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1. Introduction and statement of results

J.T. Cox and R. Durrett (1988, [2]) considered a model of epidemics and
forest fires in Z 2 with nearest neighbor interactions,and have shown the shape
theorem for the spread of epidemics. Y. Zhang (1993, [6]) has dealt with a model
which had not only nearest neighbor interactions but also interactions between
further hosts, and proved the shape theorem for the model.

We consider a model of epidemics or forest fires in R2. Hosts are distributed
according to a Poisson point process Xλ = {XieR2}?Lί of intensity λ(>0) in
R2. Each individual Xt, ieN can be in one of three states 1,2 or 0. In the
epidemic interpretation, 1 = susceptible, 2 = infected, and 0 = immune, while for a
forest fire, 1 = alive, 2 = on fire, and 0 = burnt. The state of the process is represented
by a function ηt(X^e {0,1,2}, ieN, which is the state of X{ at time t. An individual
stays infected for the amount of time 1, then it recovers and becomes immune. Once
an individual becomes immune, it will be never infected. An infected individual
Xi emits germs after a random time T{ from its infection. Germs emitted from
Xi go to all individuals in Si = {xeR2\ \x — Xi\<l}9 the disk of radius 1 with its
center at Xt. (If Tt > 1, Â  really does not emit germs.) Let Tt, i e N be nonnegative,
i.i.d. random variables with distribution function F. We have F(O)<1 and
F(l)>0. If a germ goes to a susceptible individual, then the individual immediately
becomes infected. If the germ goes to an infected or immune individual, the
individual does not change its state at all. Initially all points of Xλ in So = {x e R2 \
\x\<l}, the disk of radius 1 with its center at 0, are infected and all other points
of Xλ are susceptible:

otherwise.

We construct the probability space representing our epidemic model (or our
forest fire model). Let ΩA be the Poisson point process of intensity λ in R2 which
consists of countable points valued in [0,oo) independently according to the
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distribution function F. An element of Qλ is denoted by {{XhTt)eR2 x [0,00)}?^,

and {Xι}?Lι by Xλ. Let A(V9t,k) be the event that exactly k points of Xλ in V

have values less than t:

K, Ti<ή=k},

where Ve&(R2) is bounded, ί>0, and A:eNu{0}. Let

) = σ({A(V,t,k)\ Ve<%(R2) is bounded, f>0, keNv{0}}).

Clearly (Ωλ,&(Ωλ),Pλ) (Λ>0) is a probability space. From now on we deal with

this probability space which represents our model.

Before stating our result, we define some notions. For {(Xi9 T^fL r = ω e Ωλ, let

00, if 7 > 1

x{ is the time lag from the infection of X( until Xi emit germs. We say that X{

is open if τ ^ o o , and closed otherwise. When X{ is open and infected, it emits

germs and infects all points of Xλ in the disk S{ of radius 1 with its center at

Xt. When Xt is closed, it cannot infect any points of Xλ in St. For Xi9XjeXλ,

we call {Xtl9"
m

9^iK} a path from Xt to Xs if the following hold:

(ii) \Xiκ-Xik+ι\<l and Jr l χ#ΛΓ ί f c + 1, VΛ=1, ,Λ:-1

In addition to the above, we say that {Xiι9- -9Xiκ} is an open path from X{ to Xs

if the following holds:

(iii) Xiκ is open, VΛ=1, ,A'

Let

(1.1) C 0(ω)=
(

There is a path from a point of Xλ in

S o to Xt denoted by {Ar

ίl, ,ΛΓ

ίκ}, and
χii>'">xtκ-ι a r e ° P e n )

We call C0(ω) the cluster contaning the origin 0. In the epidemics interpretation,

C0(ω) is the set of points of Xλ that Xt will ever becomes infected if initially all

points of Xλ in So are infected and all other points of Xλ susceptible. Let
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λc is the critical value whether the epidemic spreads infinitely or not. For ωeΩλ,

let

ί(Λ'j,^) = inf{ Σ τ J ί ^ . .XiJ is a path from X, to Λ}.}, X*X,eXλ.
1=1

ί(XhXj)=co if there is no path from Xt to Xj9 and t(Xi9Xj) = 0 if Xt = Xj. t(XhXj)

is the minimum time of the infection of X} if only Xi is infected initially. For

x,yeR2

9 let

t'(x,y)(ω) = inf '(^>*A

where 5'JC = {x /e/?2 | |JC — J C ' | < 1 } . If there is no point of Xλ in Sx nor Sy, we let

ί/(Λ:,>')(ω)=oo. t\x9y) is the minimum time for a point of A^ in Sy to be infected

if the points of Xλ in Sx are infected and others susceptible initially. Let eγ =(1,0),

then liminf—-—— is almost surely constant ([2]), and we denote it by y. y is

the average time for the epidemic to go the unit distance. Let

ζt is the set of points of Xλ which are immune at time t, and ξt is the set of points

of Xλ which are infected at time t.

