ε6

and K5 be the constants in Proposition A. Let (Ṽ , W̃) ∈  J
p (ε) with 0 < ε ≤ ε6. Then there

exists a solution (C, (V,W)) ∈ BC1(R) ×C1(R; D(AJ/2) × D(AJ/2)) of (3.8)–(3.10) such that

C ∈ p,K5ε,(3.24)

(V(τ),W(τ)) ∈  J
p (K5ε) for every τ ∈ R,(3.25)

(V,W) ∈ C(R; J
p ).(3.26)

The uniqueness holds in the class

(C, (V,W)) ∈ BC1(R) ×C1(R; D(AJ/2) × D(AJ/2)) if T � ±∞,
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(C, (V,W)) ∈ BC1(R) ×C1(R; D(AJ/2) × D(AJ/2)), C′ ∈ L1(R)

if T = ±∞. Furthermore the following hold. Put

U(τ) := A−1/2(V(τ) −W(τ)) for τ ∈ R.
Then U ∈ C1(R; D(A(J+1)/2), and the limit

U±∞ = lim
τ→±∞U(τ) in D(A(J+1)/2)

exists. The limits C±∞, V±∞ and W±∞ shown by Proposition A and U±∞ satisfy the following:

lim
τ→±∞〈τ〉

p−1‖U(τ) − U±∞‖J+1 = 0,(3.27) ∣∣∣∣∣∣
∫ ±∞

0
〈τ〉p−1‖V(τ) − V±∞‖Jdτ

∣∣∣∣∣∣(3.28)

+

∣∣∣∣∣∣
∫ ±∞

0
〈τ〉p−1‖W(τ) −W±∞‖Jdτ

∣∣∣∣∣∣ < ∞,∣∣∣∣∣∣
∫ ±∞

0
〈τ〉p−2‖U(τ) − U±∞‖J+1dτ

∣∣∣∣∣∣ < ∞ if p ≥ 2,(3.29)

V±∞ −W±∞ = A1/2U±∞.(3.30)

(V±∞,W±∞) ∈  J
p (K5ε),(3.31) ∫ ∞

0
〈τ〉p−1|C(τ) −C+∞|dτ +

∫ 0

−∞
〈τ〉p−1|C(τ) −C−∞|dτ < ∞.(3.32)

Proposition 2. Let J ≥ 1, p ≥ 1 and ε > 0. Let ε7 be a positive constant given by
Propositions B. There exist a positive constant K7 such that the following assertion holds.
Let (Ṽ j, W̃ j) ∈  J

p (ε7), and assume that (C j, (Vj,Wj)) ∈ C1(R) × ∩ j=0,1C j(R; D(A(J− j)/2) ×
D(A(J− j)/2)) are solutions of (3.8)–(3.10) with (Ṽ , W̃) = (Ṽ j, W̃ j) for j = 1, 2, satisfying

(3.33) m0 ≤ C(τ) ≤ m1 for every τ ∈ R.
Assume moreover that C ∈ p if T = ±∞. Then

d̃J
Yp

((V1(τ),W1(τ)), (V2(τ),W2(τ))) ≤ K7d̃J
Yp

((Ṽ1, W̃1), (Ṽ2, W̃2))(3.34)

for every τ ∈ [−∞,∞].

4. Proof of Propositions

4. Proof of Propositions
Since we sometimes use the following calculations, we describe them as a lemma.

Lemma 3. Let Z be a Banach space with norm ‖·‖Z. Let p be an nonnegative number. If
f ∈ C1(R; Z) satisfies |t|p‖ f ′(t)‖Z ∈ L1(R), then the limit limt→±∞ f (t) = α±∞ exists in Z and
satisfies the following.

(4.1) lim
t→±∞ |t|

p‖ f (t) − α±∞‖Z = 0.

Furthermore, if p ≥ 1 and 〈t〉p−1t‖ f ′(t)‖Z ∈ L1(R), then∫ ∞

t
〈σ〉p−1‖ f (σ) − α+∞‖Zdσ ≤

∫ ∞

t
〈σ〉p−1|σ|∥∥∥ f ′(σ)

∥∥∥
Zdσ < ∞(4.2)
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for every t ≥ 0, and∫ t

−∞
〈σ〉p−1‖ f (σ) − α−∞‖Zdσ ≤

∫ t

−∞
〈σ〉p−1|σ|∥∥∥ f ′(σ)

∥∥∥
Zdσ < ∞

for every t ≤ 0.

Proof. We only prove lemma in the case t ≥ 0. The case t ≤ 0 is calculated in the same
way. Let S be an arbitrary nonnegative number of R. Then

|τ|p‖ f (S ) − f (τ)‖Z ≤ |τ|p
∫ S

τ

‖ f ′(σ)‖Zdσ ≤
∫ S

τ

|σ|p‖ f ′(σ)‖Zdσ

for every 0 ≤ τ ≤ S < ∞. Hence, there exists a limit limt→+∞ f (t) in Z satisfying (4.1).
For every t ≥ 0, we have by Fubini’s Thoerem∫ ∞

t
〈τ〉p−1‖ f (τ) − α+∞‖Zdτ ≤

∫ ∞

t
〈τ〉p−1

∫ ∞

τ

∥∥∥ f ′(σ)
∥∥∥

Zdσdτ

=

∫ ∞

t

∫ σ

t
〈τ〉p−1

∥∥∥ f ′(σ)
∥∥∥

Zdτdσ ≤
∫ ∞

t
〈σ〉p−1σ

∥∥∥ f ′(σ)
∥∥∥

Zdσ < ∞,

which implies (4.2). �

Proof of Proposition 1.
(Step 1) By Propositions A and (0.4), we see that 〈t〉pq ∈ L1(R) and supτ∈R(‖V(τ)‖J +

‖W(τ)‖J) < ∞. Hence, using the fact that (V,W) satisfies (3.8), we have

〈τ〉p(
∥∥∥V ′(τ)

∥∥∥
J +

∥∥∥W ′(τ)
∥∥∥

J) ∈ L1(R).

