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TIME-REVERSIBLE OPERATOR COMPOSITION INTEGRATOR
FOR THE BERENDSEN TEMPERATURE-CONTROL MOLECULAR
DYNAMICS EQUATION*

IKUO FUKUDA', SEVERINE QUEYROY}, AND HARUKI NAKAMURAT

Abstract. The Berendsen equations of motion (EOM) are widely used for controlling the
temperature of a target physical system in molecular dynamics (MD) simulation. In spite of the use-
fulness of the Berendsen EOM, its numerical integration has never raised much attention mainly due
to its non-Hamiltonian feature. Nevertheless, a non-optimal integration scheme definitely limits the
possibility of its applications. In order to efficiently integrate the Berendsen EOM, we construct here
an operator composition scheme that has the following properties: First, the scheme is symmetric,
i.e., it is time reversible as is the original differential equation; Second, the scheme is systematic, i.e.,
any higher order of the local accuracy can be attained by a composition method; Third, the scheme is
robust, i.e., a velocity scaling factor that is bounded with respect to s = h/7 was obtained and thus
allows a larger s. Here h is the unit time step of the integration and 7 is the EOM parameter related
to the temperature-control speed (faster for a smaller 7). These good properties were confirmed,
with a comparison to conventional methods, by applying them into an isolated ethane molecule, a
bulk argon system, and a bulk ethane system. Our extended EOM formalism, which provides an
invariant function, also helps to observe the numerical error that cannot be detected solely by the
temperature controllability.

Key words. Berendsen equations of motion, molecular dynamics, temperature control, numer-
ical integration, time reversibility, symmetric composition, invariant function

AMS subject classification. 65L05, 65Y04, 81V55

1. Introduction. Temperature control in molecular dynamics (MD) method [1,
2] is important to conduct a realistic simulation of a physical system [3, 4]. There are
many algorithms to control the temperature of a given physical system, and they are
called thermostat methods [5, 6, 7].

Among them, the Nosé-Hoover (NH) thermostat method [8, 9] can generate the
Boltzmann-Gibbs distribution at the target temperature under the assumption of
the ergodicity. The structure of the NH equation is basically simple and universal,
which allows many extensions (see e.g., Refs. [10, 11, 12, 13] for recent work and
the references in [6, 14] for earlier work). The NH equation is obtained by adding a
force of the form —(v to the Newtonian equations of motion (EOM) that the original
physical system, defined by coordinate x and velocity v, should obey. Here, the
friction coefficient-like quantity is a dynamical variable developing according to {(t) o
fg (K (v(t"))/Ko — 1) dt’+const., where K (v) and Kj are the present and target values
of the kinetic energy of the physical system, with ¢ being a time. In this sense the NH
equation is based on the “integral” scheme [15] for controlling the temperature, or the
kinetic energy, where the deviation K (v)/Ky—1 is integrated with respect to time (we
consider the instantaneous temperature and the kinetic energy to be proportional).

The Gaussian isokinetic method [16, 17, 18, 19] fixes the temperature of the system
as the initial value with suppressing the deviations. This is based on the Gauss’s
constraint method, which can be viewed as the “differential” control scheme [15],
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since it is defined by the Newtonian EOM attaching the frictional force —(v with
((t) oc =2 U(x(t)), where U(z) is the potential energy of the physical system.

Berendsen et al. [20] proposed an alternative method to control the temperature,
based on a “direct” control scheme. This is defined in the same manner as the above
methods but uses ((t) x (1 — Ko/K(v(t))) without integration or differentiation.
Despite the ambiguity of the phase-space distribution produced [21], the Berendsen
method is simple, stable, intuitive, and has been employed by many users [22] for e.g.
biological simulations. In fact, the simplicity of the method allows to combine it with
a grand canonical MD [23] and with dissipative particle dynamics [24]. The stability of
the method allows to effectively equilibrate a roughly prepared system or to perform a
subtle temperature change, even though other elaborated schemes fail. The Berendsen
method, as well as the NH method and the stochastic velocity re-scaling method [25],
yield transport properties that are statistically indistinguishable from that under the
microcanonical ensemble, while the diffusion properties are significantly dampened by
the Andersen thermostat and Langevin dynamics, when strong coupling is used [26].

In spite of the usefulness of the Berendsen equation, its numerical integration has
never raised much attention. The system is not a Hamiltonian system [27, 28], so
one cannot directly use symplectic integrators [29, 30, 31, 32, 33], which has been
shown to be efficient in a variety of studies [34, 35, 36]. This was the main reason to
hamper the development of an efficient numerical integration based on a theoretically
clear foundation. Most of the integration algorithms for the Berendsen EOM are thus
based on heuristic approaches, obtained by a combination of the leapfrog method and
the velocity scaling, which may give O(At) accuracy. However, these approaches lack
both the time-reversibility feature and a protocol to attain high accuracy. Another
reason to prevent the development of an efficient integrator may be originated to the
purpose of the use. That is, one often supposes that it is sufficient to have a good
temperature controllability of the target physical system and that the accuracy is of
second importance. However, there are cases where the temperature control is good
but a large numerical error is accumulated. Thus a method to capture the error is
necessary to get physically correct results.

In this paper we propose a time-reversible (symmetric) integrator of the Berend-
sen EOM, where the EOM is extended so as to have a time invariant function. These
devices are based on the techniques previously developed for non-Hamiltoninan sys-
tems [37]. From the time reversibility, the integrator map preserves the reversible
feature that the original ordinary differential equation (ODE) has. This should con-
tribute to the accurate integration [38]. By monitoring the value of the constructed
invariant function, numerical integration on the extended space can be done without
destroying the original solutions of the ODE and will detect the error that cannot be
necessarily done by the temperature controllability. The integrator is explicit, and
furthermore, higher-order integrators can be systematically constructed by the sym-
metric operator composition technique, which is based on an effective splitting of the
target vector field [39]. It should also be noted that the exact operator map leads to a
robustness of the current method. That is, the current method uses a velocity scaling
factor that is bounded with respect to timestep, while conventional methods use a
scaling factor that is unbounded, leading to instabilities. Similarities and differences
between the current and conventional methods are revealed theoretically in depth and
numerically using molecular systems. We believe the current study to be the first one
to discuss both the Berendsen’s method and the integrator mathematics.

Section 2 reviews the Berendsen EOM and its integration schemes found in the
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literature. In section 3, we present our integration scheme and demonstrate its fun-
damental properties. In section 4 we theoretically discuss relationships between the
current and the conventional integration methods. Their mathematical details are
demonstrated in Appendixes A and B. In section 5, we investigate properties of the
current method and compare it with other methods, via numerical simulations using
one model system and two bulk atom/molecule systems. Section 6 summarizes the
current work and gives remarks.

2. Berendsen equations of motion. The Berendsen EOM can be represented
by [20],

T =,

b= F(z)M-! + % (KIE) _ 1) o, (2.1)

where z = (x1,...,2,) € D C R", v = (v1,...,v,) € R, F(z) € R", and K(v) =
Dy m;v? /2 represent the atomic coordinates, velocities, force (smooth vector-valued
function on a domain D), and kinetic energy, respectively, of a physical system of
n degrees of freedoms, with m,; being a mass parameter, which defines the matrix

M =diag(mq, ..., my). The friction-coefficient variable ¢ = —% (KI?;]) - 1) governs

the control of the temperature of a physical system, T(v) = 2K (v)/nkg, referring
to the target temperature Ty = 2Ky/nkg > 0, (viz., Ky is the target kinetic energy
value), with kp being Boltzmann’s constant. The parameter (time constant) 7 > 0
adjusts the control strength, where a large 7 gives a weak control, and the limit 7 — oo
reduces to the Newtonian equations of motion. Note that a similar but alternative
definition of ¢ is discussed in [40].

Typical numerical integration schemes to solve the EOM are the following. In the
original approach [20, 22], the present-timestep coordinates and velocities (z/,v’) are
obtained from the one-timestep-preceding quantities (z, v) as:

b=v+hF(z)M! (2.2a)
v = A (v)0, (2.2b)
¥ =x+h, (2.2¢)

where h indicates the unit time step used in the integration. Here,

An(v) = {1 + g (152) - 1)} : (2.3)

is the scaling factor of the atomic velocity for the temperature control [20]. Note that
another definition of the present-timestep velocity, which keeps the original integration
scheme given by (2.2), is possible, such as (v' + v)/2. Equation (2.2) is considered
to be a first-order algorithm (see section 4.2), and we denote it by Method 1 for
the reference. Alternatively, we can use a slightly modified version where A\, (?) is
used instead of A\,(v) in (2.2b), and we call this a modified Berendsen scheme or,
simply, Method 1 mod. Note that the original paper [20] uses Ty/T(v), the ratio
of the target temperature and the present temperature, instead of Ky/K(v), and
considers the linear transformation such as T'(v) = 2K (v)/kg (3N — N, — 3), with N
being the number of atoms and N. being the number of constraints. We see that
Ko/K(v) =Ty/T(v) irrespective of the linear transformation, so that (2.1) and (2.3)
are suitable.



