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Abstract
If p is a prime number, the cohomology ring with coefficients in Z/pZ of an

orientable or non-orientable Seifert manifold M is obtained using a Δ-simplicial
decomposition of M. Several choices must be made before applying the Alexander-
Whitney formula. The answers are given in terms of the classical cellular genera-
tors.

Résumé
Si p est un nombre premier, l’anneau de cohomologie à coefficients dans Z/pZ
d’une variété de Seifert M, orientable ou non-orientable est obtenu à partir d’une
décomposition Δ-simpliciale de M. Plusieurs choix sont à faire avant d’appliquer la
formule d’Alexander-Whitney. Les réponses sont données en fonction des
générateurs cellulaires classiques.

1. Introduction, Notations1. Introduction, Notations

1.1. Introduction. Dans cet article on détermine l’anneau de cohomologie à valeurs dans
Z/pZ, où p est un entier premier, pour toutes les variétés de Seifert orientables ou non. Les
résultats ont été annoncés dans [2]. Le cas où il s’agit de variétés de Seifert orientables
dont la base est une sphère, et les coefficients à valeurs dans Z/2Z, a été étudié dans [3].
L’article [1] a généralisé ce résultat en supprimant l’hypothèse sur la base et l’article [5] a
obtenu cet anneau de cohomologie des variétés de Seifert orientables à valeurs dans Z/pZ.
Dans l’article [15], sont déterminés les anneaux de cohomologie à coefficients entiers (et
cycliques finis) des variétés S 3/Γ où Γ est un sous-groupe fini de SO(4) agissant librement
sur S 3.

Notre attention pour le calcul des cup-produits a été attirée par les études portant sur une
extension du Théorème de Borsuk-Ulam pour les variétés de dimension 3 [6]. En effet si
τ est une involution sur une telle variété N, alors toute application continue f de N dans
R

3 admet un point x ∈ N tel que f (τ(x)) = x si et seulement si la puissance trois pour le
cup-produit de la classe de cohomologie élément de H1(N/τ,Z2) associée à τ est non nulle.

Les preuves détaillées des résultats annoncés dans [2] sont obtenues en utilisant un point
de vue Δ-simplicial. Utiliser cette méthode d’abord pour les variétés orientables rend plus
courte et plus facile son extension au cas non-orientable. Les choix les plus délicats sont
ceux de relevés du complexe cellulaire dans le complexe Δ-simplicial auxquels on impose
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d’être des cocyles Δ-simpliciaux, Section 6. Décrivons les étapes de la méthode que nous
avons choisie.

Nous commençons par construire une décomposition cellulaire de la variété M, Section
4, en précisant dans la Sous-section 4.1 les mots qui permettent de paver les 2-cellules,
bords du voisinage tubulaire des fibres singulières et de la dernière 3-sphère. Le complexe
cellulaire (C∗)cell ainsi obtenu est subdivisé en un complexe Δ-simplicial (C∗)simp.

Notons T : (C∗)cell → (C∗)simp le morphisme associé à cette subdivision, et T t : C∗simp →
C∗cell le morphisme transposé défini dans la Sous-section 5. Nous choisissons, pour chaque
générateur ξ des cochaı̂nes cellulaires, un relevé R(ξ) de T t(ξ) dans les cochaı̂nes Δ-
simpliciales. Ce choix est fait de telle façon que R(ξ) soit un cocycle et pas seulement
une cochaı̂ne, Section 6.

Le cup-produit de deux cochaı̂nes Δ-simpliciales est calculé par la formule d’Alexander-
Whitney. Pour les cup-produits sur H1(M,Z/pZ)⊗H1(M,Z/pZ), on décrit un calcul qui
permet d’éviter l’évaluation sur les (nombreux !) 2-simplexes, Sous-sections 7.1, 7.2, 8.1.
Pour les cup-produits sur H1(M,Z/pZ)⊗H2(M,Z/pZ), on applique la formule d’Alexander-
Whitney de façon plus classique puis le quasi-isomorphisme T t, Sous-sections 7.3 et 8.2.

Le plan de cet article est comme suit. Après cette section d’introduction, de notations sur
les variétés de Seifert et de quelques invariants associés, la Section 2 décrit une
décomposition cellulaire d’une variété de Seifert quelconque M et donne une présentation
des groupes de cohomologie H∗(M,Z/pZ). Dans la Section 3, les théorèmes principaux
présentent tous les cup-produits. La preuve de ces résultats constitue le reste de l’article.
Dans les Sections et Sous-sections 4, 5, 6 sont décrits les choix faits pour une décomposition
Δ-simpliciale, le quasi-isomorphisme T , et les relevés des cocycles cellulaires en cocycles
Δ-simpliciaux.

Dans la Section 7, on applique, via la formule d’Alexander-Whitney, tous ces choix pour
le calcul des cup-produits lorsque les coefficients de la cohomologie sont égaux à Z/2Z, et
dans la Section 8 lorsque les coefficients de la cohomologie sont égaux à Z/pZ où p > 2 est
un entier premier.

La Section 9 est faite de figures symbolisant les décompositions cellulaires et simpliciales.

1.2. Notations. Dans la suite, le groupe Z/pZ sera noté Zp.
En suivant essentiellement les notations de Orlik [11], mais aussi celles de [13], [14], M

est une variété de Seifert décrite par une liste d’invariants de Seifert

{e; (Υ, g); (a1, b1), . . . , (am, bm)}.
Ici e est un entier, le Type Υ sera décrit plus bas, g est le genre de la surface de base (l’espace
des orbites obtenues en identifiant chaque fibre S 1 de M à un point), et pour chaque k, les
entiers ak, bk sont premiers entre eux avec ak � 0 (si bk = 0 alors ak = ±1).

Comme dans [11], p.74 (et aussi pour d’autres auteurs), nous introduisons une fibre
supplémentaire, non-exceptionnelle a0 = 1, b0 = e et utilisons la présentation suivante du
groupe fondamental de M :

π1(M) =

〈q0, . . . , qm

t1, . . . , tg′
h

∣∣∣∣∣∣∣∣∣
[qk, h] and qak

k hbk , 0 ≤ k ≤ m
t jht−1

j h−ε j , 1 ≤ j ≤ g′
q0 . . . qmV

〉
,(1.1)
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où les générateurs et g′,V sont décrits ci-dessous.

• Le Type Υ de M est égal à:
o1 si la surface de base et l’espace total sont orientables (alors tous les ε j sont

égaux à 1) ;
o2 si la surface de base est orientable et l’espace total non-orientable, alors g ≥ 1

(forcément tous les ε j sont égaux à −1) ;
n1 si la surface de base et l’espace total sont non-orientables alors g ≥ 1 et de plus

tous les ε j sont égaux à 1 ;
n2 si la surface de base est non-orientable alors g ≥ 1 et l’espace total est orientable

(forcément tous les ε j sont égaux à −1) ;
n3 si la surface de base et l’espace total sont non-orientables avec de plus, tous les
ε j égaux à −1 sauf ε1 = 1, et g ≥ 2 ;

n4 si la surface de base et l’espace total sont non-orientables avec de plus, tous les
ε j égaux à −1 sauf ε1 = ε2 = 1, et g ≥ 3.

• L’orientabilité de la surface de base et le genre g déterminent le nombre g′ de
générateurs t j et le mot V dans la longue relation de π1(M) de la façon suivante:

– quand la surface de base est orientable, i.e. Υ = oi, g′ = 2g et V = [t1, t2] . . .
[t2g−1, t2g] ;

– quand la surface de base est non-orientable, i.e. Υ = ni, g′ = g et V = t2
1 . . . t

2
g.

• Le générateur h correspond à la fibre générique régulière.
• Les générateurs qk pour 0 ≤ k ≤ m correspondent aux (possibles) fibres exception-

nelles.

Dans ce papier nous utiliserons les notations suivantes.

Notations 1. Soit M une variété de Seifert décrite par une liste d’invariants de Seifert

{e; (Υ, g); (a1, b1), . . . , (am, bm)},

et soit p un entier premier.

• Notons a le plus petit commum multiple des ak, avec de plus a0 = 1 et b0 = e, alors

c =
m∑

k=0

bk(a/ak).

• Le nombre de ak divisibles par p sera noté n.
– Quand n = 0, on suppose que bk est divisible par p si et seulement si 0 ≤ k < r;
– quand n > 0, on suppose que ak est divisible par p si et seulement si 0 ≤ k ≤ n,

les indices k sont réordonnés par p-valuation décroissante νp(ak).
• On distingue trois cas :

– Cas 1, n = 0 et c est divisible par p ;
– Cas 2, n = 0 et c n’est pas divisible par p ;
– Cas 3, n > 0.

2. Les groupes de cohomologie2. Les groupes de cohomologie

2.1. Le complexe cellulaire. La variété de Seifert M admet une décomposition cellulaire
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en cellules de dimension de 0 à 3 qui est décrite ci-dessous. Voir Figures 1, 2, 3, 4, Section
9.
• une 0-cellule σ ;
• des 1-cellules (d’origine et d’extrémité l’unique 0-cellule) t j, qk, h ;
• des 2-cellules :

- δ de bord :∏
[t2i−1, t2i]

∏
qk pour les Types oi ;

∏
t2

j
∏

qk pour les Types ni ;
- ρk de bords [h, qk] qui correspondent à des tores ;
- ν j de bords ht jh−ε j t−1

j qui correspondent à des tores si ε j = 1 et à des bouteilles de
Klein si ε j = −1 ;

- μk disques de bords wak ,bk (qk, h), qui est un mot en qk, h comportant ak fois la lettre
qk et bk fois la lettre h, mais dans un ordre très particulier qui sera précisé plus loin
(Sous-section 4.1) ;

• des 3-cellules :

- ε dont le bord est pavé par deux exemplaires de δ et de chaque ν j et un exemplaire
de chaque ρk ;

- ζk dont le bord est pavé par deux exemplaires de μk et un exemplaire de ρk. Ce
pavage, assez délicat, est lié à une propriété essentielle du mot wak ,bk (qk, h), sera
expliqué plus loin.

2.2. Groupes et générateurs de H∗(M,Zp). On note x̂ le dual de x. Sauf précision, les
indices j sont des entiers vérifiant 1 ≤ j ≤ g′ et sont absents si g = 0.

Théorème 2. Pour p = 2.
Les groupes de cohomologie à coefficients dans Z2 sont :

• H0(M,Z2) = Z2 et H3(M,Z2) = Z2{γ}.
H1(M,Z2) et H2(M,Z2) dépendent des Cas 1,2,3 et non des Types :
– Cas 1

• H1(M,Z2) = Zg
′+1

2 = Z2{θ j, 1 ≤ j ≤ g′;α} où θ j = [t̂ j] et α = [ĥ −∑
bka−1

k q̂k] ;
• H2(M,Z2) = Zg

′+1
2 = Z2{ϕ j, 1 ≤ j ≤ g′; β} où ϕ j = [ν̂ j] et β = [δ̂].

– Cas 2

• H1(M,Z2) = Zg
′

2 = Z2{θ j} où θ j = [t̂ j] ;
• H2(M,Z2) = Zg

′
2 = Z2{ϕ j} où ϕ j = [ν̂ j].

– Cas 3

• H1(M,Z2) = Zg
′+n−1

2 = Z2{θ j;αk, 0 < k ≤ n − 1} où θ j = [t̂ j] et αk = [q̂k − q̂0] ;
• H2(M,Z2) = Zg

′+n−1
2 = Z2{ϕ j; βk} où ϕ j = [ν̂ j] et βk = [μ̂k] pour 0 < k.

Pour p > 2.
Les groupes de cohomologie à coefficients dans Zp sont :

• H0(M,Zp) = Zp et H3(M,Zp) = Zp{γ} pour o1 et n2 tandis que H3(M,Zp) = 0 pour
o2, n1, n3, n4.

H1(M,Zp) et H2(M,Zp) dépendent des Cas 1,2,3 et du Type :
Type o1 Les résultats sont les mêmes que lorsque p = 2 avec g′ = 2g éventuellement nul.
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Type o2

– Cas 1,2

• H1(M,Zp) = Z2g
p = Zp{θ j} où θ j = [t̂ j] ;

• H2(M,Zp) = Z2g−1
p = Zp{ϕ j; β} où ϕ j = [ν̂ j + (−1) jν̂1] pour j > 2 et β = [δ̂].

– Cas 3

• H1(M,Zp) = Z2g+n−1
p = Zp{θ j;αk} où θ j = [t̂ j] et αk = [q̂k − q̂0] pour 0 < k ;

• H2(M,Zp) = Z2g+n−1
p = Zp{ϕ j; βk} où ϕ j = [ν̂ j + (−1) jν̂1] pour j > 2 et βk = [μ̂k].

Type n1

– Cas 1,2

• H1(M,Zp) = Zgp = Zp{θ j;α} où θ j = [t̂ j− t̂1] pour j > 1 et α = [ c
2a t̂1+ ĥ−∑ bka−1

k q̂k],
la constante c étant égale à 0 dans le Cas 1 ;
• H2 = Z

g−1
p = Zp{ϕ j} où ϕ j = [ν̂ j − ν̂1] pour j > 1.

– Cas 3

• H1(M,Zp) = Zg+n−1
p = Zp{θ j;αk} où θ j = [t̂ j − t̂1] pour j > 1 et αk = [q̂k − 1

2 t̂g] ;
• H2(M,Zp) = Zg+n−2

p = Zp{ϕ j; βk} où ϕ j = [ν̂ j − ν̂1] pour j > 1 et βk = [μ̂k] pour
0 < k.

Type n2

– Cas 1,2,3

• H1(M,Zp) = Zg−1+n
p = Zp{θ j, j > 1;αk} où θ j = [t̂ j − t̂1] pour j > 1 et αk =

[q̂k − 1/2t̂g] ;
• H2(M,Zp) = Zn+g−1

p = Zp{ϕ j; βk} où ϕ j = [ν̂ j] pour j > 1 et βk = [μ̂k].

Type n3

– Cas 1,2,3

• H1(M,Zp) a les mêmes générateurs que pour le Type n2 ;
• H2(M,Zp) = Zg−2+n

p = Zp{ϕ j; βk} où ϕ j = [ν̂ j] pour j > 2 et βk = [μ̂k].

Type n4

– Cas 1,2,3

• H1(M,Zp) a les mêmes générateurs que pour le Type n2 ;
• H2(M,Zp) = Zg−2+n

p = Zp{ϕ3;ϕ j, j > 3; βk} où ϕ3 = [ν̂2 − ν̂1], ϕ j = [ν̂ j] pour j > 3
et βk = [μ̂k].

