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Summary: In this paper some new nonparametric several-sample
tests for location or scale are proposed, and their asymptotic efficiencies
for some parametric alternatives are calculated. A multivariate non-
parametric two-sample test for location which may be regarded as a
multivariate generalization of the Wilcoxon test, is also proposed with
its asymptotic efficiency for normal alternative. Finally we shall gene-
ralize the several-sample tests for location to the multivariate case and
multivariate Kruskal and Wallis' test is also proposed.

1. Introduction

We shall first propose a family of nonparametric several-sample
tests for location constructed from generalized U statistics which in-
cludes as special cases, Bhapkar's F-test [4], Deshpande's L-test [10]
and a test asymptotically as efficient as Kruskal and Wallis' //-test
[18]. As a consequence, if the number of populations is greater than
three, we can select a test whose asymptotic efficiency is higher than
Kruskal and Wallis' //-test [18] against the normal, exponential and
uniform distribution.

Secondly, for the nonparametric several-sample problem of scale
we shall propose a family of tests constructed from generalized U
statistics which includes Deshpande's D-test [11] as a special case, and
further we shall generalize Tamura's Q-test [29] for the two-sample
problem of scale. We can find a test whose asymptotic relative efficiency
with respect to the asymptotically UMP invariant test (Lehmann [20,
p. 275]) for normal distribution is 15/2τr2 independently of the number
of populations. This value is equal to the asymptotic efficiency of
Mood's two-sample test for dispersion [24] and Tamura's Q-test [29]
against the F-test for normal alternative. Again we can also find a
test whose asymptotic efficiency for normal alternative is higher than
15/2τr2, if the number of populations is greater than four.
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Thirdly we shall propose a multivariate Wilcoxon test which is a
natural extension of the ordinary Wilcoxon test [32], [23]. Its asymp-
totic efficiency against Hotelling's T2-test depends both on the direction
of the sequence of alternatives and on the population covariances, and
is shown to be equal to that of BickeΓs ffin-test [7] against Hotelling's
T2-test for the one-sample problem. Hence the asymptotic efficiency
of our bivariate Wilcoxon test against Hotelling's T2 for normal dis-
tribution is always higher than v/3/2 (= .866). The multivariate
Wilcoxon test may be regarded as a two-sample analogue of BickeΓs
Λ^-test [7].

Finally we shall generalize the several-sample test for location to
the multivariate case. Multivariate Kruskal and Wallis' test is also
considered and their limiting distributions under the hypothesis and
sequence of alternatives near hypothesis are obtained.

2. Preliminaries

The following Theorem 2.1 concerning a multivariate generalized U
statistics introduced by Hoeffding [13] and later improved by Lehmann
[19], may be well known as Bhapkar [4] and Lehmann [21] stated.
But as far as the author is aware, its proof in general case seems not
to be given in the literature. So we shall state the theorem with a
sketch of its proof, which is a modification of that of Eraser [12, p. 225],

Let pxl vectors jcyβ, α = l, 2, •••, wy be a random sample from the
^-variate distribution Fj(x) 0" = 1, 2, ••-, c) and φC|0(jcn, •••, jclwcn ••• xcl,
•• ,jccιlfc >) (/ = ! , 2, -- ,r) be a real-valued function which is symmetric in
each set of variables xkl9 •••, JcΛmco (& = 1, 2, ••-, cr). Put

(2. i) t/«> = Γπ teo)ΓΣ - Σ
|_αj=ι \mΛ / J at 8

where the summation Σ ' ' Σ extends over all possible sets of sub-
Λ δ

scripts, (a19 •••,<*««>), ~-,(819 •-, δmco) such that 1^a^< — <am^^n^ —,

l ^ δ ^ - ^ δ ^ c o ^ ^ . Then C7Cf° is called a multivariate generalized £7

statistic.
Theorem 2.1. Suppose that there are r multivariate generalized U

satisfies U™ defined by (2.1).

(i) //Jε[φc ί )] = ̂ , /few E[£7Cί)] = i7Cί3.
(ii) // £[{φα)}2]<cχ>, /few /o/ ^^ry / and j,

(2.2) Cov[£/«', C7^] = Γπ feΓl] - Σ
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where m^'^ = mm(m^\m^) and ξ%.?.βc means the covariance of φci\xlly ••-,

Λ I W CO; •••; χcl9 ••-, xcmω) and φφ(xn, •••, Λ : ^ , x^1+19 •••, X m oo; — * c l , — , ΛΓC(/C,

x'cdc+i9 '">χcm^ή with jc, y #ftd jCij fo/wg assumed to be independently dis-

tributed as Fj(x) for varying j .

(iii)* Suppose that JE[φc '5] = i7c'° 0»rf E[{φC ί D}2]<oo. Further let nt = PiN
with Pi being positive constant independent of N, then as N-^oo the r-
dimensional statistic

(2. 3) ^/N(U™—η™, - , U< r>-tfr>)

is distributed asymptotically according to r-variate normal distribution,
whose mean vector is 0 and the covariance matrix Σ = (σij) is given by

•MfCO^Cj) *M(ί)*M(J>

(2. 4) σ,v = ̂ ^ - r&ί?. „ + - + ? ? ^ ^ ft'o fi. ! .
Pi Pc

Proof, (i) is obvious. From (2.1) the covariance of ί/c<:> and
is given by

" ^(jc1Ml, - , ^ c o ; -(2. 5) Γπ teo)(;L%)"Γ Σ - Σ Σ - Σ Cov[oj^iXm^ / \mΛ /j * s Λ' tf

In the multiple summation of the above expression the number of items
such as just d^ xlk's are present in common among JCIΛ , •••, JCIΛ c o and

1 Wj

îΛ7, "sJCw'cy^ •"> a n d J u s t dc Xck's are present in common among jccβl,
1 m l 1

—,xct co and χc8/, — , j c ^ ^ is

For this combination of jc^'s and jc,v's the covariance of φCί° and φcy:> is
equal to &':.•?*,.. Hence we get (ii). To prove (iii) we shall first note
the following theorem which is a straightforward generalization of a
theorem due to Cramer [9, p. 254].

Theorem 2.2. // (x19 yj, (x29 y2), ••• is a sequence of independent
random vectors such that xly x2, ••• has a limiting distribution F(x) and
limjEΓII^ΛΓ—c||2] = 0 holds for some constant vector c, where \\c\\ means the

N-*°°

euclidean length of the real vector c. Then xN+yN has the limiting
distribution F(x—c).

* The same result as (iii) holds when the distribution function F , (ΛC) depends on N and
the righthand side of (2.4) converges to σ, / as ΛΓ^°o. The proof of this fact is also the
same as that of (iii).
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Now we shall prove (iii) of Theorem 2. 1. Put

1 VmW "l wtW "c 1

(2. 6) r#> = * p - Σ W O O - >?cυ) + - + ̂  Σ WOcco) - V°)
VΛf L *=ι δ=ι Jwhere

ψy\Xi«) = E[φw(x119 •-, * l w o > ... # ίaM xi2, •••, x*wσ> — * c l , — , **„#>)]

and the expectation in the righthand side means the conditional ex-
pectation for given xiΛ = xiΛ. Then by the central limit theorem the
random vector yN=(YN\ •••, Y&) is distributed asymptotically normal
as 7V->oo, with the mean 0 and the covariance matrix Σ =

vn^wi^ϊ
/9 7\ _ rrl\ rrl\ yd,)) ,

(6. t ) (Tij -- bιo.-,o+ " PC

Now we shall show that the random vector zN=(Z%\ •• ,Z^ ) ) where
Z$ = \/N(U™ — η^\ is asymptotically equivalent to the random vector
yN, that is, \\mE\_\\y N-zN\\2~] = Q. From (2.7) we have

/o o\ ET/V^H2! — {^i 1 MJ.J) _ι ____ i {^c j VQ.J)
V̂  o ; ^ L i -* N S J -- bio.-.oH ---- H -- boo. .i

Pi PC

Also from (2.2) we have

(2.9) Var[ ί/^] = i » ! p - V o ^ ^ ^ ^

Hence we can conclude

(2. 10)
Pi PC

From (2.1) and (2.6) we can see that £(y#>Z#') is equal to the right-
hand side of (2.8). Using the relation £ [ { F

Z&l, we can conclude that

Hence we have HmE[_\\yN—zN\\2^ = Q. From Theorem 2.2 the limiting
JV^oo

distribution of ZN is the same as that of yN=zN+(yN—zN\ so we get
the desired result (iii).

3. Nonparametric several-sample tests for location

Let Xfj (j = \y2, •••, Hi) denote a random sample from the continuous
univariate distribution Ff(x) (ί = l, 2, •••, c). From these samples we want
to test the hypothesis Fl(x) = =Fe(x) against the location alternative
Fi(x) = F(x—θi) for some real number θf (not all <9/s are equal), where
the functional form of F(x) is unknown. Nonparametric tests for this
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problem have been proposed by many authors such as Kruskal and
Wallis [18], Kruskal [17], Bhapkar [4], Deshpande [10], Puri [25], Yen
[33], etc. Now we shall propose a family of tests which includes as
special cases both Bhapkar's V-test and Deshpande's L-test. Put for
i = l, 2 ,- ,c

- -1- V* . . . V^ rh^( Y . . Y \
2-J 2_l ψ \^-lΛ1> > <&CCύc)

f C\ -t \ fl i * * * / / - 1 C(3.1) 1 c

ώcί)(X ..- X) = (^~l^_(c-j\ if -Xί is the -th
(c — l ) r (e —1), smallest among JΓα, ••-, Xc,

where (k)r = k(k—l) (fe—r+1), (Λ)0 = l and r, 5 = 0, 1, 2, •••, c—1, except
for (r, 5) = (0, 0). Then ί7cί) is a generalized £7 statistic stated in section
2. We shall construct nonparametric tests from these t/Ct).