Here we consider in what shape it spreads out.

Theorem 1. Assume y>0. Let D be the disk of radius - with its center at

the origin. If λ>λc9 then for any ε>0, we have

Pλ(C0 n t{\ - ε)D a ζt cz ί(l + ε)D for all sufficiently large ί) = 1,

Pλ(ξt cz t(\ +ε)D\t{l -ε)D for all sufficiently large t)= 1.

2. Probability estimates of events in the model in Zn

2

We prove Theorem 1 by approximating R2 with the lattice Z2\

Zn

2 = {(-,-) I ( ^ ) e Z 2 } , Λ = 2,3,.
n n

We construct a site percolation in Z2 which corresponds to that in R2. For

z=(zuz2)eZn

2, let
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Bn{z) = [zι -—,z1 + — ) x [z 2 - — , z2 + — ) .
2n in 2n in

For zeZ2 and ω e Ω Λ , we define Tz by

inf Γ£, if
XisBn(x)

oo, if

Γ z , zeZ2 are i.i.d. random variables. We say that a site zeZ2 is open if Γ Z < 1 ,

and closed otherwise. Then for each site z, z is open or closed independently,

and by using the distribution function F of T{,

PA(z is

Pλ(z is

For zuz2eZn

2, we say that zγ and z2 are adjacent if \z\—z2\<\—^. If

\zι—z2\<l—y£, then when an open point of Xλ in ^ ( z ^ is infected, all healthy

points of Xλ in Bn(z2) are infected. By this adjacency relation, we define Nz9 the

neighbor of zeZn

2, as

To any z'(Φz)eNz, we give a bond oriented from z to z', and denote it by

(z,z'}n. We let Mπ = l - ^ , and denote by Zn

2(Mn) all oriented bonds (zuz2}n

with |z t — z2\<Mn. For any oriented bond ( z l 5 z 2 ) n e Z B

2 ( M J , we say that (zuz2}n

is open if z t and z2 are open, and closed otherwise. For zuz2eZn

2, we call

{zii'"'z/κ} a P a t ^ °f Zn

2(Mn) from z t to z 2 if the follwing hold:

(i) z h = z x , z i κ = z 2

(ii) | z / k - z ί k + 1 | < M M and z ί k # z ί k + 1 , VA:=1, ..,Λ:-1

In addition to the above, we say that {zfl, ,zίκ} is an open path of Zn

2(Mn) from

zi to z 2 if the following holds:

(iii) <z ί k,z ί k + 1>π is open, Vk=l9~',K-l

For two open paths of Zn

2(Mn) denoted by r1, r 2 , we say that rx and r2 are

connected in Zn

2(Mn) if there exist open sites zιer1, z2er2 such that z 1 = z 2 or

| z 1 - z 2 | < M π . Let
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D^ = {z'eZn

2\ There is an open path of Zn

2(Mn) from z to z'.}

be the open cluster containing zeZn

2. Let pc(Zn

2(Mn)) be the critical probabilty

of the site percolation with the adjacency relation as mentioned above, then from

Q<pc{Zn\Mn))<\ ([3]), there exists λc

(n\ where 0<Λ.c

(M)<oo, such that

We call λc

{n) the critical value in Z B

2 , as it satisfies

Lemma 2.1 ([7], [8]). Let

where Eλ\ Co\ = | Ω A | C0\dPx, then lim λc

M = λc = λτ and 0 < λc < oo.
n->oo

Later we will use Lemma 2.1 to prove Theorem 1 in Section 3.

For ωeΩλ, let ra(z), zeZn

2 be the minimum we^V (m>2n) satisfying the

following:

(i) There is an open path of Zn

2(Mn) from z + [-f , , f , ] 2 to oo in Zn

2\{z + [-^, f , ] 2 } .

(ii) There is an open circuit of Zn

2(Mn) in the annulus {z + [

Corollary 2.2 ([6]). If λ>λc

(n\ then there exist positive constants K(λ) and β

such that for any z e Zn

2, we have

Pλ(m(z)>2ιK(λ))<βe-2\ y = log2, V/=0,l,

By Corollary 2.2, we have

Pλ(m(z)<cx), VzeZ M

2 )=l .

