<table>
<thead>
<tr>
<th>Title</th>
<th>Markov uniqueness and essential self-adjointness of perturbed Ornstein-Uhlenbeck operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Song, Shiqi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 32(3) P.823-P.832</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1995</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/6196</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/6196</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
MARKOV UNIQUENESS AND ESSENTIAL SELF-ADJOINTNESS OF PERTURBED ORNSTEIN-UHLENBECK OPERATORS

SHIQI SONG

(Received December 6, 1993)

0. Introduction

Stating from a simple formula, we shall show in this paper some elementary inequalities on the Wiener space. We shall give two applications of these inequalities. The first one is a quick proof of the Markov uniqueness of the perturbations of Wiener measure. The second one is to prove the essential self-adjointness of the perturbed Ornstein-Uhlenbeck operators on Wiener space, when the perturbation satisfies some kind of Lipschitz boundedness condition.

The Markov uniqueness and essential self-adjointness problems are one of the basic questions on Dirichlet forms. There are many studies on these subjects. We mention in the references the papers of Albeverio-Kondratiev-Röckner, of Albeverio-Kusuoka, Albeverio-Röckner-Zhang, of Röckner-Zhang, of Song, of Takeda, of Wielens, etc. The present paper tries to give a simpler proof of the Markov uniqueness, and to extend the result of Wielens [11] to the Wiener space. It will be noticed that our proof of the Markov uniqueness does not use the maximality property as it did in Song [8] (cf. also Albeverio-Kusuoka-Röckner [3]), and our method to prove the essential self-adjointness is different from that used in Wielens [11].

1. Notations

In this paper E denotes the space $C_0(R_+, R^d)$ and m denotes the classical Wiener measure on E. Let ι denote the usual imbedding map from the topological dual space E^* of E into E. For any element $k \in \iota(E^*) \subset E$, we shall put $\alpha_k = \iota^{-1}(k)$. Recall that E^* is a pre-Hilbert space with the inner product $\int (\alpha_k)^2(x) m(dx)$. We fixe an orthonormal basis K of E^*. We introduce the space $FC_b(K)$ to be the family of the functions u on E such that there is $n \in N, f \in$
and \(k_i \in K, \ i = 1, 2, \ldots, n \), so that
\[
u(x) = f[a_{k_1}(x), \ldots, a_{k_n}(x)].
\]

For \(k \in K \), for a function \(g \in FC^\infty(K) \), \(\frac{\partial g}{\partial k} \) is defined as \(\lim_{r \to 0} \frac{1}{r}(g(x + rk) - g(x)) \).

We shall say that a function \(g \in L^2(E, m) \) is differentiable in direction \(k \in K \), if there is a function \(f \in L^2(E, m) \) such that
\[
\int \left(\frac{\partial v}{\partial k} - a_k v \right)(x) g(x) m(dx) = - \int v(x) f(x) m(dx),
\]
for any \(v \in FC^\infty(K) \). In this case we denote \(\frac{\partial g}{\partial k} = f \). Note that the two definitions of \(\frac{\partial g}{\partial k} \) coincide when \(g \in FC^\infty(K) \). Recall that the bilinear form \((u, v) \mapsto \int \frac{\partial u}{\partial k} \frac{\partial v}{\partial k} dm \), defined on \(FC^\infty(K) \) is closable in \(L^2(E, m) \). We denote by \(\mathcal{E} \) its closure, which is a Dirichlet form.

