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1. Introduction

In the A.D.H.M.-construction of anti-self-dual bundles on S*, the Penrose
twistor transformation n,: P?> — S* plays an important role [2],[6]. This fibration
is easily obtaind when we identify $* with HP' and C? with H. An anti-self-dual
vector bundlg F with unitary structure on S* is lifted to a holomorphic vector
bundle F on P? with respect to the induced connection. P> has a real structure
o induced by the rjght multiplication by the unit quaternion j which is different
from the usual real strucure and preserves the fibration. Although ¢ on P? has no
fixed points, it does have fixed lines. These are precisely the fibres of n,. So the
fibres of m, are called real lines and are denoted by P, (xe S*). Then the above
holomorphic vector bundle F has the following properties.

(1) F restricted to an arbitrary real line P, is holomorphically trivial.

(2) The cohomology group H'(P3?F(—2)) vanishes.

By the definition of F, (1) is trivial. But (2) is a deep result given by Drinfeld-Manin
[6], Rawnsley [16], Douady [5] and Hitchin [8]. On the other hand,
Barth-Hulek [3] have shown the following. If a holomorphic vector bundle E
on P? satisfies ExE*E* is the dual bundle) and H'(P3,E(—2)=0 and if E
restricted to some line is holomorphically trivial, then E is constructed by some
monad. Consequently, A.D.H.M-construction is completed.

We take HP" instead of S*~ HP'. Differential-geometrically, HP" is one of the
quaternionic Kdhler manifolds which are 4n-dimensional oriented Riemannian
manifolds whose holonomy groups are contained in the subgroup Sp(x)- Sp(1),n>1.
Nitta [13] and Mamone Capria and Salamon [4] have developed independently
higher dimensional analogues of the notion of (anti-)self-dual connections on a
quaternionic Kdhler manifold. Those connections are called c;,c, and c¢;-self-dual
connections in Galicki and Poon [7] which are Yang-Mills. We use these
terminology.

As for the Penrose twistor space on a half-conformally flat manifold [1], we
also have a higher dimensional analogue. Salamon showed that there is a twistor
space Z which has a natural complex structure on an arbitrary quaternionic Kéhler
manifold M [18]. If we pull back c,-self-dual form to Z, we get (1,1) form on



1024 Y. KAMETANI AND Y. NAGATOMO

Z. Therefore every c,-self-dual bundle on M is pulled back to a holomorphic
bundle on Z.

From now on, we shall confine ourselves exclusively to a quaternionic projective
space HP". The twistor fibration of HP" is the well known one n: P*"*! - HP".
We have a real structure and real lines P, (xe HP") in the same way as
nz:P? > S* Let F be a c,-self-dual bundle with a unitary structure on HP". We
denote by F the pull-back bundle of F. As in the 4-dimensional case, we can
easily check that the above condition (1) still holds. Moreover, the second author
showed a vanishing theorem such as (2) under a general situation. Namely, if M
is a compact quaternionic Kéhler manifold with positive scalar curvature and Z is
the twistor space of M, then H'(Z,F{(—2))=0 [12]. But, for a higher-dimensional
case, further information about cohomology groups is needed for an analogue of
A.D.H.M.-construction.

The purpose of the present paper is to give a vanishing theorem of cohomology
groups, which, together with the Beilinson’s spectral sequence argument, provides
a sufficient condition for the construction of some kind of bundles on HP". A
bundle F which we treat in this paper has a c,-self-dual Sp(r) connection (r=2)
with total Chern class c¢(F)=(1—x)"* where x is the standard generator of
H*HP"Z). We employ an algebraic geometrical technique and an induction on
the dimension of the base space. The main idea is to intertwine the twistor spaces
with even dimensional complex projective spaces. By our vanishing theorem, F
is obtained by a monad of the form,

WH—1)— H™* - W(1),

where W= H'(P*"*! [{—1)), as in the 4-dimensional case (see also [4]).

Finally, the second author wishes to thank Professor T. Nitta for his generous
help and would like to make a grateful acknowledgement to Professors K. Ogiue
and Y. Ohnita for many suggestions and kindly encouragement.

2. Preliminaries

Let M be a connected quaternionic Kdhler manifold. Using the reduction
theorem (see Kobayashi and Nomizu [9]), we see that the orthonormal frame
bundle of the tangent bundle TM can be reduced to a principal Sp(n)- Sp(1)-bundle
P. Since the action of 4d(g) (g€ Sp(n)) on sp(1) is trivial, we take the vector bundle
E=Px ,sp(1) associated with the adjoint representation. Then the vector bundle
E has the following properties.