Thus by Lemma 3 with Z = D(AJ/2), we obtain (3.28).
(Step 2) We show that there is U(τ) ∈ D(A1/2) such that

(4.3) V(τ) −W(τ) = A1/2U(τ)(∈ R(A1/2)) for every τ ∈ R,
which satisfies U ∈ C1(R; H). Kajitani [9, Proposition 2.4] proved this fact for a second
order differential operator A which defines non-negative definite self-adjoint operator on
L2(Rn), by using the differential equation of V(τ)−W(τ) together with the expression eiτA1/2

=

cos(τA1/2)+ i sin(τA1/2) and the boundedness of (τA1/2)−1 sin(τA1/2). By using this idea, we
prove (4.3). From (3.8), it follows that

(4.4)
d
dτ

(V(τ) −W(τ)) = q(τ)e2iτA1/2
(V(τ) −W(τ)) − 2iq(τ) sin(2τA1/2)V(τ)

for every τ ∈ R. Hence,

d
dτ

(
exp

(
−

∫ τ

T
q(σ)e2iσA1/2

dσ
)

(V(τ) −W(τ))
)

= −2i exp
(
−

∫ τ

T
q(σ)e2iσA1/2

dσ
)

q(τ) sin(2τA1/2)V(τ)

for every τ ∈ R. Here, exp
(
− ∫ τ

T q(σ)e2iσA1/2
dσ

)
is meaningful by spectral decomposition.

Thus,
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V(τ) −W(τ) = exp
(∫ τ

T
q(σ)e2iσA1/2

dσ
)

(V(T ) −W(T ))(4.5)

− 2i
∫ τ

T
exp

(∫ τ

s
q(σ)e2iσA1/2

dσ
)

q(s) sin(2sA1/2)V(s)ds.

By the assumption that (V(T ),W(T )) = (Ṽ , W̃) ∈ p, there is Ũ ∈ D(A1/2) such that V(T ) −
W(T ) = A1/2Ũ. By (3.2), the assumption q(s)s ∈ L1(R) and the closeness of the operator
A1/2, we see that the second term of the right-hand side of (4.5) belongs to R(A1/2). Hence,
V(τ) −W(τ) is expressed as

V(τ) −W(τ) = A1/2U(τ),

where

U(τ) := exp
(∫ τ

T
q(σ)e2iσA1/2

dσ
)

Ũ(4.6)

− 4i
∫ τ

T
exp

(∫ τ

s
q(σ)e2iσA1/2

dσ
)

q(s)s
(
(2sA1/2)−1 sin(2sA1/2)

)
V(s)ds

∈D(A1/2)

for every τ ∈ R, and U ∈ L∞(R; H). We show that U ∈ C1(R; H). We easily see that the first
term of (4.6) belongs to C1(R; H). The inequality∥∥∥A−1/2 sin(2(s + h)A1/2) f − A−1/2 sin(2sA1/2)

∥∥∥
(H)

= 2
∥∥∥cos((2s + h)A1/2) sin(hA1/2)A−1/2

∥∥∥
(H) ≤ 2|h| for h ∈ R

implies that A−1/2 sin(2sA1/2) is a norm continuous operator on H with respect to s. Using
this fact together with the facts that 〈t〉q ∈ L1(R) and V ∈ C(R; H), we see that the second
term of the right-hand side of (4.6) also belongs to C1(R; H), and thus we conclude that
U ∈ C1(R; H). This fact together with (3.14) and (3.15) implies (3.25) and (3.26).

(Step 3) Last we consider the asymptotic behavior. Equation (4.4) yields

d
dτ

U(τ) = q(τ)e2iτA1/2
U(τ) − 4iq(τ)τ(2τA1/2)−1 sin(2τA1/2)V(τ)

for every τ ∈ R. Then, by the uniform boundedness of V(τ) and U(τ), the fact that
τ〈τ〉p−1q(τ) ∈ L1(R) and the boundedness of the operator (2τA1/2)−1 sin(2τA1/2) on H uni-
formly to τ, we can use Lemma 3 with Z = H to obtain the existence of U±∞ = limτ→±∞U(τ)
in H satisfying (3.27) and (3.29) with J = 0. This fact, (3.18) and (3.28) imply (3.27) and
(3.29) for general J. By the closeness of the operator A1/2 in H, we see that U±∞ ∈ D(A1/2)
and satisfies (3.30).

Since (3.14) and (3.16) hold, Fatou’s lemma implies (V∞,W∞) ∈  J
p (K5ε), which together

with (3.30) yields (3.31).
Lemma 3 together with (3.24) implies (3.32). �

Proof of Proposition 2. By using the expression (4.6), we easily see that
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‖U1(τ) − U2(τ)‖J
≤ e‖q1‖L1(R)

∥∥∥Ũ1 − Ũ2
∥∥∥

J + emax{‖q1‖L1(R),‖q2‖L1(R)}‖q1 − q2‖L1(R)

∥∥∥Ũ2
∥∥∥

J

+ 4emax{‖q1‖L1(R),‖q2‖L1(R)}‖q1 − q2‖L1(R)‖sq1‖L1(R) sup
s∈R
‖V1(s)‖J

+ 4e‖q2‖L1(R)‖s(q1 − q2)‖L1(R) sup
s∈R
‖V1(s)‖J

+ 4e‖q2‖L1(R)‖sq2‖L1(R) sup
s∈R
‖V1(s) − V2(s)‖J

for every τ ∈ R, where U j = A−1/2(Vj−Wj) and Ũ j = A−1/2(Ṽ j−W̃ j). This inequality, (3.23)
and (3.25) yield

‖U1(τ) − U2(τ)‖J
≤ emax{‖q1‖L1(R),‖q2‖L1(R)}

(∥∥∥Ũ1 − Ũ2
∥∥∥

J + ‖q1 − q2‖L1(R)

∥∥∥Ũ2
∥∥∥

J

+ 4K5ε7
(‖q1 − q2‖L1(R)‖sq1‖L1(R) + ‖s(q1 − q2)‖L1(R)

)
+ 4K6‖sq2‖L1(R)d̃

J
p((Ṽ1, W̃1), (Ṽ2, W̃2))

)
,

which together with Lemma D, (3.22), (3.23) and (3.24) yields (3.34). �

5. Proof of Theorem 1

5. Proof of Theorem 1
Proof of Theorem 1. Let ε1 and ε7 be positive constants given by Theorem A and

Proposition B, respectively. Let K denote various constants independent of t. Assume that
ε4 ≤ min{1, ε1, ε7/(2K10)}, where

(5.1) K10 = max{ 1√
m0
,
√

m1}(≥ 1).

(Step 1) We give a solution u of (0.1). Let (φ0, ψ0) ∈ Yp(ε) for ε ∈ (0, ε4]. By Lemma 1,
we have

(5.2) (Ṽ , W̃) := G0(m(‖A1/2φ0‖2), φ0, ψ0) ∈  J
p (2K10ε) ⊂ 

J
p (ε7).

Then by Propositions A and 1, the equation (3.8)–(3.10) with (Ṽ , W̃) defined by (5.2) has a
solution

(5.3) (C, (V,W)) ∈ p,1 ×C1(R; D(AJ/2) × D(AJ/2)),

satisfying

(V,W) ∈ C(R,p(2K5K10ε))

U := A−1/2(V −W) ∈ C1(R,D(A(J+1)/2).

