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Abstract
The Jorge-Meeks n-noid (n ≥ 2) is a complete minimal surface of genus zero with n catenoidal

ends in the Euclidean 3-space R3, which has (2π/n)-rotation symmetry with respect to its axis.
In this paper, we show that the corresponding maximal surface fn in Lorentz-Minkowski 3-
space R3

1 has an analytic extension f̃n as a properly embedded zero mean curvature surface.
The extension changes type into a time-like (minimal) surface.

Introduction

A number of zero mean curvature surfaces of mixed type in Lorentz-Minkowski 3-space
(R3

1; t, x, y) were found in [9], [5], [10], [8], [3], [1] and [2]. One of the main tools for
the construction of such surfaces is based on the fact that fold singularities of space-like
maximal surfaces have real analytic extensions to time-like minimal surfaces (cf. [5], [8],
[7] and [2]). Some of the analytic extensions of such examples have neither singularities
nor self-intersections. A typical such example is a space-like helicoid, which analytically
extends to a time-like surface, and the entire surface coincides with the original helicoid as
a minimal surface in R3. Also, the Scherk type surface

(1) t(x, y) := log
cosh y
cosh x

gives an entire graph which changes type from a space-like maximal surface to a time-like
zero mean curvature surface, as pointed out by Kobayashi [9]. Recently, it was shown in
[3] that the space-like maximal analogues in R3

1 of the Schwarz D surfaces in R3 have ana-
lytic extensions as triply periodic embedded zero mean curvature surfaces. These examples
caused the authors to be interested in space-like maximal analogues fn (n = 2, 3, . . . ) of
Jorge-Meeks minimal surfaces with n catenoidal ends. These surfaces have fold singular-
ities, and have analytic extensions to time-like surfaces. We show in this paper that the
analytic extension of fn is a proper embedding.
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Fig. 1. The Jorge-Meeks trinoid in R3 and the analytic extension of f3 (in
the figure on the right-hand side, the time-like parts are indicated by black
shading).

1. Preliminaries

1. Preliminaries
We denote by (R3

1; t, x, y) the Lorentz-Minkowski 3-space of signature (−++) and denote
the Riemann sphere by S 2 := C ∪ {∞}.

Definition 1.1. A pair (g, ω) consisting of a meromorphic function and a meromorphic
1-form defined on the Riemann sphere is called a Weierstrass data on S 2 if the metric

ds2
E := (1 + |g|2)2|ω|2

has no zeros on S 2. A point where ds2
E diverges is called an end of ds2

E .

We now fix a Weierstrass data (g, ω) on S 2 and let {p1, . . . , pn} be the set of ends of ds2
E .

Then the real part of the map

F :=
∫ z

z0

(−2g, 1 + g2, i(1 − g2)
)
ω

(
i =
√−1
)

is a map

fL = Re(F),

into R3
1 which is defined on the universal cover of S 2 \ {p1, . . . , pn}. We call fL the maximal

surface associated to (g, ω), and F the holomorphic lift of fL. If fL is single-valued on
S 2 \ {p1, . . . , pn}, then we say that fL satisfies the period condition. The first fundamental
form of fL is given by

ds2 = (1 − |g|2)2|ω|2.
In particular, the singular set of fL consists of the points where |g| = 1. In this situation, we
set F = (X0, X1, X2). As pointed out in [11], the real part fE := Re(FE) of the holomorphic
map FE := (X1, X2, iX0) gives a conformal minimal immersion into the Euclidean 3-space
R3 defined on the universal cover of S 2 \ {p1, . . . , pn} such that the first fundamental form
of fE coincides with π∗ds2

E , where π is the covering projection. In particular, FE (and also
F) is an immersion. So the map fL is a maxface in the sense of [11] (see also [4] and [2],
in particular, a convenient definition of maxface which is equivalent to the original one is
given in [2, Definition 2.7]). The minimal immersion fE is called the companion of fL.
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We are interested in the maximal surface fn associated to

gn = zn−1, ωn =
idz

(zn − 1)2 (n = 2, 3, 4, . . . ).

As pointed out in [11, Example 5.7], the companion of fn is congruent to the well-known
complete minimal surface with catenoidal ends, called a Jorge-Meeks surface (cf. [6]). In
particular, the associated metric ds2

E is complete on

S 2 \ {1, ζ, . . . , ζn−1}, where ζ := e2πi/n.

This means that (gn, ωn) is a Weierstrass data on S 2. It can be checked that fn is single-
valued on S 2 \ {1, ζ, . . . , ζn−1}, and the original Jorge-Meeks surface is as well. So fn is a
maxface, and we call { fn}n=2,3,... the Jorge-Meeks type maximal surfaces. The singular set of
fn is the set |z| = 1, which consists of generic fold singularities in the sense of [2], that is,
the image of the singular set consists of a union of non-degenerate null curves in R3

1.

Fig.1.1. Jorge-Meeks type maximal surface f17 (the light-cone is also shown).

We now observe that f2 has a canonical analytic extension embedded in R3
1 (see Figure

1.2): By definition,

f2 = Re
(

i
z2 − 1

,− iz
z2 − 1

,
1
2

log
1 − z
1 + z

)
.

If we set f2 = (x0, x1, x2) and z = reiθ, then

x0 =
r2 sin 2θ

r4 − 2r2 cos 2θ + 1
, x1 = −

r
(
r2 + 1
)

sin θ

r4 − 2r2 cos 2θ + 1
,

x2 =
1
4

log
(
r2 − 2r cos θ + 1
r2 + 2r cos θ + 1

)
.

In particular, it holds that

x0

x1
= −2r cos θ

r2 + 1
= tanh 2x2.

Thus, the image of f2 is a subset of the graph t = x tanh 2y (Figure 1.2, left), and it changes
type on the set

S :=
{(
±cosh 2y

2
, y

)
; y ∈ R

}
,
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in the xy-plane, and the connected domain with boundary S consists of the image of the
orthogonal projection of f2 into the xy-plane (cf. Figure 1.2, right). This means that the
image of f2 has an analytic extension that coincides with an entire zero mean curvature
graph, like as in the case of the Scherk type surface (1) in the introduction.

Fig. 1.2. The analytic extension of f2 and its orthogonal projection of the
space-like part.