Les quatre lemmes suivants constituent la preuve de ce théorème. Ils détaillent les bords
des chaı̂nes, les bords des cochaı̂nes et les expressions de H1(M,Zp) et H2(M,Zp) pour un
p premier quelconque.

De la décomposition cellulaire, on déduit la description suivante des bords des chaı̂nes :

Lemme 3. Bord des chaı̂nes cellulaires
∂σ = 0, ∂t j = ∂qk = ∂h = 0, ∂ρk = 0,
∂δ =

∑
qk pour oi, ∂δ = 2

∑
t j +

∑
qk pour ni,

∂ν j = 0 lorsque ε j = 1, ∂ν j = 2h lorsque ε j = −1,
∂μk = akqk + bkh,
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∂ε =
∑
ρk pour o1, ∂ε =

∑
ρk + 2

∑
(−1) jν j pour o2, ∂ε =

∑
ρk + 2

∑
ε j=1 ν j pour ni,

∂ζk = −ρk.

Par dualité, on obtient les bords des cochaı̂nes :

Lemme 4. Bord des cochaı̂nes cellulaires
∂σ̂ = 0, ∂δ̂ = ∂μ̂k = 0, ∂ε̂ = ∂ζ̂k = 0,
∂t̂ j = 0 pour oi, ∂t̂ j = 2δ̂ pour ni,
∂q̂k = δ̂ + akμ̂k,
∂ĥ =

∑
bkμ̂k + 2

∑
ε j=−1 ν̂ j,

∂ν̂ j = 0 pour o1,n2, et pour n1,n3,n4 lorsque ε j = −1,
∂ν̂ j = 2(−1) jε̂ pour o2, ∂ν̂ j = 2ε̂ pour n1,n3,n4 lorsque ε j = 1,
∂ρ̂k = ε̂ − ζ̂k.

Quel que soit l’anneau de coefficients A, H0(M, A) = A est engendré par 1 := [σ̂]. Le
groupe H3(M,Zp) est égal à A pour o1 et n2, et à A/2A pour o2, n1, n3, n4. Il est engendré
par γ := [ε̂] = [ζ̂k].

Lemme 5. Présentation du groupe H1(M,Zp)
1) Quelque soit l’anneau de coefficients A, on a
H1(M, A) = {xĥ +

∑
y jt̂ j +

∑
zkq̂k | x, y j, zk ∈ A, (∗)} où la condition (∗) de cocycle est

∀k, akzk + bk x = 0,

avec en plus, pour ni,
∑

zk = 0 ; pour oi,
∑

zk = −2
∑
y j ; et pour o2, n2, n3, n4, 2x = 0.

2) Si l’anneau A = Z, ou Zp avec p > 2 premier, ceci se simplifie en
pour o2, H1(M, A) = A2g × {∑ zkq̂k | zk ∈ A,∀k, akzk = 0,

∑
zk = 0} ;

pour n2, n3, n4, H1(M, A) = {∑ y jt̂ j +
∑

zkq̂k | y j, zk ∈ A,∀k, akzk = 0, 2
∑
y j +

∑
zk = 0}.

3) Si l’anneau A = Z2, ceci se simplifie pour tous les Types en
H1(M, A) = {xĥ +

∑
y jt̂ j +

∑
zkq̂k | x, y j, zk ∈ A,∀k, akzk + bk x = 0,

∑
zk = 0}.

Lemme 6. Présentation du groupe H2(M,Zp)
H2 = {xδ̂ +∑

y jν̂ j +
∑

zkμ̂k | x, y j, zk ∈ A, (∗)}/Im(∂) où la condition (∗) est
vide pour o1, n2 ; pour o2, 2

∑
(−1) jy j = 0 ; pour n1, n3, n4, 2

∑
ε j=1 y j = 0.

De plus Im(∂) est engendré par les δ̂ + akμ̂k,
∑

bkμ̂k + 2
∑
ε j=−1 ν̂ j, avec de plus 2δ̂ pour ni.

3. Les théorèmes principaux3. Les théorèmes principaux

Théorème 7. Pour p = 2, les seuls cup-produits ∪ : H1(M,Z2)⊗H1(M,Z2)→ H2(M,Z2)
sont :
– Dans le Cas 1 :

• θi ∪ θ j

- Pour les Types oi, les cup-produits θi ∪ θ j sont nuls sauf θ2i ∪ θ2i−1 = β ;
- Pour les Types ni, les cup-produits θi ∪ θ j sont nuls sauf θi ∪ θi = β.
• θ j ∪ α

- Pour tous les Types, on a θ j ∪ α = ϕ j.
• α ∪ α

- Pour les Types o1 et n1, on a α ∪ α = c/2β ;



L’Anneau de Cohomologie à Coefficients dans Zp 163

- Pour les Types o2 et n2, on a α ∪ α = c/2β +
∑

1≤ j ϕ j ;
- Pour le Type n3, on a α ∪ α = c/2β +

∑
j>1 ϕ j ;

- Pour le Type n4, on a α ∪ α = c/2β +
∑

j>2 ϕ j.
2

– Dans le Cas 2 :

• θi ∪ θ j

- Pour tous les Types, θi ∪ θ j = 0.

– Dans le Cas 3 :

• θi ∪ θ j

- Pour tous les Types, on a θi ∪ θ j = 0.
• θ j ∪ αk

- Pour tous les Types, on a θ j ∪ αk = 0.
• αk ∪ αi

- Pour tous les Types, on a αk ∪ αi =
a0
2
∑

0<�≤n−1β� + δk,�
ak
2 βk.

Théorème 8. Pour p = 2, les seuls cup-produits ∪ : H1(M,Z2)⊗H2(M,Z2)→ H3(M,Z2)
sont :
– Dans les trois Cas :

• θi ∪ ϕ j

- Pour les Types oi, les θi ∪ ϕ j non nuls sont :
si j est impair θ j+1 ∪ ϕ j = γ, si j est pair θ j−1 ∪ ϕ j = γ ;
- Pour les Types ni, on a θ j ∪ ϕ j = γ et 0 sinon.

– Dans le Cas 1 :

• α ∪ ϕ j

- Pour les Types o1 et n1, α ∪ ϕ j = 0 ;
- Pour les Types o2 et n2, α ∪ ϕ j = γ ;
- Pour le Type n3, α ∪ ϕ j = γ si j � 1 et 0 sinon ;
- Pour le Type n4, α ∪ ϕ j = γ si j � 1, 2 et 0 sinon.
• θi ∪ β

- Pour tous les Types, θi ∪ β = 0.
• α ∪ β

- Pour tous les Types, α ∪ β = γ.
– Dans le Cas 3 :

• αk ∪ ϕ j

- Pour tous les Types, αk ∪ ϕ j = 0.
• αk ∪ βk

- Pour tous les Types, αk ∪ βk = γ et 0 sinon.
• θi ∪ β j

- Pour tous les Types, θi ∪ βk = 0.

Théorème 9. Pour p > 2,
– Dans le Cas 1, les seuls cup-produits ∪ : H1(M,Zp)⊗H1(M,Zp)→ H2(M,Zp) sont :

2Dans [5], Theorem 1.3 (i), le coefficient de β devrait être remplacé par c/2.
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• θi ∪ θ j

- Pour les Types oi, les cup-produits θi ∪ θ j sont nuls sauf θ2i−1 ∪ θ2i = β ;
- Pour les Types ni, les cup-produits θi ∪ θ j sont nuls.
• θ j ∪ α

- Pour le Type o1, on a θ j ∪ α = ϕ j ;
- Pour le Type n1, on a θ j ∪ α = ϕ j, j > 1.

• α ∪ α
- Pour les Types o1 et n1, les cup-produits α ∪ α sont nuls.

– Dans le Cas 2, les seuls cup-produits ∪ : H1(M,Zp)⊗H1(M,Zp)→ H2(M,Zp) sont :

• θi ∪ θ j

- Pour le Type o2, les cup-produits θi ∪ θ j sont nuls sauf θ2i−1 ∪ θ2i = β ;
- Pour tous les autres Types, θi ∪ θ j = 0.
• θ j ∪ α

- Pour le Type n1, on a θ j ∪ α = ϕ j, j > 1.

– Dans le Cas 3, les seuls cup-produits ∪ : H1(M,Zp)⊗H1(M,Zp)→ H2(M,Zp) sont :

• θi ∪ θ j

- Pour tous les Types, on a θi ∪ θ j = 0.
• θ j ∪ αk

- Pour tous les Types, on a θ j ∪ αk = 0.
• αk ∪ αi

- Pour tous les Types, on a αk ∪ αi = 0 sont nuls.

Théorème 10. Pour p > 2, les seuls cup-produits ∪ : H1(M,Zp)⊗H2(M,Zp) →
H3(M,Zp) sont :
– Dans les trois Cas :

• θi ∪ ϕ j

- Pour le Type o1, on a pour j impair θ j+1 ∪ ϕ j = −γ et pour j pair θ j−1 ∪ ϕ j = γ ;
- Pour le Type n2, on a θ j ∪ ϕ j = γ, et 0 sinon.

– Dans le Cas 1, pour tous les Types :

• θi ∪ β = 0
• α ∪ β = γ
• α ∪ ϕ j = 0

– Dans le Cas 3 :

• αi ∪ βk

- Pour les Types o1 et n2, on a αi ∪ βk = 0 sauf si i = k et dans cette situation on a
αk ∪ βk = b−1

k γ.

• αk ∪ ϕ j

- Pour le Type o1, on a αk ∪ ϕ j = 0.
• αk ∪ ϕ j

- Pour le Type n2, pour tout indice k, on a αk ∪ ϕg = − 1
2γ.
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4. Décomposition Δ-simpliciale4. Décomposition Δ-simpliciale

Avant de décrire le découpage Δ-simplicial, nous donnons la définition et les propriétés
du mot wak ,bk (qk, h) qui permet de paver la sphère bordant ζk comme décrit dans 2.1.

4.1. Définition et propriétés de wα,β. Le cas ak = 1, bk ≤ 0 sera très simple, mais
dans le cas général ak, bk > 0, pour pouvoir paver comme évoqué dans 2.1 la sphère bordant
ζk, le bord wak ,bk (qk, h) de μk doit être un mot tel qu’en effectuant sur ce mot une certaine
permutation circulaire et en remplaçant un certain hqk par qkh, on retombe sur le mot de
départ. C’est cette propriété qui permet le pavage de la sphère par deux exemplaires de μk

et un exemplaire de ρk pour former le bord de la 3-cellule ζk.

Définition 11. Le mot wα,β (pour α, β premiers entre eux) est défini récursivement par :
w1,0(a, t) = a, w0,1(a, t) = t, w1,1(a, t) = at,
si 0 < α < β, wα,α+β(a, t) = wα,β(at, t),
si 0 < β < α, wα+β,β(a, t) = wα,β(a, at), si bien que le mot wα,β(a, t) contient α fois la lettre a
et β fois la lettre t.

Par une preuve similaire à celle des articles [12], [10], [7], [9], on montre que ces mots
wα,β vérifient les relations suivantes :

Proposition 12. Soient α, β, u, v entiers tels que

αu − βv = 1, 0 < u ≤ β, 0 ≤ v < α,
alors

wα,β(a, t) = wα−v,β−u(a, t)wv,u(a, t) = (wv,u(a, t)t−1)at(a−1wα−v,β−u(a, t)).

Notations 13. Dans la suite, nous appliquerons ce théorème à α = ak, β = bk et noterons
uk, vk les entiers u, v correspondants. En notant wak ,bk (qk, h) sous la forme xk,1 . . . xk,zk avec
les xk,i égaux à qk (pour ak d’entre eux dont le premier) ou h (pour bk d’entre eux dont
le dernier) (donc zk = ak + bk), le théorème exprime que pour wk = zk − uk − vk + 1, le
mot wak ,bk (qk, h) est aussi égal à xk,wk . . . xk,zk−1qkhxk,2 . . . xk,wk−1, et que de plus, le morceau
xk,wk . . . xk,zk de ce mot contient vk fois qk et uk fois h.

Dans le cas bk ≤ 0 (donc ak = 1), nous poserons uk = 1, vk = 0, wk = zk = 1 + |bk|, et
xk,1 = qk, xk,� = h pour 2 ≤ � ≤ zk.

4.2. Découpage Δ-simplicial. Transformons ce complexe cellulaire en complexe Δ-
simplicial en rajoutant :
• un centre et des rayons aux 2-cellules δ et μk, pour remplacer chacune par une juxtaposition
de triangles ;
• une “diagonale” aux ν j, ρk, pour remplacer chacun par deux triangles ;
• pour chacune des 3-cellules ε, ζk, dont le bord est une sphère pavée par les 2-simplexes déjà
construits : un centre, des rayons joignant ce centre aux sommets marqués sur la sphère ;
des triangles joignant ce centre aux arêtes marquées sur la sphère, de manière à remplacer
chaque 3-cellule par une juxtaposition de tétraèdres.

Plus précisément, on remplace la décomposition cellulaire ci-dessus par la décomposition
Δ-simpliciale suivante.
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1) Le 0-simplexe σ et les 1-simplexes t j, qk, h,.

2) Découpage des ρk, Figure 5 :

• des 1-simplexes gk (d’origine et d’extrémité σ) et des 2-simplexes ρk,1, ρk,2, (de faces
respectives (h, gk, qk), (qk, gk, h)).

3) Découpage des ν j, Figures 6, 7, 8 :

• des 1-simplexes f j (d’origine et d’extrémité σ) et des 2-simplexes ν j,2 (de faces (t j, f j, h))
et ν j,1 (de faces (h, f j, t j) si ε j = 1, (h, t j, f j) si ε j = −1).

4) Découpage de δ, Figures 9, 10 :
Dans le découpage de δ, ε, il faudra distinguer les Types o1, o2, n1 à n4 :

•Un 0-simplexe a, des 1-simplexes e0, . . . , e2g′+m (d’origine a et d’extrémitéσ). On rappelle
que le symbole g′ est égal à 2g pour le Υ = oi, et à g pour le Υ = ni.

• des 2-simplexes δ0, . . . , δ2g′+m, plus précisément :
− pour les Types o1, o2 : δi, de faces, respectivement
(t1, e1, e0), (t2, e2, e1), (t1, e2, e3), (t2, e3, e4), . . . , (q0, e4g+1, e4g), . . . , (qm, e0, e4g+m);
− pour les Types n1 à n4 :
(t1, e1, e0), (t1, e2, e1), . . . , (q0, e2g+1, e2g), . . . , (qm, e0, e2g+m).

