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Summary : In this paper some new nonparametric several-sample
tests for location or scale are proposed, and their asymptotic efficiencies
for some parametric alternatives are calculated. A multivariate non-
parametric two-sample test for location which may be regarded as a
multivariate generalization of the Wilcoxon test, is also proposed with
its asymptotic efficiency for normal alternative. Finally we shall gene-
ralize the several-sample tests for location to the multivariate case and
multivariate Kruskal and Wallis’ test is also proposed.

1. Introduction

We shall first propose a family of nonparametric several-sample
tests for location constructed from generalized U statistics which in-
cludes as special cases, Bhapkar’s V-test [4], Deshpande’s L-test [10]
and a test asymptotically as efficient as Kruskal and Wallis’ H-test
[18]. As a consequence, if the number of populations is greater than
three, we can select a test whose asymptotic efficiency is higher than
Kruskal and Wallis’ H-test [18] against the normal, exponential and
uniform distribution.

Secondly, for the nonparametric several-sample problem of scale
we shall propose a family of tests constructed from generalized U
statistics which includes Deshpande’s D-test [117] as a special case, and
further we shall generalize Tamura’s @Q-test [29] for the two-sample
problem of scale. We can find a test whose asymptotic relative efficiency
with respect to the asymptotically UMP invariant test (Lehmann [20,
p. 275]) for normal distribution is 15/27° independently of the number
of populations. This value is equal to the asymptotic efficiency of
Mood’s two-sample test for dispersion [24] and Tamura’s @-test [29]
against the F-test for normal alternative. Again we can also find a
test whose asymptotic efficiency for normal alternative is higher than
15/2=% if the number of populations is greater than four.
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Thirdly we shall propose a multivariate Wilcoxon test which is a
natural extension of the ordinary Wilcoxon test [32], [23]. Its asymp-
totic efficiency against Hotelling’s 7°-test depends both on the direction
of the sequence of alternatives and on the population covariances, and
is shown to be equal to that of Bickel's W,~test [7] against Hotelling’s
T?-test for the one-sample problem. Hence the asymptotic efficiency
of our bivariate Wilcoxon test against Hotelling’s 7% for normal dis-
tribution is always higher than /3/2 (= .866). The multivariate
Wilcoxon test may be regarded as a two-sample analogue of Bickel’s
M,~test [7].

Finally we shall generalize the several-sample test for location to
the multivariate case. Multivariate Kruskal and Wallis’ test is also
considered and their limiting distributions under the hypothesis and
sequence of alternatives near hypothesis are obtained.

2. Preliminaries

The following Theorem 2.1 concerning a multivariate generalized U
statistics introduced by Hoeffding [137] and later improved by Lehmann
[19], may be well known as Bhapkar [4] and Lehmann [21] stated.
But as far as the author is aware, its proof in general case seems not
to be given in the literature. So we shall state the theorem with a
sketch of its proof, which is a modification of that of Fraser [12, p. 225].

Let px1 vectors x;s, «=1,2, -, n; be a random sample from the

p—variate distribution F](x) (]:1) 27 ) C) and ¢(i)(x11’ Tt X5 0t 5 X
o Xep®) (6=1,2, -+, 7) be a real-valued function which is symmetric in
each set of variables X, -+, X4, (K=1,2, ---,¢). Put

)
a=1 \Ma

. ¢ In -t ;
(2. 1) U® = [H ( “ >] Z“ e ; (l)(‘) (xlwly ) xlmmgi); s Xesyy Tty xcsmgi))

where the summation 2 E extends over all possible sets of sub-
SCripts, (o, *=*, Qpu), =, (85, =+, 8,,0) such that 1=, <--<ea,w=mn, -,
18, < <3,=m,. Then U? is called a multivariate generalized U
statistic.

Theorem 2.1. Suppose that there are r multivariate gemeralized U
satistics U defined by (2.1).
(i) If E[gb(i)]:ﬁ(i)’ then E[U(‘)]:n(i).
(i) If E[{p?}* )< oo, then for every i and j,

57 (; 7

—amd! c %) (D
@.2) Cov LU, Uw1=[11 (o) | 33+ 33 [1(7) G 5. ) e

=0 de=0 La=1
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where m$ P =min (mS", m”) and §:3; means the covariance of ¢(x,,, -+,
X153+ 3 X1 ...,xcmg,-)) and qs(j)(xl” oy Xig, x;dl—H’ ey x;m(l,»); 3 Xory t Xedgs
Xedgr1s s Xem() With X;; and xi; being assumed to be independently dis-
tributed as F(x) for varying j.

(iii)* Suppose that E[ P =1 and E[ {$p°}*]1<co. Further let n;=p,N
with p; being positive constant independent of N, then as N—oo the r-
dimensional statistic

(2. 3) \/TV—(U(‘)—WU), e, U(”—n(”)
is distributed asymptotically according to r-variate normal distribution,
whose mean vector is 0 and the covariance matrix X =(o;;) is given by

(8)ppn () ()20 ( )
my-'m i my,’'m
(2. 4) O3 = — 7 Cizo','.’.?,o‘F oee +—c < é‘(()%.{)-.l

1 c

.

Proof. (i) is obvious. From (2.1) the covariance of U and U<
is given by

@5 [ (o) (fen) | S S5 3 Cov [6Ptia,s s Ty

my 7 o I
xcsl y xcsm(i)) ’ (l) 7 (xlm{’ ) xlm:ngj), ’ ch{ ’ ’ xca:n(j))]
c [ .

In the multiple summation of the above expression the number of items
such as just d, x,’s are present in common among X, *, X > and
1

Xia/s "t Xial oy **, and just d. x..’s are present in common among X,
1 1

Tt xcsmg.-) and Xesly *ty xcﬁ;,‘(:i) 18

a=1 \Mly dw m; _dw .

For this combination of x,;.’s and x;’s the covariance of ¢ and ¢ is
equal to 5% . Hence we get (ii). To prove (iii) we shall first note
the following theorem which is a straightforward generalization of a
theorem due to Cramér [9, p. 254].

Theorem 2.2. If (x,,y,), (x,, y,), -+ IS a Sequence of independent
random vectors such that x,, x,, - has a limiting distribution F(x) and
lim E[|lyy—cll*]1=0 holds for some constant vector ¢, where ||c|| means the
N-»oo

euclidean length of the real vector e. Then xy-+yy has the limiting
distribution F(x—c).

* The same result as (iii) holds when the distribution function F;(x) depends on N and
the righthand side of (2.4) converges to 6;; as N—co. The proof of this fact is also the
same as that of (iii).
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Now we shall prove (iii) of Theorem 2.1. Put

@6) ¥ = [ B ) ¢ 2 R )]

where
"ll‘sij)(xia») :E[¢(j)(x11’ ) xlmgj); s Ximy Xizs 0ty ximgj) y ottt Xy Tty xcmf'.j))]

and the expectation in the righthand side means the conditional ex-
pectation for given x;,=x;,. Then by the central limit theorem the
random vector yy=(Y§", ---, Y) is distributed asymptotically normal
as N—oo, with the mean 0 and the covariance matrix ¥ =(s;;);

(8 ppn () () ppn ()
(2.7) Oij = L L A SR (L M s S L
Py P,
Now we shall show that the random vector zy=(Z%, ---, Z%) where

Z®=/N(U®—29), is asymptotically equivalent to the random vector
Yy, that is, lim E[|lyxy—zxlI’1=0. From (2.7) we have
N oo

ne ez
(2.8) BL{vy] = P g g I g,

1 c

Also from (2.2) we have

2.9 Var[uo] = I e o MY g +0< 1)
) n, n, N?

Hence we can conclude

J 2 2
2100  E[{zwy )=  pgn o AP g o(l)
px P,_. N .

From (2.1) and (2.6) we can see that E( Y5€,"Z ) is equal to the right-

hand side of (2.8). Using the relation E[{Y{ —ZP} 1=E[{Y ¥} ]+
E[{Z{PY1-2ELYSZS], we can conclude that lim E[{Y$ —Z{}*]=0.
A N>

Hence we have }rirg Elllyy—znI*]=0. From Theorem 2.2 the limiting

distribution of zy is the same as that of yy=zy+(yxn—2zx), SO we get
the desired result (iii).

3. Nonparametric several-sample tests for location

Let X;; (7=1,2, -, n;) denote a random sample from the continuous
univariate distribution F(x) ({=1, 2, ---,¢). From these samples we want
to test the hypothesis F(x)=---=F(x) against the location alternative
F(x)=F(x—0,) for some real number 6, (not all §,s are equal), where
the functional form of F(x) is unknown. Nonparametric tests for this
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problem have been proposed by many authors such as Kruskal and
Wallis [187], Kruskal [17], Bhapkar [4], Deshpande [10], Puri [25], Yen
[33], etc. Now we shall propose a family of tests which includes as
special cases both Bhapkar’s V-test and Deshpande’s L-test. Put for
i=1,2, -, ¢

U® = 1 i i (X s Xew,)
(3 1) Ny, =1 @=L

DX, o xy = U=Dr_(e=f). if X, is the j-th
X ) (¢c—1), (¢—1), smallest among X, -+, X,

where (k),=k(k—1)---(k—7r+1), (k),=1 and 7, s=0,1,2, -+, c—1, except
for (r,s)=(0,0). Then U™ is a generalized U statistic stated in section
2. We shall construct nonparametric tests from these U®.

In case =0 and s=c—1,

0 if X;<X; for any j=i

3.2 (€3] X“...’Xc =
(3.2) $ ) {1 otherwise

which leads to Bhapkar’s V-statistic. In case r=s=c—1,

1 if X;>X; for any j=i
0 otherwise

3.3)  ¢AX,, -, Xo) =

which leads to Deshpande’s L-statistic. In these two cases special
attention is paid to the largest or the smallest item in the c-plets:
(Xia,» Xouy» +*» Xew,), Whereas our test gives some monotone weight to
the (r+1)-th smallest --- c-th smallest and to the (s+1)-th largest ---
c-th largest item for given » and s.