As considered in Khalili et al. [41], the velocity scaling and the Verlet scheme can
be combined such as

h2
¥ =x+h+ ?F(x)Mfl, (2.4a)
b=uv+ g(F(x) + F(z'))M™! (2.4b)
v = M (0)d. (2.4c)

Namely, after the velocity Verlet algorithm, the scaling is done; we call it Method 2.
An alternative choice is to use A, (v) instead of A, (%) in (2.4c).

3. Extended system and integration scheme.

3.1. Extended ODE and invariant. The simple scheme [37] to construct an
invariant function is briefly reviewed in section 3.1.1, and it is applied to the Berendsen
EOM in section 3.1.2.

3.1.1. General scheme. For a given arbitrary smooth ODE in a domain €2 of
RN,
w=X(w), (3.5)

we associate an additional variable v € R to the original variables w = (w1, ...,wn) €
Q and represent them by w’ = (w,v) as a point of an “extended space” Q' = Q x R.
We then make an “extended ODE” [37] on (¥,

W' =X (W), (3.6)

which is defined by
w=X(w), (3.7a)
v=Y(w). (3.7b)

Here Y : 2 — R is an extended-field function defined by

Y (@) = ~(X()|VBW))

N
— Z X;(w) D;B(w), (3.8)

with B being an arbitrary smooth function on €. It is then shown that a function
L:Q >R, oS Bw) +v (3.9)

becomes an invariant of the extended ODE; i.e., for an arbitrary solution ¢’ = (w,v)
of (3.6),

L(¢'(t)) = B(w(t)) +v(t) (3.10)

is constant for any time ¢. Thus, by monitoring the conservation of the invariant while
numerically integrating the extended ODE, we can check the numerical error. It is
clear that all solutions, ¢t — w(t), in the original ODE (3.7a) are unaffected by adding
v and its EOM (3.7b).



3.1.2. For the Berendsen EOM. According to the scheme, for the Berendsen
ODE (2.1)

& = Xp (), (3.11)

where

Xp: Q- R w=(z,0) — (v, Fz)M™ + % (KI?;) - 1) u>

with @ = D x RY [viz., all (z,v) except v = 0 € R"], the extended ODE is defined
by

W= X} (W) € R#H (3.12a)
= (Xp(w),Y(w)) (3.12b)
= <v, F(z)M™! + % (KIE}}) - 1> v, Y(w)) , (3.12¢)

b= F(z)M! + % (;2) ~ 1> v, (3.13)

v=Y(w) = —(X(w)|VB(w)),

and the invariant is L(w,v) = B(w) + v.
Among a variety of choices of the function B, the following one may be physically
natural:

B(z,v) =U(x) + K(v), (3.14)
viz., B is the total energy of the system, where we assume the existence of the po-

tential function U such that FF = —VU. Applying (3.14) to (3.8), we get Y (w) =

1
— (K (v) — Kp) and so have the extended equation and the invariant as follows:
pu

¥ = (K(v) - Kv), (3.15)
L(w,v) =U(z) + K(v) +v. (3.16)

We can also confirm (3.16) to be a time invariant for (3.13) by a straightforward
differentiation with respect to time:

() o(0) + %K @(0) + - (K((t) ~ Ko) =0.
Interestingly, this is equivalent to the relation based on the original consideration of
the “global coupling” [i.e., equation (9) in [20]]. Note also that as 7 — oo, we have the
Newtonian limit: the EOM approaches the Newtonian EOM, and the invariant (3.16)
approaches the Newtonian total energy K (v) 4+ U(x) up to v(0) = const.
A slightly generalized choice of B defined by

B(z,v) = U(z) + o K (v), (3.17)

5



where ¢; and ¢ are parameters, produces the following EOM of v and the invariant,

v=Y(w)
= (c1 = e2)(F(2)|v) + Cf (K(v) = Ko), (3.18)
L(w,v) = aU(z) + 2K (v) + v, (3.19)

respectively. It is pointed out that the choice of ¢; = 0 would be useful in the case
where the potential U does not exist.

Note that Bussi et al. [25] proposed a stochastic canonical sampling method along
the line of the velocity scaling and discussed an associated conserved quantity that
is defined for an individual trajectory. The notion of this conserved quantity seems
similar to that of the extended invariant [37] for an ODE. However, our target here is
in the ODE, and the invariant is a function globally defined in the phase space, which
are the differences between the approach of Bussi et al. and ours.

3.2. Integrator.

3.2.1. First-order Integrator. To construct a numerical integrator, we decom-
pose a target vector field and compose the corresponding phase space maps, according
to the scheme described in [37]. We decompose the target extended field X7, defined
by (3.12b)—(3.12¢), as X, = 2?21 X'l where

XMW" = (v, 0,0) (3.20a)

XMW = (0, F(z) 0,), (3.20b)
1

X'Blw = (o, o ( — 1) v,0> , (3.20¢)

XMW =(0,0,Y(w)). (3.20d)

The point to get the decomposition is to ensure that each ODE
W' = X' (3.21)

can be solved explicitly. This is trivial for ¢ = 1, 2, and 4, but may not be for ¢ = 3:

j;lT (152) _ 1) v (3.22)

We find that the solution of ODE (3.22) taking an initial value (xg,vg, vo) € € is

2(t) = 70, 1 (3.23a)
o(t) = {(1 _ K[(i‘jo)> exp (-j) + Kﬁo)r”‘” (3.23b)
o) = vo. (3.23¢)

It should be stressed that X'l is a smooth (now, of class C°) field on Q' so that the

solution of the initial value problem is unique. Since we can directly check that (3.23)

satisfies both (3.22) and (z(0),v(0),v(0)) = (x0, vo, vo), equation (3.23) is the unique
6



solution. Note that the decomposition of X, is natural in that the additional quan-
tities v and Y do not affect the solutions of a decomposed original ODE & = X (w)
for i = 1, 2, and 3, where X" is obtamed by the same type of the decomposition of
the orlglnal (not extended) field Xp = Z ', XU [viz., X is defined by removing 0
in the last column of (3.20a), (3.20Db), and (3.20c) for i = 1, 2, and 3, respectively].
In particular, (3.23) is not affected by v and Y.

Hence, the exact flow <I>£i] for each vector field X'l where t @Ei] (w’) denotes
the solution of (3.21) with an initial value w’ € €0, is thus represented by the following
map or operator on the extended phase space €)':

@E] — (hv +z, v,v), (3.24a)
ol (2, hF(z)M ™ 40, v), (3.24b)
ol W (x, An(v)v, V), (3.24c)
@%] cw' i (z, v, WY (2,0) + V), (3.24d)

where we have used h instead of ¢. Here,

wos[(-E)e ()] e

comes from (3.23b) and becomes the counterpart of Aj(v) defined in (2.3); see the
next section for their comparison and see Appendix A for their detailed properties.
Then we get a first-order integrator with an unit time step h,

o, = o o 0 0 0l o B!l (3.26)

which will be a map from Q' to ' (see Appendix B for mathematical details, including
the fact that the maps @%] are not necessarily defined for all h € R except for i = 4).
There are many possibilities [37] about the appearing order of @EZ] in (3.26), and
we discuss it later. The integration scheme (3.26), defining the change from the
preceding values to the present values, (z,v,v) — (2/,0’,v’), is also expressed in an
explicit operation form,

' =z + ho. (3.27a)
o =hF(2 M+, (3.27b)
v = Ay ()0, (3.27¢)
v =hY(2'0) + v, (3.27d)

and practically used in computer code. Rather than the form of these operations,
the form of (3.26) expressed by the maps é[}f] is helpful for theoretical analyses. The
latter form, which has not been taken into account in conventional studies for the
Berendsen EOM though, enables us to properly grasp @EZ], ®;, and T}, where @%]
(i = 1,...,4) are the constituents of the integration map ®;, which in turn mimic
the exact flow T}, for the target ODE (3.12); @%], ®;,, and T}, are uniformly viewed
as maps (operators) on )’ and can be analyzed with certain properties of maps (the
so-called “symplectic integrator” on a Hamiltonian system [28] is constructed in the
same spirit, where the symplectic property of maps is concerned).
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3.2.2. Higher-order Integrator. The viewpoint of the maps is also useful to
systematically raise the (local) accuracy of the integrator. In fact, an integrator with
second-order accuracy can be constructed as a map by composing maps based on
®;,, which is of the first-order accuracy. Here, an integrator map V¥ is said to be
pth-order, if

Th(W') — Up(w') = O(RPHY) (3.28)

holds for any w’. A typical second-order integrator is an extended version of the Verlet
method [37, 42]:

Wp = Pp a0 Pj )0, (3.29)
where
= (D) (3.30a)
— ol o 0l o plY o 3l (3.30D)
is the adjoint map of ®; and also a first-order integrator. Thus we have
Wy = (I)E% ° q’f}z © q)gf}2 © (PELH ° ‘I)f}z © (I)[f?}z © (I)E?}Q' (3.31)

Equations (3.30b) and (3.31) can be automatically derived from the fact that each

map @El is the exact flow [of the decomposed ODE (3.21)]. The explicit forms of
operations for ¥;, are provided by the similar manner as (3.27).

