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ABSTRACT
This dissertation deséribes the research on narrow band
transmission in speech coding.

Two equivalent representations in the frequency domain of linear
predictive coefficients or PARCOR coefficients are introduced. One is
"line spectrum representation (LSR)" and the other is “line spectrum
pair (LSP)". The characteristics of these parameters in quantization
and interpolation are clarified experimentally comparing PARCOR
coefficients. The optimal coding methods in these new vocoders are
proposed. Synthesized speech quality is assessed by objective and
subjective measurements. These results lead to the superiority of new
parameters proposed in this dissertation.

Moreover, a transmission technique according to the rate of
parameter transition is presented. Speech events occur generally at
non-uniformly spaced time intervals according to the articulator
movements. Then, sampling at a variable rate in accordance with
changing speech signal characteristics is more efficient.

Another technique to eliminate the redundancy in parameter
distribution space was studied. Vector quantization technique using LSP
parameters is executed to achieve an extreme low bit rate transmission.

This quantization technique is applied to isolated word
recognition from the standpoint of quantizing speech signals at a

larger unit than a frame.
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CHAPTER 1 PROLOGUE
1.1 Introduction
1.1.1 Mechanism of Acoustical Speech Waveform Generation [1],[2],[3]

Speech signals are the most convenient and easiest means for human
beings to communicate with each other. The acoustical speech waveforn
is generated by physiological movements of the articulator shown in
Fig. l.1. Air in the lungs is expelled into the trachea and then forced
between the vocal cords. In the case of voiced sounds, such as /o/ in
OSAKA, the air pushed toward the lips from the lungs causes the vocal
cords to open and close at a rate dependent upon the air pressure in
the trachea and the physiological adjustment of the vocal cords. This
adjustment includes changes in the length, thickness, and tension of
the vocal cords. The greater the tension, the higher the perceive pitch
or fundamental frequency of the voice. The opening between the vocal
cords is defined as the glottis. The vocal tract is a non-uniform
acoustig tube which extends from the glottis to the 1lips. The vocal
tract varies in shape as a function of time, according to the voice
sounds being emitted. The major components causing this time-varying
change are the lips, jaw, tongue and velum. In the case of wunvoiced
sounds, such as /f/ in FUJI, these sounds are generated by voluntarily
holding the vocal cords open, forcing air past them, and then using the
articulation to creaﬁe construction. A piosive sound, such as /p/ in
SAPPORO, is generated by building up air pressure in the mouth and then

suddenly releasing air.



l.1.2 Acoustical Waveform and Its Spectrum

To illustrate the acoustical implication of speech production in
both the time domain and frequency domain, sounds such as /a/ and /tf/
were spoken and analyzed. Figures 1.2A and 1.3A show the acoustical
waveform., This waveform was obtained by low-pass filtering the tape
recorder output to a 4 kHz bandwidth, performing 14 bit analog to
digital conversion into a computer system at an 8 kHz sampling rate.
The waveform in Fig. 1.2A is nearly periodic in comparison with that in
Fig. 1.3A. The distance between major peaks shows the pitch period of
the glottal vibration. The waveform in Fig. 1.3A  exhibits no
discernible pitch period, since the sound /t[/ is  produced by
turbulence noise generated by directing the air stream past a
construction formed by the tongue and teeth. Figures 1.2B, C, D and
Figures 1.3B, C, D show spectral shapes on a log amplitude scale (in
units of dB) versus frequency. Figures C and D correspond to the vocal
tract resonance and the vocal cords vibration, respectively. The
locations of the major peaks on the envelope in Fig. 1.2C, labeled F,,
F2 and F3 , which define estimates of the formant fréquency locations,
correspond with the vocal tract resonance, The spectrum in Fig. 1.2D
shows cyclic behavior every 1/P units of frequency. 1Its fundamental
frequency corresponds to the vibration of vocal cords. The spectrum in
Fig. 1.2D is nearly flat versus frequency. In addition, a spectrum in
Fig. 1.2B is superimposed upon each log magnitude spectrum of Fig. 1.2C
and D. On the contrary, in the case of unvoiced sound, there are no
strong resonance points, as shown in Fig. 1.3C. In additiom, the

spectrum in Fig. 1.3D has a nearly white noise property.



Other frequency domain representations of this wutterance from
sonograms ( also referred to as voiceprints or spectrograms), are shown
in Fig. 1.4 and Fig. 1.5. using wideband and mnarrowband filters,
respectively. The sonogram shows speech energy as a parameter on a
continuous frequency scale versus time. During voiced regions, the dark
bars indicate the locations of the resonances as functions of time. The
voiced regions show vertical striations, corresponding to the epoch .or
beginning of each pitch period. During unvoiced intervals, the dark
areas indicate major concentrations of energy. With the wideband
sonograph filter, pitch period resolution is obtained in the time
domain, but a larger amount of averaging or smearing in the £frequency
domain occurs. With the narrowband sonograph filter, freqﬁency
resolution is obtained at the expense of time resolution. With the
narrowband filter, the harmonic structure of voiced speech is obtained;
that is, the narrow horizontal 1lines indicate the harmonics 6f the
fundamental frequency. During unvoiced sounds, no discernible harmonic

strudture is evident.‘
1.2 Digital Coding of Speech

In order to transmit speech signal waveforms, ~many coding
techniques have been developed. Recently, many digital coding
transmission techniques have been proposed. These techniques can be
divided into two categories. One is speech waveform coding, the other
is speech analysis synthesis system, the so called "vocoder”. Several
waveform coding methods are listed in Table 1.1 [4] [10]. These methods
aim at encoding the original speech waveform as pr;cisely as possible

with a lower bit rate. Typical speech waveform coding, PCM (Pulse Code



Modulation), néeds 64 kbps to encode speech signals. On the other hand,
in - the speech analysis synthesis field, many methods have been
developed, too, as shown in Table 1.2 [11] [21]. These methods are
based on speech spectrum reservation principle, not on the speech
waveform, They don't aim at constructing the original speech waveform
itself. Conserving the speech spectrum is sufficient to ensure adequate
speech quality and intelligibility for many purposes. The natural
speech signal is redundant and there are many efficient speech coding
methods available both for transmission and storage of voice wusing
these properties. In fact, the movement of articulators is very slow,
about 50 Hz, never 8 kHz. In a speech analysis synthesis system, some
feature parameters corresponding to speech spectra are extracted at the
analyzer and transmitted. At the receiver, the speech waveform 1is
synthesized from these feature parameters. The basic configuration of a
speech analysis synthesis system is shown in Fig. 1.6. The difference
among several methods in Table 1.2 is the difference in feature
parameters which represent the speech spectra. The coding efficiency
and synthesized speech quality mainly depend on the propertiés of the
feature parameters and their extraction method. A typical, and the
first, speech analysis synthesis method is "Channel Vocoder"”, invented
in 1939 by Homen Dudley of Bell Telephone Laboratories. Vocoder is a
term derived from the words VOice CODER [22].

A spectrum channel vocoder blockdiagram is shown in Fig. 1.7. The
speech signal is separated ‘into 14 contiguous spectral bands with
bandwidths ranging from 200 Hz to 3200 Hz. The output from each filter
is connected to a rectifier and 1low pass filter, whose output
represents the time-varying average signal amplitude for each frequency

band. Together, these 14 channel signals represent the envelope of the



short time spectrum of the speech signal. Also shown in Fig. 1.7 are a
»voiced—unvoiced detector and a pitch detector which determine the fine
structure of the speech signal and produce a corresponding narrowband
signal. These 15 narrowband signals are combined into a single signal
with a total bandwidth of 15 times 20 Hz. Thus, the transmission
bandwidth is only one-tenth of that required for the ofiginal speech
signal. At the synthesizer, the original channel signals are recovered
and utilized to control the frequency response of a time-varying filter
to correspond to the spectral envelope measured at the analyzer. The
input for this time-varying filter is supplied with a flat spectrum
excitation signal of the proper spectral fine structure. Namely,
quasi-periodic pulses are used for voiced speech sounds, or white noise
is used for unvoiced sounds.

After his work, much effort has been expended to realize efficient
speech signal coding. Most of the research interest was concentrated on
finding feature parameters which express speech characteristics
efficiently. Among these, the most effective and successful method is
the speech analysis synthesis, based on linear prediction of a speech
signal, to be introduced in Chapter 2. Moreover, recently, research
interest in speech coding 1is focused 'in extreme low  bit rate
transmission, under 1000 bps, as listed in Table 1.3 [23] [32]. A very
interesting problem involves how to eliminate the speech signal
redundancy. In most of these methods, redundancies in feature
parameters,‘in both the space domain and the time domain, are wutilized
as much as possible. Theoretically, the speech information rate is
assumed to be 50 bps and it is possible to compress speech to this
rate. Realizing the wultimate speech signal compression requires

phoneme, syllable, word or continuous speech recognition at the



analyzer. At the receiver, it is necessary to reconstruct synthesized
speech signal from these units by synthetic rules. This is an ultimate
speech analysis synthesis form. Furthermore, it may be possible to
transmit only the meaning of utterances or conversation, when research
on speech understanding is much advanced. To sum up, the hierarchy of
speech coding is shown in Fig. 1.8. Typical coding techniques are shown

chronologically in relation with information rates.

1.3 Study Objective and Qutline for This Thesis

This thesis is mainly concerned with a speech signal data
compression method at an extremely low bit rate.

In Chapter 2, a typical vocoder system, based on linear prediction
of speech signal, named PARCOR, is reviewed briefly for reference in
succeeding chapters.

In Chapter 3, another representation of linear predictive
coefficients in the frequency domain is introduced. The quantization
and interpolation characteristics are investigated, comparing with
PARCOR coefficients. A new speech analysis synthesis system, named
"pseudo Formant Vocoder"”, is proposed.

In Chapter 4, another representation equivalent to PARCOR
coefficients, called 1line spectrum pair (LSP) is explained. LSP
parameter properties are examined theoretically and experimentally. An
optimum bit allocation and interpolation methods are proposed.
Synthesized speech quality is assessed through objective and subjective
measurements.

In Chapter 5, the technique to eliminate the parameter redundancy

in the time domain is proposed. A transmission technique according to



the rate of parameter transition, named variable frame rate
transmission (VFR)‘is studied. The effectiveness of. this method is
clarified by a quality assessment subjectively.

In Chapater 6, a technique to eliminate the parameter distribution
redundancy in the feature space is proposed. Using the- good LSP
parameters interpolation property, an efficient pattern matching
vocoder is studied. Typical spectral patterns are obtained using vector
quantization. A spectrum in each frame is represented as a vector of
feature parameters. The differences between scalar and vector
quantization are examined as a function of spectral distortion.

In Chapter 7, the vector quantization technique, proposed in
Chapter 6, is applied to an isolated word recognition based on dynamic
time warping. A new efficient isolated word recognition method is
realized with representing word templates as sequences of discrete
symbols which correspond to a spectrum.

In Chapter 8, the conclusions of this thesis are summed up.
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Table 1.1 Research on speech waveform coding.

CODING TECHNIQUES PROPOSER(S) FEATURES kbps
Pulse Code Modulation A.H.Reeves Sampling of
(PCM) (1939) speech wavefornm 56-64
Delta Modulation F.de.Jager Coding of
aM (1952) difference
between adjacent
samples with 1
bit
Differential Pulse H.Van de Weg Coding of
Code Modulation (1953) difference
(DPCM) between adjacent
samples with N
bits
Adaptive Predictive B.S.Atal Adaptive coding
Coding (1968) of linear 9.6-24
(APC) predictive
coefficients
Adaptive Delta N.S.Jayant A M with adaptive
Modulation (1970) quantization 16-32
(AAM) step size
Adaptive Differential N.S.Jayant DPCM with adaptive
Pulse code Modulation (1973) quantization 24-32
(ADPCM) step size
Sub-band Coding R.E.Chrochiere| ADPCM of output
(SBC) (1977) in each sub-band 16-32
channel
Adaptive Transform R.Zelinski Coding of transform
Coding (1977) coefficients of 4.8-16
(ATC) speech waveform
Adaptive Predictive M.Honda Predictive coding
Coding with adaptive F.Itakura with adaptive 9.6-24
bit allocation (1979) bit allocation in

(APC-AB)

sub-band coding




Table 1.2 Research on speech analysis synthesis coding

(vocoder).

CODING TECHNIQUES PROPOSER(S) FEATURE kbps
PARAMETERS
Channel Vocoder H.Dudley Outputs of 300 Hz
(1939) band-pass (analog)
filters 2.4
(digital)
Formant Vocoder W.A.Munson Outputs of - 300 Hz
(1950) band-pass (analog)
filters and 2.4
the number of (digital)
zero—-crossing
Pattern Matching C.P.Smith Phoneme spectral
Vocoder (1957) patterns 0.9
Correlation Vocoder M.R.Schroeder | Auto-
(1959) correlation 400 Hz
coefficients
Voice Exicited M.R.Schroeder | Outputs of
Channel Vocoder (1960) band-pass
filters and 1000 Hz
base band signal
Phase Vocoder J.L.Flanagan Outputs of
(1966) band-pass 1500 Hz
filters and 7.2-9.6
their phase
signal
Maximum Likelihood F.Itakura Linear
Vocoder S.Saito predictive
(1968) coefficients by 5.4
maximum likelihood
estimation
Homomorphic Vocoder A.V.Oppenheim { Cepstrum
(1969) coefficients 7.8
PARCOR Vocoder F.Itakura Partial auto-
S.Saito correlation
(1969) coefficients 2.4-9.6
Linear Prediction B.S.Atal Linear
Vocoder (1971) predictive 3.6
coefficients by
covariance method
Residual Excited D.T.Magill PARCOR
Linear Predictive (1974) coefficients by 8.0
Vocoder linear prediction
LSP Vocoder F.Itakura Line spectrum
N, Sugamura pair (LSP) 1.6-9.6
(1979)




Table 1.3 Research on speech analysis synthesis coding
at extreme low bit rate.
VOCODER TYPE PROPOSER(S) FEATURES TRANSMISSION
RATE (bps)
Phonemic H,Dudley 4 consonant 100
Vocoder (1958) 6 vowel
patterns

Formant G.S.Kang 6 formant 600
Vocoder (1976) parameters
LPC Vocoder AW.F. Variable frame

Huggins rate coding 1100-2500

(1977)
LPC Vocoder R. Reddy Segment coder

(1977) label coder 165-1800
Formant C.K.Un Estimation of
Vocoder (1978) bandwidth 1200

' ‘ using amplitude
LPC Vocoder | R.Viswanathan Variable frame

(1977) rate coding 1700
Pattern A.Buzo Vector
Matching (1979) quantization 800-900
Vocoder
based on
LPC
Pattern D.Y.Wong Vector quantization
Matching (1981) with full search 800
Vocoder or binary search
based on
LPC
Segment S.Rocus Segment clustering
Vocoder (1983) segment network 150
Pattern D.Y.Wong Vector and matrix
Matching (1983) quantization 200~400
Vocoder
based on
LPC
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Fig. 1.7 Spectrum channel vocoder blockdiagram. (from reference

[22], p.724)
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CHAPTER 2 LINEAR PREDICTION MODEL OF SPEECH WAVEFORM [33],[34]

2.1 Introduction

Various vocoder systems have been studied in transmitting speech
spectra efficiently. These vocoder systems are based on the spectral
preservation principle. Linear predictive coding (LPC) is one of most
successful attempts among those, which was first presented in 1966. The
LPC approach itself is not so efficient, because of its quantization
characteristics. Some extended ideas resulted from the principle
concept that speech signal can be approximately represented by the
output signal from all pole digital filter. The PARCOR scheme, proposed
in 1969 by F.Itakura and S.Saito [19], is a successful example which
inherits the basic idea of all pole modeling. Additionally, it
accomplishes significant information reduction through detailed
investigation. In this chapter, the PARCOR speech analysis synthesis
method is reviewed in order to assure understanding the following

chapters easily.