Furtheremore, the limits

C±∞ = lim
τ→±∞C(τ) ∈ R,(5.4)

V±∞ = lim
τ→±∞V(τ) and W±∞ = lim

τ→±∞W(τ) in D(AJ/2),

U±∞ = lim
τ→±∞U(τ) in D(A(J+1)/2),

exist and satisfy (3.18), (3.19), (3.27)–(3.30),
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(5.5) (V±∞,W±∞) ∈  J
p (2K5K10ε),

and (3.32). Let t(τ) be the function defined by (3.11). By the fact that C ∈ p,1, it holds that

(5.6)
1

m1
≤ dt

dτ
(τ) =

1
C(τ)

≤ 1
m0
.

Then, t(τ) is a strictly increasing function on R. Let τ(t) be the inverse of t(τ), and define

(5.7) c(t) = C(τ(t)).

Here we note that

(5.8) τ(t) =
∫ t

0
c(s)ds, for t ∈ R,

and the assumption that C ∈ p, (3.13) and (5.6) yield

(5.9) c ∈ p.

Since

e−iτ(t)A1/2
V(τ(t)) − eiτ(t)A1/2

W(τ(t))

= e−iτ(t)A1/2
(V(τ(t)) −W(τ(t))) + (e−iτ(t)A1/2 − eiτ(t)A1/2

)W(τ(t))

= e−iτ(t)A1/2
A1/2U(τ(t)) − 2i sin(τ(t)A1/2)W(τ(t)) ∈ R(A1/2),

we can define u(t) by

u(t) :=
i

2
√

C(τ(t))
e−B(t)/2A−1/2

(
e−iτ(t)A1/2

V(τ(t)) − eiτ(t)A1/2
W(τ(t))

)
(5.10)

Then we have

u(t) =
i

2
√

C(τ(t))
e−B(t)/2

(
e−iτ(t)A1/2

U(τ(t)) − 2iA−1/2 sin(τ(t)A1/2)W(τ(t))
)
.(5.11)

Since (C, (V,W)) is the solution of (3.8)–(3.10) with T = 0, we see that

u′(t) =
√

C(τ(t))
2

e−B(t)/2
(
e−iτ(t)A1/2

V(τ(t)) + eiτ(t)A1/2
W(τ(t))

)
,

c(t) = C(τ(t)) = m(‖A1/2u(t)‖),
and u(t) ∈ ∩ j=0,1,2C2− j(R : D(A(2− j)/2)) is a solution of (0.1). By the uniqueness of the
solution which is stated in Theorem A, the solution given by Theorem A equals u given by
the formula (5.11).

(Step 2) We express the solution v of (LE : C±∞). The formulas (5.3), (5.4) and (5.6)
together with Lemma 3 with Z = R imply (1.11) and (1.12), and we can define

(5.12) a±∞ :=
∫ ±∞

0
(c(t) −C±∞) dt =

∫ ±∞

0
(C(τ) −C±∞)

1
C(τ)

dτ ∈ R,
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with

|a±∞| ≤ 1
m0

∣∣∣∣∣∣
∫ ±∞

0
|C(τ) −C±∞| dτ

∣∣∣∣∣∣(5.13)

≤
∣∣∣∣∣∣

1
m0

∫ ±∞

0
|σC′(σ)|dσ

∣∣∣∣∣∣ ≤
1

m0
|C′|1 ≤ 1

m0
.

Here we used the assumption that C ∈ 1,1(R) in the last inequality above. Using Lemma 3
with Z = R again, we have

(5.14) |τ(t) − (C−∞t + a−∞)| =
∣∣∣∣∣∣
∫ t

−∞
(c(s) −C−∞)ds

∣∣∣∣∣∣ ≤
∫ t

−∞
|sc′(s)|ds,

for every t < 0. Thus,

〈t〉p−1|τ(t) − (C−∞t + a−∞)| ≤
∫ t

−∞
〈σ〉p|c′(σ)|dσ

for every t < 0, which together with (5.9) implies

(5.15) lim
t→−∞〈t〉

p−1|τ(t) − (C−∞t + a−∞)| = 0.

In the case p ≥ 2, it follows from (5.14),∫ 0

−∞
〈t〉p−2|τ(t) − (C−∞t + a−∞)|dt ≤

∫ 0

−∞

∫ t

−∞
〈t〉p−2|sc′(s)|dsdt(5.16)

=

∫ 0

−∞

∫ 0

s
〈t〉p−2|sc′(s)|dtds ≤ 1

p − 1

∫ 0

−∞
〈s〉p−1|sc′(s)|ds.

Hence by (5.9), we have

(5.17)
∫ 0

−∞
〈t〉p−2|τ(t) − (C−∞t + a−∞)|dt < ∞.

By (3.30) of Proposition 1, we have

e−i(C±∞t+a±∞)A1/2
V±∞ − ei(C±∞t+a±∞)A1/2

W±∞(5.18)

= e−i(C±∞t+a±∞)A1/2
A1/2U±∞

− 2iA1/2A−1/2 sin((C±∞t + a±∞)A1/2)W±∞)

∈ R(A1/2).

with U±∞ ∈ D(A1/2). Thus, we can define function v±(t) by

v±(t) : =
i

2C1/2
±∞

e−B±∞/2A−1/2(5.19)

×
(
e−i(C±∞t+a±∞)A1/2

V±∞ − ei(C±∞t+a±∞)A1/2
W±∞

)
Then we have

(5.20) v±(t) =
1

2C1/2
±∞

e−B±∞/2
(
ie−i(C±∞t+a±∞)A1/2

U±∞ − 2iA−1/2 sin((C±∞t + a±∞)A1/2)W±∞
)
,

where B±∞ =
∫ ±∞

0 b(s)ds. Then, we easily see that
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v±(t) ∈
⋂

j=0,1,2

C j(R; D(A(J+1− j)/2)),

and satisfies (LE:C±∞).
(Step 3) We prove formulas (1.14) and (1.15) for t → −∞ and (1.17). Formula (1.13)

follows from (1.14). The formulas (1.14) and (1.15) for t → +∞ and (1.18) are proved in
the same way. By definitions (5.10) and (5.19),

A1/2(u(t) − v−(t)) =
i

2
√

c(t)
e−B(t)/2

×
(
e−iτ(t)A1/2

(V(τ(t)) − V−∞) + (e−iτ(t)A1/2 − e−i(C−∞t+a−∞)A1/2
)V−∞

− eiτ(t)A1/2
(W(τ(t)) −W−∞) − (eiτ(t)A1/2 − ei(C−∞t+a−∞)A1/2

)W−∞
)

+
1
2

(
ie−B(t)/2

√
c(t)

− ie−B−∞/2
√

C−∞

)
·
(
e−i(C−∞t+a−∞)A1/2

V−∞ − ei(C−∞t+a−∞)A1/2
W−∞

)
.

