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Abstract
The Jorge-Meeks n-noid (n > 2) is a complete minimal surface of genus zero with n catenoidal
ends in the Euclidean 3-space R3, which has (27/n)-rotation symmetry with respect to its axis.
In this paper, we show that the corresponding maximal surface f, in Lorentz-Minkowski 3-
space R? has an analytic extension f, as a properly embedded zero mean curvature surface.
The extension changes type into a time-like (minimal) surface.

Introduction

A number of zero mean curvature surfaces of mixed type in Lorentz-Minkowski 3-space
(R?;t, x,y) were found in [9], [5], [10], [8], [3], [1] and [2]. One of the main tools for
the construction of such surfaces is based on the fact that fold singularities of space-like
maximal surfaces have real analytic extensions to time-like minimal surfaces (cf. [5], [8],
[7] and [2]). Some of the analytic extensions of such examples have neither singularities
nor self-intersections. A typical such example is a space-like helicoid, which analytically
extends to a time-like surface, and the entire surface coincides with the original helicoid as
a minimal surface in R®. Also, the Scherk type surface

coshy

(D t(x,y) := log
cosh x

gives an entire graph which changes type from a space-like maximal surface to a time-like
zero mean curvature surface, as pointed out by Kobayashi [9]. Recently, it was shown in
[3] that the space-like maximal analogues in R? of the Schwarz D surfaces in R® have ana-
lytic extensions as triply periodic embedded zero mean curvature surfaces. These examples
caused the authors to be interested in space-like maximal analogues f, (n = 2,3,...) of
Jorge-Meeks minimal surfaces with n catenoidal ends. These surfaces have fold singular-
ities, and have analytic extensions to time-like surfaces. We show in this paper that the
analytic extension of f, is a proper embedding.
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Fic. 1. The Jorge-Meeks trinoid in R* and the analytic extension of f; (in
the figure on the right-hand side, the time-like parts are indicated by black
shading).

1. Preliminaries

We denote by (R?; t, x, y) the Lorentz-Minkowski 3-space of signature (—+ +) and denote
the Riemann sphere by S? := C U {co}.

DerniTiON 1.1, A pair (g, w) consisting of a meromorphic function and a meromorphic
1-form defined on the Riemann sphere is called a Weierstrass data on S? if the metric

dsy = (1 +1gP)|wf
has no zeros on S2. A point where ds% diverges is called an end of ds%.

We now fix a Weierstrass data (¢, w) on S2 and let {p, ..., p,} be the set of ends of ds%.
Then the real part of the map

F = fz(—Zg, 1+4¢%i(l - ))w (i = \/—_1)

is a map

Jfr = Re(F),

into R? which is defined on the universal cover of S% \ {p1, ..., p.}. We call f; the maximal
surface associated to (g,w), and F the holomorphic lift of fp. If fi is single-valued on
S2\ {p1,...,pa}, then we say that f; satisfies the period condition. The first fundamental
form of f; is given by

ds* = (1 = g |ol’.

In particular, the singular set of f; consists of the points where |g| = 1. In this situation, we
set F = (Xp, X1, X»). As pointed out in [11], the real part fr := Re(Fg) of the holomorphic
map Fg := (X1, X»,1Xp) gives a conformal minimal immersion into the Euclidean 3-space
R? defined on the universal cover of S2 \ {p1,..., pn} such that the first fundamental form
of fr coincides with ﬂ*ds%, where 7 is the covering projection. In particular, Fg (and also
F) is an immersion. So the map f; is a maxface in the sense of [11] (see also [4] and [2],
in particular, a convenient definition of maxface which is equivalent to the original one is
given in [2, Definition 2.7]). The minimal immersion fg is called the companion of f.
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We are interested in the maximal surface f, associated to

o _idz
m= ey

As pointed out in [11, Example 5.7], the companion of f, is congruent to the well-known
complete minimal surface with catenoidal ends, called a Jorge-Meeks surface (cf. [6]). In
particular, the associated metric d sé is complete on

(n=2,3,4,...).

SZ\{I’g,.,',é’”—l}’ Wheref:z e2ﬂi/n.

This means that (g,, w,) is a Weierstrass data on S2. It can be checked that f, is single-
valued on S%\ {1,Z,...,"""}, and the original Jorge-Meeks surface is as well. So f, is a
maxface, and we call {f,},,=23.... the Jorge-Meeks type maximal surfaces. The singular set of
f. is the set |z] = 1, which consists of generic fold singularities in the sense of [2], that is,
the image of the singular set consists of a union of non-degenerate null curves in R?.

Fic.1.1. Jorge-Meeks type maximal surface f7 (the light-cone is also shown).

We now observe that f; has a canonical analytic extension embedded in R? (see Figure
1.2): By definition,

i iz 1 1-z2
=Re|——,————, = log——|.
f2 e(z2—1 21 20g1+z)
If we set > = (xo, X1, X2) and z = re'’, then
72 sin 20 r (r2 + l) sin @
N 02020+ T T A 22 c0s20+ 1
11 r?—2rcosf + 1
X» = — 10 | .
27508 r2+2rcosf+ 1

In particular, it holds that

X 2rcosf
2 5 = tanh 2x,.
X1 r*+1

Thus, the image of f; is a subset of the graph r = x tanh 2y (Figure 1.2, left), and it changes
type on the set
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in the xy-plane, and the connected domain with boundary S consists of the image of the
orthogonal projection of f, into the xy-plane (cf. Figure 1.2, right). This means that the
image of f, has an analytic extension that coincides with an entire zero mean curvature
graph, like as in the case of the Scherk type surface (1) in the introduction.

