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1. Introduction

In the A.D.H.M.-construction of anti-self-dual bundles on S4, the Penrose
twistor transformation πz:P

3 -> S4 plays an important role [2],[6]. This fibration
is easily obtaind when we identify S4 with HP1 and C2 with H. An anti-self-dual
vector bundlp F with unitary structure on S4 is lifted to a holomorphic vector
bundle F on P3 with respect to the induced connection. P3 has a real structure
σ induced by the rjght multiplication by the unit quaternion j which is different
from the usual real strucure and preserves the fibration. Although σ on P3 has no
fixed points, it does have fixed lines. These are precisely the fibres of πz. So the
fibres of πz are called real lines and are denoted by Px (x e S4). Then the above
holomorphic vector bundle F has the following properties.

(1) F restricted to an arbitrary real line Px is holomorphically trivial.
(2) The cohomology group //^P3,/^ — 2)) vanishes.

By the definition of/*, (1) is trivial. But (2) is a deep result given by Drinfeld-Manin
[6], Rawnsley [16], Douady [5] and Hitchin [8]. On the other hand,
Barth-Hulek [3] have shown the following. If a holomorphic vector bundle E
on P3 satisfies E^E*(E* is the dual bundle) and H\P\E(-2)) = 0 and if E
restricted to some line is holomorphically trivial, then E is constructed by some
monad. Consequently, A.D.H.M-construction is completed.

We take HP" instead of S4 ̂  HP1. Differential-geometrically, HP" is one of the
quaternionic Kahler manifolds which are Φi-dimensional oriented Riemannian
manifolds whose holonomy groups are contained in the subgroup Sρ(ri) Sp(l),n^ιl.
Nitta [13] and Mamone Capria and Salamon [4] have developed independently
higher dimensional analogues of the notion of (anti-)self-dual connections on a
quaternionic Kahler manifold. Those connections are called cl9c2 and c3-self-dual
connections in Galicki and Poon [7] which are Yang-Mills. We use these
terminology.

As for the Penrose twistor space on a half-conformally flat manifold [1], we
also have a higher dimensional analogue. Salamon showed that there is a twistor
space Z which has a natural complex structure on an arbitrary quaternionic Kahler
manifold M [18]. If we pull back c2-self-dual form to Z, we get (1,1) form on
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Z. Therefore every c2-self-dual bundle on M is pulled back to a holomorphic

bundle on Z.

From now on, we shall confine ourselves exclusively to a quaternionic projective

space HPn. The twistor fibration of HPn is the well known one π:P2n+l -+HPn.

We have a real structure and real lines Px (xεHPn) in the same way as

πz : P
3 -> S4. Let F be a c2-self-dual bundle with a unitary structure on ///*". We

denote by F the pull-back bundle of F. As in the 4-dimensional case, we can

easily check that the above condition (1) still holds. Moreover, the second author

showed a vanishing theorem such as (2) under a general situation. Namely, if M

is a compact quaternionic Kahler manifold with positive scalar curvature and Z is

the twistor space of M, then H1(Z,F( — 2)) = 0 [12]. But, for a higher-dimensional

case, further information about cohomology groups is needed for an analogue of
A.D.H.M.-construction.

The purpose of the present paper is to give a vanishing theorem of cohomology

groups, which, together with the Beilίnson's spectral sequence argument, provides

a sufficient condition for the construction of some kind of bundles on HPn. A

bundle F which we treat in this paper has a c2-self-dual Sp(r) connection (r^2)

with total Chern class c(F) = (\— x)~k where x is the standard generator of

H4(HPn,Z). We employ an algebraic geometrical technique and an induction on

the dimension of the base space. The main idea is to intertwine the twistor spaces

with even dimensional complex projective spaces. By our vanishing theorem, F

is obtained by a monad of the form,

where W=Hl(P2n + i,F( — 1)), as in the 4-dimensional case (see also [4]).

Finally, the second author wishes to thank Professor T. Nitta for his generous
help and would like to make a grateful acknowledgement to Professors K. Ogiue

and Y. Ohnita for many suggestions and kindly encouragement.