The appearance ordering of Q[}f] (j=1,...,4) in (3.26) is arbitrary to ensure the
first-order local accuracy. However, the ordering has an influence on the computa-

tional time needed. The most time-consuming operand in (3.24) is the evaluation of
force F(x) or potential U(x). The force evaluation is required for @f]. In addition,
the evaluation of F(z) or U(xz) may be required for @%] (function Y) and for the
invariant. Here, specifically consider the typical integration form (3.29). Then, the
number of the force or potential evaluation is 1 (viz., the minimum) for any cases if
we use the ordering of (3.26), but otherwise it may be 2. Details are discussed in
section I of Supplementary materials. For these reasons, one of our recommended
ordering, for any Y, is given by (3.26).

Now, using the first-order maps defined by (3.26) and (3.30), higher-order inte-
grators can be obtained as a map by the symmetric composition with the adjoint [43]:

Up = @a,n0®f 0 0Py, 0 @5 4 0Pyyp 0 P 4y (3.32)
where coefficients {«;, 8;} C R satisfy the symmetric condition
a; =B i=1,..,8, (3.33)

in order to satisfy the symmetric property: U5 = U, [see also section 4.3 (ii)]. Specific
values of the parameters, viz., stage s and coeflicients {c, 3;}, as described in [42], can
be used, and we have presented several second-order integrators (they are designated
as P2S1 or P2S2 [43, 44]) and fourth-order integrators (P4S5 [44] and P4S6 [45]).
Among second-order integrators, the simplest one is called as P2S1, defined by (3.29):

\I}Zﬁl =90 CI);;/Q

Note that a volume preserving integrator can be constructed according to the current
scheme with the twisting technique described in [37].
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4. Relationship among the integrators.

4.1. Reinterpretation of conventional methods. To observe the relation-
ship between the current and the conventional integration methods, we first consider
the velocity scale factors Ap(v) and Ay (v), which are given by (3.25) and (2.3), respec-
tively. They are intimately related with each other. As can be obtained by expansions
of functions, we get

Ap(v) = An(v) + O(h?) (4.1a)
= A\ (v) + O((h/7)?). (4.1b)

Equation (4.1b) indicates the similarity of Aj(v) and A\, (v) when h < 7, viz., unit
time step is very small than the temperature-control parameter (see Appendix A for
more detailed comparisons). Thus, the factor Ay (v), which was originally introduced
in the Method 1 [20], can also be derived as an approximation of the factor Ay (v)
that appears as a component of o [equation (3.24c)], which is the exact flow of
the decomposed Berendsen field, X'l [equation (3.20c)], which can also be identified
with X[, as stated. In other words, Aj(v) is very natural for the original Berendsen
EOM.

Equation (4.1) implies that the conventional methods can be seen as certain ap-
proximations, with respect to h, to the current method. To clarify this, first notice,
as implied from (4.1a) (see Appendix B), the fact that

o) = () + O(n?) (42)
where
fiDE’] (W) = (x, Mp(v)v, V). (4.3)

Using these terminologies, we can redefine the conventional integrators as maps, con-

structed by @ES’ I and a related one, on the extended space. First, Method 2 [equa-
tion (2.4)] can be represented as

2]

1 2
Py o @) o®) (4.4)

(I)MQJL = @%] o} (i?’f] od h/2

If we ignore the extended variable v, then (4.4) is completely consistent with (2.4).
Here, v does not affect, as well as the original EOM, the development of z and v

defined by the original Method 2, and v is changed (boosted) only by @%]. Thus, @E?]
can be freely composed and we may define e.g., ®yo p = éf] o (IDE/]Z o (I)g] o @Ef}Q o @E?]
instead. The reason why we choose (4.4) is that we can take a similar form as our basic

first-order map (3.26) [viz., @E;ﬂ is placed at the last] to conduct their comparisons.
This choice will also apply to other maps described below.
Similarly, Method 1 mod can be represented as

Oy p = 0L 0 @l 0 3% o @l (4.5)

Recall that Method 1 mod is a modification of Method 1 [equation (2.2)], which can
now be represented by

Dy p = @) 0 @) 0 B 0 @), (4.6)
9



where
<i>[§’] (W) = (2, M(v = hF ()M v, v). (4.7)
égf Jis similar to &)f ) but not equivalent, and reflects the fact that in Method 1 the
velocity before the mapping by @f} is referred as an argument of \,. Note that we
have included <I>,[54} in ®yrim,p and Pyiq,p using the same concept as that in Pypo p,.
4.2. Similarity. Now, we can show, as detailed in Appendix B, that these three

maps, Pviim,n, Pmi,n, and Pppo p, are equivalent to @y in the first-order accuracy,
where @, is a currently given map defined by (3.26). Namely,

(I)Mlm,h(w/) == (Dh(w/) + O(h2) (48)
(el oalf oo o afl) ) + 00,

Pypp(W') = @5 (w') + O(R?), (4.9)

@]\,{2’}7’(&)/) = <I>h(w’) + O(h2) (410)

As an intermediate type between ®yiim , and @y, a map,

b, =0l o0 00l ol (4.11)
which uses Cﬂ?] instead of @E?] in @, can be defined and is also equivalent to ®; in
the first order:

Py (W) = @ (W) + O(R?). (4.12)

Since ¥y, is a first-order map, the above four maps become first-order integrators.
Note that, however, this does not straightforwardly indicate that the maps do not
have higher-order property. In particular, ®y2 5 includes the part, @E?}Q o (I’E] o @ELQ}Q,
which corresponds to the second-order map for the Newtonian EOM, so that @2 p,
may behave as a second-order map if the Newtonian parts are dominant, as will be
discussed later.

Computational cost of the current first-order map ®;, and that of the conventional
maps are essentially the same. In addition, the difference in the cost of between the
current second-order P2S1 map [see (3.29) or (3.31)] and the conventional maps is at
least O(n), which can be mostly ignored against the O(n?)-cost generally required in
the force evaluation for @E]. This is the consequence of the choice of the appearance
ordering of @5}, as discussed. However, note also that the cost becomes higher if use
higher-order integrators, in general.

4.3. Difference. As stated, the conventional integrators, including the Berend-
sen’s map ®yi,, and the related map ®urim n, are equivalent to the current 1st-
order scheme ®; in the lowest-order local accuracy. However, the current whole
algorithm (3.32), using ®;, and @, is not the same as the conventional methods, so
that the overall behavior should not also be the same. The following three differences
are given:

(i) Order of the local accuracy—. Equation (3.32) is at least the second or-
der (which is the same as that of the Verlet method), while the conventional ones,
®rip,p and Papim,p, are 1st order. This difference holds even when the current algo-
rithm (3.32) uses fﬂf’], instead of @5’].

10



(ii) Time reversibility (symmetric property)—. Here, a map ¢, parame-
trized by a time parameter h is said to be time reversible (at h), if ¢_,, o ¢}, is well
defined and becomes the identity; namely, if we go forward and then back with h,
then we get to the starting point. Note that this is a fundamental property of all
solutions of arbitrary smooth ODEs, including the original Berendsen EOM (2.1).
Time reversibility is often referred as a symmetric property (here, we define the latter
as a slightly stronger property than the former): ¢, is said to be symmetric (at h), if
¢y exists and ¢; = ¢,,. Since a numerical integrator mimics the exact solutions of the
original ODE, it should be symmetric. We see that ¥}, [equation (3.32)] is symmetric
provided that the parameters obey (3.33). In contrast, the conventional ones, Py,

Do p, and Pypim b, are not. Note also that @E] (i = 1,...,4) used in the current

integrator are symmetric (time reversible), but @f] used in conventional integrators
is not in general (where the usual group property is lost).

(iii) Robustness—. A, (v) and Ap(v) fluctuate according to the change of the
kinetic energy K (v) during the simulation; they are decreasing with increasing K (v)
for h > 0. By the following two reasons, the method using Ay (v) is more robust than
the method using A\, (v) (mathematical details are shown in Appendix A). (1) First,
the amplitude of Ap(v) is larger than that of Ap(v) for any K(v) and any h > 0.
This indicates that we often have to treat significant changes for A\, (v) in general.
Since this comparison is for the same K(v) value but not for the same simulation
step, the above indication makes sense as long as the dynamics obtained by using
A (v) encounters similar or smaller fluctuations of K (v) than those obtained by using
An(v). (2) Second, if we increase the value of h/7, viz., increasing h and/or decreasing
7, then the difference of the two amplitudes, |\, (v) — Ap(v)], becomes large. This
indicates that the scheme using Ay, (v) becomes more robust than that using A, (v), as
we increase h to use a larger timestep and/or decrease 7 to control the temperature
faster. Here, note that the parameters 7 and h/7 appear only in @f} i&?], and @f],
through A (v) and Ay (v).