W

i N\

Fic. 1.2. The analytic extension of f, and its orthogonal projection of the
space-like part.

In [9], the maximal surface f, is called a helicoid of the 2nd kind and it was already
pointed out that the function + = xtanh2y is an entire solution to the maximal surface
equation for graphs. The conjugate surface of f (i.e. the imaginary part of the holomorphic
lift of f>) induces a singly periodic maxface, called the hyperbolic catenoid (see [2] for
details).

2. Analytic extension of f,

In this section, we will show that each f, has a canonical analytic extension for n >
3 as well. By definition, the Jorge-Meeks type maximal surface f, = (xo, X1, x2) and its
holomorphic lift F = (Xp, X1, X») are given by

Jfn = Re(F), F=fza,
0
where we set
2.1 a = a(z) = a(z) dz = (ao(z), a1(z), a»(z)) dz

Zizn—l 1(1 + Z2n—2) 1-— ZZn—Z
Tl @-0Y @-1? T @ -1)?

Using these expressions, we show the following:

Proposition 2.1. Regarding f, as a column vector-valued function, the image of f, has
the following two properties:

@) =55,  fuld2) = Rfu(2),

where
-1 0 0 1 0 0
(2.2) s=| 0 -1 0| R:=|0 cosZ sinZ
0 0 1 0 —si 2n 2

Sin == COS =~
n n
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and

é« — eZni/n

Proof. Since
2 0 0
R=z|0 ¢+ —ife-2) |,
0 i(¢-¢") ¢+
the 1-form « in (2.1) satisfies

a@@)=Saz),  a({z)=Ra(2),

where « is considered as a column vector-valued 1-form. Since F(0) = 0, we have F(Z) =
S F(z) and F({7) = RF(2). In particular, we have the relations f,(Z) = S f,(z) and f,({z) =
an(Z) O

Lemma 2.2. Up 1o a suitable translation in C* by a vector in iR?, the holomorphic lift
F = (Xo, X1, X3) of the Jorge-Meeks type maximal surface f, has the following expression:

21
(2-3) Xo = m,
7 2 1 n—1 ‘
2.4) X, =i Z;(Zn _+1)) Z<§J ¢ logz - )|
7 2 1
5) x-S Z(g’f +¢)log(z - 2.

Proof. The first identity (2.3) is obvious. To prove the second identity (2.4), we will show
that differentiation of the right-hand side of (2.4) is equal to a;(z). Denoting the right-hand
side of (2.4) by X;, we have that

X, ) = dX, id+2"7) (=g
YT g (-1? -1
where we set
n—1
=D —1)
©(2) —n +; p—
Forz=0(k=0,1,2,...,n— 1),
n—1 n
2.6 =% -1 oy El
(2.6) 0 =n(¢ )+j§:l]<g ol

Here we have used the following identity:
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-1 _Od if j# k,
=l | @) =nct =k

7=k

The equality (2.6) means that the number of zeros for ¢(z) is at least n. However, ¢(z) is a
polynomial in z of degree at most n — 1. So we conclude that ¢ vanishes identically, and
hence dX, /dz — a;(z) = 0.

Similarly, denoting the right-hand side of (2.5) by X,, we have

N S
dz T " —1)72 nrE-1)’

where /(z) is a polynomial of degree at most n — 1 given by

n—

Yo = (et ) S DD

1
— 7]
j=0 2=¢

It can be easily checked that ¢(§k) = 0 for each k = 0,1,2,...,n — 1. These prove that
dX,/dz — a»(z) = 0, and thus (2.5) is verified. O
Using Lemma 2.2, we obtain an integration-free formula of f;, as follows.

Proposition 2.3. The Jorge-Meeks type maximal surface f, = (xo, X1, x2) has the follow-
ing expressions:

2r" sin nd
2.7 = 5
27) 0 n(r?" — 2r" cosnf + 1)
08 (" 4 p)sinf + (7 + D sin(n = DO
: x| ==
: n(r¥ —2r'cosnf + 1)
n—1 . 4
-1 2 2
+ 1 > Z:log(r2 - 2rcos(9— ﬂ) + I)Sinﬂ,
n* 4 n n
2.9) "'+ r)cosO+ (¥ + rcos(n — 1)8
. Xy =

n(r¥ — 2r" cosnf + 1)

n—1 . .
-1 2 2

+ 1 5 Z:log(r2 - 2rcos(9— ﬂ) + l)cos ﬂ,
= n n

n

where 7 = re'’.