2. Preliminaries

Let M be a connected quaternionic Kahler manifold. Using the reduction

theorem (see Kobayashi and Nomizu [9]), we see that the orthonormal frame
bundle of the tangent bundle TM can be reduced to a principal Sp(n) Sp(l)-bund\e

P. Since the action of Λd(g) (geSp(n)) on sp(l) is trivial, we take the vector bundle

E=Px Ad$p(ϊ) associated with the adjoint representation. Then the vector bundle

E has the following properties.
(1) E is a rank 3 subbundle of End(TM).

(2) E has a local basis IJ,K such that

(i) the Riemannian metric g is hermitian for /,/,/£, in the sense that
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gx(IXJY)=gx(JX,JY)=gx(KX,KY) =gx(X, Y\

for all xeM and all X,YeTxM9 and

(ii) I2 = J2=-l IJ=-JI=K.

(3) The connection induced by the Riemannian connection preserves E.
Conversely, the existence of such a vector bundle turns a Riemannian manifold

into a quaternionic Kahler manifold. Therefore the vector bundle E is called
the quaternionic Kahler structure bundle of M.

The vector bundle Λ2Γ*Mhas the following holonomy invariant decomposition:

(2.1) ^2T*M=S2H®S2E®(S2H®S2E}L,

where H and E are vector bundles associated with the standard representations
of Sp(l) and Sp(n\ respectively. In particular, H is a tautological quaternionic
line bundle when the base space is a quaternionic projective space HPn. This
decomposition can also be explained in terms of the Hodge ^-operator as in the
4-dimensional case. To see this, we note that E is isomorphic to S2H via the
metric g. Explicitly, an element AeEx is mapped to ωA by

ωA(X, Y) = g(AX, Y) for X, Ye TXM.

Then, making use of ωf,ωj,ωκ which are locally defined 2-forms, we define a
global 4-form Ω by,

Ω = cojΛcoj -I- ω jΛωj -f ωκ/\ωκ.

It is known that Ω is non-degenerate and parallel on M. This form Ω is called the
fundamental 4-form on M [10].

DEFINITION 2.1. ([7]) For a real number c an ωeT*M is called a c-self-dual

form if

where "*" is the Hodge ^-operator.

We notice that in case of n = \ the above equation can be viewed as the
self-dual or anti-self-dual equation on a 4-dimensional oriented Riemannian

manifold.

Theorem 2.2. ([7]) An ωeΛ2Γ*M is a non-zero c-self-dual form if and

only if

(1) ωεS2H and c = c^ =
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-1
(2) ωeS2E and c = c2 =

(2/1-1)!

3
(3) ωG(S2H®S2E)1- and c = c3 =

(2n-l)\

We shall treat metric connections on a complex vector bundle F equipped
with a hermitian metric h.

DEFINITION 2.3. ([7]) A connection V on F is called c-self-dual if its curvature
2-form Rv is a End F-valued c-self-dual form.

REMARK. As we pointed out in the introduction, Nitta and Mamone
Capria-Salamon have found these connections independently ([4],[13]). But they

used different terminology. A'29 B2 and ^-connections used in Nitta's paper
correspond to cί,c2 and c3 -self-dual connections, respectively. On the other hand,
by Mamone Capria-Salamon, a c2-self-dual connection is called a self-dual
connection.

Theorem 2.4. ([4],[7],[13]) Every c-self-dual connection is a Yang-Mills
connection.

REMARK. Moreover, if M is compact, then for ι=l or 2 an arbitrary

crself-dual connection minimizes the Yang-Mills functional [4],[7]. It is known
that we have essentially unique non-flat cv -self-dual connection over a simply
connected quaternionic Kahler manifold whose dimension is greater than or equals
to 8 [11].

In this paper, we are concerned with c2-self-dual connections. Therefore, we
give a property of c2-self-dual forms. The decomposition (2.1) is based on the
adjoint representation of Sp(n) Sp(l). When the decomposition sp(«)©sp(l)
is regarded as one of Lie subalgebras of so(4«), the subspace on which the
adjoint action of Sp(ί) is trivial is just sp(«). This observation implies the
following.

Lemma 2.5. ([4 Proposition 1]). An ωeΛ2Γ*M is a c2-self-dualform if and
only if

ωx(IXJY) = ωx(JX,JY) = ωx(KX,KY),

for all ceM and all X,YεTxM,
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where IJ,K is a local basis which satisfies the condition (2) of the quaternionic
Kάhler structure bundle E.