In [9], the maximal surface f2 is called a helicoid of the 2nd kind and it was already
pointed out that the function t = x tanh 2y is an entire solution to the maximal surface
equation for graphs. The conjugate surface of f2 (i.e. the imaginary part of the holomorphic
lift of f2) induces a singly periodic maxface, called the hyperbolic catenoid (see [2] for
details).

2. Analytic extension of fn

2. Analytic extension of fn
In this section, we will show that each fn has a canonical analytic extension for n ≥

3 as well. By definition, the Jorge-Meeks type maximal surface fn = (x0, x1, x2) and its
holomorphic lift F = (X0, X1, X2) are given by

fn = Re(F), F =
∫ z

0
α,

where we set

α = α(z) = a(z) dz =
(
a0(z), a1(z), a2(z)

)
dz(2.1)

:=

⎛⎜⎜⎜⎜⎜⎜⎝− 2izn−1

(zn − 1)2 ,
i
(
1 + z2n−2

)
(zn − 1)2 ,−1 − z2n−2

(zn − 1)2

⎞⎟⎟⎟⎟⎟⎟⎠ dz.

Using these expressions, we show the following:

Proposition 2.1. Regarding fn as a column vector-valued function, the image of fn has
the following two properties:

fn(z̄) = S fn(z), fn(ζz) = R fn(z),

where

(2.2) S :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 0 0

0 −1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , R :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 cos 2π

n sin 2π
n

0 − sin 2π
n cos 2π

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Jorge-Meeks TypeMaximal Surfaces 253

and

ζ := e2πi/n.

Proof. Since

R =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 0 0
0 ζ + ζ−1 −i

(
ζ − ζ−1

)
0 i
(
ζ − ζ−1

)
ζ + ζ−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

the 1-form α in (2.1) satisfies

α(z̄) = Sα(z), α(ζz) = Rα(z),

where α is considered as a column vector-valued 1-form. Since F(0) = 0, we have F(z̄) =
S F(z) and F(ζz) = RF(z). In particular, we have the relations fn(z̄) = S fn(z) and fn(ζz) =
R fn(z). �

Lemma 2.2. Up to a suitable translation in C3 by a vector in iR3, the holomorphic lift
F = (X0, X1, X2) of the Jorge-Meeks type maximal surface fn has the following expression:

X0 =
2i

n(zn − 1)
,(2.3)

X1 = −i

⎛⎜⎜⎜⎜⎜⎜⎝z(zn−2 + 1)
n(zn − 1)

+
n − 1

n2

n−1∑
j=1

(ζ j − ζ− j) log(z − ζ j)

⎞⎟⎟⎟⎟⎟⎟⎠ ,(2.4)

X2 = −z(zn−2 − 1)
n(zn − 1)

+
n − 1

n2

n−1∑
j=0

(ζ j + ζ− j) log(z − ζ j).(2.5)

Proof. The first identity (2.3) is obvious. To prove the second identity (2.4), we will show
that differentiation of the right-hand side of (2.4) is equal to a1(z). Denoting the right-hand
side of (2.4) by X̂1, we have that

dX̂1

dz
− a1(z) =

dX̂1

dz
− i(1 + z2n−2)

(zn − 1)2 = −i
(n − 1)ϕ(z)
n2 (zn − 1)

,

where we set

ϕ(z) := n
(
zn−2 − 1

)
+

n−1∑
j=1

(ζ j − ζ− j)(zn − 1)
z − ζ j .

For z = ζk (k = 0, 1, 2, . . . , n − 1),

ϕ(ζk) = n
(
ζ−2k − 1

)
+

n−1∑
j=1

(ζ j − ζ− j)
zn − 1
z − ζ j

∣∣∣∣∣
z=ζk

(2.6)

= n
(
ζ−2k − 1

)
+
(
ζk − ζ−k

)
nζ−k

= 0.

Here we have used the following identity:
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zn − 1
z − ζ j

∣∣∣∣∣
z=ζk
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if j � k,
d
dz

(zn − 1)
∣∣∣∣∣
z=ζk
= nζ−k if j = k.

The equality (2.6) means that the number of zeros for ϕ(z) is at least n. However, ϕ(z) is a
polynomial in z of degree at most n − 1. So we conclude that ϕ vanishes identically, and
hence dX̂1/dz − a1(z) = 0.

Similarly, denoting the right-hand side of (2.5) by X̂2, we have

dX̂2

dz
− a2(z) =

dX̂2

dz
+

1 − z2n−2

(zn − 1)2 = −
(n − 1)ψ(z)
n2 (zn − 1)

,

where ψ(z) is a polynomial of degree at most n − 1 given by

ψ(z) := n
(
zn−2 + 1

)
−

n−1∑
j=0

(ζ− j + ζ j)(zn − 1)
z − ζ j .

It can be easily checked that ψ(ζk) = 0 for each k = 0, 1, 2, . . . , n − 1. These prove that
dX̂2/dz − a2(z) = 0, and thus (2.5) is verified. �

Using Lemma 2.2, we obtain an integration-free formula of fn as follows.

Proposition 2.3. The Jorge-Meeks type maximal surface fn = (x0, x1, x2) has the follow-
ing expressions:

x0 =
2rn sin nθ

n(r2n − 2rn cos nθ + 1)
,(2.7)

x1 = − (r2n−1 + r) sin θ + (rn+1 + rn−1) sin(n − 1)θ
n(r2n − 2rn cos nθ + 1)

(2.8)

+
n − 1

n2

n−1∑
j=1

log
(
r2 − 2r cos

(
θ − 2π j

n

)
+ 1
)

sin
2π j
n
,

x2 =
−(r2n−1 + r) cos θ + (rn+1 + rn−1) cos(n − 1)θ

n(r2n − 2rn cos nθ + 1)
(2.9)

+
n − 1

n2

n−1∑
j=0

log
(
r2 − 2r cos

(
θ − 2π j

n

)
+ 1
)

cos
2π j
n
,

where z = reiθ.