In this paper we are interested in probability measures \(\mu \) on \(E \) which has the form
\[
\mu = \varphi^2 \cdot m,
\]
where \(\varphi \) is a function in \(D(\mathcal{E}) \). Let \(\Gamma \) denote the operator of carré du champs of \(\mathcal{E} \). We define
\[
Au = \sum_{k=1}^{n} \left(\frac{\partial^2 u}{\partial k^2} - a_k \frac{\partial u}{\partial k} \right) + 2 \int \Gamma(u, \log \varphi), \ u \in D(A) = FC^\infty(K),
\]
where \(\Gamma(u, \log \varphi) \) is defined as \(\frac{1}{\varphi} \Gamma(u, \varphi) \). It is easy to see that \(A \) is a symmetric operator on \(L^2(E, \mu) \). Let \(D(\mu) \) denote the family of all Dirichlet forms on \(L^2(E, \mu) \) whose generator extends \(A \). We shall say that the Markov uniqueness holds for the measure \(\mu \), if \(\#D(\mu) = 1 \). Let \(S(\mu) \) be the set of all self-adjoint operators on \(L^2(E, \mu) \) which extend \(A \). We shall say that \(A \) is essentially self-adjoint on \(FC^\infty(K) \), if \(\#S(\mu) = 1 \). Note that \(S(\mu) \supset D(\mu) \) are not empty. In fact, the pre-Dirichlet form \((u, v) \mapsto \int \frac{\partial u}{\partial k} \frac{\partial v}{\partial k} d\mu \), defined for \(u, v \in FC^\infty(K) \), is closable on \(L^2(E, \mu) \) (cf. Albeverio-Röckner [4], Song [8]). If we denote by \(\mathcal{E}_\mu \) its closure, \(\mathcal{E}_\mu \in D(\mu) \).

We shall denote by \(R_\lambda \) (resp. by \(U_\lambda \)) the resolvent operator of \(\mathcal{E} \) (resp. of \(\mathcal{E}_\mu \)). The generator of \(\mathcal{E}_\mu \) will be denoted by \(L \). The space \(D(\mathcal{E}_\mu) \) (resp. the space \(D(L) \)) will be considered as a Hilbert space with the inner product \(\langle u, Lu \rangle_{L^2(\mu)} \).
2. Resolvent R_λ

We present some elementary properties of the resolvent operator R_λ.

Lemma 1. For any $k \in K$, for any bounded function f we have the following formula:

$$\frac{\partial}{\partial k} R_\lambda f(x) = \int_0^\infty e^{-\lambda t} \frac{1}{\sqrt{e^{2t} - 1}} dt \int a_k(y) f(e^{-t}x + \sqrt{1 - e^{-2t}} y) m(dy).$$

Proof. Note we have $\frac{\partial g}{\partial k} dm = \int a_k g dm$, for any $k \in K$, for $g \in FC^\infty(K)$. Using this relation the lemma can be easily proved when $f \in FC^\infty(K)$. For a general bounded function f, choose a uniformly bounded sequence of functions $f_n \in FC^\infty(K)$ such that $f_n \to f$ in $L^2(E, m)$. Let $v \in FC^\infty(K)$. We have:

$$\int v(x) \int_0^\infty e^{-\lambda t} \frac{1}{\sqrt{e^{2t} - 1}} dt \int a_k(y) f(e^{-t}x + \sqrt{1 - e^{-2t}} y) m(dy) m(dx)$$

$$= \lim_{n \to \infty} \int v(x) \int_0^\infty e^{-\lambda t} \frac{1}{\sqrt{e^{2t} - 1}} dt \int a_k(y) f_n(e^{-t}x + \sqrt{1 - e^{-2t}} y) m(dy) m(dx)$$

$$= \lim_{n \to \infty} \int v(x) \frac{\partial}{\partial k} R_\lambda f_n(x) m(dx)$$

$$= - \lim_{n \to \infty} \int \left(\frac{\partial v}{\partial k} - a_k v \right) R_\lambda f_n(x) m(dx)$$

$$= - \int \left(\frac{\partial v}{\partial k} - a_k v \right) R_\lambda f(x) m(dx).$$

This achieves the proof of the lemma. □

Lemma 2. For any bounded function f, we have the inequality:

$$\sup_{x \in E} \sup_{\lambda \geq 0} \lambda \Gamma(R_\lambda f, R_\lambda f)(x) \leq \langle C_\infty \rangle \|f\|_{L^2},$$

where $C_\infty = \sup_{k > 0} \sqrt{\lambda} \int_0^\infty e^{-\lambda t} \frac{1}{\sqrt{e^{2t} - 1}} dt < \infty$.