Since under the null hypothesis H: F,(x)=---=F,(x), the events
that the random variable X; is the j-th smallest among X, ---, X, for
j=1,2, .-, c are equally probable, we get

(3.4) E[¢(X,, -, X)) = %E[EZ:B_EZ:i;]

Substituting >5-, (/—1),=(¢),+./(r+1) into (3.4), we have

; 1 1
3.5 ElU?] = — ————.
3.5) LU™] r+1 s+1
From Theorem 2.1 we can conclude that under the hypothesis H, the

statistic

(3.6) VN(U®—ELU®], -, U=~ELU*])
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is distributed asymptotically normal as N—oco with the mean vector 0
and the covariance matrix X =(o0;;);

3.7 o1y = LEED ot ek D,

1 c
where &5, (1 lies at the k—th place) is the covariance of ¢“(X], -,
X,) and ¢P(X{, -+, X}_1, X4, Xitq, -, X2). Under the null hypothesis,
we shall calculate &7, by considering the following three cases (i),
(i) and (iii).
(i)  &:2.,..0 (1 lies at the i—-th place)

is equal to
(3.8)
E[¢¥(X,, -, X)X, ooy Xbory Xiy X, -+, Xi)]‘(ril_sil) .

The first term can be written as

SD_:O E[d’(‘.)(Xu R -Xc)IXi:x:I.E[qb(D(X{’ Ty g—l) Xi, Xéﬁ-l’

e, X0 X, = £1dF (%)
e [E=D, (=R [E-D, (=),
(3.9) E?;l[(c—l), (c——l)s] [(c—l), (c~—1)s]

X Sl(,ii %)[F(x)]"‘l[l — F(2)]° % (f - i)[p(x)]'-lu — F(x)]dF(x).

Differentiating r-times the identity (x+)"=>"_, (’Ji)x’ y*~ with respect
to x, we have

(3.10) () (x40 = Shmo (F) (), 2175
Hence we can simplify (3.9) to get
(3.11) |" AF@r-D-F@1yaFm.

Combining this with (3. 8), we can conclude
3.12) g . (1 lies at the i-th place)

. 7 s? 2 _
@D @D Gilein Brtlstl,

where B(p, ¢) means the Beta function and B(r+-1, s-+1)=!s)/(r+s+ 1)
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(ii) gt o (1 lies at the a-th place, where a=1, 5)
is equal to
(3.13) E[¢pP(Xy, -+, X)X, -+, Xooa, Xay Xoia, -+, X0)]
_<_L_ 1 )
r+1 s+1/-

The first term of (3.13) can be written as

Gy [ " Brgo, - x)1% = x and X, = 2]
XE[d)(j)(X{’ "ty Xt/z—ly Xnn X«;-kl’ R Xé)|X§ =) and
X, = 2]dF(x)dF(y)dF(2)

bl [ [

11 a2 Ao [ff ace]

z2<» z<z<y o<z
z<y y<z

x dF(x)dF(y)dF(z),

k=1 I=1

where

(3.15)

A3 = (§3F @1 = F@ T (55 )IF»I- (1~ F(3)]~
A9 = (ZDP@I - F@T (5 _H PG [1- F(3)T
A(x, ) = (2:1)[F<x>]k-l[1—F<x>]”-'=*(§ :1)[F(y>]'-l[1—F<y>]c-f-‘ :
Using the identity (k—1),=(k—2),+7(k—2),_, together with (3. 10), we

can simplify the above summation of (3.14), and integrate with respect
to x and y to get

! 1-F"" 1—F7 s YA—F)+P
e i SR
So[( c—1/ r+1 + c—1 ( c—1/ s+1 ar
! 1-F"* 1—-F7 s \Q—F)y*+
+2{ [(1-.79) (1) 4]
So c—1/ r+1 - c—1 c—1 s+1

Fr s \1-A—F)y*™ 1-A—FY)
- ) (1 R Y g
X[( c—1 r+1< c—1 s+1 c—1 ar

1 Fr+t s \1-(1—F)y*" 1-1—-F)7T
)
+So[( —1/r+1 c—1 s+1 c—1 ar,

(3.16)
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which is equal to

(3.17) S[ 1 (1— r )— 1 (1— s >~F'—(1“F)s]zd1?.
0 r+1 c—1/ s+1 c—1 c—1

Further calculating (3.17) and combining with (3.13), we can conclude
that

Létd o (1 lies at the a-th place, where a =1, j)

(3.18) _ 1 [ r + s? i 2
(c—1PL2r+1)(r+1)Y (2s+1)(s+1) (+1)(s+1)

—2B(r+1, s+1)]

An analogous calculation leads us to

(iif) g o (1 lies at the i-th place, where i=7)
(3.19) __ 1 [ 7 + s? n 2
c—1L2r+1)(r+1)? (@s+1)(s+1) (F+1)(s+1)

—2B(r+1, s+ 1)]

Substituting (3.12), (3.18) and (3.19) into (3.7), we can get
_Kr,9)[H 1 ¢ c +028,_,]

3.20 i —
(3. 20) e ] P e

where

7’ " s? + 2
@r+1D)(r+17 @Cs+1D)(s+1)} (+1)(s+1)
—2B(r+1, s+1).

(3.21) K(r, s) =

It is easily seen that the covariance matrix ¥ =(o0;;) is singular, since
>Y%-10;;=0 for every i, and that the rank of ¥ is ¢—1 as is easily
checked by calculating the minor determinant. To construct a test
statistic we shall state the following lemma which will also be used in

later sections.

Lemma 3.1. Let the distribution of c-dimensional column vector x is
normal with the mean 0 and the covariance matrix X =(o;;) where

(3.22) o= K[ 51— m L 0]

=1 Py p;  Pj; P;
Then the statistic (1/c¢*K) 3%, p(X;—X)? is distributed as X* with c—1
degrees of freedom where x=(X,, -, X,Y and X=3"%_1 puX,/ 351 Pu.
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Proof. By Lemma 2 in Sugiura [26] which is restated in a more
general form in Lemma 4.2 in the next section, it is sufficient to solve
the following set of equations with respect to 4=(x;;) and construct
x’'Ax.

(3.23) { 25=10i;% 56 = S ——

i-1%;=0.

The solution of the above equations is given by

1 PiP
(3.24 Xy = [3‘ —_PiPs ]
) S RS T B

Hence we have x'Ax=(1/c*K) 3%, p(X,— X).

Lemma 3.2. (Mann and Wald) If the random vector x, converges
in law to the random vector x, then the random variable g(xy) converges
in law to the random variable g(x) for any continuous function g.

This Lemma is a special case of Theorem 5 in Mann and Wald [22].
Putting xy=vN(U®—-E[U®], ..., U9—E[U*]) and g(X,, -+, Xa)=
(1/c’K) 3., p(X;— X)? in Lemma 3.2 and noticing Lemma 3.1 we have
the following theorem.

Theorem 3.1. Put n,=p;N (i=1,2, ---,¢) and let N tend to infinity
with p,>0 fixed. Then under the hypothesis H: F,=---=F, the statistic
V.. defined by

(3. 25) Vs = (zi{( 1 )Z n(UP -0y (0<r,s<c—1 and (7, s)=(0, 0))

U= 2NanUPI5n;,

where U® is defined by (3.1) and K(r,s) is given by (3.21), is distributed
asymptotically as X* with c—1 degrees of freedom.

By the definition of U given by (3.1), we can easily see that the
distribution of the statistic V,, is the same as that of V,, under the
alternative that F;(x) is symmetric at the origin for every i. We can
also see that the V,,, V,,, V,, and V,,-statistic are equivalent. As special
cases of Theorem 3.1 we get the following corollaries.

Corollary 1. The statistic
(3. 26) Vieor = (2c—1) X5y n(UP—- Ty

is distributed asymptotically as X* with c—1 degrees of freedom as N—co.
This is Bhapkar’s V-statistic proposed in [4].
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Corollary 2. The statistic

(3. 27) Vc_] g = (C— 1)2(20_ 1) i n;(U""— U)z
! 2 26_2 -1 i=1
2¢°11—
c—1
is distributed asymptotically as X* with c—1 degrees of freedom as N—oo.
This is Deshpande’s L-statistic proposed in [10].

Corollary 3. The statistic

(3.28) Vo =2 S o0y

i=1

is distributed asymptotically as X° with c—1 degrees of freedom as N—co.

4. Asymptotic efficiency of the V,,-test for the location alternative

Now we shall consider the limiting distribution of the statistic V,,
given by (3.25) under the following sequence of alternatives,

(4. 1) KN:F,(x) = F(x—N_m@,-) (i:l’ 2; T C),
where 0; is some constant (not all ;s are equal).

Theorem 4.1. Put n;=p;N where p;>0 is independent of N, and
suppose that the distribution function F(x) has the derivative f(x) except
Jor a set of F-measure zero and further there exists a function g(x) such

that r g(x)dF(x)<co and that

(4.2) | HLF(e+ )~ F(0)] |z
holds for any x and any sufficiently small h. Then under the sequence
of alternatives Ky the limiting distribution of V,, is noncentral X* with

c—1 degrees of freedom and the noncentrality parameter

2 1 - r—-1 s—1 . 2
(4.3) %, = K(r,s)(g—m FIFWT - +s[1-F@T} () dF ()

X i pi0:—0),

where K(r,s) is defined by (3.21) and 0=3%_1 Pu04/>5-1 Pus-
As a special case we get the following corollary.

Corollary 1. Under the sequence of alternatives K, , the limiting
distributions of either V, ., (Bhapkar’s V-statistic) or V,_, .., (Deshpande’s
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L-statistic) is noncentral X* with c—1 degrees of freedom with noncentrality
barameters given respectively by

4 e, =c@-D( [ 0-F@If@dF@) i p0:-07,

4.5) a2, = Ze= V=LY ({7 (rpeypes g [1- P01 f(0)dF(x))
bt |
xgp.-(&-—?)z-

This result was obtained by Bhapkar [4] and Deshpande [107], respec-
tively. To prove Theorem 4.1 we shall first show the following lemma.

