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0. Iutroduction

Stating from a simple formula, we shall show in this paper some elementary
inequalities on the Wiener space. We shall give two applications of these inequal-
ities. The first one is a quick proof of the Markov uniqueness of the perturtions of
Wiener measure. The second one is to prove the essential self-adjointness of the
perturbed Ornstein-Uhlenbeck operatros on Wiener space, when the perturbation
satisfies some kind of Lipschitz boundedness condition.

The Markov uniqueness and essential self-adjointnéss problems are one of the
basic questions on Dirichlet forms. There are many studies on these subjects. We
mention in the references the papers of Albeverio-Kondratiev-Réckner, of
Albeverio-Kusuoka, Albeverio-Réckner-Zhang, of Réckner-Zhang, of Song, of
Takeda, of Wielens, etc. The present paper tries to give a simpler proof of the
Markov uniqueness, and to extend the result of Wielens [11] to the Wiener space.
It will be noticed that our proof of the Markov uniqueness does not use the
maximality property as it did in Song [8] (cf. also Albeverio-Kusuoka-Réckner
[3]), and our method to prove the essential self-adjointness is different from that
used in Wielens [11].

1. Notations

In this paper E denotes the space Co(Rs+, R%) and m denotes the classical
Wiener measure on E. Let ¢ denote the usual imbedding map from the topological
dual space E* of E into E. For any element 2S((E*)CE, we shall put

ar=¢""(k). Recall that E* is a pre-Hilbert space with the inner product

/(a/k)z(x)m(dx). We fixe an orthonormal basis K of E*. We introduce the space
FC3(K) to be the family of the functions # on E such that there is EN, fE€
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C2(R"), and k€K, i=1, 2, -, n, so that

u(x)=flan(x), -+, anx)].

For k€K, for a function g€ FC2(K), g% is defined as 1715101 lr(g(er vk)—g(x)).

We shall say that a function gE L*(E, m) is differentiable in direction k€K, if
there is a function fE€ L*(E, m) such that

/ ( gk ”k”>(x)9(x)m(d@—— f v(x)f (x)m(dx),

for any vE FC3(K). In this case we denote %=f. Note that the two definition

of SZ coincide when g€ FC5(K). Recall that the bilinear form (%, v)—»/gz gz

dm, defined on FCZ(K) is closable in L*(E, m). We denote by & its closure,
which is a Dirichlet form.

In this paper we are interested in probability measures # on E which has the form
u=@*m, where ¢ is a function in D(&). Let I" denote the operator of carré du
champs of &. We define

2
Au= 3 (S~ 0 L) +2 (u, log 9), ©ED(A)=FC3(K),

where I'(u, log @) is defined as %1"’ (u, @). It is easy to see that A is a symmetric

operator on L*(E, u). Let D(y) denote the family of all Dirichlet forms on
L*E, 1) whose generator extends A. We shall say that the Markov uniqueness
holds for the measure y, if #D(u)=1. Let S(x) be the set of all self-adjoint
operators on L*(E, u) which extend A. We shall say that A is essentially
self-adjoint on FC%(K), if #S(¢)=1. Note that S(x)DD(y) are not empty. In
fact, the pre-Dirichlet form («, v)— (2)1/: gz —-du, defined for u, vEFC(K), is
closable on L%(E, 1) (cf. Albeverio-Réckner [4], Song [8]). If we denote by & 4
its closure, & .= D(p).

We shall denote by R (resp. by Us) the resolvent operator of & (resp. of & x). The
generator of & . will be denoted by L. The space D(& ) (resp. the space D(L))
will be considered as a Hilbert space with the inner product & (resp.
lee = Latllzzq).
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2. Resolvent R;

We present some elementary properties of the resolvent operator R;.

Lemma 1. For any kE K, for any bounded function f we have the following
formula :

a—iRJ(x)='£me‘“\/—e%——_~l—dt ar(y)f(e tx+v1—e 2 y)m(dy).

Proof. Note we have %dm= argdm, for any kEK, for g FC3(K).

Using this relation the lemma can be easily proved when fEFCZ(K). For a
general bounded function f, choose a uniformly bounded sequence of functions
fEFC3(K) such that fx—f in LXE, m). Let vEFCZ(K). We have:

fv(x)lme‘“——e‘/—z—}_:ldt ax(y)f(e x+v/1—e? y)m(dy)m(dx)
=lim v(x)lme““‘%jl—:dt ar(y) fa(e i +v1—e 2 y)m(dy)m(dx)

—lim [o(x) g Rafx)m(a)

=—1lim (gk aw)R;fn(x)m(dx)

n-oo

- (%—aw)]ﬂf(x)m(dx)-

This achieves the proof of the lemma. []

Lemma 2. For any bounded function f, we have the inequality :

supxsupaso AI'(R:f, Rif)(x) <(C)?| £

@y

where Co=SUDi>0 JA e_“—:/‘e‘z:tl;_—l‘dt<00.