Proof. Since

x0 = Re X0 = − 2 Im(z̄n − 1)
n(zn − 1)(z̄n − 1)

= − 2 Im(rne−inθ)
n(r2n − 2rn cos nθ + 1)

=
2rn sin nθ

n(r2n − 2rn cos nθ + 1)
,

the first identity (2.7) is obtained. Similarly, one can easily check that

Re

⎛⎜⎜⎜⎜⎜⎜⎝−
iz
(
zn−2 + 1

)
n (zn − 1)

⎞⎟⎟⎟⎟⎟⎟⎠ = −
(
r2n−1 + r

)
sin θ +

(
rn+1 + rn−1

)
sin(n − 1)θ

n
(
r2n − 2rn cos nθ + 1

) ,
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Re

⎛⎜⎜⎜⎜⎜⎜⎝−
z
(
zn−2 − 1

)
n (zn − 1)

⎞⎟⎟⎟⎟⎟⎟⎠ = −(r2n−1 + r) cos θ + (rn+1 + rn−1) cos(n − 1)θ
n(r2n − 2rn cos nθ + 1)

.

On the other hand,

Im
n−1∑
j=1

(ζ j − ζ− j) log(z − ζ j) =
n−1∑
j=1

2 sin
2π j
n

log |z − ζ j|

=

n−1∑
j=1

sin
2π j
n

log |z − ζ j|2 =
n−1∑
j=1

sin
2π j
n

log
(
(z − ζ j)(z̄ − ζ− j)

)

=

n−1∑
j=1

log
(
r2 − 2r cos

(
θ − 2π j

n

)
+ 1
)

sin
2π j
n
,

which proves (2.8). Similarly, we have (2.9). �

The following assertion is an immediate consequence of Proposition 2.3.

Corollary 2.4. fn satisfies the identity

(2.10) fn(1/r, θ) = fn(r, θ) (r > 0, 0 ≤ θ < 2π).

Since fn(r, θ) is invariant under the symmetry r 	→ 1/r, the singular set {|z| = 1} of fn
coincides with the fixed point set under the symmetry. We remark that the set {|z| = 1}
consists of non-degenerate fold singularities as in [2]. So, it is natural to introduce a new
variable u by

(2.11) u :=
r + r−1

2
,

which is invariant under the symmetry r 	→ 1/r. We set

D̄∗1 := {z ∈ C ; 0 < |z| ≤ 1}.
By Corollary 2.4, fn(D̄∗1 \ {1, ζ, . . . , ζn−1}) coincides with the whole image of fn. To obtain
the analytic extension of fn, we define an analytic map

ι : D̄∗1 � z = reiθ 	→
(
r + r−1

2
, θ

)
∈ R × R/2πZ.

The image of the map ι is given by

Ω̂n := {(u, θ) ∈ R × R/2πZ ; u ≥ 1}.
The map ι is bijective, whose inverse is given by

ι−1 : R × R/2πZ � (u, θ) 	→
(
u −
√

u2 − 1, θ
)
∈ D̄∗1.

Using the Chebyshev polynomials, the formulas (2.7)–(2.9) can be rewritten in terms of
(u, θ) as follows (see the appendix for the definition and basic properties of the Chebyshev
polynomials).

Corollary 2.5. By setting f̃n = fn ◦ ι−1 and f̃n = (x̃0, x̃1, x̃2), it holds that
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x̃0 =
sin nθ

n(Tn(u) − cos nθ)
,(2.12)

x̃1 = −Tn−1(u) sin θ + u sin(n − 1)θ
n(Tn(u) − cos nθ)

(2.13)

+
n − 1

n2

n−1∑
j=1

log
(
u − cos

(
θ − 2π j

n

))
sin

2π j
n
,

x̃2 =
−Tn−1(u) cos θ + u cos(n − 1)θ

n(Tn(u) − cos nθ)
(2.14)

+
n − 1

n2

n−1∑
j=0

log
(
u − cos

(
θ − 2π j

n

))
cos

2π j
n
,

where Tn(u), Tn−1(u) denote the first Chebyshev polynomials in the variable u of degree n,
n − 1, respectively.

Proof. Since

x0 =
2rn sin nθ

n(r2n − 2rn cos nθ + 1)
=

sin nθ

n
(

1
2 (rn + r−n) − cos nθ

) ,
(A.2) in the appendix yields (2.12). Similarly, the first terms of (2.8) and (2.9) are the same
as the first terms of (2.13) and (2.14), respectively. On the other hand,

n−1∑
j=1

log
(
r2 − 2r cos

(
θ − 2π j

n

)
+ 1
)

sin
2π j
n

=

n−1∑
j=1

log
(
2r
(
r + r−1

2
− cos
(
θ − 2π j

n

)))
sin

2π j
n

=

n−1∑
j=1

log
(
u − cos

(
θ − 2π j

n

))
sin

2π j
n
+ log 2r

n−1∑
j=1

sin
2π j
n
.

Then we have (2.13) because
n−1∑
j=1

sin
2π j
n
= Im

n∑
j=0

ζ j = 0.

Similarly, we have (2.14). �

If we consider f̃n instead of fn, the origin z = 0 in the source space of fn does not lie in
that of f̃n. To indicate what the origin in the old complex coordinate z becomes in the new
real coordinates (u, θ), we attach a new point p∞ to Ω̂n as the ‘point at infinity’, and extend
the map ι so that

ι(0) = p∞.

Hence we have a one-to-one correspondence between {|z| ≤ 1} and Ω̂n ∪ {p∞}. In particular,
Ω̂n ∪ {p∞} can be considered as an analytic 2-manifold. We prove the following:

Proposition 2.6. The map f̃n : Ω̂n ∪ {p∞} → R3
1 can be analytically extended to the
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domain

(2.15) Ωn :=
{

(u, θ) ∈ R × R/2πZ ; u > max
j=0,...,n−1

[
cos
(
θ − 2π j

n

)]}
∪ {p∞}.

Proof. In fact, (2.12)–(2.14) are meaningful if

(2.16) Tn(u) − cos nθ > 0 and u > cos
(
θ − 2π j

n

)
( j = 0, 1, . . . , n − 1).

Moreover, Tn(u) − cos nθ is factorized as (cf. Lemma A.1 in the appendix)

(2.17) Tn(u) − cos nθ = 2n−1
n−1∏
j=0

(
u − cos

(
θ − 2π j

n

))
.

So the condition (2.16) reduces to

u > cos
(
θ − 2π j

n

)
( j = 0, 1, . . . , n − 1).

Thus, the components x̃0, x̃1 and x̃2 of f̃n given in (2.12), (2.13) and (2.14) can be extended
to Ωn. �

By Proposition 2.6, we may assume that the map f̃n is defined in Ωn. From now on, we
call this newly obtained analytic map

f̃n : Ωn → R3
1

the analytic extension of fn.

