
Title
Time-reversible operator composition integrator
for the berendsen temperature-control molecular
dynamics equation

Author(s) Fukuda, Ikuo; Queyroy, Séverine; Nakamura,
Haruki

Citation

Version Type AM

URL https://hdl.handle.net/11094/62109

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



TIME-REVERSIBLE OPERATOR COMPOSITION INTEGRATOR
FOR THE BERENDSEN TEMPERATURE-CONTROL MOLECULAR

DYNAMICS EQUATION�

IKUO FUKUDAy , SÉVERINE QUEYROYz , AND HARUKI NAKAMURAy

Abstract. The Berendsen equations of motion (EOM) are widely used for controlling the
temperature of a target physical system in molecular dynamics (MD) simulation. In spite of the use-
fulness of the Berendsen EOM, its numerical integration has never raised much attention mainly due
to its non-Hamiltonian feature. Nevertheless, a non-optimal integration scheme de�nitely limits the
possibility of its applications. In order to e¢ ciently integrate the Berendsen EOM, we construct here
an operator composition scheme that has the following properties: First, the scheme is symmetric,
i.e., it is time reversible as is the original di¤erential equation; Second, the scheme is systematic, i.e.,
any higher order of the local accuracy can be attained by a composition method; Third, the scheme is
robust, i.e., a velocity scaling factor that is bounded with respect to s = h=� was obtained and thus
allows a larger s. Here h is the unit time step of the integration and � is the EOM parameter related
to the temperature-control speed (faster for a smaller �). These good properties were con�rmed,
with a comparison to conventional methods, by applying them into an isolated ethane molecule, a
bulk argon system, and a bulk ethane system. Our extended EOM formalism, which provides an
invariant function, also helps to observe the numerical error that cannot be detected solely by the
temperature controllability.

Key words. Berendsen equations of motion, molecular dynamics, temperature control, numer-
ical integration, time reversibility, symmetric composition, invariant function

AMS subject classi�cation. 65L05, 65Y04, 81V55

1. Introduction. Temperature control in molecular dynamics (MD) method [1,
2] is important to conduct a realistic simulation of a physical system [3, 4]. There are
many algorithms to control the temperature of a given physical system, and they are
called thermostat methods [5, 6, 7].

Among them, the Nosé-Hoover (NH) thermostat method [8, 9] can generate the
Boltzmann-Gibbs distribution at the target temperature under the assumption of
the ergodicity. The structure of the NH equation is basically simple and universal,
which allows many extensions (see e.g., Refs. [10, 11, 12, 13] for recent work and
the references in [6, 14] for earlier work). The NH equation is obtained by adding a
force of the form ��v to the Newtonian equations of motion (EOM) that the original
physical system, de�ned by coordinate x and velocity v, should obey. Here, the
friction coe¢ cient-like quantity is a dynamical variable developing according to �(t) /R t
0
(K(v(t0))=K0 � 1) dt0+const:, whereK(v) andK0 are the present and target values

of the kinetic energy of the physical system, with t being a time. In this sense the NH
equation is based on the �integral�scheme [15] for controlling the temperature, or the
kinetic energy, where the deviation K(v)=K0�1 is integrated with respect to time (we
consider the instantaneous temperature and the kinetic energy to be proportional).

The Gaussian isokinetic method [16, 17, 18, 19] �xes the temperature of the system
as the initial value with suppressing the deviations. This is based on the Gauss�s
constraint method, which can be viewed as the �di¤erential� control scheme [15],
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since it is de�ned by the Newtonian EOM attaching the frictional force ��v with
�(t) / � d

dtU(x(t)), where U(x) is the potential energy of the physical system.

Berendsen et al. [20] proposed an alternative method to control the temperature,
based on a �direct�control scheme. This is de�ned in the same manner as the above
methods but uses �(t) / (1 � K0=K(v(t))) without integration or di¤erentiation.
Despite the ambiguity of the phase-space distribution produced [21], the Berendsen
method is simple, stable, intuitive, and has been employed by many users [22] for e.g.
biological simulations. In fact, the simplicity of the method allows to combine it with
a grand canonical MD [23] and with dissipative particle dynamics [24]. The stability of
the method allows to e¤ectively equilibrate a roughly prepared system or to perform a
subtle temperature change, even though other elaborated schemes fail. The Berendsen
method, as well as the NH method and the stochastic velocity re-scaling method [25],
yield transport properties that are statistically indistinguishable from that under the
microcanonical ensemble, while the di¤usion properties are signi�cantly dampened by
the Andersen thermostat and Langevin dynamics, when strong coupling is used [26].

In spite of the usefulness of the Berendsen equation, its numerical integration has
never raised much attention. The system is not a Hamiltonian system [27, 28], so
one cannot directly use symplectic integrators [29, 30, 31, 32, 33], which has been
shown to be e¢ cient in a variety of studies [34, 35, 36]. This was the main reason to
hamper the development of an e¢ cient numerical integration based on a theoretically
clear foundation. Most of the integration algorithms for the Berendsen EOM are thus
based on heuristic approaches, obtained by a combination of the leapfrog method and
the velocity scaling, which may give O(�t) accuracy. However, these approaches lack
both the time-reversibility feature and a protocol to attain high accuracy. Another
reason to prevent the development of an e¢ cient integrator may be originated to the
purpose of the use. That is, one often supposes that it is su¢ cient to have a good
temperature controllability of the target physical system and that the accuracy is of
second importance. However, there are cases where the temperature control is good
but a large numerical error is accumulated. Thus a method to capture the error is
necessary to get physically correct results.

In this paper we propose a time-reversible (symmetric) integrator of the Berend-
sen EOM, where the EOM is extended so as to have a time invariant function. These
devices are based on the techniques previously developed for non-Hamiltoninan sys-
tems [37]. From the time reversibility, the integrator map preserves the reversible
feature that the original ordinary di¤erential equation (ODE) has. This should con-
tribute to the accurate integration [38]. By monitoring the value of the constructed
invariant function, numerical integration on the extended space can be done without
destroying the original solutions of the ODE and will detect the error that cannot be
necessarily done by the temperature controllability. The integrator is explicit, and
furthermore, higher-order integrators can be systematically constructed by the sym-
metric operator composition technique, which is based on an e¤ective splitting of the
target vector �eld [39]. It should also be noted that the exact operator map leads to a
robustness of the current method. That is, the current method uses a velocity scaling
factor that is bounded with respect to timestep, while conventional methods use a
scaling factor that is unbounded, leading to instabilities. Similarities and di¤erences
between the current and conventional methods are revealed theoretically in depth and
numerically using molecular systems. We believe the current study to be the �rst one
to discuss both the Berendsen�s method and the integrator mathematics.

Section 2 reviews the Berendsen EOM and its integration schemes found in the
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literature. In section 3, we present our integration scheme and demonstrate its fun-
damental properties. In section 4 we theoretically discuss relationships between the
current and the conventional integration methods. Their mathematical details are
demonstrated in Appendixes A and B. In section 5, we investigate properties of the
current method and compare it with other methods, via numerical simulations using
one model system and two bulk atom/molecule systems. Section 6 summarizes the
current work and gives remarks.

2. Berendsen equations of motion. The Berendsen EOM can be represented
by [20],

_x = v;

_v = F (x)M�1 +
1

2�

�
K0

K(v)
� 1
�
v;

9=; (2.1)

where x � (x1; : : : ; xn) 2 D � Rn; v � (v1; : : : ; vn) 2 Rn; F (x) 2 Rn, and K(v) �Pn
i=1miv

2
i =2 represent the atomic coordinates, velocities, force (smooth vector-valued

function on a domain D), and kinetic energy, respectively, of a physical system of
n degrees of freedoms, with mi being a mass parameter, which de�nes the matrix

M �diag(m1; :::;mn). The friction-coe¢ cient variable � � � 1
2�

�
K0

K(v) � 1
�
governs

the control of the temperature of a physical system, T (v) � 2K(v)=nkB , referring
to the target temperature T0 � 2K0=nkB > 0, (viz., K0 is the target kinetic energy
value), with kB being Boltzmann�s constant. The parameter (time constant) � > 0
adjusts the control strength, where a large � gives a weak control, and the limit � !1
reduces to the Newtonian equations of motion. Note that a similar but alternative
de�nition of � is discussed in [40].

Typical numerical integration schemes to solve the EOM are the following. In the
original approach [20, 22], the present-timestep coordinates and velocities (x0; v0) are
obtained from the one-timestep-preceding quantities (x; v) as:

~v = v + hF (x)M�1 (2.2a)

v0 = �h(v)~v; (2.2b)

x0 = x+ hv0; (2.2c)

where h indicates the unit time step used in the integration. Here,

�h(v) �
�
1 +

h

�

�
K0

K(v)
� 1
�� 1

2

(2.3)

is the scaling factor of the atomic velocity for the temperature control [20]. Note that
another de�nition of the present-timestep velocity, which keeps the original integration
scheme given by (2.2), is possible, such as (v0 + v)=2. Equation (2.2) is considered
to be a �rst-order algorithm (see section 4.2), and we denote it by Method 1 for
the reference. Alternatively, we can use a slightly modi�ed version where �h(~v) is
used instead of �h(v) in (2.2b), and we call this a modi�ed Berendsen scheme or,
simply, Method 1 mod. Note that the original paper [20] uses T0=T (v), the ratio
of the target temperature and the present temperature, instead of K0=K(v), and
considers the linear transformation such as T (v) = 2K(v)=kB(3N �Nc � 3), with N
being the number of atoms and Nc being the number of constraints. We see that
K0=K(v) = T0=T (v) irrespective of the linear transformation, so that (2.1) and (2.3)
are suitable.
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As considered in Khalili et al. [41], the velocity scaling and the Verlet scheme can
be combined such as

x0 = x+ hv +
h2

2
F (x)M�1; (2.4a)

~v = v +
h

2
(F (x) + F (x0))M�1 (2.4b)

v0 = �h(~v)~v: (2.4c)

Namely, after the velocity Verlet algorithm, the scaling is done; we call it Method 2.
An alternative choice is to use �h(v) instead of �h(~v) in (2.4c).

3. Extended system and integration scheme.

3.1. Extended ODE and invariant. The simple scheme [37] to construct an
invariant function is brie�y reviewed in section 3.1.1, and it is applied to the Berendsen
EOM in section 3.1.2.