5) Découpage de chaque μk, Figure 11, 12 :
Dans le découpage de μk, ζk il faudra distinguer le cas particulier bk ≤ 0 (et ak = 1) du cas
général :

• Un 0-simplexe ck, des 1-simplexes pk,1, . . . , pk,zk (d’origine ck et d’extrémité σ) ;

• des 2-simplexes μk,1, . . . , μk,zk , de faces :

- si bk > 0 : (xk,1, pk,2, pk,1), . . . , (xk,zk , pk,1, pk,zk )
- si bk < 0 : (qk, pk,2, pk,1), (h, pk,2, pk,3), . . . , (h, pk,zk , pk,1)
- si bk = 0 : (qk, pk,1, pk,1).

6) Découpage de ε, Figures 13 à 17 :

• un 0-simplexe b ;

• des 1-simplexes A+, A− (d’origine b, d’extrémité a) ;

• des 1-simplexes S +0 , . . . , S
+
2g′+m, S

−
0 , . . . , S

−
2g′+m (d’origine b et d’extrémité σ),

et des 2-simplexes E+0 , . . . , E
+
2g′+m, E

−
0 , . . . , E

−
2g′+m avec E±� de faces (e�, S ±� , A

±) ;

• des 2-simplexes T+0 , . . . , T
+
2g′+m, T

−
0 , . . .T

−
2g′+m, plus précisément :

- pour les Types o1, o2 : T±0 , . . . , T
±
4g+m de faces

(t1, S ±1 , S
±
0 ), (t2, S ±2 , S

±
1 ), (t1, S ±2 , S

±
3 ), (t2, S ±3 , S

±
4 ), . . . , (qm, S ±0 , S

±
4g+m) ;

- pour les Types n1 à n4 : T±0 , . . . , T
±
2g+m de faces

(t1, S ±1 , S
±
0 ), (t1, S ±2 , S

±
1 ), . . . , (qm, S ±0 , S

±
2g+m).
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Notations 14. Ici la notation T±0 de faces (t1, S ±1 , S
±
0 ) signifie que les faces de T+0 sont

(t1, S +1 , S
+
0 ) et celles de T−0 sont (t1, S −1 , S

−
0 ) etc.

• des 2-simplexes H0, . . . ,H2g′+m :
les faces de H� étant en général (h, S +� , S

−
� ), mais étant (h, S −� , S

+
� ) si � = 2 j − 1 < 2g′ avec

ε j = −1, i.e. dans les Types suivants : Type o2, � impair < 4g ; Type n2, � impair < 2g ; Type
n3, � impair, 3 ≤ � < 2g ; Type n4, � impair, 5 ≤ � < 2g ;

• des 2-simplexes F0, . . . , F2g′+m, de faces :
- pour le Type o1 : ( f1, S +1 , S

−
0 ), ( f2, S +2 , S

−
1 ), ( f1, S +2 , S

−
3 ),

( f2, S +3 , S
−
4 ), . . . , (gm, S +0 , S

−
4g+m) ;

- pour le Type o2 : ( f1, S +1 , S
−
0 ), ( f2, S −2 , S

+
1 ), ( f1, S −2 , S

+
3 ),

( f2, S +3 , S
−
4 ), . . . , (gm, S +0 , S

−
4g+m) ;

- pour le Type n1 : ( f1, S +1 , S
−
0 ), ( f1, S +2 , S

−
1 ), . . . , (gm, S +0 , S

−
2g+m) ;

- pour le Type n2 : ( f1, S +1 , S
−
0 ), ( f1, S −2 , S

+
1 ), . . . , (gm, S +0 , S

−
2g+m) ;

- pour le Type n3 : ( f1, S +1 , S
−
0 ), ( f1, S +2 , S

−
1 ), ( f2, S +3 , S

−
2 ),

( f2, S −4 , S
+
3 ), . . . , (gm, S +0 , S

−
2g+m) ;

- pour le Type n4 : ( f1, S +1 , S
−
0 ), ( f1, S +2 , S

−
1 ), ( f2, S +3 , S

−
2 ), ( f2, S +4 , S

−
3 ),

( f3, S +5 , S
−
4 ), ( f3, S −6 , S

+
5 ), . . . , (gm, S +0 , S

−
2g+m) ;

• des 3-simplexes D+0 , . . . ,D
+
2g′+m,D

−
0 , . . . ,D

−
2g′+m, plus précisément :

- pour les Types o1, o2 : D±0 , . . . ,D
±
4g+m de faces

(δ0, T±0 , E
±
1 , E

±
0 ), (δ1, T±1 , E

±
2 , E

±
1 ), (δ2, T±2 , E

±
2 , E

±
3 ), (δ3, T±3 , E

±
3 , E

±
4 ),

. . . , (δ4g+m, T±4g+m, E
±
0 , E

±
4g+m) ;

- pour les Types n1 à n4 : D±0 , . . . ,D
±
2g+m de faces

(δ0, T±0 , E
±
1 , E

±
0 ), . . . , (δ2g+m, T±2g+m, E

±
0 , E

±
2g+m) ;

• des 3-simplexes Nj,1,N′j,1,Nj,2,N′j,2 de faces,
- pour le Type o1 :
si j impair, (ν j,1,H2 j−1, F2 j−2, T−2 j−2), (ν j,1,H2 j, F2 j, T−2 j),
(ν j,2, T+2 j−2, F2 j−2,H2 j−2), (ν j,2, T+2 j, F2 j,H2 j+1)
si j pair, (ν j,1,H2 j−2, F2 j−3, T−2 j−3), (ν j,1,H2 j−1, F2 j−1, T−2 j−1),
(ν j,2, T+2 j−3, F2 j−3,H2 j−3), (ν j,2, T+2 j−1, F2 j−1,H2 j) ;
- pour le Type o2 :
si j impair, (ν j,1,H2 j−1, T−2 j−2, F2 j−2), (ν j,1,H2 j, T+2 j, F2 j),
(ν j,2, T+2 j−2, F2 j−2,H2 j−2), (ν j,2, T−2 j, F2 j,H2 j+1),
si j pair, (ν j,1,H2 j−2, T+2 j−3, F2 j−3), (ν j,1,H2 j−1, T−2 j−1, F2 j−1),
(ν j,2, T−2 j−3, F2 j−3,H2 j−3), (ν j,2, T+2 j−1, F2 j−1,H2 j) ;
- pour les Types n1 à n4 :
si ε j = 1, (ν j,1,H2 j−1, F2 j−2, T−2 j−2), (ν j,1,H2 j, F2 j−1, T−2 j−1),
(ν j,2, T+2 j−2, F2 j−2,H2 j−2), (ν j,2, T+2 j−1, F2 j−1,H2 j−1) ;
si ε j = −1, (ν j,1,H2 j−1, T−2 j−2, F2 j−2), (ν j,1,H2 j, T+2 j−1, F2 j−1),
(ν j,2, T+2 j−2, F2 j−2,H2 j−2), (ν j,2, T−2 j−1, F2 j−1,H2 j−1) ;

• des 3-simplexes Rk,1,Rk,2,
de faces (ρk,1,H2g′+k+1, F2g′+k, T−2g′+k), (ρk,2, T+2g′+k, F2g′+k,H2g′+k)
(avec par convention H2g′+m+1 = H0).
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7) Découpage de chaque ζk, Figures 18, 19, 20 :

• un 0-simplexe dk ;

• des 1-simplexes C+k ,C
−
k (d’origine dk et d’extrémité ck) et S k,0, . . . , S k,zk (d’origine dk et

d’extrémité σ) ;

• des 2-simplexes P−k,1, . . . , P
−
k,zk

de faces (pk,1, S k,1,C−k ), . . . , (pk,zk , S k,zk ,C
−
k ) ;

• des 2-simplexes P+k,1, . . . , P
+
k,zk

de faces

- si bk > 0, (pk,1, S k,wk ,C
+
k ), . . . , (pk,zk−wk+1, S k,zk ,C

+
k ),

(pk,zk−wk+2, S k,0,C+k ), (pk,zk−wk+3, S k,2,C+k ), . . . , (pk,zk , S k,wk−1,C+k )
- si bk < 0, (pk,1, S k,0,C+k ), (pk,2, S k,3,C+k ), . . . , (pk,zk , S k,1,C+k )
- si bk = 0, (pk,1, S k,0,C+k ) ;

• des 2-simplexes Xk,1, . . . , Xk,zk , de faces

- si bk > 0, (xk,1, S k,2, S k,1), . . . , (xk,zk , S k,1, S k,zk ),
- si bk < 0, (qk, S k,2, S k,1), (h, S k,2, S k,3), . . . , (h, S k,zk , S k,1),
- si bk = 0, (qk, S k,1, S k,1) ;

• des 2-simplexes Qk,H′k,Gk de faces

- si bk > 0, (qk, S k,0, S k,zk ), (h, S k,2, S k,0), (gk, S k,2, S k,zk ),
- si bk < 0, (qk, S k,3, S k,0), (h, S k,1, S k,0), (gk, S k,2, S k,0),
- si bk = 0, (qk, S k,0, S k,0), (h, S k,1, S k,0), (gk, S k,1, S k,0) ;

• des 3-simplexes M−k,1, . . . ,M
−
k,zk

, de faces

- si bk > 0, (μk,1, Xk,1, P−k,2, P
−
k,1), . . . , (μk,zk , Xk,zk , P

−
k,1, P

−
k,zk

),
- si bk < 0, (μk,1, Xk,1, P−k,2, P

−
k,1), (μk,2, Xk,2, P−k,2, P

−
k,3), . . .,

(μk,zk , Xk,zk , P
−
k,zk
, P−k,1),

- si bk = 0, (μk,1, Xk,1, P−k,1, P
−
k,1) ;

• des 3-simplexes M+k,1, . . . ,M
+
k,zk

de faces

- si bk > 0, (μk,1, Xk,wk , P
+
k,2, P

+
k,1), . . ., (μk,zk−wk+1,Qk, P+k,zk−wk+2, P

+
k,zk−wk+1),

(μk,zk−wk+2,H′k, P
+
k,zk−wk+3, P

+
k,zk−wk+2), . . . , (μk,zk , Xk,wk−1, P+k,1, P

+
k,zk

),
- si bk < 0, (μk,1,Qk, P+k,2, P

+
k,1), (μk,2, Xk,3, P+k,2, P

+
k,3), . . . ,

(μk,zk−1, Xk,zk , P
+
k,zk−1, P

+
k,zk

), (μk,zk ,H
′
k, P

+
k,zk
, P+k,1),

- si bk = 0, (μk,1,Qk, P+k,1, P
+
k,1) ;

• des 3-simplexes R′k,1,R
′
k,2 de faces

- si bk > 0, (ρk,1,H′k,Gk,Qk), (ρk,2, Xk,1,Gk, Xk,zk ),
- si bk < 0, (ρk,1, Xk,2,Gk,Qk), (ρk,2, Xk,1,Gk,H′k),
- si bk = 0, (ρk,1,H′k,Gk,Qk), (ρk,2, Xk,1,Gk,H′k).

5. Morphisme des cellules vers les Δ-simplexes5. Morphisme des cellules vers les Δ-simplexes

Définition 15. On note T l’application définie sur les générateurs du complexe des
chaı̂nes cellulaires vers ceux des chaı̂nes Δ-simpliciales par :
• T envoie les 0- et 1-cellules σ et t j, qk, h sur les 0- et 1-Δ-simplexes du même nom,
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• T (ρk) = ρk,1 − ρk,2,
• T (ν j) = ν j,1 − ε jν j,2,
• T (μk), 1 ≤ � ≤ zk (voir Sous-section 4.1),

- si bk ≥ 0 : T (μk) =
∑
μk,�,

- si bk ≤ 0 : T (μk) = μk,1 −∑
�>1 μk,�,

• T (δ)

- pour les Types oi : T (δ) =
∑g−1

i=0 (δ4i + δ4i+1 − δ4i+2 − δ4i+3) +
∑4g+m
�=4g δ�,

- pour les Types ni : T (δ) =
∑
δ�,

• T (ε), en notant D′� := D+� − D−� ,

- pour le Type o1 : T (ε) =
∑m

k=0(Rk,1 − Rk,2) +
∑4g+m
�=4g D′� +

∑g−1
i=0 (D′4i + D′4i+1 − D′4i+2 −

D′4i+3) +
∑

(Nj,1 − Nj,2 − N′j,1 + N′j,2),

- pour le Type o2 : T (ε) =
∑m

k=0(Rk,1 − Rk,2) +
∑4g+m
�=4g D′� +

∑g−1
i=0 (D′4i + D′4i+1 − D′4i+2 −

D′4i+3) +
∑

(−1) j(Nj,1 + Nj,2 + N′j,1 + N′j,2),

- pour les Types ni : T (ε) =
∑m

k=0(Rk,1 − Rk,2) +
∑2g+m
�=2g D′� +

∑2g−1
i=0 D′j +

∑
ε j=1(Nj,1 −

Nj,2 + N′j,1 − N′j,2) +
∑
ε j=−1(−Nj,1 − Nj,2 + N′j,1 + N′j,2),

• T (ζk), en notant M′k,� := M+k,� − M−k,�,
- si bk ≥ 0 : T (ζk) = −R′k,1 + R′k,2 +

∑
M′k,�,

- si bk ≤ 0 : T (ζk) = −R′k,1 + R′k,2 + M′k,1 −
∑
�>1 M′k,�.

Proposition 16. L’application T définie ci-dessus est un quasi-isomorphisme du com-
plexe des chaı̂nes cellulaires vers celui des chaı̂nes Δ-simpliciales.
On en déduit un quasi-isomorphisme T t, du complexe des cochaı̂nes Δ-simpliciales vers
celui des cochaı̂nes cellulaires : (T t( f ))(s) := f (T (s)).

6. Relevé des cocycles cellulaires en cocycles Δ-simpliciaux6. Relevé des cocycles cellulaires en cocycles Δ-simpliciaux

6.1. Bord du complexe des cochaı̂nes Δ-simpliciales. Pour chaque générateur ξ =
[ξ̂], le but des deux sections suivantes est de choisir un relevé de T t, noté R(ξ̂), i.e. tel
que T tR(ξ̂) = ξ̂ avec la propriété supplémentaire d’être un cocycle (et pas seulement une
cochaı̂ne).

Pour alléger la présentation, on n’écrira (en commençant à regrouper) que les bords qui
seront utiles dans la partie suivante pour expliciter des représentants des générateurs.

Le bord est nul sur toutes les 3-cochaı̂nes, et le bord de la 0-cochaı̂ne σ̂+â+b̂+
∑

ĉk+
∑

d̂k

est nul.

Posons U� = F̂� + δ̂� + T̂±� . Ici et dans la suite cette notation est à comprendre de la façon
suivante : U� = F̂� + δ̂� + T̂+� + T̂−� .

