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0. Iutroductίon

Stating from a simple formula, we shall show in this paper some elementary
inequalities on the Wiener space. We shall give two applications of these inequal-
ities. The first one is a quick proof of the Markov uniqueness of the perturtions of
Wiener measure. The second one is to prove the essential self-adjointness of the
perturbed Ornstein-Uhlenbeck operatros on Wiener space, when the perturbation
satisfies some kind of Lipschitz boundedness condition.

The Markov uniqueness and essential self-adjointness problems are one of the
basic questions on Dirichlet forms. There are many studies on these subjects. We
mention in the references the papers of Albeverio-Kondratiev-Rδckner, of
Albeverio-Kusuoka, Albeverio-Rδckner-Zhang, of Rόckner-Zhang, of Song, of
Takeda, of Widens, etc. The present paper tries to give a simpler proof of the
Markov uniqueness, and to extend the result of Widens [l l] to the Wiener space.
It will be noticed that our proof of the Markov uniqueness does not use the
maximality property as it did in Song [8] (cf. also Albeverio-Kusuoka-Rόckner
[3]), and our method to prove the essential self-adjointness is different from that
used in Widens [ l l ] .

1. Notations

In this paper E denotes the space Co(R+, Rd) and m denotes the classical
Wiener measure on E. Let c denote the usual imbedding map from the topological
dual space E* of E into E. For any element k^c(E*)dE, we shall put

cik = t~ι(k). Recall that E* is a pre-Hilbert space with the inner product

ak)2(x)m(dx). We fixe an orthonormal basis K of E*. We introduce the space

FCb(K) to be the family of the functions u on E such that there is n^N, /£Ξ
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Cb(Rn), and ki^K,i=l, 2, —, n, so that

x), ••', akn{x)\

For k^K, for a function g^FCΐ(K), -Jf- is defined as lim— (g(x + rk)-g(x)).
OK 7^0 T

We shall say that a function g^L2(E, m) is differentiable in direction k^K, if
there is a function f^L2(E, m) such that

j {-^- akvj{x)g{x)m{dx)= - jv{x)f{x)m(dx),

for any v^FCtiK). In this case we denote ~^ΰ=f - Note that the two definition

of -Λ|- coincide when g^FCV(K). Recall that the bilinear form (u, v)->j Jf Jί

dm, defined on FCV(K) is closable in L2(E, m). We denote by δ its closure,
which is a Dirichlet form.

In this paper we are interested in probability measures μ on E which has the form
μ—φ2 m, where φ is a function in D(S). Let Γ denote the operator of carre du
champs of δ. We define

Au= Σ r (- |p~α*-^-) + 2Γ(«, log φ\

where -Γ(M, log φ) is defined as —Γ(u, φ). It is easy to see that A is a symmetric

operator on L 2(£, μ). Let Z)(μ) denote the family of all Dirichlet forms on
L2(E, μ) whose generator extends A. We shall say that the Markov uniqueness
holds for the measure μ, if ^D{μ) — \. Let S(μ) be the set of all self-adjoint
operators on L2(E, μ) which extend A. We shall say that A is essentially
self-adjoint on FCt(K), if #S(μ) = l. Note that S(μ)Z)D(μ) are not empty. In

fact, the pre-Dirichlet form (u, ^ / ^ J f " < * > defined for u, υ^FCS{K\ is

closable on L2(E, μ) (cf. Albeverio-Rόckner [4], Song [8]). If we denote by δ μ

its closure, δ μ

We shall denote by R* (resp. by CΛ) the resolvent operator of δ (resp. of δ μ). The
generator of δμ will be denoted by L. The space D(δμ) (resp. the space D(L))
will be considered as a Hubert space with the inner product δ μ,i (resp.
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2. Resolvent R

We present some elementary properties of the resolvent operator Rx.

Lemma 1. For any k^K, for any bounded function f we have the following
formula :

Proof. Note we have j-^dm = Jakgdm, for any k^K, for g^FCV(K).

Using this relation the lemma can be easily proved when f^FCV(K). For a
general bounded function /, choose a uniformly bounded sequence of functions

such that /«->/ in L2(E, m). Let v^FCV(K). We have :

-e'2*y)m{dy)m{dx)

l-e-2t y)m{dy)m{dx)

fv(x) Γe-
λt-r==dt

J ^o ve 1

=lim fv(x) Γe-
n^co J Jo

=lim \υ{x)-^rRλfn{x)
n^oo J OK

— — lim / i-Jr-— akVjRλfn(x)m(dx)

This achieves the proof of the lemma. D

Lemma 2. For any bounded function f, we have the inequality

Λ>O λΓ(RJ,

where Coo= L
Ie2t-l

Proof. We have:

λΓ(RJ,

I dt Σ ( ίa
2t _γ k<=K\J

because an forms an orthonormal system in L2(E, m),
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\CιJXf%-u-φ=^dt\ff-,

where

Γ I dt
- 1

/ e~ufϊΰdu<zo, when λ-->oo.