Next, we illustrate the relation between the twistor fibration π:P2 w + 1 -> HP"
and c2-self-dual bundles briefly. We identify the complex numbers C with the
subfield of the quaternions H generated by 1 and i. Similarly Hn+l gets identified
with C2n + 2 by writing qp = z0p+jzlp9 Q^p^n. A point of HP" is defined by

homogeneous coordinates tf0>tfι> •",#,,, up to right multiplication by a non-zero
quaternion. In terms of homogeneous coordinates, this fibration is given by

(2-2)

So we get a fibre bundle π:P2n+i -+HP" with fibre P1. Then we obtain

n*(S2EHPv)c:/\l'lT*P2n+1.

(see, for example, [4].) Consequently, we have the following theorem.

Theorem 2.6. ([4],[13]) An arbitrary c2-self-dual bundle F on HP" is pulled back
to a holomorphic bundle F on P2n+1,

Finally, we remark on the notations used in this paper. 0(1) denotes the
hyperplane bundle on Pm. (9(p\peZ is used as usual. F(p) means F®Φ(p\ We
do not distinguish between bundles and locally free sheaves.

We are in a position to state two main theorems.

Main Theorem 1. Let Fbe an arbitrary c2-self-dual bundle on HP" with a unitary
structure. Then, the following vanishing holds',

H\P2n+ί,F(p)) = Q for p^ -2,

where F is the pull-back bundle of F to P2n + ί.

The above theorem is easily obtained by using the vanishing theorem

Hi(Z,F( — 2)) = Q which holds in a general context [12] and the standard exact
sequence on P2w+1

? but we reprove it in another way. Employing the same

argument, we get a vanishing theorem for some special c2-self-dual bundle, which

gives us enough condition to construct such a bundle as the cohomology of a

monad via the theorem of Beilinson.

Main Theorem 2. Let F be an arbitrary c2-self-dual bundle on HP" with

Sp(r)-structure and with total Chern class c(F) = (l-x)~k, where r^2, k^\ and x
is the standard generator of H\HP",Z). Then, we have
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Q for 2^i^n and peZ9

where F is the pull-back bundle of F to P2n+i.

REMARK 1. Applying Serre duality to Main Theorem 2, from a symplectic

structure of F, we know

H\P2n + \F(p)) = 0 for 2 ̂  i g 2n - 1 and p e Z,

REMARK 2. Main Theorem 2 is actually proved under a weaker assumption that

c2(F) = k9 and c4(F)

Combined with Beilinson's spectral sequence (see [15 p.240]), our vanishing
theorems yields the next classification.

Corollary. If the hypothesis of Main Theorem 2 is satisfied, then F is

constructed by a monad of the following form',

W(-l)-> F-> W*(\\

where W* = Hl(P2n+l,F(-l)) and V=Hί(P2n+l,F®Ωί) (see [4], or [16]).

However, the existence of such a vector bundle is another question.

REMARK. When n = l or the base space is HPl^S4, anti-self-dual forms are
called c2-self-dual forms in this paper.

3. Proof of Main Theorem 1

We begin with a lemma.

Lemma 3.1. Let HPn~ * be an arbitrary quaternionic hyperplane of HPn. Then
the restriction of any c2-self -dual form on HPn to HP"'1 is also a c2-self-dual
form on HPn~l. Moreover, the twistor space P2n~l of HPn~l is imbedded into
the twistor space P2"'1 of HPn~l is imbedded into the twistor space P2n + ί of HP"
in a natural way making the following diagram commutative.

p2n-ί ) p2n+l

'i i"
HP"'1 -> HP"
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Proof. Since HP"~l is a quaternionic Kahler submanifold of HPn, the
quaternionic Kahler structure bundle EHpn-ι is obtained as the restriction of
EHPn. The first part of this lemma follows from lemma 2.5.

The latter part is verified by restricting the fibering (2.2) to HPn~i. Π

Proof of Main Theorem 1. The proof is given by induction on the dimension
of the base space. For /ι = l, the assertion has already been proved by
Drinfeld-Manin, Hitchin and Rawnsley [6], [8], [17].

Suppose that the assertion is correct for m — \. We choose a quaternionic
hyperplane HPm~l c HPm and fix a sequence P2"1'1 c P2m c= P2m+1, where P2"1"1

and P2m+ί are the corresponding twistor spaces, respectively. (See Lemma 3.1.) If
F is a c2-self-dual bundle on HPm with a unitary structure, the pull-back bundle
F is a holomorohic vector bundle on P2m+ί with a hermitian structure.