5. Numerical Simulation. Among the current integrators, we examined the
most fundamental one, P2S1, in detail and compared it with the conventional meth-
ods, Method 1, Method 1 mod, and Method 2. A basic model system and two bulk
systems were used for the examinations. All the simulations were performed with a
program specially developed for this study.

5.1. Material. (1) Isolated ethane molecule. The molecule is designed by two
CHj3 united atoms (m; = me = 15 g/mol) and one harmonic spring connecting
the two united atoms. The interaction is thus U(r) = k(r — )2, where 7 is the
distance between the atoms, rq is its equilibrium value, and k is the spring constant.
The parameters used were ro = 1.54 A and k = 240 A~2kcal/mol, and the target
temperature Tp was 300 K, as set in [46]. The initial coordinates x(0) = (z1(0), z2(0))
and velocities v(0) = (v1(0), v2(0)) were x1(0) = —z2(0) = (—0.8,0,0) and v;(0) =
—v3(0) = (0,0,0), where 0 = /3kpTo/m,. With these settings, the total linear
and angular momenta are initially zero, and the temperature is initially the target
temperature. The initial value of the extended variable was set to v(0) = 0.

(2) Bulk argon system. The interactions of argon atoms are defined by a pairwise
11
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F1a. 5.1. (a) Trajectories of averaged temperature, Tyia, for a single ethane molecule system
obtained by four integration methods: Method 1, Method 1 mod, Method 2, and P2S1. Temperature-
control time constant T is varied, while the unit timestep h is 1 fs. (b) Trajectories of the invariant
function L (A2 g/mol fs=2) using the four methods with h =1 fs and T = 1 ps.

Lennard-Jones type potential with the smooth force-switching scheme of the form,

AT*12 — B’riﬁ + ag for O0<r S 1,
U(r) = ap + Zi:o bpr* for r<r<re, (5.1)
0 for r. <r <oo,

where A = 2508000 A'2kcal/mol and B = 1545 ASkcal/mol. The original force
function is defined for < r; and it is smoothly damped zero at the cutoff length r.,
where r; = 8 A and r. = 10 A were used. The parameters, aj and by, are determined
so as to U be a smooth function, e.g., ag = — 22:0 bir® (see [42] for the details). 168
argon atoms were treated within a 20 x 20 x 20 A% cubic box under the 3D periodic
boundary condition. The target temperature T was 87 K, which corresponds to a
liquid phase. The initial velocities were set randomly, modified to zero the total linear
momentum, and scaled to obtain an initial kinetic energy equal to the target kinetic
energy. The initial value of the extended variable was set to v(0) = 0.

(3) Bulk ethane system. The intramolecular interaction is the same as that in (1),
and the intermolecular interactions were defined by a pairwise potential of the same
form as (5.1) with A = 6020089 A'?kcal/mol, B = 2165 A®kcal/mol [47], r; = 12 A,
and 7. = 14 A. 588 molecules were treated within a 30 x 30 x 30 A3 cubic box under
the 3D periodic boundary condition. Ty was 184 K. The initial velocities were set
randomly, modified to zero the total linear momentum, and scaled to obtain an initial
kinetic energy equal to the target value. The extended variable was set to v(0) = 0.

5.2. Results and discussion.

5.2.1. Isolated molecule. To investigate fundamental properties of the inte-
grators, we first apply them to a simple model system, an isolated ethane molecule.
We have studied the following four properties: (i) temperature control ability, (ii)
accuracy, (iii) robustness, and (iv) time reversibility.

(i) Since this system is small, the temperature fluctuations should be large so that
the temperature control will not be trivial. To see this, we have varied the value of
the temperature-control time constant 7. Here, in general, a small 7 increases the
temperature controlling speed but introduces stiffness in the system. In contrast,
a large 7 decreases the controlling speed and results in no temperature control in

12
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F1a. 5.2. The errors of the invariant function obtained for the single ethane molecule system.
Unit timestep h is varied. (a) Four integration methods using 7 = 1000 fs. (b) Method 2 and P2S1
using T =1 or 10 fs.

the Newtonian limit 7 — co. Figure 5.1(a) shows averaged time development of the
temperature obtained by the four integration methods using h = 1 fs and several 7
values. Here, to properly capture the control ability, simple moving average, Tya (n) =

Nl\l/IA Zf\gﬁf* T(n—i+1), is depicted for n > Nya = 1000, instead of the instantaneous
temperature at time ¢ = nh, T'(n) (see Figure S1 in Supplementary materials for the
instantaneous temperature). Method 1 was not satisfactory for this system. For
smaller 7, the fluctuations are enormously large, relative to the target temperature
Ty, and for larger 7 the fluctuations are smaller but the averaged temperature is too
high compared with Ty. Method 1 mod was better than Method 1, suggesting that
the velocity scaling using the boosted velocity © = v + hF(x)M™! is better than
using the original velocity v [viz., Ap(0)0 was better than A, (v)o in (2.2)]. However,
the averaged temperatures of Method 1 mod are still far from T, for the largest
and smallest 7. Method 2 and P2S1 are comparable, and the temperature control is
good except for the largest 7. The smaller the 7 the faster the control becomes, as
theoretically expected, and it does work even for the smallest 7.

(ii) We have checked the numerical error by the conservation of the invariant
function defined by (3.16) applying (3.14). Figure 5.1(b) shows the trajectory of the
invariant (A2 g/mol fs~2) obtained by each method with » = 1 fs and 7 = 1 ps.
The drift in Method 1 is significant, which may be expected from the temperature
controllability as discussed above. Method 1 mod also exhibits unignorable drift,
although the temperature control is relatively good for these h and 7 values as shown
in Figure 5.1(a). This indicates that the judgement of the simulation validity only
by the temperature controllability is in fact insufficient. Method 2 and P2S1 are
comparable and show good conservations of the invariant.

To investigate the accuracy in detail, the global error was estimated by the error
of the invariant dL, which was obtained by the following formula in order to properly
capture the behavior of the trajectory of L, as described in [42]:

a = (L) - L) )

to

where one thousand different time origins, ¢, have been chosen randomly, and the
sampling duration, sd, was 10 ps. Figure 5.2(a) shows the error dL measured with
varying the unit time step h. Method 1 generates large errors especially for h >
1 fs. Method 2 and P2S1 are comparable and imply good second-order integrator
behavior [42]. Their difference is only in a very small h for 7 =1 ps.

13
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The resemblance between Method 2 and P2S1 may imply a special relationship
between them. Although Method 2 is not considered to be an exact second-order map,
it may have a certain relation with the second-order P2S1 map \112231, in contrast
to Method 1 and Method 1 mod. For example, under “mild” conditions such that
K (v) ~ Ky (near equilibrium) and/or s = h/7 is sufficiently small (non “stiff”), it may
hold that @2 5, ~ WE251 +O(s3) or a weaker relationship such as ®yp2 5, ~ ¢, 00510
¢, '+ O(s%) for a certain invertible map ¢, (viz., ¢, becomes a postprocessor [48]
between \115281 and ®ygp, in an approximate sense). These relationships suggest a
second-order like property for ®yia 5.

(iii) Robustness of the current method in the sense of (iii-1) demonstrated in
section 4.3 should be already clear from the simulation difference to the conventional
methods, Method 1 and Method 1 mod, shown above. The indication on issue (iii-
1) in section 4.3 really makes sense, because the dynamics generated by P2S1 using
Ap(v) encounter similar or smaller fluctuations of K (v) than the dynamics generated
by Method 1, Method 1 mod, and Method 2, all of which use A (v).

The robustness of P2S1 in the sense of (iii-2) in section 4.3, originated from the

difference between A, (v) and Ay (v) [viz., the difference between fﬂf’} and @Ef’]], will be
clearer by increasing s = h/7. This also reveals the difference between Method 2 and
P2S1, as depicted in Figure 5.2(b), which shows dL measured using 7 that is smaller
than in Figure 5.2(a). For 7 = 10 fs, the accuracy of P2S1 is superior than Method 2
with the order from one to two for h < 1 fs, although the difference vanishes for a
larger h because the principal error may come from the common maps <I>f] and CID%H.
For 7 = 1 fs, the difference between Method 2 and P2S1 is clearer, and Method 2
broke for A > 1 fs, due to the domain exception problem (see Appendix A for details).