Lemma 4.1. Let F(x) be a distribution function. Suppose that the
distribution function G,(x) has the derivative gx) except for a set of
F-measure 0 and further there exists a function g(x) such that

Slg(x)dF(x)<oo and that
(4.6) |—,%[G;<x+h,-)~c,-<x>]{ <g(®)  (=1,2 7
hold for any x and any sufficiently small h; (=c;h and h is small). Then
4.7) S: 11 G+ 1) dF (x)
- S: iliG;(x)dF(x)+ ; h; Smw £(%) TLG () dF (x) + oll).
Proof. It is sufficient to show (4.7) for n=2. We can write
[" 6.+ 1G5+ )~ G (1) G2 1dF ()

S:GI(H n) [Gz(“";l)—cz(x)] dF(x)+ S:Gz(x)[G‘(x+h;l)_G‘(x)]dF(x).

S

I

By the Lebesgue’s bounded convergence theorem, the first integral is

equal to azs G(x)g (x)dF(x)+o0(1) and the second integral is equal to

— o0

algle(x) g(x)dF(x)+0(1). Hence we have (4.7).

Now we shall prove Theorem 4.1. Under the alternative Ky : F;(x)
=F(x— N0,), the expectation of U® defined by (3.1) is given by

ey =

X 23 Sijll(x)"'Flk_l(x)[1—Fl/zh(x)]"'[l_Flc(x)]dFi(x) !

)
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where the summation > extends over all combinations of possible integers
>

sy s dpers by, -++, 1,) such that /,<---<l,_, and /,.,<---</,, and the set
{iy - le—iy beyn,y -, 1} is equal to the set {1,2,---,7—1,7+1, -+, ¢}. Since

the number of such combinations is <Z:i>, by Lemma 4.1 we can ex-
press (4.8) as

@9 B[E=D-=2 ]2 {rwr-n-rwr

+NTPL0:—00,) + - +(0:— 01, ) JLF (2)]**[1 - F ()1~ *f (%)
— N0~ 0,)+ -+ O 0 )IF (DT [1- FT ()
X dF(x)+o(N-%) .
It is easy to see that 2[(6 —0,)+ - +(0;—0,,_ )= ( %)g(oi—ew)
and 31 [(6:—6,,,)+ - o+ (Bi—0,)]— <c P 1)2 (6,—0,). So we can
simplify (4.9) to get

(4.10)  E[U®|Ky]= 11—sv1L1 22(21(16;\/:;)

x | TP@T s F@T ™} FaF()+o( ).

It follows from Theorem 2.1 that under the alternative K, the statistic
VNUP—E[LU®], -+, UP—E[U“]) defined by (3.6) is distributed
asymptotically normal as N—oco, with the mean vector g=(u,, -, p.)
and the covariance matrix ¥ =(o;;) where

pi = B G0 ([ Py s[1— P19 FdF ()

1
(4.11) % ((: 9 )

o [ 1 _¢c_c Q_J]
RSN o R T P

To obtain the limiting distribution of V,, under the alternative K,, we
must generalize Lemma 2 stated in Sugiura [26] to the noncentral case.

Lemma 4.2. Suppose that the distribution of the c-variate column
vector x is normal with the mean vector p and the covariance matrix X
of rank v (r=c). Then there exists the unique cxc matrix A such that

(4.12) { BA=0

34 =I-B,

where B is the projection of the c-dimensional euclidean space to the
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eigenspace belonging to the eigemvalue zero of X. This A is symmetric
and x'Ax is distributed as noncentral X* with r degrees of freedom and
noncentrality parameter p Ap.

Proof. It is shown by Sugiura [26] that the unique solution of 4

is given by A:%Al+---+%AS, where «; is the nonzero eigenvalue of

1 s
2 and A; is the projection to the eigenspace of X belonging to the
eigenvalue «;. We can easily see that %x’A,-x is distributed as non-

central X* with the number of degrees of freedom being equal to the

rank of A; and noncentrality parameter xizal—p’A;,u. Since x'A;x

t

(f=1,2, ---, ¢) are stochastically independent, x'4x is distributed as non-
central X* with » degrees of freedom and noncentrality parameter
A =>N_ A=A

Now we shall return to search for the distribution of the statistic
V,. under the alternative K,. Calculating the noncentrality parameter
by Lemma 4.2, where the transpose of x is given by (3.6), £=(u,, ***, )
and ¥=(o0;;) are given by (4.11), we can see that the projection B is
given by

1 1.1
c’ ¢ c
11 .1
(4.13) B=|¢ ¢ ¢
e’ ¢ ¢

and the solution of (4.12) is given by (3.24) where K=K(r, s)/(c—1)".
Hence by Lemma 3.2 we can immediately obtain Theorem 4. 1.

From Theorem 3.1 and Theorem 4.1 the uniformly most powerful
test due to the V, —statistic in the limiting distribution is given by
rejecting the hypothesis if V,, is larger than a preassigned constant,
since the hypothesis is A%, =0 and the alternatives are A%,#0 in the
noncentral X* distribution. This test will be called the V,~test which
depends on the pair (7, s) of integers.

From Theorem 4.1 we can see that the statistic V,, is distributed
asymptotically noncentral X* as N—oo, with ¢—1 degrees of freedom

and noncentrality parameter A}, =123 ,p0;—0 )Z[Sm f (x)dF(x)]2 which

is the case with Kruskal and Wallis’ H-test as is shown by Andrews
[2]. Hence we have the following theorem.
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Theorem 4.2. Under the assumption of Theorem 4.1 the limiting
distribution of the statistic V,, defined by (3.28) is the same as Kruskal
and Wallis’ H-statistic.

Now we shall consider the asymptotic relative efficiency of the V.-
test for general 7, s (r, s=0, 1, ---, c—1) against Kruskal and Wallis’
H-test. By Andrews [2], this efficiency is given by the ratio of the
noncentrality parameters of the statistic V,, to that of V,, in the limiting
distribution. Hence we have from Theorem 4.1 and Theorem 4.2,

Theorem 4.3. Under the same assumptions as in Theorem 4.1 the
asymptotic relative efficiency of the V,~test against Kruskal and Wallis’
H-test is

4.14) & .= (rw rLF@T "+ s[1-F(@)T™) f(x?fif‘(x))z
o 12K(r, S)[Sl F(x) dF(x)]Z

where K(r,s) is given by (3.21).

In particular &y, ,g=¢y, /n=Ev,yn=Ev,yn=1, and this fact is alluded
recently by Bhapkar [5]. The V,,, V,,, V.., V,,~test are equivalent, since
their statistics are equivalent.

Let us now specify the distribution function F(x) or the density

function f(x) in the alternative as follows.

ExaMpPLE 1. Uniform distribution: f(x)=1 for 0<x<1 and zero
otherwise.

1/3K(r, s) if 7, s=>1
(4.15) Ev,un = 1 @Cr+1)(r+1)y/12/* if s=0
(2s+1)(s+1)*/12s* if r=0.

ExaMmpLE 2. Expontial distribution: f(x)=e¢ * for x>0 and zero
otherwise.

( 1 )/3K(r s) if r=1
(4.16) Ey, i = r+1 s+l
| (2s+1)/3 if r=0.
ExaMpLE 3. Normal distribution: f(x i
o\ 2%

for —co<x< 0.

(4.17)

ers/H 3K(r S) [7’ 1 (Xr+1/r-+ 1) + E(Xs+1/s+1)]
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where X, means the j-th smallest observation among the random
sample of size # from the standard normal distribution.

ExaMmpPLE 4. Double exponential distribution: f(x) :%e‘ i
for —co << 0.

4 1 1 1/, 1\F
4.18 vy = *[_@__ 1 1__)]
(4.18) VM 3K (r, s)lr 11 2’)+s+1( /] .

ExampLE 5. Logistic distribution: f(x)=e*/(1+e %)
for —co<x<oo.

pu— 3 r S 2
(4.19) Ev,om = K(r, s) [(r-l— 1)(r+2) * (s+1)(s+ 2)] :

Some numerical values of &, ,, given by the above examples are

shown in the following Tables. The value of &, ,; is symmetric with
respect to » and s, if the distribution F(x) is symmetric at the origin,
as is the case with Example 3, 4 and 5.
From these Tables we can see that the asymptotic efficiency of the
V,.—test against Kruskal and Wallis’ H-test for the range (7, s)=(3.3)
~(6.6) is larger than one for each of the uniform, exponential and
normal distributions, but less than one for either the double exponential
or the logistic distribution. The above statement for the normal dis-
tribution agrees well with the result by Deshpande [10]. For the
double exponential and the logistic distribution, the V,-test, which is
asymptotically as efficient as Kruskal and Wallis’ H-test, seems to be
most efficient within the class of the V,,-test.

Table 1. Asymptotic relative efficiency ey, g for the uniform distribution

0 1 2 3 4 5 6 7 8 9 10

b4

0 — 1.000 938 | 1.037 | 1.172 | 1.320 | 1.475 | 1.633 | 1.793 | 1.955 | 2.118
1 1.000 984 | 1.063 | 1.158 | 1.255 | 1.350 | 1.439 | 1.524 | 1.604 | 1.680
2 1.000 | 1.102 | 1.215 | 1.327 | 1432 | 1.531 | 1.623 | 1.708 | 1.787
3 1.228 | 1.364 | 1.496 | 1.619 | 1.733 | 1.838 | 1.935 | 2.024
4 1.522 | 1.672 | 1.813 | 1.942 | 2.061 | 2.171 | 2.272
5 1.841 | 1.997 | 2.142 | 2.275 | 2.398 | 2.511
6 2.169 | 2.328 | 2.475 | 2.610 | 2.736
7 2501 | 2.661 | 2.809 | 2.947
8 2834 | 2994 | 3.144
9 3.167 | 3.328
10 3.500
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Table 2. Asymptotic relative efficiency ¢y,s/m for the exponential distribution