Proof. Since
2Im(z" - 1)
n@' - 1)@ - 1)
2 Im(re~ %) 2/ sin nf
- (2 — 2 cosnf + 1) - n(r? —2ricosnf + 1)’

xo = Re Xy = —

the first identity (2.7) is obtained. Similarly, one can easily check that

. ( iz ("2 + 1)] (77" + r)sin@ + (#* + 1) sin(n - 1)
o __

Cn@ -1 n(r? —2rtcosnf + 1)

)
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Re (2 -1) =+ )cosO+ (" + ) cos(n — 1O
nizi-1) | n(r?" —2rtcosnf + 1) )

On the other hand,

n—1 n—1 .
Im Y (¢ = ¢ logz—=¢) = ) 2sin ? loglz — 'l
j=1 J=1
n—1 i . n—1 i ) )
Z sin =24 loglz — /P = Z sin =21 log((z ='Wz -C7Y))
n n

J= J=1

21 21
log(r2 —2rcos (9— ﬂ) + l)sin ﬂ,
n

~
—_

N

n
=1

which proves (2.8). Similarly, we have (2.9). O
The following assertion is an immediate consequence of Proposition 2.3.
Corollary 2.4. f, satisfies the identity

(2.10) Ja(1/1,0) = f,(r,0) (r>0,0<60<2nm).

Since f,(r,0) is invariant under the symmetry » — 1/r, the singular set {|z] = 1} of f,
coincides with the fixed point set under the symmetry. We remark that the set {|z] = 1}
consists of non-degenerate fold singularities as in [2]. So, it is natural to introduce a new
variable u by

@2.11) = :

which is invariant under the symmetry r — 1/r. We set
Dj:={zeC;0< |7 <1}

By Corollary 2.4, fn(D"{ \{1,Z,...,"™"}) coincides with the whole image of f,. To obtain
the analytic extension of f;,, we define an analytic map

r+r!

L:DTBZ=reigl—>( ,H)GRXR/ZnZ.

The image of the map ¢ is given by
Q= {(u,0) e RXR/27Z ; u > 1}.
The map ¢ is bijective, whose inverse is given by
' RXR/27Z 5 (u,60) - (u— V2 = 1,6) € Dy,

Using the Chebyshev polynomials, the formulas (2.7)—(2.9) can be rewritten in terms of
(u, 0) as follows (see the appendix for the definition and basic properties of the Chebyshev
polynomials).

Corollary 2.5. By setting f, = f, o ' and f, = (X0, %1, %»), it holds that
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in né
(2.12) %y = sinn ’
n(T,(u) — cos nb)

(2.13) % = _Tn—l(M) sinf + usin(n — 1)8

| 1 n(T,(u) — cos né)

-1 n—1 i .
" nn2 ]Z::, log (u — cos (9 - %)) sin %

(2.14) - —T,_1(u)cos @ + ucos(n — 1)6

. % =

n(T, (1) — cos nd)
n—1 . .
-1 2 2
+ 2 Zlog u—cos|0— L cosﬂ,
n? = n n

where T,(u), T,,—1(u) denote the first Chebyshev polynomials in the variable u of degree n,
n — 1, respectively.

Proof. Since
2r" sin n@ sin nf

(™ —2rcosnd + 1) n(%(rn +r) — cosn@)’

X0

(A.2) in the appendix yields (2.12). Similarly, the first terms of (2.8) and (2.9) are the same
as the first terms of (2.13) and (2.14), respectively. On the other hand,

1 . .
2 2
log (r2 —2rcos (9 - ﬂ) + 1) sin =2
1

n—

. n n
]:
n—1 1 . .
+ 2 2
= Z log (2r(r T cos (0 - ﬂ))) sin it
, 2 n n
J=1
n—1 . . n—1 .
2 2 2
= log(u—cos(e— ﬂ)) sin -/ +log2rZ sin 22|
J=1 " " Jj=1 n

Then we have (2.13) because

n—

27j <
. — J —
‘ sin - Im E ' =0.
J J=0

Similarly, we have (2.14). ]

Il
—

If we consider f, instead of f,, the origin z = 0 in the source space of f, does not lie in
that of f,. To indicate what the origin in the old complex coordinate 7 becomes in the new
real coordinates (i, ), we attach a new point ps to €, as the ‘point at infinity’, and extend
the map ¢ so that

1(0) = Peo.

Hence we have a one-to-one correspondence between {|z] < 1} and Qn U {p}. In particular,
Q, U {peo} can be considered as an analytic 2-manifold. We prove the following:

Proposition 2.6. The map f, : Q, U {pe} — R? can be analytically extended to the



JORGE-MEEKS TYPE MAXIMAL SURFACES 257

domain

(2.15) Q, = {(u, 0) e RXR/2xZ ; u> max 1[cos (9— %)]} U {peo}-
j=

0,...,n—

Proof. In fact, (2.12)—(2.14) are meaningful if
2 j .
(2.16) T,(u) —cosnd > 0and u > cos|( — — (j=0,1,...,n—-1).
n

Moreover, T, (1) — cos nf is factorized as (cf. Lemma A.1 in the appendix)

n—1 .
(2.17) T,(u) — cos nf = 2"~} ]_[ (u — cos (9 - @)) :

j=0 "
So the condition (2.16) reduces to

o
u>cos(9—ﬂ) (j=0,1,....n-1).
n

Thus, the components Xy, ¥; and %, of ﬂ given in (2.12), (2.13) and (2.14) can be extended
to Q,. ]

By Proposition 2.6, we may assume that the map f, is defined in Q,. From now on, we
call this newly obtained analytic map
fn: Q, — R%
the analytic extension of f,.

u

i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

———— e
I
|
|

Fi6.2.1. The domain Q, and the fundamental domain QY for n = 3, where
the region of u > 1 is the space-like part and the regions of u < 1 are the
time-like parts.