Proof. We have:

$$\lambda \Gamma(R_\lambda f, R_\lambda f)(x) = \lambda \sum_{k \in K} \left(\frac{\partial}{\partial k} R_\lambda f(x) \right)^2$$

$$\leq C_\infty \sqrt{\lambda} \int_0^\infty e^{-\lambda t} \frac{1}{\sqrt{e^{2t} - 1}} dt \sum_{k \in K} \left(\int a_k(y) f(e^{-t}x + \sqrt{1 - e^{-2t}} y) m(dy) \right)^2$$

$$\leq C_\infty \sqrt{\lambda} \int_0^\infty e^{-\lambda t} \frac{1}{\sqrt{e^{2t} - 1}} dt \|f(e^{-t}x + \sqrt{1 - e^{-2t}} \cdot)\|_2^2,$$

because a_k forms an orthonormal system in $L^2(E, m)$,
\[\leq C_\lambda \sqrt{\lambda} \int_0^\infty e^{-\lambda t} \frac{1}{\sqrt{e^{2t} - 1}} \, dt \| f \|_w^2, \]

where

\[C_\lambda = \sqrt{\lambda} \int_0^\infty e^{-\lambda t} \frac{1}{\sqrt{e^{2t} - 1}} \, dt \]

\[= \sqrt{\lambda} \int_0^\infty (\lambda + 2) e^{-(\lambda + 1)/2} \sqrt{1 - e^{-2t}} \, dt \]

\[\leq \sqrt{\lambda} \int_0^\infty (\lambda + 2) e^{-(\lambda + 1)/2} \sqrt{2t} \, dt \]

\[= \int_0^\infty \frac{\lambda + 2}{\lambda} e^{-(1 + 1/\lambda) u} \sqrt{2u} \, du \]

\[\rightarrow \int_0^\infty e^{-u} \sqrt{2u} \, du < \infty, \text{ when } \lambda \to \infty. \]

3. A resolvent change formula

Lemma 3. For any \(f \in FC_w^\infty(K) \), \(\Gamma(R, \log \varphi) \in L^2(E, \mu) \), and the following formula holds:

\[U_\lambda f = R \lambda f + 2 U_\lambda [\Gamma(R \lambda f, \log \varphi)]. \]

Proof. It is enough to remark that \(R \lambda f \in FC_w^\infty(K) \subset D(\mathcal{E}_\mu) \), and

\[(\lambda - L)R \lambda f = (1 - A)R \lambda f = f - 2\Gamma(R \lambda f, \log \varphi). \]

Lemma 4. The formula in Lemma 3 also holds for any bounded function. Moreover, for any bounded function \(f, R \lambda f \in D(\mathcal{E}_\mu) \) and the following inequalities hold:

\[\| \lambda R \lambda f \|_{L^2(\mu)} \leq \| \lambda U \lambda f \|_{L^2(\mu)} + 2 \frac{1}{\sqrt{\lambda}} C_\infty \mathcal{E} (\varphi, \varphi)^{1/2} \| f \|_w, \]

\[\mathcal{E}_\mu(\lambda R \lambda f, \lambda R \lambda f)^{1/2} \leq \mathcal{E}_\mu(\lambda U \lambda f, \lambda U \lambda f)^{1/2} + 2 C_\infty \mathcal{E} (\varphi, \varphi)^{1/2} \| f \|_w. \]

Proof. The two inequalities are direct consequences of Lemma 3 (cf. Song [8]) if \(f \in FC_w^\infty(K) \). In fact, the equality in Lemma 3 implies immediately

\[\| \lambda R \lambda f \|_{L^2(\mu)} \leq \| \lambda U \lambda f \|_{L^2(\mu)} + 2 \| \Gamma(R \lambda f, \log \varphi) \|_{L^2(\mu)} \]