2.2 Speech Production Model Based On Linear Prediction

of Speech Waveform

The acoustic speech waveform has a véry complex structure, as
mentioned in Chapter 1. Ideally, it is desirable to have models that
are both linear and time-invariant. Unfortunately, the human speech
mechanism does not satisfy either of these properties. Speech is a
continually time-varying process. However, by making reasonable

assumptions, it is possible to develope 1linear time-invariant models



over short intervals of time for describing important speech events.
The speech production model separates the smoothed envelope structure
from an actual spectrum, and attaches a physiological significance to
each of the components of the model.

A typical speech production model, based on linear prediction of
speech signal, the PARCOR method;' is described. PARCOR is a term
derived from the words PARtial autoCORrelation coefficients, which are
a set of spectral parameters in this model. In the PARCOR speech
analysis synthesis system, there are mainly two types of feature
parameters. These feature parameters are composed of excitation source
and spectral envelope parameters. The source excitation parameters
represent vocal cords vibration. They are composed of fundamental
frequency, power and voicing (voiced or unvoiced) information. The
period according to fundamental frequency is sometimes called "pitch”
period. Spectral parameters represent the vocal tract frequency
transmission characteristics according to the articulator movements. In
the PARCOR system, PARCOR coefficients are spectral envelope feature
parameters.

Many papers concerning the PARCOR system, especially optimum
coding of PARCOR coefficients, have been published to present ways to
improve the synthesized speech quality [35],[36],[37]. The basic idea
of the PARCOR system will be introduced in the following explanations,

starting with an LPC model of speech signal.
2.2.1 Autocorrelation Method

A time series, obtained by sampling speech signal, shows a

significant autocorrelation between adjacent samples. The short time



autocorrelation function is related with the running spectrum, which
plays the most important role in speech perception.

Let (x(n), n=-=--,-2,-1,0,1,2,—~-——=) be a discrete time series
obtained by sampling the speech waveform every A T seconds. Time
spacing A T should be chosen according to the formula A T = l/ZfN ,
where fN is the maximum frequency to be preserved. This frequency
range should be chosen to maintain high intelligibility and good
quality for human speech signal. In the following discussion, AT is
fixéd at 1/8000 second.

Assume x(n-1), x(n-2),-—-,x(n-p) are p dimensional random
variables taken from a stochastic process, which is stationary within a
short interval, for from 10 to 30 mseconds, for examp;e. Letting ';Yn)
be predicted linearly from (x(n-1),---,x(n-p)), then dzzn) is

represented as
p :
x(n) = - Zo(ix(n—i) (2.1)
i=1

where O(i is defined as a linear predictive coefficient. When =x(n) is

a real sampled value, the next relation is assumed.
o/
x(n) - x(n) = § e(n) (2.2)

where e(n) is excitation source signal and ( is its root mean square
(RMS) value and e(n) has a signal which has flatness power spectrum and
a unit RMS.

Equation (2.2) is converted into the following form easily.

)
x(n) + Z\g(.lx(n—i) = & e(n)
i=1



p
Z o(i x(n-i) = & e(n) (2.3)
=1

9(g=1

This equation is interpreted as linear prediction model of speech
signal and § e(n) is regarded as prediction residual. An explicit
representation of Eq. (2.3) is a direct filter form, shown in Fig. 2.1;
where D is unit time delay A T. Figure 2.1 shows the speech synthesis
filter by o parameters, too. Linear prediction of the speech signal
results in an equivalent linear model for speech production.

The transfer function H(z) equivalent to Eq. (2.3) is

X(Z) 6—
H = = 2.
(z) 5 . (2.4)
E(z) 1+ Zo(iz'
i=1
A.P(z) is defined as
P .
Ap(z) =1+ E ;2! (2.5)
i=1

A power transfer function of H(z) is

s(w) = |u@|%2
P 2
= 6% nn 1+ 2::0“ 2!
i=1

(2.6)

mez%ﬂw,0ﬁ<w<ﬂ)



Equation (2.3) is interpreted as the auto-regressive (AR) process

and its system function of H(z) is an all pole model in control theory.

Namely, S( Q) ) is an all pole filter without having zeros. Parameters

for the model A.P(z) can be determined directly from the speech

waveform by applying a least square criterion to Eq. (2.3).

Linear predictive coefficients, which minimize the mean square

values of the predictive residual, are obtained by the following

processing.

A mean squared error of residual is

P
2 :

(6 ey = ( } o x(a-0))®
£

(2.7)

= (x(n)+ o1 x(n-1)+ == +px(n-p))?

Simultaneous equations can be obtained by differentiating both

sides in Eq. (2.7).

8 , Y ( b , or ]
VO Vi ----Vp-l di V1
Vi Vo-==-Vpo| | o Vo
[] R {
: S I = - ' (2.8)
. ' fl ]
1 \ ' q 1
: LI ) ]
1 \\l [} !
i Yy Ve o7 Vo k°‘P L Vp

where V ; means the short time autocorrelation coefficients of
speech waveform and the relation V;= V'i is assumed.
Equation (2.8) is called regular equation or a Yule-Walker

equation.



v i can be calculated as the following equationm.

N-1 .
Vi = T‘Zo ( x(n) x(nt+i))/N (2.9)

where N is the number of speech samples.

In Eq. (2.9), x(n) is usually replaced by x(n) weighted using a
window function [33].

This solution method is called a "autocorrelation method”. Another
method, called "covariance method”, is proposed. In this
method, V ; is defined the following equation, instead of Eq. (2.9)

N-1

= 2:: ( x(i+mn) x(j+n))/N (2.10)
n=0

V..
¢

2.2.2 Maximum Likelihood Estimation of Speech Spectrum

Another approach to estimating of parameters in the frequency
domain was presented. It is assumed that the speech signal has the
following characteristics.

(1) The speech production system can be represented as a transfer
function which has only poles.

(2) The speech signal is assumed to be generated with adding a
random signal into the system mentioned above. The averaged value of
that signal is zero and its variance is assumed to be CSZ .

Based on these assumptions, parameters, such as
m’ (52, 0(1,——-——,0(P), can be estimated from observation sequences
X=(x(1),x(2),-—--,x(N)) in the speech signal.

The spectrum envelope is assumed as



2
| m(2) | = sCw )= S%/em

I
A
n
~
=
o
T

12
l E %z , (2.11)

2 7t Z A,.ccos wT

where 2z ; represents roots of z

p-lil
Ay T .Zidjdi*‘lil, 1= 0, 11, 42, —mm » P
“-‘ .

1f the signal x(n) is stationary and e(n) is following a Gaussian
distribution, a logarithmic likelihood L(x |wW) of observation

X=(x(1),x(2),-——-,x(N)) is approximated by

~ N 2 1
Lx |w) = —2— (log 2GS + -—Ea- E ATV’Z’)

(2.12)
N 1 (*
-- 5 [2 log 2 + —= f (log S(W)+T(w)/s(w))dwl
2T L

where



V,t =W 5 xt Xt'\'lTl (2.13)
L N

(W) = IR s (2.14)
eT Ze-(N-D

V., means short time autécorrelation function of samples x and
T(w ) is short time power spectrum, which is obtained by discrete
Fourier transforming of V T - From these equations, when X 1is given,
the logarithmic likelihood ratio is represented by the only function of
Vo . The solution of 'J)' R whiéh maximize L( x|W), is called maximum
‘likelihood method.

L(x |®W ) is nmaximized with s2 namely executing

oL (x13)/ 262 =0,

, P
G2 = 3y rolys — »%kp) = ) 1 ApVp (2.15)
T=~pP
where
L( x|w) 62=3_=_'2_b"‘"[ 10827CeJ>(0(1,0(z,‘— adp) ]

Consequently, the maximization of L( x |'W ) is equivalent to the
minimization of J(®; ,op» = >oHp)-
On the other hand

p
J (kg s0lps — ,dp)- z A V’C'

=-P
LD o
( L iz v (2.16)
T=-P ¢§=1 J"' T



From 9 J (kg0 == »0p)/3X =0

X.=0 (2.17)

This equation is the same as Eq. (2.8), which is derived by linear
predictive analysis with minimizing the square of prediction residual.

Namely, the linear predictive model of speech signal and maximum
likelihood estimation of speech spectrum are equivalent, as long as the
speech signal is assumed to have all pole spectrum. Figure 2.} shows a
short time spectrum T(w ) and an estimated spectrum S(w ) using the all
pole model. Figures 2.1(a) and (b) show acoustic speech waveform versus

time and its autocorrelation coefficients normalized by Vo -
2.3 Speech Analysis and Synthesis Using PARCOR Coefficients
2.3.1 Partial Autocorrelation Method

When a speech synthesis filter is based on oK parameters, high
accuracy is required to quantize oK parameters in order to maintain the
filter's stability. To solve this problem, a PARCOR lattice filter was
invented to achieve the same transfer function. The autocovariance or
the autocorrelation coefficients can be regarded as a measure of linear
dependency for time shift, but a set of these parameters is still
redundant, because there is significant dependency among them. The
notion of partial au;ocorrelation is dintroduced to reduce the

redundancy using linear prediction techniques.



~ ~ ’
x(n) and x(n-p) can be predicted from the same samples by

~ P21 (-1
X(m) = - ), o x (o-i) (2.18)
i=1
~ Pl -1
x(n-p) = - ), B % (1) (2.19)
=1
(P-1) (P-1)
where the prediction coefficients e(i and . are decided to

minimize the residual of the least squares forward prediction
E(x(n) —';f'(n))2 and that of backward prediction E(x(n-p) -';(n—p) )2

A PARCOR coefficient k'P' , between x(n) aqd x(n-p) is defined as
the cross correlation coefficient between two residuals, as shown in

Fig. 2.3.

(P-1) 2 e-n

£ (n) = o(i x(n~-i) (2.20)
=0

(P-1) P (P-1) ~

g (n) = Z ,Bi x(n-1) (2.21)
i=1

P-1) -1
ELCET @) (g P

kP = ‘ (2.22)
(¢ £P P} e P PmP) e

These parameters physically correspond to reflection coefficients
in the acoustical tube model of the vocal tract [2]. Thus, PARCOR
coefficients are sometimes called reflection coefficients, too.

The following relation is obtained by substituting Eqé. (2.20) and

(2.21) into Eq. (2.22).



(m-1)
¢ °(i Vm-i
1=0
kK =
m = mn
ofi vy
=0
Y m-1
Ym-1
ﬁl =1, 2, 7-"_" s P
oy . (-0 P
On the other hand, prediction coefficients ldq }
i=1
satisfy
P-4 |
Z (P-i) (P-1) - ,
d a. =0, 0(0 =1 (J= 1, 2, -~ sp"l)
1=0
P
2::: (P—i) (P-1) )
=0, ﬁp =1 (J= 1, 2, — ,P—l)
=1

From Eqs. (2.23) (2.24) and (2.25), the relations

m (w1 (m-1) (m-1) )
i =y - kmpi om0, (1= 1,2, — )

m) (Mm-1) (m-1) (m-1) -
P fiet TEmXig s B =0, (21,2, —m)

: 2
U S u'm-l( 1 - kpy )

are obtained.

From Egs. (2.24) and (2.25)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)



Bi = Lmei - (2.29)

is also obtained.
2.3.2 Direct PARCOR Coefficients Derivation

PARCOR coefficients are also derived directly from the speech
signal. It is called a "lattice PARCOR analysis method”

PARCOR coefficients have already been defined as the
crosscorrelation coefficient between the residual of the forward
prediction and that of the backward prediction. Two linear operators,

forward and backward residual operators, are introduced.

~ (P-1y
x(n) - x(n) = £ (n)
Pl et
= 2o R
i=0

P-1
(P-1) .
(). & Dilx@

i=0

=4, (O =@ (2.30)
~ P-1)
x(n) - x(n-p) = é (n)



=B p-1 (D) x(n) (2.31)

: (P-1)
where D is the shift operator for unit time, p' x(n)=x(n-1i), O(i and

(P-1)

{ are weighting coefficients for prediction.

From Eqs. (2.26) and (2.27), the next recursions are obtained.
Am(D) =A'm-1(D) - k'm B'm-1(D) AO(D)=1 (2.32)

B (D) =D ( Brm~1(D) - k'mA'm-l(D)) BO(D)=D (2.33)
Then, it is found that residual operators ATn(D) and Bﬂ\(D)
satisfy recursive relations (2.32) and (2.33). Noting initial
conditions A0 (D)=1 and BO(D)=D, A,m(D) and B,, (D) are recursively
composed of lattice type digital filters, whose k m coefficients are
qontrolled by the output of the short time crosscorrelation shown in

Fj-g. 2.4.

2.3.3 Extraction of Source Parameters Using Modified

Autocorrelation Method

As the input signal passes through the PARCOR analyzer,
autocorrelations between adjacent samples are gradually removed. If the
number of sections, p, is chosen sufficiently large, the spectral
envelope features of the input signal are extracted almost completely,
and the spectrum envelqpe of the residual is nearly flattened. Thus,
only characteristics related to the excitation source, such as signal
amplitude, voicing and pitch period, are contained in it. The signal

amplitude is the root mean square value of the residual.



In order to detect periodicity and to determine pitch period,
autocorrelation coefficients for the residual are computed. Lag time T,
indicating the maximum autocorrelation, is picked up.