\ 0 1 2 3 4 5 6 7 8 9 10
0 — | 1.000 | 1.667 | 2.333 | 3.000 | 3.667 | 4.333 | 5.000 | 5.667 | 6.333 | 7.000
1 1.000 | 1.000 | 1.339 | 1.660 | 1.958 | 2.232 | 2.486 | 2.721 | 2.940 | 3.144 | 3.335
2 417 | 683 | 1.000 | 1.293 | 1.561 | 1.806 | 2.030 | 2.236 | 2.424 | 2.598 | 2.759
3 259 | 598 | .926 | 1.228 | 1.504 | 1.755 | 1.984 | 2.193 | 2.384 | 2,559 | 2.720
4 188 | 568 | .913 | 1.231 | 1522 | 1.786 | 2.026 | 2.244 | 2.444 | 2.627 | 2.795
5 147 | 558 | .921 | 1.257 | 1.563 | 1.841 | 2.093 | 2.324 | 2,535 | 2.728 | 2.906
6 2120 | 558 | .939 | 1.290 | 1.611 | 1.903 | 2.169 | 2.412 | 2.634 | 2.839 | 3.028
7 102 | 562 | .960 | 1.327 | 1.662 | 1.967 | 2.246 | 2.501 | 2.735 | 2.951 | 3.151
8 089 | 569 | .982 | 1.363 | 1.711 | 2.020 | 2.320 | 2.587 | 2.834 | 3.061 | 3.272
9 078 | 578 | 1.004 | 1.398 | 1.758 | 2.089 | 2.391 | 2.670 | 2.928 | 3.167 | 3.389

10 070 | 587 | 1.026 | 1.431 | 1.804 | 2.145 | 2459 | 2.749 | 3.018 | 3.268 | 3.500

Table 3. Asymptotic relative efficiency ¢p,;,z for the normal distribution

\ 0 1 2 3 4 5 6 7 8 9 10
0 — 1.000 .938 .863 797 .740 691 .650 .613 582 .553
1 1.000 984 971 .964 .960 .958 957 957 .958 .959
2 1.000 | 1.007 | 1.011 | 1.014 | 1.016 | 1.018 | 1.019 | 1.020 | 1.020
3 1.022 | 1.029 | 1.032 | 1.032 | 1.031 | 1.030 | 1.028 | 1.025
4 1.035 | 1.035 | 1.032 | 1.028 | 1.024 | 1.019 | 1.014
5 1.032 | 1.026 | 1.019 | 1.011 | 1.004 997
6 1.017 | 1.007 | .997 | .988 | .978
7 .995 .983 972 .961
8 .969 .956 944
9 942 .929

10 915
Table 4. Asymptotic relative efficiency ¢y, z for the
double exponential distribution
,\\\ s 0 1 2 3 4 5 6

\\ — —— S . -

0 — 1.000 .938 794 .659 .551 467

1 1.000 .984 934 .887 .850 824

2 1.000 .968 .930 .899 874

3 .940 901 .865 .836

4 .856 815 .781

5 .768 729

6 .686
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Table 5. Asymptotic relative efficiency ¢y,;,z for the logistic distribution

N 0 1 2 3 4 5 6
~
0 — 1.000 938 840 750 673 609
1 1.000 984 959 938 922 911
2 1.000 994 984 975 967
3 995 986 974 963
4 974 959 943
5 939 920
6 896

5. Nonparametric several-sample tests for scale

Although various nonparametric two-sample tests for the problem
of scale have been proposed by many authors such as Mood [24],
Kamat [14], Sukhatme [27, 28], Tamura [29, 30, 31] and Ansari and
Bladrey [3] with their asymptotic efficiencies investigated by Capon
[8], Klotz [16], etc., but a few several-sample tests for scale are availa-
ble. In the following four sections we shall treat this problem.

Let X;; (7=1,2,--,n;) be a random sample from the continuous
univariate distribution F;(x) ({=1,2, --,¢). From these samples we want
to test the hypothesis H:F,=---=F, against the scale alternative
K:F;(x)=F(x/c;), where the functional from of F is unknown and o;
is some constant (not all ¢;’s are equal).

Corresponding to the statistic (3.1), we shall put at this time for
i=1,2, -, ¢

U® = 1 ZI] Zc d)(")(le, o, Xea,)
Ny, & =1 G=1

(5.1)

VX, X) = ‘i)w(c*{)s if X, is the j-th smallest
(C_ )r (C_‘ )S among X11 ..., Xc

where 07, s<c—1 except for (», s)=(0,0) and (1, 1).

Then the statistic U is a generalized U statistic stated in section 2
and we shall construct a nonparametric test from these U® (=1, 2, -+, ¢).
In case r=s=c—1

1 if X;<X; or X;>X; for any j=+i

(5.2) Xy, Xo) = lo otherwise

which reduces to Deshpande’s D-statistic [11]. Since our method of
construction is quite analogous to that in section 3, we shall only show
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the results, leaving the details to readers. The expectation of the U
under the hypothesis H is given by

; 1 1
5.3 E U(z) ==,
(5.3) LU*] r+1 s+1
Putting #;=p; N where p;>0 is independent of N, we can see that the
statistic

(5.4) VNU®P—-E[LU"], ..., U—E[U“))

is distributed asymptotically normal as N— oo, with the mean vector 0
and the covariance matrix ¥=(o;;) where o;; is given by (3.7) as
before and

£h91 0 (1 lies at the i-th place)=L(7, s)

&P o (1 lies at the k-th place, where k=1, j)=-—1—L(r, s)

(5.5) (c—1)
£ o (1 lies at the i-th place, where i=j)— ——1—1L(r, 5),
c_
where
2 2
(5.6) Lz, s) r 4 S 2 L 2B(r+1, s+1).

T @+ D) +17 @s+D)(+1Y r+1(s+1)

Hence we have

L(r, S)[ c 1 c c +c28,~j].

(5.7) EACA CE Dl = A P )

From Lemma 3.1 and Lemma 3.2, Theorem 5.1 follows immediately.

Theorem 5.1. Put n;=p; N where p;>0 is independent of N. Then
under the hypothesis H: F,=---=F,, the statistic defined by

D,, = ‘gc—_l—)z—in,«(U“’—U)Z (07, s=c—1 and
(5.8) ~ c’L(r, s) = (r, 5)=(0, 0), (1, 1))
U=2%.1nU®P/3 1 n;,
where U is given by (5.1) and L(r, s) is defined by (5.6), is distributed
asymptotically as X* with c—1 degrees of freedom as N— co.
It is easily seen by the definition of U in (5.1) that the D,, D,,,
D,, and the D,-statistic are equivalent. We can also remark that the
distribution of D, is the same as that of D,, under the alternative that
F;(x) is symmetric at the origin for every .
As a special case of Theorem 5.1 we have
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Corollary 1. The statistic

(6.9  Deyons= o WD Sy n (U0

c*—4c+2 2c—2\71
=2 (P ]

is distributed asymptotically as X’ with c—1 degrees of freedom as N— .
This is Deshpande’s D-statistic proposed in [11], though some
misprints seem to scatter in his paper.

Corollary 2. The statistic
(5. 10) D, = =1 sy (v oy
c =

is distributed asymptotically as X* with c—1 degrees of freedom as N— oo.
This statistic D,, is equivalent to the one defined by ¢“(X,, -+, X,)

=2( j—%l_)z J(e~1)c—2), if X, is the j-th smallest among X,, -, X,
which assigns to each j the quadratic weight centered at (c+1)/2.

Correspondingly if we assign any linear weight to each j, it is equivalent
to V,-test.

6. Asymptotic efficiency of D, ,-test for the scale alternative

Now we shall consider the limiting distribution of the statistic D,,
given by (5.8) under the following sequence of alternatives ;

(6.1) Ky :Fi(x) = F(x/(c+N70;))  (i=1,2,-,¢),
where o and 6; is some constant. (not all 4,s are equal).

Theorem 6.1. Put n,=p; N where p;>0 is independent of N and
suppose that the distribution function F(x) has the derivative f(x) except
for a set of F-measure zero and further that there exists a function g(x)

such that Sm xg(x)dF(x)<oo and that

6.2) ‘%[F(xw)—F(x)] < g(x)

holds for any x and any sufficiently small h. Then under the sequence
of alternatives Ky, the limiting distribution of D,, as N— co, s non-
central X* with c—1 degrees of freedom and the noncentrality parameter

6.3 = DO (7 T —sl1 - FoT | fdF)
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where L(r, s) is given by (5.6) and 0="%_1040,/3 1Pa-
As a special case of Theorem 6.1 we get the following Corollary 1.

Corollary 1. Under the sequence of alternatives Ky, the limiting
distribution of D,_, .., and D,, are noncentral X* with c—1 degrees of
freedom with noncentrality parameter given respectively by

2 — (2ce—1)(c—1) 375, pi(ei_g)z
(6. 4) Xc—l,c—l 2 2[02_4C+2 (20_2)_1]
loa —‘T"—
C c—1

8 < S °_°m x{[F(x I -[1-F (x)]c_z} f(x) dF(x)) 2

2

6.5)  ap = 180Xiapi(0i=0 )2<S:x[2F(x)—1] f(x)dF(x)>

o

To prove Theorem 6.1 we shall first show the following Lemma
6.1 which is similar to Lemma 4. 1.

Lemma 6.1. Let F(x) be a distribution function. Suppose that the
distribution function G;(x) has the derivative g;(x) and further there
exist a function g(x) such that ng(x)dF(x)<oo and that

(6.6) ’—;i—[G;(erh,-)—G;(x)]‘gg(x) (=1,2, - n)
hold for any x and any sufficiently small h; (=a;h for small h). Then
6.7) g: iIZIlG; (x+ h; 2)dF(x) = S: }ZIIG,- (x) dF(x)

+ 3V xgi(6) TG, () dF(@)+o(h)

Proof. By the assumption (6.6), it follows that |[[G;(x+%;x)
—G;(x)]/h:| < |x|g(x). Since xg(x) is integrable with respect to F(x),
we can apply Lebesgue’s bounded convergence theorem to get
lim (m {[G,-(x+hix)—G,-(x)]/h,-}dF(x): S_ xg:(x)dF(x). The same ar-

B0 - oo
gument as in Lemma 4.1. completes the proof.

Now we shall prove Theorem 6.1. Under the alternative K, the
expectation of the statistic U® defined by (5.1) is

(6.8) E[U®|Ky]= kz; [Ef:};r_'_%]

x 3|7 F,@) P, W= Fy,., 0] [1-F, (014F,(),

way J-
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where the meaning of > is the same as in (4.8). The integral in the
(D)

righthand side can be written as

- 6 61 ¢ 9.—60
6.9) S I x—|—x0\/ R LA Ca dF(x)

By Lemma 6.1 it is equal to

(0:;—6,)+ -+ (‘9;—01k__12
oV N

x| AP — P T*aR )

(6:~80.)+ +(0,~0,)
oV N

a xf(x)[F(x)]"’“‘[l—F(x)]"”"‘dF(x)Jro(\/—l_N) .