3.1.1. General scheme. For a given arbitrary smooth ODE in a domain 
 of
RN ,

_! = X(!); (3.5)

we associate an additional variable v 2 R to the original variables ! = (!1; : : : ; !N ) 2

 and represent them by !0 = (!; v) as a point of an �extended space�
0 � 
 � R.
We then make an �extended ODE�[37] on 
0,

_!0 = X 0(!0); (3.6)

which is de�ned by

_! = X(!); (3.7a)

_v = Y (!): (3.7b)

Here Y : 
! R is an extended-�eld function de�ned by

Y (!) � �(X(!)jrB(!))

= �
NX
i=1

Xi(!)DiB(!); (3.8)

with B being an arbitrary smooth function on 
. It is then shown that a function

L : 
0 ! R; !0 d7! B(!) + v (3.9)

becomes an invariant of the extended ODE; i.e., for an arbitrary solution �0 � (!; v)
of (3.6),

L(�0(t)) = B(!(t)) + v(t) (3.10)

is constant for any time t. Thus, by monitoring the conservation of the invariant while
numerically integrating the extended ODE, we can check the numerical error. It is
clear that all solutions, t 7! !(t), in the original ODE (3.7a) are una¤ected by adding
v and its EOM (3.7b).

4



3.1.2. For the Berendsen EOM. According to the scheme, for the Berendsen
ODE (2.1)

_! = XB(!); (3.11)

where

XB : 
! R2n; ! � (x; v) 7!
�
v; F (x)M�1 +

1

2�

�
K0

K(v)
� 1
�
v

�
with 
 � D � Rn� [viz., all (x; v) except v = 0 2 Rn], the extended ODE is de�ned
by

_!0 = X 0
B(!

0) 2 R2n+1 (3.12a)

= (XB(!); Y (!)) (3.12b)

=

�
v; F (x)M�1 +

1

2�

�
K0

K(v)
� 1
�
v; Y (!)

�
; (3.12c)

viz.,

_x = v;

_v = F (x)M�1 +
1

2�

�
K0

K(v)
� 1
�
v;

_v = Y (!) = �(X(!)jrB(!));

9>>=>>; (3.13)

and the invariant is L(!; v) = B(!) + v.
Among a variety of choices of the function B, the following one may be physically

natural:

B(x; v) � U(x) +K(v); (3.14)

viz., B is the total energy of the system, where we assume the existence of the po-
tential function U such that F = �rU . Applying (3.14) to (3.8), we get Y (!) =
1

�
(K(v)�K0) and so have the extended equation and the invariant as follows:

_v =
1

�
(K(v)�K0) ; (3.15)

L(!; v) = U(x) +K(v) + v: (3.16)

We can also con�rm (3.16) to be a time invariant for (3.13) by a straightforward
di¤erentiation with respect to time:

�(F (x(t))jv(t)) + d

dt
K(v(t)) +

1

�
(K(v(t))�K0) = 0:

Interestingly, this is equivalent to the relation based on the original consideration of
the �global coupling�[i.e., equation (9) in [20]]. Note also that as � !1, we have the
Newtonian limit: the EOM approaches the Newtonian EOM, and the invariant (3.16)
approaches the Newtonian total energy K(v) + U(x) up to v(0) = const:

A slightly generalized choice of B de�ned by

B(x; v) � c1U(x) + c2K(v); (3.17)
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where c1 and c2 are parameters, produces the following EOM of v and the invariant,

_v = Y (!)

= (c1 � c2)(F (x)jv) +
c2
�
(K(v)�K0) ; (3.18)

L(!; v) = c1U(x) + c2K(v) + v; (3.19)

respectively. It is pointed out that the choice of c1 = 0 would be useful in the case
where the potential U does not exist.

Note that Bussi et al. [25] proposed a stochastic canonical sampling method along
the line of the velocity scaling and discussed an associated conserved quantity that
is de�ned for an individual trajectory. The notion of this conserved quantity seems
similar to that of the extended invariant [37] for an ODE. However, our target here is
in the ODE, and the invariant is a function globally de�ned in the phase space, which
are the di¤erences between the approach of Bussi et al. and ours.

3.2. Integrator.

3.2.1. First-order Integrator. To construct a numerical integrator, we decom-
pose a target vector �eld and compose the corresponding phase space maps, according
to the scheme described in [37]. We decompose the target extended �eld X 0

B , de�ned
by (3.12b)�(3.12c), as X 0

B =
P4

i=1X
0[i], where

X 0[1](!0) � (v; 0; 0) ; (3.20a)

X 0[2](!0) �
�
0; F (x)M�1; 0;

�
; (3.20b)

X 0[3](!0) �
�
0;

1

2�

�
K0

K(v)
� 1
�
v; 0

�
; (3.20c)

X 0[4](!0) � (0; 0; Y (!)) : (3.20d)

The point to get the decomposition is to ensure that each ODE

_!0 = X 0[i](!0) (3.21)

can be solved explicitly. This is trivial for i = 1, 2, and 4, but may not be for i = 3:

_x = 0;

_v =
1

2�

�
K0

K(v)
� 1
�
v

_v = 0:

9>>=>>; (3.22)

We �nd that the solution of ODE (3.22) taking an initial value (x0; v0; v0) 2 
0 is

x(t) = x0; (3.23a)

v(t) =

��
1� K0

K(v0)

�
exp

�
� t
�

�
+

K0

K(v0)

� 1
2

v0; (3.23b)

v(t) = v0: (3.23c)

It should be stressed that X 0[3] is a smooth (now, of class C1) �eld on 
0 so that the
solution of the initial value problem is unique. Since we can directly check that (3.23)
satis�es both (3.22) and (x(0); v(0); v(0)) = (x0; v0; v0), equation (3.23) is the unique
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solution. Note that the decomposition of X 0
B is natural in that the additional quan-

tities v and Y do not a¤ect the solutions of a decomposed original ODE _! = X [i](!)
for i = 1, 2, and 3, where X [i] is obtained by the same type of the decomposition of
the original (not extended) �eld XB =

P3
j=1X

[i] [viz., X [i] is de�ned by removing 0
in the last column of (3.20a), (3.20b), and (3.20c) for i = 1, 2, and 3, respectively].
In particular, (3.23) is not a¤ected by v and Y .

Hence, the exact �ow �[i]t for each vector �eld X 0[i], where t 7! �
[i]
t (!

0) denotes
the solution of (3.21) with an initial value !0 2 
0, is thus represented by the following
map or operator on the extended phase space 
0:

�
[1]
h : !0 7! (hv + x; v; v) ; (3.24a)

�
[2]
h : !0 7!

�
x; hF (x)M�1 + v; v

�
; (3.24b)

�
[3]
h : !0 7! (x; �h(v)v; v) ; (3.24c)

�
[4]
h : !0 7! (x; v; hY (x; v) + v) ; (3.24d)

where we have used h instead of t. Here,

�h(v) �
��
1� K0

K(v)

�
exp

�
�h
�

�
+

K0

K(v)

� 1
2

(3.25)

comes from (3.23b) and becomes the counterpart of �h(v) de�ned in (2.3); see the
next section for their comparison and see Appendix A for their detailed properties.

Then we get a �rst-order integrator with an unit time step h,

�h = �
[4]
h � �[3]h � �[2]h � �[1]h ; (3.26)

which will be a map from 
0 to 
0 (see Appendix B for mathematical details, including
the fact that the maps �[i]h are not necessarily de�ned for all h 2 R except for i = 4).
There are many possibilities [37] about the appearing order of �[i]h in (3.26), and
we discuss it later. The integration scheme (3.26), de�ning the change from the
preceding values to the present values, (x; v; v) 7! (x0; v0; v0), is also expressed in an
explicit operation form,

x0 = x+ hv: (3.27a)

~v = hF (x0)M�1 + v; (3.27b)

v0 = �h(~v)~v; (3.27c)

v0 = hY (x0; v0) + v; (3.27d)

and practically used in computer code. Rather than the form of these operations,
the form of (3.26) expressed by the maps �[i]h is helpful for theoretical analyses. The
latter form, which has not been taken into account in conventional studies for the
Berendsen EOM though, enables us to properly grasp �[i]h , �h, and Th, where �

[i]
h

(i = 1; : : : ; 4) are the constituents of the integration map �h, which in turn mimic
the exact �ow Th for the target ODE (3.12); �

[i]
h , �h, and Th are uniformly viewed

as maps (operators) on 
0 and can be analyzed with certain properties of maps (the
so-called �symplectic integrator�on a Hamiltonian system [28] is constructed in the
same spirit, where the symplectic property of maps is concerned).
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3.2.2. Higher-order Integrator. The viewpoint of the maps is also useful to
systematically raise the (local) accuracy of the integrator. In fact, an integrator with
second-order accuracy can be constructed as a map by composing maps based on
�h, which is of the �rst-order accuracy. Here, an integrator map 	h is said to be
pth-order, if

Th(!
0)�	h(!0) = O(hp+1) (3.28)

holds for any !0. A typical second-order integrator is an extended version of the Verlet
method [37, 42]:

	h = �h=2 � ��h=2; (3.29)

where

��t � (��t)
�1 (3.30a)

= �
[1]
h � �[2]h � �[3]h � �[4]h (3.30b)

is the adjoint map of �t and also a �rst-order integrator. Thus we have

	h = �
[4]
h=2 � �

[3]
h=2 � �

[2]
h=2 � �

[1]
h � �[2]h=2 � �

[3]
h=2 � �

[4]
h=2: (3.31)

Equations (3.30b) and (3.31) can be automatically derived from the fact that each
map �[i]h is the exact �ow [of the decomposed ODE (3.21)]. The explicit forms of
operations for 	h are provided by the similar manner as (3.27).

The appearance ordering of �[j]h (j = 1; : : : ; 4) in (3.26) is arbitrary to ensure the
�rst-order local accuracy. However, the ordering has an in�uence on the computa-
tional time needed. The most time-consuming operand in (3.24) is the evaluation of
force F (x) or potential U(x). The force evaluation is required for �[2]h . In addition,

the evaluation of F (x) or U(x) may be required for �[4]h (function Y ) and for the
invariant. Here, speci�cally consider the typical integration form (3.29). Then, the
number of the force or potential evaluation is 1 (viz., the minimum) for any cases if
we use the ordering of (3.26), but otherwise it may be 2. Details are discussed in
section I of Supplementary materials. For these reasons, one of our recommended
ordering, for any Y , is given by (3.26).