Let k be a nonnegative integer such that k ≤ J. Since c(t) ≥ m0, we have by the intermediate
theorem that ∣∣∣∣∣∣

e−B(t)/2

√
c(t)

− e−B−∞/2
√

C−∞

∣∣∣∣∣∣(5.21)

≤ e−B(t)/2

∣∣∣∣∣∣
1√
c(t)
− 1√

C−∞

∣∣∣∣∣∣ +
1√

C−∞

∣∣∣e−B(t)/2 − e−B−∞/2
∣∣∣

=
e−B(t)/2|c(t) −C−∞|√

C−∞c(t)(
√

C−∞ +
√

c(t))
+

e−B(t̃)/2

√
C−∞

∣∣∣∣∣∣
∫ t

−∞
b(s)ds

∣∣∣∣∣∣ (∃t̃ ∈ (−∞, t))

≤ e‖b‖L1/2

m1/2
0

(∫ t

−∞
|b(s)|ds +

1
m0
|c(t) −C−∞|

)
.

Thus, we have∥∥∥A1/2(u(t) − v−(t))
∥∥∥

k(5.22)

≤ e‖b‖L1/2

2m1/2
0

[
‖V(τ(t)) − V−∞‖k + ‖W(τ(t)) −W−∞‖k

+
∥∥∥∥(e−iτ(t)A1/2 − e−i(C−∞t+a−∞)A1/2

)V−∞
∥∥∥∥

k

+
∥∥∥∥(eiτ(t)A1/2 − ei(C−∞t+a−∞)A1/2

)W−∞
∥∥∥∥

k

+

(∫ t

−∞
|b(s)|ds +

1
m0
|C(τ(t)) −C−∞|

)
(‖V−∞‖k + ‖W−∞‖k)

]
.

We shall estimate the term
∥∥∥∥(e−iτ(t)A1/2 − e−i(C−∞t+a−∞)A1/2

)V−∞
∥∥∥∥

k
in the inequality above. Let

k ∈ [0, J − 1] and let f be an arbitrary element of D(A(k+1)/2). Using the equality
(d/ds)e−isA1/2

f = −ie−isA1/2
A1/2 f and that the operator eiaA1/2

is unitary on D(Ak/2), we have

∥∥∥∥(e−iτ(t)A1/2 − e−i(C−∞t+a−∞)A1/2
) f

∥∥∥∥
k
=

∥∥∥∥∥∥
∫ τ(t)

C−∞t+a−∞
e−isA1/2

A1/2 f ds

∥∥∥∥∥∥
k

(5.23)

≤ |τ(t) − (C−∞t + a−∞)|∥∥∥A1/2 f
∥∥∥

k.
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Hence (5.15) implies

(5.24) lim
t→−∞〈t〉

p−1
∥∥∥∥(e−iτ(t)A1/2 − e−i(C−∞t+a−∞)A1/2

) f
∥∥∥∥

k
= 0.

Since operators e−iτ(t)A1/2
and e−i(C−∞t+a−∞)A1/2

are bounded in D(Ak/2), and since D(A(k+1)/2)
is dense in D(Ak/2), it follows that (5.24) holds also for every f ∈ D(Ak/2) in the case p = 1.
Thus, by the fact that V−∞ ∈ D(AJ/2), we see that

lim
t→−∞

∥∥∥∥(e−iτ(t)A1/2 − e−i(C−∞t+a−∞)A1/2
)V−∞

∥∥∥∥
J
= 0,

lim
t→−∞〈t〉

p−1
∥∥∥∥(e−iτ(t)A1/2 − e−i(C−∞t+a−∞)A1/2

)V−∞
∥∥∥∥

J−1
= 0.

In the same way, we have

lim
t→−∞

∥∥∥∥(eiτ(t)A1/2 − ei(C−∞t+a−∞)A1/2
)W−∞

∥∥∥∥
J
= 0,

lim
t→−∞〈t〉

p−1
∥∥∥∥(eiτ(t)A1/2 − ei(C−∞t+a−∞)A1/2

)W−∞
∥∥∥∥

J−1
= 0.

By using these convergences, (3.18), (3.19) together with (3.13) and (1.10), we derive the
following estimates from (5.22)

lim
t→−∞ ‖A

1/2(u(t) − v−(t))‖J = 0,

lim
t→−∞〈t〉

p−1‖A1/2(u(t) − v−(t))‖J−1 = 0.

In the same way, we can prove that

lim
t→−∞ ‖u

′(t) − v′−(t)‖J = lim
t→−∞〈t〉

p−1‖u′(t) − v′−(t)‖J−1 = 0.

Thus, the proof of (1.14) and (1.15) for t → −∞ is complete if we show that

(5.25) lim
t→−∞〈t〉

p−1‖u(t) − v−(t)‖ = 0.

From equalities (5.11) and (5.20), it follows that

u(t) − v−(t) =
i

2
√

C(τ(t))
e−B(t)/2

×
[
e−iτ(t)A1/2

(U(τ(t)) − U−∞) + (e−iτ(t)A1/2 − e−i(C−∞t+a−∞)A1/2
)U−∞

− 2i sin(τ(t)A1/2)A−1/2(W(τ(t)) −W−∞)

+ 4iA−1/2 sin
(
(τ(t) − (C−∞t + a−∞))A1/2/2

)
× cos

(
(τ(t) + (C−∞t + a−∞))A1/2/2

)
W−∞

]

+

(
ie−B(t)/2

2
√

c(t)
− ie−B−∞/2

2
√

C−∞

)

×
(
e−i(C−∞t+a−∞)A1/2

U−∞ − 2i sin((C−∞t + a±∞)A1/2)A−1/2W−∞
)
.

Hence, by (5.21), (5.23), (3.2) and
∥∥∥cos(sA1/2)

∥∥∥
(H) ≤ 1, we obtain
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‖u(t) − v−(t)‖

≤ e‖b‖L1/2

2m1/2
0

[
‖U(τ(t)) − U−∞‖ + |τ(t) − (C−∞t + a−∞)|‖A1/2U−∞‖

+ 2|τ(t)|‖W(τ(t)) −W−∞‖ + 2 |(τ(t) − (C−∞t + a−∞))| ‖W−∞‖

+

(∫ t

−∞
|b(s)|ds +

1
m0
|c(t) −C−∞|

) (
‖U−∞‖ + 2|C−∞t + a±∞|‖W−∞‖

)]
.