Since \(|\Gamma(R \lambda f, \log \varphi)|^2 \leq \Gamma(R \lambda f, R \lambda f) \Gamma(\varphi, \varphi) \frac{1}{\varphi^2} \), we have
\[\| \Gamma(Rf, \log \varphi) \|_{L^2(\mu)} \leq [\sup_y \Gamma(Rf, Rf)(y)]^{1/2} C(\varphi, \varphi)^{1/2} \]
\[\leq \frac{1}{\sqrt{\lambda}} C_\infty C(\varphi, \varphi)^{1/2} \| f \|_\infty, \]

by Lemma 2. Similarly, we have

\[\mathcal{E}_\mu(\lambda Rf, Rf)^{1/2} \]
\[\leq \mathcal{E}_\mu(\lambda U_1 f, \lambda U_1 f)^{1/2} + 2 \mathcal{E}_\mu(\lambda U_1 \Gamma(Rf, \log \varphi), \lambda U_1 \Gamma(Rf, \log \varphi))^{1/2}. \]

The second term can be controlled by

\[\mathcal{E}_\mu(\lambda U_1 \Gamma(Rf, \log \varphi), \lambda U_1 \Gamma(Rf, \log \varphi)) \]
\[= \lambda^2 \int \Gamma(Rf, \log \varphi) U_1 \Gamma(Rf, \log \varphi) d\mu \]
\[\leq \lambda^2 \| \Gamma(Rf, \log \varphi) \|_{L^2(\mu)}^{1/2} \| U_1 \Gamma(Rf, \log \varphi) \|_{L^2(\mu)}^{1/2} \]
\[\leq \lambda \| \Gamma(Rf, \log \varphi) \|_{L^2(\mu)}^{1/2} \]
\[\leq [C_\infty C(\varphi, \varphi)^{1/2} \| f \|_\infty]^2. \]

We therefore proved the two inequalities for \(f \in FC_0^c(K) \).

Now, consider any bounded function \(f \). Let \(f_n \in FC_0^c(K) \) be a sequence of functions converging to \(f \) in \(L^2(E, \mu + m) \), and uniformly bounded by \((1 + \epsilon)\| f \|_\infty\), where \(\epsilon \) is an arbitrary fixed positive constant. Thanks to the second inequality, we see that \(\mathcal{E}_\mu(\lambda Rf_n, \lambda Rf_n) \) is uniformly bounded. Since the function \(Rf_n \) converges to \(Rf \) in probability with respect to \(\mu \), and is uniformly bounded, it converges also in \(L^2(E, \mu) \). We have for any \(a > 0 \):

\[\int a(1 - a U_0) \lambda Rf(x) \lambda Rf(x) \mu(dx) \]
\[= \lim_{n \to \infty} \int a(1 - a U_0) \lambda Rf_n(x) \lambda Rf_n(x) \mu(dx) \]
\[\leq \sup_n \mathcal{E}_\mu(\lambda Rf_n, \lambda Rf_n) < \infty. \]

This proves \(Rf \in D(\mathcal{E}_\mu) \). It now is clear that \(Rf_n \) converges to \(Rf \) weakly in \(D(\mathcal{E}_\mu) \). By continuity and by Banach-Saks theorem (cf. Ma-Röckner [6]), we can prove that the above two inequalities hold for \(Rf \).

To prove the equality in Lemma 3 for \(Rf \), we notice that \(\Gamma(Rf_n, \log \varphi) \) converges to \(\Gamma(Rf, \log \varphi) \) in probability with respect to \(\mu \), and

\[\| \Gamma(Rf_n, \log \varphi) \|_{L^2(\mu)} \leq (1 + \epsilon) \frac{1}{\sqrt{\lambda}} C_\infty C(\varphi, \varphi)^{1/2} \| f \|_\infty. \]

These facts imply that \(\Gamma(Rf, \log \varphi) \) is in \(L^2(E, \mu) \). It now becomes clear that \(\Gamma(Rf_n, \log \varphi) \) converges to \(\Gamma(Rf, \log \varphi) \) in \(L^1(E, \mu) \), and consequently converges weakly in \(L^2(E, \mu) \). Finally, we can prove the equality in Lemma 3 by Banach-Saks theorem and by continuity. \(\square \)
Remark. We in fact have proved
\[\| \Gamma(R_\lambda f, \log \varphi) \|_{L^2(\mu)} \leq \frac{1}{\sqrt{\lambda}} C_\infty \mathcal{E}(\varphi, \varphi)^{1/2} \| f \|_\infty. \]
for any bounded function \(f \).