In case r = 0 and 5 = £—1,

f 0 if Xi<X; for any jΦ/
/Q Q\ JiCίY V V\ J * ^ J J i
(O. Δ) Φ v-Λ-ι> " * > -Λ-c/ — l

I 1 otherwise
which leads to Bhapkar's V-statistic. In case r = s = c—l9

/o o\ Λ^ίi~)( V V \
\ό. ό) φ V-Λ-ι> * " > A c)

1 if Xi>X} for any
— 1 if Xi<Xj for any

0 otherwise

which leads to Deshpande's L-statistic. In these two cases special
attention is paid to the largest or the smallest item in the c-plets :
(XίΛl, X2«2, •••> XCΛ^J whereas our test gives some monotone weight to
the (r+l)-th smallest ••• c-th smallest and to the (s-fl)-th largest •••
c-th largest item for given r and s.

Since under the null hypothesis H: Fί(x)= — =Fe(x\ the events
that the random variable Xf is the j-th smallest among X19—9XC for
j = Ί9 2, •••,€ are equally probable, we get

(3.4) Elφ«\X19 - , XJ] = l
c J

Substituting Σj=ιO'-l)r = Wr+ι/(^+l) into (3.4), we have

(3.5)

From Theorem 2. 1 we can conclude that under the hypothesis Hy the
statistic

(3.6)
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is distributed asymptotically normal as N-*o° with the mean vector 0
and the covariance matrix Σ = (

(o 7\ _ _ ^(ί,j) i _j_ j'(i.j)
l^ ' / β^y -- ζio. .oH ----- 1 -- boo.-.i >

Pi PC

where fo!'ja, .0 (1 lies at the &-th place) is the covariance of φa\Xly ••-,
Xe) and φ^CYί, - , JΠ-i, Xky X'k+l, - , JSTJ). Under the null hypothesis,
we shall calculate ζoί.:.j\,....0 by considering the following three cases (i),
(ii) and (iii).

( i ) ?oi:.Vi,..,o (1 lies at the ί-th place)

is equal to

(3.8)

V + l

The first term can be written as

W, •-, X't-ltXt, X'ί+1>

Differentiating r-times the identity (x+y)n='Σ^=0(
}^}χίyn~ί wUh respect

to Λ;, we have

(3. 10) (n)r(x+yΓr = Σ?=o (j^x^y^ .

Hence we can simplify (3. 9) to get

(3.11) Γ { [F^T-Cl
J - 0 0

Combining this with (3.8), we can conclude

(3. 12) ft' ΐi.-.o (1 lies at the i-th place)

where β(A q) means the Beta function and
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(ii) Sot -α. .o (1 lies at the a-th place, where αφ/, j)

is equal to

(3. 13) EW\Xlt -.., .

1 V
l s + l/

The first term of (3. 13) can be written as

(3.14) Γ Γ Γ E{.φ^Xlt-tXc)\Xt = x and Xα = 2]
J — 00 J —00 J —00

xE[φ«>(Xί,' ,X'._1,Xlt,X'Λ+l, ..,X'β)\X'J=y and

X
L

z<y ' y<z

xdF(x}dF(y)dF(z),

where

(3.15)

Using the identity (k-l)r = (k-2)r+r(k-2)r.1 together with (3.10), we
can simplify the above summation of (3. 14), and integrate with respect
to x and y to get

(

c_ι

c-l/r + l \ c-1/ 5+1 c-1
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which is equal to

(3.17) ( T — ( l— ^ - ) - J -
JoLr + l\ c-ll s + l c-U c-l

Further calculating (3. 17) and combining with (3. 13), we can conclude
that

ζoί '-Λ.-.o (1 lies at the α-th place, where α Φ i , f)

(3.18) _ 1 Γ r2 s2 __ 2_ _
(c-l)2L(2r+l)(r+l)

-2B(r+l,

An analogous calculation leads us to

(iii) {Tol-.i.-.o (1 lies at the ί-th place, where ίΦj

(3.19) = __ 1 Γ r2 j 2
c-H-H(2r+l)(r+l) 2

-2B(r+l, 5+1)]

Substituting (3. 12), (3. 18) and (3. 19) into (3. 7), we can get

(3.20) σ ,

where

(3. 21) *(r f s) =

It is easily seen that the covariance matrix Σ = (σij] is singular, since
2?-i°"iv = 0 f°Γ e v e r 7 ^ a n ( i that the rank of Σ is c — ί as is easily
checked by calculating the minor determinant. To construct a test
statistic we shall state the following lemma which will also be used in
later sections.

Lemma 3. 1. Let the distribution of c-dimensional column vector x is
normal with the mean 0 and the covariance matrix Σ = (σiJ) where

(3.22) ~
* = 1 pΛ p. pj Pi

Then the statistic (l/c2/Γ)Σ?=ι P C^-^") 2 & distributed as X2 w i/A c -
degrees of freedom where x=(Xl, —9Xey and J?=Σi-ι Pα»-X«/Σi-ι /°«
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Proof. By Lemma 2 in Sugiura [26] which is restated in a more
general form in Lemma 4. 2 in the next section, it is sufficient to solve
the following set of equations with respect to A = (x^) and construct
x'Λx.

{Σ5=ι σnχjk — $ik~ —
c

Σί-i xu = o

The solution of the above equations is given by

(3.24) , ,

Hence we have *'Λx = (l/c2/i:)Σ*-ι P^-X)2.

Lemma 3. 2. (Mann and Wald) // the random vector XN converges
in law to the random vector jc, then the random variable g(xN] converges
in law to the random variable g(x) for any continuous function g.

This Lemma is a special case of Theorem 5 in Mann and Wald [22].
Putting xN=VN(U™-EίU™l, -., C7«>-E[E7«>]) and g(Xl9 - , Xn) =
(llc2K)Σ*=ιPi(Xi-X}2 in Lemma 3.2 and noticing Lemma 3.1 we have
the following theorem.

Theorem 3.1. Put n{ = PiN (ί = l, 2, ••-,<;) and let N tend to infinity
with Pi>0 fixed. Then under the hypothesis H: F1=--=FC the statistic
Vrs defined by

Vrs = ^ 7 7 } Σ nέ(U^- U)2 (O^r, s^c-l and (r, ί)Φ(0, 0))

where C7CID 1*5 defined by (3. 1) #w</ K(ry s) is given by (3. 21), is distributed
asymptotically as %2 zwϊ/z c— 1 degrees of freedom.

By the definition of t/α ) given by (3. 1), we can easily see that the
distribution of the statistic Vrs is the same as that of Vsr under the
alternative that F^x) is symmetric at the origin for every i. We can
also see that the V10, V01, Vn and F22-statistic are equivalent. As special
cases of Theorem 3. 1 we get the following corollaries.

Corollary 1. The statistic

(3. 26) V.^ = (2c-l) Σί-i Λί(ί7co_ f/)2

f's distributed asymptotically as %2 wiVA c — 1 degrees of freedom as N-+OO.

This is Bhapkar's V-statistic proposed in [4].
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Corollary 2. The statistic

(3.27) Fc_. e_. = ( Γ 1 )

/

2 f C ~ ^ „ Σ «,(

' *
is distributed asymptotically as %2 wi/A c—l degrees of freedom as N-+OO.

This is Deshpande's L-statistic proposed in [10].

Corollary 3. The statistic

(3. 28) F π

 2

cr

is distributed asymptotically as X2 with c—l degrees of freedom as 7V->oo.

4. Asymptotic efficiency of the Vrs test for the location alternative

Now we shall consider the limiting distribution of the statistic Vrs

given by (3.25) under the following sequence of alternatives,

(4.1) KN: F<(x) = F(x-N-*θt) (i = 1, 2, •••, c),

where <9, is some constant (not all <9/s are equal).

Theorem 4.1. Put n^pfN where p t > 0 is independent of N, and
suppose that the distribution function F(x) has the derivative f(x) except
for a set of F-measure zero and further there exists a function g(x} such

that ( g(x)dF(x)<oo and that

(4.2) 1

holds for any x and any sufficiently small h. Then under the sequence
of alternatives KN the limiting distribution of Vrs is noncentral %2 with
c—l degrees of freedom and the noncentrality parameter

(4. 3) \ls = - - 1 — ( Γ
Krs\J-

where K(r,s) is defined by (3.21) and θ=Σ«=ι P Λ ^/Σi-ι P«
As a special case we get the following corollary.

Corollary 1. Under the sequence of alternatives KNy the limiting
distributions of either Kc-i (Bhapkar's V-statistic) or Vc,lc^ (Deshpande's
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L-statistic) is noncentral %2 with c—1 degrees of freedom with noncentrality
parameters given respectively by

(4.4) λ ^ . , = c2(2c-l)

(4.5) λ;_1.e.1 =

This result was obtained by Bhapkar [4] and Deshpande [10], respec-
tively. To prove Theorem 4.1 we shall first show the following lemma.

