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The present paper is concerned with the global Cauchy problem for a
Kowalewski system of partial differential equations of the form

6 " k m 8 N
o 51 (314,00 x)auj—FB,w(t, )] +1ult, %) 0.1)

with the initial conditions
ul‘-(O) x):¢l-'-(x)) M= ly 2)"')k (02)

where x=(x,, -+, &,,) is the generic point in the m-dimensional Euclidean
space R™.

In this paper we shall not impose any condition on the characteristics of this
system.

In [2] S. Mizohata studied the global uniqueness of solutions of the Cauchy
problem within the class of tempered distributions under the conditions that
the coefficients A,,;(t, x) and B,(¢, x) of (0.1) are bounded continuous functions
in (t, x) whose Fourier transforms with respect to x are measures with compact
supports. In [1] A.G. Kostjutschenko and G.E. Shilov considered the unique-
ness of solutions of the Cauchy problem for the system of type (0.1)-(0.2)
within a class of functions which satisfy the inequality |u(x)| < Me*"” for some
constants M and p, under the conditions that the coefficients A4,,,(¢, x) and
B,.(t, x) of (0.1) are independent of ¢ and are bounded continuous functions of
x whose Fourier transforms are exponentially decreasing measures. On the other
hand in [5] T. Yamanaka investigated the uniqueness of solutions of the Cauchy
problem for the system (0.1) within a class of distributions with a finite growth
order under the condition that the coefficients B,.(¢, x) are of the form B,.(¢, x)
=P,,(x) B’,.(¢,x) where P,,(x) are any polynomials in x and B’ (¢, x) are bounded
continuous functions of (¢, x) whose Fourier transforms with respect to x are
exponentially decreasing measures, and the coefficients 4, (¢, x) are the same type
of functions as B’,,(¢, x).



6 M. YamamoTo

In [4] the author studied the existence and the uniqueness of global solutions
of the Cauchy problem for the system (0.1). The uniqueness of solutions was
proved within a class of functions which satisfy the inequality

lu(t, x)| < M exp (ae®'®) in [0, T]X R™

for some constants @, b and M, under some conditions on the coeflicients of
(0,1) specified in the main theorems.

The purpose of this paper is to give a revised and complete proof of the
results obtained in [4]. 'The method of the existence proof used here is essentially
based on that of M. Nagumo [2].

The author wishes to express his hearty thanks to Professor M. Nagumo of
Sophia University for his kind advices and valuable suggestions, and thanks are
also due to Professor H. Tanabe and Dr. H. Kumano-go of Osaka University
and Dr. T. Yamanaka of St. Paul University who gave me many valuable atten-
tions.

1. Assumptions and Notations

We denote by R™ and C™ the m-dimensional real and complex
Euclidean space respectively, and denote by x=(x,, -+, x,,) and 2=x4++/—1y
=@®+V —=1¥1," %t/ —1¥,) (¥, yER™) their generic point respectively.
For positive numbers T" and «, D(T) and Dy(T') are defined as follows:

D(T) ={(t,%); 0=t=T, x&R™}
DYT) ={(t, x); 0=t<T, z€C™, |y;|<v,j=1,--,m}.

For any non-negative integer 2 we denote by C.",,[®,(T)] the class of all
complex valued functions whose derivatives of order up to % are continuous in
D,(T). By A, [D,(T)], we denote the class of all complex valued functions
defined in Dy(T') and holomorphic with respect to 2 when ¢ is fixed in [0, T].
For any positive constants a and b, the class of all continuously differentiable
functions which satisfy the inequality | f(¢, x)| < M exp (ae®'*!) in D(T') for some
positive constant M is denoted by B (a, b), M being allowed to be dependent on
the individual f.
We now state the assumptions on the coefficients of (0,1) here.

Assumptions

(I) Au;t 2), Bu(t, 2) and fu(t, 3) (u, v=1,--+, k; j=1,--, m) are con-
tinuous functions in D,(T).

(II) A,;(t, 2) and B,(t, 2) (p, v=1,--, k; j=1,---,m) are holomorphic
Sfunctions with respect to z in the domain: {zx€C™; —oco<x;<<+oo, |y;|<v,
j=1,2,--,m} for each fixed t in [0, T, and there exist positive constants A and
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B such that | A, (t, 2)| =4, |Bu(t, 2)| =B in D,(T).