Proposition 2.1 and the real analyticity of f, imply that
~ ~ ~ 2n =
(2.18) Julu,=0) = S fu(u,0),  fu|u,0+ —|=Rfu(u,0),
n

where S and R are the matrices given in (2.2), and f,, is considered as a column vector-valued
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function. Let G be the finite isometry group of R? generated by S and R. The subset

(2.19) 92:{(u,0);u>c056, 0393%}

of Q, is called the fundamental domain of f,. The equation (2.12) yields the following
proposition.

Proposition 2.7. The whole image of f, can be generated by f£,(Q0) via the action of G,
where 92 is the fundamental domain as in (2.19).

3. Properness of f,

Firstly, we prepare some inequalities which will be necessary for proving that f, is a
proper mapping.

By the definition (2.15) of Q,,, we have the following two inequalities on Q, (cf. (2.16),
(2.17))

3.1 T, (1) > cosnb,
and
by
(3.2) u > cos — on Q,,
n

.....

Lemma 3.1. On the fundamental domain Qg, it holds that

.
(3.3) u—cos(e—ﬂ)zzsmzf (j=2,...,n—1).
n n

Proof. Since u > cos§and 0 < 6 < nr/n on QO,
i i . .
u—cos(Q— ﬂ) > cos@—cos(@— ﬂ) = 2sin(ﬂ —H)Sinﬂ
n n n n

1 .
7 )sinﬂ > 2sin® il
n n

> 2sin
for2 < j <n-1, proving (3.3). O
Using these, we prove the following assertion:

Proposition 3.2. The analytic extension f,: Q, — R? is a proper mapping.

Proof. By Proposition 2.1, it is sufficient to show that the restriction of f, to Q0 is a proper
mapping. We set

C;:Q_Q\QS:{(COSO,H);OSQS E}_
n

yeer

1im (1, 64) = (€05 61s, ) € € (0 <0, < E).
—00 n

It is sufficient to show that the sequence { f,,(uk, 6r)} 1s unbounded in R?.
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Case 1: We consider the case that 0 < 6., < m/n. The sequence {(u, 6x)} is bounded since
it converges. So we can take positive numbers 1y and ¢ such that u; < up and 6y < (w/n) — 6
for all &, that is,

(U 1) € Qoy = {(u,@) € Qg; u<ug, 6< T_ 5}.
n
We now set (cf. (2.14))

X2 = Xo,a + X2ps
—T,_1(u)cos @ + ucos(n — 1)0
n(T,(u) — cos nb)

N n—1% 2 2nj
Xop = — Zlog u—cos|@— —|]cos —.
n* n n

Since the numerator of X, , satisfies (cf. (A.1) in the appendix)

B

)hc'zya =

= —cos(n — 1)8cosd + cosfdcos(n — 1) = 0,
u=cos 6

— T,_1(u)cosB + ucos(n — 1)8

there exists a real analytic function ¢(u, 6) such that
—T—1(1) cos @ + ucos(n — 1)8 = (u — cos )p(u, 6).

Since

2 2

(3.4) U — Cos (0— —n) > cosf — cos (0— —n)
n n

= 25in(z —Q)Sinz > 2sin6sinz

n n n

holds on Qs,,, (2.17) and (3.3) in Lemma 3.1 yield that there exist a real analytic function
W(u, 0) and a positive number ¢ such that

T,(u) — cosnf = (u — cos Y (u, 0), Y(w,0) >2e>0 on Qs

Thus %, = @(u, 8)/ny(u, 6) is bounded on Q.
Since (3.3) in Lemma 3.1 and (3.4) imply that

i
1og(u—cos(e—ﬂ)) (G=1,2,....n—1)
n
is bounded on €, we can write

n—1
2

Xop = log(u — cos 6) + B(u, 0),
where B(u, 0) is a real analytic function bounded on Qs,,,. Thus, %, (ug, 6x) — —oco as k — oo.

Case 2: We next consider the case that 8., = 7/n. In other words, we suppose the sequence
{(ug, 6r)} converges to (cos(r/n), m/n). In this case, we seek to prove

(3.5) klim X1(uk, O) = —oo.