Thus, by using (3.13), we have

〈t〉k‖u(t) − v−(t)‖(5.26)

≤ K
[
〈τ(t)〉k‖U(τ(t)) − U−∞‖ + 〈τ(t)〉k+1‖W(τ(t)) −W±∞‖

+ 〈t〉k|τ(t) − (C−∞t + a−∞)|(‖A1/2U−∞‖ + ‖W−∞‖)

+

(
〈t〉k+1

∫ t

−∞
|b(s)|ds + 〈τ(t)〉k+1|C(τ(t)) −C−∞|

) (
‖U−∞‖ + ‖W−∞‖

)]
.

By (1.10), (3.18), (3.19), (3.27) and (5.15), we see that the right-hand side of (5.26) with
k = p − 1 tends to 0 as t → −∞. Thus, (5.25) holds, which completes the proof of (1.14)
and (1.15).

Assume that p ≥ 2. By Fubini’s Theorem together with (1.10), we have∫ 0

−∞
〈t〉p−1

∫ t

−∞
|b(s)|dsdt =

∫ 0

−∞

∫ 0

s
〈t〉p−1|b(s)|dtds(5.27)

≤
∫ 0

−∞
|s|〈s〉p−1|b(s)|ds < ∞.

Inequalities (5.23) and (5.17) imply∫ 0

−∞
〈t〉p−2

∥∥∥∥(e−iτ(t)A1/2 − e−i(C−∞t+a−∞)A1/2
)V−∞

∥∥∥∥
J−1

dt < ∞.

In the same way, we have∫ 0

−∞
〈t〉p−2

∥∥∥∥(eiτ(t)A1/2 − ei(C−∞t+a−∞)A1/2
)W−∞

∥∥∥∥
J−1

dt < ∞.

By these inequalities, (5.27), (3.28) and (3.32) together with (5.6), we derive the following
from (5.22);

(5.28)
∫ 0

−∞
〈t〉p−2‖A1/2(u(t) − v−(t))‖J−1dt < ∞.

In the same way, we can prove

(5.29)
∫ 0

−∞
〈t〉p−2‖u′(t) − v′−(t))‖J−1dt < ∞.

By using (3.28), (3.29), (3.32), (5.17) and (5.27), we derive the following from (5.26);∫ 0

−∞
〈t〉p−2‖u(t) − v−(t)‖dt < ∞,
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which together with (5.28) and (5.29) implies (1.17).
Uniqueness of the solution v± is clear.
(Step 4) We prove the continuity of the mapping Υ±. Formula (5.19) implies

Υ±(φ0, ψ0) : = (φ±, ψ±) = (v±(0),
dv±
dt

(0))

= exp(−B±∞/2)0

(
C±∞,

(
e−ia±∞A1/2

V±∞, eia±∞A1/2
W±∞

))
.

By Lemma 2 (i) together with (5.5) and (5.13), we have(
e−ia±∞A1/2

V±∞, eia±∞A1/2
W±∞

)
∈  J

p (K11ε)

with K11 := 2p/4+1〈 1
m0
〉p/2K5K10. Hence by (i) of Lemma 1, we have

(φ±, ψ±) ∈ Y J
p(K±2 ε) with K±2 = exp(−B±∞/2)K10K11,

and therefore we obtain Υ±(Y J
p(ε)) ⊂ Y J

p(K±2 ε).
We show the continuity of the mapping Υ±. By the definition of (Ṽ , W̃) in (5.2), Lemma

1 (ii) together with the continuity of m, we easily see that the mapping

(φ0, ψ0) �→ (Ṽ , W̃)

is continuous from Y J
p(ε) to  J

p (2K10ε) ⊂  J
p (ε7). By Propositions 1 and 2,

(Ṽ , W̃) �→ (C(·), (V±∞,W±∞))

is continuous from  J
p (ε7) to p,K5ε7 ×  J

p (K5ε7). Thus, if we prove the continuity of the
mapping

Φ : C(·) �→ a±∞

from p,K5ε7 to R, Lemma 2 (ii) guarantees the continuity of the mapping

(C(·), (V±∞,W±∞)) �→
(
C±∞,

(
e−ia±∞A1/2

V±∞, eia±∞A1/2
W±∞

))
from p,K5ε7 ×  J

p (K5ε7) to [m0,m1] ×  J
p (K11ε7). Then Lemma 1 (ii) guarantees the conti-

nuity of the mapping (
C±∞,

(
e−ia±∞A1/2

V±∞, eia±∞A1/2
W±∞

))
�→ (φ±, ψ±)

from [m0,m1] ×  J
p (K11ε7) to  J

p (K±2 ε7), and therefore the continuity of Υ± follows.
Now we prove the continuity of the mapping Φ. Let C j ∈ p,K5ε7 , and let C j,∞ and a j be

the numbers defined by (5.4) and (5.12) with C = C j ( j = 1, 2). Then a j,±∞ is expressed as

a j,±∞ =
∫ ±∞

0

(
1 − C j,±∞

C j(τ)

)
dτ(5.30)

= −
∫ ±∞

0
C j,±∞

(∫ ±∞

τ

(
1

C j(σ)

)′
dσ

)
dτ

= −
∫ ±∞

0

∫ σ

0

C j,±∞C′j(σ)

C j(σ)2 dτdσ

= −
∫ ±∞

0
σC j,±∞

C′j(σ)

C j(σ)2 dσ,
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where we used Fubini’s Theorem in the third step. Thus, we have

a1,±∞ − a2,±∞ = −
∫ ±∞

0
σ

(
C1,±∞

C′1(σ)
C1(σ)2 −C2,±∞

C′2(σ)
C2(σ)2

)
dσ.

Since

|C1,−∞
C′1(σ)
C1(σ)2 −C2,−∞

C′2(σ)
C2(σ)2 | ≤ |

C′1(σ)
C1(σ)2 ||C1,−∞ −C2,−∞|

+
C2,−∞

C1(σ)2 |C′1(σ) −C′2(σ)| + C2,−∞|C′2(σ)|
C1(σ)2C2(σ)2 (C1(σ) +C2(σ))|C1(σ) −C2(σ)|,

and C j ∈ 1,1, we have

|a1,−∞ − a2,−∞| ≤
|C′1|1
m2

0

‖C1 −C2‖L∞(5.31)

+
m1

m2
0

|C′1 −C′2|1 +
2m2

1

m4
0

‖C1 −C2‖L∞|C′2|1

≤
⎛⎜⎜⎜⎜⎝1 + m1

m2
0

+
2m2

1

m4
0

⎞⎟⎟⎟⎟⎠ ‖C1 −C2‖p
.