()  fu(t, 2) (p=1, 2,+--, k) are holomorphic functions with respect to = in
{reC™; —co<u; <400, |y;|<, j=1,--,m} for each t in [0, T], and pu()
(u=1, -+, m) are holomorphic functions in {z3€C™; —oo<x;<4 o0, |y;|<,
j=1, -+, m}.

2. Main Theorems

In this section we shall state an existence theorem and a uniqueness theorem
for the system (0,1) with the initial conditions (0,2). Proofs of these theorems will
be given in section 4.

Theorem 1. (existence of solutions)

Under the assumptions (I), (II) and (III) on the coefficients of (0,1) and on the
initial conditions (0,2), there exist positive numbers T, and v, O<T,<T, 0<v,<7)
and a system of solutions u,(t, z) (u=1, -+, k) of (0,1) satisfying the initail con-
ditions (0,2), and belonging to C.,,[D,(T,)] N A[D, (T))].

Theorem 2. (uniqueness of solutions)

Suppose that the assumptions (I) and (II) are satisfied. If uu(t, x) and vu(t, x)
(n=1, 2,---, k) are two continuously differentiable solutions of (0,1) in D(T)
satisfying the same initial conditions (0,2) and belonging to §(a, b) for some con-
stants a and b, then uu(t, x)=vu(t, x) (=1, 2, , k) in D(T).

3. Preliminary Lemmas
We begin this section with the following basic lemma.

Lemma 1. Let f(z,,, 3,,) be a function which is holomorphic in the domain
G()= {z=a+/—1yEC™; |2;|<8, j=1, 2,--+,m} and satisfies the inequality

| (20, 2) | =Mp™" (3.1)

there for some positive constants M and a, where p=38— Max|z;|. Then the
following inequality holds in G(8) for each j=1, 2, -+, m; 15j<m

1+
56%(’“‘+V——1y“ s XtV — 1Y) | = %Mp—‘“ (3.2)

Proof. For arbitrary 2°=(2},-:, 27,)=G(8) we take a circle C; in the

z;-plane with center 2§ and raduis 1 _i - where p=8—11;/£§)i]zj|. If z;,€C;

(j=1, 2,---,m), then §—|z;|=8—|2}| — |z;—=2§] gﬁ.&p and hence we have

the inequality
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If(z)|<M(p— a )p (1+“) Mp=™.

Thus in view of Cauchy’s integral formula we get the inequalities

Y ()

0. <(1—|—a)14pr_a 1 j=1,2,-,m

Q.E.D.

In the proof of Theorem 1 and Theorem 2 we may suppose without loss of
generality that the initial values @, all vanish. Then the system (0.1)-(0.2) is
equivalent to the following system of integro-differential equations:

uu(t, x) = ®uu(t, x)], w=1, 2.k (3.3)

where for every u

k

@] = 3 {3 4t ) Z_;‘J (r, )+ | Br, 3y, )}

—|—S:f,4(—r, x)dT .

Therefore in order to prove Theorem 1 and Theorem 2, it is sufficient to prove
the existence and the uniqueness of solutions of (3.3) respectively.
First of all we shall prove the following local existence theorem.

Lemma 2. Suppose that the assumptions (I), (II) and (III) are satisfied.
Then for arbitrary x°< R™ there exists a solution u(t, z) of (3.3) which is continuous-
ly differentiable in (t, 2) and holomorphic with respect to z in

A@) ={(t, 2); 0<t<T,, |3,—a| <R—Lgt, j=1,2,,k}

where 0 < R, < Min {1, Y, <1_+—a)l+m(1_a) ’%A}
a

L, = mkA(l—I—a)
K a ’
T, — Min {7, R,/L,}

with any fixed constants a and x satisfying 0 < a <1 and 0<wx<<1.
Proof. In the first place we note that

gu(t, R)EC L, [Dy(T)] N Ay [Dy(T)]
implies Dulg(t, 2)]EC [Dy (TN A [Dy(T)]

Next consider the sequence of functions u{°(¢, 2) defined inductively as
follows:
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u®(t, 2) =0
uv (8, 2) = Pu[u™ (¢, 2)], n=20,1,-. 3.4)
Then from u”(2, 2)EC. o, [Dy(T)]N Ay [Dy(T)], it follows that ul¥(¢, z)e
C.l, [Dy(T)IN A [Dy(T)] for all positive integers .