Lemma 4.1. Let F(x) be a distribution function. Suppose that the
distribution function G^x) has the derivative gi(x) except for a set of
F-measure 0 and further there exists a function g(x) such that
5 0 0

g(x)dF(x)<oo and that

(4. 6) — {Gi(x + hi)-Gi(x)~\ ^ g(x) (i = 1, 2, ••-, n)
hi

hold for any x and any sufficiently small hi ( = a,ih and h is small}. Then

(4.7) J~ ΠGi(x + hi)dF(x)

= \ Π d(x) dF(x) + Σ *ί ( gi(x) Π GAx) dF(x} 4- o(h).
J-oo , =ι , =ι J-oo yφ,

Proof. It is sufficient to show (4.7) for n = 2. We can write

irh j -
= J - ~ G l ( " L h

By the Lebesgue's bounded convergence theorem, the first integral is

equal to α2\ G1(x)g2(x)dF(x) + o(ί) and the second integral is equal to

α , Γ G2(x)g1(x')dF(x') + o(L). Hence we have (4.7).
J-oo

Now we shall prove Theorem 4.1. Under the alternative KN: Ff(x)
= F(x~N~1/2θi\ the expectation of £7CO defined by (3.1) is given by

(4.8)
*-ιL(c-l)r (c-

x Σ
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where the summation 2 extends over all combinations of possible integers
CO

(A, •••,4-1,4+1, —,/c) such that /!< — </*_! and /Λ+1< — </c, and the set
{A, " ,4-ι, /*+!, " ,/c} is equal to the set {1, 2, ••-, i— 1, i + l, ••-, c}. Since

the number of such combinations is (£Zi )> by Lemma 4. 1 we can ex-

press (4. 8) as

(4.9)
k=ι l(c — l)r (c — 1)S

^

It is easy to see that Σ [ ( 0 , - ^ ) + - + (θt-θlk
CO ' / 9 v c

and Σ [ ( ^ - ^ J + +(^-β/c)] = ( c ^ Λ ί 1 ) Σ / ^ - ^ ) . So we can

simplify (4. 9) to get

(4.10)
5 + 1 (c —

X ~

It follows from Theorem 2. 1 that under the alternative KN, the statistic
\/~N(U™-E\U™]> - , t / w - E [ £ 7 c o ] ) defined by (3,6) is distributed
asymptotically normal as N-*°o, with the mean vector μ=(μl9 •• ,μe)
and the covariance matrix Σ = (σi}) where

c

Pi

To obtain the limiting distribution of Vrs under the alternative KN, we
must generalize Lemma 2 stated in Sugiura [26] to the noncentral case.

Lemma 4. 2. Suppose that the distribution of the c-variate column
vector x is normal with the mean vector μ and the covariance matrix Σ
of rank r (r<*c\ Then there exists the unique cxc matrix A such that

(4.12)
=I-B,

where B is the projection of the c-dimensional euclidean space to the
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eigenspace belonging to the eigenvalue zero of Σ. This A is symmetric
and x'Λx is distributed as noncentral %2 with r degrees of freedom and
noncentrality parameter μ'Λμ.

Proof. It is shown by Sugiura [26] that the unique solution of A

is given by A = — A^-\ ----- 1 -- As, where af is the nonzero eigenvalue of
Oί1 Oίs

Σ and Af is the projection to the eigenspace of Σ belonging to the

eigenvalue aif We can easily see that — x'Afx is distributed as non-
(Xf

central %2 with the number of degrees of freedom being equal to the

rank of A{ and noncentrality parameter λ? = — μ'Aiμ. Since x'Atx
Cίi

(ι = l,2, •••, c) are stochastically independent, x'Λx is distributed as non-
central %2 with r degrees of freedom and noncentrality parameter

Now we shall return to search for the distribution of the statistic
Vrs under the alternative KN. Calculating the noncentrality parameter
by Lemma 4.2, where the transpose of jc is given by (3.6), μ = (μly •••, AU'
and Σ = (σ ij) are given by (4.11), we can see that the projection B is
given by

(4.13) D

and the solution of (4.12) is given by (3.24) where K=K(r,
Hence by Lemma 3.2 we can immediately obtain Theorem 4.1.

From Theorem 3.1 and Theorem 4.1 the uniformly most powerful
test due to the Fr5-statistic in the limiting distribution is given by
rejecting the hypothesis if Vrs is larger than a preassigned constant,
since the hypothesis is \ls = Q and the alternatives are λ?,Φθ in the
noncentral %2 distribution. This test will be called the Vrs-test which
depends on the pair (r, s) of integers.

From Theorem 4.1 we can see that the statistic Vn is distributed
asymptotically noncentral %2 as Λ^oo, with c — 1 degrees of freedom

and noncentrality parameter λ?1 = 12Σ<=ιP. (^ - ^ ) 2 [ Γ /(*)dF(x)\ which

is the case with Kruskal and Wallis' ίf-test as is shown by Andrews

[2], Hence we have the following theorem.
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Theorem 4. 2. Under the assumption of Theorem 4. 1 the limiting
distribution of the statistic F π defined by (3. 28) is the same as Kruskal
and Wallis* H-statistic.

Now we shall consider the asymptotic relative efficiency of the Vrs-
test for general ry s (r, s = 0, 1, ••-, c — 1) against Kruskal and Wallis'
//-test. By Andrews [2], this efficiency is given by the ratio of the
noncentrality parameters of the statistic Vrs to that of Vn in the limiting
distribution. Hence we have from Theorem 4. 1 and Theorem 4. 2,

Theorem 4. 3. Under the same assumptions as in Theorem 4. 1 the
asymptotic relative efficiency of the Vrs-test against Kruskal and Wallis'
H-test is

(4. 14)

where K(r, s) is given by (3. 21).

In particular £Vll/H
=£vlo/H

=€v01/H
==£v22/H=l> a n d this fact i s alluded

recently by Bhapkar [5] . The V10, F01, F u , V^-test are equivalent, since
their statistics are equivalent.

Let us now specify the distribution function F(x) or the density
function f(x) in the alternative as follows.

EXAMPLE 1. Uniform distribution: / (#) = ! for 0 < # < 1 and zero
otherwise.

l/3K(r, s) if r, s^
(4. 15) SVrsίH = (2r + l)(r + l)2/12r2 if 5 = 0

if r = 0

EXAMPLE 2. Expontial distribution: /(Λ:) = e~x for jt:>0 and zero
otherwise.

5) if r ^
(4.16)

(2s+l)/3 if r = 0.

EXAMPLES. Normal distribution : /(Λ;)= — ί =
for — oo<ΛΓ<oo.

(4 17) £"«
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where Xj/n means the j-ih smallest observation among the random
sample of size n from the standard normal distribution.

EXAMPLE 4. Double exponential distribution:

for — oo<#<oo.

(4.18)

EXAMPLE 5. Logistic distribution:
for — oo < X < oo .

= e-*l(l +

(4.19) -Vrs/H ~
K(r,s)L(r+ΐ)(r+2) .

Some numerical values of BVrs/H given by the above examples are
shown in the following Tables. The value of BVrs/H is symmetric with
respect to r and s, if the distribution F(x) is symmetric at the origin,
as is the case with Example 3, 4 and 5.
From these Tables we can see that the asymptotic efficiency of the
y r s-test against Kruskal and Wallis' //-test for the range (r, s) = (3. 3)
~~ (6.6) is larger than one for each of the uniform, exponential and
normal distributions, but less than one for either the double exponential
or the logistic distribution. The above statement for the normal dis-
tribution agrees well with the result by Deshpande [10]. For the
double exponential and the logistic distribution, the Fn-test, which is
asymptotically as efficient as Kruskal and Wallis' //-test, seems to be
most efficient within the class of the Vrj-test.

Table 1. Asymptotic relative efficiency εVrs/jι for the uniform distribution

\ \ 5

r\.

0

1

2

3

4

5

6

7

8

9

10

0

—

1

1.000

1.000

2

.938

.984

1.000

3

1.037

1.063

1.102

1.228

4

1.172

1.158

1.215

1.364

1.522

5

1.320

1.255

1.327

1.496

1.672

1.841

6

1.475

1.350

1.432

1.619

1.813

1.997

2.169

7

1.633

1.439

1.531

1.733

1.942

2.142

2.328

2.501

8

1.793

1.524

1.623

1.838

2.061

2.275

2.475

2.661

2.834

9

1.955

1.604

1.708

1.935

2.171

2.398

2.610

2.809

2.994

3.167

10

2.118

1.680

1.787

2.024

2.272

2.511

2.736

2.947

3.144

3.328

3.500
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Table 2. Asymptotic relative efficiency eVrs/n for the exponential distribution