Hence by the same argument as in (4.10) we have

o s R

<" LP@TTL - T+ dp(e) + o E/L,-]v—_@

[" P n-Fertar +

(6. 10)

7 anof(e Bt

(2 Pt Fe T} are) o L)
1, 1 %06,

Tl i1 oV N(e—1)
x g: xf(x){r[F(x)]"l—Sfl —F (x)]s—l} ) 0(\/%) .

It follows from Theorem 2.1 that under the sequence of alternatives
K, defined by (6.1), the statistic (5.4) is distributed asymptotically

normal as N— co, with the mean vector #=(y,, -+, u,) and the covariance
matrix ¥=(o;;) where
9=1(0:—0, . -
He 20(2( ) )S L (x){’[F ()] —s[1— F(x)] }dF(x)
6.12
R TCE [ WP 5
Yo (e—1ylémp,  pp o, opy A7

By Lemma 4.2, Lemma 3.2 and (3. 24) where K= L(r, s)/(c—1)?, we can
obtain Theorem 6. 1.
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From Theorem 5.1 and Theorem 6.1, the asymptotically uniformly
most powerful critical region for the D,,-statistic is given by D,;>D,,
where D, is a preassigned constant. This test will be called D,,-test.

Since the asymptotic relative efficiency is given by the ratio of
noncentrality parameters in the limiting distributions under the sequence
of alternatives K,, we immediately have the following Theorem 6.2
from Theorem 6.1 and its Corollary 1.

Theorem 6.2. Under the same assumptions as in Theorem 6.1, the
asymptotic relative efficiency of the D,~test against the D,,—test is given by

T @R —s[1-F@1 ™ | dF )
6.13) &, sp, = V- -
180L(r, s)(S_ 2 f () [2F(x)— 1]dF(x)>

In particular &, /p,,=€p,,0,,=€pseinyy =1+ Das Dy Dy, Dy—test are
equivalent, since their statistics are equivalent. Let us now specify the
distribution function F(x) as follows.

ExaMmpLE 1. Uniform distribution: f(x)=1 for 0<x<1 and zero
otherwise.

( )/5L(r s)  if s=1
(6. 14) Epyipgy = r+l
(2r+1)/5 if s=0.
ExaMmpLE 2. Exponential distribution: f(x)=e"* for x>0 and zero
otherwise.
LI 6 S RIS O
5L(r, s)Lr +1 r+1/ (s+1)
(6. 15) 50,5/022: 36 2541
o0 &S+ for »=0.
5 (s+1)
ExaMPLE 3. Normal distribution: f(x)=(27)""2e~*"* for — co <x < co.
2 1
6.16) ¢ :J_{ [EX 1]
( ) DraiDaz 15L(», s) \r +1 ( rar) =

+— EX“. s+ -1 .
s+1 ( 1/ 1)

ExaMmpLE 4. Double exponential distribution: f(x)= %e‘ I#I - for
— o< x< 0o,

144 [r 3 (—1y 4
6.17) ¢ = h—[* ( j ) =
( ) Dys/Daz 125L(r, s)L4 /= \ 7 /2/(j+2)} (r+1)27+
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LS5 (=1y _ s ]2
4 E ( J >2"(j+2)2 (s+1y2e+id ”
ExaMPLE 5. Logistic distribution: f(x)=e¢"*/(1+e¢ *) for —co <x < 00,

4 r vl
(6.18)  €p,.p,, = 5L(7, s)[(r+ 1)(7’4—2)<JZ:1 J 1)

“wrerata;

From these formulas we get the following Tables of &, /p,,, which is
symmetric with respect to » and s, if the distribution F(x) is symmetric
at the origin as is the case with Example 3, 4 and 5.

Table 6. Asymptotic relative efficiency ¢p,s,ps for the uniform distribution

N 0 1 2 3 4 5 6 7 8 9 10
0 —| 600| .250| .156| .113| .088| .072| .061 | .053 | .047| .042
1 .600 — | 1000 | .913| .853| .811| .780| .757 | .739| .725 | .713
2 1.000 1.000 | .967 | .953 | .947 | .944 | .944 | .945| 946 | .948
3 1.400 1.000 | 1.032 | 1.061 | 1.087 | 1.110 | 1.129 | 1.147 | 1.162
4 1.800 1.101 | 1.160 | 1.210 | 1.254 | 1.292 | 1.325 | 1.355
5 2.200 1.244 | 1.317 | 1.380 | 1.435 | 1.484 | 1.526
6 2.600 1.410 | 1.491 | 1.561 | 1.624 | 1.680
7 3.000 1.587 | 1.673 | 1.749 | 1.817
8 3.400 1772 | 1.861 | 1.940
9 3.800 1.961 | 2.052

10 4.200 2.153

Table 7. Asymptotic relative efficiency ep,,ns2 for the exponential distribution

N 0 1 2 3 4 5 6 7 8 9 10
AN
0 — | 5.400 | 4.000 | 3.150 | 2.592 | 2.200 | 1.910 | 1.688 | 1.511 | 1.368 | 1.250
1 5.400 — | 1.000 | 2.054 | 2.763 | 3.242 | 3.582 | 3.832 | 4.024 | 4.175 | 4.297
2 6.250 | 1.000 | 1.000 | 1.634 | 2.185 | 2.630 | 2.990 | 3.285 | 3.532 | 3.740 | 3.918
3 6572 | .228 | .474| 1.000 | 1.509 | 1.955 | 2.337 | 2.666 | 2.949 | 3.195 | 3.411
4 6.670 | .015| .187 | .588 | 1.029 | 1.444 | 1.818 | 2.150 | 2.444 | 2.705 | 2.937
5 6.661 | .018 | .052| .320 | .694 | 1.065 | 1.414 | 1.733 | 2.023 | 2.285 | 2.521
6 6597 | .111| .004| .170 | .460 | .782 | 1.099 | 1.398 | 1.675 | 1.930 | 2.163
7 6504 | .241| .006 | .076 | .297| .570| .853 | 1.128 | 1.388 | 1.631 | 1.856
8 6398 | .385| .040| .025| .183| .410| .659 | .909 | 1.151 | 1.380 | 1.595
9 6284 | .532| .091| .003| .105| .290| .506 | .731 | .954 | 1.168 | 1.372
10 6169 | .676 | .153| .001| .054| .200| .385| .587 | .790 | .989 | 1.181
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Table 8. Asymptotic relative efficiency ep,/ps2 for the normal distribution

N 0 1 2 3 4 5 6 7 8 9 10
0 — 0 .063 .156 .237 .302 .354 .395 427 452 | 473
1 — 1.000 913 .798 .696 611 .542 .485 437 .397
2 1.000 .967 913 .856 .803 754 710 671 .636
3 1.000 .996 974 945 914 .883 .853 .824
4 1.030 | 1.038 | 1.031 | 1.016 997 976 .955
5 1.068 | 1.079 | 1.079 | 1.071 | 1.058 | 1.044
6 1.105 | 1116 | 1.117 | 1.113 | 1.104
7 1137 | 1.146 | 1.148 | 1.145
8 1162 | 1.170 | 1.171
9 1.182 | 1.188

10 1.197
Table 9. Asymptotic relative efficiency ep,s/ns2 for the double
exponential distribution
, $ 0 1 2 3 4 5 6
0 — 0 .062 .156 .234 294 .338
1 - 1.000 913 .789 677 .584
2 1.000 .967 .906 841 779
3 1.000 .990 .959 922
4 1.018 1.017 1.001
5 1.039 1.041
6 1.056
Table 10. Asymptotic relative efficiency ¢p,s/ns2 for the logistic distribution
, $ 0 1 2 3 4 5 6
0 — 0 .063 .156 .235 .296 .342
1 — 1.000 913 791 .681 .590
2 1.000 967 .908 .844 784
3 1.000 991 .963 .927
4 1.021 1.022 1.008
5 1.046 1.049
6 1.067




MULTISAMPLE AND MULTIVARIATE NONPARAMETRIC TESTS 409

From these Tables we can see that in the range (7, s)=(4, 4)~(10, 10)
the asymptotic efficiency of D,,~test against the D, ,-test is larger than
one for each of the uniform, exponential and the normal distributions.
Further the asymptotic efficiency of the D, ,~D,,test is larger than one
for the double exponential and the logistic distribution. This situation
is considerably different from that for the problem of location discussed
in section 4.

7. A generalization of Tamura’s @-test

In the following two sections we shall investigate another type of
nonparametric several-sample test for scale which is a natural extension
of Tamura’s Q-test [29] for the two-sample problem. Let again X;;

(7=1, 2, ---, n;) be a random sample from the continuous univariate distri-
bution Fy(x) (i=1, 2, ---,c¢). From these samples we want to test the
hypothesis H: F,=-.-=F, against the scale alternative K: Fy(x)=F(x/c;)

where o; is some constant (not all o;’s are equal) and the functional
form of F is unknown. Put
U® = [<n1>'"<nc>]-l 2 o Z ¢(i)(Xm ’ X1B y oo ;Xcm ’ XcB)
2 2 @ <B,  @<Be ! ! i ¢
(7 1) 1 if X51<Xk1<X,~2 or X,'2<Xk1<Xi1
(I)(i)(Xu’ Xlz; I Xcl; Xcz) = fOI' all k:l:Z and 131’ 2
0 otherwise,

where > --->' means the summation extending on all possible pairs

@, <B;  @<Bc

(a;, B;) such that 1<a;<B;<n; for i=1,2,-.-,c. Then U is a gener-
alized U statistic stated in section 2 and under the hypothesis H

7.2) E[U] =1/c(2c—1).