Let o [u] = Dy fu]— S' fulr, 2)dr.

Then wd*V—ul =W, [u®—u* "], h=1,2,.--. To demonstrate the con-
vergence of the sequence {u{”(t, )} we consider the series:

(n+1)(t z) Z{u(hu)(t z) u(h)(t z)} —}—u‘”(t z)
= ;‘pr [P —uPPl4-ud (2, 2) .

It is obvious that for given a with 0<<ar<1, there exists a positive constant M
such that

t
Dy 0| _S | fu(r, 2)|dr<Mp~® in A() (3.5
1]

| ug
where p=(R,—Lt—Max{|z;—x}|}), and hence we get
1<jsm

M__pi-o in A@).

S ,u(l) u(O)lde
(1—a)L,

From Lemma 1 and (3.5) we obtain the inequality

t ) __ (0) 1+a
S B(ud—u®) 1—|—a> M o peo

0 0x; L,
Hence we easily get the following inequality:
1+a\'**M , _ kBM -
u(2>_u(1) SmkA( ) il . Rl ®
l ® " |__ -—0[ L1(P (1__ )L 1

The assumptions on the constants L, and R, lead to the estimates
@ —ul | <xMp™® (n=1,-,k) in A(x°).
Therefore we obtain inductively for all positive integers #
lug* P —ul® | <k"Mp™® (w=1,-+, k) in A(x°). (3.6)

This proves that the sequence {u{"(¢, 2)} converges uniformly to a function
uu(t, ) on any closed subdomain of A(x"), and therefore uu(t, z) belongs to
C.., [A()] N A [A(x°)] and uu(t, 2)=Du[u(2, 2)] in A(x°). Q.E.D.
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From the above proof of Lemma 2, we see obviously the following corollary.

Corollary 1. Let the functions uu(t, 2) (n=1, -+, k) be a solution obtained
in Lemma 2, then we have the following inequalities:

M
1—«
where M= Sup {p°T\| ful(t, 2)}.
(t,z)eA(x0)
1Spsk
From now on we shall denote by u.(Z, 2, #°) the solution of (3.3) in A(x")
constructed in the proof of Lemma 2.

luu(?, 2)| = P in A(X°), p=1,-k,

4. Proof of Theorems

Proof of Theorem 1. We shall show that by the analytic continuation with
respect to 2 of the local solutions whose existence was established in Lemma 2,
we get a global solution of (3.3). For this purpose it suffices to prove that
for arbitrary 2 A(x°) NA(x')(*°, ¥'€R™), uu(t, 2, x°) is equals to wu.(t, 2, ")
(u=1, -+, k).

Letting vu(t, ) = uu(t, 2, &°)—uu(t, 2, x'), we have v,(0, 2) =0,
ou(t, 2) = Wu[o(, 2)] in A@)N(x").

If R is a such positive number that

0 1
A= {(t, 2); 0<t<T,, _sz;ﬂ

<R—Litj— 1,---,k}CA(x°)ﬂA(x‘),

%j

then we get the following inequalities as in the proof of Lemam 2:

lvu(t, 2)| = | Wulo(t, 2)]| <eMp® in A, p=1,-,k

D

M= Sup {p”|vu(t, )|}
(t,2)eA’

1=usk

0 1
X X
PO )

where p:(R— L,t—Max {

1Sjsm

From these inequalities it follows that Mp~*<«Mp~® for given « such that
0<w<1. This shows that M=0 and hence vu(t, 3)=0 (u=1,---, k) in A".
Thus in view of the analyticity of v, with respect to & we get vu(¢, 2)=0 in
A(x°) N A(x") (w=1,+++, k), obtaining a global solution (¢, 2) of (3.3) in D, (T).

By Corollary 1 and Theorem 1 we can show without difficulty:

Corollary 2. If | fu(t, 2)| = Mexp (—ae®®) (p=1,-, k) in D,(T) for

some positive constants a, b and M, then for any given positive number a’ (< a)
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there exist positive numbers M’ and T, such that the solution u,(t, x) (u=1, .-, k)
of (3.3) satisfies the inequality

|uu(t, x)| < M’ exp (—a'e?'*") in D(T)).