Corollary 5. For any bounded function \(f \), \(R_\lambda f \in D(L) \). Moreover,
\[
\| LR_\lambda f \|_{L^2(\mu)} \leq \| f - \lambda U_\lambda f \|_{L^2(\mu)} + 2 \| \Gamma(R_\lambda f, \log \varphi) - \lambda U_\lambda \Gamma(R_\lambda f, \log \varphi) \|_{L^2(\mu)}
\]
\[
\leq 2 \| f \|_{L^2(\mu)} + \frac{4}{\sqrt{\lambda}} C_\infty \mathcal{E}(\varphi, \varphi)^{1/2} \| f \|_\infty.
\]

Proof. We note that for any \(g \in L^2(E, \mu) \), \(U_\lambda g \in D(L) \). Now, this lemma is a direct consequence of Lemma 3 and Lemma 4.

4. Markov uniqueness

Lemma 6. Let \(\tilde{D} \) denote the closure of \(FC_\infty^c(K) \) for the norm \(\| u - Au \|_{L^2(\mu)} \). Let \(f \) be a bounded function. Then, for any fixed \(\lambda > 0 \), \(R_\lambda f \in \tilde{D} \).

Remark. The space \(\tilde{D} \) is a closed subspace in \(D(L) \), because \(L \) is an extension of \(A \).

Proof. We regard \(\tilde{D} \) as a Hilbert space with the inner product \(\| u - L u \|_{L^2(\mu)}^2 \). Let \(f_n \) be a sequence of functions in \(FC_\infty^c(K) \) which tend to \(f \) in \(L^2(E, \mu + \lambda) \). We shall suppose that \(f_n \)'s are uniformly bounded by \(2 \| f \|_\infty \). Then, \(R_\lambda f_n \in FC_\infty^c(K) \) for each \(n \in \mathbb{N} \). Furthermore, according to Corollary 5, the family of functions \(R_\lambda f_n \) is a bounded family in \(\tilde{D} \).

Now, the closed bounded balls in \(\tilde{D} \) are weakly compact, we can suppose that \(R_\lambda f_n \) converges weakly to an element \(g \) in \(\tilde{D} \). According to the Banach-Saks theorem we can even suppose that the Cesaro mean \(v_n \) of \(R_\lambda f_n \) converges strongly in \(\tilde{D} \) to \(g \). It is clear that \(R_\lambda f_n \) converges to \(R_\lambda f \) in probability with respect to \(\mu \). Hence, the only limit for \(v_n \) must be \(R_\lambda f \). We thus have proved that \(R_\lambda f = g \in \tilde{D} \).

Lemma 7. Let \(\alpha > 0 \). Let \(A^* \) denote the adjoint operator of \(A \). Let \(h \) be a bounded solution of the equation \((A^* - \alpha)h = 0 \). Then, \(h \in D(\mathcal{E}_\mu) \).

Proof. Note that by the preceding lemma, \(\int h(L - \alpha) R_\lambda f d\mu = 0 \) for any bounded function \(f \). Let \(g_\lambda = \lambda U_\lambda h \). We have:
0 = \int h(L - \alpha)\lambda R \mu \, d\mu

= \int hL(\lambda U, g, 2\lambda U, [\Gamma(R, g), \log \varphi]) \, d\mu - \alpha \int h \lambda R \mu \, d\mu

= \int g_{*}L \mu \, d\mu - 2 \int hL(\lambda U, [\Gamma(R, g), \log \varphi]) \, d\mu - \alpha \int h \lambda R \mu \, d\mu

= - \mathcal{E}_{\mu}(g_{*}, g_{*}) - 2 \int h \lambda \mu \lambda U_{*}[\Gamma(R, g), \log \varphi] - \Gamma(R, g, \log \varphi) \, d\mu

= - \mathcal{E}_{\mu}(g_{*}, g_{*}) - 2 \int h \lambda \mu \lambda R g, \log \varphi) \, d\mu + 2 \int h \lambda \mu \lambda R g, \log \varphi) \, d\mu

= - \mathcal{E}_{\mu}(g_{*}, g_{*}) + 2 \int h \lambda \mu \lambda R g, \log \varphi) \, d\mu.