In Section 3 we let Ω'Λ = {ω|m(z)<oo, VzeZn

2} and consider events in Ω'Λ.

3. Proof of Theorem 1

In this section we prove Theorem 1 by using the probability estimates in

Section 2.

From now on we assume λ>λc. We approximate our system in R2 by a
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lattice system in Z2. By Lemma 2.1 we have that λ>λc

{n) for λ>λc with large

enough n. Hereafter we consider Z2 for this n.

DEFINITION 3.1. For ωeΩ Λ , zeZ2, let

m(z)— 1 m(z)—12Δ,(z) =
In In

Δ3(z) =

2« 2n

3m(z)+l 3m(z)4-l2

2« In

Fig. 1. Illustration of Δ l s Δ 2 and Δ 3 .

By the definition of m{z\ z e Z w

2 in Section 2, we have the following:

(i) There is an open path from Δ2(z) to oo in /?2\Δx(z).

(ii) There is an open circuit in the annulus Δ3(z)\Δ2(z).

DEFINITION 3.2. For ω e Ω λ , zl9z2 e Z n

2 , by using t(XhXj) let

ί(zuz2)(ω)= inf /(Z,^.).

t(zl9Z2) is the minimum time of the infection of a point of XΛ in Δ2(z2) if the

points of Xλ in Δ2(zx) are infected and the other susceptible initially. We extend

the domain of f to all R2 by letting f(x,y) = ΐ(πn(x)9πn(y)) for x,yeR2, where πn(x)

is the element of Zn

2 such that xeBn(πn(x)). If {zl9 - ,zk} is a path of Zn

2(Mn)
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from zί=πn(x) to z2 = πn(y\ then there is an open path from A2(πn(x)) to
k

Δ2(πw(y)) contained in \J Δ3(zί), so f is finite in Ω^.

DEFINITION 3.3. For ωeΩ'λ, zeZn

2, u(z) is defined as

πn2

By the following lemma we have that u(z) is the upper bound of t(XhXj) for

XhXjeA3(z)nXλ with t(XhXj)<oo.

Lemma 3.4. For ωeίlλ, zeZn

2, we have

sup t(XhXj)<u(z)(ω).

Proof. For XhXjeΔ3(z)nXλ, assume that there is an open path from Xt to

in Δ3(z). Now t(XhXj)<oo. Let r = {Ar

ίl, ,Ar

ίκ} be an open path from Xt to

in Δ3(z) with the smallest K. Then 1 ^ - Z I k + 1 | < 1 for k=l,—,K-l and

k - ^ J > l for k,k' = l ',K with |A:-&Ί>1. Hence we have

where ^ ^ ^ { x e / ? 2 ! | x-JT i 2 f c + ι | ^ i } . We can put at most w*M+»»+i)* d i s k s o f

radii | nonintersecting each other in z + [ — 3m(2n*
1 —|, 3 m (Iiί+ 1 + i ] 2 . From this we

obtain

2

Therefore since Xt stays infected for time interval 1,

πn2

By the definitions and the lemma above, if t(XhXj)<co, then

(3.1) ϊ{XhX) < t(XhXj) < t(Xi9Xj) + u{nn

For ωeΩ'λ9 XιeXλ, let

ί(0,^)= inf t(XpXt)
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t(O,Xi) is the minimum time of the infection of Xt if the points of Xλ in S0 = {xeR2\

W<1} are infected and others susceptible initially. In the same way as t(Xi9Xj),

if t(09Xi)<oo, then

(3.2) tφ,Xύ < t(09Xd < K0,Xd + u(πn(0)) + Φ » T O

For t'(0,x)(ω) = iniSo3Xi t(XhXj), xeR2, if f'(0,;c)<oo, then by (3.1)
SxsXj

(3.3) ί(0,x) < φ9x) < f(0,x) + φ w (0)) + u(πn(x)).

For ω e Ω λ , zί9z2 e Z n

2 , let

Γ(z1,z2)(ω) = t(zuz2)(ω) + w(z2)(ω).

Then for ω e Ω λ , 2^22,^3 eZ Π

2 ,

(3.4) ^ i ^ 2 ) M < f{zuz3){ω) 4- fl[z3,z2Xω).