Fig.2.1. The domain Ωn and the fundamental domain Ω0
n for n = 3, where

the region of u > 1 is the space-like part and the regions of u < 1 are the
time-like parts.

Proposition 2.1 and the real analyticity of f̃n imply that

(2.18) f̃n(u,−θ) = S f̃n(u, θ), f̃n

(
u, θ +

2π
n

)
= R f̃n(u, θ),

where S and R are the matrices given in (2.2), and f̃n is considered as a column vector-valued
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function. Let G be the finite isometry group of R3
1 generated by S and R. The subset

(2.19) Ω0
n =

{
(u, θ) ; u > cos θ, 0 ≤ θ ≤ π

n

}

of Ωn is called the fundamental domain of f̃n. The equation (2.12) yields the following
proposition.

Proposition 2.7. The whole image of f̃n can be generated by f̃n(Ω0
n) via the action of G,

where Ω0
n is the fundamental domain as in (2.19).

3. Properness of f̃n

3. Properness of f̃n
Firstly, we prepare some inequalities which will be necessary for proving that f̃n is a

proper mapping.
By the definition (2.15) of Ωn, we have the following two inequalities on Ωn (cf. (2.16),

(2.17))

(3.1) Tn(u) > cos nθ,

and

(3.2) u > cos
π

n
on Ωn,

since the function max j=0,...,n−1
[
cos (θ − 2π j/n)

]
has a minimum value cos(π/n).

Lemma 3.1. On the fundamental domain Ω0
n, it holds that

(3.3) u − cos
(
θ − 2π j

n

)
≥ 2 sin2 π

n
( j = 2, . . . , n − 1).

Proof. Since u > cos θ and 0 ≤ θ ≤ π/n on Ω0
n,

u − cos
(
θ − 2π j

n

)
> cos θ − cos

(
θ − 2π j

n

)
= 2 sin

(
π j
n
− θ
)

sin
π j
n

≥ 2 sin
π( j − 1)

n
sin

π j
n
≥ 2 sin2 π

n
for 2 ≤ j ≤ n − 1, proving (3.3). �

Using these, we prove the following assertion:

Proposition 3.2. The analytic extension f̃n : Ωn → R3
1 is a proper mapping.

Proof. By Proposition 2.1, it is sufficient to show that the restriction of f̃n toΩ0
n is a proper

mapping. We set

C := Ω0
n \Ω0

n =

{
(cos θ, θ) ; 0 ≤ θ ≤ π

n

}
.

Consider a sequence {(uk, θk)}k=1,2,... in Ω0
n such that

lim
k→∞

(uk, θk) = (cos θ∞, θ∞) ∈ C
(
0 ≤ θ∞ ≤ π

n

)
.

It is sufficient to show that the sequence { f̃n(uk, θk)} is unbounded in R3
1.
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Case 1: We consider the case that 0 ≤ θ∞ < π/n. The sequence {(uk, θk)} is bounded since
it converges. So we can take positive numbers u0 and δ such that uk < u0 and θk < (π/n) − δ
for all k, that is,

(uk, θk) ∈ Ωδ,u0 :=
{
(u, θ) ∈ Ω0

n ; u ≤ u0, θ ≤ π

n
− δ
}
.

We now set (cf. (2.14))

x̃2 = x̃2,a + x̃2,b,

x̃2,a :=
−Tn−1(u) cos θ + u cos(n − 1)θ

n(Tn(u) − cos nθ)
,

x̃2,b :=
n − 1

n2

n−1∑
j=0

log
(
u − cos

(
θ − 2π j

n

))
cos

2π j
n
.

Since the numerator of x̃2,a satisfies (cf. (A.1) in the appendix)

− Tn−1(u) cos θ + u cos(n − 1)θ
∣∣∣∣∣
u=cos θ

= − cos(n − 1)θ cos θ + cos θ cos(n − 1)θ = 0,

there exists a real analytic function ϕ(u, θ) such that

−Tn−1(u) cos θ + u cos(n − 1)θ = (u − cos θ)ϕ(u, θ).

Since

u − cos
(
θ − 2π

n

)
≥ cos θ − cos

(
θ − 2π

n

)
(3.4)

= 2 sin
(
π

n
− θ
)

sin
π

n
> 2 sin δ sin

π

n
holds on Ωδ,u0 , (2.17) and (3.3) in Lemma 3.1 yield that there exist a real analytic function
ψ(u, θ) and a positive number ε such that

Tn(u) − cos nθ = (u − cos θ)ψ(u, θ), ψ(u, θ) ≥ ε > 0 on Ωδ,u0 .

Thus x̃2,a = ϕ(u, θ)/nψ(u, θ) is bounded on Ωδ,u0 .
Since (3.3) in Lemma 3.1 and (3.4) imply that

log
(
u − cos

(
θ − 2π j

n

))
( j = 1, 2, . . . , n − 1)

is bounded on Ωδ,u0 , we can write

x̃2,b =
n − 1

n2 log(u − cos θ) + β(u, θ),

where β(u, θ) is a real analytic function bounded on Ωδ,u0 . Thus, x̃2(uk, θk)→ −∞ as k → ∞.

Case 2: We next consider the case that θ∞ = π/n. In other words, we suppose the sequence
{(uk, θk)} converges to (cos(π/n), π/n). In this case, we seek to prove

(3.5) lim
k→∞

x̃1(uk, θk) = −∞.

We may assume {(uk, θk)} ⊂ Ω0
n ∩ {u ≤ u0} for some constant u0. We set (cf. (2.13))



260 S. Fujimori, Y. Kawakami, M. Kokubu, W. Rossman, M. Umehara and K. Yamada

x̃1 = x̃1,a + x̃1,b,

x̃1,a : = −Tn−1(u) sin θ + u sin(n − 1)θ
n(Tn(u) − cos nθ)

,

x̃1,b : =
n − 1

n2

n−1∑
j=1

log
(
u − cos

(
θ − 2π j

n

))
sin

2π j
n
.

Let (u, θ) ∈ Ω0
n. Then u > cos θ and cos θ ∈ (cos(π/n), 1) ⊂ [cos(π/n),∞). So both u

and cos θ belong to [cos(π/n),∞). Since Tn−1 is monotone increasing on [cos(π/n),∞)(⊂
[cos(π/(n − 1)),∞)) (cf. (A.1) and Proposition A.5 in the appendix), it holds that

Tn−1(u) > Tn−1(cos θ) = cos(n − 1)θ on Ω0
n.