From this equality we obtain:

\mathcal{E}_{\mu}(g_{*}, g_{*}) = - 2 \int g_{*} \lambda \mu \lambda R g, \log \varphi) \, d\mu + 2 \int h \lambda \mu \lambda R g, \log \varphi) \, d\mu

\leq 2(\|g_{*}\|_{\infty} + \|h\|_{\infty}) \int |\Gamma(\lambda R, g, \log \varphi)| \, d\mu + \alpha \|h\|_{\infty}^{2}

\leq 4 \|h\|_{\infty} \mathcal{E}_{\mu}(\lambda \mu \lambda R g, \lambda \mu \lambda R g) + \alpha \|h\|_{\infty}^{2}.

By Lemma 4 we have:

\mathcal{E}_{\mu}(\lambda \mu \lambda R g, \lambda \mu \lambda R g) \leq \mathcal{E}_{\mu}(g_{*}, g_{*}) + 2 C_{\infty} \mathcal{E}(\varphi, \varphi)^{1/2} \|g_{*}\|_{\infty}.

Putting \(C = \|h\|_{\infty} + (1 + C_{\infty}) \|h\|_{\infty} \mathcal{E}(\varphi, \varphi)^{1/2} \), we obtain:

\mathcal{E}_{\mu}(g_{*}, g_{*}) \leq 4 \mathcal{E}(\mathcal{E}(g_{*}, g_{*}) + 2 C) + a C^{2}

or equivalently,

(\mathcal{E}(g_{*}, g_{*}) - 2 C)^{2} \leq (1 + a) C^{2}.

Finally, \(\mathcal{E}(g_{*}, g_{*}) \leq (6 + \sqrt{2}) C \). By this uniform boundedness, by the fact that \(h = \lim_{\lambda \to \infty} \lambda U_{h} \) in \(L^{2}(E, \mu) \), we conclude that \(h \in D(\mathcal{E}_{\mu}) \).

Lemma 8. The function \(h \) is the same as that in the preceding lemma. Then \(\mathcal{E}_{\mu, \alpha}(h, h) = 0 \).

Proof. Let \(\alpha > 0 \). By the definition of \(h \), for any \(v \in FC_{\varphi}(K) \),

\[\mathcal{E}_{\mu, \alpha}(h, v) = - \int h(A - \alpha) v \, d\mu = 0. \]

But \(FC_{\varphi}(K) \) is dense in \(D(\mathcal{E}_{\mu}), \mathcal{E}_{\mu, \alpha} \), we therefore conclude \(\mathcal{E}_{\mu, \alpha}(h, h) = 0 \).
Theorem 9. The measure μ has Markov uniqueness.

Proof. Let $\mathcal{E}' \in D(\mu)$. Let V_1 be its resolvent operator. We can easily see that $D(\mathcal{E}_\mu) \subset D(\mathcal{E}')$, and, for any bounded function f, $V_\alpha f - U_\alpha f \in \text{Ker}(A^* - a)$ for any $a > 0$. By Lemma 8, $V_\alpha f = U_\alpha f$. This implies $\mathcal{E}' = \mathcal{E}_\mu$. □

5. Essential self-adjointness

In this section we suppose in addition that the density function φ of μ is such that $\text{ess.sup} \Gamma(\log \varphi, \log \varphi) \leq M^2$, where M is a constant.

Lemma 10. For $f \in L^2(E, \mu)$, λ big enough, we have the inequalities:

- $\|\lambda R_\lambda f\|_{L^2(\mu)} \leq \left(1 - \frac{2M}{\lambda}\right)^{-1} \|f\|_{L^2(\mu)}$,
- $\mathcal{E}_\mu(\lambda R_\lambda f, \lambda R_{\lambda} f)^{1/2} \leq \left(1 - \frac{2M}{\sqrt{\lambda}}\right)^{-1} \mathcal{E}_\mu(\lambda U_\lambda f, \lambda U_\lambda f)^{1/2}$,
- $\|\Gamma(\lambda R_\lambda f, \log \varphi)\|_{L^2(\mu)} \leq M \mathcal{E}_\mu(\lambda R_\lambda f, \lambda R_\lambda f)^{1/2}$