\ . 5
r \,

0

1

2

3

4

5

6

7

8

9

10

0

—

1.000

.417

.259

.188

.147

.120

.102

.089

.078

.070

1

1.000

1.000

.683

.598

.568

.558

.558

.562

.569

.578

.587

2

1.667

1.339

1.000

.926

.913

.921

.939

.960

.982

1.004

1.026

3

2.333

1.660

1.293

1.228

1.231

1.257

1.290

1.327

1.363

1.398

1.431

4

3.000

1.958

1.561

1.504

1.522

1.563

1.611

1.662

1.711

1.758

1.804

5

3.667

2.232

1.806

1.755

1.786

1.841

1.903

1.967

2.029

2.089

2.145

6

4.333

2.486

2.030

1.984

2.026

2.093

2.169

2.246

2.320

2.391

2.459

7

5.000

2.721

2.236

2.193

2.244

2.324

2.412

2.501

2.587

2.670

2.749

8

5.667

2.940

2.424

2.384

2.444

2.535

2.634

2.735

2.834

2.928

3.018

9

6.333

3.144

2.598

2.559

2.627

2.728

2.839

2.951

3.061

3.167

3.268

10

7.000

3.335

2.759

2.720

2.795

2.906

3.028

3.151

3.272

3.389

3.500

Table 3. Asymptotic relative efficiency εVrs/H for the normal distribution

\χS

r \ ,

0

1

2

3

4

5

6

7

8

9

10

0

—

1

1.000

1.000

2

.938

.984

1.000

3

.863

.971

1.007

1.022

4

.797

.964

1.011

1.029

1.035

1

5

.740

.960

1.014

1.032

1.035

1.032

6

.691

.958

1.016

1.032

1.032

1.026

1.017

7

.650

.957

1.018

1.031

1.028

1.019

1.007

.995

8

.613

.957

1.019

1.030

1.024

1.011

.997

.983

.969

9

.582

.958

1.020

1.028

1.019

1.004

.988

.972

.956

.942

10

.553

.959

1.020

1.025

1.014

.997

.978

.961

.944

.929

.915

Table 4. Asymptotic relative efficiency eVrsίg. for the
double exponential distribution

^ ^ \ 5

r \ ^

0

1

2

3

4

5

6

0

—

1

1.000

1.000

2

.938

.984

1.000

3

.794

.934

.968

.940

4

.659

.887

.930

.901

.856

5

.551

.850

.899

.865

.815

.768

6

.467

.824

.874

.836

.781

.729

.686
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Table 5. Asymptotic relative efficiency £vrs/H for the logistic distribution

401

^ ^ \ ^ 5

r ^ - ^

0

1

2

3

4

5

6

0

—

1

1.000

1.000

2

.938

.984

1.000

3

.840

.959

.994

.995

4

.750

.938

.984

.986

.974

5

.673

.922

.975

.974

.959

.939

6

.609

.911

.967

.963

.943

.920

.896

5. Nonparametric several-sample tests for scale

Although various nonparametric two-sample tests for the problem
of scale have been proposed by many authors such as Mood [24],
Kamat [14], Sukhatme [27, 28], Tamura [29, 30, 31] and Ansari and
Bladrey [3] with their asymptotic efficiencies investigated by Capon
[8], Klotz [16], etc., but a few several-sample tests for scale are availa-
ble. In the following four sections we shall treat this problem.

Let X{j (j = l, 2, ••-, ni) be a random sample from the continuous
univariate distribution Fέ(x) (ι = l, 2 , ••-, c). From these samples we want
to test the hypothesis H:F1= > = FC against the scale alternative
K\Fi(x) = F(xjσi\ where the functional from of F is unknown and σf

is some constant (not all σ/s are equal).
Corresponding to the statistic (3.1), we shall put at this time for

(5.1)
5,—1 cύr=i

φ«\X19 ,Xe) =
(c-ΐ)r

i f χi i s t h e y-Λ smallest
a τ τ Ί θ n σ v Vamong Λ I ? •••, Λ C

where O^r, s<^c — 1 except for (r, s) = (0, 0) and (1,1).
Then the statistic C/c/) is a generalized U statistic stated in section 2
and we shall construct a nonparametric test from these t/cf:> (/ = !, 2, •••, c).
In case r = s = £ — 1

(5.2)
11 if Xi<Xj or Xi>Xj for any j3=i

10 otherwise

which reduces to Deshpande's /^-statistic [11]. Since our method of
construction is quite analogous to that in section 3, we shall only show
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the results, leaving the details to readers. The expectation of the ί/Ct)

under the hypothesis H is given by

(5. 3) £[£/«>] = JL .- + _ ! _ .
J r + l s+l

Putting ni = ρiN where p, >0 is independent of N, we can see that the
statistic

(5.4) \/F(£/ ( υ-£[ί/c υ], ..-, t/c o-£[t/c o])

is distributed asymptotically normal as Λf->oo, with the mean vector 0
and the covariance matrix J? = (σίy) where σij is given by (3.7) as
before and

ζtf,:*\ ..... o (1 lies at the ί-th place) = L(r, s)

(5.5)
'.?.\ ... o (1 lies at the k-th place, where k^ij) = — - — L(r, s)

' ' ' ' 2

(1 lies at the i-th place, where ί=K/) = — —=~L(r, s) ,
c — 1

where

(5.6) L(r,s\

Hence we have

(5.7) σ, , =
p. p,. p, p,

From Lemma 3. 1 and Lemma 3. 2, Theorem 5. 1 follows immediately.

Theorem 5. 1. Put n^piN where p, > 0 is independent of N. Then
under the hypothesis H:F1= "=Fcy the statistic defined by

Drs =
( 5 8 )

where t/ ( ί ) /5 ̂ /^« 6j (5. 1) and L(r, s) is defined by (5. 6), is distributed
asymptotically as %2 with c—1 degrees of freedom as N-+OO.

It is easily seen by the definition of C7CO in (5.1) that the D12> D2ly

D22 and the Z>33-statistic are equivalent. We can also remark that the
distribution of Drs is the same as that of Dsr under the alternative that
Fg(x) is symmetric at the origin for every i.

As a special case of Theorem 5. 1 we have
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Corollary 1. The statistic

Ί D — (2c — l)(g — I) 2 y i M . ( y/co _ ffγ
; /Λ-i.c-i- - - - - W Λ '.

πί
J

is distributed asymptotically as %2 with c — ί degrees of freedom as N^ oo.
This is Deshpande's D-statistic proposed in [11], though some

misprints seem to scatter in his paper.

Corollary 2. The statistic

(5. 10) D22 =

is distributed asymptotically as %2 wi/A c — 1 degrees of freedom as N

This statistic Z)22 is equivalent to the one defined by φa\X19

(c-l}(c-2\ if X{ is the y-th smallest among J^1, .

which assigns to each j the quadratic weight centered at (c + l)/2.
Correspondingly if we assign any linear weight to each j , it is equivalent
to V^-test.11

6. Asymptotic efficiency of Drs-test for the scale alternative

Now we shall consider the limiting distribution of the statistic Drs

given by (5. 8) under the following sequence of alternatives

(6. 1) KN : F{(x) = F(xl(σ+N-1'2θiy) (i = l, 2, - , c) ,

where σ and #t is some constant, (not all #/s are equal).

Theorem 6.1. Put ni = pfN where p,->0 is independent of N and
suppose that the distribution function F(x) has the derivative f(x) except
for a set of F-measure zero and further that there exists a function g(x)

such that I xg(x)dF(x)<oo and that
J - 0 0

(6.2) [_F(x+h}-F(x)-\

holds for any x and any sufficiently small h. Then under the sequence
of alternatives KNy the limiting distribution of Drs as 7V->oo, is non-
central %2 with c — ί degrees of freedom and the noncentrality parameter

(6. 3) λ?s = Σ L x P ^ -^V Γ
σ2Lrs \J-oo
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where L(r, s) is given by (5.6) and θ = Σ*=ιP<»
As a special case of Theorem 6. 1 we get the following Corollary 1.

Corollary 1. Under the sequence of alternatives KN, the limiting
distribution of Dc_l c_l and D22 are noncentral %2 with c — 1 degrees of
freedom with noncentrality parameter given respectively by

, 6

(

x

(6. 5) λl, = IβOΣϊ-iPΛfr-ftV f-
(7 \ J -oo

To prove Theorem 6.1 we shall first show the following Lemma
6.1 which is similar to Lemma 4.1.

Lemma 6.1. Let F(x) be a distribution function. Suppose that the
distribution function GI(X} has the derivative gi(x) and further there

exist a function g(x) such that \ xg(x)dF(x)<oo and that

ι
(£ εc\ __£_ Γ/7. (v 4-//Λ Cϊ (y}~\ < &(r\ (i— 1 ? ••• M}
\\J \J) L ί \"Λ/ ' '"ί• ) i V / J — σ \ Λ> / \*r — -*-> ^ > > ' " )

hold for any x and any sufficiently small h( ( = afh for small K). Then

(6.7) Γ τiGt(X-
J —oo f —1

n Γoo

+ Σ hi \ xgi (x} Π Gj (x) dF(x} + o(K).
ί=ι J-oo yφ,

Proof. By the assumption (6.6), it follows that \\_Gi(xJ

Γhix)
— Gi(x)"}lhi\^\x\g(x). Since xg(x) is integrable with respect to F(x\
we can apply Lebesgue's bounded convergence theorem to get

( o o f Λ Λσo

([_Gi(x + hiX) — Gi(xy]/hΛdF(x)= \ xgi(x)dF(x\ The same ar-

gument as in Lemma 4.1. completes the proof.
Now we shall prove Theorem 6.1. Under the alternative KN the

expectation of the statistic ί7CD defined by (5.1) is

(6.8) E[U^\KN~\ = Σ

X Γ Fll(X). 'Flk_1(x)[l-Flll+l(X)^[l-Fle(X) ]dFt(X),
J-oo
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where the meaning of Σ is the same as in (4.8). The integral in the
C/)

righthand side can be written as

(6.9) J~ ΠFfx + x-^Ξ:^-} Π Γl-j

By Lemma 6.1 it is equal to

x \ */(*)[F(*)]*~2[l - F(x)J-kdF(x}

(6-10) ,„ „ x,

O VN
fθO

v i v ff >\Λ
A I XJ\X)