Putting »n;=p;N as before, we can conclude from Theorem 2.1 that under
the hypothesis H, the limiting distribution of the statistic

(7.3) VNUP=[e@2e—D]7, -+, U =[e(2e—1)]7)

is normal as N— oo, with the mean vector 0 and the covariance matrix
Z=(c ij) >

(7. 4) oy =2
Py

4
SURAN I +;«§6%’,.’3,1 ,

where



410 N. SUGIURA

(1) &&5..0 (1 lies at the i-th place)
= E[¢p(Xyy, Xips 05 Xowy X)Xy, Xz o5 Xiny Xias oo
Xo, Xeo)]-[e(2e—1)]7*
= P(X; <Xn,<X; and X;<X.s<X/, for all a=+i and B=1, 2)
+2P(X;, < X,5< X;, and X< X< X;, for all a+iand B8=1, 2)
(7.5) +P(X;,<Xup<X; and X, <Xls<X;, for all a=+i and B=1, 2)
—[e(2e—-1)]*

_ 1 (1___F)20—1]2dF 2 1 (1_F)2L'—1 FZC-—I dF
So[ 2c—1 + So 2c—1 2¢—1

[ 2122—; Jar- [C(ch— 1 )]2
B <2c—1>§<4c—1>[2c 2o ) |

and an analogous calculation leads us to the following :

(ii) &t o (1 lies at the k-th place, where k=1, j)
(1. 6) = L(2c—1, 2c—1)/(c—1)*(2c— 1)

(iii) & o (1 lies at the /-th place, where 7 = 7)
7.7) =—L2c—1, 2c—1)/(c—1)(2c—1Y,

where L(2c—1, 2c—1) was already defined by (5.6), that is,

2 [202—4c+1+<4c—2>‘ ] )

7.8 L2c—1, 2c—1) =
7.8) (2e v | R 2—1

Hence we have

(7.9) oy = 4L(26‘-;1, 2(,‘~—21)[ c _1__i—f_+ (;23,-;‘] )
(c—1)(2c—1) La=ip, p; p; P

From Lemma 3.1 and Lemma 3.2 follows Theorem 7. 1.

Theorem 7.1. Put n,=p;N where p;>0 is independent of N. Then
under the hypothesis H: F,=-.--=F,, the statistic defined by

— (2c—1)*(c—1)’ Y, U®—_ [y
(7.10) = oL@ 1 21 =™ )
U= 2N nUP 33 m;
where U is given by (7.1) and L(2c—1, 2c—1) is given by (7.8), is
distributed asymptotically as X* with c—1 degrees of freedom as N— oo.
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8. Asymptotic efficiency of the D,-test and @Q-test against the
asymptotically UMP invariant test

We shall first consider the limiting distribution of the statistic
Q given by (7.10) under the sequence of alternatives Ky: Fi(x)=
F(x/(c+ N%0,)), where o and #; are some constants (not all ;s are
equal).

Theorem 8.1. Under the same assumptions as in Theorem 6.1 the
limiting distribution of Q is noncentral X* with c—1 degrees of freedom
and the noncentrality parameter ;

@1 = E1 N pi(0:—0y
o’L(2c—1, 2c—1)

<([_=rPET -1~ F@T P @)

where L(2c—1, 2c—1) is given by (7.8) and 0=31,%1 p0;/> 1 p;.

Proof. By the definition of ¢ in (7.1) and Lemma 6.1 it follows
that

pr0s 1 |tk Feovarcouris

SS [F(y)— F(x)]*~*dF (x)dF(y) + 225" Em 1(0 (0: —64)

(8.2) % [§ L20) A DIF (9~ F ) T dF @aF (5)+o0 (W‘v‘)

i 1 220: 1(0 em)
S ey )@

ALP@ T ~[1-F@ T HdF@) +o( ) |

The proof left is the same as in Theorem 6. 1.

From the same reason as for the V,.~test and the D,,~test, asymp-
totically best critical region for Q-staistic is given by Q>@Q, where @,
is a preassigned constant. This test will be called Q-test.

It is interesting to note that the noncentrality parameter given by (8.1)
is formally the same as Aj._,,.., in (6.3), though D, _,,._,~test cannot
be defined.

If the distribution function F(x) is normal with the mean zero, the
asymptotically UMP invariant test of the hypothesis H: o,= - =0,
proposed by Lehmann [20, p. 275] is to reject the hypothesis H if the
statistic
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_$l __ZJc:l Zj/a'f:r

©.9 L-Sala-$ETe

yields the observed value larger than the preassigned constant, where
Z;=log G i, X2%,/n;) and a?=2/n;. The limiting distribution of L is X*
with ¢—1 degrees of freedom undr the hypothesis and noncentral X*
with ¢—1 degrees of freedom under the sequence of alternatives Ky as
N— o, whose noncentrality parameter is given by

(8. 4) % PR

Hence from (8.1) and (8.4) the relative efficiency of the Q-test against
the asymptotically UMP invariant test for normal alternative is equal to

— 2(26_1)2 ~ 2 2c-2 z
o = ey L ([T AL ARFIF@Tdx)

1
= E ch c _1 2’
2¢°L(2c—1, 2c—1)[ (Xierne) =11

(8. 5)

where X,.,. means the maximum among the random sample of size 2c
from the standard normal distribution. Some numerical values are shown
below.

c 2 3 4 5 6 7 8 9 10
&g/ 760 812 864 .898 918 .928 .931 .929 .925

From (6.5) and (8.4) we have
8.6)  Ep = 90(51 xf(0)[2F(x)—1] dF(x)>2= 15/22 (= .760)

which is equal to the asymptotic efficiency of Mood’s square rank test
for dispersion [247] as well as Tamura’s Q-test [29] against the variance
ratio F-test for normal distribution.

If the distribution function F(x) is double exponential, it is shown
that the asymptotically UMP invariant test exists, which is given in
fact by (8.3), where Z;=log (33ji,|X;;|/n;) and a}=1/n;. The limiting
distribution of L as N— oo, is X* with ¢—1 degrees of freedom under
the hypothesis, whereas it is noncentral X* with c—1 degrees of freedom
under the sequence of alternatives K, with the noncentrality parameter

3% p0;—0). Hence we have from (8.1)

- 2c—1) 1%¢(2c—2\ (—1y 1 P
8.7)  Equ = —\ [_ _ ) B ]
( ) Q/L L(ZC—]., 26‘—1) 2 Jg < 7 2](]+2)2 2e+1pz |,
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Some numerical values are shown below.

c 2 3 4 5 6 7 8 9 10
Eoi 868 902 928 936 .933 .924 910 .895 .879

From (6.5) we have
(8.8) &, = 180 {S:xf(x)[ZF(x)—1]dF(x)}2= 125/144 (= .868).

Finally if the distribution function F(x) is exponential, the asymp-
totically UMP invariant test is given by (8. 3), where Z;=log (X7%, X, ;/ %)
and @?=1/n;. The limiting distribution of L is the same as in the
double exponential distribution. Hence from (8.1) we have

_ 1 [<1 1 1) 20—1]2
8.9)  Eop— 1,1, 1)
®.9 = dere—1, 2c—nl\2 T3 T o) T L.

Some numerical values are shown below.

c 2 3 4 5 6 7 8 9 10
Eoi 139 148 157 162 .165 .166 .166 .166 .164

From (6.5) we have &,,,,,=>5/36 (=.139).

From these values we can see that our Q-test is more efficient
against D,-test for normal, double exponential and exponential distri-
butions at least 3<¢=<10, and further for normal and double exponential
distributions the efficiency of our @-test against the parametric test is
considerably high.

9. A multivariate Wilcoxon test

Since the famous Wilcoxon test was introduced by Wilcoxon and
Mann and Whitney, many generalizations to the multisample case have
been done, but as far as the author is aware generalization to the
multivariate case seems not to be attempted. Recently Bickel [7] con-
sidered one sample problem in multivariate case that is to test the
hypothesis H; #=0 against the alternative K: =0 when a sample
X, X,, ** , X, is drawn from the p-variate distribution F(x—4). He pro-
posed two tests due to the statistics M, and W, where

M, = (Median X,,, ---, Median X,,)’

9.1) 15a<n 1S@sn
. W, = (Median Xio+ X , -+, Median X———’”+X’5)
1Sa<psn 2 1S@sp<n 2 ’

and x,= (X4, Xon, =+ » Xpa)'s
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These tests are shown by Bickel to be asymptotically equivalent to those
M, and W, constructed respectively from

Usp = > 21 94(x)
2

9. 2)
$9(x) = | 1 if the i-th component of x>0
l 0 otherwise
and
9.3) U = 2 ST x4+ xp) -

n(n+ 1) 1séspsn

In this section we shall consider the multivariate nonparametric two-
sample problem of location and propose a Wilcoxon analogue corres-
ponding to (9.2). The asymptotic efficiency of this test is shown to be
equal to that of Bickel’s W,,—test [7] for the one-sample problem. Let
p-variate column vectors x,, -+, X, ; ¥, **, Y, constitute two independent
random samples from the absolutely continuous distrbution F(x) and
F(x—0) respectively. Based on these samples we want to test the
hypothesis H: §=0 against the alternative K: 930. Put

Lo W]
U® = 1 Z qua)(xm Ye)
nm, a=1 p=1
(9.4) 1 if the i-th component of x is larger
¢ (x, y) = than the /-th component of y

0 otherwise.

Then the statistic U® is a multivariate generalized U statistic stated
in section 2. So under the hypothesis H

9.5) E[U] =1/2,
and by Theorem 2.1 the statistic \/N< U“)—%,---, wa%) where

n;=p;N for some fixed p; is distributed asymptotically normal as N-—»c
with the mean vector 0 and the covariance matrix T=(¢;,);

;% ) g(i )
(9. 6) £, =
Py P

where, denoting the i-th component of x and y by X; and Y,
(i) 0 = 557 = CovlgPs 9), 4705 )]

= P(X;>Y; and Y;)——4—

=1/12
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(if) P (E7) = Li5” ((%7) = Cov[¢®(x, ), $(x, ¥)]
— P(X;>Y; and X,> Y;)—%
— " " RaF =) aF, e, x,-)——‘ll- ;
F;(x), F;(x) and F;;(x, y) are the marginal distribution functions of F(x)

with respect to X;, X; and (X;, X;), respectively. Hence from (9.6) we
have

_1(1 1
9.7 t; = E(E+E>Tij
where
1 if i=73
Tij = o oo
125_ S Fi(x)F;(y)dF;;(x, y)—3 if i+7].