We may assume {(u, 6x)} C QS N {u < uy} for some constant uy. We set (cf. (2.13))
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X1 =X+ X1p,

T,_1(u)sin@ + usin(n — 1)0

Ma: = n(T, (1) — cos nb) ’

n-1% 2nj 2nj
Yy = > log (1~ cos (6~ T2 |sin =2,
T1p p 2. og(u cos( - )) sin —

Let (u,0) € Q0. Then u > cosé and cos@ € (cos(n/n),1) C [cos(n/n), ). So both u
and cos 6 belong to [cos(rr/n), 00). Since T,_; is monotone increasing on [cos(rr/n), co)(C
[cos(z/(n — 1)), 00)) (cf. (A.1) and Proposition A.5 in the appendix), it holds that

Tp_1(u) > T,_i(cos@) = cos(n— 1)  on QO
Noticing this, we have
Ty—1(u)sin@ + usin(n — 1)8 > cos(n — 1)8sinf + cos Osin(n — 1)6 = sinnf > 0
on Q0. By (3.1), the inequality %, < 0 holds on Q°. By (3.3) in Lemma 3.1,

log(u—cos(é)—@)) (G=2,...,n—-1)

n

is bounded on Qg N {u < up}, and we can write

A 2 2
X1 =X14+X%1p < X1p =Pu,0)+log (u — CcoSs (6 - —ﬂ)) sin il
n n

on Q°, where B(u, 0) is a real analytic function bounded on Q% N {u < up). Since the right-
hand side tends to —oco as (u, 6) — (cos(n/n), /n), (3.5) holds. O
4. Immersedness of f,
Proposition 4.1. The analytic extension f,: Q, — R31’ is an immersion.

Proof. In this proof, f and f denote f, and f,, respectively, for notational simplicity.
Since 8/9z = (1/22)(rd/dr —10/0) for z = re'’, we have

a=dF =F.dz=(F+F).dz=2f.dz = %(rfr —ifyp)dz,
where a = a(z) dz is as given in (2.1), that is,
4.1) za(z) = rf, —ify.
On the other hand, we have (cf. (2.1))
0 yneint iret? (1 4 22 ei(2n—2)e)

4.2 = ,
@2) 2a(2) (reinf — 1)2 (reinf — 1)2

B

rel? (1 — 22 ei(2n—2)€)

(reint — 1)2

We define by &% := (&1, &%) (j < k) for & = (£2,&",£2) € €, and here '(+) means transposi-
tion. Then
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2irdet(f/, £ = dettrf* —iff*, r S +if]) = det(za, za ).
Using this and (4.2), one can arrive at
27172 (an - r2) sin(n — 1)0
(r2 = 2 cosnf + 1)
2772 (2" = %) cos(n — 1)9

(r2 = 2" cos nf + 1)

(4.3) det(f!, 1) =

4.4) det(f%, £%) = -

Since we set u = (r + r~')/2, we have

272

(4-5) fu= I

T2

The equality (4.3) is equivalent to
47" (rzn - r2) sin(n — 1)8

(r2 = 1) (2" = 2r" cosnf + 1)°

AT = AT)sin = D8 g, () singn - 1)
(r=rY (" + rm —2cosnd)’ (T,(u) — cosnf)*

where U,,_,(u) denotes the second Chebyshev polynomial of degree n — 2. (See (A.2), (A.4)
and (A.5) in the appendix.) Similarly, by (4.4), we have

det(f)", f3") =

det(f2, £92) = — U,-2(u) cos(n — 12)9'
(Tn(u) — COS ne)
By the real analyticity, the identities
U,—2(u) sin(n — 1)0
(Tn(u) — COS 1’10)2 ’
U,—2(u) cos(n — 1)0
(Tn(u) — COS n9)2

det(fy", i) =

u >’

(4.6)
det(fy?, fi*) = -

hold on Q,,. Hence, it cannot occur that det( fZ? I fé) 1) and det( fL?Z, fgz) vanish simultaneously,
since U,_»(u) > 0 by (3.2) (cf. Corollary A.4 in the appendix). We conclude that f,, is an
immersion. O

5. Embeddedness of f,
5.1. Outline. We show that fn = (%o, X1, X%2): Q, — (R? ;1, X, y) is an embedding. The set
5'(h) (c Q)
is called the contour-line of height t = h, and
A= G5 () = L@ it = 1)

is called the level curve set of height r = h. To show the embeddedness of f,, it is sufficient
to show that f, : Xy '(h) — A}, is injective at each height A.
Since (cf. (2.7) or (2.12))
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~ 21" sin né B sin nfl
- n(’,.Zn — 211 cos nb + 1) - n(Tn(u) — COS I’le)’

the contour-line of height 2 = 0 is given by

(5.1) Xo

2n—1
k
(5.2) 50 = {(u, 0)eQ,: 0= —n} U {poo}.
n
k=0
The figure of the contour-line X 1(0) and its image (i.e. the level curve set of height 4 = 0)
are indicated in Figure 5.1, where p., corresponds to the origin of the level curve.

o))

0 T 27

Fic.5.1. Contour-lines % 1(0) and the level curve set Ag at height 7 = 0 in
the case n = 6.

On the other hand, if & # 0, we have
1
%' (h) = {(u, 0) € Q,; Ty(u) = cosnf + — sin ne}.
n

The following assertion is immediately obtained.

Proposition 5.1. The function % (cf. (5.1)) is non-negative valued on Q°, where Q¥ is the
fundamental domain given by (2.19).