Now, using the �rst-order maps de�ned by (3.26) and (3.30), higher-order inte-
grators can be obtained as a map by the symmetric composition with the adjoint [43]:

	h = ��sh � ���sh � � � � � ��2h � �
�
�2h

� ��1h � ���1h; (3.32)

where coe¢ cients f�i; �ig � R satisfy the symmetric condition

�i = �s+1�i; i = 1; :::; s; (3.33)

in order to satisfy the symmetric property: 	�h = 	h [see also section 4.3 (ii)]. Speci�c
values of the parameters, viz., stage s and coe¢ cients f�i; �ig, as described in [42], can
be used, and we have presented several second-order integrators (they are designated
as P2S1 or P2S2 [43, 44]) and fourth-order integrators (P4S5 [44] and P4S6 [45]).
Among second-order integrators, the simplest one is called as P2S1, de�ned by (3.29):

	P2S1h = �h=2 � ��h=2
Note that a volume preserving integrator can be constructed according to the current
scheme with the twisting technique described in [37].
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4. Relationship among the integrators.

4.1. Reinterpretation of conventional methods. To observe the relation-
ship between the current and the conventional integration methods, we �rst consider
the velocity scale factors �h(v) and �h(v), which are given by (3.25) and (2.3), respec-
tively. They are intimately related with each other. As can be obtained by expansions
of functions, we get

�h(v) = �h(v) +O(h2) (4.1a)

= �h(v) +O((h=�)2): (4.1b)

Equation (4.1b) indicates the similarity of �h(v) and �h(v) when h � � , viz., unit
time step is very small than the temperature-control parameter (see Appendix A for
more detailed comparisons). Thus, the factor �h(v), which was originally introduced
in the Method 1 [20], can also be derived as an approximation of the factor �h(v)
that appears as a component of �[3]h [equation (3.24c)], which is the exact �ow of
the decomposed Berendsen �eld, X 0[3] [equation (3.20c)], which can also be identi�ed
with X [3], as stated. In other words, �h(v) is very natural for the original Berendsen
EOM.

Equation (4.1) implies that the conventional methods can be seen as certain ap-
proximations, with respect to h, to the current method. To clarify this, �rst notice,
as implied from (4.1a) (see Appendix B), the fact that

�
[3]
h (!

0) = ~�
[3]
h (!

0) +O(h2) (4.2)

where

~�
[3]
h (!

0) � (x; �h(v)v; v) : (4.3)

Using these terminologies, we can rede�ne the conventional integrators as maps, con-
structed by ~�[3]h and a related one, on the extended space. First, Method 2 [equa-
tion (2.4)] can be represented as

�M2,h � �[4]h � ~�[3]h � �[2]h=2 � �
[1]
h � �[2]h=2: (4.4)

If we ignore the extended variable v, then (4.4) is completely consistent with (2.4).
Here, v does not a¤ect, as well as the original EOM, the development of x and v
de�ned by the original Method 2, and v is changed (boosted) only by �[4]h . Thus, �

[4]
h

can be freely composed and we may de�ne e.g., �M2,h � ~�
[3]
h ��

[2]
h=2 ��

[1]
h ��

[2]
h=2 ��

[4]
h

instead. The reason why we choose (4.4) is that we can take a similar form as our basic
�rst-order map (3.26) [viz., �[4]h is placed at the last] to conduct their comparisons.
This choice will also apply to other maps described below.

Similarly, Method 1 mod can be represented as

�M1m,h � �[4]h � �[1]h � ~�[3]h � �[2]h : (4.5)

Recall that Method 1 mod is a modi�cation of Method 1 [equation (2.2)], which can
now be represented by

�M1,h � �[4]h � �[1]h � ��[3]h � �[2]h ; (4.6)
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where

��
[3]
h (!

0) �
�
x; �h(v � hF (x)M�1) v; v

�
: (4.7)

��
[3]
h is similar to ~�[3]h but not equivalent, and re�ects the fact that in Method 1 the

velocity before the mapping by �[2]h is referred as an argument of �h. Note that we

have included �[4]t in �M1m,h and �M1,h using the same concept as that in �M2,h.

4.2. Similarity. Now, we can show, as detailed in Appendix B, that these three
maps, �M1m,h, �M1,h, and �M2,h, are equivalent to �h in the �rst-order accuracy,
where �h is a currently given map de�ned by (3.26). Namely,

�M1m,h(!
0) = �h(!

0) +O(h2) (4.8)

=
�
�
[4]
h � �[3]h � �[2]h � �[1]h

�
(!0) +O(h2);

�M1,h(!
0) = �h(!

0) +O(h2); (4.9)

�M2,h(!
0) = �h(!

0) +O(h2): (4.10)

As an intermediate type between �M1m,h and �h, a map,

~�h � �[4]h � ~�[3]h � �[2]h � �[1]h ; (4.11)

which uses ~�[3]h instead of �[3]h in �h, can be de�ned and is also equivalent to �h in
the �rst order:

~�h(!
0) = �h(!

0) +O(h2): (4.12)

Since �h is a �rst-order map, the above four maps become �rst-order integrators.
Note that, however, this does not straightforwardly indicate that the maps do not
have higher-order property. In particular, �M2,h includes the part, �

[2]
h=2 ��

[1]
h ��[2]h=2,

which corresponds to the second-order map for the Newtonian EOM, so that �M2,h
may behave as a second-order map if the Newtonian parts are dominant, as will be
discussed later.

Computational cost of the current �rst-order map �h and that of the conventional
maps are essentially the same. In addition, the di¤erence in the cost of between the
current second-order P2S1 map [see (3.29) or (3.31)] and the conventional maps is at
least O(n), which can be mostly ignored against the O(n2)-cost generally required in
the force evaluation for �[2]h . This is the consequence of the choice of the appearance

ordering of �[j]h , as discussed. However, note also that the cost becomes higher if use
higher-order integrators, in general.

4.3. Di¤erence. As stated, the conventional integrators, including the Berend-
sen�s map �M1,h and the related map �M1m,h, are equivalent to the current 1st-
order scheme �h in the lowest-order local accuracy. However, the current whole
algorithm (3.32), using �h and ��h, is not the same as the conventional methods, so
that the overall behavior should not also be the same. The following three di¤erences
are given:

(i) Order of the local accuracy�. Equation (3.32) is at least the second or-
der (which is the same as that of the Verlet method), while the conventional ones,
�M1,h and �M1m,h, are 1st order. This di¤erence holds even when the current algo-
rithm (3.32) uses ~�[3]h , instead of �

[3]
h .
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(ii) Time reversibility (symmetric property)�. Here, a map �h parame-
trized by a time parameter h is said to be time reversible (at h), if ��h � �h is well
de�ned and becomes the identity; namely, if we go forward and then back with h,
then we get to the starting point. Note that this is a fundamental property of all
solutions of arbitrary smooth ODEs, including the original Berendsen EOM (2.1).
Time reversibility is often referred as a symmetric property (here, we de�ne the latter
as a slightly stronger property than the former): �h is said to be symmetric (at h), if
��h exists and �

�
h = �h. Since a numerical integrator mimics the exact solutions of the

original ODE, it should be symmetric. We see that 	h [equation (3.32)] is symmetric
provided that the parameters obey (3.33). In contrast, the conventional ones, �M1,h,
�M2,h, and �M1m,h, are not. Note also that �

[i]
h (i = 1; :::; 4) used in the current

integrator are symmetric (time reversible), but ~�[3]h used in conventional integrators
is not in general (where the usual group property is lost).

(iii) Robustness�. �h(v) and �h(v) �uctuate according to the change of the
kinetic energy K(v) during the simulation; they are decreasing with increasing K(v)
for h > 0. By the following two reasons, the method using �h(v) is more robust than
the method using �h(v) (mathematical details are shown in Appendix A). (1) First,
the amplitude of �h(v) is larger than that of �h(v) for any K(v) and any h > 0.
This indicates that we often have to treat signi�cant changes for �h(v) in general.
Since this comparison is for the same K(v) value but not for the same simulation
step, the above indication makes sense as long as the dynamics obtained by using
�h(v) encounters similar or smaller �uctuations of K(v) than those obtained by using
�h(v). (2) Second, if we increase the value of h=� , viz., increasing h and/or decreasing
� , then the di¤erence of the two amplitudes, j�h(v)� �h(v)j, becomes large. This
indicates that the scheme using �h(v) becomes more robust than that using �h(v), as
we increase h to use a larger timestep and/or decrease � to control the temperature
faster. Here, note that the parameters � and h=� appear only in �[3]h , ~�

[3]
h , and ��

[3]
h ,

through �h(v) and �h(v).

5. Numerical Simulation. Among the current integrators, we examined the
most fundamental one, P2S1, in detail and compared it with the conventional meth-
ods, Method 1, Method 1 mod, and Method 2. A basic model system and two bulk
systems were used for the examinations. All the simulations were performed with a
program specially developed for this study.

5.1. Material. (1) Isolated ethane molecule. The molecule is designed by two
CH3 united atoms (m1 = m2 = 15 g/mol) and one harmonic spring connecting
the two united atoms. The interaction is thus U(r) = k(r � r0)2, where r is the
distance between the atoms, r0 is its equilibrium value, and k is the spring constant.
The parameters used were r0 = 1:54 Å and k = 240 Å�2kcal/mol, and the target
temperature T0 was 300 K, as set in [46]. The initial coordinates x(0) � (x1(0);x2(0))
and velocities v(0) � (v1(0);v2(0)) were x1(0) = �x2(0) = (�0:8; 0; 0) and v1(0) =
�v2(0) = (�; 0; 0), where � =

p
3kBT0=m1. With these settings, the total linear

and angular momenta are initially zero, and the temperature is initially the target
temperature. The initial value of the extended variable was set to v(0) = 0.

(2) Bulk argon system. The interactions of argon atoms are de�ned by a pairwise
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Fig. 5.1. (a) Trajectories of averaged temperature, TMA, for a single ethane molecule system
obtained by four integration methods: Method 1, Method 1 mod, Method 2, and P2S1. Temperature-
control time constant � is varied, while the unit timestep h is 1 fs. (b) Trajectories of the invariant
function L (Å2 g/mol fs�2) using the four methods with h = 1 fs and � = 1 ps.

Lennard-Jones type potential with the smooth force-switching scheme of the form,

U(r) =

8<:
Ar�12 �Br�6 + a0 for 0 < r � r1;
a0 +

P4
k=0 bkr

k for r1 < r < rc ;
0 for rc � r <1;

(5.1)

where A = 2508000 Å12kcal/mol and B = 1545 Å6kcal/mol. The original force
function is de�ned for r � r1 and it is smoothly damped zero at the cuto¤ length rc ,
where r1 = 8 Å and rc = 10 Å were used. The parameters, ak and bk, are determined
so as to U be a smooth function, e.g., a0 = �

P4
k=0 bkr

k
c (see [42] for the details). 168

argon atoms were treated within a 20� 20� 20 Å3 cubic box under the 3D periodic
boundary condition. The target temperature T0 was 87 K, which corresponds to a
liquid phase. The initial velocities were set randomly, modi�ed to zero the total linear
momentum, and scaled to obtain an initial kinetic energy equal to the target kinetic
energy. The initial value of the extended variable was set to v(0) = 0.