(iv) Figure 5.3 shows the results of a time reversing test. After a “forward”
simulation for M = 100 time steps with unit time step h = 1 fs, it was changed into
the negative value, viz., h = —1 fs, and a “backward” simulation was conducted for M
time steps. If the trajectory is exact, then we will have the same (z, v) value at M —m
time step and at M +m time step for every m = 1, .., M. They were deviated much for
Method 1, as indicated in Figure 5.3(a). Furthermore, it broke at M +21 time step due
to the use of negative time step (see Appendix A). For Method 2 [Figure 5.3(b)], the
correspondence between M —m and M +m is better, but the deviations were gradually
increased and also resulted in a break at M +67 steps. In contrast, the correspondence
is almost perfect for P2S1 and resulted in the same (x, v) value at the final 2M
time steps as the initial value [Figure 5.3(c)]. These results clearly indicate that the
current P2S1 method is really time reversible, which is a fundamental property of the

14



(a) 3501 3 (b) 0.01, . ,
o tau=1000fs 3
250 | |
zol)EK | %eggr o E|
150 e 1 B
100 , Method 4 o 1007F T venog: 3
350F E| le08F _ — =-u Method 1 mod §
30 3 1e 09k . oo Method 2 3
X 250 E 1le10E P2S1 =
= 29 4 lelle R | | 1 3
o . . . Method 1 mod; te oot 001 1 1 10 100
SE — aetors 1 © oot nas)...
b e — t=10000fs E
250 ta=1001s A 0001F 3
200 tau=1000fs =1eots g 00001L 3
100 ‘ . Method 27 :
1e05F E
frtay E 3 Jeos; h=1fs E
ggg E 1e07F — -0 =
£ 1e08F ° E
}gg " L L L PZS:L 1e09 Il L L Il L | |
0 200 400 600 800 1000 1 10 100 1000 10000 1e+05 1et06 1et07

t(ps)

tau (fs)

Fi1G. 5.4. (a) Trajectories of the averaged temperature for a bulk argon system obtained by
Method 1, Method 1 mod, Method 2, and P251. Temperature-control time constant T is varied. The
errors of the invariant function are shown with (b) unit timestep h being varied (abscissa) with T
fized to be 1 ps, and (c) T being varied (abscissa) with h fized to be 1 fs.

original ODE and should be possessed by accurate numerical integrators. Note that
“backward” simulation is not done in ordinary simulations, but it is preferable to have
many measures, including the “backward” simulation analysis, to detect numerical
errors, where the loss of the time reversibility indicates potential errors.

5.2.2. Bulk argon. Figure 5.4(a) shows the trajectories of averaged tempera-
ture Tya in the bulk argon system using h = 1 fs. Temperature control ability re-
sembled for all the methods, for which a smaller 7 conducts quick control and a larger
7 leads to slow control, as expected. This resemblance is in contrast to the smaller
system, the isolated molecule, discussed above. However, the accuracy measured by
the invariant deviation dL clarified the difference between the methods. Figure 5.4(b)
shows dL, which was estimated in the same manner as the isolated molecule system,
by using several h values and a fixed 7 value at 1 ps. The accuracies of P2S1 and
Method 2 are one or two orders of magnitude better than that of Method 1 and
Method 1 mod for a wide range of h. The difference between P2S1 and Method 2 is
larger for a smaller h and it vanishes for practical h values. However, the difference
becomes large for a smaller 7, as shown in Figure 5.4(c), where dL was estimated
using several 7 values and a fixed h value at 1 fs. The difference between P2S1 and
Method 2 is one or two order of magnitude for 7 < 1000 fs. This clearly shows the
robustness of the current method, which thus enables quick and accurate temperature
control using a small 7.

5.2.3. Bulk ethane. The robustness of the current method was also observed
in the bulk ethane system, as shown in Figure 5.5. For 7 = 1 ps, the accuracies of
the two methods, P2S1 and Method 2, are one or more orders of magnitude better
than that of the remaining two methods, Method 1 and Method 1 mod. However, for
7 = 10 fs, the situation clearly changed, and only P2S1 is accurate, with two or more
orders of magnitude, compared with Method 1, Method 1 mod, and Method 2 for a
wide range of h. The maximum h value for P2S1 with the 7 = 10 fs case was 11 fs.

Remarks regarding the dL vs. h curves are made. These curves are very smoother
than those obtained in the single molecule system indicated in Figure 5.2(a). This
should be related to the fact that the temperature deviation of the small system is large
(see Figure S1 in Supplementary materials) so that the temperature control is difficult,
resulting in a stiffness to the system. On the other hand, the gradient of the curve
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is considered to correspond the local order of the accuracy [42]. In this viewpoint,
Method 2 seems to be a second-order integrator if 7 = 1000 fs [Figure 5.5(a)] but it
seems to be a first-order integrator if 7 = 10 fs [Figure 5.5(b)]. Thus, Method 2 is
implied to have a intermediate property between these two accuracies.

6. Conclusion. The proposed scheme for numerically integrating the Berendsen
temperature-control EOM works well in respect of the temperature-control ability, ac-
curacy, robustness, and time reversibility. It was analyzed theoretically and examined
numerically by simulating an isolated ethane molecule, a bulk argon system, and a
bulk ethane system.

The superiority of the proposed integrator in the temperature-control ability is
clear in a stiff system, which is here an isolated molecule system having larger fluctu-
ations. The proposed P2S1 integrator and the conventional integrators are equivalent
in the computational cost and the first-order local accuracy. But P2S1 is second order,
and also the proposed scheme enables us to attain a higher accuracy. The accuracy
measured by the invariant function for P2S1 was one or two orders of magnitude bet-
ter than that of the conventional integrators, for a wide range of h and in particular
for a small 7, where h is the unit time step and 7 is the temperature-control time
constant of the EOM. The robustness of the proposed method is also clear if we use
a larger ratio, h/7. It thus allows to use, as well as a large h, a small 7, which leads
to a subtle control of the temperature of the physical system. The robustness of the
proposed method comes from the velocity scale factor Ay (v), which is a counterpart
of Ap(v) used in conventional methods. Although a suitable 7 value may depend on
physical consideration or simulation purpose, the results provided by the proposed
method were similar or superior than those of the conventional methods for all 7
values investigated. The proposed operator-map scheme is successful to capture the
property of the original ODE, the time reversibility. The time reversibility of the
proposed method comes from a suitable decomposition of the Berendsen vector field
and the symmetric composition technique of the resultant exact maps.

In this study, we restrict our attention on the most fundamental scheme, P2S1,
among the proposed methods. This is because it is simply implemented while highly
effective. Higher-order integration schemes, such as fourth-order integrators P4S5
and P4S6, can be used according to the proposed method, in order to attain higher
accuracy for a small h. For a larger h, an alternative second-order integrator, P2S2,
is useful and will show a comparable or better performance relative to P2S1. In this
study, as the basis for these comparisons, P2S1 was shown to be better than the
conventional schemes by the numerical simulations.
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We also showed that a good performance of the numerical integrator was not
measured by only the temperature-control ability. The currently proposed invariant
function defined on the extended phase space is useful for any integrator to catch the
numerical error and to prevent unphysical results.

7. Appendix A. Here we analyze and compare the two velocity scale factors:
conventional one, A, (v), and the currently introduced one, Ap(v).

7.1. Basics. To simplify the discussion, we re-parametrize these factors, using
s = h/7 € R (the ratio of a unit time step to the time constant) and r = Ko/K(v) €
R, (the ratio of the target value to a variable for the kinetic energy; Ry denotes
strictly positive numbers), such that

[N

Arys)=[1+s(r—1)]2, (7.1)
A(r,s) =[(1—r)exp(—s)+7]2, (7.2)

»l=

reducing M Ko/K(v),h/7) = Ap(v) and A(Ko/K(v),h/7) = Ap(v). Since we need
real-valued factors, first we should clarify the domain of definition of A and that of A.
They are, respectively, given by

Iy={(r,s) e Ry xR| s <sp(r)if r <1, and s > sy(r) if r > 1}, (7.3)
Ta={(r,s) e Ry xR| s > sp(r) if r > 1} (7.4)
[see Figures 7.1 (a) and (b)], where

()= (1-n)T, (7.50)
sa(r) =In(1 —r71). (7.5b)

7.1.1. Domain exception problem. The integrator breaks down if Aor A takes
a value out of I'y or I'y.
(r =1 case) Since

AL,s) =A(1,s)=1 (7.6)

holds for all s € R, there is no problem in this case, as expected from the fact that
r =1 means the “equilibrium” Ky = K(v).
17



(r <1 case) If r < 1, then admissible s for \(r, s) is restricted such that s < s)(r),
but this condition is met as long as s < 1, namely, o < 7. Thus, the domain
exception problem may not be severe in many practical simulations (nevertheless, we
have confirmed this problem for Method 2 in Figure 5.2(b)). In contrast, since all
s € R is admissible for A(r, s) when r < 1, no problem arrises in the proposed method.