By Corollary 2.2, for zeZ Π

2 , fc=l,2, , we have

(3.5) Eλ(u(z)k)= Σ ί
1 = 0 J 2ιK(λ) < m(z) < 2ι + 1 K(λ)

<(A)^ Σ 0'2ι

nn2 1%

and

(3.6) Eλ(u(z)k) =

Lemma 3.5 ([2]). If λ>λ}n\ then there exists a constant μ(z) for zeZn

2, so

that as m-* co {meN),

m

By (3.3) and Lemma 3.5, we have that y = liminf—-—— is almost surely
m-00 m

constant.

We let g(z) = Eλ(ϊ(0,z)) for zeZn

2 and extend the domain of g to all of R2 by

making it linear on triangles of the form z,z + (£,0), z + (0,£) and

and z + (0,^). Then we have the following lemma.
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Lemma 3.6 ([1]). There is a function φ on R2 such that converges
m

uniformly to φ on compact subsets on R2, and φ(z) = μ(z) for z e Z2.

DEFINITION 3.7. For ωeΩλ, zeZn

2, let C(z) = {Xiι9 ~9Xi]L} (X^XiJ be an

open circuit surrounding z in Δ3(z) with the smallest L and let Δ(z) be the interior

and the boundary of the polygon whose vertices are Xil9-~9XiL in C(z), and whose

sides (Xiι9Xiι + ί) for / = 1 , ,L—1. We define v(z) as

where |Δ(z)| is the area of Δ(z), and |C(z)| is the number of elements in C(z).

If there is a path from Xt to X 3 in Δ(z) for XhXjeA(z)nXλ, then

/(Λ̂ jΛ̂  J^t^z). Proof of this fact is same as Lemma 3.4. Now to prove the

following lemma, we use c(z) instead of the min-circuit in [2], and use the fact above.

For ω e Ω λ , let At(ω) = {xeR21 f(0,x)<ί}. Let D = {xeR2\ φ(x)<l}. For

any xeR2, any keQ (k = f, p,qeN\ from the definition of φ, we obtain

Hence for any oceR,

φ(ccx)
= <?(*)•

Since y = l iminf— - = φ(e1) from (3.3) and φ(x) = φ(e1) for any xeR2 such that
m-oo m

|JC| = 1, φ(y) = \y\y for any yeR2. Therefore D = {xeR2\ \x\<x

γ}.

Lemma 3.8 ([1]). Assume γ>0. If λ>λc, then for any ε>0, we have

Pλ((l-ε)D c t~ιAt a (1 +ε)D for all sufficiently large t)=\.

Proof of Theorem 1 ([2]). Taking k = 4 in (3.5) and (3.6), we have Eλ(u(z)2)

= Eλ(u(0)2)<oo for any zeZn

2, then for any ε">0,

Pλ(u(z)>ε"\z\ i.o.) = 0.

Hence for any ε">0,

(3.7) Pλ(3a>0 s.t. φ)<max{fl,fi"|z|} for VzeZ M

2 )=l .
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Taking any ε>0, by Lemma 3.8 we have that almost surely for all large /, if

(ί-ε)tDsx, then t(0,x)(ω)<t. Here let t'=(l--)t. We know that if (l-ε)t'Dsx,

then f(0,xXω)<(l--)f. Since ( l - ε ) ( l - - ) = l - ( - ε - - ) , with ε'=-ε--(>0), we

have that if {\-ε')tDsx, then f(0,jc)(ω)<(l--)f. If J,.e(l-ε')ί/)nCo, then (3.2)

leads to

<t(0,Xi)+u(0)(ω)+u(πn(XMω) +1

With ί/=f (the diameter of D), \Xi\<(ί-ε')td. By (3.7), we obtain that

u(πΠ(XMω)<max{a,ε"\πn(Xi)\},

and from the definition of πn,

Hence with taking t large enough, if necessary, we have

t/(0Xω) + M(πB(Λ-,.)Xω) + 1 < 3ε"(l - ε')td.

Taking ε " = ^ ,

Therefore we get

2 3 3
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Because t(0,Xi) is the time of the infection of Xi9 and 1 is the time lag from the

infection of X{ until Xi is immune, we have X( e ζt(ω). Hence for Vε > 0,

Pλ((l-ε')tDnC0 a ζt for all sufficiently large /) = 1.

On the other hand, if X^ξjψή or A^eί^ω), then ^(O,^)^* and so

ί(0,Xi)<t. Therefore for Vε>0, Lemma 3.8 leads to XiG(\+ε)ίD. Hence

Pλiίt c (1 +ε)ί/> for all sufficiently large t) = 1,

Pλiίt <= (1 +ε)rD for all sufficiently large r)= 1.

We have completed the proof of Theorem 1.
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