(3) Bulk ethane system. The intramolecular interaction is the same as that in (1),
and the intermolecular interactions were de�ned by a pairwise potential of the same
form as (5.1) with A = 6020089 Å12kcal/mol, B = 2165 Å6kcal/mol [47], r1 = 12 Å,
and rc = 14 Å. 588 molecules were treated within a 30� 30� 30 Å3 cubic box under
the 3D periodic boundary condition. T0 was 184 K. The initial velocities were set
randomly, modi�ed to zero the total linear momentum, and scaled to obtain an initial
kinetic energy equal to the target value. The extended variable was set to v(0) = 0.

5.2. Results and discussion.

5.2.1. Isolated molecule. To investigate fundamental properties of the inte-
grators, we �rst apply them to a simple model system, an isolated ethane molecule.
We have studied the following four properties: (i) temperature control ability, (ii)
accuracy, (iii) robustness, and (iv) time reversibility.

(i) Since this system is small, the temperature �uctuations should be large so that
the temperature control will not be trivial. To see this, we have varied the value of
the temperature-control time constant � . Here, in general, a small � increases the
temperature controlling speed but introduces sti¤ness in the system. In contrast,
a large � decreases the controlling speed and results in no temperature control in
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Fig. 5.2. The errors of the invariant function obtained for the single ethane molecule system.
Unit timestep h is varied. (a) Four integration methods using � = 1000 fs. (b) Method 2 and P2S1
using � = 1 or 10 fs.

the Newtonian limit � ! 1. Figure 5.1(a) shows averaged time development of the
temperature obtained by the four integration methods using h = 1 fs and several �
values. Here, to properly capture the control ability, simple moving average, TMA(n) �
1

NMA

PNMA

i=1 T (n�i+1), is depicted for n � NMA � 1000, instead of the instantaneous
temperature at time t = nh, T (n) (see Figure S1 in Supplementary materials for the
instantaneous temperature). Method 1 was not satisfactory for this system. For
smaller � , the �uctuations are enormously large, relative to the target temperature
T0, and for larger � the �uctuations are smaller but the averaged temperature is too
high compared with T0. Method 1 mod was better than Method 1, suggesting that
the velocity scaling using the boosted velocity ~v = v + hF (x)M�1 is better than
using the original velocity v [viz., �h(~v)~v was better than �h(v)~v in (2.2)]. However,
the averaged temperatures of Method 1 mod are still far from T0 for the largest
and smallest � . Method 2 and P2S1 are comparable, and the temperature control is
good except for the largest � . The smaller the � the faster the control becomes, as
theoretically expected, and it does work even for the smallest � .

(ii) We have checked the numerical error by the conservation of the invariant
function de�ned by (3.16) applying (3.14). Figure 5.1(b) shows the trajectory of the
invariant (Å2 g/mol fs�2) obtained by each method with h = 1 fs and � = 1 ps.
The drift in Method 1 is signi�cant, which may be expected from the temperature
controllability as discussed above. Method 1 mod also exhibits unignorable drift,
although the temperature control is relatively good for these h and � values as shown
in Figure 5.1(a). This indicates that the judgement of the simulation validity only
by the temperature controllability is in fact insu¢ cient. Method 2 and P2S1 are
comparable and show good conservations of the invariant.

To investigate the accuracy in detail, the global error was estimated by the error
of the invariant dL, which was obtained by the following formula in order to properly
capture the behavior of the trajectory of L, as described in [42]:

dL =
D
hjL(t)� L(t0)ji jt0+sdt=t0

E���
t0
; (5.2)

where one thousand di¤erent time origins, t0, have been chosen randomly, and the
sampling duration, sd, was 10 ps. Figure 5.2(a) shows the error dL measured with
varying the unit time step h. Method 1 generates large errors especially for h >
1 fs. Method 2 and P2S1 are comparable and imply good second-order integrator
behavior [42]. Their di¤erence is only in a very small h for � = 1 ps.
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Fig. 5.3. The reversibility for (a) Method 1, (b) Method 2, and (c) P2S1, tested on the single
ethane molecule system. Black �+� designates the temperature of each timestep obtained in the
forward simulation, while red ��� the backward simulation. �O¤ set� shows the deviation between
the forward and backward values.

The resemblance between Method 2 and P2S1 may imply a special relationship
between them. Although Method 2 is not considered to be an exact second-order map,
it may have a certain relation with the second-order P2S1 map 	P2S1h , in contrast
to Method 1 and Method 1 mod. For example, under �mild� conditions such that
K(v) � K0 (near equilibrium) and/or s � h=� is su¢ ciently small (non �sti¤�), it may
hold that �M2,h � 	P2S1h +O(s3) or a weaker relationship such as �M2,h � 'h�	P2S1h �
'�1h + O(s3) for a certain invertible map 'h (viz., 'h becomes a postprocessor [48]
between 	P2S1h and �M2,h in an approximate sense). These relationships suggest a
second-order like property for �M2,h.

(iii) Robustness of the current method in the sense of (iii-1) demonstrated in
section 4.3 should be already clear from the simulation di¤erence to the conventional
methods, Method 1 and Method 1 mod, shown above. The indication on issue (iii-
1) in section 4.3 really makes sense, because the dynamics generated by P2S1 using
�h(v) encounter similar or smaller �uctuations of K(v) than the dynamics generated
by Method 1, Method 1 mod, and Method 2, all of which use �h(v).

The robustness of P2S1 in the sense of (iii-2) in section 4.3, originated from the
di¤erence between �h(v) and �h(v) [viz., the di¤erence between ~�

[3]
h and �[3]h ], will be

clearer by increasing s � h=� . This also reveals the di¤erence between Method 2 and
P2S1, as depicted in Figure 5.2(b), which shows dL measured using � that is smaller
than in Figure 5.2(a). For � = 10 fs, the accuracy of P2S1 is superior than Method 2
with the order from one to two for h � 1 fs, although the di¤erence vanishes for a
larger h because the principal error may come from the common maps �[2]h and �[1]h .
For � = 1 fs, the di¤erence between Method 2 and P2S1 is clearer, and Method 2
broke for h > 1 fs, due to the domain exception problem (see Appendix A for details).

(iv) Figure 5.3 shows the results of a time reversing test. After a �forward�
simulation for M = 100 time steps with unit time step h = 1 fs, it was changed into
the negative value, viz., h = �1 fs, and a �backward�simulation was conducted forM
time steps. If the trajectory is exact, then we will have the same (x; v) value atM�m
time step and atM+m time step for everym = 1; ::;M . They were deviated much for
Method 1, as indicated in Figure 5.3(a). Furthermore, it broke atM+21 time step due
to the use of negative time step (see Appendix A). For Method 2 [Figure 5.3(b)], the
correspondence betweenM�m andM+m is better, but the deviations were gradually
increased and also resulted in a break atM+67 steps. In contrast, the correspondence
is almost perfect for P2S1 and resulted in the same (x; v) value at the �nal 2M
time steps as the initial value [Figure 5.3(c)]. These results clearly indicate that the
current P2S1 method is really time reversible, which is a fundamental property of the
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Fig. 5.4. (a) Trajectories of the averaged temperature for a bulk argon system obtained by
Method 1, Method 1 mod, Method 2, and P2S1. Temperature-control time constant � is varied. The
errors of the invariant function are shown with (b) unit timestep h being varied (abscissa) with �
�xed to be 1 ps, and (c) � being varied (abscissa) with h �xed to be 1 fs.

original ODE and should be possessed by accurate numerical integrators. Note that
�backward�simulation is not done in ordinary simulations, but it is preferable to have
many measures, including the �backward� simulation analysis, to detect numerical
errors, where the loss of the time reversibility indicates potential errors.

5.2.2. Bulk argon. Figure 5.4(a) shows the trajectories of averaged tempera-
ture TMA in the bulk argon system using h = 1 fs. Temperature control ability re-
sembled for all the methods, for which a smaller � conducts quick control and a larger
� leads to slow control, as expected. This resemblance is in contrast to the smaller
system, the isolated molecule, discussed above. However, the accuracy measured by
the invariant deviation dL clari�ed the di¤erence between the methods. Figure 5.4(b)
shows dL, which was estimated in the same manner as the isolated molecule system,
by using several h values and a �xed � value at 1 ps. The accuracies of P2S1 and
Method 2 are one or two orders of magnitude better than that of Method 1 and
Method 1 mod for a wide range of h. The di¤erence between P2S1 and Method 2 is
larger for a smaller h and it vanishes for practical h values. However, the di¤erence
becomes large for a smaller � , as shown in Figure 5.4(c), where dL was estimated
using several � values and a �xed h value at 1 fs. The di¤erence between P2S1 and
Method 2 is one or two order of magnitude for � . 1000 fs. This clearly shows the
robustness of the current method, which thus enables quick and accurate temperature
control using a small � .

5.2.3. Bulk ethane. The robustness of the current method was also observed
in the bulk ethane system, as shown in Figure 5.5. For � = 1 ps, the accuracies of
the two methods, P2S1 and Method 2, are one or more orders of magnitude better
than that of the remaining two methods, Method 1 and Method 1 mod. However, for
� = 10 fs, the situation clearly changed, and only P2S1 is accurate, with two or more
orders of magnitude, compared with Method 1, Method 1 mod, and Method 2 for a
wide range of h. The maximum h value for P2S1 with the � = 10 fs case was 11 fs.

Remarks regarding the dL vs. h curves are made. These curves are very smoother
than those obtained in the single molecule system indicated in Figure 5.2(a). This
should be related to the fact that the temperature deviation of the small system is large
(see Figure S1 in Supplementary materials) so that the temperature control is di¢ cult,
resulting in a sti¤ness to the system. On the other hand, the gradient of the curve
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Fig. 5.5. The errors of the invariant function obtained for a bulk ethane system using the four
integration methods. Unit time step h is varied with � �xed to be (a) 1 ps and (b) 10 fs.

is considered to correspond the local order of the accuracy [42]. In this viewpoint,
Method 2 seems to be a second-order integrator if � = 1000 fs [Figure 5.5(a)] but it
seems to be a �rst-order integrator if � = 10 fs [Figure 5.5(b)]. Thus, Method 2 is
implied to have a intermediate property between these two accuracies.

6. Conclusion. The proposed scheme for numerically integrating the Berendsen
temperature-control EOM works well in respect of the temperature-control ability, ac-
curacy, robustness, and time reversibility. It was analyzed theoretically and examined
numerically by simulating an isolated ethane molecule, a bulk argon system, and a
bulk ethane system.

