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1. Introduction and statement of results

J.T. Cox and R. Durrett (1988, [2]) considered a model of epidemics and
forest fires in Z? with nearest neighbor interactions,and have shown the shape
theorem for the spread of epidemics. Y. Zhang (1993, [6]) has dealt with a model
which had not only nearest neighbor interactions but also interactions between
further hosts, and proved the shape theorem for the model.

We consider a model of epidemics or forest fires in R2. Hosts are distributed
according to a Poisson point process X,={X;eR?}2, of intensity A(>0) in
R?. Each individual X;, ie N can be in one of three states 1,2 or 0. In the
epidemic interpretation, 1=susceptible, 2=infected, and 0=immune, while for a
forest fire, | =alive, 2=on fire, and 0=burnt. The state of the process is represented
by a function #,(X;) € {0,1,2}, i€ IV, which is the state of X; at time ¢. An individual
stays infected for the amount of time 1, then it recovers and becomes immune. Once
an individual becomes immune, it will be never infected. An infected individual
X; emits germs after a random time 7; from its infection. Germs emitted from
X; go to all individuals in S;={xeR?| |x—X;|<1]}, the disk of radius 1 with its
center at X;. (If ;> 1, X; really does not emit germs.) Let T;, ie N be nonnegative,
iid. random variables with distribution function F. We have F0)<1 and
F(1)>0. Ifa germ goes to a susceptible individual, then the individual immediately
becomes infected. If the germ goes to an infected or immune individual, the
individual does not change its state at all. Initially all points of X, in So={xe R?|
|x| <1}, the disk of radius 1 with its center at 0, are infected and all other points
of X, are susceptible:

2, if X;eS,
X)=
Mo() {1, otherwise.
We construct the probability space representing our epidemic model (or our
forest fire model). Let Q, be the Poisson point process of intensity A in R? which
consists of countable points valued in [0,00) independently according to the
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distribution function F. An element of Q, is denoted by {(X,,T;)e R*> x [0,00)},,
and {X;}2, by X,;. Let A(V,t,k) be the event that exactly k points of X, in V
have values less than

AW,Ll)={(X, T)}2,| HieN|X;eV, T,<t}=k},
where VeZ(R?) is bounded, >0, and ke NU{0}. Let

P,(A(V,t,k)= @2"_”)" e~ MOV

B(Q) =o({A(V,,k)| Ve BR?) is bounded, t>0, ke NU{0}}).

Clearly (Q,,%(Q,),P;) (A>0) is a probability space. From now on we deal with
this probability space which represents our model.
Before stating our result, we define some notions. For {(X,T)}{2,=weQ,, let

T, if T,<1
Ti={ ! ! iEN.

0, if T;>1

1; is the time lag from the infection of X; until X, emit germs. We say that X;
is open if 7;<o0, and closed otherwise. When X; is open and infected, it emits
germs and infects all points of X, in the disk S; of radius 1 with its center at
X;. When X; is closed, it cannot infect any points of X, in S;. For X,X;eX,,
we call {X;, -, X, } a path from X; to X; if the following hold:

0 X=X, X=X

(i) |Xi—X;, /<1 and X, #X; Vk=1,---,K—1

k+12

In addition to the above, we say that {X;,---,X; } is an open path from X; to X;
if the following holds:

(i) X, is open, Vk=1,--- K

Let
( There is a path from a point of X in '
(1.1 Colw)= 7 X; | Sy to X; denoted by {X;,---, X}, and
’ Xy, X _, are open. j

We call Cy(w) the cluster contaning the origin 0. In the epidemics interpretation,
Co(w) is the set of points of X, that X; will ever becomes infected if initially all
points of X, in S, are infected and all other points of X, susceptible. Let

Ac=inf{A| P,(|Co| = 00) > 0}.
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A is the critical value whether the epidemic spreads infinitely or not. For weQ,,
let

L-1
t(X,,XJ)=lnf{ Z ti[l{Xh"”’XEL} ls a path from Xi tO Xj.}, Xi,XjeX)..
=1

{(X;,X;)=co if there is no path from X; to X;, and #(X,X)=0 if X;=X;. #(X,X)
is the minimum time of the infection of X; if only X; is infected initially. For
x,yeR?, let

tl(xay)(w)= lnf t(/‘,ij)’

Sx3Xi
SyaXj

where S,={x'e R*| |x—x'|<1}. If there is no point of X, in S, nor S,, we let
t'(x,yw)=o00. f(x,y) is the minimum time for a point of X, in S, to be infected
if the points of X, in S, are infected and others susceptible initially. Let ¢, =(1,0),

.. 0, . . .
then lim mf—(—nil) is almost surely constant ([2]), and we denote it by y. 7y is

n- o n

the average time for the epidemic to go the unit distance. Let
{{w)={X;e X;|n(X)=0},
¢(@)={X;e X; | n(X;)=2}.