Noticing this, we have

Tn−1(u) sin θ + u sin(n − 1)θ ≥ cos(n − 1)θ sin θ + cos θ sin(n − 1)θ = sin nθ ≥ 0

on Ω0
n. By (3.1), the inequality x̃1,a ≤ 0 holds on Ω0

n. By (3.3) in Lemma 3.1,

log
(
u − cos

(
θ − 2π j

n

))
( j = 2, . . . , n − 1)

is bounded on Ω0
n ∩ {u ≤ u0}, and we can write

x̃1 = x̃1,a + x̃1,b ≤ x̃1,b = β̂(u, θ) + log
(
u − cos

(
θ − 2π

n

))
sin

2π
n

on Ω0
n, where β̂(u, θ) is a real analytic function bounded on Ω0

n ∩ {u ≤ u0}. Since the right-
hand side tends to −∞ as (u, θ)→ (cos(π/n), π/n

)
, (3.5) holds. �

4. Immersedness of f̃n

4. Immersedness of f̃n
Proposition 4.1. The analytic extension f̃n : Ωn → R3

1 is an immersion.

Proof. In this proof, f and f̃ denote fn and f̃n, respectively, for notational simplicity.
Since ∂/∂z = (1/2z)(r∂/∂r − i∂/∂θ) for z = reiθ, we have

α = dF = Fz dz = (F + F̄)z dz = 2 fz dz =
1
z

(r fr − i fθ) dz,

where α = a(z) dz is as given in (2.1), that is,

(4.1) za(z) = r fr − i fθ.

On the other hand, we have (cf. (2.1))

za(z) =

⎛⎜⎜⎜⎜⎜⎜⎝ −2irneinθ

(
rneinθ − 1

)2 ,
ireiθ
(
1 + r2n−2ei(2n−2)θ

)
(
rneinθ − 1

)2 ,(4.2)

−
reiθ
(
1 − r2n−2ei(2n−2)θ

)
(
rneinθ − 1

)2
⎞⎟⎟⎟⎟⎟⎟⎠ .

We define by ξ jk := t(ξ j, ξk) ( j < k) for ξ = (ξ0, ξ1, ξ2) ∈ C3, and here t(∗) means transposi-
tion. Then
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2ir det( f jk
r , f jk

θ ) = det(r f jk
r − i f jk

θ , r f jk
r + i f jk

θ ) = det(za jk, za jk).

Using this and (4.2), one can arrive at

det( f 01
r , f 01

θ ) =
2rn−2
(
r2n − r2

)
sin(n − 1)θ(

r2n − 2rn cos nθ + 1
)2 ,(4.3)

det( f 02
r , f 02

θ ) = −
2rn−2
(
r2n − r2

)
cos(n − 1)θ(

r2n − 2rn cos nθ + 1
)2 .(4.4)

Since we set u = (r + r−1)/2, we have

(4.5) fu =
2r2

r2 − 1
fr.

The equality (4.3) is equivalent to

det( f 01
u , f 01

θ ) =
4rn
(
r2n − r2

)
sin(n − 1)θ

(r2 − 1)
(
r2n − 2rn cos nθ + 1

)2
=

4
(
rn−1 − r1−n

)
sin(n − 1)θ

(r − r−1) (rn + r−n − 2 cos nθ)2 =
Un−2(u) sin(n − 1)θ
(Tn(u) − cos nθ)2 ,

where Un−2(u) denotes the second Chebyshev polynomial of degree n− 2. (See (A.2), (A.4)
and (A.5) in the appendix.) Similarly, by (4.4), we have

det( f 02
u , f 02

θ ) = −Un−2(u) cos(n − 1)θ
(Tn(u) − cos nθ)2 .

By the real analyticity, the identities

(4.6)
det( f̃ 01

u , f̃ 01
θ ) =

Un−2(u) sin(n − 1)θ
(Tn(u) − cos nθ)2 ,

det( f̃ 02
u , f̃ 02

θ ) = −Un−2(u) cos(n − 1)θ
(Tn(u) − cos nθ)2

hold onΩn. Hence, it cannot occur that det( f̃ 01
u , f̃ 01

θ ) and det( f̃ 02
u , f̃ 02

θ ) vanish simultaneously,
since Un−2(u) > 0 by (3.2) (cf. Corollary A.4 in the appendix). We conclude that f̃n is an
immersion. �

5. Embeddedness of f̃n

5. Embeddedness of f̃n5.1. Outline.
5.1. Outline. We show that f̃n = (x̃0, x̃1, x̃2) : Ωn → (R3

1; t, x, y) is an embedding. The set

x̃−1
0 (h)

(⊂ Ωn
)

is called the contour-line of height t = h, and

Λh := f̃n(x̃−1
0 (h)) = f̃n(Ωn) ∩ {t = h}

is called the level curve set of height t = h. To show the embeddedness of f̃n, it is sufficient
to show that f̃n : x̃−1

0 (h)→ Λh is injective at each height h.
Since (cf. (2.7) or (2.12))
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(5.1) x̃0 =
2rn sin nθ

n(r2n − 2rn cos nθ + 1)
=

sin nθ
n(Tn(u) − cos nθ)

,

the contour-line of height h = 0 is given by

(5.2) x̃−1
0 (0) =

2n−1⋃
k=0

{
(u, θ) ∈ Ωn ; θ =

k
n
π

}
∪ {p∞}.

The figure of the contour-line x̃−1
0 (0) and its image (i.e. the level curve set of height h = 0)

are indicated in Figure 5.1, where p∞ corresponds to the origin of the level curve.

Fig. 5.1. Contour-lines x̃−1
0 (0) and the level curve set Λ0 at height h = 0 in

the case n = 6.

On the other hand, if h � 0, we have

x̃−1
0 (h) =

{
(u, θ) ∈ Ωn ; Tn(u) = cos nθ +

1
nh

sin nθ
}
.

The following assertion is immediately obtained.

Proposition 5.1. The function x̃0 (cf. (5.1)) is non-negative valued onΩ0
n, whereΩ0

n is the
fundamental domain given by (2.19).