The superiority of the proposed integrator in the temperature-control ability is
clear in a sti¤ system, which is here an isolated molecule system having larger �uctu-
ations. The proposed P2S1 integrator and the conventional integrators are equivalent
in the computational cost and the �rst-order local accuracy. But P2S1 is second order,
and also the proposed scheme enables us to attain a higher accuracy. The accuracy
measured by the invariant function for P2S1 was one or two orders of magnitude bet-
ter than that of the conventional integrators, for a wide range of h and in particular
for a small � , where h is the unit time step and � is the temperature-control time
constant of the EOM. The robustness of the proposed method is also clear if we use
a larger ratio, h=� . It thus allows to use, as well as a large h, a small � , which leads
to a subtle control of the temperature of the physical system. The robustness of the
proposed method comes from the velocity scale factor �h(v), which is a counterpart
of �h(v) used in conventional methods. Although a suitable � value may depend on
physical consideration or simulation purpose, the results provided by the proposed
method were similar or superior than those of the conventional methods for all �
values investigated. The proposed operator-map scheme is successful to capture the
property of the original ODE, the time reversibility. The time reversibility of the
proposed method comes from a suitable decomposition of the Berendsen vector �eld
and the symmetric composition technique of the resultant exact maps.

In this study, we restrict our attention on the most fundamental scheme, P2S1,
among the proposed methods. This is because it is simply implemented while highly
e¤ective. Higher-order integration schemes, such as fourth-order integrators P4S5
and P4S6, can be used according to the proposed method, in order to attain higher
accuracy for a small h. For a larger h, an alternative second-order integrator, P2S2,
is useful and will show a comparable or better performance relative to P2S1. In this
study, as the basis for these comparisons, P2S1 was shown to be better than the
conventional schemes by the numerical simulations.
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Fig. 7.1. Velocity scale factors �(r; s) = [1 + s (r � 1)]
1
2 and �(r; s) = [(1� r) exp (�s) + r]

1
2 ,

where r � K0=K(v) and s � h=� . Domains of de�nition of (a) � and (b) � are shown, as well as
contours (large as light color). (c) Values of the factors with respect to s, where r � 2 > 1, r � 1,
and r � 0:5 < 1 cases are indicated.

We also showed that a good performance of the numerical integrator was not
measured by only the temperature-control ability. The currently proposed invariant
function de�ned on the extended phase space is useful for any integrator to catch the
numerical error and to prevent unphysical results.

7. Appendix A. Here we analyze and compare the two velocity scale factors:
conventional one, �h(v), and the currently introduced one, �h(v).

7.1. Basics. To simplify the discussion, we re-parametrize these factors, using
s � h=� 2 R (the ratio of a unit time step to the time constant) and r � K0=K(v) 2
R+ (the ratio of the target value to a variable for the kinetic energy; R+ denotes
strictly positive numbers), such that

�(r; s) = [1 + s (r � 1)]
1
2 ; (7.1)

�(r; s) = [(1� r) exp (�s) + r]
1
2 ; (7.2)

reducing �(K0=K(v); h=�) = �h(v) and �(K0=K(v); h=�) = �h(v). Since we need
real-valued factors, �rst we should clarify the domain of de�nition of � and that of �.
They are, respectively, given by

�� � f(r; s) 2 R+ � Rj s � s�(r) if r < 1, and s � s�(r) if r > 1g; (7.3)

�� � f(r; s) 2 R+ � Rj s � s�(r) if r > 1g (7.4)

[see Figures 7.1 (a) and (b)], where

s�(r) � (1� r)�1; (7.5a)

s�(r) � ln(1� r�1): (7.5b)

7.1.1. Domain exception problem. The integrator breaks down if �or � takes
a value out of �� or ��.

(r = 1 case) Since

�(1; s) = �(1; s) = 1 (7.6)

holds for all s 2 R, there is no problem in this case, as expected from the fact that
r = 1 means the �equilibrium�K0 = K(v).
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(r < 1 case) If r < 1, then admissible s for �(r; s) is restricted such that s � s�(r),
but this condition is met as long as s � 1, namely, h � � . Thus, the domain
exception problem may not be severe in many practical simulations (nevertheless, we
have con�rmed this problem for Method 2 in Figure 5.2(b)). In contrast, since all
s 2 R is admissible for �(r; s) when r < 1, no problem arrises in the proposed method.

(r > 1 case) If r > 1, then every s � 0 is admissible for both � and � [since
s�(r); s�(r) < 0 if r > 1], while the use of negative s is restricted. We have encountered
this type of domain exception in the backward simulation for the conventional methods
as seen in Figures 5.3(a) and 5.3(b). In contrast, for the current method using � in
�
[3]
h , the usual group property, (�

[3]
�h � �

[3]
h )(!

0) = !0, ensures no exception in the
backward simulation. However, this type of the domain exception concerns higher-
order integrators (see section 7.3).

7.1.2. Graph. Both � and � are monotonic functions with respect to both r
and s (strictly monotonic unless r = 1 or s = 0). Typical graphs are depicted in
Figure 7.1(c). Equation (4.1) can be obtained (see also Remark 8.6 in Appendix B)
from the Maclaurin�s expansion of � and � with respect to s such that

�(r; s) = 1 +
1

2
(r � 1)s� 1

8
(r2 � 1)s2 +O(s3); (7.7a)

�(r; s) = 1 +
1

2
(r � 1)s� 1

8
(r � 1)2s2 +O(s3): (7.7b)

Note that �(r; s) 6= �(r; s)+O(s3) in general (the equality holds only in the �equilib-
rium�case r = 1).

7.2. The statements on the robustness. We mathematically formulate the
statements on issues (iii-1) and (iii-2) in section 4.3 as Propositions 7.2 and 7.3, re-
spectively. Proofs of propositions are given in section III of Supplementary materials.

Issue (iii-1). When r = 1, viz., kinetic energy K(v) takes the target value K0,
then the factors do nothing, that is, (7.6) holds. In simulations, r varies so that �
and � �uctuate around the unity. As a fundamental property, we observe

Proposition 7.1. (a) If 0 < r < 1 then �(r; s) = �(r; s) = 1 for s = 0 and
�(r; s) < �(r; s) for all admissible s 6= 0, (b) if r = 1 then �(r; s) = �(r; s) = 1 for all
s 2 R, and (c) if r > 1 then �(r; s) = �(r; s) = 1 for s = 0 and �(r; s) > �(r; s) for
all admissible s 6= 0.

Now, we see that the amplitude of �(r; s) from its �equilibrium�value 1 is larger
than that of �(r; s):

Proposition 7.2. j�(r; s)� 1j = j�(r; s)� 1j holds for any (r; s) 2 �� \ ��
provided that s > 0, where the equality holds only if r = 1.

Issue (iii-2). Consider the behavior of �(r; s) and �(r; s) as increasing s =
h=� , viz., increasing the unit time step h or decreasing the temperature-control time
constant � . As for a global behavior, �(r; s) is bounded for s � 0 and lims!1 �(r; s) =

r
1
2 for any r > 0, but �(r; s) is not. In fact, lims!1 �(r; s) =1 if r > 1, and �(r; s)
cannot be de�ned anymore for s > s�(r) if r < 1. This implies that �(r; s) is not
tractable for increasing s. These di¤erences of the global behavior between �(r; s) and
�(r; s) are in contrast to the similarities of the local behavior between them, as seen
in (7.7). The importance in practice may be in the middle range of s. As expected
from these facts, the behavior of the di¤erence between �(r; s) and �(r; s) is described
as follows, which now expresses the statement in (iii-2):
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Proposition 7.3. j�(r; s)� �(r; s)j is strictly monotone increasing with respect
to s for any admissible s > 0 and for an arbitrarily �xed r 2 R+nf1g.

7.3. Robust higher-order method. For constructing a robust higher-order
integration method, we should overcome the problem originated from the fact that
�h(v) does not permit an arbitrary h 2 R. Namely, the domain of the de�nition of
�(r; s) for a �xed r is [s�(r);1) $ R if r > 1, while it is whole R if 0 < r � 1. From
this fact, one cannot use arbitrary negative coe¢ cients f�i; �ig in (3.32), since �ih and
�ih play a role of an intermediate unit timestep and require the evaluation of ��ih(v)
and ��ih(v). One way to solve this problem is to use a higher-order integrator whose
coe¢ cients are all positive [49, 50, 51]. The other way is to use, instead of �(r; s), its
suitable approximation, �̂(r; s), which is de�ned for all h 2 R to enable us to use any
negative coe¢ cients. The map �̂[3]h , which uses �̂ instead of �, should also be 1-1 for
all h, in order to construct its adjoint map.

8. Appendix B: Proof of the �rst-order accuracy. We prove the formulas,
(4.8)�(4.10) and (4.12), which demonstrate the similarities of the integrators in the
sense that they are all equivalent within the �rst-order accuracy. We also reconsider
(4.1) and (4.2). Before proving the formulas, we state our notations and assumptions.

Notation: For simplicity, the extended phase space 
0 shall be written by 
, so
that 
 � D�Rn��R, where D is a domain of Rn and Rn� � Rnnf0g, and the phase-
space point is denoted as ! = (x; v; v) 2 
. For convenience, we use the notation such
that �[

~3]
h � ~�

[3]
h and �[

�3]
h � ��

[3]
h , so that all the maps, �

[1]
h , �

[2]
h , �

[3]
h , �

[4]
h , ~�

[3]
h , and

��
[3]
h , can be represented uniformly as �

[i]
h with i 2 B � f1; 2; 3; 4; ~3; �3g. According to

each consideration, we often denote �[i]h (!), where ! 2 
 is treated to be a variable
and h 2 R be a parameter, by �[i](!; h), which treats both ! and h to be variables,
or by �[i]!(h), which treats h to be a variable and ! be a parameter.

Assumption: We assume that the functions, the force function F : D ! Rn
and the extended-�eld function Y : D � Rn� ! R, are su¢ ciently smooth (e.g., twice
di¤erentiable). The kinetic-energy function K : Rn� ! R+ should also be smooth [it
does not necessarily takes the form of K(v) �

Pn
i=1miv

2
i =2 but takes values in R+,

viz., strictly positive, for v 6= 0].