P)
Autocorrelation coefficients for the residual £ (n) are

obtained by two methods. One is the signal f(P)

(n) to input the
autocorrelator directly. The other is to remove the spectral envelope
component in the speech signal from the short-time autocorelation

coefficients., The term R (m), the autocorrelation coefficient of

f‘P)(n), is expressed as Eq. (2.34).

(P P
E[f (n)f (om) ]
R (m) = (2‘34)
P 2
EL (P @ ¥ )
p P
(2 3
=— E[ ), o x(n-1) ) | o x(ntm-3)]
Me =0 j=0 ¢
(2.35)
1 F (P)
= 7&;' E:: Ai Viem
i=-p
where P-iil
1)) Py (P)
Ai = Z\ dd‘, “&""li‘ i= 0, i]-) 7T i-p (2'36)
¢=0
2 i (P
I B ERLNCL D W
i=0

That is, it is shown, from Eqs. (2.34) and (2.35),> that the
residual autocorrelation coéfficient, R (m), is calculated by wusing a
moving avérage technique, which is weighted to autocovariance V.l of
speech signal x(n) by weighting function | A(:)lfz-P

vibration periodicity is detectable by judging the maximum

« Vocal cords



autocorrelation coefficients value. Periodicity 1is wused to detefmine
voiced parameter and unvoiced paramete:, too.

If the maximum value is greater than a preset threshold, the input
speech may be judged to be voiced sound with pitch period P. If not, it
is considered to be wunvoiced. A preset threshold was determined
experimentally. This excitation source parameter extraction method is

called a "modified autocorreation method”, which has good accuracy.
2.3.4 Speech Synthesis from PARCOR Coefficients

Speech synthesis, from PARCOR coefficients and excitation source
parameters, is an inverse process of speech analysis. The excitation
source is generated by controlling the impulse generator and the white
noise generator by pitch period, voicing and amplitude. The resulting
signal with flat spectral envelope excites a time-varying filter,
composed of lattice sectionmns.

The filter tramsfer function is exactly inverse to the residual
operator A, (D), which is shown in Fig. 2.5. If 1/Ai (D) and B; (D),
which are the filter transfer functions, have already been realized,
output signal y(n) is obtained by adding signal A'n(D) y(n) to
terminal a; . Then, signal B,n(D) y(n) is obtained at terminal bi .
Using recursive Eqs.(2.32) and (2.33), the transfer function is
recursively constructed by cascaded lattice circuit connection in the
same figure. Therefore, the output signal from the filter has mnearly
the same spectrum as the input speech signal. Figure 2.6 is derived by
equivalent transformation of Fig.2.5.

It is proved that these PARCOR synthesis filters are always

stable, as long as each k parameter is less than one [36].



2.3.5 PARCOR Speech Analysis Synthesis System Construction

A PARCOR speech analysis synthesis system blockdiagram is shown in
Fig.2.7. It is composed of the speech analyzer, the feature ﬁarameter
transmission and the speech synthesizer. PARCOR coefficients extracted
from the analyzer are related to the spectral envelope parameters, and
signal amplitude, voiced/unvoiced parameter V/UV and pitch period P
related to the excitation source parameters. The total number of
parameters is (p+3). Parameters are digitally coded and transmitted,
Then, received parameters are decoded and the nearly original speech is
reconstructed by controlling the speech synthesizer using transmitted

parameters,
2.3.6 Impairment Factors in Synthesized Speech Quality

The synthesized speech quality impairment is caused by coding the
parameters. Impairment factors in synthesized speech are p, which is
the number of PARCOR coefficients, N and NS , Which are the numbers of
quantization bits of PARCOR coefficients and excitation source
parameters per frame, and T{ , which is the sampling period of the
parameters. The number of PARCOR coefficients (p) determines the speech
spectral envelope accuracy. Much spectral distortion is‘ generated in
the case of a fewer number of p, because details are not reconstructed.
Fewer PARCOR coefficient quantization bits generate much irregular
distortion in the spectrum, Moreover, fewer excitation source parameter
quantization bits generate much speech wave irregular fluctuation. On

the other hand, the frame period determines time resolution efficiency.



‘The longer frame period generates speech transitional characteristics
that are not reconstructed accurately.

The relation between information rate and synthesized speech
quality is supplementary. That is, a lower information rate generates
much synthesized speech impairment. Thus, it is necessary to clarify
the relation between information rate and transmission quality. Of
course, optimum bit allocation is needed, when total information rate

is given,

2.3.7 PARCOR Coefficients Characteristics

The distribution differs in accordance with the difference in
coefficient degree. That is, k 1 is concentrated to nearly +1 and kg
is 1inversely concentrated to nearly -1. Moreover, higher degree
coefficients are distributed about zero. PARCOR coefficients are
autocorrelation coefficients after removing the autocorrelations
between adjacent samples, so that the lower degree PARCOR coefficients
are more important. A study of small fluctuation in the values of
PARCOR coefficients influencing the synthesized speech spectrum shows
that lower degree coefficients are much influenced, but higher degree
coefficients are little influenced. It also shows that the lower degree
coefficients have influence on the 1low frequency component of the
spectrum, but higher degree coefficients have influence on the flat
frequency of the spectrum. When analysis frame period is 1long, PARCOR
coefficients must be interpolated. However, interpolated values
sometimes generate irregular spectra. These spectra influence the
synthesized speech quality very adversely. These properties must be

considered in coding PARCOR coefficients.,



To avoid these characteristics, much effort has been expended in
studying encoding PARCOR coefficients. Many quantization techniques,
including non-uniform  bit allocation and non-linear transform
quantization of PARCOR coefficients, were proposed to improve the
synthesized speech quality. Synthesized speech quality was verified
frbm objective and subjective measurements. Several optimum coding
techniques have been established to minimize the spectral distortion or
the synthesized speech impairment with lower bit rate through many,

many experiments [38],[39],[40].
2.4 Conclusions

(1) A speech production model, based on linear prediction, is
explained. One of the most typical speech analysis synthesis methods,
PARCOR, is introduced to assure understanding this thesis easily. The
methods for extracting PARCOR coefficients and excitation source
parameters were reviewed as an introduction to this thesis.

(2) Several problems are clarified in order to represent a speech
signal at a low bit rate, using the PARCOR speech analysis synthesis

method.
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PARCOR analysis.
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CHAPTER 3 LINE SPECTRUM REPRESENTATION

OF LINEAR PREDICTIVE COEFFICIENTS
3.1 Introduction

This chapter presents a new expression of spectral feature
parameters, which are equivalent to o{ parameters or PARCOR
coefficients. These parameters are defined as a set of 1line spectrum
frequency and its amplitude. They are similar to formant parameters.
The method of extracting these parameters from PARCOR coefficients is
related. The properties of these parameters, in quantization and
interpolation, are examined experimentally, comparing with PARCOR

coefficients.
3.2 Line Spectrum Analysis [41],[42]

In the previous chapter, a typical LPC system, PARCOR vocoder, was
reviewed. PARCOR coefficients are superior to o(b parameters in
quantization properfy. Furthermore, a PARCOR synthesis filter is
stable, as long as ki is less than one for all i components [43].
PARCOR coefficients are one of the expressions in the time domain. On
the other hand, historically, formant frequency and its bandwidth are
well known to represent speech spectra with very few bits of
information. These parameters are better than the others, because
physical meanings of parameters are very clear. However, it is very
difficult to extract true formant parameters. Thus, it is almost
impossible to extract them fully automatically. On the other hand, if

it is assumed that there is no loss at the glottis in the pseudo-vocal



tract model, determined by PARCOR coefficients, a transfer function of
the vocal tract is represented as a line spectrum. These processes are
executed fully automatically, without using parameters' dynamics and
stochastic properties. Line spectrum parameters are similar to formant
parameters in the frequency domain, but they are not exact formant

parameters, as mentioned later.
3.2.1 Pseudo Vocal Tract Model by PARCOR Coefficients

In the speech analysis synthesis method by LPC parameters,
spectral envelope is approximately represented as an all pole model,v-as
mentioned in Chapter 2. The all pole transfer function is constructed
as a lattice filter using PARCOR coefficients, as shown in Fig. 2.5.
This lattice filter corresponds to a pseudo vocal tract, which is
constructed by the cascade connection of losslesé tubes with different
cross sections [2]. Input termination corresponds to the glottis and
the output corresponds to the 1lips, as shown in Fig. 3.1. PARCOR
coefficients at a discontinuous point in the vocal tract correspond to

a cross section, A . » according to the following equation.

K = (3.1)

where A.n means the cross section of the n-th acoustic tube from the
lips.
Therefore PARCOR coefficients are sometimes called reflection

coefficients.



The transfer characteristics of the vocal tract depend on only the
boundary conditions at the glottis and the lips. Boundary conditions at
the glottis and the lips are generally assumed to be :

(1) A complete opening at the lips.

(2) A matched impedance termination at the glottis,

By these assumptions, these is no loss in the pseudo vocal tract,
except the loss at the glottis. This lossless system can be examined
using S matrix representaﬁion. In a lossless linear passive system, as
shown in Fig. 3.2, ghe amplitudes of incidence wave and reflection wave
at both terminals, 1 and 2, are represented as (a1 »b4q ) and (ag ,b2),

respectively.

bg S41 Sy2 ay
= (3.2)

. / ~ /

If it is a lossless system, S matrix becomes a Unitary matrix and

the following relations are valid.

2 2 2
|311|+|521|=,1 |51?.|2+|322|=1
(3.3)
Syy Sgp + Spq Spp = O |S12|=|321|

where Si} represent the conjugate of Sij .

Terminals 1 and 2 are regarded as the glottis and the 1lips,
respectivély. When signal b, is reflected completely and fedback to
a, at the lips, the transfer function from the glottis to the lips and

its power transfer function are



T21= (304)

1“822

|sa]”

2
l T21| = (3.5)

.

2
1 +I322| —(322 + 322 )

On the other hand, the immitance at the lips and its real part are,

22
R = (3‘6)
1 - 322
2
Re(R) = (3.7)
2 —
1+ Isezl ~(S22 + S22)
From Eqs. (3.5) and (3.7),
2
Re(R) = | Tp | (3.8)

is obtained.
2
This equation shows the power transfer function , T21| is equal
to the real part of immitance function R at the 1lips. Furthermore,
immitance function R can be determined by only an impulse response

function, 822, at the lips,



Consequently, the power transfer function is determined by only an

impulse response function at the lips.

3.2.2 Extraction of the Immitance Function at the Lips

from PARCOR coefficients

An equivalent circuit for an acoustic tube junction JTI is
represented as shown in Fig.3.3 [2]. The S matrix in this figure is

represented by

[ 2 2]
—k-n ]."kvnz

S = (3.9)

Immitance function R is obtained by calculating the response at
terminal A, when a unit impulse is given to the vocal tract from
terminal B.

When a black box, whose impulse response is s, is connected to the

left side of J the impulse response le(z,s) at the right side of

n b}
J.n is
2
(1 - kn )S
wn(z,s) = kpt z (3.10)

(1 + kp 8)

v le+ s

= z
1+ les



Similarly, Jn sdpeg o™ »J 4 are cascade connected in the same
manner. When Jy is terminated by the black box, whose impulse response
is s, the impulse response at the right side of Jn 1is represented as

Wp (2,8). For example, when n=1 and n=2, Wy and Wy are

k1 + s

Wy (z,8) = z (3.11)
1+ Kkys
k1+k2z+ (kl K2+z)s

W2 (Z,S) = (3012)

(1+ kg kp )z + (kg z + ko )s

A numerator and a denominator in Eq. (3.12) are represented as
Cn(z), D,n(z), E,n(z) and F,n(z). These terms are represented as

Cn »Dn ’E'n and Fn for simplicity here.

ETI - Fn s
Wp (z,8)/z =
En-l - F,n_1 Von (z,s)
- (3.13)
C.n_i- Dh-lw‘r\ (z,s)

Substituting Eq. (3.10) into Eq. (3.13),



(E,ﬂ_1 -kn zFpq_q )-(2F 4 ~ knEn-y )s

Wn (z,8)/z =

(c

Equations (3.13) and (3.14),

relations.

-k

n-1 n 2Dn-yq

Fn = 2Fng = kn Eney

Cp sDn »En

F1=

(3.14)

n-t~ kp ZDpog )=(2Dp g = Ky Cpy Js

and F.n follow the next

1

(3.15)
“k,
ky

(3.16)
-1

The immitance function, Rn(z), is obtained using Eqs. (3.6) and

(3.14)

1+ Wn(z,s)

Rn(Z)

1 - W.n(z,s)

s=0

(Cpoy =~k 2Dy ) + 2(Bpy = kg 2Py )

(3.17)

(Cpoy ~ kpn 2Dy ) — 2(Ep g ~ kpn 2Fpy )

*
Polynomials A, (z), Bp-g (z), Apy (z) and Bhfl (z) are defined



as

Ap.1(2) =Cp.g -2 Epny

Bpoy(2) =Dp_y -2z Fpy
(3.18)
*
Any(2) =Cpy +2z2Eq
*
Bn'l (Z) = Dn_1 + z FT\-'l
The immitance function of RT\(Z) is,
* *
An-1 (z) —k,n z B,n_.1 (z)
R, (2) =
A.n_l(z) —knz B,n_i(z)
(3.19)
*
Ay, (2)
A'n (z)
* *
where An(z), B,n (z), A.n(z) and‘ BT\(Z) follow
An(z) = An_l(z)— kn z B,n_1(z) Ao(z) =1
(3.20)
Bn (z) = zB .4 (z)- k’r\A'n-l(z) BO,(Z) =1
* * * *
An(2) =Ap (2)-kpz B, ,(2) Ay(2) =1
(3.21)



* * * *
Bo(2) = 2By 4 (2)~ kpn A -4 (2) By(2) = -1

*x .

Polynomials An (z) and A (z) follow nearly the same formation and

only the initial condition of Bn(z) is different. Equations (3.20) and
(3.21) are the same as Eqs. (2.32) and (2.33).

Rn(z) is expanded into

n l+z/zi |
Rn(z) = Z - /MI- (3.22)

Mi

(3.23)

]
ot

n
Z M
i=1
_ ’
where An(z) means the differential calculus of An(z) by z.

As explained in a previous section, the power transfer function,

S,n(7\), is a real part of R p (2).

[l

Sp(>™) = Re[ Rn(e‘P‘)]

2
(ri —l)mi + 2r; sin( A - )ni

n
='§ : : (3.24)
i=1 2
r. - 2ri cos( A\ -7\i) +1




e = Mo in. = -}xi
where /M' m, + jn; z; =r; e (ri >1)
Each term of the summation in Eq. (3.24) 1is represented as the
mono-resonance curve and its integration between -7 and 7 is a

constant value of 2 7 m independent of r; , \j

and n; .
Furthermore, when r i is nearly one, its resonance frequency is >\]
and its half band width is 2(ri -1).