Bords des 1-cochaı̂nes Δ-simpliciales :

Lemme 17. Pour les Types o1, o2

— ∂t̂ j = ε jν̂ j,1 + ν̂ j,2 + T̂±2 j−2 + T̂±2 j + δ̂2 j−2 + δ̂2 j si j impair, et ε jν̂ j,1 + ν̂ j,2 + T̂±2 j−3 + T̂±2 j−1 +

δ̂2 j−3 + δ̂2 j−1 si j pair
— ∂ f̂ j = −ε jν̂ j,1 − ν̂ j,2+ F̂2 j−2 + F̂2 j si j impair, F̂2 j−3 + F̂2 j−1 si j pair
— ∂(t̂ j + f̂ j) = U� + U�−2 avec � = 2 j si j impair et � = 2 j − 1 si j pair
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Pour les Types n1 à n4

— ∂t̂ j = ε jν̂ j,1 + ν̂ j,2 + T̂±2 j−2 + T̂±2 j−1 + δ̂2 j−2 + δ̂2 j−1

— ∂ f̂ j = −ε jν̂ j,1 − ν̂ j,2 + F̂2 j−2 + F̂2 j−1

Pour les Types o1, o2 et n1 à n4

— ∂(ĥ +
∑

f̂ j +
∑

q̂k) =
∑

(Ĥ� + F̂�) +
∑

k(Ĥ′k + Ĝk +
∑

xk,i=h(μ̂k,i + X̂k,i))
— ∂q̂k = ρ̂k,1 + ρ̂k,2 + δ̂2g′+k + T̂±2g′+k +

∑
xk,i=qk

(μ̂k,i + X̂k,i) + Q̂k

— ∂ĝk = −ρ̂k,1 − ρ̂k,2 + F̂2g′+k + Ĝk

— ∂p̂k,� = P̂±k,� + μ̂k,� − μ̂k,�−1 si � > 1 et si bk > 0
— ∂p̂k,� = P̂±k,� − μ̂k,� + μ̂k,�−1 si � > 2 et si bk < 0
— ∂p̂k,2 = P̂±k,2 − μ̂k,2 − μ̂k,1

— ∂(Ŝ ±0 + ê0) = (T̂±0 + Ĥ0 + F̂0) − (T̂±2g′+m + Ĥ2g′+m + F̂2g′+m). Le symbole g′ est défini dans
Notation 1

Pour les Types oi lorsque 1 < � ≤ 4g et � = 2 ou 3 mod 4
— ∂(Ŝ ±� + Ŝ ±�−1 + ê� + ê�−1) = −U� − U�−2

Pour les Types ni lorsque 1 < � ≤ 2g′, et pour oi et ni lorsque 2g′ < � ≤ 2g′ + m,
— ∂(Ŝ ±� + ê�) = U� − U�−1

Pour les Types o1 et n1 (et pour tous les Types si p = 2)
— ∂(Â+ +

∑
Ŝ +� ) = −∑

(Ĥ� + F̂�)
— ∂Ĉ+k =

∑
P̂+k,�

— Bord des Ŝ k,−
- si bk > 0

– ∂Ŝ k,0 = −Q̂k + Ĥ′k − P̂+k,zk−wk+2

– ∂Ŝ k,1 = −X̂k,zk + X̂k,1 − P̂−k,1
– ∂Ŝ k,2 = −Ĥ′k − Ĝk − X̂k,1 + X̂k,2 − P̂−k,2 − P̂+k,zk−wk+3

– ∂Ŝ k,� = −X̂k,�−1 + X̂k,� − P̂−k,� − P̂+k,zk−wk+�+1 si 2 < � < wk

– ∂Ŝ k,� = −X̂k,�−1 + X̂k,� − P̂−k,� − P̂+k,�−wk+1 si wk ≤ � < zk

– ∂Ŝ k,zk = Q̂k + Ĝk − X̂k,zk−1 + X̂k,zk − P̂−k,zk
− P̂+k,zk−wk+1

- si bk < 0

– ∂Ŝ k,0 = Q̂k + Ĥ′k + Ĝk − P̂+k,1
– ∂Ŝ k,1 = −Ĥ′k + X̂k,1 + X̂k,zk − P̂−k,1 − P̂+k,z
– ∂Ŝ k,2 = −Ĝk − X̂k,1 − X̂k,2 − P̂−k,2
– ∂Ŝ k,3 = −Q̂k + X̂k,2 − X̂k,3 − P̂−k,3 − P̂+k,2
– ∂Ŝ k,� = X̂k,�−1 − X̂k,� − P̂−k,� − P̂+k,�−1 si � > 3

- si bk = 0

– ∂Ŝ k,0 = Ĥ′k + Ĝk − P̂+k,1
– ∂Ŝ k,1 = −Ĥ′k − Ĝk − P̂−k,1

Le bord de la 1-cellule Zk est donné dans le lemme suivant.

Lemme 18. Définissons Yk, Zk,Vk par :
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- si bk > 0
- Yk = Ĥ′k + Ĝk + X̂k,1 + μ̂k,1 −∑

2≤�≤zk−wk+2 P̂+k,�
- Zk = q̂k + ĝk − vkĈ+k + Ŝ k,0 −∑

�≥2(Ŝ k,� + p̂k,�)card{i ≥ � | xk,i = qk}
- Vk = ukĈ+k + Ŝ k,0 +

∑
�≥2(Ŝ k,� + p̂k,�)card{i ≥ � | xk,i = h}

- si bk ≤ 0 (donc ak = uk = 1 et vk = 0)
- Yk = Q̂k + Ĝk + X̂k,1 + μ̂k,1

- Zk = q̂k + ĝk

- Vk = Ĉ+k + Ŝ k,0 −∑
�≥2(Ŝ k,� + p̂k,�)(zk − � + 1).

Alors ∂Zk = UG+k + akYk et
∑

xk,i=h(X̂k,i + μ̂k,i) = bkYk − Ĥ′k − Ĝk + ∂Vk.

Preuve. Le cas bk ≤ 0 est facile.
Dans le cas bk > 0, détaillons la preuve.

∂(q̂k + ĝk) = UG+k + Ĝk + Q̂k +
∑

xk,i=qk
(μ̂k,i + X̂k,i), or

X̂k,i + μ̂k,i − X̂k,1 − μ̂k,1 − Ĥ′k − Ĝk − ∂∑2≤�≤i(Ŝ k,� + p̂k,�) +
∑

2≤�≤i P̂+k,� est égal :
- si 2 ≤ i < wk, à

∑
2≤�≤i P̂+k,zk−wk+�+1,

- si wk ≤ i < zk, à
∑

2≤�<wk
P̂+k,zk−wk+�+1 +

∑
wk≤�≤i P̂+k,�−wk+1, d’où

∑
xk,i=qk

(X̂k,i + μ̂k,i) − ak(X̂k,1 + μ̂k,1) − (ak − 1)(Ĥ′k + Ĝk)

− ∂
∑
�≥2

(Ŝ k,� + p̂k,�)card{i ≥ � | xk,i = qk}

= −
∑
�≥2

P̂+k,�card{i ≥ � | xk,i = qk} +
∑

�<zk−wk+2

P̂+k,�card{i ≥ � + wk − 1 | xk,i = qk}

+
∑

�>zk−wk+2

P̂+k,�card{i ≥ � + wk − 1 − zk | xk,i = qk}.

Dans cette expression, le coefficient de P̂+k,� vaut (compte tenu des propriétés de wα,β
détaillées dans 4.1)

si � = 1, card{i ≥ wk | xk,i = qk} = vk
si � = zk−wk+2,−card{i ≥ zk−wk+2 | xk,i = qk} = 1−card{i < wk | xk,i = qk} = 1−(ak−vk)

si 2 ≤ � ≤ zk −wk + 2, card{i ≥ � +wk − 1 | xk,i = qk} − card{i ≥ � | xk,i = qk} = card{i | � ≤
i < zk − wk + 1 et xk,i = qk} − card{i ≥ � | xk,i = qk} = −card{i ≥ zk − wk + 1 | xk,i = qk} =
−card{i < wk | xk,i = qk} = −(ak − vk),

si � > zk − wk + 2, card{i ≥ � + wk − 1 − zk | xk,i = qk} − card{i ≥ � | xk,i = qk} = card{i ≥
wk | xk,i = qk} + card{i | � + wk − 1 − zk ≤ i < wk et xk,i = qk} − card{i ≥ � | xk,i = qk} = vk.

On en déduit que
∑

xk,i=qk
(X̂k,i + μ̂k,i) = akYk − Q̂k − Ĝk + ∂[vkĈ+k − Ŝ k,0 +

∑
�≥2(Ŝ k,� +

p̂k,�)card{i ≥ � | xk,i = qk}], si bien que ∂Zk est égal au résultat annoncé.

On a déjà calculé
∑

xk,i=qk
(X̂k,i + μ̂k,i). On va en déduire

∑
xk,i=h(X̂k,i + μ̂k,i) par différence,

en calculant
∑

i(X̂k,i + μ̂k,i). Rappelons que pour 1 ≤ i < zk,
X̂k,i + μ̂k,i − X̂k,1 − μ̂k,1 − Ĥ′k − Ĝk − ∂∑2≤�≤i(Ŝ k,� + p̂k,�) +

∑
2≤�≤i P̂+k,� était égal :

- si 2 ≤ i < wk, à
∑

2≤�≤i P̂+k,zk−wk+�+1

- si wk ≤ i < zk, à
∑

2≤�<wk
P̂+k,zk−wk+�+1 +

∑
wk≤�≤i P̂+k,�−wk+1.
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De plus, pour i = zk, on a presque la même formule que pour wk ≤ i < zk, mais en remplaçant
−Ĝk par +Q̂k.

D’où∑
i(X̂k,i+ μ̂k,i)− zk(X̂k,1+ μ̂k,1)− (zk −1)Ĥ′k − (zk −2)Ĝk + Q̂k −∂∑�≥2(Ŝ k,� + p̂k,�)card{i ≥ �} =
−∑

�≥2 P̂+k,�(zk − � + 1) +
∑
�<zk−wk+2 P̂+k,�(zk − � + 2 − wk) +

∑
�>zk−wk+2 P̂+k,�(2zk − � + 2 − wk) =

(uk + vk)∂Ĉ+k − (ak + bk)
∑

2≤�≤zk−wk+2 P̂+k,�,
si bien que par différence,

∑
xk,i=h(X̂k,i + μ̂k,i) est égal au résultat annoncé. �

Bord des 2-cochaı̂nes Δ-simpliciales

Lemme 19. Pour tous les Types, on a d’abord
— ∂(δ̂0 + T̂±0 + F̂0) = 0
— ∂(μ̂k,1 + X̂k,1 + Ĝk −∑

2≤�≤zk−wk+1 P̂+k,�) = 0.

Pour les Types oi (avec ε = 1 pour o1 et = −1 pour o2)
- si j impair
— ∂(ν̂ j,1 + Ĥ2 j−1 + F̂2 j−1) = N̂′j,1 + εN̂ j+1,1

— ∂(ν̂ j,1 + εĤ2 j−1 + εF̂2 j−1 + Ĥ2 j) = (1 − ε)N̂ j,1 et
— ∂(F̂2 j−2 + Ĥ2 j−2 + F̂2 j−3) = ε(N̂ j,1 + N̂′j−1,1)
- si j pair
— ∂(ν̂ j,1 + Ĥ2 j−1 + F̂2 j−2) = N̂ j,1 + εN̂′j−1,1 et
— ∂(ν̂ j,1 + εĤ2 j−1 + εF̂2 j−2 + Ĥ2 j−2) = (1 − ε)N̂′j,1
— ∂(μ̂k,1 + X̂k,1 + Ĝk −∑

2≤�≤zk−wk+1 P̂+k,�) = 0.

Pour les Types ni

— ∂(μ̂k,1 + X̂k,1 + Ĝk −∑
2≤�≤zk−wk+1 P̂+k,�) = 0

— ∂(ν̂ j,1 + Ĥ2 j−1 + F̂2 j−1) = (1 + ε j)N̂′j,1
— ∂(ν̂ j,2 + Ĥ2 j−1 + ε jF̂2 j−2) = (1 + ε j)N̂ j,2

— ∂Ĥ2 j−2 = −N̂′j−1,1 − N̂ j,2.

6.2. Relevé des 0 et 1-cocycles cellulaires. Ayant décrit les cobords, on est prêt à choisir
des relevés qui soient des cocycles relevant mod p un représentant des divers générateurs.

Le 0-cocycle cellulaire σ̂ se relève en 1 = σ̂ + â + b̂ +
∑

d̂k.
Grâce au lemme 18, les 1-cocycles sont relevés comme suit :

Définition 20. Relevés des 1-cocycles
1) Pour le générateur θ j :

pour les Types oi et pour tout p, θ j = [t̂ j]. On peut relever t̂ j par
Rt̂ j = t̂ j + f̂ j + ê� + Ŝ ±� + ê�−1 + Ŝ ±�−1

pour les Types ni, il faut distinguer selon p
— si p = 2, alors on a θ j = [t̂ j]. On peut relever t̂ j par
Rt̂ j = t̂ j + f̂ j + ê�−1 + Ŝ ±�−1 ;
— si p > 2 alors on a θ j = [t̂ j − t̂1] qui se relève par
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R(t̂ j − t̂1) = t̂ j + f̂ j − (t̂1 + f̂1) − 2
∑2 j−2

u=2 (êu + Ŝ ±u ) − (ê1 + Ŝ ±1 ) − (ê2 j−1 + Ŝ ±2 j−1).
Dans les deux situations, on a pris � = 2 j si j est impair et � = 2 j − 1 si j est pair.

2) Pour le générateur αk :
pour tous les Types et pour tout p, si 0 ≤ k < n − 1, on commence par relever q̂k − q̂k−1

par
R(q̂k−q̂k−1) = Zk−Zk−1−Ŝ ±2g′+k−ê2g′+k, avec Zk = q̂k+ĝk−vkĈ+k +Ŝ k,0−∑�≥2(Ŝ k,�+ p̂k,�)card{i ≥
� | xk,i = qk} ;

pour les Types oi, ni, quand p = 2 et pour les Types oi quand p > 2, le générateur αk est
αk = [q̂k − q̂0]. En additionnant, on trouve le relevé
R(q̂k − q̂0) = Zk − Z0 −∑k

i=1(Ŝ ±2g′+i + ê2g′+i), où Zu est défini dans Lemme 18 ;

pour tous les Types ni, quand p > 2, αk = [q̂k − 1/2t̂g]. Il faut rajouter à la somme
précédente le relevé de α0 = [q̂0 − 1/2t̂g] qui est choisi égal à
R(q̂0 − 1/2t̂g) = Z0 − 1/2(t̂g + f̂g) − (ê2g + Ŝ ±2g) − 1/2(ê2g−1 + Ŝ ±2g−1). On obtient :
R(q̂k − 1

2 t̂g) = Zk − 1
2 (t̂g + f̂g) −∑k

i=−1(Ŝ ±2g′+i + ê2g′+i).