8.1. Basics. We should consider two technical points. First, we should clar-
ify the admissible range for the unit time step, h. This problem arises in �[i]h for
i 2 f3; ~3; �3g, originated from the well-de�nedness of �h(v) and �h(v) discussed in
Appendix A. The second point is that each �[i]h should map any phase-space point
! = (x; v; v) in 
 to !0 = (x0; v0; v0) that is also in 
, meaning that we should ensure
x0 2 D and v0 6= 0. This is required to consider the composition of these mappings,
because the maps �[i]h are not de�ned outside 
. The second point concerns with all

the maps �[i]h (i 2 B), and in fact it turns out to be a condition on h as shown below.
Thus the second point is relevant to the �rst point. Hence, what we should clarify is
the range of h in which �[i]h (!) is well de�ned [i.e., (!; h) 2 
[i]; see below] and takes
a value in 
 [i.e., �[i](!; h) 2 
; see below].

To handle these points, at �rst, we mainly treat the maps by explicitly considering
h-dependence as �[i](!; h): �[i] is a map from a certain subset of 
� R into R2n+1,

�[i] : 
� R�
[i] ! R2n+1; (!; h) 7! �
[i]
h (!); (8.1)

19



for i 2 B, and individually described as follows:

�[1] : 
[1] ! R2n+1; (!; h) 7! (hv + x; v; v) ;

�[2] : 
[2] ! R2n+1; (!; h) 7!
�
x; hF (x)M�1 + v; v

�
;

�[4] : 
[4] ! R2n+1; (!; h) 7! (x; v; hY (x; v) + v) ;

�[3] : 
[3] ! R2n+1; (!; h) 7! (x; �h(v)v; v) ;

�
[~3]
h : 
[

~3] ! R2n+1; (!; h) 7! (x; �h(v)v; v) ;

�[
�3] : 
[

�3] ! R2n+1; (!; h) 7!
�
x; �h(v � hF (x)M�1) v; v

�
:

Here, 
[i] for i 2 f1; 2; 4g is simply de�ned by 
[i] := 
 � R, while 
[3] and 
[~3] are
de�ned, so that �h(v) and �h(v) are well de�ned respectively, by


[3] : = H�1(��) (8.2a)

= f(x; v; v; h) 2 
� Rj h=� � s�(K0=K(v)) if K0 > K(v)g (8.2b)

and


[
~3] : = H�1(��) (8.3a)

=

�
(x; v; v; h) 2 
� R

���� h=� � s�(K0=K(v)) if K0 < K(v);
h=� � s�(K0=K(v)) if K0 > K(v)

�
;(8.3b)

where

H : 
� R! R2; (x; v; v; h) d7! (K0=K(v); h=�): (8.4)

Similarly, 
[�3] is de�ned by


[
�3] : =

�
��[2�]

��1
(
[

~3]) (8.5a)

= f(x; v; v; h) 2 
� Rj (x; v � hF (x)M�1; v; h) 2 
[~3]g; (8.5b)

where

��[2�] : 
� R! R2n+1 � R; (!; h) d7! (�[2](!;�h); h) = (x; v � hF (x)M�1; v; h):
(8.6)

Thus we have prepared to state about the range of h and represent it as follows:
Proposition 8.1. For each i 2 B, (!; h) 2 
[i] and �[i](!; h) 2 
 if and only if

(!; h) 2
�
�[i]

��1
(
). Here, we have an explicit form as follows:�

�[i]
��1

(
) =
[

!=(x; v;v)2


f!g ��I [i]! =: 
[i]0; (8.7)

where

�I [i]! : =
�
�[i]!

��1
(
) for i 2 f1; 2; 4g; (8.8a)

�I [3]! : =

�
(� s�(K0=K(v)); 1) if K(v) < K0;

R if K(v) � K0;
(8.8b)

�I [
~3]! : =

8<: (� s�(K0=K(v)); 1) if K(v) < K0;
R if K(v) = K0;

(�1; � s�(K0=K(v))) if K(v) > K0;
(8.8c)

�I [
�3]! : =

�
H �

�
��[2�]!jU!

���1
(���); (8.8d)
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with ��[2�]! : R! R2n+2; h d7! (�[2](!;�h); h) and U! :=
�
��[2�]!

��1
(
� R).

Proof. Since the �rst statement is obvious, we are concerned with the second
statement and prove (8.7). This is clear for i 2 f1; 2; 4g because the conditions that
(!; h) 2 
 � R and �[i](!; h) 2 
 are equivalent to the conditions that ! 2 
 and
h 2

�
�[i]!

��1
(
) (notice that �[i]! is de�ned on whole R for i 2 f1; 2; 4g). Here,

obviously, 
[4]0 itself is 
 � R with �I [4]! = R (8! 2 
). For i = 3, we see that the
subset 
[3]0 with (8.8b) [recall (7.5b)] is equivalent to (8.2b) with replacing ���by
�>�. Thus the relation 
[3]0 =

�
�[3]

��1
(
) is deduced from the following equivalences

for (!; h) 2 
[3]:

�[3](!; h) 2 

, �h(v) 6= 0
, :[K(v) < K0 and h=� = s�(K0=K(v))]

, [K(v) < K0 ) h=� > s�(K0=K(v))]:

For i = ~3, a discussion similar to i = 3 can be used to derive (8.7) with (8.8c) [recall
(7.5a)] by observing

[(!; h) 2 
[~3] and �h(v) 6= 0], (!; h) 2 
[~3]0: (8.9)

We also see that 
[~3]0 = H�1(���), where��� (the interior of ��) is obtained from (7.3)
with removing �=� from the both ���and ���. For i = �3, we proceed as follows.
First we de�ne a subset A :=

�
��[2�]

��1
(
[

~3]0), then

A =
S
!2


�
f!g �

�
��[2�]!

��1
(
[

~3]0)
�
. Here, using the relation 
[~3]0 = H�1(���)

obtained above, we have
�
��[2�]!

��1
(
[

~3]0) =
�
H �

�
��[2�]!jU!

���1
(���). Thus A =S

!2
f!g ��I [
�3]! = 
[

�3]0. Next we show A =
�
�[
�3]
��1

(
). By the de�nitions of 
[�3]

and �[�3] we observe that

(!; h) 2
�
�[
�3]
��1

(
) (8.10a)

,
�
(!; h) 2 
� R, ��[2�](!; h) 2 
[~3], and �h(v0) 6= 0;
where ��[2�](!; h) � (!0; h) � (x; v0; v; h)

�
: (8.10b)

Equation (8.10b) is shown, by using (8.9), to be equivalent to [(!; h) 2 
 � R and
(!0; h) 2 
[~3]0], which is also equivalent to (!; h) 2

�
��[2�]

��1
(
[

~3]0) = A. Thus we

have shown
�
�[
�3]
��1

(
) = A, which completes the proof.

Therefore, the range of h in which �[i]h (!) is well de�ned and takes a value in

 is given by �I [i]! for arbitrary ! 2 
 and i 2 B. Speci�cally, for i 2 f3; ~3g, the
region of h is explicitly given for any ! = (x; v; v) by (8.8b) and (8.8c), which are
open intervals including 0 for any K(v). Although explicit expressions seem not clear
for the other i, we see that an open interval including 0 is always involved in �I [i]!:
8! 2 
, 9� > 0, (��; �) � �I [i]!. Regarding i 2 f1; 2; 4g, this holds true, because �I [i]!
becomes an open set due to the fact that �[i]! is continuous and 
 is open in R2n+1
and because 0 2 �I [i]! due to the fact that �[i](!; 0) = ! for all ! 2 
. A similar
reason is valid for i = �3 via (8.8d) [note that U! is open and ��[2�]!(0) = (!; 0) for
any ! 2 
]. These results indicate that for any ! 2 
 a su¢ ciently small jhj always
applies for �[i]h (!) to be well de�ned and to take a value in 
.
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Below, we restrict the domain of the de�nition of �[i] from 
[i] into 
[i]0, having
the well-de�ned mapping

�[i] : 
� R�
[i]0 ! 
; (!; h) 7! �
[i]
h (!) (8.11)

for all i 2 B. Next, we consider their composition, in which we have to consider the
following three issues. To state the �rst issue, suppose a two-map composition,

�h(!) � (�[j]h � �[i]h )(!): (8.12)

Even if !0 � �
[i]
h (!) 2 
, equation (8.12) is not necessarily well de�ned, since

(!0; h) 2 f!0g � �I [j]!0 may not be ensured. We have to ensure h 2 �I [j]!0 . However,
this cannot be accomplished by simply using hs that is smaller than h such that
hs 2 �I [j]!

0
, because !0 should be changed into !0s � �

[i]
hs
(!) due to this change of the

unit timestep, so that �I [j]!
0
be changed into �I [j]!

0
s , which does not ensure hs 2 �I [j]!

0
s .

Second, we wish to consider the behavior of �h(!) with varying h (in a continuous
manner) in a certain interval J . For example, (4.8)�(4.10) correspond to this kind
of issue. Thus we have to ensure the well-de�nedness of the map such as (8.12), not
only for one value h but also for all h 2 J . Third, we should take into account the
composition of any �nite number of the maps, generally represented as

�I(!; h) � �I;h(!) �
�
�
[in]
h � � � � � �[i1]h

�
(!); (8.13)

where I � fi1; : : : ing � B, rather than the composition of two maps.
The solution to these issues is demonstrated as follows. The well-de�nedness of

(8.13) can be formulated inductively with respect to n, and it is shown, by induction,
to be equivalent to

(!; h) 2
n�1\
m=0

�
��[i1]

��1��
��[i2]

��1�
� � �
�
��[im]

��1 �

[im+1]0

�
� � �
��

=: 
0n; (8.14)

where

��[i] : 
[i]0 ! 
� R; (!; h) d7!
�
�[i](!; h); h

�
(8.15)

for i 2 B (note 
01 := 

[i1]0). We can then show

8! 2 
, 9�I > 0, 8h 2 JI � (��I ; �I), (!; h) 2 
0n: (8.16)

Equation (8.16) can be proved by using the following issues for every i 2 B: the con-
tinuity of �[i], the form of its domain of de�nition (which is an open set) represented
by (8.7), the property of �I [i]! (i.e., it is an open set including 0), and the relation
such that �[i](!; 0) = ! (8! 2 
). Therefore, (8.13) for arbitrary ! 2 
 is always
well de�ned for every h in a certain interval JI around h = 0. This is the solution
and the basis for our analysis stated below.
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8.2. Proof of (4.8)�(4.10) and (4.12). The quantities described in (3.26),
(4.4)�(4.6), and (4.11) are now read as maps de�ned by

� : 
� R�
0� ! 
; (!; h)
d7! �h(!) =

�
�
[4]
h � �[3]h � �[2]h � �[1]h

�
(!);

~� : 
� R�
0~� ! 
; (!; h)
d7! ~�h(!) =

�
�
[4]
h � ~�[3]h � �[2]h � �[1]h

�
(!);

�M1m : 
� R�
0�M 1m
! 
; (!; h)

d7! �M1m,h(!) =
�
�
[4]
h � �[1]h � ~�[3]h � �[2]h

�
(!);

�M1 : 
� R�
0�M 1
! 
; (!; h)

d7! �M1,h(!) =
�
�
[4]
h � �[1]h � ��[3]h � �[2]h

�
(!);

�M2 : 
� R�
0�M 2
! 
; (!; h)

d7! �M2,h(!) =
�
�
[4]
h � ~�[3]h � �[2]h=2 � �

[1]
h � �[2]h=2

�
(!);

where 
0�, 

0
~�
, and so on are open sets in R2n+2 de�ned individually by (8.14); a

justi�cation for �M2,h(!), which also uses h=2, can also be done similarly [e.g., de�ne

�
[20]
h := �

[2]
h=2, which is �

[2]
h using 2M instead ofM]. In particular, for any ! 2 
, 9� >

0, for all h 2 J = (��; �), the quantities, �h(!), ~�h(!), and so on, are simultaneously
well de�ned [Take the intersection for the individual maps, J =

T
I JI , in (8.16)].