In the same way, we see that |a1,+∞ − a2,+∞| is dominated by the right-hand side of (5.31).
Hence we have proved the continuity of Φ, and thus we conclude that the continuity of the
mapping Υ± holds. �

6. Proof of Theorems 2 and 3

6. Proof of Theorems 2 and 3
Proof of Theorem 2. Let K5, ε7 and K7 be positive constants given by Propositions A, B

and 2, respectively, and K10 be the number defined by (5.1). Put

(6.1) K±12 = 2eB±∞/2K10, K13 = 2p/4
〈

m1

m2
0

〉p/2

, K±3 = K5K10K±12K13,

where B±∞ =
∫ ±∞

0 b(s)ds. Let ε5 be a positive constant satisfying

(6.2) K10ε5 < min{√Lm0,
m0√
m2
} and max{K+12,K

−
12}K13ε5 ≤ ε7.

Assume that ε ≤ ε5, and let (φ, ψ) ∈ Ỹ J
p(ε). We prove the statements of Theorem 2 in the

case ”−”. The case ”+” is proved in the same way.
(Step 1) In Proof (Step 1) of [15, Theorem 3] (see also Proof of [11, Theorem 1.3]),

we proved the existence of c∞ satisfying (1.9) and the Lipschitz continuity of the mapping
(φ, ψ) �→ c∞ from D(A1/4) × H → R. Especially c∞ is determined uniquely, and satisfies

(6.3) m0 ≤ c∞ ≤ m1.

(Step 2) We express the solution of (LE : c∞). Put

(6.4) (V∞,W∞) := G0(c∞, (φ, ψ)), U∞ := −2ic1/2
∞ φ = A−1/2(V∞ −W∞).

Then by (6.3) and Lemma 1, we have

(6.5) (V∞,W∞) ∈  J
p (2K10ε).
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Since V∞ −W∞ = A1/2U∞ ∈ R(A1/2), we can define

v(t) : =
i

2c1/2
∞

A−1/2
(
e−ic∞tA1/2

V∞ − eic∞tA1/2
W∞

)
,(6.6)

=
i

2c1/2
∞

(
e−ic∞tA1/2

U∞ − 2iA−1/2 sin(c∞tA1/2)W∞
)
.

Then we easily see that v(t) is the unique solution of (LE : c∞) with initial value

(v(0), v′(0)) = (φ, ψ).

(Step 3) We show the existence of a solution (u−, ∂u−/∂t) of (0.1) satisfying (1.22) and
(1.23). Convergence (1.19) follows from (1.22). In view of (6.1) and (6.2) and (6.5), Propo-
sitions A and 1 with T = −∞ imply that there uniquely exists a solution

(C(τ), (V(τ),W(τ))) ∈ p,1 × (C1(R; D(AJ/2) × D(AJ/2)) ∩C(R; J
p ))

of (3.8), (3.9) and

(6.7) (V−∞,W−∞) = lim
τ→−∞(V(τ),W(τ)) = eB−∞/2(V∞,W∞)(∈ ̃ J

p (K−12ε) ⊂ ̃
J
p (ε7)),

where ̃ J
p =  J

p ∩ ̃ and the limit is taken in D(AJ/2) × D(AJ/2), and the solution satisfies
the following:

(6.8) (V(τ),W(τ)) ∈  J
p (K5K−12ε) for every τ ∈ [−∞,∞],

and the limit C−∞ = limτ→−∞C(τ)(≥ m0) exists and satisfies (3.21). Then in the same way
as in the proof of [15, Theorem 3], we can prove

(6.9) c∞ = C−∞ = lim
τ→−∞C(τ),

by observing that both c∞ and C−∞ are unique solution of

λ = m
(‖V∞‖2 + ‖W∞‖2

4λ

)
.

Let t(τ) and c(t) be the functions defined by (3.11) and (5.7). In the same way as in the
definition of a±∞ (see (5.12) and (5.30)), together with using (6.9), we can define

T0 = T0(C) : = − 1
c∞

∫ 0

−∞
(c(s) − c∞) ds(6.10)

=

∫ 0

−∞

(
1

C(τ)
− 1

c∞

)
dτ =

∫ 0

−∞
τC′(τ)
C(τ)2 dτ.

From the last equality, (5.8) and the fact that C ∈ p,1, it follows that

|T0| ≤ 1
m2

0

∫ 0

−∞
|τC′(τ)|dτ ≤ 1

m2
0

|C′|1 ≤ 1
m2

0

,(6.11)

|τ(−T0)| =
∣∣∣∣∣∣
∫ 0

−T0

c(s)ds

∣∣∣∣∣∣ ≤ m1|T0| ≤ m1

m2
0

.

Equalities (5.8) and (6.10) yield
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τ(t − T0) − c∞t = (τ(t − T0) − c∞(t − T0)) − c∞T0 =

∫ t−T0

−∞
(c(s) − c∞)ds.

Thus in the same way as in the proof of (5.15) and (5.17), we obtain

lim
t→−∞〈t〉

p−1|τ(t − T0) − c∞t| = 0,(6.12)
∫ 0

−∞
〈t〉p−2|τ(t − T0) − c∞t|dt < ∞ if p ≥ 2.(6.13)

Let u∗ be a function defined by (5.10), that is,

u∗(t) : =
i

2
√

c(t)
e−B(t)/2A−1/2

(
e−iτ(t)A1/2

V(τ(t)) − eiτ(t)A1/2
W(τ(t))

)
(6.14)

=
i

2
√

C(τ(t))
e−B(t)/2

(
e−iτ(t)A1/2

U(τ(t))

− 2iA−1/2 sin(τ(t)A1/2)W(τ(t))
)
,

which is a solution of (0.1) satisfying u∗ ∈ ⋂1
j=0 Ci(

R; D(A(J+1− j)/2)
)
. Put

(6.15) u−(t) = u∗(t − T0).

Then it is easy to see that u− is a solution of (0.1).
Since C(τ(t)) = m(‖A1/2u∗(t)‖2), the equality (6.9) implies

lim
t→−∞m(‖A1/2u(t)‖2) = lim

t→−∞m(‖A1/2u∗(t)‖2) = c∞,

that is (1.21) for t → −∞ holds. The fact C ∈ p implies (1.20).
By definition (6.15) and expressions (6.6) and (6.14), we have

u−(t) − v(t) = i
2
√

C(τ(t − T0))
e−B(t−T0)/2

×
[
e−iτ(t−T0)A1/2

(U(τ(t − T0)) − eB∞/2U∞)

+ (e−iτ(t−T0)A1/2 − e−iC−∞tA1/2
)eB∞/2U∞

− 2iA−1/2 sin(τ(t − T0)A1/2)(W(τ(t)) − eB∞/2W∞)

+ 4iA−1/2 sin
(
(τ(t − T0) −C−∞t)A1/2/2

)
× cos

(
(τ(t − T0) +C−∞t)A1/2/2

)
eB∞/2W∞

]

+

(
ie−B(t−T0)/2

2
√

c(t − T0)
− ie−B−∞/2

2
√

C−∞

)
eB∞/2

×
(
e−iC−∞tA1/2

U∞ − 2iA−1/2 sin(C−∞tA1/2)W∞
)
,

Then using (6.12) and (6.13), we can prove (1.22)–(1.25) for t → −∞, in the same way as
in the proof of Theorem 1.