(1) E is a rank 3 subbundle of End(TM).

(2) E has a local basis IJ,K such that

(i) the Riemannian metric g is hermitian for LJ,K, in the sense that
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&X,1Y)=g(JX,JY)=g(KX,KY)=g,(X,Y),
for all xe M and all X,YeT M, and
(i) I*’=J%*= -1, IJ=—JI=K.

(3) The connection induced by the Riemannian connection preserves E.

Conversely, the existence of such a vector bundle turns a Riemannian manifold
into a quaternionic Kéahler manifold. Therefore the vector bundle E is called
the quaternionic Kdhler structure bundle of M.

The vector bundle AT *M has the following holonomy invariant decomposition:

.1 NT*M=S*H®S*EQ(S*H®S’E)*,

where H and E are vector bundles associated with the standard representations
of Sp(1) and Sp(n), respectively. In particular, H is a tautological quaternionic
line bundle when the base space is a quaternionic projective space HP". This
decomposition can also be explained in terms of the Hodge *-operator as in the
4-dimensional case. To see this, we note that E is isomorphic to S*H via the
metric g. Explicitly, an element 4 € E, is mapped to w, by

w (X, Y)=g(4X,Y) for X,Ye T M.

Then, making use of w,w;,wg which are locally defined 2-forms, we define a
global 4-form Q by,

Q=w Ao+ wAw;+ g \og.
It is known that Q is non-degenerate and parallel on M. This form Q is called the
fundamental 4-form on M [10].
DeriNiTION 2.1.  ([7]) For a real number ¢ an we T*M is called a c-self-dual
form if
*w=coAQ" 1,

66,9

where “x” is the Hodge *-operator.

We notice that in case of n=1 the above equation can be viewed as the
self-dual or anti-self-dual equation on a 4-dimensional oriented Riemannian
manifold.

Theorem 2.2. ([7]) An weN*T*M is a non-zero c-self-dual form if and
only if

6n
@n+1)

(1) weS?H and c=c,=
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—1

(2 weS?E and c=c,=——,
2n—1)!

3
() we(S*H®S*E)* and c=cy=——.
2n—1)

We shall treat metric connections on a complex vector bundle F equipped
with a hermitian metric A.

DEFINITION 2.3. ([7]) A connection V on F is called c-self-dual if its curvature
2-form RY is a End F-valued c-self-dual form.

REMARK. As we pointed out in the introduction, Nitta and Mamone
Capria-Salamon have found these connections independently ([4],[13]). But they
used different terminology. A, B, and Aj-connections used in Nitta’s paper
correspond to ¢,,c, and c;-self-dual connections, respectively. On the other hand,
by Mamone Capria-Salamon, a c,-self-dual connection is called a self-dual
connection.

Theorem 2.4. ([4],[7],[13]) Every c-self-dual connection is a Yang-Mills
connection.

REMARK. Moreover, if M is compact, then for i=1 or 2 an arbitrary
¢;-self-dual connection minimizes the Yang-Mills functional [4],[7]. It is known
that we have essentially unique non-flat c¢,-self-dual connection over a simply
connected quaternionic Kahler manifold whose dimension is greater than or equals
to 8 [11].

In this paper, we are concerned with c,-self-dual connections. Therefore, we
give a property of c,-self-dual forms. The decomposition (2.1) is based on the
adjoint representation of Sp(n)-Sp(1). When the decomposition sp(n)@sp(1)
is regarded as one of Lie subalgebras of so(4n), the subspace on which the
adjoint action of Sp(1) is trivial is just sp(n). This observation implies the
following,

Lemma 2.5. ([4;Proposition 1]). An weAN*T*M is a c,-self-dual form if and
only if

o (IX,IV)=w,X,JY)=0(KX,KY),
for all xe M and all X,Ye T M,
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where IJ,K is a local basis which satisfies the condition (2) of the quaternionic
Kihler structure bundle E.

Next, we illustrate the relation between the twistor fibration =:P?"*! - HP"
and c,-self-dual bundles briefly. We identify the complex numbers C with the
subfield of the quaternions H generated by 1 and i. Similarly H"*! gets identified
with C?"*2 by writing ¢,=z,,+jz,,, 0Sp<n. A point of HP" is defined by
homogeneous coordinates ¢4, -*,¢,, up to right multiplication by a non-zero
quaternion. In terms of homogeneous coordinates, this fibration is given by

(2.2) T:[200:Z10s"**sZom Z1n] = (905915 **su)-
So we get a fibre bundle n: P?"*! » HP" with fibre P'. Then we obtain
TC*(SZE"P") c /\I’IT*PZ"+1.