If h <0, X, Y(h) N QY is an empty set. So we consider the case & > 0. Let Ag be the level
curve set of the image fn(Qg) of the fundamental domain € for 2 > 0, that is,

A= f@nnft=ht = £ (5'NQ0) (> 0).
As a consequence of Proposition 2.7, we obtain the following:

Corollary 5.2. For each h > 0,

n—1
Ay = UR"AO, and A, =SA,
k=0

hold, where R and S are the matrices defined in (2.2) (cf. (2.18)).
Corollary 5.2 implies that we should seek to prove that

(1) the map £, restricted to %' (h) N QY, i.e., f: %' (h) N QY — AV is injective,
2) UZ;(I) RkAg is a disjoint union.
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rr fid T~ /
T il il - |/
° 6 3 2 X ~JV

Fic.5.2. Contour-line X;'(h) N Q) and the level curve set A for 2 = 0.01 in
the case n = 6.

y

: > X

)
/

Fi6.5.3. The level curve set A, of f(Q) for i = 1.

5.2. Contour-lines in Q). Now we investigate X;'(h) N Q). As mentioned above, we
suppose i > 0.

Proposition 5.3. (1) Given h > 0 and 0 < 6 < t/n, the equation Xo(u,6) = h is uniquely
solved for u € (cos(zm/n), o). Indeed, it determines the implicit function u = u(h, )
defined on A := {(h,0); h > 0, 0 < 0 < n/n} satisfying cos 6 < u(h, ). Moreover, the
following hold:

(i) For a fixed 6y € (0, 7/n), the function h — u(h, 0y) is monotone decreasing, and

}11{1(1) u(h, 6y) = oo.
(i1) For a fixed hy > 0,
}}i{% u(hg,0) =1, egar}n u(hg, ) = cos(rt/n).
(2) The derivative (Xy), is given by
U,_1(u)sinnf

 (Tu() — cos nf)*
Proof. (1): The equation Xy(u, ) = h(> 0) is equivalent to

(Xo)u =

1
T,(u) = cosnf + — sin no,
nh
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and
|
—1 < cosné < cosnf + " sin nd
n

holds on A = {(h,0); h > 0, 0 < 8 < m/n}. On the other hand, the Chebyshev polyno-
mial 7),(u) is monotone increasing on the interval [cos(rr/n), o) (see Proposition A.5 in the
appendix), and hence it has the inverse function

T;': [~1,00) — [cos(n/n), o),

which is monotone increasing. Thus,

(5.3) u(h,0) = Tn_1 (cos né + ih sin n@) on A
n

is well-defined and the desired one. Obviously,
1
cosf = T;l(cos nf) < T;l (COS né + s sin n@) = u(h,0)
n

holds on A.
Since T, ! is monotone increasing on [—1, o), the formula (5.3) immediately implies the
assertions (i) and (ii).
(2): This can be determined directly from (2.12). ]
Hereafter, we set (cf. (5.3))
up(0) := u(h, )

which can be considered as a function of 6 fixing /. Proposition 5.3 implies that the contour-
line %' (h) N QY satisfies

(5.4) %' ()N QY ={w,0) € O u=uy(O)] = {:(6).0) € Q; 0 < 0 <7/n}.
The level curve set Ag, ie., fn()?g Lthyn 92) is given by

Ay = {(h, %1 (up(6), 0), %2(up(6),0)): 0 < 6 < 7/n}.
We show the following properties of the level curve set Ag.

Lemma 5.4.

(1) X1 (up(6),0) is a monotone decreasing function of 0 € (0, /n), whose value is less
than —h,
(2) X (up(6),0) attains a maximum at 6 =

T
-1 € (0,7/n).

Proof. (1): By (4.6) and Proposition 5.3 (2), we have

~ ~ ~ 0% ~
6)61 duh c’)xl _ (9)(1 0_90 (9)61

ou do - 90~ ou % - 90
_ Un2(up(8)) sin(n — 1)6
(X0)u U,—1(up(0))  sinné

which is negative for 0 < 6 < nr/n (cf. Corollary A.4 in the appendix). Hence, ¥ (u,,(6), 0) is

d
(5.5) %il(”h(e)’ 0) =

det(f)", i) =
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a monotone decreasing function of 8. Next, according to (2.13), we set

X1(up(0), 0) = X1 4(0) + X1,5(0),

where
- sin 6 sin(n — 1)0
X1.4(0) = —h| T, -1 (up(0))—— + up()————|,
sin nf sin nf
n—1 . .
-1 2 2
X16(0) = & 5 Z log (uh(G) - cos (6 - ﬂ)) sin 22
n’ n n

These satisfy

1 -1 1 n-1
lim % 4(0) = —h(Tn_l(l)— +12 ) = —h(— 4 ) - _h,
N0 n

n n n

because of part (ii) of item (1) in Proposition 5.3. Moreover,

L n—-1% 2rj\\ . 2nj
lim % (6) = — log[1 -cos|0— —|]sin— =0
N n o n n

holds, since the terms in the summation cancel for each pair (j, n — j). Therefore
éi{la X1(up(9),0) = =h+ 0 = —h.
Since the function 6 — X (u;(0), 6) is monotone decreasing, we conclude that ¥ (u,(0), 6) <
—hforall 6 € (0, 7/n).
(2): Similarly to (5.5), we have

0%

d - (9)?2 duh (9)?2 6562 90 (9552
5.6 —_— 19,9 =t — = —— — —
(5.6 2620 = 5t e = " u % " 9
(X0)u Up-1(ux(0))  sinnf
which is
positive if 0 <0 < ﬁ,
zeroif 6 = ﬁ,
negative if 57t <6 < .
This proves the assertion (2). m]

Proposition 5.5. The restriction of the map f, given by
(5.7) Fot X' () 0 Q5 3 n(6), 0) = (h, Fa (un(8), 0), F2(un(9)) € A,
is injective.