If h < 0, x̃−1
0 (h) ∩ Ω0

n is an empty set. So we consider the case h > 0. Let Λ0
h be the level

curve set of the image f̃n(Ω0
n) of the fundamental domain Ω0 for h > 0, that is,

Λ0
h := f̃n(Ω0

n) ∩ {t = h} = f̃n
(
x̃−1

0 (h) ∩Ω0
n

)
(h > 0).

As a consequence of Proposition 2.7, we obtain the following:

Corollary 5.2. For each h > 0,

Λh =

n−1⋃
k=0

RkΛ0
h, and Λ−h = SΛh

hold, where R and S are the matrices defined in (2.2) (cf. (2.18)).

Corollary 5.2 implies that we should seek to prove that
(1) the map f̃n restricted to x̃−1

0 (h) ∩Ω0
n, i.e., f̃n : x̃−1

0 (h) ∩Ω0
n → Λ0

h is injective,
(2)
⋃n−1

k=0 RkΛ0
h is a disjoint union.
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Fig.5.2. Contour-line x̃−1
0 (h)∩Ω0

n and the level curve set Λ0
h for h = 0.01 in

the case n = 6.

Fig.5.3. The level curve set Λh of f̃6(Ω6) for h = 1.

5.2. Contour-lines in Ω0
n.

5.2. Contour-lines in Ω0
n. Now we investigate x̃−1

0 (h) ∩ Ω0
n. As mentioned above, we

suppose h > 0.

Proposition 5.3. (1) Given h > 0 and 0 < θ < π/n, the equation x̃0(u, θ) = h is uniquely
solved for u ∈ (cos(π/n),∞). Indeed, it determines the implicit function u = u(h, θ)
defined on A := {(h, θ) ; h > 0, 0 < θ < π/n} satisfying cos θ < u(h, θ). Moreover, the
following hold:

(i) For a fixed θ0 ∈ (0, π/n), the function h 	→ u(h, θ0) is monotone decreasing, and

lim
h↘0

u(h, θ0) = ∞.

(ii) For a fixed h0 > 0,

lim
θ↘0

u(h0, θ) = 1, lim
θ↗π/n

u(h0, θ) = cos(π/n).

(2) The derivative (x̃0)u is given by

(x̃0)u = − Un−1(u) sin nθ
(Tn(u) − cos nθ)2 .

Proof. (1): The equation x̃0(u, θ) = h(> 0) is equivalent to

Tn(u) = cos nθ +
1
nh

sin nθ,
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and

−1 < cos nθ < cos nθ +
1

nh
sin nθ

holds on A = {(h, θ) ; h > 0, 0 < θ < π/n}. On the other hand, the Chebyshev polyno-
mial Tn(u) is monotone increasing on the interval [cos(π/n),∞) (see Proposition A.5 in the
appendix), and hence it has the inverse function

T−1
n : [−1,∞)→ [cos(π/n),∞),

which is monotone increasing. Thus,

(5.3) u(h, θ) := T−1
n

(
cos nθ +

1
nh

sin nθ
)

on A

is well-defined and the desired one. Obviously,

cos θ = T−1
n (cos nθ) < T−1

n

(
cos nθ +

1
nh

sin nθ
)
= u(h, θ)

holds on A.
Since T−1

n is monotone increasing on [−1,∞), the formula (5.3) immediately implies the
assertions (i) and (ii).
(2): This can be determined directly from (2.12). �

Hereafter, we set (cf. (5.3))

uh(θ) := u(h, θ)

which can be considered as a function of θ fixing h. Proposition 5.3 implies that the contour-
line x̃−1

0 (h) ∩Ω0
n satisfies

(5.4) x̃−1
0 (h) ∩Ω0

n =
{
(u, θ) ∈ Ω0

n ; u = uh(θ)
}
=
{
(uh(θ), θ) ∈ Ω0

n ; 0 < θ < π/n
}
.

The level curve set Λ0
h, i.e., f̃n(x̃−1

0 (h) ∩Ω0
n) is given by

Λ0
h = {(h, x̃1(uh(θ), θ), x̃2(uh(θ), θ)) ; 0 < θ < π/n} .

We show the following properties of the level curve set Λ0
h.

Lemma 5.4.
(1) x̃1(uh(θ), θ) is a monotone decreasing function of θ ∈ (0, π/n), whose value is less

than −h,
(2) x̃2(uh(θ), θ) attains a maximum at θ =

π

2(n − 1)
∈ (0, π/n).

Proof. (1): By (4.6) and Proposition 5.3 (2), we have

d
dθ

x̃1
(
uh(θ), θ

)
=
∂x̃1

∂u
duh

dθ
+
∂x̃1

∂θ
= −∂x̃1

∂u

∂x̃0
∂θ

∂x̃0
∂u

+
∂x̃1

∂θ
(5.5)

=
1

(x̃0)u
det( f̃ 01

u , f̃ 01
θ ) = −Un−2(uh(θ))

Un−1(uh(θ))
sin(n − 1)θ

sin nθ
,

which is negative for 0 < θ < π/n (cf. Corollary A.4 in the appendix). Hence, x̃1(uh(θ), θ) is
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a monotone decreasing function of θ. Next, according to (2.13), we set

x̃1(uh(θ), θ) = x̃1,a(θ) + x̃1,b(θ),

where

x̃1,a(θ) = −h
(
Tn−1(uh(θ))

sin θ
sin nθ

+ uh(θ)
sin(n − 1)θ

sin nθ

)
,

x̃1,b(θ) =
n − 1

n2

n−1∑
j=1

log
(
uh(θ) − cos

(
θ − 2π j

n

))
sin

2π j
n
.

These satisfy

lim
θ↘0

x̃1,a(θ) = −h
(
Tn−1(1)

1
n
+ 1

n − 1
n

)
= −h
(
1
n
+

n − 1
n

)
= −h,

because of part (ii) of item (1) in Proposition 5.3. Moreover,

lim
θ↘0

x̃1,b(θ) =
n − 1

n2

n−1∑
j=1

log
(
1 − cos

(
0 − 2π j

n

))
sin

2π j
n
= 0

holds, since the terms in the summation cancel for each pair ( j, n − j). Therefore

lim
θ↘0

x̃1(uh(θ), θ) = −h + 0 = −h.

Since the function θ 	→ x̃1(uh(θ), θ) is monotone decreasing, we conclude that x̃1(uh(θ), θ) <
−h for all θ ∈ (0, π/n).