If we substitute for F;(x;), F;(x;) and F;;(x;, x;) by its empirical distri-
bution F{™(x;), F™(x;) and F{°(x;, x;) constructed from the combined

sample x,, -+, x,, and y,, -, y,, and put
1 it oi—j
9.8) 4, = -
12S S F&(x)FV(x,)dF Y (x,, x)—3  if i+],

then the statistic 4;; converges in probability to 7;; as N—oco. If
further we wish to obtain an unbiased estimate of ;;, we can use as
Bickel [7],

1 if i=7

9.9 4= 12 ) , e s s
i 3 IZ0-Z5 20 Z)8 ik

where Z.”=i-th component of x, a=1,2,.-,n, and Z,,,=i-th com-
ponent of y, a=1,2, --,n,. From Lemma 3.2 we easily have

Lemma 9.1. If the random vector x, converges in law to the random
vector x, and futher the random vector y, converges in probability to e,
then g(xy,yn) converges in law to g(x, c¢) for any continuous function
&(x, y).

Applying Lemma 9.1 with xNz\/j_\f(U“’—%,---, U‘P’—%) and

yn=*;;, we obtain the following theorem:.

Theorem 9,1, Put n;=p;N where p;>0 is independent of N, and



416 N. SuGIURA

assume that det (t;;)==0. Then under the hypothesis H : §=0, the statistic

(9. 10) W = 120 S (U“’—l) <ch>_£)
n,+n, ii=t 2 2

is distributed asymptotically as X* with p degrees of freedom as N— oo,
where (#7) is the inverse matrix of (#;;) given by (9.8) or (9.9).
Exact covariance of U and U is also obtained from Theorem 2. 1.
1 2 1)/12 17, if i=j
(9.11) COV[U“'), U‘f)] _ {(n +n,+1)/12nn i 1=7 . ' .
[+ n,—2)r;;4+ &;1/12n,n, if 17,

where

&y = 12S'” S” Fyfx;, 2,)dF, (x5, %,)—3 .

To investigate the asymptotic relative efficiency we shall consider
the distribution of W under the following sequence of alternatives K
that the sample y,, -+, y,, is drawn from the distribution G(x) where

9.12) Ky:G(x) = F(x—N'6),
and A is some constant vector different from zero.

Theorem 9. 2. Suppose that each one-dimensional marginal distribu-
tion Fyx) of F(x) satisfies the assumption of Theorem 4.1. Then under
the sequence of alternatives Ky, the limiting distribution of W in Theorem
9.1 is noncentral X* with p degrees of feedom and the noncentrality
parameter
9.13) A3 — :)_2% $1790,0, (" s ar [ riwar )
as N—oo, where n;=p;N for fixed p;>0 and 2=(0,, --+,0,Y. The matrix
(r)=(74;)"" given by (9.7) is assumed to exist.

Proof. It is clear from the assumption that

0.14)  BLU|Ky] =1l pmarmo( ).

Also by Theorem 2.1 we easily see that

N 1/1 .1 1
9.15 N-Cov [U®, UP|K :_<_ _) . o(__>
( ) OV[ | N] 12 p1+p2 T_7+ \/N .

The estimater #;; converges in probability to r;; even under Ky, since
E[4;|Ky]=E[#;;|H]+O(N*) and Var[+;|Ky]=O0(N""). Using the
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1

asymptotic normality of the statistic \/N(U‘D——z«, -, U‘P’—%) under

K., we get the conclusion.

From Theorem 9.1 and Theorem 9.2 the hypothesis may be con-
sidered as A% =0 and the alternatives as A},30 in the limiting distribu-
tion of W. Hence the asymptotically best critical region for W is
given by W> W, where W, is a preassigned constant. This test will be
called W-test. In case p=1 this test reduces to the ordinary two-sided
Wilcoxon test.

If the distribution F(x) is known to be normal, the standard test
for the hypothesis H: §=0 against K: #+0 is Hotelling’s two-sample
T*~test : Putting

T* = % (x—gyS~(x—p)
n1+n2

S = [2<xm e — 3+ 2 (s~ ) ws—)],
n,+ — =1

(9.16)

we reject the hypothesis when the observed value of T* is larger than
a preassigned constant. (See for example Anderson [1, p. 109]). By
the central limit theorem, the statistic 7? is distributed asymptotically
as noncentral X* with p-degrees of freedom and noncentrality parameter

2, PPy v
(9.17) Npz = 12 > 510,60,
P1+P2 i,j=1
as N— oo, even if the distribution F(x) is not normal. The matrix (¢)
is the inverse of the population covariance matrix. From Theorem 9.2
the efficiency of the W-test against the T*-test is given by

(9.18) Epyp2 = 12i§_”=:17ff9,.a,. S_m f,.(x)dF,.(x)S £, (¥)dF ,(x) /‘2_10’”9 9,
This expression is the same as the asymptotic relative efficiency of
Bickel's W,-test [7] against Hotelling’s T?-test for the one-sample
problem.

If further the distribution F(x) is normal with the mean # and the
covariance matrix (o;0;p;;),

(9.19) e = 2 3 7is 003 / i 0305
7T i,7=1 o; 0-,1' i,j=1 0-’.0-],

where (p¥/)=(p;;)"! and ;; is given by (9.7). By Bickel [6] and Kendall
[15, p. 351] we have
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P(X,>Y, and X,>Y}) =P(X,—Y,>0 and X,—Y}>0)

(9.20) N
4 2z 2

which yields
9. 21) 11y = 0 Sin— P
3 2

If we search for the maximum or the minimum value of %xew,rz

with respect to o; and 6, for all 4, j=1, 2, ---, p, it is given by the root
of the following determinantal equation,

1—2, Piz= ATy *** Pip— ATy | = 0.
(9 22) Po— ATy, 12, 2t Pop— ATy

..........................................

In case of p;;=p,, for all i,j=1, 2, .-+, p (i+7), the solution of the above
equation is given by

(9. 23) A = 1—p, or 1+(p_1)P12’
1—m, 1+(p_1)712

and the extreme value of &y,,2 is given by

1—p, 1+(p—1Dpn
O-20) 3 2Sin w2 " /D Ap—1)Sin (/2"

For the simplest multivariate case of p=2 we get

1—py, 1+p,

OB e -2sin 6w & @B 2Sn (nD)’

which coincides with Bickel’s result though it contains some misprints
and (9. 25) seems to be simpler. The property of the extreme value of
Ewre given by (9.25) considered as a function of p,, is investigated by
Bickel [7], and he showed that max Ew2=3/m and rgl}rn Ewre=\/ 3 /2.

So we shall show some numerical values.

Prr 0 1 2 3 4 5 6 7 8 9 10
max &y7e 955 950 962 964 966 966 966 965 962 .959 955

min Ey,72 955 950 945 938 931 .923 .914 .903 .892 .880 .866
6'0'

For p,<0, the maximum or the minimum of &y, is the same as for
P:>0.
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10. Multivariate V, -test

In the following two sections we shall propose some multivariate
nonparametric several-sample tests for location and derive the asymp-
totic distributions of their test statistics. In the problem of two-
samples these test reduces to the multivariate Wilcoxon test discussed
in section 9. We shall first generalize the V,,~test discussed in section
3 and 4 to the multivariate case.

Let px1 vectors x,,, "+, X4, be a random sample from a continuous
distribution F,(x) (=1, 2, ---,c¢). The problem is to test the hypothesis
H:F,=F,=..-=F, against the location alternatives K :F,(x)=(x—%,)
a=1,2, -, ¢ where 6, is some constant vectors (not all #’s are equal).
Put for a=1,2, :--,c¢ and i=1,2, ---, p

1 "y e
Z o 2 ¢1(l”(x1 T AR X wc)

Ny N, 6=1 @c=1
(10.1) if the 7~th component of x,
S, -+ _ (=1, (c—5)s is the j-th smallest among
Tl (¢—1), (c—1), the i-th components of

UP =
a

Xiy "ty X e
Then the expectation of U@ =(U{",---, U¥) under the hypothesis is the
same as (3.5), that is
) 1 1 1 1
10. 2 E[U® :( S SV S )
( ) L 1 r+1 s+1 r+1 s+1

By Theorem 2.1 the statistic /' N(U-E[U])=/N(U®—E[U"], ---,
U®P—E[U®]) is distributed asymptotically normal as N-—»>co under
the hypothesis with the mean 0 and the covariance matrix ¥ =(c%?"
where o3” means the covariance of US” and U§’. The covariance os"
is the same as (3. 20), that is

(10.3) ols” =_Kﬁi>[g 1 _L_L+@]_

(c—=1¢L= o, py ps pa
In case i4j the covariance oi3” is given by
(10.4) R AT T L
1 c

where £*f).., (1 lies at the y-th place) means the covariance of ¢

(x;, -, x,) and ¢§ (x], -+, x5_1, Xy, X541, >+, x5). We shall -calculate
(8 ..o by considering the following three cases. The functions F%,
F% and F% 7 mean the marginal distributions of F=F,=-.-=F, with

respect to the components of their superscripts.
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(i) &% (1 lies at the a-th place)=a;;
(i) &Py ..o (1 lies at the o-th place, where v=+a, B)

— dij
(10.5) (c—1y
(i) &R .o (1 lies at the a-th place, where a=+03)
_ i
c—1’
where
ay = || {Fowr -n-Fowr)
(10.6)

AT [ FoT | aF 2 9~ ).