3) Pour le générateur α = [c/2at̂1 + ĥ −∑
bka−1

k q̂k]. Avec la notation ck = bka/ak, on a :

pour les Types o1 et n1, dans le Cas 1 (on a c = 0), lorsque p > 2 et pour tous les Types,
dans le Cas 1, lorsque p = 2, on peut relever ĥ −∑

bka−1
k q̂k par

R(ĥ−∑
bka−1

k q̂k) = ĥ+
∑

f̂ j+
∑
ĝk+ Â++

∑
Ŝ +� −

∑
bka−1

k Zk−∑
Vk−1/a[c0(ê2g′+1+ Ŝ ±2g′+1)+

(c0 + c1)(ê2g′+2 + Ŝ ±2g′+2) + . . . + (c0 + . . . + cm−1)(ê2g′+m + Ŝ ±2g′+m)] ;

pour le Type n1, dans le Cas 2, on peut relever c/2at̂1 + ĥ −∑
bka−1

k q̂k par
R(c/2at̂1+ ĥ−∑

bka−1
k q̂k) = ĥ+

∑
f̂ j+

∑
q̂k+ Â++

∑
Ŝ +� −

∑
bka−1

k Zk−∑
Vk−1/a[c0(ê2g′+1+

Ŝ ±2g′+1)+ (c0 + c1)(ê2g′+2 + Ŝ ±2g′+2)+ . . .+ (c0 + . . .+ cm−1)(ê2g′+m + Ŝ ±2g′+m)]+ c/2a[(t̂1 + f̂1)−
(Ŝ ±1 + ê1) − 2(Ŝ ±0 + ê0)]
avec

• si bk > 0,
– Zk = q̂k + ĝk − vkĈ+k + Ŝ k,0 −∑

�≥2(Ŝ k,� + p̂k,�)card{i ≥ � | xk,i = qk},
– Vk = ukĈ+k + Ŝ k,0 +

∑
�≥2(Ŝ k,� + p̂k,�)card{i ≥ � | xk,i = h} ;

• si bk ≤ 0,
– Zk = q̂k + ĝk,
– Vk = Ĉ+k + Ŝ k,0 −∑

�≥2(Ŝ k,� + p̂k,�)(zk − � + 1).

Pour justifier (lorsque cela n’est pas évident) ces choix de relevés, on fait les remarques
suivantes :

On rappelle la notation U� = F̂� + δ̂� + T̂±� .

1) Pour le générateur θ j :
pour oi, pour tout p, ∂(t̂ j + f̂ j) = U� + U�−2 avec :

– si j impair : � = 2 j et

∂(ê� + Ŝ ±� ) = −U� − U�−1, ∂(ê�−1 + Ŝ ±�−1) = U�−1 − U�−2,
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– si j pair : � = 2 j − 1 et

∂(ê� + Ŝ ±� ) = −U� + U�−1, ∂(ê�−1 + Ŝ ±�−1) = −U�−1 − U�−2,

– donc quelle que soit la parité de j,

∂(t̂ j + f̂ j) = −∂(ê� + Ŝ ±� + ê�−1 + Ŝ ±�−1).

Pour tout p, le relevé du cocycle θ j = t̂ j est :
Rt̂ j = t̂ j + f̂ j + ê� + Ŝ ±� + ê�−1 + Ŝ ±�−1.

pour ni, pour tout p, ∂(t̂ j + f̂ j) = U2 j−1 + U2 j−2 et ∂(ê� + Ŝ ±� ) = U� − U�−1,
– si p = 2, on peut relever θ j = t̂ j par
Rt̂ j = t̂ j + f̂ j + ê�−1 + Ŝ ±�−1,

– si p > 2, on peut (pour relever θ j = t̂ j − t̂1) relever t̂ j − t̂ j−1 par (t̂ j + f̂ j) − (t̂ j−1 + f̂ j−1) −
(ê2 j−1 + Ŝ ±2 j−1) − (ê2 j−2 + Ŝ ±2 j−2).

2) Pour les générateurs αk : On va se servir des Zk du lemme, puisqu’ils contiennent q̂k plus
des cochaı̂nes Δ-simpliciales dont l’image cellulaire (par T t) est nulle. D’après le lemme,
pour tout k ∈ [0, n[ on a, modulo p : ∂Zk = U2g′+k, or pour 2g′ < � ≤ 2g′ + m on a :
∂(ê� + Ŝ ±� ) = U� − U�−1. Ceci permet (∀p, ∀oi, ni) de relever q̂k − q̂k−1 (pour 0 < k < n) par
Zk − Zk−1 − (ê2g′+k + Ŝ ±2g′+k).

Pour les Types ni et p > 2, il faut relever en plus α0 = q̂0 − 1/2t̂g. On se sert de

∂[Z0 − 1/2(t̂g + f̂g)] = U2g − 1/2(U2g−1 + U2g−2) = (U2g − U2g−1) + 1/2(U2g−1 − U2g−2),

ce qui, puisqu’ici U� − U�−1 = ∂(ê� + Ŝ ±� ), permet de relever α0 par :
Z0 − 1/2(t̂g + f̂g) − (ê2g + Ŝ ±2g) − 1/2(ê2g−1 + Ŝ ±2g−1).

3) Pour le générateur α pour c/2at̂1 + ĥ −∑
bka−1

k q̂k :
On a ∂(ĥ +

∑
f̂ j +

∑
q̂k + Â+ +

∑
Ŝ +� ) =

∑
k(Ĥ′k + Ĝk +

∑
xk,i=h(μ̂k,i + X̂k,i)) or d’après le

lemme, pour k fixé,
Ĥ′k + Ĝk +

∑
xk,i=h(μ̂k,i + X̂k,i) = bkYk + ∂Vk = bka−1

k (∂Zk − U2g′+k) + ∂Vk.

Donc on a ∂(ĥ +
∑

f̂ j +
∑

q̂k + Â+ +
∑

Ŝ +� −
∑

bka−1
k Zk − ∑

Vk) = −∑
bka−1

k U2g′+k =

−1/a
∑

ckU2g′+k avec
∑

ck = c et U2g′+k − U2g′+k−1 = ∂(ê2g′+k + Ŝ ±2g′+k), d’où
−∑

ckU2g′+k = ∂[c0(ê2g′+1+ Ŝ ±2g′+1)+ (c0+c1)(ê2g′+2+ Ŝ ±2g′+2)+ . . .+ (c0+ . . .+cm−1)(ê2g′+m+

Ŝ ±2g′+m)] − cU2g′+m.
Dans les Cas 1 (de o1 et n1), c = 0 mod p, on peut relever ĥ −∑

bka−1
k q̂k par ĥ +

∑
f̂ j +∑

q̂k + Â+ +
∑

Ŝ +� −
∑

bka−1
k Zk −∑

Vk − 1/a[c0(ê2g′+1 + Ŝ ±2g′+1)+ (c0 + c1)(ê2g′+2 + Ŝ ±2g′+2)+
. . . + (c0 + . . . + cm−1)(ê2g′+m + Ŝ ±2g′+m)].

Dans le Cas 2 de n1, comme ∂(Ŝ ±0 + ê0) = U0 − U2g′+m et ∂(Ŝ ±1 + ê1) = U1 − U0 et
∂(t̂1 + f̂1) = U0 + U1, on peut relever c/2at̂1 + ĥ − ∑

bka−1
k q̂k par la même expression que

dans les Cas 1, à laquelle on ajoute c/2a[(t̂1 + f̂1) − (Ŝ ±1 + ê1) − 2(Ŝ ±0 + ê0)].

6.3. Relevé des 2-cocycles cellulaires.

Définition 21. Relevés des 2-cocycles



L’Anneau de Cohomologie à Coefficients dans Zp 175

4) Pour le générateur β = [δ̂], dans tous les Cas et pour tous les Types. On relève δ̂ par :
Rδ̂ = U0 = δ̂0 + T̂±0 + F̂0.

5) Relevé de βk = [μ̂k], valable dans tous les Cas, que p divise ak ou pas et que bk soit positif
ou pas. On relève μ̂k par :
Rμ̂k = μ̂k,1 + X̂k,1 + Ĝk −∑

2≤�≤zk−wk+1 P̂+k,�.

6) Pour le générateur ϕ j pour p ≥ 2.
pour oi, si ε = 1, on relève ν̂ j par :
Rν̂ j = ν̂ j,1 + Ĥ2 j−1 + F̂2 j−1 + Ĥ2 j si j impair,
Rν̂ j = ν̂ j,1 + Ĥ2 j−1 + F̂2 j−2 + Ĥ2 j−2 si j pair.

pour ni, si ε j = −1, on relève ν̂ j par
Rν̂ j = ν̂ j,1 + Ĥ2 j−1 + F̂2 j−1.

Il n’est pas nécessaire de définir le relevé de ϕ j pour les autres Types car pour p > 2, les
cup-produits H1(M,Zp)⊗H2(M,Zp) → H3(M,Zp) ne seront à calculer que pour les Types
o1 et n2.

7. Calcul des cup-produits pour p = 27. Calcul des cup-produits pour p = 2

7.1. Formules d’Alexander-Whitney. Méthode des coefficients. D’après la formule
d’Alexander-Whitney [8], le cup-produit de deux cochaı̂nes Δ-simpliciales f de degré p et
g de degré q est défini sur tout p + q-simplexe par

( f ∪ g)(v0, . . . , vp+q) = f (v0, . . . , vp)g(vp, . . . , vp+q).

On en déduit immédiatement que le générateur 1 de H0(M,Zp) est l’élément neutre pour le
∪-produit.

Si ϕ = f ∪g avec f , g deux 1-cochaı̂nes Δ-simpliciales, on obtient, pour tout 2-Δ-simplexe
s = (s0, s1, s2), de sommets (v0, v1, v2) et de faces s0 = (v1, v2), s1 = (v0, v2), s2 = (v0, v1),
ϕ(s) = f (s2)g(s0).

Heureusement, si f , g sont des 1-cocycles, pour connaı̂tre la classe du 2-cocycle ϕ, il ne
sera pas nécessaire de l’évaluer sur les (nombreux !) 2-simplexes. En effet, soit ϕ′ = T t(ϕ)
son image dans le complexe cellulaire (voir 5),

ϕ′ = xδ̂ +
g′∑
j=1

y jν̂ j +
∑

zkρ̂k +

m∑
k=0

rkμ̂k.

Comme 0 = ∂ϕ′, les zk sont nuls. De plus, la classe de cohomologie de ϕ′ (donc de ϕ) est

• dans le Cas 1 : (x +
∑m

k=0 rk)β +
∑g′

j=1 y jϕ j,

• dans le Cas 2 :
∑g′

j=1 y jϕ j,

• dans le Cas 3 :
∑n−1

k=0 rkβk +
∑g′

j=1 y jϕ j, en posant β0 = −∑n−1
k=1 βk.

Remarque 22. Pour calculer la classe de cohomologie [ϕ], il suffira d’évaluer (mod 2)
x = ϕ(

∑
δ�) (dans le Cas 1), les rk = ϕ(

∑
μk,�) (dans les Cas 1 et 3), et les y j = ϕ(ν j,1−ε jν j,2)

(dans les trois Cas).
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Les preuves ne sont données que pour les cup-produits qui ne sont pas nuls pour des
raisons classiques de topologie, voir par exemple Aaslepp [1].

7.2. Les cup-produits, pour p = 2, ∪ : H1(M,Z2)⊗H1(M,Z2) → H2(M,Z2). Cette
sous-section prouve le théorème 7.

Preuve.

Calcul de θi ∪ θ j

Quand ils apparaissent, les rk et les y j sont nuls.
Types oi

• Il suffit de calculer x pour le Cas 1. On a, voir la Sous-section 4.2, Découpage Δ-
simplicial :
x = Rt̂i(e0)Rt̂ j(t1) + Rt̂i(e1)Rt̂ j(t2) + Rt̂i(e3)Rt̂ j(t1) + Rt̂i(e4)Rt̂ j(t2) + . . .
vaut 1 si et seulement si i impair et j = i + 1 ou i pair et j = i − 1. Et x vaut 0 sinon.

Conclusion : Pour les Types oi, les cup-produits θi ∪ θ j sont nuls sauf dans le Cas 1, où
on a θ2i ∪ θ2i−1 = β.

Types ni, θ j = [t̂ j] et le relevé de θ j est Rt̂ j = t̂ j + f̂ j + ê�−1 + Ŝ ±�−1.

• Calcul de x : x = Rt̂i(e0)Rt̂ j(t1) + Rt̂i(e1)Rt̂ j(t1) + . . . vaut 1 si et seulement si i = j et vaut
0 sinon.

Conclusion : Pour les Types ni, les cup-produits θi ∪ θ j sont nuls sauf dans le Cas 1 et si
i = j, alors on a θi ∪ θi = β.
Calcul de θi ∪ α
Pour tous les Types, α = [ĥ +

∑
b jq̂ j] n’est générateur que dans le Cas 1.

Le relevé de α est
R(ĥ +

∑
b jq̂ j) = ĥ +

∑
f̂ j +

∑
q̂k + Â+ +

∑
Ŝ +� −

∑
bka−1

k Zk −∑
Vk − 1

a [c0(ê2g′+1 + Ŝ ±2g′+1) +
(c0 + c1)(ê2g′+2 + Ŝ ±2g′+2) + . . . + (c0 + . . . + cm−1)(ê2g′+m + Ŝ ±2g′+m)].

• Calcul du coefficient x.
Dans le découpage Δ-simplicial de δ, l’indice des Δ-simplexes δu varie de 0 à 4g + m.
Pour u ≤ 4g − 1, le Δ-simplexe δu est δu = (t·, e·, e·) et R(ĥ − ∑

bka−1
k q̂k) (le relevé de α)

appliqué à (δu)0 = t. est nul.
Pour u ≥ 4g, le Δ-simplexe δu est δu = (q., e., e.) et R(t̂ j) le relevé de θ j appliqué à (δu)2 = e.
est nul. Le coefficient x est nul.