(2): Similarly to (5.5), we have

d
dθ

x̃2
(
uh(θ), θ

)
=
∂x̃2

∂u
duh

dθ
+
∂x̃2

∂θ
= −∂x̃2

∂u

∂x̃0
∂θ

∂x̃0
∂u

+
∂x̃2

∂θ
(5.6)

=
1

(x̃0)u
det( f̃ 02

u , f̃ 02
θ ) =

Un−2(uh(θ))
Un−1(uh(θ))

cos(n − 1)θ
sin nθ

,

which is ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
positive if 0 < θ < π

2(n−1) ,

zero if θ = π
2(n−1) ,

negative if π
2(n−1) < θ <

π
n .

This proves the assertion (2). �

Proposition 5.5. The restriction of the map f̃n given by

(5.7) f̃n : x̃−1
0 (h) ∩Ω0

n � (uh(θ), θ) 	→ (h, x̃1(uh(θ), θ), x̃2(uh(θ)) ∈ Λ0
h

is injective.

Proof. The equation (5.4) and Lemma 5.4 (1) imply that the above correspondence (5.7)
gives a regular curve without self-intersection. �
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5.3. Level curve sets.
5.3. Level curve sets. Firstly, we deal with the level curve set Λ0 of height h = 0 (cf.

Figure 5.1).

Proposition 5.6. The map f̃n restricted to x̃−1
0 (0) is injective.

To prove the assertion, we prepare the following lemma:

Lemma 5.7.

(x̃1)u =
sin(2n − 1)θ + 2Un−2(u) sin(n − 1)θ + U2n−2(u) sin θ

2(Tn(u) − cos nθ)2 ,(5.8)

(x̃2)u =
− cos(2n − 1)θ − 2Un−2(u) cos(n − 1)θ + U2n−2(u) cos θ

2(Tn(u) − cos nθ)2 .(5.9)

Proof. By (4.1), (4.2) and (4.5), we obtain that

(x̃1)u

2
=

r
r2 − 1

Re(za1(z))

=
2(r3n − rn+2) sin(n − 1)θ +

(
r2 − 1
)

r2n sin(2n − 1)θ +
(
r4n − r2

)
sin θ(

r2 − 1
) (

r2n − 2rn cos nθ + 1
)2 ,

(x̃2)u

2
=

r
r2 − 1

Re(za2(z))

= −
2(r3n − rn+2) cos(n − 1)θ +

(
r2 − 1
)

r2n cos(2n − 1)θ +
(
r2 − r4n

)
cos θ(

r2 − 1
) (

r2n − 2rn cos nθ + 1
)2 .

So (r + r−1)/2 = u proves (5.8) and (5.9). �

Proof of Proposition 5.6. Recall the equality (5.2) which asserts that

x̃−1
0 (0) =

2n−1⋃
k=0

Bk ∪ {p∞},

where

Bk :=
{

(u, θ) ∈ Ωn ; θ =
k
n
π

}
.

Consider the map

f̃n|Bk = (x̃0, x̃1, x̃2)|θ=kπ/n = (0, x̃1(u, kπ/n), x̃2(u, kπ/n)).

It follows from (5.8), (5.9) and (A.6) that

d
du

(
f̃n
∣∣∣
Bk

)
= V(u)

(
0, sin

k
n
π, cos

k
n
π

)
,

where

V(u) :=
Un−2(u)

Tn(u) − (−1)k .

This implies that f̃n|Bk parametrizes a straight half-line with the velocity V(u). If k is even,
f̃n|Bk is defined on the interval (1,∞) and V(u) is positive on (1,∞). If k is odd, f̃n|Bk is
defined on the interval (cos(π/n),∞) and V(u) is positive on (cos(π/n),∞). Hence, for any
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k, the map f̃n|Bk is injective. Moreover, the monotonicity of f̃n|Bk and the equality

lim
u→∞ f̃n|Bk (u) = f̃n(p∞) = (0, 0, 0)

imply that the point p∞ is the unique inverse-image of (0, 0, 0). Therefore we conclude the
map f̃n : x̃−1

0 (0)→ R3
1 is injective. �

We next consider the case where the height h is not equal to 0.
For a fixed h, let Ph denote a plane in (R3

1; t, x, y) defined by the equation t = h, with
coordinate system (x, y).

Proposition 5.8. For any fixed h > 0, the level curve set Λ0
h of height h lies in the region

Dh := {(x, y) ; x < −h, x cos(2π/n) − y sin(2π/n) + h > 0} ⊂ Ph.

Proof. We parametrize Λ0
h so that (cf. Proposition 5.5)

(xh(θ), yh(θ)) := (x̃1(uh(θ), θ), x̃2(uh(θ), θ)) (0 < θ < π/n).

We have already shown that xh(θ) < −h (cf. Lemma 5.4 (1)). It remains to show

ϕh(θ) := xh(θ) cos(2π/n) − yh(θ) sin(2π/n) + h > 0

for 0 < θ < π/n. Using (5.5), (5.6), we have

d
dθ
ϕh(θ) = − Un−2(uh(θ))

Un−1(uh(θ)) sin nθ
sin
(
(n − 1)θ +

2π
n

)
.

This implies that ϕh(θ) has a minimum at

θ0 =
n − 2

(n − 1)n
π.

Hence, we have only to prove that

(5.10) ϕh(θ0) > 0.

Indeed,

Φ(h) := ϕh(θ0) = x̃1(uh(θ0), θ0) cos(2π/n) − x̃2(uh(θ0), θ0) sin(2π/n) + h

satisfies

(5.11) lim
h↘0
Φ(h) = 0 · cos(2π/n) − 0 · sin(2π/n) + 0 = 0,

because of part (i) of item (1) in Proposition 5.3. Moreover, a straightforward computation
using Proposition 5.3 (2), (5.8) and (5.9) leads us to

dΦ
dh

(h) =
1 + U2n−2(uh(θ0))

2Un−1(uh(θ0))
+ 1 =

1 + U2n−2(uh(θ0)) + 2Un−1(uh(θ0))
2Un−1(uh(θ0))

.