Proof. We have:
AL(R:f, RAf)(x)=Ak§K(a—inf(x))2
® i 1 —t R 2
SC»/A'ﬁ e /?——dtkglx(fak(y)f(e x+yl—e y)m(dy)>
<CuT || e e dtlf(e s +/T= )l

because ax forms an orthonormal system in L*(E, m),
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<O [ el

where

Ci=V7 | we-*fﬁ%dt
=X [(G+De /P T at
=Jx A (A+2)e 1= dt
gﬁf(/wrz)e—““”mdt
=£m/]+2€“””“”«/ﬁdu

Hﬁme‘”mdu<oo, when A—co. []

3. A resolvent change formula

Lemma 3. For any fEFC3(K), I'(R.f, log ¢)E L*(E, 1), and the following
formula holds :

Uf=Rif +2U[T'(R:f, log 9)].
Proof. It is enough to remark that RFEFCH(K)CD(E ), and
(A=L)Rf=1—-A)R:f=F—2I'(R:f, log ¢). U
Lemma 4. The formula in Lemma 3 also holds for any bounded function.

Moreover, for any bounded function f, Rif ED(8 ) and the following inequalities
hold :

AR |20 <A UAf”Luu)‘i‘z%Cwé" (@, @)1,

8 (AR, AR)2< 8 (AU, AUV +2CE (@, @)1 .

Proof. The two inequalities are direct consequences of Lemma 3 (cf. Song [8])
if fFEFC%(K). In fact, the equality in Lemma 3 implies immediately

"AR/\f”LZ(#)S"/1UAf"L2(#)+2"F(le, log ¢)"L2(#)

Since |I'(R:f, log @)P<I'(R:f, Rf)I (e, ¢)~¢1;z—, we have
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IT(R.f, log @)z <[supy I'(R.f, Rif)(¥)]"*E (o, @)

1 172
S ‘//1— Ceoé’ (¢, ¢) ||f||°°’

by Lemma 2. Similarily, we have

E W(AR, ARS)Y?
< E AU, AU 428 (AU (RS, log @), AUL(R:f, log @)

The second term can be controlled by
8 wi( AU (R:f, log @), AU (R, log ¢))
= [T(Rif, 1og 9)UL(Rif, log ¢)du

S| T(R:f, log @)zl UL (R:f, log @)l|z2c
<A (R, log @)z
<[Csb (0, 9)"2|fll=)

We therefore proved the two inequalities for f€ FC5(K).

Now, consider any bounded function f. Let fx€FC5(K) be a sequence of
functions converging to f in L*(E, p+m), and uniformly bounded by (1+ €)| /-,
where € is an arbitrary fixed positive constant. Thanks to the second inequality,
we see that & .(AR:fn, AR:f) is uniformly bounded. Since the function Rifx
converges to R:f in probability with respect to 4, and is uniformly bounded, it
converges also in L*E, ). We have for any @>0:

/ a(1— aUa) AR () AR.f (x) i)

=lim Ja(1—aUa)AR:fo(x)AR:fx(x)1(dx)
Ssupn éa,u(/lR,{fn, /LRAfn)<OO
This proves RifED(& 4). It now is clear that Rifn converges to Rif weakly in

D(& ). By continuity and by Banach-Saks theorem (cf. Ma-Réckner [6]), we can
prove that the above two inequalties hold for R.f.

To prove the equality in Lemma 3 for R.f, we notice that I'(R.f», log ¢) converges
to I'(R:f, log ¢) in probability with respect to 1, and

IF(Rifs, log usn<(1+e)7Co6 (e, @)l

These facts imply that I'(R.f, log ¢) is in L*(E, 1). It now becomes clear that
I'(R:fx, log @) converges to I'(R:f, log ¢) in L'(E, 1), and consequently con-
verges weakly in L*(E, ). Finally, we can prove the equality in Lemma 3 by
Banach-Saks theorem and by continuity. []
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REMARK. We in fact have proved
1
IP(RAS, Tog P)lsw<—7=Cub (9, @) “If].

for any bounded function f. [

Corollary 5. For any bounded function f, R,fED(L). Moreover,

ILR:f L2y <If — AU |2+ 2| T (RS, log @) — AU (R:f, log @)llLzw
<2 s+ C=6 (9, 9) /1.

Proof. We note that for any g€ L*(E, 1), UgED(L). Now, this lemma is
a direct consequence of Lemma 3 and Lemma 4. [

4. Markov uniqueness

Lemma 6. Let D denote the closure of FCE(K) for the norm lloe — Ave|L2cw).
Let f be a bounded function. Then, for any fixed A>0, Ri,fED.

REMARK. The space D is a closed subspace in D(L), because L is an extention
of A.

Proof. We regard D as a Hilbert space with the inner product l2¢ — Lt 2u.
Let fx be a sequence of functions in FCZ(K) which tend to fin LA E, u+m). We
shall suppose that f»’s are uniformly bounded by 2|f|«. Then, R:/»E FCg(K) for
each nEN. Furthermore, according to Corollary 5, the family of functions Rif»
is a bounded family in D.