Hence by the same argument as in (4.10) we have

(6.11)

x C^MΓ 'D. -F(χ )J-* dF(x) + ^ί LΓ <>

s + 1 σ\/~N(c-ΐ)

x M

\\/N'
It follows from Theorem 2.1 that under the sequence of alternatives
KN defined by (6.1), the statistic (5.4) is distributed asymptotically
normal as N-+ oo, with the mean vector μ=(μl9 ••-, μe) and the covariance
matrix <E = (σίy) where

Σ c (β 0 \ j
Λ^\\y i — UK)

I J - 1 - 5[1 - F(x)J~1} dF(x)

(6.12)

By Lemma 4. 2, Lemma 3. 2 and (3. 24) where K=L(r, s)/(c-l)\ we can
obtain Theorem 6.1.
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From Theorem 5. 1 and Theorem 6. 1, the asymptotically uniformly
most powerful critical region for the Z^-statistic is given by Drs>DQy

where D0 is a preassigned constant. This test will be called Dr5-test.
Since the asymptotic relative efficiency is given by the ratio of

noncentrality parameters in the limiting distributions under the sequence
of alternatives KN, we immediately have the following Theorem 6. 2
from Theorem 6. 1 and its Corollary 1.

Theorem 6. 2. Under the same assumptions as in Theorem 6. 1, the
asymptotic relative efficiency of the Drs-test against the D22-test is given by

(6.13)
180L(r,

In p a r t i c u l a r eD2l/D22 = 8Dl2/D22 = 8D^/D22 = l. D22y Dl2y D21, D33-test a r e
equivalent, since their statistics are equivalent. Let us now specify the
distribution function F(x] as follows.

EXAMPLE 1. Uniform distribution: f(x) = \ for 0<x<l and zero
otherwise.

ί(-f--^-)2/5L(r,s) if s^l
(6.14) tDrjDm= V + 1 S + V

H2r+l)/5 if ί = 0 .

EXAMPLE 2. Exponential distribution: f(x) = e'x for x>0 and zero
otherwise.

36 -Γ—(-+-+•••+—Vir^T f-^
)\-r + l\2 3 r + V (s+lYΔ

5L(r, s)Lr + l\2 3
(6.15) "

'™^s±L for r=0.
5 (5+1)2

EXAMPLE 3. Normal distribution: f(x) = (2πY1/2 e~Λ2/2 f or - oo < Λ: < oo.

(6.16)

EXAMPLE 4. Double exponential distribution: f(x) =—e~1*1 for

(6.17) 6D /D _ ^ Γ r g / r - l \ (-1X
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\ S Σ ] ^ " 1 ) ( ~ 1 ) y Ύ
+1J '

EXAMPLE 5. Logistic distribution: f(x} = e~xj (1 + e~xj for — oo < x < oo.

(6.18) SDnlDΛ = -£-^-JL-

From these formulas we get the following Tables of €Drs/D22, which is
symmetric with respect to r and s, if the distribution F(x) is symmetric
at the origin as is the case with Example 3, 4 and 5.

Table 6. Asymptotic relative efficiency εDrs/D22 for the uniform distribution

0

1

2

3

4

5

6

7

8

9

10

0

—

.600

1.000

1.400

1.800

2.200

2.600

3.000

3.400

3.800

4.200

1

.600

—

2

.250

1.000

1.000

3

.156

.913

.967

1.000

4

.113

.853

.953

1.032

1.101

5

.088

.811

.947

1.061

1.160

1.244

6

.072

.780

.944

1.087

1.210

1.317

1.410

7

.061

.757

.944

1.110

1.254

1.380

1.491

1.587

8

.053

.739

.945

1.129

1.292

1.435

1.561

1.673

1.772

9

.047

.725

.946

1.147

1.325

1.484

1.624

1.749

1.861

1.961

10

.042

.713

.948

1.162

1.355

1.526

1.680

1.817

1.940

2.052

2.153

Table 7. Asymptotic relative efficiency eDr/D22 for the exponential distribution

^ ^ \ 5

r \0
1

2

3

4

5

6

7

8

9

10

0

—

5.400

6.250

6.572

6.670

6.661

6.597

6.504

6.398

6.284

6.169

1

5.400

—

1.000

.228

.015

.018

.111

.241

.385

.532

.676

2

4.000

1.000

1.000

.474

.187

.052

.004

.006

.040

.091

.153

3

3.150

2.054

1.634

1.000

.588

.329

.170

.076

.025

.003

.001

4

2.592

2.763

2.185

1.509

1.029

.694

.460

.297

.183

.105

.054

5

2.200

3.242

2.630

1.955

1.444

1.065

.782

.570

.410

.290

.200

6

1.910

3.582

2.990

2.337

1.818

1.414

1.099

.853

.659

.506

.385

7

1.688

3.832

3.285

2.666

2.150

1.733

1.398

1.128

.909

.731

.587

8

1.511

4.024

3.532

2.949

2.444

2.023

1.675

1.388

1.151

.954

.790

9

1.368

4.175

3.740

3.195

2.705

2.285

1.930

1.631

1.380

1.168

.989

10

1.250

4.297

3.918

3.411

2.937

2.521

2.163

1.856

1.595

1.372

1.181
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Table 8. Asymptotic relative efficiency £nrs/D22 for the normal distribution

0

1

2

3

4

5

6

7

8

9

10

0

—

1

0

—

2

.063

1.000

1.000

3

.156

.913

.967

1.000

4

.237

.798

.913

.996

1.030

5

.302

.696

.856

.974

1.038

1.068

6

.354

.611

.803

.945

1.031

1.079

1.105

7

.395

.542

.754

.914

1.016

1.079

1.116

1.137

8

.427

.485

.710

.883

.997

1.071

1.117

1.146

1.162

9

.452

.437

.671

.853

.976

1.058

1.113

1.148

1.170

1.182

10

.473

.397

.636

.824

.955

1.044

1.104

1.145

1.171

1.188

1.197

Table 9. Asymptotic relative efficiency £Drs/D22 for the double
exponential distribution

^ \ . 5

r ^ \ ^

0

1

2

3

4

5

6

0

—

1

0

—

2

.062

1.000

1.000

3

.156

.913

.967

1.000

4

.234

.789

.906

.990

1.018

5

.294

.677

.841

.959

1.017

1.039

6

.338

.584

.779

.922

1.001

1.041

1.056

Table 10. Asymptotic relative efficiency εDrs/D22 for the logistic distribution

^ ^ " \ 5

r ^ \ ^

0

1

2

3

4

5

6

0

—

1

0

—

2

.063

1.000

1.000

3

.156

.913

.967

1.000

4

.235

.791

.908

.991

1.021

5

.296

.681

.844

.963

1.022

1.046

6

.342

.590

.784

.927

1.008

1.049

1.067
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From these Tables we can see that in the range (ry s) = (4, 4)—(10, 10)

the asymptotic efficiency of Dr5-test against the D22-test is larger than

one for each of the uniform, exponential and the normal distributions.

Further the asymptotic efficiency of the D^4^D66-test is larger than one

for the double exponential and the logistic distribution. This situation

is considerably different from that for the problem of location discussed

in section 4.

7. A generalization of Tamura's Q-test

In the following two sections we shall investigate another type of

nonparametric several-sample test for scale which is a natural extension

of Tamura's Q-test [29] for the two-sample problem. Let again Xtj

(j = l, 2, •••, Hi) be a random sample from the continuous univariate distri-

bution Ft(x) (/=!, 2, ••• , c). From these samples we want to test the

hypothesis H: F 1 = = FC against the scale alternative K: Fi(x) = F(xlσ{)

where σf is some constant (not all σ/s are equal) and the functional

form of F is unknown. Put

(7.1)

/-/CO _ \lnι\ ..(nc\] v^ V AC ΎV Yu ~ \\9 i \9 / 2_j •*• 2j 9 \Λ1Λ , Λlβ
[_\Δ \Δ / J a < β Λc<βc

 l l

(I if Xtl<XΛl<Xi2 or Xi2<Xkι<Xi,

φCt\Xn, X12: for all k*i and / = ! , 2

k 0 otherwise,

where Σ " " Σ means the summation extending on all possible pairs
<*l<βl "c<βc

(α, , βg) such that l^ai<βi^ni for i=1, 2, ••• , c. Then C7CO is a gener-

alized U statistic stated in section 2 and under the hypothesis H

(7.2) E[_U^ = l/c(2c-ϊ).