(Step 4) We prove the uniqueness of the solution satisfying (1.19) and (1.20) in the case
“- ”. Let u− be the solution constructed above and put u1 = u−. Let c(t), τ(t), C(τ), V(τ) and
W(τ) be the functions defined in (Step 3). Let u2 ∈ C1(

R;1/2
)

be an arbitrary solution of
(0.1) satisfying
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(1/2u2, u′2) ∈
1⋂

j=0

C j(
R; D(A(1− j)/2) × D(A(1− j)/2)

)
,

(1.19) for t → −∞ and (1.20). We show that u1 = u2. Let c j(t), τ j(t), t j(τ), C j(τ),Vj(τ),Wj(τ)
be the functions defined by (3.3), (3.4) and (3.5) for u = u j ( j = 1, 2). Then C j(τ) =
m(

∥∥∥1/2u j(t j(τ))
∥∥∥2

) ∈ C1(R), (Vj,Wj) ∈ C1(R; D(A1/2) × D(A1/2)), and (C j, (Vj,Wj)) satis-
fies (3.8)–(3.9) and C′j(τ) ∈ L1(R). Since (V,W) satisfies (3.5) with u = u∗ and

C(τ(t − T0)) = c(t − T0) = m(‖A1/2u∗(t − T0)‖2)(6.16)

= m(‖A1/2u1(t)‖2) = c1(t) = C1(τ1(t)),

τ(t − T0) − τ(−T0) =
∫ t−T0

−T0

m(‖A1/2u∗(s)‖2)ds

=

∫ t

0
m(‖A1/2u1(s)‖2)ds = τ1(t),

we see that

V(τ(t − T0))(6.17)

= c(t − T0)−1/2eiτ(t−T0)A1/2+B(t−T0)/2

×
(
u∗′(t − T0) − ic(t − T0)A1/2u∗(t − T0)

)
= c1(t)−1/2eiτ1(t)A1/2+B(t)/2eiτ(−T0)A1/2+

∫ t−T0
t b(s)ds/2

×
(
u′1(t) − ic1(t)A1/2u1(t)

)

= e−
∫ t

t−T0
b(s)ds/2eiτ(−T0)A1/2

V1(τ1(t)).

In the same way, we have

(6.18) W(τ(t − T0)) = e−
∫ t

t−T0
b(s)ds/2e−iτ(−T0)A1/2

W1(τ1(t)).

By (6.7) and the assumption b ∈ L1(R), letting t → −∞ in the equations (6.17) and (6.18),
we see that the limits

(6.19) (V1,−∞,W1,−∞) := lim
τ→−∞(V1(τ),W1(τ))

exists in D(AJ/2) × D(AJ/2) with

(6.20) (V1,−∞,W1,−∞) = (e−iτ(−T0)A1/2
V−∞, eiτ(−T0)A1/2

W−∞).

Hence, by Lemma 2 (i) together with (6.7) and (6.11), we have

(6.21) (V1,−∞,W1,−∞) ∈  J
p (K−12K13ε),

where K−12 and K13 are constants defined by (6.1). Equality (1.19) with u− = u j ( j = 1, 2)
for the same v implies

(6.22) lim
t→−∞

(
‖A1/2(u1(t) − u2(t))‖ + ‖u′1(t) − u′2(t)‖

)
= 0.

Since limτ→−∞C(τ) exists, (6.16) implies that limτ→−∞C1(τ) exists. Hence by (6.22),
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lim
τ→−∞C1(τ) = lim

τ→−∞m(‖A1/2u1(t1(τ))‖2) = lim
t→−∞m(‖A1/2u1(t))‖2)(6.23)

= lim
t→−∞m(‖A1/2u2(t))‖2) = lim

τ→−∞m(‖A1/2u2(t2(τ))‖2) = lim
τ→−∞C2(τ).

By the equality limτ→−∞ B(t1(τ)) = B−∞ = limτ→−∞ B(t2(τ)), (6.19), (6.21)– (6.23), we see
that the limit limτ→−∞(V2(τ),W2(τ)) := (V2,−∞,W2,−∞) exists in D(AJ/2) × D(AJ/2) with

(V2,−∞,W2,−∞) = (V1,−∞,W1,−∞) ∈  J
p (K−12K13ε) ⊂ 

J
p (ε7).

Hence, (C1(τ), (V1(τ),W1(τ))) and (C2(τ), (V2(τ),W2(τ))) are solutions of (3.8)–(3.10) with
the same data at T = −∞. Hence by Proposition 2, we have

(C1(τ), (V1(τ),W1(τ))) = (C2(τ), (V2(τ),W2(τ)))

for every τ ∈ R, and therefore u1(t) = u2(t) for every t ∈ R.
(Step 5) We prove the continuity of the wave operator. By the construction above,

W−(φ, ψ) = (φ0, ψ0) =
(
u∗(−T0),

du∗

dt
(−T0)

)

= 0

(
C(τ(−T0)), (e−iτ(−T0)A1/2

V(τ(−T0)), eiτ(−T0)A1/2
W(τ(−T0))

)
,

where u∗, τ, T0, V,W are functions and numbers defined in (Step 3). By the procedure
above together with (6.8), (6.11) and Lemmas 1 (i) and 2 (i), we see that the operator W− is
decomposed into the following four operators:

W−(φ, ψ) = 0 ◦ Φ3 ◦ Φ2 ◦ Φ1(φ, ψ),

with

Φ1 : (φ, ψ) �→ (c∞, (V−∞,W−∞)) := (c∞, eB−∞/2G0(c∞, (φ, ψ)))

Ỹ J
p(ε)→ [m0,m1] × ̃ J

p (K−12ε),

Φ2 : (c∞, (V−∞,W−∞)) �→ (C, (V,W))

[m0,m1] × ̃ J
p (K−12ε)→ p,K5K−12ε

× BC(R :  J
p (K5K−12ε)),

Φ3 : (C, (V,W))

�→ (
C(τ(−T0)), (e−iτ(−T0)A1/2

V(τ(−T0)), eiτ(−T0)A1/2
W(τ(−T0)))

)
p,K5K−12ε

× BC(R :  J
p (K5K−12ε))→ [m0,m1] ×  J

p (K5K−12K13ε),

0 : [m0,m1] ×  J
p (K5K−12K13ε)→ Y J

p(K−3 ε).