Now, the closed bounded balls in D are weakly compact, we can suppose that Rif»
converges weakly to an element g in D. According to the Banach-Saks theorem we
can even suppose that the Cesaro mean v, of R.f» converges strongly in Dtog. It
is clear that Rif» converges to R:f in probability with respect to 4. Hence, the only
limit for v, must be R,f. We thus have proved that Rif=g€D. O

Lemma 7. Let a>0. Let A* denote the adjoint operator of A. Let h be
a bounded solution of the equation (A*—a)h=0. Then, h&€D(& ,).

Proof. Note that by the preceding lemma, /h(L—a)R,Lfa’,Lz:O for any
bounded function f. Let ga=AU:k. We have:
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0= [W(L~a)iRgid
= [RL(Uigi=2AULT(Rigs, log ¢))du—a [hAR:gid
= [aLg:du—2 [RLAUIT (Rigs, log ¢))du—a [hiRigidu
==& ulgs, 91)—2 f AU (Rigs, log 9)]—I'(Rags, log ¢))du
- a/fh/lRAgAd;z
==& ulgs, 91)—2 f g (AR:gs, log ¢)du+2 f hI'(AR:gs, log ¢)dp
—a f hARgxdpt.

From this equality we obtain :

& u(gs, g)=—2 / G (AR:gs, log ¢)du+2 / hI'(AR:gs, log ¢)du
—a [WARgidu

<2(|gile+22) fITGRigs, log @) du+ al il

<4||Allw8 (AR:gs, AR19)"* & (@, @)'*+ al| 2.
By Lemma 4 we have:

8 (AR, ARG < 8 u(gsy 92)"*+2C 6 (@, 0)']gille.

Putting C=|A)o~+(1+ Cx)| 2]« & (@, )", we obtain :

8 g 92)<4C(E u(gn, 9" +2C)+aC?
or equivalently,

(8 ulgs, g)"*—2C)12<(12+a)C?

Finally, & .(g:, 92)'*<(6++a)C. By this uniform boundedness, by the fact that
h=lxifn AUk in LY E, p), we conclude that 2ED(8 ). [

Lemma 8. The function h is the same as that in the preceding lemma. Then
gu,a(h, h)=0

Proof. Let @>0. By the definition of %, for any vE FCF(K),
& ualh, v)=—fh(A—a)vdu=O.

But FCZ(K) is dense in (D(& 4), & u,a), we therefore conclude & u,o(k, £)=0. [J
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Theorem 9. The measure 1 has Markov uniqueness.

Proof. Let '€ D(x). Let Vi be its resolvent operator. We can easily see that
D(& ,)CD(&’), and, for any bounded function f, Vof — U.fEKer(A*—a) for
any ¢>0. By Lemma 8, Vof=U.f. This implies §'=& .. [

5. Essential self-adjointness

In this section we suppose in addition that the density function ¢ of x is such
that ess.sup I'(log ¢, log ¢)< M?, where M is a constant.

Lemma 10. For f€L*(E, 1), A big enough, we have the inequalities :

AR Aesin < (1=220 ) s,

1/2 _ ﬁ 1/2
8 JAR, ARJ)’S(I zﬁ) & (AU, AUS)",

IF(AR.f, log ¢)||L2(u)<Mé’#(/1Rsz AR )Y

< J_ 2M "f"Lz(l‘)

Proof. In fact, it is enough to prove the lemma for /€ FC5(K). The general
case can be proved by continuity. We only prove the second inequality. Using
Lemma 4 we obtain the following formulae :

& wi AU (RS, log @), AU (RS, log @)
= f T'(R:f, log )AU(R;f, log ¢)p*dm

SA/F(RA}(, log ¢)?p’dm

sA/F(RJ, R.)I'(log ¢, log ¢)¢’dm
2

gMT / T(ARf, AR:f)@*dm

2
=M7g WAR:f, ARS).

So,
8 JORS, ARI< E AAUS, AUJ)"2+2—%—€,J(/1RJ, AR,

or equivalently for A big enough,

1/2 o M\ 1/2
8GR, AR 2<(1-20) 6 AUs, U7 O
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Lemma 11. Let a>0, and let h& LY E, 1) such that (A*—a)h=0. Then,
hED(gp) and gﬂ,a(h, h)=0

Proof. let g@=AU.k. By exactly the same calculus as in the proof of Lemma
7, we have

E ulgs, g1)= _Z/QXF(ARAQA, log ¢)d,u+2/h1—'(ﬂRagx, log ¢)du

—a f hARg:dp.

So, according to Lemma 10, we have

-1
8 e 9)=AM(1-29L)" 6 (Usgs, AU Il

-1
+a(1—z%) 1.

for A big enough. There exists then a constant C =C(a, M) such that
& u(gx, 9) < Clhlz 20
for A big enough. From this fact we deduce 2ED(& ,) and & u.o(h, £)=0. [

Theorem 12. The operator A is essentially self-adjoint on FC3(K).

Proof. It is enough to notice that any solution in L*(E, ) of the equation (A*
—a)f=0, a>0, will be a null function by Lemma 12. []
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