(see, for example, [4].) Consequently, we have the following theorem.

Theorem 2.6. ([4],[13]) An arbitrary c,-self-dual bundle F on HP" is pulled back
to a holomorphic bundle F on P*"*1,

Finally, we remark on the notations used in this paper. (1) denotes the
hyperplane bundle on P™. ((p), pe Z is used as usual. F{p) means FRO(p). We
do not distinguish between bundles and locally free sheaves.

We are in a position to state two main theorems.

Main Theorem 1. Let F be an arbitrary c,-self-dual bundle on HP" with a unitary
structure. Then, the following vanishing holds;

H\(P™ L Rp)=0  for p< -2,

where F is the pull-back bundle of F to P!,

The above theorem is easily obtained by using the vanishing theorem
H\(Z,F(—2))=0 which holds in a general context [12] and the standard exact
sequence on P>"*! but we reprove it in another way. Employing the same
argument, we get a vanishing theorem for some special c,-self-dual bundle, which
gives us enough condition to construct such a bundle as the cohomology of a
monad via the theorem of Beilinson.

Main Theorem 2. Let F be an arbitrary c,-self-dual bundle on HP" with
Sp(r)-structure and with total Chern class c(F)=(1—x)"*%, where r22, k=1 and x
is the standard generator of H*(HP",Z). Then, we have
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HiP™ ' Fp)=0  for 2<i<n and peZ,

where F is the pull-back bundle of F to P*"*!,

REMARK 1. Applying Serre duality to Main Theorem 2, from a symplectic
structure of F, we know

H((P>” FHp)=0  for 2<i<2n—1 and peZ,

REMARK 2. Main Theorem 2 is actually proved under a weaker assumption that

c(F)=k, and  c,(F)= %k(k +1).

Combined with Beilinson’s spectral sequence (see [15 p.240]), our vanishing
theorems yields the next classification.

Corollary. If the hypothesis of Main Theorem 2 is satisfied, then F is
constructed by a monad of the following form;

M—1)- V- WX1),

where W*=HY\P?>"*! F(—1)) and V=HP**\ FQQ!) (see [4], or [16]).
However, the existence of such a vector bundle is another question.

REMARK. When n=1 or the base space is HP'~S*, anti-self-dual forms are
called c,-self-dual forms in this paper.

3. Proof of Main Theorem 1

We begin with a lemma.

Lemma 3.1. Let HP""! be an arbitrary quaternionic hyperplane of HP". Then
the restriction of any c,-self-dual form on HP" to HP"™' is also a c,-self-dual
form on HP""!. Moreover, the twistor space P**~' of HP"™! is imbedded into
the twistor space P*"~! of HP"~! is imbedded into the twistor space P*"*' of HP"
in a natural way making the following diagram commutative.

P2n—1 - P2n+l

nl ln
HP""! - HP"
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Proof. Since HP"~! is a quaternionic Kihler submanifold of HP", the
quaternionic Kéhler structure bundle Egp.-: is obtained as the restriction of
Egpn.  The first part of this lemma follows from lemma 2.5.

The latter part is verified by restricting the fibering (2.2) to HP"™ !, O

Proof of Main Theorem 1. The proof is given by induction on the dimension
of the base space. For n=1, the assertion has already been proved by
Drinfeld-Manin, Hitchin and Rawnsley [6], [8], [17].

Suppose that the assertion is correct for m—1. We choose a quaternionic
hyperplane HP™~! ¢ HP™ and fix a sequence P*™~! ¢ P*" < P>"*! where P*" !
and P?™*! are the corresponding twistor spaces, respectively. (See Lemma 3.1) If
F is a c,-self-dual bundle on HP™ with a unitary structure, the pull-back bundle
F is a holomorohic vector bundle on P?"*! with a hermitian structure.

We restrict F to P?™~! and P*". Note that Flp.m-: is the pull-back bundle
of c,-self-dual bundle Flpm-: from Lemma 3.1. We shall denote the restricted
bundle by the same symbol F, when no confusion can arise. Then, by the induction
hypothesis, we have

(3.1) H'(P*™ ' Hp)=0, for p<-2.