• Il ne reste plus qu’à calculer yi. Or

yi = Rt̂ j(νi,1)2R(ĥ +
∑

b jq̂ j)(νi,1)0 − ε jRt̂ j(νi,2)2R(ĥ +
∑

b jq̂ j)(νi,2)0

= Rt̂ j(νi,1)2,

et R(ĥ +
∑

b jq̂ j)(νi,1)0 = R(ĥ +
∑

b jq̂ j)(h) = 1 et Rt̂ j(νi,2)2 = Rt̂ j(h) = 0. Comme de plus,
(νi,1)2 = ti ou fi, on obtient yi = 1 si et seulement si i = j et yi = 0 sinon.

Conclusion : θ j ∪ α n’intervient que dans le Cas 1. Pour tous les Types, on a θ j ∪ α = ϕ j.
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Calcul de αi ∪ α j

Pour tous les Types, les générateurs αk = [q̂k − q̂0] n’interviennent que dans le Cas 3. Nous
devons calculer les coefficients r�, 0 ≤ � ≤ n − 1 et yi.

• Calcul des coefficients r� =
∑
w R(q̂k − q̂0)(μ�,w)2R(q̂ j − q̂0)(μ�,w)0, avec (μ�,w)0 = x�,w et

(μ�,w)2 = p�,w
1) Dans R(q̂ j − q̂0) interviennent Zj et Z0. Dans chaque Zu, on voit
q̂u −∑

s≥1 p̂u,scard{t ≥ s | xu,t = qu}.
-Si u = j, R(q̂ j− q̂0)(μ�,w)0 = R(q̂ j− q̂0)(x�,w) = 0 sauf si � = j et ceci pour tous les a j indices
w tels que x j,w = q j. Dans ces situations R(q̂ j − q̂0)(μ j,w)0 = 1.
- Si u = 0, pour n’importe quel indice j � 0, R(q̂ j − q̂0)(μ�,w)0 = 0 sauf si � = 0 et ceci pour
tous les a0 indices w tels que x0,w = q0. Dans ces situations R(q̂ j − q̂0)(μ0,w)0 = 1.
2) R(q̂k − q̂0)(μ�,w)2 = R(q̂k − q̂0)(p�,w) = 0 sauf si
i) � = j = k et pour tous les w tels que xk,w = qk. Dans ces situations on a R(q̂k − q̂0)(pk,w) =
card{t ≥ w | xk,t = qk} ;
ii) � = 0 et pour tous les w tels que x0,w = q0. Dans ces situations, pour n’importe quel indice
k � 0, on a R(q̂k − q̂0)(p0,w) = card{t ≥ w | x0,t = q0}.

Si k = j, 0 ≤ k ≤ n − 1, nous avons obtenu

rk =
∑
w≥1

xk,w=qk

R(q̂k − q̂0)(μk,w)2 =

w=ak−1∑
w=1

(ak − w) =
ak(ak − 1)

2
=

ak

2
.

Le dernier calcul est fait modulo 2.

• Calcul des coefficients
yi = R(q̂k − q̂0)(νi,1)2R(q̂ j − q̂0)(νi,1)0 − εiR(q̂k − q̂0)(νi,2)2R(q̂ j − q̂0)(νi,2)0.

Nous avons (νi,1)2 = ti si εi = 1 et (νi,1)2 = fi si εi = −1 ; (νi,1)0 = (νi,2)2 = h; (νi,2)0 = ti.
Aucun de ces éléments n’intervient dans R(q̂u − q̂0). On a que pour tout i, yi = 0.

Il reste à remarquer que les calculs précédents sont valables pour tous les Types.

Conclusion : Les cup-produits αi ∪ α j n’interviennent que dans le Cas 3. Pour tous les
Types, αi ∪ α j =

a0
2 β0 + δi, j

a j

2 β j, où β0 =
∑

1≤k≤n−1 βk et δi, j est le symbole de Kronecker.

Calcul de α ∪ α
Pour tous les Types, le générateur α n’intervient que dans le Cas 1. On rappelle que r est le
nombre de bk pairs et on les a rangés entre 0 et r − 1.

• Calcul du coefficient x.
Le calcul se fait par la formule :

T t(R(ĥ +
∑

b jq̂ j) ∪ R(ĥ +
∑

b jq̂ j))(δ) = (R(ĥ +
∑

b jq̂ j) ∪ R(ĥ +
∑

b jq̂ j))(T (δ)).

Si � ≤ 2g′ − 1, on a R(ĥ +
∑

b jq̂ j)(δ�)0 = 0.
Mais si � = 2g′ + k, 0 ≤ k ≤ m − 1, on a

(R(ĥ +
∑

b jq̂ j) ∪ R(ĥ +
∑

b jq̂ j))(qk, e2g′+k+1, e2g′+k)
= R(ĥ +

∑
b jq̂ j)(qk)R(ĥ +

∑
b jq̂ j)(e2g′+k).
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On a d’abord R(ĥ +
∑

b jq̂ j)(qk) = 1 si et seulement si k ≥ r − 1.
Ensuite on calcule R(ĥ +

∑
b jq̂ j)(e2g′+k) = (c0 + c1 + · · · + ck−1) où cu =

bua
au

qui est non nul
seulement si u < r. On obtient (c0 + c1 + · · · + ck−1) = 1 si et seulement si k − r est impair.
- Si r impair, k doit être pair et comme on est dans le Cas où c = 0, on doit avoir m − r pair
donc m impair. Le nombre de k pairs entre r + 1 pair et m − 1 pair, r + 1 ≤ k ≤ m − 1, est
x = m−r

2 .
- Si r est pair, alors k est impair et m est pair. Le nombre de k impairs entre r + 1 impair et
m − 1 impair, r + 1 ≤ k ≤ m − 1, est x = m−r

2 .
On en déduit que
(R(ĥ +

∑
b jq̂ j) ∪ R(ĥ +

∑
b jq̂ j))(δ�) = 1 si et seulement si � = 2g′ + r + 2i pour un i > 0 et

donc que x = m−r
2 =

1
2
∑m−1

r 1.
Le calcul de x a été fait pour les Types oi. Pour les Types ni, T (δ) =

∑
δ�. Par conséquent

ce calcul est valable aussi pour les Types ni.

• Calcul des coefficients rk

On rappelle que (μk,.)0 = xk,. et (μk,.)2 = pk,. et rk =
∑m−1
�=0 R(ĥ +

∑
b jq̂ j)(pk,�)R(ĥ +∑

b jq̂ j)(xk,�).
Si bk > 0

• si 0 ≤ k ≤ r − 1, les bk sont pairs. Le terme intervenant dans chaque R(ĥ +
∑

b jq̂ j)
est

∑
t Vt, plus précisement∑

t

∑
u≥1

p̂t,ucard{i ≥ u | xt,i = h}.

Calculons R(ĥ +
∑

b jq̂ j)(xk,�).
- Si � est tel que xk,� = h, ce qui arrive pour bk d’entre eux, alors R(ĥ+

∑
b jq̂ j)(xk,�) =

1 et rk =
∑bk−1
�=1 R(ĥ +

∑
b jq̂ j)(pk,�). On a

rk =
∑m−1
�=1,xk,�=h card{i ≥ � | x�,i = h} = ∑bk−1

�=1 (bk − �) = bk
2 .

La dernière égalité est calculée modulo 2.
- Si � est tel xk,� = qk, alors R(ĥ +

∑
b jq̂ j)(xk,�) = 0.

On conclut que, si bk > 0 et 0 ≤ k ≤ r − 1, on a rk =
bk
2 .

• si k ≥ r, les bk sont impairs, les zk = ak + bk sont pairs. La somme intervenant dans
chaque R(ĥ+

∑
b jq̂ j) est ĥ+

∑m−1
u=r Zu +

∑
Vt. Que � soit tel que xk,� = h ou xk,� = qk,

on a R(ĥ +
∑

b jq̂ j)(xk,�) = 1 d’où

rk =
∑
� R(ĥ +

∑
b jq̂ j)(pk,�)

=
∑m−1
�=1,xk,�=qk

card{i ≥ � | x�,i = qk} +∑m−1
�=1,xk,�=h card{i ≥ � | x�,i = h}

=
∑zk−1
�=1 (zk − �) = zk

2 .

La dernière égalité est calculée modulo 2.
Si bk ≤ 0 on trouve les mêmes résultats que pour bk > 0, puisque rk devient (mod 2)

• si k ≤ r, alors zk = 1 + bk est impair. Ce qui change est l’expression de Vt et ce qui
nous intéresse est maintenant∑

t
∑

u≥1 p̂t,u(zk − u + 1). On a encore
R(ĥ +

∑
b jq̂ j)(xk,�) est égal à 1 si xk,� = h et à 0 sinon, d’où



L’Anneau de Cohomologie à Coefficients dans Zp 179

rk =
∑

�=1,xk,�=h

R(ĥ +
∑

b jq̂ j)(pk,�) =
bk−1∑
�=1

(zk − � + 1) =
bk

2
=

akbk

2
.

Les égalités sont calculées modulo 2.
• si k ≥ r, alors zk est pair. On a en plus Zu = q̂u + ĝu. Comme précédemment, que �

soit tel que xk,� = h ou xk,� = qk, on a R(ĥ +
∑

b jq̂ j)(xk,�) = 1 d’où

rk =

zk∑
�=1

(zk − � + 1) =
zk − 2

2
=
−bk − 1

2
=

bk + 1
2
=

ak + bk

2
=

1 + akbk

2
.

Les égalités sont calculées modulo 2.
Maintenant, on rappelle que dans le Cas 1, on a β = [δ̂] = [μ̂k] = βk. Le coefficient de β

est (
∑

rk) − x =
∑

0≤k≤r−1
akbk

2 +
∑

r≤k≤m−1
(akbk)

2 = 1
2
∑

akbk =
c
2 .

Remarquons que ces calculs sont valables pour tous les Types.

• Calcul des coefficients y j

On rappelle que

y j = R(ĥ +
∑

b jq̂ j)(ν j,1)2R(ĥ +
∑

b jq̂ j)(ν j,1)0

−ε jR(ĥ +
∑

b jq̂ j)(ν j,2)2R(ĥ +
∑

b jq̂ j)(ν j,2)0.
.

Pour tous les Types, on a R(ĥ +
∑

b jq̂ j)(ν j,2)0 = 0.
Comme R(ĥ +

∑
b jq̂ j)((νi,1)0) = R(ĥ +

∑
b jq̂ j)(h) = 1, on a y j = R(ĥ +

∑
b jq̂ j)(ν j,1)2. Alors

si ε j = 1, y j = R(ĥ +
∑

b jq̂ j)(t j) = 0, tandis que si ε j = −1, y j = R(ĥ +
∑

b jq̂ j)( f j) = 1.

Conclusion : α∪α n’existe que dans leCas 1. Pour les Types o1 et n1, on a α∪α = c
2β. Pour

les Types o2 et n2, on a α ∪ α = c
2β +

∑
j≥1 ϕ j. Pour le Type n3, on a α ∪ α = c

2β +
∑

j>1 ϕ j.
Pour le Type n4, on a α ∪ α = c

2β +
∑

j>2 ϕ j. �

Remarque 23. Pour les Types o1 et n2 ceci correspond bien au résultat de [3], [4], [5],

puisque pour a pair
(

a
2

)
est congru mod 2 à a/2.

7.3. Les cup-produits, pour p = 2, ∪ : H1(M,Z2)⊗H2(M,Z2)→ H3(M,Z2). Dans cette
sous-section, nous utiliserons le procédé suivant.

1) Pour [ξ1] un générateur du H1(M,Z2) et [ξ2] un générateur du H2(M,Z2), on choisit un
représentant ξ1 et ξ2. Soient R(ξ1) et R(ξ2) les cocycles Δ-simpliciaux qui sont des sections
de T t données dans la Section 6.

2) D’après la formule d’Alexander-Whitney, si f est un 1-cocycle Δ-simplicial, g un 2-
cocycle Δ-simplicial et s un 3-Δ-simplexe de faces s0 = (v1, v2, v3), s1 = (v0, v2, v3), s2 =

(v0, v1, v3) et s3 = (v0, v1, v2) alors f ∪ g(s) = f (v0, v1)g(s0), et on trouve (v0, v1) en prenant la
dernière arête de s2 ou s3, i.e. (v0, v1) = (s2)2 = (s3)2.

3) Quand la combinaison C des 3-simplexes telle que R(ξ1)∪ R(ξ2) = C a été trouvée, on
obtient finalement [ξ1] ∪ [ξ2] = [T tC].

Cette sous-section prouve le théorème 8.
Preuve.
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Calcul de θi ∪ ϕ j

Ce cup-produit intervient pour tous les Types, dans les trois Cas.
θi = [t̂i] pour 1 ≤ i ≤ g′ et ϕ j = [ν̂ j] pour 1 ≤ j ≤ g′.

Le relevé de ϕ j contient ν̂ j,1. Les seuls 3-simplexes s dont la face s0 est ν̂ j,1 sont unique-
ment s = Nj,1 ou s = N′j,1. Pour les différents Types, les découpages Δ-simpliciaux de Nj,1

et N′j,1 sont différents.
Le relevé de θi est
R(t̂i) = t̂i + f̂i + ê� + Ŝ ±� + ê�−1 + Ŝ ±�−1,

- si i est impair , � = 2i ce qui donne ici � = 2 modulo 4,
- si i est pair � = 2i − 1 ce qui donne ici � = 3 modulo 4.
Type o1, ε j = 1, on trouve, en comparant les valeurs modulo 4 et les parités :

• pour j impair, (Nj,1)3 = T−2 j−2 et (N′j,1)3 = T−2 j,
- comme 2 j − 2 = 0 modulo 4, on a ((Nj,1)3)2 = (T−2 j−2)2 = S −2 j−2,

– si i est impair, 2i et 2i−1 ne sont pas égaux modulo 4 à 2 j−2, on a R(t̂i)((Nj,1)3)2

= 0,
– si i est pair, 2i − 1 et 2i − 2 ne sont pas égaux modulo 4 à 2 j − 2, on a

R(t̂i)((Nj,1)3)2 = 0,
- comme 2 j = 2 modulo 4, on a ((N′j,1)3)2 = (T−2 j)2 = S −2 j+1,

– si i est impair, comme 2 j + 1 et 2i ne sont pas de la même parité, on a
R(t̂i)((N′j,1)3)2 = 0,

– si i est pair et i = j + 1 alors R(t̂ j+1)((N′j,1)3)2 = 1,
• pour j pair, (Nj,1)3 = T−2 j−3 et (N′j,1)3 = T−2 j−1,

- comme 2 j − 3 = 1 modulo 4, on a ((Nj,1)3)2 = (T−2 j−3)2 = S −2 j−3,
– si i est impair et i = j − 1, on a R(t̂ j−1)((Nj,1)3)2 = 1,
– si i est pair, 2i − 1 et 2i − 2 ne sont pas égaux modulo 4 à 2 j − 3, on a

R(t̂i)((Nj,1)3)2 = 0,
- comme 2 j = 2 modulo 4, on a ((N′j,1)3)2 = (T−2 j−1)2 = S −2 j,

– si i est impair, 2i et 2i−1 ne sont pas égaux modulo 4 à 2 j, on a R(t̂i)((N′j,1)3)2 =

0,
– si i est pair, comme 2 j et 2i−1 ne sont pas de la même parité, on a R(t̂i)((N′j,1)3)2

= 0.