3. A resolvent change formula

Lemma 3. For a/iy f<^FCV(K), Γ(Rλf, log φ)<ΞL\E, μ), and the following
formula holds :

UJ=Rλf+2Uλ[Γ(Rλf, log ?)].

Proof. It is enough to remark that Rxf^FCS(K)(ZD(SM), and

(λ-L)Rλf=(l-A)Rλf=f-2Γ(Rλf, log φ). D

Lemma 4. 77ze formula in Lemma 3 also holds for any bounded function.
Moreover, for any bounded function f, Rλf^D(Sμ) and the following inequalities
hold:

\\λRλf\\LHμ) < \\λ Uλf\\LHμ) + 2-j^CooS (φ, φ)m\\fU

, ARλf)
1/2<&μ(λUλf,

Proof. The two inequalities are direct consequences of Lemma 3 (cf. Song [8])
if fξΞFCb(K). In fact, the equality in Lemma 3 implies immediately

\\λRλf\\LHμ)<\\λUλf\\mμ)^2\\Γ{Rλf, log φ)\\LHμ)

Since \Γ(Rλf, log φ)\2<Γ(Rλf, R,f)Γ(φ, φ)-ψ, we have



MARKOV UNIQUENESS AND ESSENTIAL SELF-ADJOINTNESS 827

\\Γ(RJ, log φ)lLHμ)£[svvy Γ(R»f, Rχf){y)]mδ{φ, φ)112

by Lemma 2. Similarity, we have

S μ(λRλf, ARJ)112

<<Sμ(λU,f, λUJ)m+2Sμ(λUλΓ(RJ, log φ), AUxΠRJ, log φ))m.

The second term can be controlled by

SμΛλU>Γ(RJ, log φ\ λUxΠRJ, log φ))

= λ2jΓ{Rχf, log φ)UxΓ{Rχf, log φ)dμ

<A2\\r(R,f, log e)IU»«olltΛ/W, log φ)\\LHμ)

<λ\\Γ(RJ, log φ)lhlμ)

<[C~S(φ, φf'VU2.

We therefore proved the two inequalities for f^FCV(K).

Now, consider any bounded function /. Let fn^FCt{K) be a sequence of
functions converging to / in L2(E, μ + m), and uniformly bounded by (l + ε)||/||oo,
where ε is an arbitrary fixed positive constant. Thanks to the second inequality,
we see that & μ(λRλfn, λRxfn) is uniformly bounded. Since the function Rifn
converges to Rxf in probability with respect to μ, and is uniformly bounded, it
converges also in L2(E, μ). We have for any a>0 :

fa(l - aUa)λRλf(x)λRλf(x)μ(dx)

=lim fad-aUa)λRλfn(x)λRλfn(x)μ(dx)

fn, λRλfn)<°°.

This proves Rλf^D(Sμ). It now is clear that Rλfn converges to Rλf weakly in
D(Sμ). By continuity and by Banach-Saks theorem (cf. Ma-Rόckner [6]), we can
prove that the above two inequalties hold for Rλf.

To prove the equality in Lemma 3 for Rλf, we notice that Γ(Rλfn, log φ) converges
to Γ(Rλf, log φ) in probability with respect to μ, and

These facts imply that Γ(Rλf, log φ) is in L2(E, μ). It now becomes clear that
Γ(Rλfn, log φ) converges to Γ(Rλf, log φ) in L\E, μ), and consequently con-
verges weakly in L2(E, μ). Finally, we can prove the equality in Lemma 3 by
Banach-Saks theorem and by continuity. D
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REMARK. We in fact have proved

for any bounded function /. D

Corollary 5. For any bounded function f, Rλf^D(L). Moreover,

\\LRJ\\LHμ)<\\f-λUλf\\LHμ)^2\\Γ(Rλff log φ)-λUλΓ(Rλf, log φ)\\LHμ)

Proof. We note that for any g^L2(E, μ), Uλg^D(L). Now, this lemma is
a direct consequence of Lemma 3 and Lemma 4. D

4. Markov uniqueness

Lemma 6. Let D denote the closure of FCb(K) for the norm \u—
Let f be a bounded function. Then, for any fixed λ>0,

REMARK. The space D is a closed subspace in D(L), because L is an extention
of A.

Proof. We regard D as a Hubert space with the inner product \u —
Let fn be a sequence of functions in FCV(K) which tend to f in L2(E, μ + rn). We
shall suppose that Λ's are uniformly bounded by 2||/||oo. Then, Rλfn^FCV(K) for
each n^N. Furthermore, according to Corollary 5, the family of functions Rxfn
is a bounded family in D.