We wish to know the sign of dΦ/dh. Note that uh(θ0) ∈ (cos θ0,∞) for h ∈ (0,∞). For this
purpose, we set

Υ(u) :=
1 + U2n−2(u) + 2Un−1(u)

2Un−1(u)
for u ∈ (cos θ0,∞).
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Then, it is obvious Υ(u) > 0 for u ∈ [1,∞) (cf. Proposition A.3 in the appendix). For
u ∈ (cos θ0, 1), it is also obvious that the denominator of Υ(u) is positive. Since there exists
a unique α ∈ (0, θ0) with u = cosα, the numerator is computed as

1 + U2n−2(cosα) + 2Un−1(cosα) =
sinα + sin(2n − 1)α + 2 sin nα

sinα

=
2 sin nα cos(n − 1)α + 2 sin nα

sinα
=

2 sin nα
sinα

(cos(n − 1)α + 1).

So the numerator is positive because 0 < α < θ0 =
n−2

(n−1)nπ.
Thus, Υ(u) > 0 for all u ∈ (cos θ0,∞). Hence we obtain

(5.12)
dΦ
dh

(h) = Υ(uh(θ0)) > 0 for h ∈ (0,∞).

It follows from (5.11) and (5.12) that Φ(h) > 0 for all h ∈ (0,∞), that is, ϕh(θ0) > 0 for
all h ∈ (0,∞). We have now proved (5.10). �

We are in a position to complete a proof of the embeddedness of f̃n.

Theorem 5.9. For any integer n ≥ 2, the analytic extension f̃n : Ωn → R3
1 is a proper

embedding.

Proof. The assertion for n = 2 is trivial, as stated in Section 1. We have already proved
that f̃n is a proper immersion (cf. Propositions 3.2 and 4.1). So it is sufficient to show that
f̃n is injective for each n ≥ 3. For this purpose, we will show that f̃n restricted to each
contour-line x̃−1

0 (h) is injective. We have already done this for h = 0 in Proposition 5.6. For
h � 0, it suffices to show Λ0

h never intersects the other RkΛ0
h (k = 1, 2, . . . , n − 1), since we

have already seen f̃n : x̃−1
0 (h) ∩ Ω0

n → Λ0
h ⊂ Dh is injective (cf. Proposition 5.5). In fact, the

region Dh of Proposition 5.8 does not intersect the other Rk(Dh) (k = 1, 2, . . . , n − 1) (see
Figures 5.4 and 5.5), thus, Λ0

h never intersects the other RkΛ0
h. Therefore, we conclude that

f̃n : Ωn → R3
1 is an injective proper immersion, i.e., a proper embedding. �

Fig.5.4.⋃n−1
k=0 Rk(Dh)

(n = 6, h = 1)

Fig.5.5.⋃n−1
k=0 Rk(Dh)

(n = 6, h = 2)
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Fig.5.6. Images of f̃3 and f̃6 (the time-like parts are indicated by black shading).

Appendix A. Some properties of Chebyshev polynomials

Appendix A. Some properties of Chebyshev polynomials
The first Chebyshev polynomial Tn(x) (n = 1, 2, . . . ) is, by definition, the polynomial of

degree n such that

(A.1) Tn(cos θ) = cos nθ.

It holds that

(A.2) Tn(u) =
rn + r−n

2

(
u :=

r + r−1

2

)
.

Lemma A.1. The following identity holds:

(A.3) Ψn(u) := Tn(u) − cos nθ = 2n−1
n−1∏
j=0

(
u − cos

(
θ − 2π j

n

))
.

Proof. By (A.1), we have

Ψn

(
cos
(
θ − 2π j

n

))
= cos
(
n
(
θ − 2π j

n

))
− cos nθ = 0.

Since Ψn(u) is a polynomial in u of degree n and the highest coefficient of Tn(u) is equal to
2n−1, we obtain the assertion. �

The second Chebyshev polynomial Un(x) (n = 1, 2, . . . ) is, by definition, the polynomial
of degree n such that

(A.4) sin(n + 1)θ = sin θ Un(cos θ).

It holds that

(A.5) Un−1(u) =
rn − r−n

r − r−1

(
u =

r + r−1

2

)
.

The first and the second Chebyshev polynomials are related as follows:

d
dx

Tn(x) = nUn−1(x).

Proposition A.2. For m ≥ 1, it holds that
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(A.6) U2m(x) − 1 = 2Tm+1(x)Um−1(x).

Proof. It is sufficient to show the identity for x = cos θ (θ ∈ [0, 2π)). Then

U2m(cos θ) − 1 =
sin(2m + 1)θ

sin θ
− 1 =

sin(2m + 1)θ − sin θ
sin θ

=
2 cos(m + 1)θ sin mθ

sin θ
= 2Tm+1(cos θ)Um−1(cos θ).

�

Proposition A.3. Let n be an integer greater than 2 (resp. n = 2). Then y = Un−1(x) is
monotone increasing on the interval {x ; cos(π/(n − 1)) ≤ x < ∞} and the range is {y ; −1 ≤
y < ∞} (resp. {y ; −2 ≤ y < ∞}). Furthermore, Un−1(cos(π/n)) = 0 and Un−1(1) = n hold.

Corollary A.4. For arbitrary m ≤ n − 1,

Um(x) > 0 for cos(π/n) < x < ∞.
Proposition A.5. Let n be an integer greater than or equal to 2. Then y = Tn(x) is

monotone increasing on the interval {x ; cos(π/n) ≤ x < ∞} and the range is {y ; −1 ≤ y <
∞}. Furthermore, Tn(cos(π/(2n))) = 0 and Tn(1) = 1 hold.

Fig. A.1. Chebyshev polynomials are monotone increasing on the interval
toward the right.

Note added in proof. After submitting the paper, the authors wrote another paper

Entire zero-mean curvature graphs of mixed type in Lorentz-Minkowski 3-space,

published in Quart. J. Math. 67 (2016), 801–837 (doi:10.1093/qmath/haw038), in which a
class of maximal surfaces called ‘Kobayashi surfaces’ is introduced. Kobayashi surfaces ad-
mit analytic extensions, some of which are not only properly embedded but also expressed
as entire zero-mean curvature graphs of mixed type without singularities. The Jorge-Meeks
type surfaces fn investigated in the present paper are Kobayashi surfaces. However, the re-
sults of the above mentioned paper do not imply the embeddedness of the analytic extension
f̃n of fn. In fact, the method used in the above paper cannot apply to the case here, since f̃n
(n ≥ 3) are not expressed as entire graphs over the space-like plane.
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