De plus on a T t[Nj,1] = T t[N′j,1] = ε, d’où la conclusion :

Conclusion : Dans tous les Cas, pour le Type o1, les seuls θi ∪ ϕ j non nuls sont :
- si j est impair θ j+1 ∪ ϕ j = γ,
- si j est pair θ j−1 ∪ ϕ j = γ.

Type o2, ε j = −1, on trouve

• pour j impair, (Nj,1)2 = T−2 j−2 et (N′j,1)2 = T+2 j,
- comme 2 j − 2 est égal à 0 modulo 4, on a ((Nj,1)3)2 = (T−2 j−2)2 = S −2 j−2,
- comme 2 j est égal à 2 modulo 4, on a ((N′j,1)3)2 = (T+2 j)2 = S +2 j+1,
• pour j pair, (Nj,1)2 = T+2 j−3 et (N′j,1)2 = T−2 j−1,

- comme 2 j − 3 est égal à 1 modulo 4, on a ((Nj,1)3)2 = (T+2 j−3)2 = S +2 j−3,
- comme 2 j − 1 est égal à 3 modulo 4, on a ((N′j,1)3)2 = (T−2 j−1)2 = S −2 j.
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Peu importe qu’on applique R(t̂i) à un S +.. ou à un S −.. , on obtient les mêmes conditions
sur les indices que pour le Type o1. On a encore T t[Nj,1] = T t[N′j,1] = ε, d’où la même
conclusion que pour le Type o1 :

Conclusion : Dans tous les Cas, pour le Type o2, les seuls θi ∪ ϕ j non nuls sont :
- si j est impair θ j+1 ∪ ϕ j = γ,
- si j est pair θ j−1 ∪ ϕ j = γ.

Type n1, ε j = 1, pour tous j, on a (Nj,1)3 = T−2 j−2 et (N′j,1)3 = T−2 j−1. Comme plus haut, en
comparant les valeurs modulo 4 et les parités, on trouve :

• pour j impair,
- ((Nj,1)3)2 = (T−2 j−2)2 = S −2 j−2,

– pour i impair, on a R(t̂i)((Nj,1)3)2 = 0,
– pour i pair, on a R(t̂i)((Nj,1)3)2 = 0,

- ((N′j,1)3)2 = (T−2 j−1)2 = S −2 j−1,
– pour i impair et i = j, on a R(t̂ j)((N′j,1)3)2 = 1,
– pour i pair, on a R(t̂i)((N′j,1)3)2 = 0,

• pour j pair,
- ((Nj,1)3)2 = (T−2 j−2)2 = S −2 j−1,

– pour i impair, on a R(t̂i)((Nj,1)3)2 = 0,
– pour i pair, on a R(t̂i)((Nj,1)3)2 = 0,

- ((N′j,1)3)2 = (T−2 j−1)2 = S −2 j,
– pour i impair et i = j, on a R(t̂ j)((N′j,1)3)2 = 0,
– pour i pair, on a R(t̂i)((N′j,1)3)2 = 1.

Conclusion : Dans les trois Cas, pour les Types n1, on a θ j ∪ ϕ j = γ et 0 sinon.

Type n2, ε j = −1 pour tous j, on a ((Nj,1)2)2 = (T−2 j−2)2 = S −2 j−2 et ((N′j,1)2) = (T+2 j−1)2 =

S +2 j−1. Comme pour le Type n1, en comparant les valeurs modulo 4 et les parités, on trouve
la même conclusion puisque le signe ± de l’arête S ±. ne change rien au calcul.

Conclusion : Dans les trois Cas, pour les Types n2, θ j ∪ ϕ j = γ et 0 sinon.

Types n3, n4 en utilisant les résultats précédents pour ε j = 1 et ε j = −1, on a la conclusion :

Conclusion : Dans les trois Cas, pour les Types n3 et n4, on a θ j ∪ ϕ j = γ et 0 sinon.

Calcul de α ∪ ϕ j

Ce cup-produit intervient pour tous les Types seulement dans le Cas 1.
α = [ĥ +

∑
bkq̂k] et ϕ j = [ν̂ j].

D’après l’étude précédente, on sait déjà que le relevé de ϕ j contient ν̂ j,1. Les seuls 3-
simplexes s dont la face s0 est ν̂ j,1 sont uniquement s = Nj,1 ou s = N′j,1. On sait aussi
que les arêtes (s3)2 ou (s2)2 sont S ±u avec 1 ≤ u ≤ g′.
Dans le relevé de α n’interviennent que les S +u . L’étude précédente mène à la conclusion :

Conclusion : Losque ε j = 1, α ∪ ϕ j = 0 et lorsque ε j = −1, α ∪ ϕ j = γ.

Calcul de α ∪ β
Ce cup-produit intervient pour tous les Types seulement dans le Cas 1.
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Maintenant, pour tous les Types, dans le relevé de α, il y a l’arête A+. Comme T t(D+0 ) = ε,
on a la conclusion :

Conclusion : Dans le Cas 1, pour tous les Types, on a toujours α ∪ β = γ.
Calcul de αi ∪ βk

Ce cup-produit intervient pour tous les Types mais seulement dans le Cas 3.

Le relevé de βk est R(μ̂k) = μ̂k,1 + X̂k,1 + Ĝk − ∑
1≤�≤zk−wk+1

P̂k,�. Le seul 3-simplexe s tel
que R(μ̂k)(s0) = 1 est s = M±k,1. On a s3 = P±k,1 et (P±k,1)2 = C±k . Dans le relevé de αi apparaı̂t
seulement (via Zi) C+i .

On vérifie que T t(M±k,1) = ζk et on a γ = [ζ̂k].

Conclusion : Dans le Cas 3, pour tous les Types, αk ∪ βk = γ et 0 sinon.

θi ∪ βk et αk ∪ ϕ j Pour des raisons topologiques, ces cup-produits sont nuls.

Calcul de θi ∪ β
Ce cup-produit intervient pour tous les Types mais seulement dans le Cas 1.

On a θi = [t̂i] et β = [δ̂].
On cherche un 3-simplexe s tel que R(δ̂)(s0) � 0 sachant que R(δ̂) = δ̂0 + T̂±0 + F̂0. Le

seul possible 3-simplexe est s = D±0 pour lequel (s3)2 = (E±0 )2 = A±. Comme l’arête A±

n’intervient pas dans le relevé de θi, on a :

Conclusion : Dans le Cas 1, pour tous les Types, on a θi ∪ β = 0. �

8. Calcul des cup-produits pour p > 28. Calcul des cup-produits pour p > 2

Ce calcul est à la fois plus compliqué (1 et −1 ne sont plus égaux, et les générateurs
diffèrent selon les Types) et plus simple (la plupart des cup-produits seront nuls).

8.1. Les cup-produits, pour p > 2, ∪ : H1(M,Zp)⊗H1(M,Zp) → H2(M,Zp). Par
la même méthode des coefficients, en calculant maintenant modulo p, cette sous-section
prouve le théorème 9.

Preuve.

Calcul de θi ∪ θ j

- Dans le Cas 1
Type o1, o2, θ j = [t̂ j].
• Il y a seulement à calculer x mais en prenant garde aux signes dans T (δ) :

T (δ) =
∑g−1

i=0 (δ4i+δ4i+1−δ4i+2−δ4i+3)+
∑4g+m
�=4g δ� donne alors x = 1 si i impair et j = i+1,

mais x = −1 si i pair et j = i − 1.

Conclusion : Dans le Cas 1, pour les Types o1, o2, les cup-produits θi ∪ θ j sont nuls sauf

θ2k−1 ∪ θ2k = β, k > 0.

Types ni, θ j = [t̂ j − t̂1].
On a R(t̂ j − t̂1) = t̂ j + f̂ j − (t̂1 + f̂1) −∑(

Ŝ ±� + ê�
)
.

• Les coefficients ri et y� sont encore nuls.



L’Anneau de Cohomologie à Coefficients dans Zp 183

• On ne calcule pas x car β n’est pas un générateur du H2(M,Zp).

Conclusion : Dans le Cas 1, pour les Types ni, les cup-produits θi ∪ θ j sont tous nuls.

- Dans le Cas 2
Type o1, θ j = [t̂ j].
• Comme les relevés sont les mêmes que pour p = 2, les coefficients rk et y� sont encore
nuls.
• On ne calcule pas x car β n’est pas un générateur du H2(M,Zp).

Conclusion : Dans le Cas 2, pour les Types o1, les cup-produits θi ∪ θ j sont tous nuls.

Type o2, θ j = [t̂ j].
• Comme les relevés sont les mêmes que pour p = 2, les coefficients rk et y� sont encore
nuls.
• Il y a seulement à calculer x mais en prenant garde aux signes dans T (δ), comme dans le
Cas 1 pour les Types oi.

Conclusion : Dans le Cas 2, pour les Types o2, les cup-produits θi ∪ θ j sont nuls sauf

θ2k−1 ∪ θ2k = β, k > 0.

Types ni. La situation est la même que dans le Cas 1.

Conclusion : Dans le Cas 2, pour les Types ni, les cup-produits θi ∪ θ j sont tous nuls.

- Dans le Cas 3
Types oi, ni.

• Comme les relevés sont les mêmes que pour p = 2, les coefficients rk et y� sont encore
nuls.
• On ne calcule pas x car β n’est pas un générateur du H2(M,Zp).

Conclusion : Dans le Cas 3, pour les Types oi, ni, les cup-produits θi ∪ θ j sont tous nuls.

Calcul de θ j ∪ α
Ce cup-produit n’intervient que dans le Cas 1 pour le Type o1 et dans les Cas 1 et 2 pour

le Type n1 .

- Dans le Cas 1
Type o1, θ j = [t̂ j] et α = [ĥ −∑

bka−1
k q̂k].

• Calcul du coefficient x.
Dans T (δ), l’indice des Δ-simplexes δu varie de 0 à 4g + m. Pour u ≤ 4g − 1, le Δ-simplexe
δu est δu = (t·, e·, e·) et R(ĥ −∑

bka−1
k q̂k) le relevé de α appliqué à (δu)0 = t. est nul. Lorsque

u ≥ 4g, le Δ-simplexe δu est δu = (q., e., e.) et R(t̂ j) le relevé de θ j appliqué à (δu)2 = e. est
nul. Le coefficient x est nul.
• Calcul du coefficient y j.
Pour le Type o1, on a T (ν j) = ν j,1 + ν j,2, puisque tous les ε j = 1 et ν j,1 = (h, f j, t j), ν j,2 =

(t j, f j, h). On voit que seulement

R(ĥ −
∑

bka−1
k q̂k)((ν j,1)0) = 1,R(t̂ j)((ν j,1)2) = 1.
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Conclusion : Les cup-produits θ j∪α sont nuls sauf pour le Type o1, dans le Cas 1 et alors
θ j ∪ α = ϕ j.

Type n1, θ j = [t̂ j − t̂1] et α = [ĥ −∑
bka−1

k q̂k].
Dans le relevé de θ j intervient t1 + f1 mais ce terme ne donne pas de contribution car il
suffit de calculer y j pour j > 1 puisque ϕ1 n’est pas un générateur de H2(M,Zp). Alors la
conclusion est la même que pour le Type o1 avec une restriction sur l’indice j.

Conclusion : Dans les Cas 1, pour le Type n1, θ j ∪ α = ϕ j, j > 1.

-Dans le Cas 2
Type n1, θ j = [t̂ j − t̂1] et α = [ĥ −∑

bka−1
k q̂k].

La conclusion est la même que dans le Cas 1.

Conclusion : Dans les Cas 2, pour le Type n1, θ j ∪ α = ϕ j, j > 1.

Calcul de α ∪ α
Ce cup-produit n’intervient que dans le Cas 1 pour le Type o1 et dans les Cas 1 et 2 pour

le Type n1.
- Dans le Cas 1
Type o1, α = [ĥ −∑

bka−1
k q̂k].

Le relevé de α est R(ĥ −∑
bka−1

k q̂k) = ĥ +
∑

f̂ j +
∑
ĝk + Â+ +

∑
Ŝ +� −

∑
bka−1

k Zk −∑
Vk −

1
a [c0(ê2g′+1 + Ŝ ±2g′+1) + (c0 + c1)(ê2g′+2 + Ŝ ±2g′+2) + . . . + (c0 + . . . + cm−1)(ê2g′+m + Ŝ ±2g′+m)].
• Calcul du coefficient x.
Comme R(ĥ −∑

bka−1
k q̂k)(t j) = 0, on a

x =
∑

R(ĥ −
∑

bka−1
k q̂k)(e2g′+k)R(ĥ −

∑
bka−1

k q̂k)(qk).

• Calcul des coefficients rk.

• Si bk > 0,

rk =
∑

R(ĥ −∑
bka−1

k q̂k)(pk,�)R(ĥ −∑
bka−1

k q̂k)(xk,�)
=

∑
xk,�=qk

(−bk/ak)[(bk/ak)card{i ≥ � | xk,i = qk} − card{i ≥ � | xk,i = h}]
+

∑
xk,�=h[(bk/ak)card{i ≥ � | xk,i = qk} − card{i ≥ � | xk,i = h}

= −1
a2

k

∑
i≥� sis�,

avec si = bk si xk,i = qk et si = −ak si xk,i = h. Cet entier
∑

i≥� sis� est égal à :∑
i≥� sis� = 1

2 [
∑

(s2
� ) − (

∑
s�)2] = 1

2 (akb2
k + bka2

k − 0) = akbk(ak+bk)
2 ,

donc rk = − bk(ak+bk)
2ak
.

• Si bk ≤ 0,

rk = R(ĥ −∑
bka−1

k q̂k)(qk)α(pk,1) − R(ĥ −∑
bka−1

k q̂k(pk,3+

. . . + pk,1)R(ĥ −∑
bka−1

k q̂k)(h)
= −∑

�>2 α(pk,�) = −∑
�>2(zk − � + 1) = − (zk−2)(zk−1)

2 ,

or zk = 1 − bk et ak = 1 d’où
rk = − bk(ak+bk)

2ak
, comme dans le cas bk > 0.
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• Calcul des coefficients y�.
On a

y j = R(ĥ −
∑

bka−1
k q̂k)(t j)R(ĥ −

∑
bka−1

k q̂k)(h)

− R(ĥ −
∑

bka−1
k q̂k)(h)R(ĥ −

∑
bka−1

k q̂k)(t j)

= 0.