From Eq. (3.23),

n
Z m, =1 (3.25)
i=1

The value of m : is interpreted as the relative resonance
intensity corresponding to Zf » Wwhen the total resonance power is

assumed to be one.
3.2.3 Line Spectrum Representation of Power Transfer Function

The pseudo vocal tract ianig. 3.1 has a power loss only at the
glottis terminated by a matched impedance. If the boundary condition at
the glottis is replaced by a complete closure or a complete opening,
power loss becomes zero. According to this condition, all poles of the
resulting vocal transfer function will move onto the unit circle in the
z-plane. These conditions | correspond to .kP+1= -1 or kP41= +1
respectively. Using this property, it is possible to represent the
power transfer function as the sum of delta functions, such as

p+t

) (* ()
s ny = 2 2 m s (M- AT (3.26)
i=1



where the sign of each variable is corresponding to the two new

boundary conditions at the glottis.

(&= (&3]
7\3 and m; are the value when A,(2z) is replaced by
(H X
AP+1(\Z) = AP (z) + zB‘> (z) and An(z) is _ replaced
x () ' * X
AP+1(z) = Ap (z) + zBP (z).

The immitance function, when kp, , = +1, is

A:(z) + zB} (2)

()
RP+1(Z) = (3.27)
AP(Z) + zBP(z)
This function is a reactance func;ion as to lz |= 1 and has the

following properties.

+

(1) Poles and zeros of RP+1‘Z) lie on the unit circle

and their order is one.
»
(2) /“i corresponding to poles of‘RP*i(z) is not negative.
()

(3) pPoles and zeros of RP+1(Z) alternate with each other.
+)

( ()
(4) Poles of RP+1(Z) and RP+1(Z) alternate with each other
(o ) ,
(5) Zeros of RP+1(Z) and RP+1(z) alternate with each other.
Representing the power transform function in an all-pole filter,
(9] (H
using m : and )\i , is named "line spectrum representation (LSR)".
() <
Parameters m ; and 7\2 ) are called 1line spectrum amplitude and
normalized line spectrum frequency. These parameters are called LSR
parameters in this thesis.
()

From LSR properties, the poles and zeros displacement for RP+1(Z)

is classified into four categories, as shown in Table 3.1, according to



. ()
the sign of k . As the poles and zeros for RP+1(Z) are conjugate,

P+1
only poles and zero lying in A >0 are shown in this table.

3.2.4 Relationship Between Aﬁtocorrelation Coefficients

and LSR Parameters

Autocorrelation coefficients are obtained by the Fourier transform
of power transform function. Autocorrelation coefficients,

corresponding to Eq. (3.26), are represented by

TC
» + .
v -1 s(’)(7\) T an (3.28)
T 2T .
-TCc
P+1
= § ; m.leV‘l’b
i=1

Using the complex conjugate property of 7\3 s

14

T
vV, = m°+ (-1)m

T

n
nay Z.Zim.‘ cos \; T (3.29)
|=

where m and m

0 n+q aTe the amplitudes at A =0 and X =TC,

respectively. Normalized line spectrum frequency A.; is converted into
f;, whose dimension is real frequency (kHz), according to the

following equationmn.
£, =XN/2TT AT ' (3.30)

This ’fi is re-called 1line spectrum frequency. Autocorrelation

function Ve corresponding to PARCOR coefficients ki ,k2 ,——-—,kP R



is proved to be the exact value of,V,t , hamely,

1 4

Vo = Vo (T=1,2,—--,p) | (3.31)

This ié evideht, because only k'P+1 is changed into +]1 or -1l
arﬁificially. |
| Tb sum up, the flow-chart wused in extracting line spectrum
‘.paraméterévfrom the input speech sigﬁal is represented as in Fig. 3.4.
Another LSR paraméter_ extraction method was proposed, starting

from the relation in Eq. (3.29) [44],[45].
3.3 Pseudo Formant Vocoder

LSR parameters can be converted into PARCOR coefficients mutually
via autocorrelation coefficients using the relation in Eq. (3.29).
Consequently, it is possible to construct a new vocoder systém to
transmit LSR parameter§ instéad of formant parameters, or PARCOR
parameters or o parameters etc. This new .vocoder system was named
"Pseudo formant vocoder", because line spectral parameters have mnearly
the same representation of formant parameﬁers. However, in most cases,
both values are not the same. In fact, the relationship between the
first two line spectrum frequencies for five Japanese vowels, uttered
by ten male and ten female speakers, is shown in Fig. 3.5. The mutual
locations of the five vowels are nearly the same, in the .case of
fofmant frequency, but the frequency values are a little different from
usual formant frequencies [46].

ATo construct the pseudo fgrmant voéoder, two parts of 1line

spectrum analysis and PARCOR coefficients recomstruction are added to



PARCOR vocoder system. The same excitation source parameters as those
in PARCOR vocoder system are also used in the pseudo formant vocoder.
This new vocoder system is shown in Fig. 3.6. Calculation amount in
PARCOR is about 25000 multiplications and additions per frame, when
using the 10-th order analysis. The increase calculation amount is 700
multiplications and additions, owing to line spectrum analysis and
PARCOR coefficients recomstruction. The increase rate is under five

percent, on the basis of the PARCOR system.
3.4 Statistical Quantization Characteristics [47]

In order to quantize LSR parameters efficiently, statistical

properties were examined experimentally.
3.4.]1 Parameter Distribution

Experimental conditions are listed in Table 3.2. The distribution
ranges for line spectrum frequencies are shown in Figs. 3.7(a) and (b)
as a function of the analysis order (denoted p). Figure 3.7(a) is for

when k., .= +1 (complete opening at the glottis) and Figure 3.7(b) is

P+1
for when kP+1= -1 (complete closure at the glottis). The LSR parameters
distributions are shown in Figs. 3.8(a) and (b), when p is ten and
kP41=_1. The distribution range for each 1line spectrum frequency is
from 1/4th to 1/8th of the full range. Efficient encoding can be
achieved, considering the distribution ranges. Line spectrum amplitude
are distributed in fhe wide range, from about 20 to 40 dB. The first

line spectrum amplitude is rather larger than the other parameters. The

LSR parameters fluctuation is shown in Fig. 3.9. This speech sample was



uttered by a female speaker. The lower point of each bar at each frame
period indicates the line spectrum frequency location and the width of
each bar is proportional to /mi . As mentioned before, line spectrum

frequencies never intersect over frame periods.
3.4.2 Parameter Quantization Characteristics

One synthesized speech impairment is caused by quantization of
parameters. In this thesis, spectral distortion caused by parameter
quantization is introduced as the objective assessment measure for
synthesized speech quality [48],[49].

First, spectral sensitivity is introduced. Spectral distortion is
defined as a log term mean square spectrum error between an original
speech spectrum S 0(u)) and a synthesized speech spectrum S (W) caused
by quantization. This difference is illustrated by the hatched area in

Fig. 3.10. Namely, spectral distortion A S is defined as,

g (v 2
A S = Wj(so(w) - § (W)) df (3.32)

where W is the input speech signal bandwidth. A S is accumulated over

a long time by

T

T 2

D s = -1~S( As ) dt (3.33)
Tlo :

A S is defined as mean spectral distortion. Spectral sensitivity is
defined as the ratio of mean spectral distortion to a small

perturbation of only one of the LSR parameters, such as



Ce = as /A £, (dB/Hz) ' (3.34)
i
Cp.= AS /A my (dB/dB) (3.35)

If an LSR parameter has a large spectral sensitivity, a spectral
envelope is much distorted with small perturbation by quantization.

Spectral sensitivities for LSRR parameters  were examined
experimentally, using the same speech samples in Table 3.2. Figures
3.11(a) and (b) show a spectral envelope displacement, when £ is
perturbed by + 15.625 Hz or + 31.25 Hz and my is + 0.4 dB and + 0.8 dB
from real value. Spectral distortion by perturbing f,; and m4 are a
little different versus the frequency axis. Spectral sensitivities are
shown in Table 3.3, when A f; =15.625 and A m; =0.4 dB.

Spectral sensitivities are uniform and there is large difference

between male and female voices.

3.5 Spectral Distortion Estimation by Quantization

Spectral distortion by quantization is estimated wusing spectral
sensitivity without calculating the spectral envelope.

The influence on the spectral envelope by LSR perturbation is
assumed to be independent and superimposed. Then, the spectral

distortion is estimated as

5 [5)
~ 4 2 ’ 2
A S = Z( C'F-Afi ) + _;_ ( C,m_Am-| ) (dB) (3.36)
i=1 b i=1 !

I 4 ’
where A\ fi and éﬁlni are quantization errors for LSR parameters.

Using Eq. (3.36), spectral distortion, in the case of any bit



allocation, is estimated. If bit allocation to LSR parameters is given,
quantization step size z&i is calculated using the distribution ranges.
If the quantization error »is distributed wuniformly, the standard
deviation in quantization error is [53 A/IE . Substitufing spectral
sensitivity and standard deviation into Eq. (3.36), mean distortion is
computed. Estimated spectral distortion and real spectral distortion
are shown in Fig. 3.12. In this experiment, each LSR parameter is
quantized by the same bit, from two to five bits. The [3?91&8 ratio is
about 1.05. It proved that the spectral distortion can be estimated
using spectral sensitivity without much difference. Of course, it can
be possible to estimate spectral distortion for any other bit
allocation in the same manner.

Next, when the acceptable spectral distortion is given, the
optimum bit allocation to LSR parameters 1is proposed. First, the
acceptable spectral distortion is given. This value is usually
determined considering speech impairment. It is better to set this as
the maximum value as long as synthesized speech impairment 1is not
detectable for human beings. It was reported as about one dB
experimentally [50]. It relates with difference limen (DL) for formant
frequency and its amplitude [51],[52].

When the number of LSR parameters is n, the acceptable spectral
distortion for each parameter is 1/n (dB). Standard deviation in
quantization error, z;iA/qu , 1is computed by /1/n and spectral
sensitivity. Consequently, quantization step size, [;i , 1s calculated
and bit allocation for each LSR parameter is determined, using
distribution ranges and step size. This results in the optimum bit
allocation according to the spectral sensitivity.

Several examples of the relation between quantization bit and



spectral distortion are shown in Fig. 3.13. The quantization bit value
for each LSR paraﬁeter is determined wusing this figure, when the
acceptable spectral distortion is given. Finally, spectral distortions
versus quantization bits per frame are summed up in Fig. 3.14. When DL
for spectral distortion is assumed to be one dB, 38 bits are needed for
male and 40 bits for female voices. These values are about 85 7% of

PARCOR parameters,
3.6 Interpolation Characteristics

In order to achieve bits saving, parameter transmission frame rate
must be longer, for from 20 mseconds to 30 mseconds. However, when the
frame rate is longer, the fidelity, achieved in reconstructing the
original spectral ' transition, decreases. To avoid this, the
untransmitted parameters must be  interpolated, using adjacent
transmitted frames at the receiver. In this processing, spectral
distortion is caused by the parameter difference between interpolated
value and real wuntransmitted value. To distinguish the  spectral
distortion by quantization, the spectral distortion caused by
‘interpolation is called “"time spectral bdistortion". In this section,
the interpolation properties for LSR parameters are discussed,
comparing with properties for PARCOR coefficients. When the fundamental
analysis period is 10 mseconds, and the frame intervals are varied from
20 mseconds to 70 mseconds, spectral distortions in the wuntransmitted
frame were calculated. The time spectral distortion are shown in Figs.
3.15 (a) and (b) versus frame period. The time spectral distortion for
LSR parameters is about 80 Z of PARCOR, at every frame period.

The spectral distortion correlation at the same frame is shown in



Fig. 3.16. A strong correlation is observed. Spectral distortion
distributions in each frame are shown in Fig. 3.17. There are many
frames which have a large spectral distortion in PARCOR coefficients.
Spectral pattern transitions, which are generated by linear
interpolation of PARCOR coefficients or LSR parameters, are shown in
Figs. 3.18 (b) and (c), respectively. Figure 3.17 (a) shows the
original transition without interpolation. Analysis frame period was 10
mseconds and both parameters were linear interpolated every 50
mseconds. In Fig.3.18(b), there are several spectral peaks indicated by
arrows which do not appear in original spectral patterns. Namely, the
undesirable spectral envelopes are sometimes produced by interpolated
PARCOR coefficients. These spectral patterns generate uncomfortable
synthesized speech. One of the defects in the PARCOR vocoder 1lie in
such an interpolation property. On the other hand, there are no
undesirable spectral shapes, as shown in Fig.3.18(c), which is similar

to the original spectral transition.

3.7 Conclusions

(1) A new representation of LPC parameters is introduced. These
" parameters are named LSR parameters and are similar to formant
parameters in frequeﬁcy domain.,

(2) A new vocoder system, named "Pseudo formant vocoder"”, is
introduced.

(3) Statistical properties of LSR parameters were examined. LSR
spectral sensitivities were experimentally found to be uniform.

(4) Spectral distortion by quantization can be estimated using

spectral sensitivity analysis.



(5) Optimum bits allocation in pseudo formant vocoder waé proposed
and the differences between LSR and PARCOR were examined. As a result,
the information rate was 85 7% that for the PARCOR system.

(6) LSR parameters have a good interpolation property. The time
spectral distortion at the same frame period was 80 7% that for the

PARCOR system.
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Table 3.1 Poles and zeros displacement of immittance function.
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kHZz

/ ! s \\
| e Vv )S‘ \
1/ \
1.5 | 3
- [ 8 X b4 |
| ey !
o xx !
RS
I X ) e
/I/: :.. k xx | //’ o
| N >§0(>5U///8 0o ;/a/
o o %y Y
: N Yo o o/
| .AA\ { . o 7
\ el pp B (U %cpo ’
! ! ! 2\ x 7/
\ 42 AAA;’/ NSRS
) A V-
\ 8 Tl T
. !
1.0} L2, o

3)
{f

i }

0
0.5 1 Hz
f1

FIRST LINE SPECTRUM FREQUENCY

Fig. 3.5 Distribution of the first two line spectrum frequencies
for five Japanese vowels.



(a19poooAa juemiIoF Opnasd)

‘siojoweaed ¥ST £Aq waisAs STsaylulks stsATerue yooadg 9°¢ °*3t1g

SN
-144302
‘ 4098vd
| SISIHINAS
Lndlno |  d0duvd
a TVNOIS
NOILYLIOX3

O Z-—NI——O

memWyﬁazN"AN mwﬁmwyﬁqzxvsx\
zsmmWﬂm 40d4Vvd
A/A

HIL1d

JANLI1dWY

1NdNI



Table 3.2 Experimental conditions for extracting LSR parameters.