Lemma 3. For arbitrarily given positive number & and positive constants
a and b, there exist positive numbers a’, b’ and v such that the inequality

exp {—(a+8)¢"1} = exp {—a’ 37 cosh (b'z,)}
holds in D,(T).
Proof.  |exp{—a’cosh (b'z,)} | = exp{—a’Re cosh (b'zu)}

< exp {__ a cosz(b'yv) eb’lxvl} .

For fixed 6 satisfying 0 <@ <—3—, cos (b'y,)=cos § when |y,| <60/b".

Thus lexp{—a’ ZT] cosh (b'2,)} | < exp {_g’c;_se i e”’ml}
< _a’cosf Loixi }
< exp{ 5 e ,

and setting b'=+/mb and a'=22%€) e have
cos 6

exp {—(a+¢&)et*} = exp{—a’g cosh (b'z,)} in DYT)

when va] sSy= V:]') 27 e, M. Q.E.D.

0
Vmb’
Proof of Theorem 2. Set

Lu[u] = 2% _ s {i Aty 921 B, (2, x)uv}
ot == ox; "

and for every o (c=1, 2, , k)
o Ouy | & 0
Lifu] = =2 30 I 014, x)ud— B (t, 2,
at v=1 {j=1 ax]
—e VTt exp{—a’ i cosh (b'x,)} +8,,
v=1
where £ is an arbitrary real vector and a’, b’, v are positive constants such that

the conclusion of Lemma 3 holds when £>0 was given in advance, and §,, is
the Kronecker’s delta.
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The system of equations L;[u]=0 (u=1,-, k) is of similar form to the
system of equations considered in Theorem 1, and considering ¢ in the negative
direction in Theorem 1, we can conclude that there exist a positive number T,
(=T)) such that for any T'[0, T,] there is a system of solutions wy(¢, x) of
L;[u]=0 (u=1,-,k) in D(T) satisfying the initial condition w,(T, x)=0.
Moreover in view of the Corollary 2, we get the following inequalities:

\wa(t, %) < M’ exp {——(a—l—%)ebl"} in D(T) (4.1)

(n=1,+-, k) for some positive constant }/ depending on &, if we choose the
constant a in that Corollary appropriately.

Suppose that u(z, x) and v (¢, x) are two solutions of the system (0.1) with
the initial conditions (0.2). Suppose also that u(¢, x) and v(¢, x) belong to
& (a, b) for some positive numbers @ and b. Then the function u—wv satisfies

L.[u—v] =0,
[#p—0u] (0, x) =0 (w=1,---,k)
and the inequalities

| [uu(t, x)—vu(2, x)]| < K ~exp (ae®*) (4.2)
(p=1, -+, k) in D (T) for some positive constant K and for any T'<[0, T,].
Since
k ~
> {{ wnLalu—o]—(u—va) L[]} dvdt = 0
‘L—ID(T)
we have

S'dt SRme-V-—lff [(t,—2.) exp {—a’ 3 cosh (b'| | )}]dx = 0

for any £ R™ and any t<[0, T,]. Thus for any £ R™ and any t€[0, T], we
obtain

[ e ot (s )0t ¥) exp {—a’ F cosh (|, )} 1ds = 0 (43)
Since | (u,—v,) exp {—a’ VZ: cosh (b'|x,|)} | <exp {—&e*"'},

(4.3) means that the Fourier Transform of the integrable continuous function
(u,—v,) exp{—a’ i cosh (b'|x,|)} vanishes identically in R™ for each t[0, T,].
And since exp{—a’ i cosh (6" |x,|)} 0 in R™, we get

u(t, x)—v,(t, x)=0 in D(T,).
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As o is arbitrary, u,(t, x)=v(¢, x) in D(T,) for every ¢ (=1, -+, k).

Now suppose that there exists a 7" [0, T'] such that u.(7", x)—ovu(T", x)
%0 in R™ for some p, and let 7T, be the infimum of such T,. Then wu.(¢, x)
=uvu(t, x) in D(T,). Taking T and T such that T,—T,<T, and T3;<T,<T,,
and repeating the above argument in the interval [T}, T;], we get wu.(¢, x)=
vu(t, x) for (¢, x)e {D(T,)—D(T3)}={(t, x); T4<t<T,, x&R™. This con-
tradicts the definition of T,,and hence we get the conclusion

wu(t, x) =vu(t, ) in D(T)
for every p (p=1, -+, k). Q.E.D.
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