Putting Hi=piN as before, we can conclude from Theorem 2. 1 that under

the hypothesis H, the limiting distribution of the statistic

(7.3)

is normal as N-*c°, with the mean vector 0 and the covariance matrix

(7. 4) σ i i = ± ^ 0 ,J.',o+ - + -

where
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( i ) ξo. i\. ..o (1 lies at the i-th place)

«\Xu, Xa;-;Xel, Xc2W
l\X(

= P(Xil <Xaβ<Xi2 and Xll<X'aft<X'n for all α Φ ί and /?= 1, 2)

+ 2P(Xil<Xaβ<Xi2 and Xf

a<X/

af<Xll for all αφi and 0 = 1, 2)

(7. 5) +P(*ί2<Jsς3<JSΓ,.1 and A-{ a <^<X f t for all α Φ i and /3 = 1, 2)

ίlΓ/1 Z7\2C-in2 Λl /-I Z?\2C-1 77'2C-1

Γ(1~F), 1 dF+2\ Q=Il—£—-
oL 2c-l J Jo 2c-l 2c-l

Γ2c2-4c + l
(2c-l)2(4c-l) 2c2 \2c-l

and an analogous calculation leads us to the following :

(ii) £o!.'»,Y-.o (1 lies at the &-th place, where k
(7.6) = L(2c-l, 2c-l)/(c-l)2(2c-l)2

(iii) ro!'J,\, ,o (1 lies at the i-th place, where /

(7.7) =-L(2c-l,2c-l)/(c-l)(2c-l) 2,

where L(2c— 1, 2c— 1) was already defined by (5.6), that is,

Hence we have

(7 QN „.
V ™) σ _ _

ι - " " -

ιp Λ pf. p y pg J

From Lemma 3. 1 and Lemma 3. 2 follows Theorem 7. 1.Theorem 7.1. jFW n^pfN where p, > 0 is independent of N. Then
under the hypothesis H: F1= = FC, the statistic defined by

O — (2C — 1) 2 (C— I ) 2

(7.10) y "

έj; (7.1) «wc? L(2c— 1, 2c — 1) «5 ^wew by (7.8), z's
distributed asymptotically as %2 with c—1 degrees of freedom asN^oo,
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8. Asymptotic efficiency of the Zλ>2-test and Q-test against the
asymptotically UMP invariant test

We shall first consider the limiting distribution of the statistic
Q given by (7.10) under the sequence of alternatives KN: Fi(x) =
F(xl(σ + N~l/2θi}\ where σ and <9, are some constants (not all <9£s are
equal).

Theorem 8. 1. Under the same assumptions as in Theorem 6. 1 the
limiting distribution of Q is noncentral %2 with c — l degrees of freedom
and the noncentrality parameter

(8 1) λ2

9 σ>L(2c-l,2c-l)

x " xf(x}

where L(2c-l, 2c- l ) is given by (7.8) and 0 = Σ ί - ι PAVΣίii P«

Proof. By the definition of <£co in (7. 1) and Lemma 6. 1 it follows

that

N } = 2 ίf Π [Fjίy)-F}(x)-ydFίx)dFj(y)
J J j Φ j

χ<y

= 2 \\

(8. 2) x J J

x

The proof left is the same as in Theorem 6.1.
From the same reason as for the T^-test and the Dr5-test, asymp-

totically best critical region for Q-staistic is given by Q>QQ where Q0

is a preassigned constant. This test will be called Q-test.
It is interesting to note that the noncentrality parameter given by (8.1)
is formally the same as λ^.j 2c_j in (6. 3), though D2c_l ^^-test cannot
be defined.

If the distribution function F(x) is normal with the mean zero, the
asymptotically UMP invariant test of the hypothesis H: σ1= ~ = σc

proposed by Lehmann £20, p. 275] is to reject the hypothesis H if
statistic
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_ vπ 1 Γ ' γ _

Fί ~^l
1 - 1 &ί L

yields the observed value larger than the preassigned constant, where
Zi = logCΣZ-ιX2t»/ni) and a2

ί = 2/ni. The limiting distribution of L is X2

with c — 1 degrees of freedom undr the hypothesis and noncentral X2

with c — 1 degrees of freedom under the sequence of alternatives KN as
j/V-»oo, whose noncentrality parameter is given by

(8.4) —,ΊlPi(θi-9γ.
σ2 ί=ι

Hence from (8. 1) and (8. 4) the relative efficiency of the Q-test against
the asymptotically UMP invariant test for normal alternative is equal to

2c2L(2c-l,2c-l

where X2c\2c means the maximum among the random sample of size 2c
from the standard normal distribution. Some numerical values are shown
below.

C 2 3 4 5 6 7 8 9 10

SQ/L .760 .812 .864 .898 .918 .928 .931 .929 .925

From (6. 5) and (8. 4) we have

(8. 6) 8D22/L = 9 θ j r / ( Λ ) [ 2 F ( Λ ) - l ] r f F ( j c ) = 15/2^2 (= .760)

which is equal to the asymptotic efficiency of Mood's square rank test
for dispersion [24] as well as Tamura's Q-test [29] against the variance
ratio F-test for normal distribution.

If the distribution function F(x) is double exponential, it is shown
that the asymptotically UMP invariant test exists, which is given in
fact by (8.3), where Z ^ l o g ί Σ ^ I ^ I / H , ) and 0? = l/»,. The limiting
distribution of L as TV-^oo, is %2 with c — 1 degrees of freedom under
the hypothesis, whereas it is noncentral %2 with c — 1 degrees of freedom
under the sequence of alternatives KN, with the noncentrality parameter

^)2 Hence we have from (8.1)
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Some numerical values are shown below.

C 2 3 4 5 6 7 8 9 1 0
ε0/L .868 .902 .928 .936 .933 .924 .910 .895 .879

From (6. 5) we have

(8. 8) εD22/L = 180 ( Γ xf(x)[2F(x)-l]dF(x)Y= 125/144 (= .868) .
W -oo J

Finally if the distribution function F(x) is exponential, the asymp-
totically UMP invariant test is given by (8. 3), where Z{ = log (Σ?iι X^/n{)
and 0? = !/»,. The limiting distribution of L is the same as in the
double exponential distribution. Hence from (8. 1) we have

2c-lT

Some numerical values are shown below.

C 2 3 4 5 6 7 8 9 10
BQ/L .139 .148 .157 .162 .165 .166 .166 .166 .164

From (6.5) we have £u22/ι, = 5/36 ( = 139).
From these values we can see that our Q-test is more efficient

against D22-test for normal, double exponential and exponential distri-
butions at least S^c^lO, and further for normal and double exponential
distributions the efficiency of our Q-test against the parametric test is
considerably high.

9. A multivariate Wilcoxon test

Since the famous Wilcoxon test was introduced by Wilcoxon and
Mann and Whitney, many generalizations to the multisample case have
been done, but as far as the author is aware generalization to the
multivariate case seems not to be attempted. Recently Bickel [7] con-
sidered one sample problem in multivariate case that is to test the
hypothesis H; ?=0 against the alternative K: #ΦO when a sample
x19 jc2, ••• , xn is drawn from the ^-variate distribution F(x—θ). He pro-
posed two tests due to the statistics Mn and WH where

Mn = (Median XW9 - , Median XPΛ)'
/Q IN 1 ^ " 1 ^ "

w i; / γ \v \ r

WM = (Median A"» + ^ a , ... , Median A

\ isxίβs* 2 ιs«sps»
and xa = (Xιa, X9Λ, ", Xfi»Y>
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These tests are shown by Bickel to be asymptotically equivalent to those
Λ4ΓM and lfrn constructed respectively from

(9.2) M " = 1

[ 1 if the ί-th component of jc>0

I 0 otherwise

and

(9.3) U% =

In this section we shall consider the multivariate nonparametric two-
sample problem of location and propose a Wilcoxon analogue corres-
ponding to (9.2). The asymptotic efficiency of this test is shown to be
equal to that of BickeΓs T^-test [7] for the one-sample problem. Let
p-vaτiate column vectors χ19 •••, jcWj y19 •••, y»2 constitute two independent
random samples from the absolutely continuous distrbution F(x) and
F(x—θ) respectively. Based on these samples we want to test the
hypothesis H: Θ=Q against the alternative K: 5ΦO. Put

(9.4) 1 if the ί-th component of x is larger
than the ί-th component of y

0 otherwise.

Then the statistic t/α ) is a multivariate generalized U statistic stated
in section 2. So under the hypothesis H

(9.5) £[£/">] = 1/2,

and by Theorem 2.1 the statistic VW( C/ ( 1 )-— , — , f/c/0- —) where
\ /Ll £j I

n{ = piN for some fixed p, is distributed asymptotically normal as N-^oo
with the mean vector 0 and the covariance matrix T = (tij)\

(9.6) tfj = ϋ ^ + ^ i ^ ,
Pi P2

where, denoting the ί-th component of jc and y by X{ and Yέ9

= 1/12

,- and r{)— r
4
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, and

j-.L
Ff(x\ Fj(x) and Ftj(xy y) are the marginal distribution functions of F(JC)
with respect to Xi9 Xs and (X{, Xj\ respectively. Hence from (9.6) we
have

(9.7)

where

if /=•/
Γ°° f°°
J_ooJ-oo ' * ^

If we substitute for F^Xf), Fj(x/) and Fij(xi, Xj) by its empirical distri-
bution FiN*(Xi), F^N\XJ) and Fffl(xi9 xj) constructed from the combined
sample x19 •••, JCΛI, and yly ••• ,yn2 and put

(9.8)
if

then the statistic f, y converges in probability to τt y as N->°°. If
further we wish to obtain an unbiased estimate of τ ί y , we can use as
Bickel [7],

f 1 if i=j
(9.9) * ι y = j 1 2

where Zi° = /-th component of jĉ  α = l, 2, ••-,«! and ZΛ l +^ = /-th com-
ponent of J/Λ a = 1,2, •• ,«2 From Lemma 3.2 we easily have

Lemma 9.1. // the random vector XN converges in law to the random
vector jc, and futher the random vector yN converges in probability to c,
then g(xN, yN} converges in law to g(x, c) for any continuous function
g(x, V\

Applying Lemma 9.1 with jĉ  = VN(uw- —, •••, U^-— \ and
\ ^ £ i

yN=Φij9 we obtain the following theorem.