SPEECH DATA

Contents

Speakers

N4

'bakuoNga giNsekaino koogeNni hirogaru ’

10 male speakers ( 2724 frames )
10 female speakers ( 2683 frames )

Sampling frequency 8 kHz
Cut off frequency 3.4 kHz
for low pass filter
AD conversion 12 bits
accuracy

L S R ANALYSIS

Frame period
Window
Prediction order

Boundary condition
at the glottis

10 mseconds
20 mseconds Hamming window
10

kp+1= -1 ( complete opening )
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Table 3.3 Spectral sensitivities for LSR parameters.

Male Female
f1 0.018 dB/Hz{0.02 2 dB/Hz
f2 0.024  |0.025
f3 0.023 0.020
fa 0.018 0.017
fs |0.017 0.018
mH 0.51 dB/dB|0.43 dB/dB
m2 0.58 10.51
ms3 0.53  |0.55
ma4 0.51 0.61

'ms 0.54 0.52
Me6 0.51 0.52
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Fig. 3.12 Comparison between estimated spectral distortion and
experimental result.
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Fig. 3.13 Relation between spectrum distortion and quantization
bits of each LSR parameter.
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CHAPTER 4 LINE SPECTRUM PAIR (LSP)

SPEECH ANALYSIS~SYNTHESIS SYSTEM
4.1 Introduction

The PARCOR speech analysis synthesis system is one of several
efficient methods to compress a speech signal. However, the PARCOR
system has a limitation in regard to data compression. The PARCOR
synthetic speech quality rapidly becomes poor at rates under 4.8 Kkbps.
There are two main reasons: first, in parameter quantization, four to
eight bits are required for PARCOR coefficients [38]. Second, the
synthesized speech time spectral distortion rapidly increases as the
parameter refreshing period is lengthened.

On the other hand, the LSR parameters explained in the previous
section have good interpolation property. In this system, however, it
is necessary to calculate PARCOR coefficients again at the receiver
from LSR parameters. It is impossible to synthesis a speech signal from
LSR parameters directly.

This chapter describes a new approach to speech analysis synthesis
which covers the defects in the PARCOR system. The approach, called the
line spectrum pair (LSP) method, also exploits the all pole modeling of
speech. LSP paramg;ers are interpreted as one of the LPC parameters in
the frequency domain, such as LSR parameters., This approach involves
the excellent LSR parameter properties. Moreover, it can synthesize

speech directly.

4.2 LSP Speech Analysis [53],[54]



A parameter set ((,;,)1 » O1>W32, 055 === »Wpso s Opr2 ) in the
frequency domain is introduced as another equivalent set to a set of
linear predictive coefficients (o(1 s Ry p —————= » Kp ). The new
parameters are referred to as "line spectrum pair (LSP) " parameters.

lLet l/A},(z) be a stable all pole digital filter in Eq. (2.4), and
define the following (p+l1)-th order polynomials. AF;(z) follows the
relations (2.32) and (2.33) and also follows, (3.20) and (3.21).

Ap(z) - zP+1A p (1/z)

]

P (2z)

= 1+(oy ~okp )zH  —mmmm Hotp -tz - T 4L
Q (2) = AP(z) + ZP+1A p (1/2)
T O T 15 PYap— Hop+R)Z + 2 T (4.2)

These polynomials hold the‘following theorem.

(Theorem)

All zeros of P (z) and Q (z) lie on the unit circle and they
alternate. This theorem is proved by introducing a rational function of
z. (Appendix 1) It was proved that this property relates the LSP
synthesis filter stability, too [55].

Both P (z) and Q (z) have only real coefficients. Therefore, if
eJUJ is‘one of their zeros, e-ju)is also one of their zeros. Then, we

get an expression of P (z) and Q (2z) using parameters (UJ;,EB;).

(1) In case p is even



P (z)=(1~-2z) .IT (1‘- 2c:os()~).lz+z‘2 ) (4.3)
21
pre v

Q (2) =(1+12z) -IT (1-2(‘.oseiz+z2 ) (4.4)
i=1 v

( 2) In case p is odd

(P-1)/2

P (z)=(1- z2 ) -lT (1 - 2cosw; z + z2 ) (4.5)
i=1
(P+1y/2 ;

Q (z) = - 2cos e.‘z +z°% ) (4.6)

T o

i=1

From Eqs. (4.1) and (4.2), Ap(z) is expressed by P (z) and Q (z)
Ap(z) = (P (2) +Q (2))/2 ' (4.7)

As stated above, consequently a set of parameters (wi s ei ) is
derived from AP(z) and Ap (z) 1is also reconstructed in terms of
(wi s ei ). Then the set ( O(i ) is also equivalent to a set
(wi , ei)’ similarly to ( ki ).

It is referred to LSP analysis of speech signal to analyze speech
signal and extract LSP parameters from it. A considerable amount of
computation is reduced by an elegant algorithm to get roots of P (z)
and Q (2z), exploiting the fact that both have complex conjugate roots.
Parameter loci of (wi ’ ei ) are shown in Table 4.1, according to the
number of the analysis order p.

LSP parameters, (,Ui. and ei , are converted to fi and g; > whose

dimension is in kHz, wvia the relations, f-l = W; /2TAT and

gi =ei /2TCAT.



4.3 LSP Speech Synthesis

The LSP all pole filter is a digital filter, whose transfer
function is identical to that for the LPC or PARCOR all pole filter
l/A¢,(z). LSP speech' synthesis is performed by replacing the LPC all
pole filter with this fiiter. The all pole digital filter is realized,
as shown in Fig. 2.1, by a digital ‘filter with a negative feedback

loop, whose transfer function is AF’(Z)=1'

(o) G
H (2) = = — ' (4.8)

Ap (2) 1+ (Ap(2) - 1)

Identical transfer function A'g(z)—l is also realized directly

using LSP parameters,
(1) In case p is even

A',(z)—l = [ (P (2)-1) +(Q (2)-1)1/2

pr2-1 1
2
=z [(a1+ z) + Z (ai+1+ z) -IT (1+a&z+z )
i=l =1
p/2
- ‘TT. (1 +a.z + zz')
. ¢
¢=1 ,
pra-1 : (4.9)
2
+ z [(b1+ z) + Z (bi+1+ z) TT (1+b&z+z )
l=1_ &:0
ps2

+ -ﬂ- (1+b&z+zz)
_ i=t



(2) In case p is odd

Ap(2)-1= [ (P (2)-1)+(Q (2)-1) ] /2

(P-3)/2 i
2
=z [(a1+z)+ Z (ai+1+z) TI- (1+a}z+z )
i=1 }:1 '
(P-1)/2
-z 11- (1 + a&z + 22 )
i=t
(p-2/2 (4.10)

i
+ z [(b1+z)+ ;(bi+1+z) ﬂ (1+b}z+z )

where ai= =2 cos W, ’bi= -2 cos ei .

An example of an all pole digital filter, which has the above
transfer function in the negative feedback loop, is constructed as
shown in Figs. 4.1 and 4.2.

Figures 4.1(b) and 4.1(d) are equivalent transformations of Fig.
4.1(a) and 4.1(c), respectively. Generation of one sample output

requires p multiplications and (3p+l1) additions and subtractions.
4.4 Physical Meaning of LSP

LSP parameters have a clear physical meaning. If the vocal tract
characteristics can be expressed by 1/A‘,(z), the vocal tract is
modeled as a non-uniform section area acoustic tube, consisting of p
equally long sections mentioned in Chapter 3. The acoustic tube is open
at the terminal correspondent to the lips, and each section is numbered
from the lips. Mismatching between adjacent sections n and n+l causes

wave propagation reflection. The reflection coefficients are equal to



the n~th PARCOR coefficients k n + Section p+l, corresponding to the
glottis, is terminated by mafched impedance, The signal excitation
applied to the glottis drives the acoustic tube.

The PARCOR lattice filter is regarded as an equivalent digital
filter to this acoustical model, so any speech signal can be modeled
according to the acqustic tube model through PARCOR analysis. 1In
ordinary PARCOR analysis, the boundary condition at the glottis is
impedance matched. Now consider a pair of artificial boundary
conditions, where the acoustic tube is completely closed or open at the
glottis. These conditions correspond to a pair of extreme values of
artificially exﬁended PARCOR coefficients, namely k P+l = 1 and
k’P+1 = -], respectively. Under these conditions, A‘>(z) should be
noticed to be identical to P (z) or Q (z), respectively. The acoustic
tube becomes lossless, and then the transfer function displays line
spectrum structure at frequencies u)1 , 91 sWos ————= wP/Z » O proe

Consequently, LSP parameters means frequencies at which the
acoustic tube shows line spectrum structure under a pair of extreme
artificial boundary conditions: complete opening and complete closure
at the glottis. The term LSP (line spectrum pair) is presented
reflecting such é physical interpretation. Moreover, LSP is interpreted
as a kind of pulse density modulation of the power spectrum. Using Egs.
(4.8), (4.9) and (4.10), the following representation of the power

spectrum S(W) is produced by the LSP all pole filter.
(1) In case p is even

4 2
s(w) = 62 /| Aped®) '



p/2

p+2
= 2 6‘2/(cosz_‘_;_ Hl (cosw - cose-l )
‘=
4.11
> W pre ( )
+ sin 5 ‘|T (cosW- cosw-‘))
i=14
(2) In case p is odd
5 (P+1)/2
P+2 _2
S(w) =2 G/ ( T[_ (cosw- cos O;)
i=1
|=
(P-1)/2 (4.12)
.2 W
+ sin 5 .ﬂ- (cosw - coswi))
1=1
Assume that U.)i and ei are close, and that is near to

them. Then, S(@ ) takes a large value. Conversely, the necessary
condition under which S(W ) has strong resonance at a certain
frequency is that more than two.LSP parameters concentrate near them.
Therefore, LSP is interpreted as one representation of an all pole
filter by means of density location of p discrete frequencies, instead
of line spectrum amplitude in pseudo formant vocoder.

Figure 4.2 shows the relationship between LPC spectrum envelope
and LSP parameters location of sound /a/ in continuous speech, as shown
Fig. 4.2(a). This is a typical spectral pattern for Japanese vowel /a/
sound uttered by a female speaker.

Figures 4.3 and 4.4 show sonograms of female and male speech
signals ' bakuon ga ginsekaino koogen ni hiroga£u' (phoneme-balanced
meaningless sentence). LSP parameters are plotted over them. If there
are strong resonances, two or three LSP parameters concentrate. 1f
there are no strqng resonances, for example, during a silence duration
period, LSP parameters are replaced at mnearly equal intervals versus

the frequency axis.



4.5 Statistical Properties of LSP Parameters

In a speech analysis synthesis system wusing LSP parameters,
synthesized speech quality impairment is caused Dby coding the
parameters. In this section, parameter properties in relation to
parameter distribution, quantization and interpolation are examined
statistically. These results are compared with those for PARCOR and LSR

parameters.

4.5.1 Parameter Distribution

Speech samples and analysis condition used in the experiments are
listed in Table 4.2. LSP parameters distributed as shown in Fig. 4.5.
The distribution range for each LSP parameter is from 500 Hz to 1000
Hz. These values are from 1/8th to 1/4th of the full range. At any
frame period, LSP parameter are ordered according to the theorem, but

statistically adjacent parameters are overlapped.

4.,5.2 Quantization Characteristics

In speech data compression wusing LSP parameters, it is very
important to achieve optimum quantization for bits saving.

The LSP analysis synthesis system 4is based on speech spectrum
preservation principle, such as the PARCOR system. Therefore, the
transmission distortion is to be discussed as a function of spectral

distortion. To clarify the relation between information rate and



spectral distortion by quantization, a spectral sensitivity analysis
technique is applied to LSP parameters to realize optimum quantization.

A spectral sensitivity for each LSP parametef is defined in the
same manner as mentioned in Chapter 3. 1In order td get spectral
sensitivity, speech samples uttered by ten speakers, five male and five
female, were used in the experiment. Each sentence uttered is a
phoneticallylbalanced Japanese sentence with four second duratiom.

Experimental results of spectral sensitivities are summed up in
Table 4.4. Individual spectral sensitivities are uniform and the ratio
of minimum value to maximum is small, about two times, in comparison
with that for PARCOR coefficients,

Spectral distortion by quantization for each parameter is shown in
Fig. 4.6.

Two quantization methods for LSP parameters are evaluated by
spectral distortion measure in order to compare PARCOR coefficients and
LSR parameters. Spectral distortion between a non-distorted spectrum
and a distorted spectrum due to quantization is defined by a mean
spectral distance on a de scale, Spectral distortion is represented
by the averaged distortion value obtained every frame period. Two
quantization methods are :

(1) Quantization =-A: Linear quantization of fi and k i over the
range (min 1 % tail wvalue, max 1 % tail value) and uniform bits
allocation to each parameter.

(2) Quantization -B: Linear quantization of f£; and ki over the
range (min 1 % tail value, max 1 % tail wvalue) and non-uniform bits
allocation to each parameter, taking into account spectral sensitivity.

The parameter quantization range is selected, excluding very few

occurences to quantize effectively.



Experiment results are shown in Fig. 4.7. In this figure, lines A,

A', B, B', C and C' represent :

A ; PARCOR, Quantization-A
A'; PARCOR, Quantization-B
B ; LSR , Quantization-A
B'; LSR , Quantization-B
C ; LSP » Quantization-A

C'; LSP , Quantization-B

In Quantization-A, the information rate per frame to restrict the
mean spectral distortion under one dB, needs to be 50 bps in the PARCOR
system and 35 bps in the LSP system.

The difference in these information rates is caused by wide ranges
and spectral sensitivity non-uniformity of PARCOR coefficients. That
is, PARCOR coefficients are distributed more widely than LSP parameters
and lower degree coefficients are concentrated at nearly +1 or -1.
These spectral sensitivity values are much higher than that for higher
degree coefficients. In the case of LSP, each parameter is quantized at
four bits per frame; the mean spectral distortion is less than one dB.
On the other hand, using Quantization-B, the quantization bits decrease
from six to nine bits per frame were reduced in PARCOR coefficients,
but only one or two bits per frame reduced in LSP parameters, - in
comparison with Quantization-A at one dB spectral distortion.

This results mean that uniform bit allocation is nearly optimum in
LSP parameters. Quantization property for LSP parameters is also

superior to that for LSR parametéfs.



The characteristics of LSP parameters quantization . properties are
summarized as :

(1) The ratio of information rate (LSP/PARCOR) to  suppress
spectral distortion under one dB is 0.6 (35/50) in the uniform bit
allocation and 0.8(34/42) in the non-uniform bit allocation.