Since F has trivial splitting type, for p< —1, F(p) can have no non-zero section
over P?™~1 P?™ and P?™*!, Namely, we get

(3.2) HO(P*"~ ", Ap)) = H(P*", Fp))= H°(P*"* ', F{(p))=0, for p<—1.
Now consider the standard exact sequence of sheaves
00— (9(— 1)|pzm g (Olpzm - (Ol,nm—n - 0.

We tensor this sequence with F{(p) and take the associated long exact sequence of
cohomology groups

o > HO(P?™ !, Rp)) » H'(P*", Fp—1))
- H'(P*",F(p)) » H'(P*" ', Fp) > ---.
This, together with (3.1) and (3.2), implies that, for p< —2,

~

(33 H'(P*" Fp—1)=H'(P*", F{p)).

On the other hand, applying Serre duality and the Theorem B (see, for
example, [15 p.10]), we know that

H' (P Fp)=0 if [p|>po,
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where p, is a sufficiently large integer. This, combined (3.3), yields
(3.4) H\(P*™ Fp))=0  for p<—2.
Next, we consider the standard exact sequence on P?>™*!
0-0(—1)- 0> Olpm— 0.

Tensoring this with F(p), we take the associated long exact sequence of cohomology
groups

-« > H(P*",Fp)) » H'(P*"*',Fp—1)
— HY(P*™* 1, ) » H'(P*", F(p) - -~
Making use of of (3.2) and (3.4), we get
(3.9 H\(P*™ '\ Rp—1)>H'(P>* ! Fp) for p<—2.
Again, it turns out from Serre duality, the Theorem B and (3.5) that
H\(P>+1 {p)=0  for p<—2.

Main Theorem 1 is thereby proved. [

4. Proof of Main Theorem 2

We apply the argument which is used in the proof of Main Theorem 1. To
do so, we consider the sequence P> = P* = P5. Of course, P? corresponds to the
twistor space of some HP! < HP?. The following fact has been already known
in the preceding section.

H(P*,Fp)=0, for p<—1,
H\(P*Fp))=0, for p<—2.
Since F has a symplectic structure, Serre duality implies
H3P*Fp)=0, for pz -3,
H4P* Fp)=0, for p=—4.

Making use of the Riemann-Roch Theorem on P*, we get
dim H*(P*, (- 2))=1—12{k(k +1)—k(k+1)} =0,

where the hypothesis c,(F)=k, c,(F)=21k(k+1) is used.
Tensoring the standard exact sequence on P* with F{p) and taking the associated
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long exact sequence of cohomology groups, we know by the vanishing theorem
H'(P3 Fp))=0, p< —2 that a homomorphism

H*(P*,Fp—1)) » HXP*,Fp))
is injective for each p< —2. Hence, H*(P*,F{—2))=0 yields
H*(P*Fp)=0, for p<—2.
Again, Serre duality gives
H*P*Fp)=0, for all peZ.

Next, the standard exact sequence on P° gives rise to the associated long exact
sequence

- > HI(P*,Fip) » H(P*, Fp—1)
- H*(P*,Ap) » H*(P*,Fp) > ---.
Our vanishing theorem yields
HYP%,Fp—1)~H¥P% Fp)), for p<-—2.
From Serre duality and the Theorem B, it follows that
HYP3,Fp)=0, for p<—2.
Moreover, the above long exact sequence implies that a homomorphism
H(P*,Fp—1)) » H*(P*,Fp))
is surjective for each pe Z. So, by induction, it turns out that
H*(P’ Fp)=0, for all peZ.
From Serre duality, we have
H3P5,Rp)=0, for all peZ.
In case of n > 3, the proof is made along almost the same line. Assume that
H(P>" L Hp)=0  for 2<i<m—1 and peZ.
The long exact sequence associated to the standard exact sequence on P*>™ gives
~« > HY(P*™ 1, Ap) » HX(P*",Flp—1))
- H(P*",Fp)) » H*(P*"~ L, Fp)) > ---.
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Main Theorem 1 and the hypothesis of the induction implies that
HXP*",Fp—1)=x HXP*",Fp)), for p< -2,
and the map
HXP*",Fp—1)) - H*(P*",Fp)),

is surjective for each p= —1. Consequently, we use Serre duality and Theorem B
again to get

H*P* Fp))=0, for all peZ.

With respect to i=3,.--,m, the proof is more simple. By now familiar
argument, we have

H{(P*™ Fp—1))~H(P*™ Fp)), for all peZ.
Hence, it follows that
H(P*>" F(p))=0, for all pe Z.

Applying the same argument to the standard exact sequence on P?"*! we obtain
Main Theorem 2. [J
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