{, is the set of points of X, which are immune at time ¢, and ¢, is the set of points
of X, which are infected at time ¢.
Here we consider in what shape it spreads out.

Theorem 1. Assume y>0. Let D be the disk of radius § with its center at
the origin. If A> 2, then for any £¢>0, we have

P(Cont(l1—e)D = {, = (1 4+€)D for all sufficiently large t)=1,
P& <= (1 +e)D\t(1 —&)D for all sufficiently large f)=1.

2. Probability estimates of events in the model in Z,>

We prove Theorem 1 by approximating R? with the lattice Z,%
Zn2= {({’X)I(x’y)ezz}, n=2a39"'
nn

We construct a site percolation in Z,2 which corresponds to that in R%. For
Z=(ZI,ZZ)GZ',2, let
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1 1 1 1
B,(2)=[z, _5, Zy +5’;) X [22"'2—’1, Z, +5)

For zeZ,”> and weQ,, we define T, by

inf T,, if B(2)nX,#0

Xi€Bn(z)

0, if B(z)nX;=0

T (w)=

T,, ze Z,? are ii.d. random variables. We say that a site ze Z,2 is open if T,<1,
and closed otherwise. Then for each site z, z is open or closed independently,
and by using the distribution function F of T;,

P(z is open)=1—e "2 =y (7))
P,(z is closed)=e¢~*F(n~2,
For z,,z,eZ,2, we say that z, and z, are adjacent if |z,—z,|<1—*2. If
|zy —z,| <1—+2, then when an open point of X, in B,(z,) is infected, all healthy
points of X, in B,(z,) are infected. By this adjacency relation, we define N,, the
neighbor of ze Z,2, as

2
N,={z'eZ?| |z—z'|g1——‘[_}.
n

To any z'(#z)eN,, we give a bond oriented from z to 2z, and denote it by
{(z,2),. We let M,=1—+2 and denote by Z,%(M,) all oriented bonds {z,,z,),

with |z, —z,|<M,. For any oriented bond {z,,z,),€ Z,%(M,), we say that {z,,z,),
is open if z, and z, are open, and closed otherwise. For z,,z,eZ,% we call
{zi,+++2;,} @ path of Z,(M,) from z, to z, if the follwing hold:

0] Ziy =21y,  Zig=2Zy

Q) |zy—z,,|<M, and z, #z Vk=1,--,K—1

K+ 1

In addition to the above, we say that {z;,---,z, } is an open path of Z,%(M,) from
z, to z, if the following holds:

(i) <z;,Z;,,>n is open, Vk=1,--- K—1

For two open paths of Z,%(M,) denoted by r,, r,, we say that r, and r, are
connected in Z,%(M,) if there exist open sites z,€r,, z,€r, such that z,=z, or
|zy—z,|<M,. Let
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DM ={z'e€Z,}| There is an open path of Z,A(M,) from z to z'.}

be the open cluster containing ze Z,2. Let p(Z,%(M,)) be the critical probabilty
of the site percolation with the adjacency relation as mentioned above, then from
0<plZ, (M,)<1 ([3]), there exists 4., where 0< 1™ < o0, such that

PAZHM,))=1—¢= 2 Fn~2,
We call 1™ the critical value in Z,2, as it satisfies

A" =inf{A| P,(|D{’| = 00) > 0}.
Lemma 2.1 ([7], [8]). Let
A =inf{1| P;(|Cy| = 00) >0},
Ap=inf{A| E;|Co| = o0},

where E,|Co|=[a,|ColdP;, then lim 2, =2,=A; and 0< 1, < co.

n—o

Later we will use Lemma 2.1 to prove Theorem 1 in Section 3.
For weQ,, let m(z), ze Z,> be the minimum meN (m>2n) satisfying the
following:

(i) Thereis an open path of Z,>(M,) from z + [ — %5, %1% to o0 in Z,2\{z + [ — 2, 21°}.
(i) There is an open circuit of Z,%(M,) in the annulus {z+[—3232]%}
\{Z + [_%’%]2}

Corollary 2.2 ([6]). If A>1.", then there exist positive constants K(1) and B
such that for any ze Z,%, we have

P,(m(z)>2'K(A)<pe~ 2", y=log2, VI=0,1,--
By Corollary 2.2, we have
Pm(z)< oo, VzeZ>)=1.