(2) For LSP parameters, if each parameter is quantized four bits
equally, the spectral distortion is less than one dB on an average. It
does not need the non-uniform bit allocation and parameter non-linear

conversion, such as for PARCOR coefficients.
4.5.3 Interpolation Characteristics

Synthesized speech using the LPC parameter generates a kind of
spectral distortion, called time spectral distortion, by sampling LPC
parameters at more than 10 mseconds intervals for information rate
saving. Therefore, in the speech analysis synthesis system, parameter
interpolation is effective in smoothing synthesized speech roughness.
In this section, interpolation properties are discussed, using time
spectral distortion between an interpolated spectrum and an actual
spectrum.

In the speech analysis synthesis system, spectral distortion 1is
caused by quantization and interpolation. However, in this section, to
clarify only interpolation properties, parameter quantization is not
considered. The interpolated parameter selected is f : in the case of
LSP and is tanhflki in the case of PARCOR coefficients and linear
interpolation is used. Speech samples used in this experiment are the
same as those used in examining the quantization properties.

The analysis frame period is 10 mseconds. Parameter interpolation



periods are chosen as from 20 mseconds to 70 mseconds at every 10
msecond interval. Each LSP parameter is linearly interpolated from 20
mseconds to 70 mseconds and spectral distortion is calculated every 10
msecond period. The relation between spectral time distortion and
parameter sampling frame period is shown in Fig.4.8. As is evident from
this figure, the LSP parameters interpolation property is superior to
that for PARCOR coefficients, as well as for LSR parameters. At the
same spectral distortion, the sampling rate for LSP parameters is 75 ¥

of that for PARCOR coefficients.

4.5.4 Comparison of Statistical Properties

LSP parameters statistical properties are summarized in Table 4.4,
comparing PARCOR coefficients and LSR parameters., The information rate
in the LSP system is proved to be about 60 % of that for the PARCOR

system, through spectral distortion analysis.

4.6 Speech Quality Assessment for LSP Synthesized Speech [56]

As mentioned before, LSP parameters are superior to PARCOR
coefficients in respect to quantization and interpolation properties as
a function of spectral distortion. In order to clarify this
experimental result subjectively, synthesized speech quality assessment
using pair comparison was studied. The eight kinds of synthesized
speech used for this test are shown in Table 4.5. Four of them are
synthesized by PARCOR coefficients and the others are synthesized by
LSP parameters. Speech data, bits allocation and other conditions for

synthesized speech are shown in Table 4.6. To clarify only the



difference in spectral parameters (PARCOR or 1LSP), both synthesized
speech categories have the same excitation parameters with the same bit
allocations. Experimental results are shown in Fig. 4.9 and Fig. .4.10.
Figure 4.9 shows the preference score for each sample and Fig. 4.10
shows the selective ratio at each information rate. The preference
score for LSP synthesized speech is higher than that for PARCOR
synthesized speech at the same information rate. Especially, the LSP to
PARCOR preference score ratios are 7:3 at 4.8 kbps and 9:1 at 2.4 kbps.
At 1.6kbps, the ratio becomes smaller than that at other information
rates. In this case, the parameter sampling period is too rough for
rapid speech spectral transition. Other parameter sampling techniques,
for example, variable frame rate sampling (VFR) to be mentioned in
Chapter 5 or vector quantization to be mentioned in Chapter 6, needed

to be applied to achieve speech data compression with a lower bit rate.

4.7 Conclusions

(1) A new approach to speech analysis synthesis, based on 1line
spectrum pair (LSP) representation of an all pole digital filter was
introduced. Its principle and physical meaning were related.

(2) Characteristics for = LSP parameters were  examined
experimentally as a function of spectral distortion. LSP parameters
have better quantization and interpolation properties than PARCOR
coefficients, or even LSR parameters.

(3) Optimum bit allocation was proposed through spectral
sensitivity analysis. Spectral sensitivities for LSP parameters are
uniform. Consequently wuniform bit allocation is nearly optimum to

quantize LSP parameters,



Four bits to each parameter is enough to compress the spectral
distortion to under one dB, Moreover it only need 34 bps to achieve
spectral distortion to under one’dB, considering spectral sensitivity
and distribution fanges for LSP parameteré. This value is about 85 % of
that for PARCOR coefficients.

(4) LSP parameters have good interpolation characteristics, better
than those for LSR parameters. Consequently, the frame period can be
expanded 1.25 times that for PARCOR.

(5) According to better quantization and interpolation properties,
the 60 % information rate, on the basis of thg PARCOR system, is enough
to achieve the same spectral distortion as that in the PARCOR system.

(6) The fact that the LSP system achieves equivalent quality at 60
% bit rate, on the basis of the PARCOR system, was proved subjectively,

too.



Table 4.1 Locations of zeros in polynomials P(z) and Q(z).

._ [ No.of Root _ Roots Pattern

P |Polynomial Real |[Complex|0Q 1o
P 1 P/2 L—‘-—Q—l——q—

Even _ —
Q | 1] p/2 |1 ei 4
| P 2 |P-V2 |[$rer—ar19
Odd . M
Q o |P+)2 |lersel o]

Occurrence

Frequency (kHz)

Fig. 4.5 LSP parameters distribution.
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Table 4.2 Experimental conditions.

SPEECH DATA

Contents

Speakers

Contents

Speakers

’

bakuoNga giNsekaino koogeNni hirogaru

11 male speakers
14 female speakers

" chooseN naNbuni teikiatsuga atte

kyusokuni hattatsu shinagara higashi
naishi toohokutooni susuNde imasu ’

2 male speakers
3 female speakers

’

(total =-- 12311 frames )
Sampling frequency 8 kHz
Cut off frequency 4 kHz
of low pass filter
AD conversion 14 bits
accuracy
L S P ANALYSIS

Frame period
Window
Prediction order

Boundary condition
at the glottis

10 mseconds
30 mseconds Hamming window
10

k py1 = -1 ( complete opening )
kpyt = +1 ( complete closure )
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Table 4.3 Spectral sensitivities for LSP parameters.

LSP [Spectral | SP = [Spectral
' ISensitivi : itivi
Parameter (dB}HJy Parameters(eggl/tmt)y
f1 0.022 g1 0020
f2 0.013 g2 0.014
- f3 0.015 g3 0.014
f4 0.012 g4 0.014
f5 0.012 g5 0.011
- A
[i4)
B
c |5
Q E
1: 1.() o F:
2
0
'50.5'
_@ 0.3¢
002t
@
Q
c"’0.1 -

1 2 3 4 5
Quantization Bits(bits/parameter)

Fig. 4.6 Relationship between quantization spectral distortion and
quantization bits per frame.
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Fig. 4.7 Spectral distortion versus bit rate per frame.
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Fig. 4.8 Comparison between interpolation characteristics,
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Table 4.4 Comparison of features of LSP, LSR and PARCOR parameters.

PARAMETER MERIT DEMERIT
Stability Bad interpolation
condition.6§|kﬂ< 1 property
Direct extraction by Large varity in spectral
lattice filter sensitivity

( k; )
k . is independent of
analysis order
Similar to formant Parameter conversion is
parameters needed for synthesis
Uniform spectral Large calculation.amodht
sensitivity for interpolation
Good interpolation £, and m; values depend
property on analysis order

LSR

(f; »my )

Similar to formant LSP parameters disorder
frequency occurs due to quantization
Uniform spectral with very few quantizq;ion
sensitivity bits
Good interpolation f; and g; ‘'Values depend
property on analysis order
Direct synthesis

LSP without parameter

(fi 83 ) conversion

Stability condition

f1< gz< —-—<fn< 8n

— 108 —




Table 4.5 Speech samples for a pair comparison test.

No. ?Zg:‘r;ﬁ::; Frame Pefiod Quantization| Bit Rate

1 5 msec 9.6 kbits
10 | 4.8

2 LSP

3 20 24

4 30 48 1.6

5 5 bits/fra 9.6

6 . 10 (tahle2) 48

- PARCOR | -
7 20 24
8 30 | 1.6

Table 4.6 Speech synthesis conditions.

Speech Data /ft?aﬂgau‘egn ggpeagklensrekai 10--- /

S
F?&aule"r]igy 8 kHz
SyntheSIS | 10
Spectral Envelope |Excitation
,g LS p fi fafafafs 8182858485 Pitch
0 | 14
T 4444344433 6
@ 9 Amplitude
E E PARCOR k|k2|&3k4k5k5k7k8k9k\0 5
7543333333
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( kbit/sec)

Rate

Bit

o] L S P

48 68

24 89

16 75

e o ey
fos e

o) 25 50
Preference Score (%)

Fig. 4.10 Preference scores for each synthesized speech
at the same information rate.
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CHAPTER 5 VARIABLE FRAME RATE CODING USING LSR PARAMETERS

5.1'Introduction

Speech events generally occuri at non-uniformly. spaced time
intervals, according to the utterance contents or articulator
movements. Therefore, wuniform speech parameters sampling is not
efficient. Sampling at a variable rate in accordance with the véhanging
speech signal characteristics is mqfe efficient. In this chapter,
parameter coding at non-uniformity spaped time intervals -'is presented.
This technique has been célled "Variable Frame Rate Transmission (VFR)"
[25],[571,[58],[59]. The VFR transmission scheme in the . pseudo formant
vocoder is related to reducing the average transmission rate without
speech quality degradation. Two VFR techniques are discussed as a
function of time spectral distortionm. Synthesized speech qualities are
assessed by subjective measuremént in comparison with conventional

uniform sampling.
5.2 Comparison of Several Interpolation Methods

It is very important to deal with the speech signal redundancy in
the time domain quantitatively. First, the time spectral distortion by
several interpolation method is discussed.

The speech signal is analyzed every 10 mseconds and LSR parameters
are extracted. Frame length was set from 20 mseconds to 70 mseconds,
every 10 msecond period. The spectral time distortion was computed
between real values and interpolated values.

Four interpolation methods are shown in Table 5.1. In Table 5.1,
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b4 i means line spectrum parameters and every parameter is not
quantized, to clarify only the interpolation property.

The spectral distortion varie;y, using various interpolation
methods, is shown in Fig. 5.1. The time spectral distortion in case (a)
is very large. The spectral distortion in case (c) is nearly equal to

that in case (b).
5.3 Variable Frame Rate (VFR) Scheme by Dynamic Programming

In a VFR scheme, feature parameters are transmitted only when a
change in speech signal is observed, in comparison with the preceeding
transmitted parameters. The untransmitted parameters are interpolated
using parameters from the two adjacent transmitted frames at the
receiver,

First, optimum piece-wise ' linear interpolation by dynamic
programming (DP) is proposed. It is assumed that T is the speech signal
duration. The problem is to determine an optimum division of T with N
segments as a function of time spectral distortion.

Eacﬁ block has eleven LSR parameters (five frequencies and six
amplitudes).

LSR parameters are linearly interpolated in each segment and the
spectral distortion be;ween interpolated and real values is computed.

This procedure is expressed in the following equations.
N
F(N,T) = Min ) S(tp ,tp ) (5.1)
i=1

(0=t <t; <ty ————- <ty =T)
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2
S(t, sty ) = Z (Asy ) (5.2)
R’-tn-i

where N is the number of divisions, /A S is the spectral distortion in
a frame and S is the spectral distortion in a segment. S(t'n-l’t’ﬂ ) is
approximately calculated by the following equations, as mentioned .in

Chapter 3.

tn 5
~ 2
2= i=1

.3
e (5.3)
2
Z mig ) I
i=1
where C'F- and C'mi mean spectral sensitivity, as shown in Table 3.3.
; :
Terms A f;9 and A myy are parameter differences  between
untransmitted value and interpolated value.
Dynamic programming technique can be applied to determine . the
optimum division (tl sto == stN-t )

When T and N are given, this procedure is shown as the following

equations,
k=1 Gty ) =8(tg,ty) , ty<ty & T-NHL
k=2 Go(ty ,to ) = Min [ S(tg .ty )+ S(ty ,tp )]
k=3 G3 (t2 st3 ) = Min [ Gz(tl ’ta )+S(t2 »t3 )]
I ! :
. : t o<ty <t, <ty LT-N+3
i i
| | : (5.4)
] I l
§ . ]
[} 1
| : i
! ! !
' oot I
k=N-1  Gpn.g(ENpsEN-1) = Min [Gnp(EN.g3,t N )+
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This algorithm gives the minimum time distortion, when T and N are
given. The difference between uniform and non-uniform sampling with DP
is examined using real speech samples. It is better to choose the long
duration of T in using piecewise optimum approximation. The combination
between T and N in the experiment is determined as shown in Table 5.2,

Spectral distortions by both sampling methods are plotted in Fig.
5.2. It is possible to achieve about 35 % spectral distortion reduction
by DP in comparison with wuniform sampling. The spectral distortion
distribution in each frame is shown in Figs. 5.3(a)-(f). It is observed
that frames which have a large spectral distortion are reduced by VFR
sampling. The duration distribution for each segment by VFR are shown
in Figs. 5.4 (a)-(f). Segments which exceeds 100 mseconds duration time
mostly appear in silence or stable portion in vowel sound.
Relationships between the spectral distortion and utterance speed rate
are listed in Tables 5.3 (a) and (b). The spectral distortion increases
according to the utterance speed rate. This result means that piecewise
optimum division T and N are not sufficient to represent the rapid
transition precisely.

In the VFR system, the most important factor is how to select the
frame to be transmitted. The VFR scheme using DP has the following
problems.

(1) It is better to use long speech duration as much as possible
to get optimum division. However, in this case, the time delay for
transmission becomes long.

(2) An extended calculation procedure is needed in getting the
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optimum division.
5.4 Fully Automatic Straightforward VFR Scheme

To solve several problems in the VFR scheme using DP, an automatic
straightforward VFR scheme for selecting the frame to be transmitted is
introduced.

Assume that frame n is to .be transmitted, and frame  (ni+m)
(m=1,2,—-~==~ ) is under consideration, for each of the (m-1) frames that
lie between frames n and (nm). Spectral distortion appears between the
actual value and the value obtained from 1linear interpolation Dbetween
frames n and (n+m). These (m-1) spectral distortion are accumulated -and
the average spectral distortion over these intervals is calculated.
This average spectral distortion is compared against a  spectral
threshold fixed previously. If the spectral distortion exceeds the
threshold value, the frame (mtm-1) is transmitted. If not, the same
procedure is repeated until the spectral distortion exceeds the
threshold value. Figure 5.5 shows the above procedure.

Using this method, the point can be achieved wherein the average
spectral distortion in each section is under the threshold value.
However, it should be pointed out that this method requires a buffer to
maintain several frames for comparison and the frame: interval
information must be transmitted. This threshold value is set to be DL
of spectral distortion mentioned in Chapter 3. Of course, several
modifications can be considered. It 1is possible to replace average
spectral distortion with the maximum spectral distortion.