Here BC(R :  J
p (K5K−12ε)) denotes a metric space of all  J

p (K5K−12ε) valued bounded con-
tinuous functions, where the distance of two element (Vj,Wj) for j = 1, 2 is defined by

sup
τ∈R

d J
p
((V1(τ),W1(τ)), (V2(τ),W2(τ))).

The function τ is the inverse of t(τ) which is defined by (3.11), and T0 is the number defined
by (6.10), and both depend on C. We write τ = τC and T0 = T0(C), if we need to represent
the dependence on C.

By Lemma 1 (ii) together with the continuity of the mapping (φ, ψ) �→ c∞ which is shown
in (Step 1), we easily see that the mapping Φ1 is continuous.

Propositions 2 implies the continuity of the mapping Φ2.
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We prove the continuity of the mapping Φ3. For this purpose, we first show that

Ψ0 : C �→ τ(−T0) = τC(−T0(C)) := Ψ0(C)

is continuous from p to R. Let C j ∈ p and put T j := −T0(C j), τ j = τC j for j = 1, 2. By
the definition of T0 together with the fact c∞ = limτ→−∞C(τ), we obtain the following, in
the same way as in the proof of (5.31):

(6.24) |T1 − T2| ≤K‖C1 −C2‖p
.

By (3.11), we have

T1 − T2 = t1(τ1(T1)) − t2(τ2(T2)) =
∫ τ1(T1)

0

1
C1(σ)

dσ −
∫ τ2(T2)

0

1
C2(σ)

dσ

=

∫ τ1(T1)

τ2(T2)

1
C1(σ)

dσ −
∫ τ2(T2)

0

C1(σ) −C2(σ)
C1(σ)C2(σ)

dσ.

Since m0 ≤ C j(σ) ≤ m1 for every σ ∈ R, the above formula yields

(6.25)

1
m1
|τ1(T1) − τ2(T2)| ≤

∣∣∣∣∣∣
∫ τ1(T1)

τ2(T2)

1
C1(σ)

dσ

∣∣∣∣∣∣
≤ |T1 − T2| + 1

m2
0

∫
R

|(C1 −C2)(σ)|dσ.

This inequality together with (6.24) yields

(6.26) |Ψ0(C1) − Ψ0(C2)| = |τ1(T1) − τ2(T2)| ≤ K‖C1 −C2‖p
,

which implies the continuity of Ψ0. Thus

|C1(Ψ0(C1)) −C2(Ψ0(C2))|(6.27)

≤ |C1(Ψ0(C1)) −C1(Ψ0(C2))| + |C1(Ψ0(C2)) −C2(Ψ0(C2))|
≤ ∥∥∥C′1∥∥∥L∞|Ψ0(C1) − Ψ0(C2)| + ‖C1 −C2‖L∞ ≤ K‖C1 −C2‖p

,

which implies the continuity of the mapping

Ψ1 : C �→ C(τ(−T0)) = C(Ψ0(C))

from p → R. Next we prove that the mapping

Ψ2 :(C, (V,W)) �→ (V(Ψ0(C)),W(Ψ0(C)))

p,K5K−12ε
×C(R :  J

p (K5K−12ε))→ 
J
p

is continuous at every point (C1, (V1,W1)) ∈ p,K5K−12ε
×C(R :  J

p (K5K−12ε)). We have

d̃J
p

((V1(Ψ0(C1)),W1(Ψ0(C1))), (V(Ψ0(C)),W(Ψ0(C))))(6.28)

≤ d̃J
p

((V1(Ψ0(C1)),W1(Ψ0(C1))), (V1(Ψ0(C)),W1(Ψ0(C))))

+ d̃J
p

((V1(Ψ0(C)),W1(Ψ0(C))), (V(Ψ0(C)),W(Ψ0(C))))

for (C, (V,W)) ∈ p,K5K−12ε
×C(R :  J

p (K5K−12ε)). Assume that

‖C −C1‖p
+ sup

τ∈R
dJ
p

((V(τ),W(τ)), (V1(τ),W1(τ)))→ 0.
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Then (6.26) and the assumption (V1,W1) ∈ C(R, J
p ) imply that the first-term of the right-

hand side of (6.28) tends to 0. It is clear that the second term of the right-hand side of (6.28)
tends to 0. Hence the continuity Ψ2 holds. Combining the continuities of Ψ0, Ψ2 and Φ0

(see Lemma 2 (ii) ) together, we obtain that the mapping

Ψ3 : (C, (V,W)) �→(e−iΨ0(C)A1/2
V(Ψ0(C)), eiΨ0(C)A1/2

W(Ψ0(C)))

= Φ0(−Ψ0(C),Ψ2(C, (V,W)))

is continuous at the point (C1, (V1,W1)) from p,K5K−12ε
×C(R; J

p (K5K−12ε)) to  J
p . Continu-

ities of Ψ1 and Ψ3 imply the continuity of Φ3.
By definition and Proposition A, we see that W−(φ, ψ) ∈ Ỹ J

p(K−3 ε). The operator 0

is continuous by Lemma 1 (ii), which completes the proof of the continuity of the wave
operator W−.

(Step 6) Assume that 0 < ε ≤ min{ε4/K±3 , ε5/K±2 }. We check the last assertion in the
case “ − ”. Let (φ0, ψ0) ∈ Ỹp(ε). Then by Theorem 1, there exist a unique solution u(t) of
(0.1)–(0.2) with limit limt→−∞m(‖A1/2u(t)‖2) =: C−∞, and a unique solution v− of (LE:C−∞)
and (1.13). Furthermore,

Υ− : (u(0), u′(0)) = (φ0, ψ0) �→ (φ−, ψ−) = (v−(0), v′−(0))

∈ Ỹ J
p(K−2 ε) ⊂ Ỹ J

p(ε5).

Since u and v− satisfy (1.19) for − with u− = u and v = v−, the uniqueness of the solution of
(0.1) and (1.19), which was proved in (Step 4), implies

W−(v−(0), v′−(0)) = (u(0), u′(0)).

Hence,

W−Υ−(φ0, ψ0) = W−(v−(0), v′−(0)) = (u(0), u′(0)) = (φ0, ψ0).

This means that W−Υ− is the identity mapping on Ỹ J
p(ε). In the same way, we can check that

Υ−W− is the identity mapping on Ỹ J
p(ε), and thus the assertion follows. We can also check

the case “ + ” in the same way. �

Proof of Theorem 3. Assume that 0 < ε ≤ min{ε4/K−3 , ε5}. Then by Theorems 1 and 2,
the operator S = W−1

+ W− is a homeomorphism from Ỹ J
p(ε) to S (Ỹ J

p(ε))(⊂ Ỹ J
p(K+2 K−3 ε)). �
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