Theorem 9,1, Put n(=p^N where P? > 0 is independent of N, and
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assume that ύfeί (τ,v)Φθ. Then under the hypothesis H: Θ = Q, the statistic

(9. 10) W =

is distributed asymptotically as %2 with p degrees of freedom as JV-*oo,
where (τij) is the inverse matrix of (<fiy) given by (9. 8) or (9. 9).

Exact covariance of t7cί) and Uφ is also obtained from Theorem 2. 1.

/ r\ -t t \ /-» ί~ττf ~) ττr^~ι I \"i ' "z ' •"•// L'~z J

(9.11) Cov L(7Cf), ί/O )j = <
w2 i f ί =(=./ >

where
ί o o /»oo

- 0 0 J _ «

To investigate the asymptotic relative efficiency we shall consider
the distribution of W under the following sequence of alternatives KN

that the sample yly - ,ι/n2 is drawn from the distribution G(x) where

(9. 12) KN : G(JC) = F(x-N-1/2θ} ,

and Λ is some constant vector different from zero.

Theorem 9. 2. Suppose that each one-dimensional marginal distribu-
tion FI(X) of F(x) satisfies the assumption of Theorem 4. 1. Then under
the sequence of alternatives KN> the limiting distribution of W in Theorem
9. 1 is noncentral X2 with p degrees of feedom and the noncentrality
parameter

(9. 13) λ2^ = ^ P , p 2 £ ^ θ θ Γ fί(x}dFi(x} Γ f
P1 + P2i>J=l J-°° J-°°

as Λ -̂>oo, where n—ptN for fixed pt > 0 and ff = (θly ••-, θp)'. The matrix
(τij) = (τij}~1 given by (9.7) is assumed to exist.

Proof. It is clear from the assumption tha t

Also by Theorem 2. 1 we easily see that

(9.15) Λ

The estimater ϊi} converges in probability to τtί even under KN, since
2) and V a r [ ^ | ^ ] = O(N~1). Using the
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asymptotic normality of the statistic \X]v(^cυ — — , •••, t/c/0 — — ) under

Λ̂Γ> w e get the conclusion.

From Theorem 9. 1 and Theorem 9. 2 the hypothesis may be con-
sidered as \2w=Q and the alternatives as X^ΦO in the limiting distribu-
tion of W. Hence the asymptotically best critical region for W is
given by W> W0 where W0 is a preassigned constant. This test will be
called W-test. In case p = l this test reduces to the ordinary two-sided
Wilcoxon test.

If the distribution F(x) is known to be normal, the standard test
for the hypothesis H: 0 = 0 against K: 0ΦO is Hotelling's two-sample
T2-test: Putting

s = — 2

we reject the hypothesis when the observed value of T2 is larger than
a preassigned constant. (See for example Anderson [1, p. 109]). By
the central limit theorem, the statistic T2 is distributed asymptotically
as noncentral %2 with ^-degrees of freedom and noncentrality parameter

(9. 17) λ V = - ^ -

as N-+OO, even if the distribution F(x) is not normal. The matrix (σif)
is the inverse of the population covariance matrix. From Theorem 9. 2
the efficiency of the W-test against the T2-test is given by

(9. 18) εw/τ* = 12 ± r^θiθj Γ MxϊdF^x) Γ f^dF^I ± σ^θiθj .
»,/ = ! J-oo J-oo / ij = l

This expression is the same as the asymptotic relative efficiency of
BickeΓs ΐl^-test [7] against Hotelling's T2-test for the one -sample
problem.

If further the distribution F(x) is normal with the mean μ and the
covariance matrix

(9. 19)
wlτ

where (piJ) = (PijΓl a n d Ta i s given by (9.7). By Bickel [6] and Kendall
[15, p. 351] we have
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P(Xi>Yi and '}) = P(Xt- Yt and

= + Sin- ^
4 2τr 2

(9.20)

which yields

(9.21)

If we search for the maximum or the minimum value of —x€w/τ

2

ό

with respect to σ{ and θj for all i,j = lt 2, •••,/>, it is given by the root
of the following determinantal equation,

(9. 22)

1—λ, Pl2~ ^T 1 2 ,

P 2 1 — λ τ 2 1 , 1 — λ ,

, XT^

Ppl — ^τpl, PP2 — Ϊ L - λ

= 0 .

In case of p,y = p12 for all ί, y = l, 2, ••• ,p (ι'Φy), the solution of the above
equation is given by

(9.23) λ =

and the extreme value of

(9.24)

l - τ

is given by

or

For the simplest multivariate case of p = 2 we get

(9. or l ± £ s

which coincides with BickeΓs result though it contains some misprints
and (9. 25) seems to be simpler. The property of the extreme value of
SWJT* given by (9. 25) considered as a function of p12 is investigated by
Bickel [7], and he showed that max £w/τ^3/π and min 6w/τ^\/~3 12.

e,<r β,<r

So we shall show some numerical values.

P 1 2 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

maxf^/Γ2 .955 .959 .962 .964 .966 .966 .966 .965 .962 .959 .955
0, σ

min £ ^ 2 .955 .950 .945 .938 .931 .923 .914 .903 .892 .880 .866
θ, σ

For P12<0, the maximum or the minimum of £w/τ

2 is the same as for
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10. Multivariate Vrs-test

In the following two sections we shall propose some multivariate
nonparametric several-sample tests for location and derive the asymp-
totic distributions of their test statistics. In the problem of two-
samples these test reduces to the multivariate Wilcoxon test discussed
in section 9. We shall first generalize the V^-test discussed in section
3 and 4 to the multivariate case.

Let px 1 vectors xΛ1,—9xΛnΛ be a random sample from a continuous
distribution FΛ(x) (α = l, 2, ~ ,c). The problem is to test the hypothesis
H:F1 = F2 = - =FC against the location alternatives K: Fcΰ(x) = (x— ?Λ)
α = l, 2, ••-,£ where ΘΛ is some constant vectors (not all θ's are equal).
Put for α = l, 2, —,c and i = l , 2, ••-,£

c <AC

(10. 1) if the ί-th component of XΛ

ch^(Y v ϊ - ( ; - l ) r _ ( g - 7)5 is the y-th smallest among
ΨΛ \Λι> 9 *O) rτ~ / -t\ ,Λ ,Λ . f(c—l)r (c — 1)5 the ί-th components of

Ύ* "%*
* Ί > > ^ C '

Then the expectation of I7 c ' υ =(t/i 0 , — , C/̂ 0) under the hypothesis is the
same as (3.5), that is

(10. 2)
, ,

5 + 1 r + l
By Theorem 2.1 the statistic
Z7C^ — E[Z7C/0]) is distributed asymptotically normal as Λ/^oo under
the hypothesis with the mean 0 and the covariance matrix Σ = (σ^)
where σ $ J ) means the covariance of £7̂ ° and £/^}. The covariance σ ^ 0

is the same as (3. 20), that is

(10.3) ^ V ) -

In case iΦj the covariance σ^βj) is given by

/ - A X\ - ί * ' 5 _ >*(fl».β) 1

.-.
Pi PC

>^(a>.β)

boo.-,ι >

where fof 'ίi. .o (1 lies at the γ-th place) means the covariance of φ °̂
(jCj, ••-, jcc) and φ^j) (jcί , ••-, Λγ_ι, jcv, jcγ+1, ••-, jcί). We shall calculate
?o?'β,ι, ,o by considering the following three cases. The functions FC ί ),
F^ and F^itf> mean the marginal distributions of F=F1= =FC with
respect to the components of their superscripts.
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( i ) ?o?.'*ϊ...,o (1 lies at the α-th place) = a{J

(ii) &?:.fίi...,o (1 lies at the γ-th place, where γΦα, /3)

(10.5) (c-1)2

(iii) £#V.f!ίf..,o (1 lies at the α-th place, where αΦ/3)

c - 1
where

% = Γ Γ
J - 0 0 J - 0

( 1 0 6 )

In case i=/, these results reduces to (3.17), (3.18) and (3.19) respec-
tively.
Substituting these results of (i), (ii) and (iii) into (10. 4), we get

(10.7) σίi» = ̂ y £ J___£ --- *- + **
(c-l) 2 L;=ι p, pa pβ pa

The above equation holds true also in case i=j, if we define afi = K(r, s).
It is easy to see that an example of the consistent and unbiased
estimate of atj is given by

( K(r, s) i = j
(10. 8) άlf = / -,

ά - ά - ά ά - - ± -ά®-ά®-ά%+άW---— -) i Φ
V + l

where 45V, rfi2/, ίίί1/ and 4 $ are the estimates of Γ Γ [JF
c<3(4f)]r

J - 0 0 J - 0 0

dFV'fi(x,y), (~ Γ lF^(x)J{l~F^(y}JdF^\x,y\ Γ Γ [1-FC»(Λ)]
J — ooj— oo J — ooj-oo

[F^^JrfF".^,^) and Γ f" [l-F«X*)] [l-FW(^)] rfFc' ̂ (Λ, j») re-
J - 0 0 J - 0 0

spectively. They are defined by

iΛΛr+J-1 Σ

iΛ/WJ-1 Σ
cΛ,β,Y

.
v ' ; ι»/W,:τ Σ
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where Z^\ α = l, 2, •••, Σ?-ι«/ means the ί-th component of jcβv,
7 = 1,2, - , » β and £ = 1,2, - , c ; / ( J ^ , - , ^ ; r,, - , y,) = l if all X's and
y's are positive and =0 otherwise. The summation on Σ i*1 $V

C«,β,Y)

extends over all possible sets of integers (a, βl , , /3r, 7α , , 7,) such
that l ^ α , &, —,/?,, 71? •• ,7r^Σί-ι«/ a u d anY t w o elements of them
are different from each other. It follows that Var[ό(

<y] = O(Λ/'"1) under
the hypothesis H, so άff is the consistent and unbiased estimate of
E[άW\H~\ for α = l,2,3,4.