(r > 1 case) If r > 1, then every s > 0 is admissible for both A and A [since
sa(r), sa(r) < 0if r > 1], while the use of negative s is restricted. We have encountered
this type of domain exception in the backward simulation for the conventional methods
as seen in Figures 5.3(a) and 5.3(b). In contrast, for the current method using A in
q)f], the usual group property, (<I>[§]h o @f})(w’ ) = w’, ensures no exception in the
backward simulation. However, this type of the domain exception concerns higher-
order integrators (see section 7.3).

7.1.2. Graph. Both A and A are monotonic functions with respect to both r
and s (strictly monotonic unless r = 1 or s = 0). Typical graphs are depicted in
Figure 7.1(c). Equation (4.1) can be obtained (see also Remark 8.6 in Appendix B)
from the Maclaurin’s expansion of A and A with respect to s such that

A(r,s) =1+ %(7’ —1)s— é(r2 —1)s? + O(s%), (7.7a)
Ar,s) =1+ %(r —1)s — é(r —1)2% + O(s%). (7.7b)

Note that A(r, s) # A(r, s) + O(s?) in general (the equality holds only in the “equilib-
rium” case r = 1).

7.2. The statements on the robustness. We mathematically formulate the
statements on issues (iii-1) and (iii-2) in section 4.3 as Propositions 7.2 and 7.3, re-
spectively. Proofs of propositions are given in section III of Supplementary materials.

Issue (iii-1). When r = 1, viz., kinetic energy K (v) takes the target value Kj,
then the factors do nothing, that is, (7.6) holds. In simulations, r varies so that A
and A fluctuate around the unity. As a fundamental property, we observe

PROPOSITION 7.1. (a) If 0 <7 < 1 then A(r,s) = A(r,s) =1 for s =0 and
A(r, 8) < A(r, s) for all admissible s # 0, (b) if r =1 then A(r,s) = A(r,s) = 1 for all
s€R, and (¢) if r > 1 then A(r,s) = A(r,8) =1 for s =0 and A(r,s) > A(r,s) for
all admissible s # 0.

Now, we see that the amplitude of A(r, s) from its “equilibrium” value 1 is larger
than that of A(r,s):

PROPOSITION 7.2. |X(r,s) — 1| = |A(r,s) — 1] holds for any (r,s) € Tx NTx
provided that s > 0, where the equality holds only if r = 1.

Issue (iii-2). Consider the behavior of A(r,s) and A(r,s) as increasing s =
h/T, viz., increasing the unit time step h or decreasing the temperature-control time
constant 7. As for a global behavior, A(r, s) is bounded for s > 0 and lims_,, A(r,s) =
r2 for any r > 0, but A(r, s) is not. In fact, lim,_ o A(r, s) = oo if > 1, and A(r, s)
cannot be defined anymore for s > s,(r) if r < 1. This implies that A(r, s) is not
tractable for increasing s. These differences of the global behavior between A(r, s) and
A(r, s) are in contrast to the similarities of the local behavior between them, as seen
in (7.7). The importance in practice may be in the middle range of s. As expected
from these facts, the behavior of the difference between A(r, s) and A(r, s) is described
as follows, which now expresses the statement in (iii-2):
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PROPOSITION 7.3. |A(r, 8) — A(r, s)| is strictly monotone increasing with respect
to s for any admissible s > 0 and for an arbitrarily fired r € Ry \{1}.

7.3. Robust higher-order method. For constructing a robust higher-order
integration method, we should overcome the problem originated from the fact that
Ap(v) does not permit an arbitrary h € R. Namely, the domain of the definition of
A(r, s) for a fixed r is [s5(r),00) G R if 7 > 1, while it is whole R if 0 < < 1. From
this fact, one cannot use arbitrary negative coefficients {c;, 8,} in (3.32), since a;;h and
B;h play a role of an intermediate unit timestep and require the evaluation of A, x(v)
and Ag x(v). One way to solve this problem is to use a higher-order integrator whose
coefficients are all positive [49, 50, 51]. The other way is to use, instead of A(r,s), its
suitable approximation, f\(r, s), which is defined for all h € R to enable us to use any
negative coefficients. The map éf], which uses A instead of A, should also be 1-1 for
all h, in order to construct its adjoint map.

8. Appendix B: Proof of the first-order accuracy. We prove the formulas,
(4.8)—(4.10) and (4.12), which demonstrate the similarities of the integrators in the
sense that they are all equivalent within the first-order accuracy. We also reconsider
(4.1) and (4.2). Before proving the formulas, we state our notations and assumptions.

Notation: For simplicity, the extended phase space Q' shall be written by €2, so
that Q@ = D x RZ x R, where D is a domain of R” and R? = R"\{0}, and the phase-
space point is denoted as w = (x, v,v) € Q. For convenience, we use the notation such
that q)f} = éf} and @E] = éf], o) that. all the maps, <I>[h1], <I>£12], @E?], @E;l], <f>[:], and
@E?], can be represented uniformly as @EZ] with i € B ={1,2,3,4, 3, 3} According to
each consideration, we often denote @%] (w), where w € Q is treated to be a variable
and h € R be a parameter, by ®lil (w, h), which treats both w and h to be variables,
or by ®[1¢(h), which treats h to be a variable and w be a parameter.

Assumption: We assume that the functions, the force function F' : D — R"™
and the extended-field function Y : D x R? — R, are sufficiently smooth (e.g., twice
differentiable). The kinetic-energy function K : R% — R should also be smooth [it
does not necessarily takes the form of K(v) = Y, m;v?/2 but takes values in R,
viz., strictly positive, for v # 0].

8.1. Basics. We should consider two technical points. First, we should clar-

ify the admissible range for the unit time step, h. This problem arises in @Z] for
i € {3,3,3}, originated from the well-definedness of Aj(v) and A, (v) discussed in
Appendix A. The second point is that each @EZ] should map any phase-space point
w=(z,v,v)in Q tow = (2/, v',v') that is also in 2, meaning that we should ensure
2’ € D andv’ # 0. This is required to consider the composition of these mappings,
because the maps @Ef] are not defined outside 2. The second point concerns with all

the maps @%] (i € B), and in fact it turns out to be a condition on h as shown below.
Thus the second point is relevant to the first point. Hence, what we should clarify is
the range of h in which @E:] (w) is well defined [i.e., (w, ) € Q; see below] and takes
a value in Q [i.e., ®1(w, h) € Q; see below].

To handle these points, at first, we mainly treat the maps by explicitly considering
h-dependence as ®[4(w, h): ® is a map from a certain subset of Q x R into R?*+1,

all: 0 x RoQl — R¥H1 (W, h) — ol (w), (8.1)
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for ¢ € B, and individually described as follows:
ol ) R (w h) — (v +z, v, V),

32 kI 2L () h) — (z, hF(x)M ™' + v, v),

ol QM R2HL (b h) — (z, v, hY (z,0) + V),

OB QB - R*H (w, ) = (2, An(v)v, v),

@) : 0 S R (w,h) = (2 Mo, V),

b3l . Bl _, R (w Jh) — (a:, A (v — hF(2)M 1, v)

Here, QU for i € {1,2,4} is simply defined by QI := Q x R, while Q! and OB are
defined, so that Ay (v) and A, (v) are well defined respectively, by

QB . = H74(Ty) (8.2a)

={(z, v,v,h) € AXR| h/7 > sp(Ko/K(v)) if Ko > K(v)} (8.2b)

and
bl = BTy (8.3a)
Y e A I R

where
H:QxR—R2 (2, v,v,h) S (Ko /K (v), h)7). (8.4)

Similarly, Q13 is defined by

;= (a21) (i) (8.50)
={(z,v,v,h) € AxR| (z, v — hF(z)M™", v, h) € Q¥}, (8.5b)

where
BT QxR = R xR, (w, k) > (D (w, —h), k) = (z, v — hF(z)M !, v, ?). |
8.6

Thus we have prepared to state about the range of h and represent it as follows:
PROPOSITION 8.1. For each i € B, (w,h) € QU and ®U(w,h) € Q if and only if

(w,h) € (ém)_l (Q). Here, we have an explicit form as follows:

(@[il)71(9)= U fw}x 1l =l (8.7)

w=(z,v,v)EQ

where
flike = (cpmw)*l Q) fori € {1,2,4), (8.82)
Bl . _ { (T SA(KO/Ié{(U))a o) Z ggz; ; gg: (8.8b)
- (Tsx(Ko/K(v)), o0) if K(v) < Ko,
Bl = R if K(v)= Ko, (8.8¢)
(—o0, TsA(Ko/K(v))) if K(v)> Ko,
Bl = (H o (6[2‘]“’\%))71 (), (8.8d)
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with B2 R — R2+2 b & (BB (w, —h), h) and U, == (3271) 7 (@ x R).