Now we show that they are all equivalent in the �rst order. We here de�ne exactly a
relation between any two maps �(1) and �(2) in A � f�; ~�;�M1m ;�M1 ;�M2g:

Definition 8.2. �(1) and �(2) are equivalent in the �rst order if 8! 2 
, 9� > 0,
8h 2 (��; �), �(1)(!; h) and �(2)(!; h) are well de�ned and if �(1)(!; h)��(2)(!; h) =
O(h2) ((��; �) 3 h! 0) holds. Then we denote �(1) � �(2).

Below we prove the equivalence,

�M1 �
P8.7

�M1m �
P8.8

� �
P8.10

~� �
P8.11

�M2 ; (8.17)

where e.g., �M1 �
P8:7

�M1m designates that �M1 � �M1m is shown in Proposition 8.7.
Since ���becomes an equivalent relation in A, equation (8.17) implies that any two
maps in A are equivalent in the �rst order, which validates (4.8)�(4.10) and (4.12). In
addition, we reconsider (4.1) and (4.2) in Remarks 8.6 and 8.9, respectively. Before
proving these issues, we prepare the following lemma:

Lemma 8.3. Let gi be a twice-di¤erentiable map (i = 1; 2) from I � R, which is
an open interval including 0, to Rn, satisfying

gi(h) = O(h) (I 3 h! 0): (8.18)

Given v 2 Rn� and put r0 � K0=K(v) 2 R+. For i = 1; 2, let Ri be a twice-
di¤erentiable map from �i � R+ � R, which is an open set including (r0; 0), to R,
satisfying the following conditions:

R1(r0; 0) = R2(r0; 0); (8.19a)

D1R1(r0; 0) = D1R2(r0; 0) = 0; (8.19b)

D2R1(r0; 0) = D2R2(r0; 0): (8.19c)

Then, there exists � > 0 such that for all h 2 J � (��; �), R1(K0=K(v + g1(h)); h=�)
and R2(K0=K(v + g2(h)); h=�) are well de�ned, and

R1

�
K0

K(v + g1(h))
;
h

�

�
= R2

�
K0

K(v + g2(h))
;
h

�

�
+O(h2) (J 3 h! 0): (8.20)

23



Proof. Put fvi : I ! Rn; h 7! v + gi(h) for i = 1; 2. Then 'i : I � Bi �
(fvi )

�1(Rn�) ! R2; h 7! (K0=K(f
v
i (h)); h=�) is well de�ned and twice-di¤erentiable.

Thus, for all h 2 C := ('1)
�1(�1) \ ('2)�1(�2), (Ri � 'i)(h) = Ri(K0=K(v +

gi(h)); h=�) is well de�ned for i = 1; 2. Due to the assumptions, C becomes an open
set in R. In addition, C 3 0 holds, since the fact that gi(0) = 9 limh!0 gi(h) = 0,
which follows from the continuity of gi and equation (8.18), leads to fvi (0) = v 2 Rn�,
so that Bi 3 0 and 'i(0) = (K0=K(f

v
i (0)); 0) = (r0; 0) 2 �i for both i = 1 and

2. Hence, there exists � > 0 such that J � (��; �) � C, so that for all h 2 J ,
Gi(h) := (Ri � 'i)(h) is well de�ned for i = 1; 2. Since Gi is twice di¤erentiable, we
have Gi(h) = Gi(0) +DGi(0)h+O(h2) (J 3 h! 0). Thus, if we con�rm

G1(0) = G2(0); (8.21a)

DG1(0) = DG2(0); (8.21b)

then we complete the proof. Now, from Gi(0) = Ri('i(0)) = Ri(r0; 0) and from
(8.19a), equation (8.21a) is valid. From the relation thatDGi(0) = D1Ri(r0; 0)D'1i (0)
+ D2Ri(r0; 0)D'

2
i (0), where 'i � ('1i ; '

2
i ), and from (8.19b), we get DGi(0) =

D2Ri(r0; 0)=� for i = 1; 2. Thus (8.21b) follows from (8.19c).
This Lemma leads to the following two corollaries used in propositions below.
Corollary 8.4. Let c 2 Rn and v 2 Rn�. Then there exists � > 0 such that

�h (v + hc) = �h (v) +O(h2) ((��; �) 3 h! 0): (8.22)

Proof. Apply Lemma 8.3 via substituting g1 : I � R ! Rn; h d7! hc, g2 :

R ! Rn; h d7! 0, and R1 � R2 � �j��� : �1 � �2 � ��� ! R, which is de�ned in
(7.1). Then (r0; 0) 2 ���, and the required conditions, including (8.18) and (8.19),
are easily veri�ed to be met. Thus R1(K0=K(v + g1(h)); h=�) = �h (v + hc) and
R2(K0=K(v + g2(h)); h=�) = �h (v) for h 2 J � (��; �) follow (8.20) to indicate
(8.22).

Corollary 8.5. Let g be a twice-di¤erentiable map from I � R, which is an
open interval including 0, to Rn, satisfying

g(h) = O(h2) (I 3 h! 0):

Let b 2 Rn and v 2 Rn�. Then there exists � > 0 such that

�h (v + hb+ g(h)) = �h (v + hb+ g(h)) +O(h2) ((��; �) 3 h! 0): (8.23)

Proof. Apply Lemma 8.3 via substituting g1 � g2 : I ! Rn; h d7! g(h) + hb,
R1 � �j��� : �1 ���� ! R de�ned in (7.2), and R2 � �j��� : �2 ���� ! R de�ned in
(7.1). Then (r0; 0) 2���, ���, and the required conditions, including (8.18) and (8.19),
are met. Thus R1(K0=K(v + g1(h)); h=�) = �h (v + hb+ g(h)) and R2(K0=K(v +
g2(h)); h=�) = �h (v + hb+ g(h)) for h 2 J � (��; �) follow (8.20).

Remark 8.6. For any v 2 Rn�, as obtained from Corollary 8.5 with b � 0 and
g � 0, there exists � > 0 such that

�h (v) = �h (v) +O(h2) ((��; �) 3 h! 0); (8.24)
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and so

��s (v) = ��s (v) +O(s2) ((��=� ; �=�) 3 s! 0): (8.25)

Equations (8.24) and (8.25) correspond to the accurate expressions of (4.1a) and
(4.1b), respectively.

Now, we prove (8.17) via the following four propositions.
Proposition 8.7. �M1 � �M1m holds true.
Proof. For any ! = (x; v; v) 2 
, we know �M1m,h(!) and �M1,h(!) are well

de�ned for all h in a certain interval J 0 � (��0; �0) and obtain�
~�
[3]
h � �[2]h

�
(!)�

�
��
[3]
h � �[2]h

�
(!) (8.26a)

= (0; [�h (v + hcx)� �h (v)](v + hcx); 0) 2 R2n+1 (8.26b)

for all h 2 J 0, where cx � F (x)M�1 2 Rn. In (8.26b), applying Corollary 8.4, we
have �h (v + hcx)� �h (v) = O(h2) ((��00; �00) 3 h! 0). Thus,�

~�
[3]
h � �[2]h

�
(!)�

�
��
[3]
h � �[2]h

�
(!)

=
�
0; O(h2)(v + hcx); 0

�
= O(h2) (I 3 h! 0);

where I � (��; �) with � � minf�0; �00g > 0. Noting that �M1m,h(!) = 	($(h) +

'(h); h) and �M1,h(!) = 	($(h); h) for h 2 I, where maps $ : I ! 
; h
d7!�

��
[3]
h � �[2]h

�
(!), ' : I ! R2n+1; h d7!

�
~�
[3]
h � �[2]h

�
(!) �

�
��
[3]
h � �[2]h

�
(!), and 	 :


02 ! 
; (!; h)
d7!
�
�
[4]
h � �[1]h

�
(!) [see (8.14)], are twice-di¤erentiable, we have

�M1m,h(!)� �M1,h(!) = 	($(h) +O(h2); h)�	($(h); h) = O(h2) (I 3 h! 0).
Proposition 8.8. �M1m � � holds true.
Proof. For any ! = (x; v; v) 2 
, it is shown that �M1m,h(!), �h(!), and

�̂h(!) �
�
�
[4]
h � �[1]h � �[3]h � �[2]h

�
(!) (8.27)

are well de�ned for all h in a certain J 0 � (��0; �0) and�
~�
[3]
h � �[2]h

�
(!)�

�
�
[3]
h � �[2]h

�
(!) (8.28a)

= (0; [�h (v + hcx)� �h (v + hcx)](v + hcx); 0) 2 R2n+1 (8.28b)

holds for 8h 2 J 0, where cx � F (x)M�1 2 Rn. Applying Corollary 8.5 with g � 0 to
(8.28b), we have �00 2 (0; �0] such that�

~�
[3]
h � �[2]h

�
(!)�

�
�
[3]
h � �[2]h

�
(!) (8.29a)

= O(h2) (J � (��00; �00) 3 h! 0): (8.29b)

Thus, using a similar manner (replacing ��[3] with �[3]) in the proof of Proposition 8.7,
on the basis of the smoothness of the maps, we get

�M1m,h(!)� �̂h(!) = O(h2) (J 3 h! 0): (8.30)
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Since both �̂h and �h are �rst-order integrators, there exits � 2 (0; �00] such that for
I � (��; �),

�̂h(!)� �h(!) = O(h2) (I 3 h! 0): (8.31)

Equations (8.30) and (8.31) imply �M1m,h(!)� �h(!) = O(h2) (I 3 h! 0):

Remark 8.9. We can apply the identically zero force, F � 0, then �[2]h becomes
an identity map on 
, so that (8.29) indicates (4.2).