From (10. 7) we can express the covariance matrix in the form
Σ = A0®Σ0 where A0 = (a^\ Σ0 = [Σl=ι P7l-cp«l-cpϊl + c2SΛβp-ιy(c-iγ
and (g) means the Kronecker product. If we assume the pxp matrix
A0 is nonsingular, the rank of Σ is equal to r(A0)xr(ΣQ)=p(c — ~L).

Lemma 10.1. If the covariance matrix Σ = A0®Σ0 is given by (10.7)
and A0 = (afj) is nonsingular, then the solution in Lemma 4. 2 is given by

where

Proof. In this case the projection B in Lemma 4. 2 is given by
B = Ip®BQ where Ip means the pxp unit matrix and B0 is given by
(4.13). If we apply Lemma 4.2 for the covariance matrix Σ0, the pro-
jection is given by B0 and the solution of (4. 12) is given by Λ0. Hence
Σ0Λ0=IC-B0 and B0Λ0 = Q. Using the formala (Al®A2) (B1®B2) = (A1 Bί)
®(A2 B2\ we easily see that ΣA=IPC-B and BΛ = Q. Hence Λ = Aol®Λ0

is the unique solution of the equation (4. 12).
Calculating the quadratic form 7V(ί7cl)-E[£7cυ], -•-, J7C^-£[£7C^])

Λ(*7cl)-E[ί7cl)], , ί/ c^-£[ί/ c^]y, in view of Lemma 4.2 we have the
following theorem from Lemma 3. 2.

Theorem 10.1. Put ni = p{N where p, >0 is independent of N and
suppose that det(A)^0 where the pxp matrix A = (aif) is given by (10.6),
then under the hypothesis H : Fί= =Fe = F, the statistic Vrs defined by

Vrs = - ^ Γ 1 ^ Σ &»• Σ n.(U?-U
(10.11) c2 . ,>=ι

where (άij) = (άi^)~1 and άijy given by (10.8), being the consistent and un-
biased estimate of aijy is distributed asymptotically as %2 with p(c — T)
degrees of freedom as N-* oo .

In case p = l the statistic Ϋr9 is the same as Vr? in Theorem 3.1,
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The limiting distribution of Vrs under the sequence of alternatives

KN: FΛ(x)=F(x-N-l/2θ«\ where the constant vectors ΘΛ9 α = l, 2, -•• , c

are not all equal, is given by the following theorem.

Theorem 10. 2. Suppose that every marginal distribution FQ\x) of

F(x) satisfies the assumptions of Theorem 4.1 and det (A)ΦO. Then

under the sequence of alternatives KN the limiting distribution of Vrs is

noncentral %2 with p(c — l) degrees of freedom and noncentrality parameter

λ,2, = f*a'' i2pΛ(θ«>-9™)(θ<»-fflη
ί,/=ι 05=1

(10. 12) x Γ {rEF^GOT'-' + sCl-.F"'^)]-1} ff(x)dF(i\x)
J - 0 0

x Γ {rlF^(xyγ-1 + s[l-Ftf)(xyγ-1} f}{x)dF^(x} ,
J - 0 0

where ΘΛ = (Θ™ , ••• , θ<?)', ec« = S i - i P r t%°/Σί-ι P., «*y being given by (10. 6)
and fi(x) is the derivative of Fa\x).

Proof. Corresponding to (4. 10), we can express

*c ^ _ >

(10.13) , / .
5 + 1 (c— 1)VN

x

We can also remark that άiy converges in probability to a{j even under

KN, since E\_a(j*?\KN~] = E\_a(*j

) H^\-\-O(N~1/2) and Var[# j } \KN"] = O(N~l)

for α = l, 2, 3, 4. Using Lemma 4.2, Lemma 10.1 and Lemma 3.2, we

easily get the desired conclusion.

As a generalization of Frs-test, we can propose a test due to the

statistic Vrs which rejects the hypothesis if the observed value of Vrs is

larger than a preassigned constant. This test will be called V^-test.

11. Multivariate Kruskal and Wallis' test

In this section we shall generalize Kruskal and Wallis' fl-test [18]

to the multivariate case and derive its asymptotic distribution. Analo-

gously as in Andrews [2], We shall put

1 W 1 nc
7"7"<O ^ ^ Π ^ Π Λ.u<* — 2_i"*2_i φ,
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(11. 1) γ = 1

I I if the ί'-th component of jc is smaller than

the /-th component of y

0 otherwise.

Then it is easy to see that under the hypothesis H

£W] = 4- Σ —
2 Vφα W

(11. 2)

where nΛR% } means the sum of over-all ranks corresponding to the i-th
component of xΛl9 — , *ΛWα>. Put U^ = (U[ί\ •••, E7<°)» then from Theorem
2.1 the limiting distribution of the statistic \/N(U™-E[U™'J)9 — ,
VN(UW — E[Z7c/')]) is normal under the hypothesis /f with the mean 0
and the covariance matrix Σ = (σ^\ where cr^β'

j) means the asymptotic
covariance of £7̂ ° and Uβj\ In case i=j it was already obtained by
Andrews [2], that is

(11.3) σ<i " = Σ?^p/Γδ^:f3p M
12 L p^ /-i prtpβj

In case iΦ/, σ^ J ) is given by (10.4) and the straightforward calculation
yields

"1 / \ 2

( i ) fo"'"ί,-,o (1 lies at the α-th place) = — ( Σ — ) τ , y
1 2 VΦ05 PQJ/

r.2

(ii) ?oT' ?.ι. . .o (1 lies at the γ-th place, where γ φ α , β) = .

(iii) ^?A,-.o (1 lies at the a-th place, where αΦ/3)= - Σ
/φ*

where τ, y is given by

(11.4) τ,y = 12 (" Γ F c '
J - 0 0 J - 0 0

Hence we have

(ii. 5) σ$» = i

This formula holds true also in case i=j, if we define τ« = l. A con-
sistent and unbiased estimate of τ{J is given by (9. 9). From (11. 5) we
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can express 2 = A0®Σ0 by using Kronecker product, where A0 = (τij) and
^0-(l/12)(ΣU/9/)[δΛβP^3ΣL1P/-P^1Pβ-1]. If the pxp matrix A0 is
nonsingular, the rank of Σ is equal to p(c— 1), since the rank of Σ0 is
shown to be equal to c— 1. The solution of (4.12) for the covariance
matrix Σ = (σ*^) defined by (11.5) is given by A = A^®AQ where

- 12

The above Λ0 is the solution of (4. 12) for the covariance matrix Σ0 and
is already obtained by Sugiura [26]. Hence we obtain the following
theorem from Lemma 4.2, Lemma 3.2 and Σ A ^ E ^ * 0 — 2~1Σ/Φα)(^//*O]

Theorem 11. 1. Under the hypothesis H, the limiting distribution of
the statistic

(11.7) H= ± »"
'

1 2

2 Λ 2

/5 %2 /̂/A ^(c— 1) degrees of freedom, where (r'^^^ij)'1 and r^- is given
by (9. 9) w/nc/z is a consistent and unbiased estimate of τ,v given by
(11. 4). The matrix (r^ ) is assumed to be nonsingular.

Theorem 11. 2. Under the same conditions as in Theorem 10. 2, the
limiting distribution of the statistic H is noncentral %2 with p(c—V)
degrees of freedom and noncentrality parameter

(11.8) λ 2 #= 12 £ τ*'
ί,y=ι

xΓ /χ*)
J - 0 0

Proof. Under the assumption of Theorem 10.2 we can express

(11.9) E[t/c'Ί/£Λr] = — Σ
2

x(°° /
J-oo

Calculating the noncentrality parameter λ^^/^ίA^1®^)/^' by Lemma
4.2 where μ = (μcl\ •-,^ ) ) and μ^ = (^\ - , ^ ° )

(11. 10) μ™ = Σ

we have the desired conclusion.
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From Theorem 10.2 and Theorem 11.2 we can easily see the
following theorem, which is a generalization of Theorem 4.2 to the
multivariate case.

Theorem 11. 3. Under the sequence of alternatives KN, the limiting
distribution of the statistic Vn is the same as that of H under the con-
dition of Theorem 10. 2.

As a generalization of Kruskal and Wallis' /f-test, we can propose
a multivariate nonparametric several-sample test due to the statistic H
which rejects the hypothesis if the observed value of H is larger than
a preassigned constant. This test will be called multivariate Kruskal
and Wallis' test. In case p = ί, the statistic H defined by (11.7) reduces
to Kruskal and Wallis' //-statistic.
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