Il reste α ∪ α = [xδ̂ +
∑

rkμ̂k] = N[δ̂], avec

N = x −
∑ rk

ak
=

m∑
k=0

bk

ak
(
∑
i<k

bi

ai
) +

∑ bk(ak + bk)
2a2

k

=
c(a + c)

2
a−2.

Comme c est divisible par p > 2, N est congru mod p à 0.

Conclusion : Dans le Cas 1, pour le Type o1, α ∪ α = 0.

Type n1, α = [ c
2 t̂1] + ĥ −∑

bka−1
k q̂k].

Le relevé de α est R(ĥ −∑
bka−1

k q̂k) = ĥ +
∑

f̂ j +
∑
ĝk + Â+ +

∑
Ŝ +� −

∑
bka−1

k Zk −∑
Vk −

1
a [c0(ê2g′+1 + Ŝ ±2g′+1) + (c0 + c1)(ê2g′+2 + Ŝ ±2g′+2) + . . . + (c0 + . . . + cm−1)(ê2g′+m + Ŝ ±2g′+m)] +
c
2 a

(
(t̂1 + f̂1) − (Ŝ ±1 + ê1) − 2(Ŝ ±0 + ê0)

)
.

Comme p divise c, le nouveau dernier facteur n’intervient pas dans le calcul des coefficients.
De plus pour ce Type, on a [δ̂] = 0.

Conclusion : Dans le Cas 1, pour le Type n1, α ∪ α = 0.

- Dans le Cas 2
Pour le Type n1, la situation est la même que dans le Cas 1.

Conclusion : Dans le Cas 2, pour le Type n1, α ∪ α = 0.

Calcul de αk ∪ α j

Ce cup-produit intervient dans le Cas 3 pour tous les Types. Le déroulement de la preuve
est la même que pour p = 2. Il faut maintenant tenir compte des signes ± et de la divisibilité
par p.
Type oi. Le générateur αk est alors αk = [q̂k − q̂0] pour 1 ≤ k ≤ n − 1. Nous devons calculer
les coefficients r� et yi.
• Calcul des coefficients r� =

∑
w R(q̂k − q̂0)(μ�,w)2R(q̂ j − q̂0)(μ�,w)0, avec (μ�,w)0 = x�,w et

(μ�,w)2 = p�,w.

1) Dans R(q̂ j − q̂0) interviennent Zj et −Z0 et, dans Zu on voit
q̂u −∑

s≥1 p̂u,scard{t ≥ s | xu,t = qu}.
-Si u = j, R(q̂ j− q̂0)(μ�,w)0 = R(q̂ j− q̂0)(x�,w) = 0 sauf si � = j et ceci pour tous les a j indices
w tels que x j,w = q j. Dans ces situations R(q̂ j − q̂0)(μ j,w)0 = 1.
- Si u = 0, R(q̂ j − q̂0)(μ�,w)0 = 0 sauf si � = 0 et ceci pour tous les a0 indices w tels que
x0,w = q0. Dans ces situations R(q̂ j − q̂0)(μ0,w)0 = −1.

2) R(q̂k − q̂0)(μ�,w)2 = R(q̂k − q̂0)(p�,w) = 0 sauf si
i) � = j = k et pour tous les w tels que xk,w = qk. Dans ces situations on a R(q̂k − q̂0)(pk,w) =
−card{t ≥ w | xk,t = qk} ;
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ii) � = 0 et pour tous les w tels que x0,w = q0. Dans ces situations on a R(q̂k − q̂0)(p0,w) =
−card{t ≥ w | x0,t = q0}.

Si k = j, nous avons obtenu

rk = −
∑
w≥1

xk,w=qk

R(q̂k − q̂0)(μk,w)2 = −
w=ak−1∑
w=1

(ak − w) = −ak(ak − 1)
2

.

Comme p | ak, tous les rk sont nuls. (Remarquons que ceci n’est pas vrai quand p = 2.)
• Calcul des coefficients

yi = R(q̂k − q̂0)(νi,1)2R(q̂ j − q̂0)(νi,1)0 − εiR(q̂k − q̂0)(νi,2)2R(q̂ j − q̂0)(νi,2)0.

Nous avons
(νi,1)2 = ti si εi = 1 et (νi,1)2 = fi si εi = −1 ;
(νi,1)0 = (νi,2)2 = h; (νi,2)0 = ti.
Aucun de ces éléments n’intervient dans R(q̂u − q̂0). On a que pour tout i, yi = 0.
- Il reste à remarquer que les calculs précédents sont valables pour les Types o1 et o2.

Conclusion : Pour les Types oi, tous les cup-produits αk ∪ α j sont nuls.

Pour les Types ni. Maintenant le générateur est α = [q̂k − 1
2 t̂g].

• Calcul des rk. La différence avec le paragraphe précédent est que le terme Z0 n’intervient
pas. Les calculs des rk restent les mêmes et les rk sont nuls puisque p | ak.
• Dans les R(q̂k − 1

2 t̂g) il y a maintenant 1
2 tg mais R(q̂ j − 1

2 t̂g)(νi,1)0 = R(q̂ j − 1
2 t̂g)(h) = 0 et

R(q̂k − 1
2 t̂g)(νi,1)2 = R(q̂k − 1

2 t̂g)(h) = 0. Ici aussi tous les yi sont nuls.

Conclusion : Pour les Types ni, tous les cup-produits αk ∪ α j sont nuls. �

8.2. Les cup-produits, pour p > 2, ∪ : H1(M,Zp)⊗H2(M,Zp) → H3(M,Zp). Il suffit
de considérer les Types o1 et n2, car dans le cas non orientable, H3(M, A) à coefficients dans
un anneau A vaut A/2A . Il est nul si A = Zp avec p > 2.

On rappelle que si f est un 1-cocycle, g un 2-cocycle, et s un 3-simplexe de faces s0 =

(v1, v2, v3), s1 = (v0, v2, v3), s2 = (v0, v1, v3) et s3 = (v0, v1, v2) alors f ∪ g(s) = f (v0, v1)g(s0),
et on trouve (v0, v1) en prenant la dernière arête de s2 ou s3, i.e. (v0, v1) = (s2)2 = (s3)2.

Mais aussi, si g est un 2-cocycle, f un 1-cocycle et s = (s0, s1, s2, s3) un 3-simplexe de
faces s0 = (v1, v2, v3), s2 = (v0, v2, v3) et s3 = (v0, v1, v2), où les vi sont les sommets, alors
g ∪ f (s) = g(s3) f (v2, v3). On trouve (v2, v3) en prenant la première arête de s1 ou de s0, i.e.
(v2, v3) = (s1)0 = (s0)0.

Dans ces dimensions de cocycles, on a f ∪ g = (−1)1×2g ∪ f = g ∪ f .
Cette sous-section prouve le théorème 10.
Preuve. Calcul de θi ∪ ϕ j

Ces cup-produits interviennent dans les trois Cas.
Type o1, θi = [t̂i], 1 ≤ i ≤ 2g et ϕ j = [ν̂ j], 1 ≤ j ≤ 2g.
Comme pour p = 2, on trouve R(t̂i) ∪ R(ν̂ j) = 0 sauf
- si j est impair, R(t̂ j+1) ∪ R(ν̂ j) = N′j,2
- si j est pair R(t̂ j−1) ∪ R(ν̂ j) = Nj,2.
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Pour p > 2, on a
- pour j impair, T t(N′j,2) = −ε d’où θ j+1 ∪ ϕ j = −γ
- pour j pair, T t(N′j−1,2) = ε d’où θ j−1 ∪ ϕ j = γ.

Conclusion : Dans les trois Cas, pour le Type o1, on a
- pour j impair θ j+1 ∪ ϕ j = −γ
- pour j pair θ j−1 ∪ ϕ j = γ.

Type n2.

On a θi = [t̂i − t̂1], i > 1, et ϕ j = [ν̂ j], j > 1. Pour le Type n2, tous les ε j sont égaux à −1. Le
relevé de θi n’est plus le même que pour p = 2, mais on a encore R(t̂i − t̂1) ∪ R(ν̂ j) = 0 sauf
si i = j. De plus on a T t(N′j,2) = ε, d’où la conclusion :

Conclusion : Dans les trois Cas, pour le Type n2, on a θ j ∪ ϕ j = γ, et 0 sinon.

Calcul de θi ∪ β, α ∪ β, α ∪ ϕ j

Ces cup-produits n’interviennent que pour le Type o1 dans le Cas 1.
La preuve est exactement la même que pour p = 2, d’où la conclusion :

Conclusion : On a toujours θi ∪ β = 0, α ∪ β = γ, α ∪ ϕ j = 0.

Calcul de αi ∪ βk

Ces cup-produits n’interviennent que dans le Cas 3. Les calculs suivants ne dépendent
pas des Types.

Comme pour p = 2, le seul 3-simplexe s tel que R(μ̂k)(s0) = 1 est s = M±k,1. On a s3 = P±k,1
et (P±k,1)2 = C±k . Dans le relevé de αi apparaı̂t seulement (via Zk) C+k , affecté du coefficient
−vk, si i = k.

Du fait que akuk − bkvk = 1 et que p divise ak, on −vk = b−1
k dans Zp. On vérifie que

T t(M±k,1) = ζk et on a γ = [ζ̂k].

Conclusion : Dans le Cas 3, pour les Types o1 et n2, αi ∪ βk = 0 sauf si i = k et dans cette
situation on a αk ∪ βk = b−1

k γ.

Calcul de αk ∪ ϕ j Ces cup-produits n’interviennent que dans le Cas 3.
Type o1, αk = [q̂k − q̂0], 1 ≤ k ≤ m et ϕ j = [ν̂ j], 1 ≤ j ≤ 2g.
La preuve est exactement la même que pour p = 2, d’où la conclusion :

Conclusion : Dans le Cas 3, pour le Type o1, tous les cup-produits αk ∪ ϕ j sont nuls.

Type n2, αk = [q̂k − 1
2 t̂g], 0 ≤ k ≤ m et ϕ j = [ν̂ j], 1 < j ≤ g.

Comme pour p = 2, les seuls 3-simplexes s tels que R(ν̂ j)s0 � 0 sont s = Nj,1 et s = N′j,1
car on a (N′j,1)0 = (Nj,1)0 = ν j,1. On a ((Nj,1)3)2 = (F2 j−2)2 = S −2 j−2 et ((N′j,1)3)2 = (F2 j−1)2 =

S +2 j−1.
- Le relevé de αk est maintenant
R(q̂k − 1

2 t̂g) = Zk −∑k
�=0(ê2g+� + Ŝ ±2g+�) − 1

2 (ê2g−1 + Ŝ ±2g−1). Par conséquent, on obtient
R(q̂k− 1

2 t̂g)((Nj,1)3)2 = 0, R(q̂k− 1
2 t̂g)((N′j,1))3)2 = − 1

2 lorsque j = g d’où R(q̂k− 1
2 t̂g)∪R(ν̂ j) =

− 1
2 T t(N′g,1). Comme T t(N′g,1) = ε, on a la conclusion :

Conclusion : Dans le Cas 3, pour le Type n2, pour tous indices k, on a αk∪ϕg = − 1
2γ. �
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Remarque 24. Les quelques différences de signe avec les résultats obtenus précédem-
ment (voir par exemple [5]) s’expliquent par le fait que les générateurs notés α sont de signe
opposé. De plus les βk qui apparaissent naturellement ici sont des multiples des générateurs
notés bk dans [5], ce qui modifie certains produits par ces facteurs. Pour n2 nous avons choisi
(pour éviter de distinguer inutilement les cas n = 0 et n > 0) des générateurs du H1(M,Zp)
différents, mais ces perturbations sont tuées dans les produits.

9. Figures9. Figures

Figure 1: Décomposition cellulaire, Type o1
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Figure 2: Décomposition cellulaire, Type o2
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Figure 3: Décomposition cellulaire, Type ni
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L’Anneau de Cohomologie à Coefficients dans Zp 189

Figure 4: Description de Bj pour les Types n1, n2
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Figure 5: Décomposition simpliciale de ρk
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Figure 6: Décomposition simpliciale de ν1, Type o1
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Figure 7: Décomposition simpliciale de −ν1, Type o2
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Figure 8: Décomposition simpliciale de −ν j quand ε j = 1 et quand ε j = −1
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Figure 9: Décomposition simpliciale de δ, Type oi
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Figure 10: Décomposition simpliciale de δ, Type ni
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Figure 11: Décomposition simpliciale de μk pour bk > 0
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Figure 12: Décomposition simpliciale de μk pour bk = 0

bk = 0

μk,1

Pk,1

ck

qk

Figure 13: Codage des points carrés sur le 3-simplexe D+0
Les figures suivantes sont des projections des décompositions simpliciales de chacun des

3-simplexes. Les sommets sont des points carrés. Ils représentent la projection d’une arête.
Ci-dessous, nous donnons en exemple le codage des points carrés sur le 3-simplexe D+0 .
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Figure 14: Parties communes des décompositions simpliciales de ε pour tous les Types
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Les quatre figures suivantes sont les détails de la partie centrale de la figure ci-dessus,
pour le début de la longue relation.

Figure 15: Partie centrale pour la décomposition simpliciale de ε pour le Type o1
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Figure 16: Partie centrale pour la décomposition simpliciale de ε pour le Type o2
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Figure 17: Partie centrale pour la décomposition simpliciale de ε pour les Types ni
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Figure 18: Décomposition simpliciale de ζk pour bk > 0 et ak = 5, bk = 2, wk,2(qk, h) =
q3
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Figure 19: Décomposition simpliciale de ζk pour bk < 0
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Figure 20: Décomposition simpliciale de ζk pour bk = 0
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english translation appears as “Topology of 3-dimensional fibered spaces” in the book “A textbook of
topology” by H. Seifert and W. Threlfall Academic Press, 1980.

[14] H. Seifert and W. Threlfall: A textbook of topology, Academic Press, Inc. [Harcourt Brace Jovanovich,
Publishers], New York-London, 1980.

[15] S. Tomoda and P. Zvengrowski: Remarks on the cohomology of finite fundamental groups of 3-manifolds,
The Zieschang Gedenkschrift, 519-556, Geom. Topol. Monogr., 14, Geom. Topol. Publ., Coventry, 2008.



L’Anneau de Cohomologie à Coefficients dans Zp 195
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