We restrict F to P2m~1 and P2m. Note that /)F2m-ι is the pull-back bundle
of c2-self-dual bundle F\fm-\ from Lemma 3.1. We shall denote the restricted
bundle by the same symbol F9 when no confusion can arise. Then, by the induction
hypothesis, we have

(3.1) Hl(P2m~\F(p)) = Q, for p^ -2.

Since F has trivial splitting type, for p^ - 1, F(p) can have no non-zero section
over P2"1"1, P2m and P2m+1. Namely, we get

(3.2) HQ(P2m-\^) = H0(P2m

9^)) = H0(P2m+ί

9F{p)) = Q9 for p£-l.

Now consider the standard exact sequence of sheaves

0 -> Θ(~ l)|F2m -* Θ\P2m -* (P|F2m-l -> 0.

We tensor this sequence with F\p) and take the associated long exact sequence of
cohomology groups

This, together with (3.1) and (3.2), implies that, for p^-2,

(3.3) H\P2m,F(p-\}}^H\P2m,F\p)).

On the other hand, applying Serre duality and the Theorem B (see, for
example, [15 p. 10]), we know that

Q if
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where p0 is a sufficiently large integer. This, combined (3.3), yields

(3.4) Hi(P2m

9F\p)) = 0 for p£ -2.

Next, we consider the standard exact sequence on p2m+1

Tensoring this with F(p\ we take the associated long exact sequence of cohomology
groups

Making use of of (3.2) and (3.4), we get

(3.5) Hί(P2m+\F(p-l))^Hί(P2m+ί,F(p)) for/7^-2.

Again, it turns out from Serre duality, the Theorem B and (3.5) that

Q for p£ -2.

Main Theorem 1 is thereby proved. Π

4. Proof of Main Theorem 2

We apply the argument which is used in the proof of Main Theorem 1. To
do so, we consider the sequence P3 c P4 a P5. Of course, P3 corresponds to the
twistor space of some HP1 c HP2. The following fact has been already known
in the preceding section.

Since F has a symplectic structure, Serre duality implies

Making use of the Riemann-Roch Theorem on F4, we get

1)} =0,

where the hypothesis c2(F)=k, c4(F) = ̂ k(k + l) is used.
Tensoring the standard exact sequence on F4 with F\p) and taking the associated
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long exact sequence of cohomology groups, we know by the vanishing theorem
H1(P3,F(p)) = Q, p^-2 that a homomorphism

is injecti ve for each p^-2. Hence, H2(P*,P(^2)) = Q yields

Again, Serre duality gives

H2(P*,F\p)) = 0, for all p e Z

Next, the standard exact sequence on P5 gives rise to the associated long exact
sequence

-> H2(P5,F\p)) ->

Our vanishing theorem yields

H2(P5,F\p-\))^H2(P5

9F(p))9 for p£-2.

From Serre duality and the Theorem B, it follows that

H2(P5,F\p)) = Q, for/? ̂ -2.

Moreover, the above long exact sequence implies that a homomorphism

is surjective for each p e Z. So, by induction, it turns out that

H2(P5,F(p)) = 0, for all p e Z.

From Serre duality, we have

#3(P5>^(P)) = 0, for all/ieZ.

In case of « ̂  3, the proof is made along almost the same line. Assume that

Hi(P2m~i

9F(p)) = Q for 2gιg/w-l and /?eZ.

The long exact sequence associated to the standard exact sequence on P2m gives
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Main Theorem 1 and the hypothesis of the induction implies that

H2(P2m,F\p -1)) £ H2(P2m,F\p)\ for p ̂  - 2,

and the map

H2(P2m,F\p -!))-> H2(P2m,F(p)\

is surjective for each p^ — 1. Consequently, we use Serre duality and Theorem B
again to get

H2(P2m,F(p)) = 0, for all p e Z.

With respect to / = 3, ,w, the proof is more simple. By now familiar
argument, we have

//''(P2m,/fr ~ 1)) = H\P2m,F(p)l for all peZ.

Hence, it follows that

H\P2m,F\p)) = 0, for all p e Z.

Applying the same argument to the standard exact sequence on P2m+1

? we obtain
Main Theorem 2. Π
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