In Section 3 we let Q) ={w|m(z)< o, Vze Z,*} and consider events in Q.

3. Proof of Theorem 1

In this section we prove Theorem 1 by using the probability estimates in

Section 2.
From now on we assume A>/.. We approximate our system in R? by a
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lattice system in Z,%.. By Lemma 2.1 we have that A1>1.® for A>4, with large
enough n. Hereafter we consider Z,2 for this n.

DEeFINITION 3.1. For weQ,, ze Z,?, let

mz)—1 m@)—1,

AI(Z)=Z+[— 2}1 ) 2n )
1
A =2+ [T MOty
3 1 1
Ay@)=z+[— ”"2* ,3’"2* .

Fig. 1. TIllustration of A, A, and A;.
By the definition of m(z), ze Z, in Section 2, we have the following:

(i) There is an open path from A,(z) to oo in R%\A,(2).

(ii) There is an open circuit in the annulus As(2\A,(2).
DerINITION 3.2, For weQ,, z;,2,€ Z,?, by using #(X, X)) let

fzy,2))w)= inf «X;,X)).

A2(z1)3X:
A2(z2)3X;

#(z,,z,) is the minimum time of the infection of a point of X, in A,(z,) if the
points of X, in A,(z,) are infected and the other susceptible initially. We extend
the domain of 7 to all R? by letting #(x,y)=#(m,(x),n,(y)) for x,ye R?, where m,(x)
is the element of Z,?> such that xeB,(n,(x)). If {zy,---,z} is a path of Z,*(M,)
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from z,=m,(x) to z,=m,(y), then there is an open path from A,(m,(x)) to

k
A,(n,(y)) contained in () A4(z), so 7 is finite in Q;.

i=1

DerFINITION 3.3. For weQ), zeZ,2, u(z) is defined as

u(z)= 8(3m(z) +2n +1)? .

Th

By the following lemma we have that u(z) is the upper bound of #(X, X)) for
X, X;eAy(2)n X, with (X, X;)< 0.

Lemma 34. For weQ,, ze Z,2, we have

sup H(X, X)) <u(z)(w).

A3(z)nX13Xi,X;
t(Xi,X;)<oo

Proof. For X,X;eA;(z)nX,, assume that there is an open path from X; to
X; in As(z). Now (X, X;))<oo. Letr={X,,--, X, } be an open path from X; to
X; in A,(z) with the smallest K. Then |X, --X, , |<1 for k=1,-- . K—1 and
| X —Xi.|>1 for k,k'=1,--- K with |k—k'|>1. Hence we have
S, ...nS. .. =0, Vkk (k#k),

2K+ 1 B2k +1

e =ixeR?*| |x—X,, . |<3}. We can put at most #3m@n+? disks of
radii { nonintersecting each other in z4 [ —3m@+1_13m@a+1 4 192 From this we
obtain

where S;

< 8(3m(z)+n+1)? .

nn?

K

Therefore since X; stays infected for time interval 1,

8(3m(z)+n+1)>2

2

nn

By the definitions and the lemma above, if #(X;,X;)< oo, then
(3.1) 0X, X)) S U X, X)) < UXG, X)) + u(my (X)) + u(m, (X))

For weQ), X;eX,, let

t(O,Xl)= inf t(Xj,X,).

So3X;
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10, X) is the minimum time of the infection of X; if the points of X, in S,={xe R?|
|x| <1} are infected and others susceptible initially. In the same way as #(X,, X)),
if #(0,X;)< o0, then

(3.2) 10, X)) < 10, X,) < 0, X)) + u(m,(0)) + u(m(X7).
For £(0,x)(w)=infsy, #X,X,), xeR?, if £(0,x)<oo, then by (3.1)
(3.3) Sxaxjf(o, X) <1(0,X) < 0,x) + u(m,(0)) + (m,(x)).
For weQ,, z,,2,€ Z,2, let

lz1,25)(w) = Hzy,2,) () + u(z ).
Then for weQ;, z,,2,25€ Z,%,
(34) Uzy,2:0@) < Uzy,23)0) + H(z3,2,)(@).

By Corollary 2.2, for ze Z,%, k=1,2,---, we have

(3.5) Eu@h=3 u(zfdP,

1=0 J2!K(2)<m(z) <21+ 1K(2)

8(3- 2" IK(A) +n+ 1)

< f - 1P (m(z) > 2'K(2))
1=0 n
<( ni"ﬁ Y (3- 2" KA +n+1)*e 2" < o0,
1=0
and
3.6) E(u(2)") = E,(u(0))

Lemma 3.5 ([2]). _If A> A", then there exists a constant u(z) for ze Z,%, so
that as m - o0 (meN),

10,mz) - u(z) as.