Proof. Since the first statement is obvious, we are concerned with the second
statement and prove (8.7). This is clear for ¢ € {1,2,4} because the conditions that
(w,h) € 2 x R and ®lU(w,h) € Q are equivalent to the conditions that w € Q and

h € (ém“’)_l (Q) (notice that ®[1« is defined on whole R for i € {1,2,4}). Here,
obviously, QM itself is Q x R with /14« = R (Vw € Q). For i = 3, we see that the
subset Q) with (8.8b) [recall (7.5b)] is equivalent to (8.2b) with replacing “>” by
“>”_ Thus the relation QB = (9[) - () is deduced from the following equivalences
for (w,h) € QB

3Bl (w,h) €
& Ap(v) #0
< (K (v) < Ko and h/7 = sp (Ko /K (v))]
& [K(v) < Ko = h/7 > sa(Ko/K(v))].

For i = 3, a discussion similar to i = 3 can be used to derive (8.7) with (8.8c) [recall
(7.5a)] by observing

[(w,h) € QB and Ay (v) # 0] < (w, k) € QB (8.9)

We also see that QB = H=1(T"y), where I'y (the interior of T'y) is obtained from (7.3)
with removing “=" from the both “<” and “>". For i = 3, we proceed as follows.

First we define a subset A := (@2_])71 (Q[S]’), then

A = Uyea ({w} X (@2*}‘”)_1 (Q[g]’)). Here, using the relation QB = H—1(T'))
obtained above, we have (@2_]”)_1 QB = (Ho (<i>[2_]“’|Uw))_1 (I'y). Thus A =
Usealw} x IBle = QB Next we show A = (fb[g]>_1 (Q). By the definitions of QU]

and ®B! we observe that
i —1
(w, h) € (<I>[31) Q) (8.10a)

{ (w,h) € QA x R, &2 (w, h) € QB and A, (v/) #0,

- .10b
where ®27(w, h) = (W', h) = (x, V', v, h) (8-10D)

Equation (8.10b) is shown, by using (8.9), to be equivalent to [(w,h) € © x R and
(w', h) € QBV], which is also equivalent to (w,h) € (@2*])_1

Qb)Y = A. Thus we
S\ —1
have shown (<I>[3]) () = A, which completes the proof. O
Therefore, the range of h in which @%] (w) is well defined and takes a value in
Q is given by Ille for arbitrary w € Q and i € B. Specifically, for i € {3,3}, the
region of h is explicitly given for any w = (z, v,v) by (8.8b) and (8.8c), which are
open intervals including 0 for any K (v). Although explicit expressions seem not clear
for the other i, we see that an open interval including 0 is always involved in [l
Yw e, 36 >0, (=6,8) C Jlile, Regarding 7 € {1,2,4}, this holds true, because Jlilw
becomes an open set due to the fact that ®[U¢ is continuous and € is open in R2"+1
and because 0 € 111 due to the fact that ®l(w,0) = w for all w € Q. A similar
reason is valid for i = 3 via (8.8d) [note that U, is open and ®2~1(0) = (w,0) for
any w € Q). These results indicate that for any w € Q a sufficiently small |h| always
applies for @%] (w) to be well defined and to take a value in €.
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Below, we restrict the domain of the definition of ®[ from QI into Q. having
the well-defined mapping
all: 0 x RoQW — Q, (w,h) — & (w) (8.11)

for all i € B. Next, we consider their composition, in which we have to consider the
following three issues. To state the first issue, suppose a two-map composition,

@ (w) = (@ 0 311y (w). (8.12)

Even if o' = q)%] (w) € Q, equation (8.12) is not necessarily well defined, since
(W', h) € {w'} x IV may not be ensured. We have to ensure h € 117", However,
this cannot be accomplished by simply using hs that is smaller than h such that

he € 114" because ' should be changed into w/, = @Eﬁ (w) due to this change of the

unit timestep, so that 10" be changed into f[j]“’é, which does not ensure hy € 117%!,
Second, we wish to consider the behavior of ®p(w) with varying h (in a continuous
manner) in a certain interval J. For example, (4.8)—(4.10) correspond to this kind
of issue. Thus we have to ensure the well-definedness of the map such as (8.12), not
only for one value i but also for all A € J. Third, we should take into account the
composition of any finite number of the maps, generally represented as

Dz(w,h) = Bz(w) = (@) 0+ 0 @) (w), (8.13)

where 7 = {iy,...i,} C B, rather than the composition of two maps.

The solution to these issues is demonstrated as follows. The well-definedness of
(8.13) can be formulated inductively with respect to n, and it is shown, by induction,
to be equivalent to

n—1

whe ) (@m)‘l ((q,[izl)‘l (...(@im])‘l (Q[im+11/)...>> _0 (8.14)

m=0

where

3 0 xR, (w,h) & (80w, h), 1) (8.15)

for i € B (note ) := Ql1)"). We can then show
Yw e Q, 367 >0,Vh e Jr = (—61,61), (w,h) € Q;l (816)

Equation (8.16) can be proved by using the following issues for every i € B: the con-
tinuity of ®[, the form of its domain of definition (which is an open set) represented
by (8.7), the property of lilw (i.e., it is an open set including 0), and the relation
such that ®1(w,0) = w (Vw € Q). Therefore, (8.13) for arbitrary w € Q is always
well defined for every h in a certain interval Jz around A = 0. This is the solution
and the basis for our analysis stated below.
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8.2. Proof of (4.8)—(4.10) and (4.12). The quantities described in (3.26),
(4.4)—(4.6), and (4.11) are now read as maps defined by

B0 x RO — Q. (0,h) S dp(w) = (@&f} 0l o3l o @ﬁ}]) (),

=i

t QX RO — Q, (w,h) i P (w) = (fb[}?} o éf] o @E] o @E]) (w),
(I)Mlm Q) x RDQ:I)M““ — Q, (w, h) Ii) (I)Mlmﬁh(w) = ((I)E:l] (@) (I)Ll] o (ig?] ] (I)E]) (OJ),

D Q@ x RO, = (0,h) % Bura(w) = () o @ 0 0 0 0 (w),

Pyt QX RDOQG, , — Q, (w,h) W9 Do p(w) = (fI)E;l] o (ﬂ?] o @E}Q o @g] o <I>[h2}2) (w),

where Qf, Q. and so on are open sets in R27+2 defined individually by (8.14); a
justification for ®yrg 5 (w), which also uses h/2, can also be done similarly [e.g., define
@f,] = CIDE?}Q, which is @E} using 2M instead of M]. In particular, for any w € , 36 >
0, for all h € J = (=6, 6), the quantities, @5, (w), éh(w), and so on, are simultaneously
well defined [Take the intersection for the individual maps, J = [\ Jz, in (8.16)].
Now we show that they are all equivalent in the first order. We here define exactly a
relation between any two maps ®1) and &2 in A = {2, P, Dp1m, Prrrs Pz}

DEFINITION 8.2. ®M) and ) are equivalent in the first order if Yw € Q, 36 > 0,
Vh € (=6,68), @V (w, h) and &P (w, h) are well defined and if M (w, h) —®3) (w, h) =
O(h?) ((—6,68) > h — 0) holds. Then we denote @) ~ &),

Below we prove the equivalence,

Py ~ By ~ O ~ ~  ®y 8.17
ML gy TMIm e = pg10 - pean U2 ( )

where e.g., P11 o Py designates that &y ~ Py is shown in Proposition 8.7.

Since “~” becomes an equivalent relation in A, equation (8.17) implies that any two
maps in A are equivalent in the first order, which validates (4.8)—(4.10) and (4.12). In
addition, we reconsider (4.1) and (4.2) in Remarks 8.6 and 8.9, respectively. Before
proving these issues, we prepare the following lemma:

LEMMA 8.3. Let g; be a twice-differentiable map (1 = 1,2) from I C R, which is
an open interval including 0, to R™, satisfying

gi(h) = O(h) (I>h—0). (8.18)

Given v € RY and put 1o = Ko/K((v) € Ry. For i = 1,2, let R; be a twice-
differentiable map from T'; C Ry x R, which is an open set including (r9,0), to R,
satisfying the following conditions:

Rl (T()? 0) = R2 (TO, 0)7 (819&)
D1R1(7"0,0) = DlRZ(TOa 0) = Oa (819b)
D3Ry (ro,0) = D2Rs(ro,0). (8.19¢)

Then, there exists § > 0 such that for allh € J = (—6,6), R1(Ko/K(v+ g1(h)),h/T)
and Ry(Ko/K (v + g2(h)), h/T) are well defined, and