Now, the closed bounded balls in D are weakly compact, we can suppose that Rxfn
converges weakly to an element g in D. According to the Banach-Saks theorem we
can even suppose that the Cesaro mean vn of Rxfn converges strongly in D to g. It
is clear that Rχfn converges to Rxf in probability with respect to μ. Hence, the only
limit for vn must be Rλf. We thus have proved that Rλf=g^D. D

Lemma 7. Let a>0. Let A* denote the adjoint operator of A. Let h be
a bounded solution of the equation (A* — a)h=0. Then, h^D(Sμ).

Proof. Note that by the preceding lemma, h(L — a)Rλfdμ = 0 for any

bounded function /. Let gλ — λUλh. We have :
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O=fh(L-a)λRλgλdμ

= JhL(λUλgλ-2λUλ[Γ(Rλgχ, log φ)])dμ-afhλRλgλdμ

= fgλLgλdμ-2fhL(λU*[Γ(Rλgλ, log φ)])dμ-afkλRλgλdμ

= -δμ(gλ9 gλ)-2Jhλ{λUλ[Γ{Rλgλ, log φ)]-Γ(Rλgλ, log φ))dμ

— ajhλRλgλdμ

— ajhλRλgλdμ.

From this equality we obtain :

δμ(gλ, gλ)= ~2 \gχΓ{λRλgλ, log φ)dμΛ

— ajhλRλgλdμ

<2(||<7joo+WhUβΠλRλgλ, log

, φ)m+a\\h\l.

By Lemma 4 we have :

&μ(λRλgx, λRχgx)m<6μ{gx, gx)υ2 + 2C~δ(φ, φ)m\\gx\\~.

Putting C=|A| |-+(1 + C-)||A|U<?(?», ί?)1'2, we obtain:

or equivalently,

Finally, S μ(gλ, #Λ) 1 / 2 ^(6 + V ^ ) C By this uniform boundedness, by the fact that
h=limλUλh in L2(E, μ), we conclude that h^D(δμ). D

Λ-oo

Lemma 8. The function h is the same as that in the preceding lemma. Then

Sμ,a(h, A) = 0.

Proof. Let a>0. By the definition of h, for any v

SμAK v)=-Jh(Λ-a)vdμ=O.

But FCb(K) is dense in (D(Sμ), δμta), we therefore conclude δμ,a(h9 h)=0. D
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Theorem 9. The measure μ has Markov uniqueness.

Proof. Let S'€ΞD(μ). Let V* be its resolvent operator. We can easily see that
D(&μ)ciD(S'), and, for any bounded function /, Vaf-Uaf^Keτ(A*-a) for
any a>0. By Lemma 8, Vaf= Uaf. This implies £ '=<? μ . D

5. Essential self-adjointness

In this section we suppose in addition that the density function φ of μ is such
that ess.sup Γ(log φ, log φ)<M2, where M is a constant.

Lemma 10. For f^L2(E, μ), λ big enough, we have the inequalities :

, λUJ)m,

\\Γ{λRλf, log φ)\\LHμ)<MSμ{λR>J,

Proof. In fact, it is enough to prove the lemma for f^FCb(K). The general
case can be proved by continuity. We only prove the second inequality. Using
Lemma 4 we obtain the following formulae:

SμMUiΓ(RAf, log φ), λU,Γ{RJ, log φ))

=λfr(Rλf, log φ)λUλΓ(Rλf, log φ)φ2dm

<λfr(Rλf, log φ)2φ2dm

<λfr(RJ, Rλf)Γ(log φ, log φ)φ2dm

, λRλf)φ2dm

S(λRf, λR»f).

So,

+2 j , λRλf)
112,

or equivalently for λ big enough,

j L y $ , λUλf)
112. D
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Lemma 11. Let a>0, and let h<ΞL\E, μ) such that (A*-a)h=0. Then,

and S μ,a(k h)=0.

Proof, let gχ=λUxh. By exactly the same calculus as in the proof of Lemma

7, we have

^ log φ)dμ + 2fhΓ{λRλgλ, log φ)dμ

— a IhλRλgλdμ.

So, according to Lemma 10, we have

y λ , λU^)1/2\\h\\LHμ)

for λ big enough. There exists then a constant C=C(a, M) such that

Sμ(gλ,gλ)<C\\h\\lHμ)

for λ big enough. From this fact we deduce h^D(Sμ) and Sμ,a(h, h) = 0. D

Theorem 12. The operator A is essentially self-adjoint on FCb(K).

Proof. It is enough to notice that any solution in L2(E, μ) of the equation (A*
— a)f=0, a>0, will be a null function by Lemma 12. D
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