7, 0,
By (3.3) and Lemma 3.5, we have that y=lim,inft( me,)

m- o m

is almost surely

constant.

We let g(z)=E,(#(0,2)) for ze Z,> and extend the domain of g to all of R? by
making it linear on triangles of the form z,z+(2,0), z+(0,1) and z+},3), z+(,0),
and z+(0,}). Then we have the following lemma.
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Lemma 3.6 ([1]). There is a function ¢ on R* such that glmx) converges

uniformly to ¢ on compact subsets on R?, and ¢(z)=uz) for ze Z,>.

DeriNTION 3.7. For weQ,, zeZ?, let C(z)={X,, X, } (X;,=X,,) be an
open circuit surrounding z in A;(z) with the smallest L and let A(z) be the interior
and the boundary of the polygon whose vertices are X;,---,X;, in C(z), and whose
sides (X;,X;,,,) for /[=1,--.L—1. We define v(z) as

o(z) = 'HA((;)J +ICE)+1,

10

where |A(2)] is the area of A(z), and |C(z)| is the number of elements in C(z).

If there is a path from X; to X; in A(z) for X,X;eA(z)nX,, then
HX,X)<v(z). Proof of this fact is same as Lemma 34. Now to prove the
following lemma, we use ¢(z) instead of the min-circuit in [2], and use the fact above.

For weQ,, let A(w)={xeR?| #0,x)<t}. Let D={xeR?| p(x)<1}. For
any xe R? any ke Q (k=4 p,geN), from the definition of ¢, we obtain

-4
okx)_ . 8mp-3x)

= o).
m- oo mp'p

Hence for any aeR,

plox)

o(x).

1'(0,me;,)

Since y=lim inf =g(e,) from (3.3) and ¢(x)=¢(e,) for any x € R? such that

m-=* oo

Ix|=1, @(y)=|yly for any ye R*. Therefore D={xeR*| |x|<1}.

Lemma 3.8 ([1]). Assume y>0. If A>1., then for any ¢>0, we have

P((1—¢)D c t™'4, = (1+¢)D for all sufficiently large t)=1.

Proof of Theorem 1 ([2]). Taking k=4 in (3.5) and (3.6), we have E,(u(z)?)
=E,(u(0)?)< oo for any ze Z,?, then for any &”>0,

P,(u(z)>¢"|z] 1.0.)=0.
Hence for any & >0,

3.7 P,(3a>0 s.t. u(z)<max{a,e"|z|]} for VzeZ,?)=1.
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Taking any ¢>0, by Lemma 3.8 we have that almost surely for all large ¢, if

(1—¢)tD>x, then #(0,x)w)<t. Here let £'=(1 —g)t. We know that if (1 —¢)t’'Dax,

then 70, x}@)<(1— ). Since (1—e)(1—)=1—( ¢ 2 with =2 82(>0) we
AT 27 2 2”7 T2 2 ’

have that if (1—¢)tD>3x, then #(0,x)(w)<(1 —%)t. If X;e(1—-&DnC,, then (3.2)
leads to

10, X,)+ 1 <0, X,) + (O ) + u(m, (X)) () + 1
< —%)t + u(O)w) + u(m (X)) w) + 1.

With d=2 (the diameter of D), |X;|<(1—¢)td. By (3.7), we obtain that

u(0)w) <a,
u(m,(X)Nw) <max{a,e" | (X))},

and from the definition of =,,

1
(X < |Xif +—= .

/2

Hence with taking ¢ large enough, if necessary, we have

u(0)(w) + u(m (X)) w)+1<36"(1 —&')td.

Taking &" =i,
9d

u(O)) + u(m, (X)) + 1 s§(1 —e).
Therefore we get
€. ¢ ,
10,X)+1<( -§)t+§(1 —&')t

& & €
—(1=548 %y
(1=2+3739

<( —g)t.
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Because #(0,X;) is the time of the infection of X;, and 1 is the time lag from the
infection of X; until X; is immune, we have X;e((w). Hence for Ve>0,

P,(1—-€XDnCy <, for all sufficiently large f)=1.

On the other hand, if X;el(w) or X;el(w), then #0,X))<t and so
f(0,X)<t. Therefore for Ve>0, Lemma 3.8 leads to X;e(1+¢&)tD. Hence

P& c(1+eeD for all sufficiently large £)=1,
Py, c(1+eD for all sufficiently large f)=1.

We have completed the proof of Theorem 1.
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