In case i=j, these results reduces to (3.17), (3.18) and (3.19) respec-
tively.
Substituting these results of (i), (ii) and (iii) into (10.4), we get
(10.7) ol = L z[i—l——i—i«+——czsmﬁ]
(c=1yL= p; Py Pz Py -

The above equation holds true also in case i=j, if we define a;;=K(7, s).
It is easy to see that an example of the consistent and unbiased
estimate of a;; is given by

K(r, s) i=j

1 1 \? ..
d(l) (2) <3)+d<4) ( _ )
+1 s+1 bFT

10.8) 4, = {

where 4%, 4%, 4% and 45} are the estimates ofS S [F(x)] [F9(y»)]
aFi o, ), | tPe@rni-romrdrer, », | |7 n-rewy

[P T dF%.#(x, 3) and |* |* (1= PO [1- P2 dFS2(x, 9) re-
spectively. They are defined by
d(l) = [(2! 1nl)zr+1] Z I(Z(i) Z(i)
%Ry Z(i) Z(z) Z(J) Z§”,~~-,Z;”—Z§”)
d(b - [(Zz 1”1)7+s+1] 2 I(ZU) Z”) RS
8,7 Zu) Z(i) Z(j) Z,‘,”,---,Z§”—Z;”)

(53) = [(El 1”1)7‘)511] 2 I(Z( D Z; )y Tty
m — 2P 2D —ZP, e ZD —ZP)
1 ”» r

(i4J> - [(El-alnl)zu 1] E I(Z”) Z;i)’ )
@,B,Y Z(t) Z;“; Z%)—Z;j), e, Z%)_Z;})),

(10.9)
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where Z%, a=1,2,---,2%_,n, means the i-th component of xs,,
v=1,2, -,m and B=1,2, ---,c; I(X,, -, X,,; Y3, ---, Y;)=1 if all X’s and

Y’s are positive and =0 otherwise. The summation on > in 4

(@®,B,Y)
extends over all possible sets of integers («a, B;,*, B,, V.1, ¥») such
that 1<a, B, -, Byy Y1, = ¥r=>i_1#;, aud any two elements of them

are different from each other. It follows that Var[47]=0O(N ") under
the hypothesis H, so di7 is the consistent and unbiased estimate of
E[a%|H] for x=1, 2, 3, 4.

From (10.7) we can express the covariance matrix in the form
2=A,0%, where A,=(a;;), Z,=[2i.1 P —cpz'—cpg+c*8uepy*]/(c—1)
and ® means the Kronecker product. If we assume the pxp matrix
A, is nonsingular, the rank of ¥ is equal to »(A4,)x7(Z,)=p(c—1).

Lemma 10.1. If the covariance matrix ¥ =A,Q23, is given by (10.7)
and A,=(a;;) is nonsingular, then the solution in Lemma 4.2 is given by
A=A'QRA, where

(10.10) 4, = (c:l)j[saﬂPm“_pwa‘] .
4 2;=1 pw

Proof. In this case the projection B in Lemma 4.2 is given by
B=1,0B, where I, means the pxp unit matrix and B, is given by
(4.13). If we apply Lemma 4.2 for the covariance matrix ¥,, the pro-
jection is given by B, and the solution of (4.12) is given by 4,. Hence
2,4,=I1.— B, and B,4,=0. Using the formala (4, A4,)-(B,QB,)=(A4,-B,)
®(4,-B,), we easily see that $4=1,.—B and BA=0. Hence 4=A4;'®4,
is the unique solution of the equation (4.12).

Calculating the quadratic form N(U®—E[U®], ---, U®—E[U])
AUP—E[U],-, UP—E[U®]Y, in view of Lemma 4.2 we have the
following theorem from Lemma 3.2.

Theorem 10.1. Put n,=p,N where p,>0 is independent of N and
suppose that det (A)=+0 where the px p matrix A=(a;;) is given by (10.6),
then under the hypothesis H:F,=---=F_,=F, the statistic V,, defined by

(10. 11) Ve = (C;lx )@ D (UL — OP UL — T9)

U9 =3%_1n,UP/S 0,

where (47)=(4;;)" and 4;;, given by (10.8), being the consistent and un-
biased estimate of a;;, is distributed asymptotically as X* with p(c—1)
degrees of freedom as N— co.

In case p=1 the statistic V,, is the same as V,, in Theorem 3.1,



422 N. SUGIURA

The limiting distribution of V,, under the sequence of alternatives
Ky: F(x)=F(x—N"78,), where the constant vectors 4,, a=1, 2, ---,¢
are not all equal, is given by the following theorem.

Theorem 10.2. Suppose that every marginal distribution FP(x) of
F(x) satisfies the assumptions of Theorem 4.1 and det (A)=+0. Then
under the sequence of alternatives K, the limiting distribution of V,. is
noncentral X* with p(c—1) degrees of freedom and noncentrality parameter

M = 310431 P00 TP —0)

(10.12) x| G TFO@T s [1- Fo@)1 ) ) dF ()
" Po@T S1=- PO T} £A0dF @),

where 0,=(0F , -, 0P, 0P =3"%_1 p, 03, P, a;; being given by (10. 6)
and f;(x) is the derivative of F(x).

Proof. Corresponding to (4.10), we can express

(¢4 —_ 1 1 Zl 1(6(“ (i))
10.13) E[UY|Ky]=
( ) LUKy ] +1 s +1 (c—1)VN

xS GLFP®)T "+ s[1— FO(x) T f,(x)dF“’(x)+o< VN)

We can also remark that 4;; converges in probability to @;; even under
Ky, since E[4? | Ky]=E[d?|H]+OWN"?) and Var[a“’“lKN] ONNTY
for «=1,2,3,4. Using Lemma 4.2, Lemma 10.1 and Lemma 3.2, we
easily get the desired conclusion.

As a generalization of V,~test, we can propose a test due to the
statistic V,, which rejects the hypothesis if the observed value of V,, is
larger than a preassigned constant. This test will be called V,.-test.

11. Multivariate Kruskal and Wallis’ test

In this section we shall generalize Kruskal and Wallis’ H-test [18]
to the multivariate case and derive its asymptotic distribution. Analo-
gously as in Andrews [2], we shall put
1 ni

U;i) —
Ny n, Byt

2 ¢(“(xlﬁ1’ ) xcﬂc)
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N My
) _ G
¢af (xn A x(:) = 2 =8 ')(xy: xm)

(11.1) =1 1,

1 if the i-th component of x is smaller than
8D (x, y) = the 7-th component of y

0 otherwise.

Then it is easy to see that under the hypothesis H

E[U Ny

(11.2) Ty 72*}“ "
' nU® = E(“_—’jﬂﬂ
(] a a 2 b

where n,R{’ means the sum of over-all ranks corresponding to the i-th
component of X, ***, Xan,. Put UP=(U{", -+, UP), then from Theorem
2.1 the limiting distribution of the statistic \/ N(U®—E[U®)), ---,
VNU®—E[U®]) is normal under the hypothesis H with the mean 0
and the covariance matrix ¥ =(c'%”), where o{5” means the asymptotic
covariance of U{’ and U§’. In case i=j it was already obtained by
Andrews [2], that is

(11.3) ous’ = Z#gzlpl[ifépl— L ]
12 Lpg =t puped-

In case i=+j, ois” is given by (10.4) and the straightforward calculation
yields ;

(i)  ¢“®._., (1 lies at the ath place) = (z ”')

ixa p,

2
(ii) gBy .0 (1 lies at the vy-th place, where y+a, 8) = Py

12,05 "

(iii) &P (1 lies at the a-th place, where a=8)=— 1Pt -
i+a12 pg
where 7;; is given by
(11.4) T, =12 Sw Sm FO(x)F9(y)dF99(x, y)—3 .
Hence we have
(11.5) ol = T“(ZPI)[ 2?:1 P, 1 ]
Py PaPp

This formula holds true also in case i=j, if we define r;=1. A con-
sistent and unbiased estimate of 7;; is given by (9.9). From (11.5) we
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can express I =A4,Q%, by using Kronecker product, where A4,=(r;;) and
2,=(1/12) (X5, p) [Bapra® 2i-i pi—Pa'ps']. If the pxp matrix A4, is
nonsingular, the rank of ¥ is equal to p(c—1), since the rank of X, is
shown to be equal to ¢—1. The solution of (4.12) for the covariance
matrix ¥ =(c'5") defined by (11.5) is given by 4=A4;'®4, where

12 PaPE(pa+p3) | Puph X P
(11.6) Aoz__[gmpg_ aPE(Pa+P3) | PaPh ]
.yl f-1 P (X, P

The above 4, is the solution of (4.12) for the covariance matrix ¥, and
is already obtained by Sugiura [26]. Hence we obtain the following
theorem from Lemma 4.2, Lemma 3.2 and >,5,72[UP —27" > ao(ny/1,) ]
=0.

Theorem 11.1. Under the hypothesis H, the limiting distribution of
the statistic

7 — & Af, 12 < ¢ 25_—1 n, 1>< (€)] E‘Z——l ny 1)
11. H= _S_ 47, E Ny R d—ei=a T - R,, _
( ) i,j=1 ( E =1 ﬂl)z 2 2

is X* with p(c—1) degrees of freedom, where (+7)=(t;;)"! and +,; is given
by (9.9) which is a consistent and wunbiased estimate of v;; given by
(11.4). The matrix (v;;) is assumed to be nonsingular.

Theorem 11.2. Under the same conditions as in Theorem 10. 2, the
limiting distribution of the statistic H is noncentral X* with p(c—1)
degrees of freedom and noncentrality parameter

(11.8) 2n =12 2 i, 2 P05 — gm)(gu) 0(,))S fi(x)dF ()

X S_mf,-(x) AdF9(x) .

Proof. Under the assumption of Theorem 10.2 we can express

11.9 E[U®|Ky] == Py Zz 1P 0 — )
(-9 L 1= prm \/Np( )

x S_w FAx)dFD(x)+ 0 (jﬁ) _

Calculating the noncentrality parameter A’z=g(A47'®4,)2’ by Lemma
4.2 where p=(#, -, £?) and £ =(pi®, -+, pe")

(.10 . ul = i Pl(a;t)_gu)) siof'(x) dF(x),

@

we have the desired conclusion.
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From Theorem 10.2 and Theorem 11.2 we can easily see the

following theorem, which is a generalization of Theorem 4.2 to the
multivariate case.

Theorem 11.3. Under the sequence of alternatives Ky, the limiting
distribution of the statistic V,, is the same as that of H under the con-
dition of Theorem 10. 2.

As a generalization of Kruskal and Wallis’ H-test, we can propose
a multivariate nonparametric several-sample test due to the statistic A
which rejects the hypothesis if the observed value of H is larger than
a preassigned constant. This test will be called multivariate Kruskal
and Wallis’ test. In case p=1, the statistic H defined by (11.7) reduces
to Kruskal and Wallis’ H-statistic.
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