Proof. The equation (5.4) and Lemma 5.4 (1) imply that the above correspondence (5.7)
gives a regular curve without self-intersection. m|
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5.3. Level curve sets. Firstly, we deal with the level curve set Ag of height 7 = 0 (cf.
Figure 5.1).

Proposition 5.6. The map f, restricted to Xy 1(0) is injective.

To prove the assertion, we prepare the following lemma:

Lemma 5.7.
- sin(2n — 1)0 + 2U,,_»(u) sin(n — 1)0 + Us,_»(u) sin 6
(5.8) (T = : :
2(T,(u) — cos nb)
- —cos(2n — 1)0 —2U,_»(u) cos(n — 1)8 + Uy,_»(u) cos 0
59 (5, — 2032 = ) 20) os(n = 1)6 + Un,-(u) cos 6.

2(T,(u) — cos nf)?
Proof. By (4.1), (4.2) and (4.5), we obtain that

L)

27" = P2y sin(n — DO + (2 = 1) " sin@2n — 1O + (" = 1) sin @

(r2 = 1) (r>* = 2r* cos nf + 1)°

s

B~ T Re(zaa(o)

27" = %) cos(n — DO + (1 = 1) " cos(2n = )0 + (> = r*') cos 0
(r2 = 1) (r>* = 2r* cos nf + 1) .

So (r+r~1)/2 = u proves (5.8) and (5.9). m|

Proof of Proposition 5.6. Recall the equality (5.2) which asserts that

2n—1

5'0 = | Beups),

k=0

where
k
By =<(u,0)eQ,;0=—-my.
n
Consider the map

Fulg, = (Fo» 1, ¥2)lg=tn/n = (0, %1 (u, krr/n), %2 (u, kre/n)).

It follows from (5.8), (5.9) and (A.6) that
d (7 .k k
du (fn|3k) = V(u) (0, sin Zn’ cos ;ﬂ) ’

where
Un—Z(M)
Vu) = ———.
= T - -1y
This implies that f,|p, parametrizes a straight half-line with the velocity V(u). If k is even,
ﬂlBk is defined on the interval (1, c0) and V(u) is positive on (1, 00). If k is odd, f,,IBk is
defined on the interval (cos(rr/n), o) and V(u) is positive on (cos(rr/n), o). Hence, for any
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k, the map £, B, 18 injective. Moreover, the monotonicity of fil g, and the equality
Tim fulg () = fu(peo) = (0,0,0)
imply that the point p, is the unique inverse-image of (0, 0, 0). Therefore we conclude the

map f,: 5661(0) - R? is injective. |

We next consider the case where the height /4 is not equal to 0.
For a fixed A, let P, denote a plane in (Rf; t, x,y) defined by the equation ¢t = h, with
coordinate system (x, y).

Proposition 5.8. For any fixed h > 0, the level curve set Ag of height h lies in the region
Dy :={(x,y); x < —h, xcos2n/n) —ysin(2x/n) + h > 0} C Py,
Proof. We parametrize A?l so that (cf. Proposition 5.5)
(xn(0), yn(0)) = (X1 (un(0), 0), X2(u(6), 0)) (0 <6 <n/n).
We have already shown that x,(6) < —h (cf. Lemma 5.4 (1)). It remains to show
@n(0) := x,(0) cos2n/n) — y,(0) sin(2n/n) + h > 0
for 0 < 8 < /n. Using (5.5), (5.6), we have

0=y (- 00 )
This implies that ¢,(6) has a minimum at
6y = n-2 .

(n—1n
Hence, we have only to prove that
(5.10) @n(fo) > 0.
Indeed,

@(h) := pp(6o) = X1 (un(bh), 6o) cos(2r/n) — Xa(un(6o), 6o) sin(2m/n) + h

satisfies
(5.11) ]111{1(1) ®(h) =0 cos(2n/n) — 0 -sin(2z/n) + 0 = 0,

because of part (i) of item (1) in Proposition 5.3. Moreover, a straightforward computation
using Proposition 5.3 (2), (5.8) and (5.9) leads us to
1+ Usp2(un(6o)) 1= 1+ Uspa(un(00)) + 2U -1 (us(6p))

2U -1 (un(6o)) 2U -1 (un(6p))
We wish to know the sign of d®/dh. Note that u;(6p) € (cos by, oo) for h € (0, c0). For this
purpose, we set

do
=

1+ U,,- +2U,_
Y(u) := 2 Zzlgl:il(u) 1@ for u € (cos 8, ).
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Then, it is obvious T(u#) > 0 for u € [1,o0) (cf. Proposition A.3 in the appendix). For
u € (cos 8y, 1), it is also obvious that the denominator of V() is positive. Since there exists
a unique «a € (0, 8y) with u = cos a, the numerator is computed as

sina + sin(2n — 1)a + 2 sin na

1+ Uzyn(cosa) +2U,_i(cosa) = -
sin

2sinnacos(n — a + 2sinna 2 sinna

- - (cos(n — Da + 1).
sin sin &

So the numerator is positive because 0 < a < 8y = mn+12)n7T'

Thus, Y (u) > 0 for all u € (cos 6y, ). Hence we obtain
dd
(5.12) %(h) = Y(up(6p)) > 0 for h € (0, 00).