Proposition 8.10. � � ~� holds true.
Proof. For any ! = (x; v; v) 2 
 and for all h in a certain J � (��0; �0), ~�h(!)

and �h(!) are well de�ned, and�
�
[2]
h � �[1]h

�
(!) (8.32a)

=
�
x+ hv; hF (x+ hv)M�1 + v; v

�
(8.32b)

=
�
x+ hv; hF (x)M�1 + g(h) + v; v

�
; (8.32c)

with g : J ! R; h d7! h(F (x + hv) � F (x))M�1. Since g is twice di¤erentiable and
g(h) = hO(h) = O(h2) (J 3 h ! 0), by applying Corollary 8.5 to (8.32c), we have
� 2 (0; �0] such that for h 2 I � (��; �),�

�
[3]
h � �[2]h � �[1]h

�
(!)

=
�
x+ hv; �h(v + hF (x)M

�1 + g(h))(v + hF (x)M�1 + g(h)); v
�

=
�
x+ hv; (�h(v + hF (x)M

�1 + g(h)) +O(h2)))(v + hF (x)M�1 + g(h)); v
�
(I 3 h! 0)

=
�
x+ hv; (�h(v + hF (x)M

�1 + g(h)))(v + hF (x)M�1 + g(h)); v
�
+O(h2)

=
�
~�
[3]
h � �[2]h � �[1]h

�
(!) +O(h2):

Thus, from the smoothness of the maps, we have �[4]h
��
�
[3]
h � �[2]h � �[1]h

�
(!)
�
=

�
[4]
h

��
~�
[3]
h � �[2]h � �[1]h

�
(!)
�
+O(h2) (I 3 h! 0), indicating

~�h(!) = �h(!) +O(h2) (I 3 h! 0): (8.33)

Proposition 8.11. ~� � �M2 holds true.
Proof. For any ! = (x; v; v) 2 
 and for all h in a certain I � (��; �), ~�h(!)

and �M2,h(!) are well de�ned, and�
�
[2]
h � �[1]h

�
(!)�

�
�
[2]
h=2 � �

[1]
h � �[2]h=2

�
(!)

=
�
�h2

2 F (x)M
�1; hF (x+ hv)M�1 � h

2F (x+ hv +
h2

2 F (x)M
�1)M�1 � h

2F (x)M
�1; 0

�
=
�
O(h2); hF (x)M�1 +O(h2)� h

2 (F (x) +O(h))M
�1 � h

2F (x)M
�1; 0

�
(I 3 h! 0)

= O(h2):

Thus, from the smoothness of the maps, we get
�
�
[4]
h � ~�[3]h

���
�
[2]
h � �[1]h

�
(!)
�
=�

�
[4]
h � ~�[3]h

���
�
[2]
h=2 � �

[1]
h � �[2]h=2

�
(!)
�
+O(h2) (I 3 h! 0), indicating

~�h(!) = �M2,h(!) +O(h2) (I 3 h! 0): (8.34)
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Hoover-type thermostats, Phys. Rev. E, 91 (2015), pp. 03331.

[11] I. Fukuda and K. Moritsugu, Coupled Nosé-Hoover equations of motion to implement a
�uctuating heat-bath temperature, Phys. Rev. E, 93 (2016), pp. 033306.

[12] B. Leimkuhler and X. Shang, Adaptive thermostats for noisy gradient systems, SIAM J. Sci.
Comput., 38 (2016), pp. A712-A736.

[13] I. Fukuda, Coupled Nosé-Hoover lattice: A set of the Nosé-Hoover equations with di¤ erent
temperatures, Phys. Lett. A, 380 (2016), pp. 2465-2474.

[14] W. G. Hoover, J. C. Sprott and P. K. Patra, Ergodic time-reversible chaos for Gibbs�
canonical oscillator, Phys. Lett. A, 379 (2015), pp. 2935-2940.

[15] W. G. Hoover, Molecular dynamics, Springer-Verlag, Berlin, 1986.
[16] W. G. Hoover, A. J. C. Ladd and B. Moran, High-strain-rate plastic �ow studied via

nonequilibrium molecular dynamics, Phys. Rev. Lett., 48 (1982), pp. 1818-1820.
[17] D. J. Evans, Computer �experiment� for nonlinear thermodynamics of Couette �ow, J. Chem.

Phys., 78 (1983), pp. 3297-3302.
[18] D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran and A. J. C. Ladd, Nonequilibrium

molecular dynamics via Gauss�s principle of least constraint, Phys. Rev. A, 28 (1983), pp.
1016-1021.

[19] D. J. Evans and G. P. Morriss, The isothermal/isobaric molecular dynamics ensemble, Phys.
Lett. A, 98 (1983), pp. 433-436.

[20] H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. Dinola and J. R. Haak,
Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81 (1984), pp.
3684-3690.

[21] T. Morishita, Fluctuation formulas in molecular-dynamics simulations with the weak coupling
heat bath, J. Chem. Phys., 113 (2000), pp. 2976-2982.

[22] H. J. C. Berendsen, D. Van Der Spoel and R. Van Drunen, GROMACS: A message-
passing parallel molecular dynamics implementation, Comput. Phys. Commun., 91 (1995),
pp. 43-56.

[23] H. Eslami, F. Mojahedi and J. Moghadasi, Molecular dynamics simulation with weak cou-
pling to heat and material baths, J. Chem. Phys., 133 (2010), pp. 084105.

[24] S. A. Moga, N. Goga and A. Hadar, Combining Berendsen thermostat with dissipative
particle dynamics (DPD) for polymer simulation, Materiale Plastice, 50 (2013), pp. 196-
200.

[25] G. Bussi, D. Donadio and M. Parrinello, Canonical sampling through velocity rescaling, J.
Chem. Phys., 126 (2007), pp. 014101.

[26] J. E. Basconi and M. R. Shirts, E¤ects of temperature control algorithms on transport proper-

27



ties and kinetics in molecular dynamics simulations, J. Chem. Theory Comput., 9 (2013),
pp. 2887-2899.

[27] D. Okunbor and R. D. Skeel, Explicit canonical methods for Hamiltonian-systems, Math.
Comp., 59 (1992), pp. 439-455.

[28] J.-M. Sanz-Serna and M.-P. Calvo, Numerical Hamiltonian problems, Chapman & Hall,
London, 1994.

[29] R. D. Ruth, A canonical integration technique, IEEE Trans. Nucl. Sci., 30 (1983), pp. 2669-
2671.

[30] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990),
pp. 262-268.

[31] R. I. Mclachlan and P. Atela, The accuracy of symplectic integrators, Nonlinearity, 5 (1992),
pp. 541-562.

[32] J. M. Sanz-Serna, Symplectic integrators for Hamiltonian problems: an overview, Acta Nu-
mer., 1 (1992), pp. 243-286.

[33] R. Skeel, G. Zhang and T. Schlick, A Family of Symplectic Integrators: Stability, Accuracy,
and Molecular Dynamics Applications, SIAM J. Sci. Comput., 18 (1997), pp. 203-222.

[34] M. Tuckerman, B. J. Berne and G. J. Martyna, Reversible multiple time scale molecular
dynamics, J. Chem. Phys., 97 (1992), pp. 1990-2001.

[35] A. Dullweber, B. Leimkuhler and R. Mclachlan, Symplectic splitting methods for rigid
body molecular dynamics, J. Chem. Phys., 107 (1997), pp. 5840-5851.

[36] I. P. Omelyan, I. M. Mryglod and R. Folk, Algorithm for molecular dynamics simulations
of spin liquids, Phys. Rev. Lett., 86 (2001), pp. 898-901.

[37] I. Fukuda and H. Nakamura, Construction of an extended invariant for an arbitrary ordinary
di¤ erential equation with its development in a numerical integration algorithm, Phys. Rev.
E, 73 (2006), pp. 026703.

[38] R. I. McLachlan and G. R. W. Quispel, Geometric integrators for ODEs, J. Phys. A, 39
(2006), pp. 5251-5285.

[39] R. I. Mclachlan and G. R. W. Quispel, Splitting methods, Acta Numer., 11 (2002), pp.
341�434.

[40] V. L. Golo and K. V. Shaitan, Dynamic attractor associated with the Berendsen thermostat
and slow dynamics of biological macromolecules, Biophysics, 47 (2002), pp. 567-573.

[41] M. Khalili, A. Liwo, A. Jagielska and H. A. Scheraga, Molecular dynamics with the
united-residue model of polypeptide chains. II. Langevin and Berendsen-Bath dynamics
and tests on model �-helical systems, J. Phys. Chem. B, 109 (2005), pp. 13798-13810.

[42] S. Queyroy, H. Nakamura and I. Fukuda, Numerical examination of the extended phase-
space volume-preserving integrator by the Nosé-Hoover molecular dynamics equations, J.
Comput. Chem., 30 (2009), pp. 1799-815.

[43] E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration: structure-preserving
algorithms for ordinary di¤ erential equations, Springer-Verlag, Berlin, 2002.

[44] R. I. Mclachlan, On the numerical-integration of ordinary di¤ erential-equations by symmet-
rical composition methods, SIAM J. Sci. Comput., 16 (1995), pp. 151-168.

[45] S. Blanes and P. C. Moan, Practical symplectic partitioned Runge-Kutta and Runge-Kutta-
Nystrom methods, J. Comput. Appl. Math., 142 (2002), pp. 313-330.

[46] S. C. Harvey, R. K. Z. Tan and T. E. Cheatham, The �ying ice cube: velocity rescaling
in molecular dynamics leads to violation of energy equipartition, J. Comput. Chem., 19
(1998), pp. 726-740.

[47] M. G. Martin and J. I. Siepmann, Transferable potentials for phase equilibria. 1. united-atom
description of n-alkanes, J. Phys. Chem. B, 102 (1998), pp. 2569-2577.

[48] S. Blanes, F. Casas and A. Murua, On the numerical integration of ordinary di¤ erential
equations by processed methods, SIAM J. Numer. Anal., 42 (2004), pp. 531-552.

[49] M. Suzuki, Hybrid exponential product formulas for unbounded operators with possible appli-
cations to Monte Carlo simulations, Phys. Lett. A, 201 (1995), pp. 425-428.

[50] S. A. Chin, Symplectic integrators from composite operator factorizations, Phys. Lett. A, 226
(1997), pp. 344-348.

[51] J. Auer, E. Krotscheck and S. A. Chin, A fourth-order real-space algorithm for solving local
Schrödinger equations, J. Chem. Phys., 115 (2001), pp. 6841-6846.

28