Using this method, the spectral distortion decreases in comparison

with uniform sampling. The spectral distortions caused by two VFR
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schemes are compared in Fig. 5.6. The spectral distortion caused by the
automatic VFR scheme is reduced to 65 % of that in uniform sampling. In
a real system, parameters must be quantized properly. Therefore, the
VFR scheme mentioned above takes parameter quantizétion into
consideration.

LSR parameter fluctuations for a female speaker are shown in Figs.
5.7 (a), (b) and (c). Figure 5.7 (a) shows the original parameter
fluctuation. Figure 5.7 (b) shows parameter fluctuation with uniform
sampling, when frame length is 50 mseconds. Figure 5.7 (c)v shows the
piecewise linear approximation proposed above, when averaged frame
length is 50 mseconds. In this figure, LSR parameters are transmitted
less often during steady speech state, and are transmitted more often

during rapid speech transition.
5.5 Speech Quality Assessment by Subjective Measurement

In order to verify the synthesized speech quality by VFR method
mentioned above, listening experiments were carried out. 1In the
experiment, speech quality between synthesized speech and speech

samples with added noise were compared under several conditionms.
5.5.1 Experimental Conditions

Three kinds of sentence(A,B,C) listed in Table 5.4 were uttered by
two male and two female speakers. The speakers were professional
announcers. The speakers and sentences combination is determined as
shown in Table 5.4. Three sets, T4 ,T9 and T3 in Table 5.4, were

used in the pair comparison test.
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5.5.2 Kinds of Synthesized Speech

Speech samples were synthesized by LSR parameters with uniform and
variable frame rates. Average frame length was set from 30 mseconds to
50 mseconds. Consequently, information rates ranging from 1200 bps to
1800 bps and 13 speech samples were used for test totally. Bit
allocations to LSR and excitation source parameters are listed in Table

5.5. Ranges for LSR parameters quantization are shown in Table 5.6.

5.5.3 Generation of Reference Speech Samples

Reference speech samples were generated for comparison with
synthesized speech by the VFR technique. These samples were generated
by adding multiplicative random noise to speech signal [60].

Noise signal n(t) is defined by

n(t) = k s(t) no(t) ‘ (5.5)

where k is noise signal gain factor, s(t) is speech signal and n()(t)
is random number between -1 and +1 with uniform distribution.

The signal to noise (S/N) ratio is represented as

S/N = 20 log (1/k)-10 log G° (5.6)
where CSZ is variance in nt>(t) and is 1/3 in the case of uniform

distribution.

Then, Eq. (5.6) is rewritten as
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S/N = =20 log k + 10 log3 (5.7)

The signal to noise ratio (S/N) 1is set freely, setting an
available number as k in the above equation. S/N was set at thirteen
different values, 0, 3, 7, 10, 13, 15, 17, 20, 23, 27, 30, 40,

00 (without noise) for a speaker.

5.5.4 Listening Rating Test

In the listening rating measurement, many untrained subjects were
asked to listen to various speech. Forty subjects took each test. A
total of 120 subjects were used.

Subjects judge the speech quality on the following 5 point

category scale.

0-~---Unsatisfactory
1----Poor
2—----Fair
3----Good

4~———-FExcellent

From these scores, equivalent §S/N to speech samples can be
obtained by VFR method. The relation between S/N and mean opinion
scores (MOS) for the noise additional speech samples is shown in Fig.
5.8. The equivalent S/N ratio corresponding to synthesized speech is
shown in Fig. 5.9.

Opinion scores for all samples are listed in Appendix 2. The
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quality of synthesized speech at 1200 bps is equivalent to a speech
sample with 9 dB, and that at 1500 bps is equivalent to 14 dB noise
added to speech. In the case of synthesized speech at 1500 bps, mean
opinion scores have large variance., This difference depends on the
kinds of speech impairment between VFR and noise added to speech: 1In
the case of noise added to speech, the acceptable S/N ratio is nearly
the same among the subjects. On the other hand, opinion scores are
divided for impairment in synthesized speech, for example, the - lack of
naturalness and pitch rapid transition. The relationship between
spectral distortion and opinion score is shown in Fig. 5.10. Mean
opinion scores decrease with the increase in spectral distortion.
However, when the spectral distortion is the same, MOS has a large
variance. This is mainly caused by miss-matching of spectral envelope
parameters and excitation source parameters.

A new VFR scheme considering excitation source parameters must be

developed.

5.6 Conclusions

Speech data compression by VFR was presented, using LSR
parameters, which have good interpolation properties.

(1) The variable frame rate extraction method by dynamic
programming was introduced. The information bit rate was reduced. to 65
% of that in the case of uniform sampling.

(2) A straightforward VFR scheme was proposed. This method can
compress the mean spectral distortion in each segment under the
threshold value. Using this method, 70 % spectral distortion reduction

can be achieved, compared with uniform sampling.
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(3) Synthesized speech samples were tested by subjective
measurement ,too. The synthesized speech quality at 1500 bps by VFR
method was equivalent to a speech sample which had 14 dB added

multiplicative noise.
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Table 5.1 Several interpolation methods.

a X

|+j:xi

b X|+J:(X,+X|+m)/2

X j+ - - +X iHn—
m

C Xi+j=

xi+m—xi j
m

d Xi+j:Xi+

SPECTRAL DISTORTION (dB?)

30F
20
10
(o]
0] ! 1 1 ! | 4 !

10 20 30 40 50 60 70

FRAME LENGTH (msec)

Fig. 5.1 Spectral distortion by interpolation versus frame length.

—122 —



Table 5.2 Combinations of block length (T) and number of
divisions (N).

VENGTH tmovey| T (msee) N
20 200 10
30 300 10
40 400 10
50 500 10
60 480 8
70 490 7

Table 5.4 Combinations of sentences and speakers for

a pair comparison listening test.

SPEAKER

SENTENCE

FEMALE

MALE

TS | EN

SM

SG

A

T1 T3

T2

B

T2

T1

T3

C

| T2 | T1

T3

(A) ' bakuoNga giNsekaino koogeNni hirogaru

(B) ' choseN naNbuni teikiatsuga
kyusokuni hattatsu shinagara

atte,

(C) ' mukashi mukashi arutokoroni ojiisalNto

obaasaNga imashita
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)

FREQUENCY (b

FREQUENCY (%)

FREQUENCY (°b)

Female Male ,
40- CONSTANT 40 CONSTANT
204 20
= I e S
40 VARIABLE |0 VARIABLE
20 204
I I
0O 1V 2 4 8 163264128 0 1 2 4 8 16 32 64 128
SPECTRAL DISTORTION(dB ")
(a) 20 msec
40- CONSTANT 0] CONSTANT
20 204
— .
40 VARIABLE |, VARIABLE
204 204
-—.——-1 1 —”'-l 1 1
0O 1 2 4 8 16 3264128 0 1V 2 4 8 216 32 64 128
SPECTRAL DISTORTION(dB")
(b) 30 msec ,
404 CONSTANT |, .| ' CONSTANT
20- 20+
- I
40- VARIABLE |40 VARIABLE
204 20
0 1 2 4 8 163264128 0 1 2 4 8 16 32 64 128

SPECTRAL

DISTORTION(d B?)

(c) 40 msec

Fig. 5.3 Spectral distortion occurences at each frame in VFR scheme

by dynamic programming.
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Female Male

_40- CONSTANT |, CONSTANT
< 20- 20
A . N l =
1l
340- VARIABLE |;q_ VARIABLE
& 20- ‘ 201
—{_‘ 1 . _'l—— 1 L
O 1 2 4 8 16 32 64128 0 1 2 4 8 16 32 64128
SPECTRAL DISTORTION (d B*)
(d) 50 msec
- 40- CONSTANT |, . CONSTANT
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Table 5.6 Quantization ranges for LSR parameters.

DISTRIBUTION

QUANTIZATION

MINTZS max 19, RANGE
fq 0.08 0.52 | 0.44 kH:z
fo 0.40 1.20 | 0.80
fs 0.96 2.12 |1.16
fa 1.88 2.88 |1.00
fs 2.68 3.56 | 0.88
fe 4 (CONSTANT)

m 1 0.047 0.990(13.2 ds
m, 0.0079 0.758|19.8
mj; 0.00014 0.575| 36.1
mas. 0.000036 0.288]39.0
ms 0.000021 0.331(42.0
Mg 0.000004 0.200(47.0
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CHAPTER 6 VECTOR QUANTIZATION USING LSP PARAMETERS
6.1 INTRODUCTION

In this chapter, a pattern matching vocoder using the ~ LSp
parameter is presented. In this system, standard spectral patterns are
generated automatically by a simple clustering algorithm. Differences
between scalar and vector quantization are discussed as a function of

spectral distortion.
6.2 Pattern Matching Vocoder System

Speech analysis synthesis by PARCOR or LSP is a good method to
compress the speech signal in narrow band transmission. Several
quantization techniques have been proposed. Howeﬁer, these techniques
are based on scalar quantization of feature parameters. Namely, each
parameter is independently quantized, regardless of the relation with
parameters in a frame. Thus, the limitation for data compression is
around 2.4 kbps. Moreover, in order to compress the speech signal, it
is necessary to eliminate the feature parameters redundancy in the time
domain and space domain. One of these is VFR transmission, proposed in
the previous chapter. The other is to use of the parameter distribution
redundancy. Feature parameters are not generally distributed uniformly,
and it is useful to represent spectrum patterns as a parameters set,
Only a code, which corresponds to a parameters set, is transmitted
instead of the parameters themselves., This method is called a “Paftern
Matching Vocoder”. The basic idea was proposed by C.P.Smith in 1957

[13],[61]. Figure 6.1 shows a typical pattern matching vocoder system.
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In this system, typical spectral patterns, which correspond to several
phonemes, are stored previously as discrete symbols wusing training
speech samples. Each discrete symbol corresponds to one spectrum
pattern represented by several feature parameters. Input speech is
analyzed every 10 mseconds and LPC parameters are extracted. The
spectral distance between a current frame and each stored spectrum
pattern is calculated. Only the code which corresponds to the nearest
spectrum pattern is transmitted. At the receiver, it 1is necessary to
decode spectral parameters from a received code for speech synthesis.
Excitation signals, for power and pitch and voicing, are transmitted as
scalar quantization or another quantized technique (differential
adaptive coding et al,) in most of these systems. It is possible to
achieve drastic bit savings, in comparison with transmitting the
parameters themselves, Recently, this method 1is called "Vector
quantization”, in comparison ‘with scalar quantization. Several
quantization techniques have been reported and compared with
conventional scalar quantization [62],[63],[64].

The pattern matching vocoder has significant features over other
vocoder systems., First, it is possible to carry' speech  information at
under 1000 bps. Second, it furnishes high reliability to keep speech
contents secrecy. The reason is, if there 1is no ‘coincidence between
coder and decoder, it is rather difficult to get intelligible
synthesized\speech quality. On the contrary,  in the pattern matching
vocoder, there are two big technical problems. First, synthesized
speech quality is generally not as good as that for other methods. The
reason is that, when the speech signal is represented by limited
spectral patterns, spectral wunsmoothed transitions occur. The rapid

parameter change sometimes damages synthesized speech quality. The

—139 —



second problem is how to select typical spectral patterns. It 1is very
difficult to decide the number. of = discrete patterns required to
represent the virtually unlimited variety of speech spectra. Therefore,
adjacent spectral patterns are sometimes very different and it is
necessary to interpolate parameters smoothly, in order to generate high.
quality synthesized speech., The third problem is spectral distance
measure, It is desired that the distortion measure be meaningful
subjectively. To solve these problems, the new pattern matching vocoder
is presented. This system have several features over the preceeding
methods.

For the first problem, LSP parameters are used in order to
interpolate feature parameters smoothly. LSP parameter have better
interpolation properties than other LPC parameters [65]. This feature
can be used efficiently in a pattern matching vocoder system.

For the second problem, typical spectrum patterns are generated
automatically without linguistic information. Much data can be dealt
with by this method.

For the third problem, the logarithmic difference in power spectra
between input speech and reference spectral pattern is wused. This
measure was used for evaluating synthesized speech quality in the
PARCOR or LSP synthesis method. This measure is convenient for
comparing the speech quality of conventional synthesized speech
objectively. Moreover, this measure was proved to have good

correspondence to subjective measurement [48],[66].

6.3 Selection for Discrete Patterns of Speech Spectra

There are mainly two methods in selecting discrete patterns. for
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speech spectra. One is to select discrete patterns using the phoneme
information. The other method is to .use clustering technique for
dividing a space where speech spectra are distributed. In this thesis,
the latter method is preferred to select discrete patterns for speech
spéctra. Speech samples can be dealt with regardless of phonemes and
the kind of languages. In this automatic process, there are no
ambiguous processes guided by human decision. The process for selecting

discrete spectral patterns is presented as follows.

(1) Speech analysis

Training speech samples are analyzed every 10 mseconds. The 10~th
order LSP parameters and excitaﬁion signals are extracted.

(2) Pre-processing

pata compression for clustering is executed by the following three
methods.

The silence duration. are eliminated using power threshold. If
spectral distance between adjacent frames is less than the fixed
threshold, reference frame data is only used for succeeding processes.,

(3) Spectral patterns are divided into two classes according to
voicing (voiced or unvoiced).

(4) Generation for discrete patterns of speech spectra

The speech spectra are generated automatically by a clustering

technique using training utterances.
[ Vector Quantization Algorithm ]

“E 0 =(g1, 8o =7 B M ) is a training spectral vector set, which

consists of a few thousand frames arbitrarily selected from training
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utterances. From E 0 R the K phoneme-like templates set
F =(f1 sfo ,———,f k ) is generated. C (E‘ ) is defined as the
mean vector of E ; and symbol d(g i o8 i ) is defined as the spectral"
distance between g ; and g& .

(1) Initialization : Set © (the distance threshold for vectors
which are regarded as the same cluster) and K (the number of

phoneme-like templates desired). Set k=1.

(2) Compute the spectral distance d(gi 8 ) for every

¢
combination of i and j.
(3) Count the number of g ; values which satisfies
d(gi ,g& )X © for all i. This vector set is represented as
B(g. ,6) and the number is represented as N(i).

i
(4) Find the vector g : which has the maximum N(i) number.

(5) Generate two kinds of speech spectral patterns. One is the
central pattern itself. The other is the mean vector C determined by
calculating the mean value of every autocorrelation coefficient from

all the vectors belonging to B(gi ,©). These data are stored as f i

and f P respectively, one of the phoneme-like templates.