It follows from (5.11) and (5.12) that ®(k) > O for all & € (0, c0), that is, ¢,(6y) > 0 for
all i € (0, o0). We have now proved (5.10). m|

We are in a position to complete a proof of the embeddedness of f;.

Theorem 5.9. For any integer n > 2, the analytic extension f, : Q, — R? is a proper
embedding.

Proof. The assertion for n = 2 is trivial, as stated in Section 1. We have already proved
that f, is a proper immersion (cf. Propositions 3.2 and 4.1). So it is sufficient to show that
fu is injective for each n > 3. For this purpose, we will show that f, restricted to each
contour-line X I(h) is injective. We have already done this for 4 = 0 in Proposition 5.6. For
h # 0, it suffices to show AY never intersects the other R*A (k = 1,2,...,n — 1), since we
have already seen fn: Xy (h)n QS - A2 C Dy, is injective (cf. Proposition 5.5). In fact, the
region Dy, of Proposition 5.8 does not intersect the other RKDy) (k = 1,2,...,n—1) (see
Figures 5.4 and 5.5), thus, A2 never intersects the other RkAg. Therefore, we conclude that

fu: Q> R? is an injective proper immersion, i.e., a proper embedding. m|

o -0

Fic.5.4. FiG.5.5.
U RA(Dy) UL RE(Dy)
n=6,h=1) (n=6,h=2)
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FiG.5.6. Images of f3 and f; (the time-like parts are indicated by black shading).

Appendix A. Some properties of Chebyshev polynomials

The first Chebyshev polynomial T,(x) (n = 1,2,...) is, by definition, the polynomial of
degree n such that

(A.1) T,(cos ) = cosnb.
It holds that
e+ r+r!
(A.2) T,(u) = > (u = > )
Lemma A.1. The following identity holds:
n—1 i
(A.3) W, (u) := T,(u) — cosnf = 2" l_[ (u — cos (9 - —])) )
n

j=0
Proof. By (A.1), we have

2rj 2rj
v, (cos (0— ﬂ)) = coS (n (9 - ﬂ)) —cosnf = 0.
n n

Since ¥, («) is a polynomial in u of degree n and the highest coefficient of 7),(«) is equal to
21 we obtain the assertion. o

The second Chebyshev polynomial U,(x) (n = 1,2,...) is, by definition, the polynomial
of degree n such that

(A4) sin(n + 1)0 = sin6@ U,(cos 6).
It holds that
" —r" F+ !
(A.5) U,_1(u) = - (u = )
r—r 2

The first and the second Chebyshev polynomials are related as follows:

d
ETn(x) =nU,1(x).

Proposition A.2. For m > 1, it holds that



270 S. Fuimori, Y. Kawakami, M. Kokusu, W. RossmMaN, M. UMEHARA AND K. YAMADA

(A6) UZm(x) —1= 2TM+1(X)Um_1(X).
Proof. It is sufficient to show the identity for x = cos 8 (6 € [0, 27)). Then
Uy (cosf) — 1 = S@m+ DO\ sin@m + 1) - sinf
sinf sin@
_ 2cos(m + 1)@ sinm

- = 2T u41(cos )U,,_1(cos ).
sin 6

Proposition A.3. Let n be an integer greater than 2 (resp. n = 2). Theny = U,_;(x) is
monotone increasing on the interval {x; cos(m/(n — 1)) < x < oo} and the range is {y; —1 <
y < oo} (resp. {y; —2 < y < oo}). Furthermore, U,_ (cos(n/n)) = 0 and U,._(1) = n hold.

Corollary A.4. For arbitrarym < n — 1,
U, (x) > 0 for cos(n/n) < x < oo.

Proposition A.5. Let n be an integer greater than or equal to 2. Then y = T,(x) is
monotone increasing on the interval {x ; cos(m/n) < x < oo} and the range is {y; —1 <y <
oo}. Furthermore, T,(cos(n/(2n))) = 0 and T,(1) = 1 hold.

Y= Un—l(x) Y= Tn(x)

FiG. A.1. Chebyshev polynomials are monotone increasing on the interval
toward the right.

NOTE ADDED IN PROOF. After submitting the paper, the authors wrote another paper
Entire zero-mean curvature graphs of mixed type in Lorentz-Minkowski 3-space,

published in Quart. J. Math. 67 (2016), 801-837 (doi:10.1093/gmath/haw038), in which a
class of maximal surfaces called ‘Kobayashi surfaces’ is introduced. Kobayashi surfaces ad-
mit analytic extensions, some of which are not only properly embedded but also expressed
as entire zero-mean curvature graphs of mixed type without singularities. The Jorge-Meeks
type surfaces f, investigated in the present paper are Kobayashi surfaces. However, the re-
sults of the above mentioned paper do not imply the embeddedness of the analytic extension
fu of f,. In fact, the method used in the above paper cannot apply to the case here, since f,
(n > 3) are not expressed as entire graphs over the space-like plane.
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