Proof. In fact, it is enough to prove the lemma for $f \in FC_\infty(K)$. The general case can be proved by continuity. We only prove the second inequality. Using Lemma 4 we obtain the following formulae:

- $\mathcal{E}_\mu(\lambda U_\lambda \Gamma(R_\lambda f, \log \varphi), \lambda U_\lambda \Gamma(R_\lambda f, \log \varphi))$
- $= \lambda \int \Gamma(R_\lambda f, \log \varphi) \lambda U_\lambda \Gamma(R_\lambda f, \log \varphi) \varphi^2 dm$
- $\leq \lambda \int \Gamma(R_\lambda f, \log \varphi)^2 \varphi^2 dm$
- $\leq \lambda \int \Gamma(R_\lambda f, R_\lambda f) \Gamma(\log \varphi, \log \varphi) \varphi^2 dm$
- $\leq \frac{M^2}{\lambda} \int \Gamma(\lambda R_\lambda f, \lambda R_\lambda f) \varphi^2 dm$
- $= \frac{M^2}{\lambda} \mathcal{E}_\mu(\lambda R_\lambda f, \lambda R_\lambda f)$.

So,

- $\mathcal{E}_\mu(\lambda R_\lambda f, \lambda R_\lambda f)^{1/2} \leq \mathcal{E}_\mu(\lambda U_\lambda f, \lambda U_\lambda f)^{1/2} + 2 \frac{M}{\sqrt{\lambda}} \mathcal{E}_\mu(\lambda R_\lambda f, \lambda R_\lambda f)^{1/2}$,

or equivalently for λ big enough,

- $\mathcal{E}_\mu(\lambda R_\lambda f, \lambda R_\lambda f)^{1/2} \leq \left(1 - \frac{2M}{\sqrt{\lambda}}\right)^{-1} \mathcal{E}_\mu(\lambda U_\lambda f, \lambda U_\lambda f)^{1/2}$. □
Lemma 11. Let $a > 0$, and let $h \in L^2(E, \mu)$ such that $(A^* - a)h = 0$. Then, $h \in D(\mathcal{E}_\mu)$ and $\mathcal{E}_{\mu,a}(h, h) = 0$.

Proof. Let $g_\lambda = \lambda U_\lambda h$. By exactly the same calculus as in the proof of Lemma 7, we have

$$\mathcal{E}_{\mu}(g_\lambda, g_\lambda) = -2 \int g_\lambda \Gamma(\lambda R_\lambda g_\lambda, \log \varphi) d\mu + 2 \int h \Gamma(\lambda R_\lambda g_\lambda, \log \varphi) d\mu - a \int h \lambda R_\lambda g_\lambda d\mu.$$

So, according to Lemma 10, we have

$$\mathcal{E}_{\mu}(g_\lambda, g_\lambda) \leq 4M \left(1 - 2\frac{M}{\lambda^2}\right)^{-1} \mathcal{E}_{\mu}(\lambda U_\lambda g_\lambda, \lambda U_\lambda g_\lambda)^{1/2} \|h\|_{L^2(\mu)}^2 + a \left(1 - 2\frac{M}{\lambda^2}\right)^{-1} \lambda^2 \|g_\lambda\|_{L^2(\mu)}^2$$

for λ big enough. There exists then a constant $C = C(\alpha, M)$ such that

$$\mathcal{E}_{\mu}(g_\lambda, g_\lambda) \leq C \|h\|_{L^2(\mu)}^2$$

for λ big enough. From this fact we deduce $h \in D(\mathcal{E}_\mu)$ and $\mathcal{E}_{\mu,a}(h, h) = 0$. □

Theorem 12. The operator A is essentially self-adjoint on $FC_b(K)$.

Proof. It is enough to notice that any solution in $L^2(E, \mu)$ of the equation $(A^* - a)f = 0$, $a > 0$, will be a null function by Lemma 12. □

References

Université Evry Val d’Essonne
Boulevard des Coquibus
91025 EVRY, FRANCE