Ko R\ _,( Ko h , -
f (K(U+gl(h))’ T> Ry <K(U+gg(h))’ 7_) +0O(R*) (J>h—0). (8.20)
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Proof. Put f¥ : I — R*" h — v+ gi(h) for i = 1,2. Then ¢, : [ D B; =
(fO)y Y (RY) — R% h v (Ko/K(f?(h)),h/7) is well defined and twice-differentiable.
Thus, for all h € C = (1) HT1) N (o) 1 (T2), (Rio ¢;)(h) = Ri(Ko/K(v +
gi(h)), h/7) is well defined for i = 1,2. Due to the assumptions, C' becomes an open
set in R. In addition, C 3 0 holds, since the fact that g;(0) = Jlimy_g;(h) = 0,
which follows from the continuity of ¢g; and equation (8.18), leads to f¥(0) =v € R,
so that B; 3 0 and ¢,;(0) = (Ko/K(f}(0)),0) = (r9,0) € I'; for both ¢ = 1 and
2. Hence, there exists 6 > 0 such that J = (—=6,6) C C, so that for all h € J,
G;(h) := (R; 0 p;)(h) is well defined for i = 1,2. Since G; is twice differentiable, we
have G;(h) = G;(0) + DG;(0)h + O(h?) (J 2 h — 0). Thus, if we confirm

Gl(O) = GQ(O), (821&)
DG1(0) = DG5(0), (8.21D)

then we complete the proof. Now, from G;(0) = R;(¢;(0)) = R;(ro,0) and from
(8.19a), equation (8.21a) is valid. From the relation that DG;(0) = D1 R;(ro,0) Dy} (0)
+ D3aR;(r9,0)Dp3(0), where ¢, = (p},¢?), and from (8.19b), we get DG;(0) =
DyR;(r9,0)/7 for i = 1,2. Thus (8.21b) follows from (8.19¢). O
This Lemma leads to the following two corollaries used in propositions below.
COROLLARY 8.4. Let c € R™ and v € RY,. Then there exists 6 > 0 such that

M (v he) = A, (v) + O(R?) ((=6,8) 2 h — 0). (8.22)

Proof. Apply Lemma 8.3 via substituting g1 : I = R — R"h <, he, go -
R — R, h+5 0, and Ry = Ry = Ay : I} = I's = [y — R, which is defined in
(7.1). Then (r9,0) € I'y, and the required conditions, including (8.18) and (8.19),
are easily verified to be met. Thus Ry (Ko/K(v + g1(h)),h/7) = A (v + he) and
Ry(Ko/K (v + ga(h)),h/7) = A (v) for h € J = (=6,6) follow (8.20) to indicate
(8.22). O

COROLLARY 8.5. Let g be a twice-differentiable map from I C R, which is an
open interval including 0, to R™, satisfying

g(h) =0(h?) (I >h—0).
Let b € R" and v € RY,. Then there exists 6 > 0 such that

Ap (v +hb+ g(h)) = Ay (v+ hb+ g(h)) + O(h?) ((—6,8) 3 h — 0). (8.23)

Proof. Apply Lemma 8.3 via substituting g1 = g2 : [ — R",h W, g(h) + hb,
Ry = A|l'p : Ty =T5 — R defined in (7.2), and Ry = A"y : I's =Ty — R defined in
(7.1). Then (r(,0) € I'a, I'y, and the required conditions, including (8.18) and (8.19),
are met. Thus Ry (Ko/K (v + g1(h)),h/7) = Ap (v + hb+ g(h)) and Rao(Ko/K(v +
g2(h), h/7) = Ap (v + hb+ g(h)) for h € J = (=6,6) follow (8.20). O

REMARK 8.6. For any v € RY, as obtained from Corollary 8.5 with b = 0 and
g =0, there exists 6 > 0 such that

Ay (v) = M, (v) + O(h?) ((—6,8) 2 h — 0), (8.24)
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and so
Ars (V) = Mg (V) + O(s?) ((=6/7,6/7) 25— 0). (8.25)

Equations (8.24) and (8.25) correspond to the accurate expressions of (4.1a) and
(4.1b), respectively.

Now, we prove (8.17) via the following four propositions.

PROPOSITION 8.7. @37 ~ ®prim holds true.

Proof. For any w = (z, v, v) € Q, we know ®Py1y p(w) and Py p(w) are well
defined for all h in a certain interval J' = (—§',6’) and obtain

(cﬂf] o cpﬁf]) (w) — (éf’] o cpf]) (w) (8.26a)
= (0, [An (v + heg) — A (V)] (v + hey),0) € R# T (8.26b)

for all h € J', where ¢, = F(z)M~! € R™. In (8.26b), applying Corollary 8.4, we
have \j, (v + heg) — Ay (v) = O(h?) ((=8",8") 2 h — 0). Thus,

(85 0 @) () - (8 0 2f) ()
= (0, O(h*)(v + hey),0)
=0(h?) (I>h—0),
where I = (—6,6) with § = min{¢’,6"} > 0. Noting that ®yim p(w) = U(w(h) +
¢(h),h) and @y p(w) = U(w(h),h) for h € I, where maps w : I — Q,h R
(éf] o <I>[h2]> (W), ¢ : I — R+ | 4, (éf] o @E) (w) — (i)f] o @E) (w), and T :
0 — Q, (w, h) W, (CDEI] o @g]) (w) [see (8.14)], are twice-differentiable, we have

Pri1m (W) — Puirn(w) = ¥(w(h) + O(h?), h) — ¥(w(h),h) = O(h?) (I >h—0).0
PROPOSITION 8.8. @1 ~ D holds true.
Proof. For any w = (z, v, v) € Q, it is shown that @y n(w), Pp(w), and

&y (w) = (@Ej] ol ool o @f]) (w) (8.27)
are well defined for all h in a certain J' = (—¢§',8") and

(8 0 o) () - (2 0 @) () (8.28a)

= (0, (M (v + hee) — Ay (v + hep)] (v + hey),0) € R2H (8.28Db)

holds for Vh € J', where ¢, = F(x)M~! € R". Applying Corollary 8.5 with g = 0 to
(8.28b), we have §" € (0, 8'] such that

( @[2]) (<1>[31 o <1>[2]> (w) (8.29a)
=0(h?) (J=(=8",8")2h—0). (8.29b)

Thus, using a similar manner (replacing Bl with <I>[3]) in the proof of Proposition 8.7,
on the basis of the smoothness of the maps, we get

Prrimon(w) — O (w) = O(A?) (J 2 h — 0). (8.30)
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Since both &), and @), are first-order integrators, there exits § € (0,6”] such that for
= (*67 5)3

dp(w) — p(w) = O(h?) (I3 h—0). (8.31)

Equations (8.30) and (8.31) imply ®yj1m p(w) — ®p(w) = O(h?) (I>h—0).0

REMARK 8.9. We can apply the identically zero force, F' = 0, then ‘I>[h2}
an identity map on Q, so that (8.29) indicates (4.2).

PROPOSITION 8.10. ® ~ ® holds true.

Proof. For any w = (z, v, v) € Q and for all & in a certain J = (=§,8), & (w)
and @), (w) are well defined, and

becomes

(2 0 @}") (@) (8.32a)
= (@ + hv, hF(z + hv)M ™" + v, v) (8.32Db)
= (z+hv, hF(x)M ™" +g(h) +v, v), (8.32¢)

with g: J — R, h <, h(F(z + hv) — F(z))M~1. Since g is twice differentiable and
g(h) = hO(h) = O(h?) (J 2 h — 0), by applying Corollary 8.5 to (8.32c), we have
5 € (0,6'] such that for h € I = (-6,9),

(2} ool o all') (w)
z + hv, Ap(v + hF ()M + g(h)) (v + hF(z)M ™ + g(h)), )

= (
= (z + hv, Ap(v + hF(2)M™' + g(h)) + O(h?))) (v + hF( M~ +g(h),v) (I>h—0)
= (z + hv, Ap(v +hF(z)M™" + g(h))(v + hF(z)M ™' + g(h)), v) + O(h?)

= (a0 o o 2)) () + 02,

Thus, from the smoothness of the maps, we have @Ef] (((bf’] o Q)f] o <I>[h1}) (w)) =
o (8 oo o@}l) (w)) + Oh*) (I3 h— 0), indicating

Py (w) = Pp(w) + O(h?) (I >h—0). (8.33)

PROPOSITION 8.11. ® ~ &5 holds true. i
Proof. For any w = (x, v, v) € Q and for all h in a certain I = (—6,6), Pp(w)
and ®yrg p(w) are well defined, and

(@ o @}!) () - (), 0 @}l 0 0}7),) (@)

(—’ﬁF(:c)M—l hF(z+ho)M ™ = BF(z + ho + 2 F(o)M )M~ — AF(z)M !, 0)
= (O(h?), hF ()M~ + O(h*) — &(F(z) + O(h))M ™" = 2F(2)M~',0) (I>h—0)
= 0(h?).

Thus, from the smoothness of the maps, we get (@E;ﬂ ) Cilf]) ((@E] o (PE]) (w)) =

(@Lj” . @[:1> (((I,[} ool q)gz}g) (w)) +O(h?) (I >h — 0), indicating

P (w) = Pron(w) + O(h?) (I3 h—0). (8.34)
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