»9)

(7) 1f Ekr1= 0 (empty set) or k=K, stop; otherwise replace k by

(6) Ey g = Ey - Bg,

k+1 and go to step (3).

This algorithm is very simple, because it 1is only necessary to
give Kand § . Iﬁ this method, the spectral distance between two
vectors is calculated only one time. After step (3);. only the number
which satisfies d(gi ,g} )< 8 is ca;culated, considering the vectors
eliminated at step (6). Ihese processes are illustrated in Fig. 6.2.

This clustering method proposed here is basically minimax
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criterion, A spectral pattern in high density space can be extracted
earlier than that in low density space. The spectral patterns in high
density play a more important role than that in 1low density. This
method can suppress the spectral distortion in the worst case at given
threshold and it is not necessary to divide each cluster more
precisely. Several other clustering techniques have been reported [62].
Most of these algorithms are based on decreasing mean  spectral
distortion. In these methods, the mean spectral pattern is influenced
by isolated patterns, in order to decrease mean spectral distortion.
The algorithm proposed here can avoid these isolated  patterns
influences in generating mean spectra.

Another reason is that, it is possible to apply the Huffman coding
technique to reference spectra according to the occurences of such
spectral patterns.,

Let's assume L discrete spectral patterns are obtained finally. If
@ spectral patterns are selected, these patterns can cover the training

spectral patterns by

'3

RO .0 = ) NG /N (6.1)
=1

This factor is defined as "Covering Rate” and is wused for

selecting the number of stored spectral patterns.
6.4 Speech Coding at Low Bit Rate Using Vector Quantization [67]
6.4.1 Speaker-Independent Experiment

Speech data base in the experiment, shown in Table 6.1, include
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three kinds of short sentences, which are phoneme-balanced as much as
possible. These sentences were uttered by a total of 25 speakers,
twelve male and thirteen female speakers.

Three male and female speaker utterances for sentences (a) and (b)
were used to generate reference spectral patterns. This data set  was
called Group A here. Total frame number was approximately 20000 frames,
15000 frames for voiced sound, the other was for unvoiced sound. The -
relation between the number of spectral patterns (l) and covering rate
(R) defined in Eq. (6.1) is shown in Fig. 6.3. as a function of
spectral distortion threshold. In Fig. 6.3, the solid 1line is for
voiced sound and the dotted line is for unvoiced sound. Six pattern
sets were selected according to covering rate, as shown in Table 6.2.
Speech samples which were not used in generating standard spectral
patterns were used to verify a new pattern matching vocoder. The speech.
data was analyzed and the distance between individual frames and
vectors is calculated. The spectral distortion versus the number of
spectral patterns (represented as bits) is shown in Fig. 6.4. For Group
A, the spectral distortion is about eight dB in the case of 860
patterns. This distortion corresponds to that for two bits scalar
quantization. On the contrary, the spectral distortion for Group B is
greater than that for Group A. Furthermore, it doesn't decrease rapidly
when the number of spectral patterns increases.

Several sonograms are shown in Fig. 6.5. The upper one shows
original spectral patterns. The lower three patterns are sonograms for
synthesized speech at 570, 630 and 700 bps, respectively. These speech
spectra are synthesized under the following conditions. The frame
period was 30 mseconds, six and five bits were allocated for pitch and

power, respectively, in each frame. The speaker belonged to Group B.
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Even when using 280 patterns, some feature of the original sound
are reflected in synthesized speech.

For synthesized speech quality, there are several defect portions
at 570 bps. Synthesized speech becomes easy to hear and gets more
intelligibility at 700 bps.

In Fig. 6.4, the central patterns are used, Instead of central
patterns, using mean spectral pattern, the spectral distortion
decreases ten percent, as shown in Fig. 6.6. However, there were still
differences betwegn Groops A and B. This is because the characteristics
fqr Group B are not reflected in reference spectral patterns. The
re-generation method for selecting speétral patterns are introduced.

First, the same algorithm as that for data belonging in Group B is
applied. Spectral patterns, which have a small number of N(i), are
replaced by new generated patterns in Group B, which have a 1large N(i)
number . Using the new patterns set, there are small differences between

Group A and Group B, as shown in Fig. 6.7.
6.4.2 Speaker-Dependent Pattern Matching Vocoder [68]

In the previous section, the pattern matching system for the
speaker-independent pattern matching method is discussed. In this
section, the same algorithm is applied - to speaker-dependent pattern
matching. It is well known that there are many spectral variations for
the same phoneme among different speakers. It is a very important and
difficult problem to cover these variations with the limited number of
spectra. In order to clarify the difference between speaker—-dependent
and independent pattern matching, vector quantization is applied for a

single female- speaker.
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The parameter distribution ranges are  narrow in the
speaker-dependent case. Ranges for LSP parameters are shown in Fig.
6.8. The dotted line is for speaker-dependent case and the sqlid line
is for speaker-independent case. For speaker independent case, fourteen
male and eleven female speakers are used for the same short sentences.
Ranges for this speaker-dependent case are reduced from 50 % to 15 % of
those in speaker independent case. The same algorithm was applied for
generating reference spectral patterns.

Using 25000 frames, six pattern sets, the same number as listed in
Table 6.2, were selected. Another pattern set, which satisfies R=100 7%,
was also selected. In this case, there was a total of 1263 patterns
(1023 voiced, 240 unvoiced).

The relation between the number of spectral patterns and spectral
distortion for untrained speech data for the same speaker is shown in
Fig. 6.9. Moreover, this result\ is compared with the
speaker-independent pattern matching vocoder and optimum scalar
quantization in LSP speech analysis synthesis method, as shown in Fig.
6.10. This result leads to the following conclusions.

(1) By vector quantization, ten bits saving per frame can be
achieved in comparison with the optimum scalar quantization.

(2) In the case of a speaker-dependent pattern matching vocoder,
the spectral distortion decreases to the 60 % of that for the speaker
independent case.

Several sonograms are shown in from Fig. 6.11 to Fig. 6.13. Figure
6.11 shows original speech sound, Fig. 6.12 and Fig. 6.13 show speech
sonagrams synthesized by 270 and 1263 patterns, respectively. The lower
parts of these figures show LSP parameters fluctuation. Both edges of

each bar indicate the LSP parameter value., When the bar is short, there
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is strong resonance in the speech spectra, as explained Chapter 4.
6.5 Optimum Bit Allocation to Reference Spectral Pattern

It is evident that reference spectral patterns have different
occurences from its generation algorithm. Then, it is effective to
allocate variable bit 1lengths according to the occurences of each
vector to decrease the average information rate. The Huffman coding
technique is well known to achieve this .requirement. 1In speaker
independent coding, the Huffman coding technique was applied at 58 and
1263 patterns. Maximum and mean code lengths are shown in Table 6.3.
The mean code lengths were 3.5 and 5.24, respectively, in the case of
speech without pause duration. In the case of speech data including
pauses, 4 bits are saved per frame on an average. From these
experiments, the technique was found effective for speech data
including pause duration. One pattern, which has one bit code length,

is mainly applied to frames in pause duration.
6.6 Conclusions

A pattern matching vocoder system using LSP parameters was
proposed. A simple clustering technique was proposed for generating the
discrete spectra patterns. This clustering algorithm was developed by
taking into account acceptable spectral distortion and the Huffman
coding.

(1) Spectral distortion by quantizé;ion was examined as a function
of transmission bit rate. It was clarified that about 10 bits saving

can be achieved by vector quantization, compared to optimum scalar
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quantization in LSP vocoder.

(2) The difference between speaker-dependent and independent
vector quantization was examined wusing the same speech utterances.
According to the experimental results, two or three bits saving can be
achieved with limited speaker.

(3) Huffman coding technique for spectral patterns was applied.
This coding technique was effective for speech data which contains
pause duratiomns.

(4) Synthesized speech samples by pattern matching proposed here
had fairly good speech quality and intelligibility. This speech quality

is due to the good interpolation property of LSP parameters.
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Table 6.1 Experimental conditions.

SPEECH DATA
Contents

Speakers

Contents

Speakers

Contents

Speakers

Sampling frequency

Cut off frequency
for low pass filter

AD conversion
accuracy

bakuoNga giNsekaino koogeNni hirogaru

6 male speakers
6 female speakers

chooseN naNbuni teikiatsuga atte
kyusokuni hattatsu shinagara higashi
naishi toohokutooni susuNde imasu ’

2 male speakers
3 female speakers

Mukashi mukashi arutokoroni ojiisaNto

obaasaNga imashita. OjiisaNwa yamae
shibakarini obaasaNwa kawae seNtakuni
dekakemashita.

6 male  speakers
6 female speakers

8 kHz

4 kHz

14 bits

’

L S P ANALYSIS
Frame period
Window
Prediction order

Boundary condition
at the glottis

10 mseconds
30 mseconds Hamming window

10

k p4+g = -1 ( complete opening )
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100

50

COVERING RATE

10

NUMBER OF SELECTED PATTERNS (BITS)

Fig. 6.3 Relationship between covering rate and the number of
selected patterns.

Table 6.2 Selected reference pattern sets.

NUMBER OF PATTERNS TOTAL BIT RATE COVERING

VOICED |UNVOICED RATE (%)
1 49 9 58 5.9 75
2 147 27 174 7.4 80
3 237 43 280 8.1 85
4 318 59 377 8.6 90
5 466 84 550 9.1 95
6 714 146 860 9.8 100
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L

Fig. 6.4 Spectral patterns by vector quantization for Group A
(trained) and Group B(untrained) speakers
using central reference patterns.
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(c) SYNTHESIZED  (b) SYNTHESIZED (a) ORIGINAL SPEECH

(d) SYNTHESIZED

SPEECH

SPEECH

SPEECH

(58 PATTERNS)

FREQUENCY (kHz)

AT 570 BPS

(280 PATTERNS)

AT 630 BPS

et
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Fig. 6.5 Sonograms comparison between original and synthesized
speech by vector quantization (male speaker, frame length
-- 30 mseconds, pitch-- 6 bits, power-- 5 bits).
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CHAPTER 7 ISOLATED WORD RECOGNITION USING STRINGS OF

PHONEME-LIKE TEMPLATES (SPLIT)
7.1 Introduction

In this chapter, the vector quantization technique mentioned in
Chapter 6 is applied to an isolated word recognition system. The basic
idea of this system is to represent a speech specfral sequence by
several discrete spectra symbols. Namely, in this system, word
‘templates are represented as sequences of discrete phoneme-1like
templates (pseudo-phoneme), which are automatically selected from a
training set of word utterances by a clustering technique., A new word
rgcognition system and  its - feature are explained. This recognition
system is especially effective in speaker-dependent large vocabulary
word recognition or speaker-independent word recognition based on

multiple word templates.
7.2 Isolated Word Recognition [69],[70],[71],[72]

In most isolated word recognition systems, pattern matching
techniques based on dynamic time warping are wused. Whole vocabulary
words aré assﬁmed to be wuttered ’in advance for tfaining; Feature
parameters, such as band pass filter outputs or LPC. parameters, are
extracted from those training utterances and stored frgme by frame as
word templates. In the recognition stage, a time . sequence of feature
parameters extrécted from the input speech and word templates are
directly compared. This method is called "direct-matching” in this

thesis. This method configuration is shown in Fig. 7.1(a). In the
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direct-matching method, since spectral information for every frame is
precisely described wusing extracted parameters themselves, high
recognition accuracy can be obtained. However, in the large vocabulary
word recognition, the amount of spectral distance calculation for
dynamic time warping and the memory size for the word templates become
very large, because spectral calculation must be executed in every
frame for every template. Another recognition system was also reported
to avoid these problems [73],[74]. In this system, phoneme spectral
patterns and word templates, which contain the duration time for each
phoneme are used. However, it is sometimes difficult to determine
phoneme spectral patterns and word templates.

Apart from the word recognition field, narrow band transmission
has been studied based on vector quantization techniques mentioned in
Chépter 6. Through the examination, the speech has been ensured to be
intelligible at an extremely low bit rate, under 1000 bps. After these
experiments, it was conceived to represent word templates in speech
recognition as sequences of discrete spectral patterns, which are
vector quantized roughly. This system configuration is shown in Fig.
7.1(b), compared with a conventional system shown iﬁ Fig. 7.1(a). A new
word recognition system, using Strings of Phoneme-LIke Templates, is
named the SPLIT method. SPLIT is also a term derived from SPLITting the

feature space where many spectra are distributed.
7.3 New Isolated Word Recognition System, SPLIT [75],[76]
A SPLIT system is shown in Fig. 7.2 in detail. In the first stage,

phoneme-like templates and word templates are generated, using

previously determined training speech samples.
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7.3.1 Generating Phoneme-like Templates

The phoneme-like templates are generated automatically. 'The same
clustering algorithm, as that introduced in Chapter 6, is applied to
generate phoneme-like templates. Phoneme-like templates do mnot exactly
correspond to real phonemes. They are only used as symbols representing
discrete speech spectra here.

After this work, another vector quantization technique [77] was
applied to generate phoneme-like templates in the SPLIT method.
Differences between two clustering methods were examined as functions

of spectral distortion and recognition accuracy [78].
7.3.2 Generating Word Templates

Word templates are represented as sequences of phoneme-like
templates. Namely, each training word utterance is divided into a 16
mseconds duration succession and spectral distance between each frame
and each phoneme-like template is computed. The symbol for phoneme-like
template, which minimize the spectral distance, is stored »in every
frame. Word templates are stored as sequences of phoneme-like templates

not using the exact spectral parameters.
7.3.3 Word Recognition
The phoneme-like templates and word templates are stored at  (c)

and (d), respectively, in Fig. 7.2. Word recognition is carried out as

follows.,
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The input word wutterance is analyzed every 16 mseconds and
autocorrelation coefficients and LPC cepstrum coefficients are
extracted at (e) in Fig. 7.2. The spectral distance between individual
input word frames and individual phoneme-like templates is stored as an
element of a distance matrix in (f) in Fig. 7.2. In the experiments,
two kinds of spectral distance measures were used. One is cepstrum
distance measure (CEP) and the other is Weighted Likelihood Ratio (WLR)

[79]. These spectral distance measures are defined as :

P

) (9 2
CBP= 2 ) (C; - C; ) (7.1)

i=1

P
) (N f) (9

i=1

) (9) ) (D
where C i and C ; are LPC cepstrum parameters and V; and Vi

are autocorrelation coefficients. Suffixes (f) and (g) correspond to

input word utterances and phoneme-like templates, respectively.

7.3.4 Dynamic Time Warping [80],[81]

In isolated word recognition system wusing dynamic time warping,

the recognition accuracy is influenced by the efficiency of the dynamic

time warping algorithm. In the present experiments, efficient

slope-constrained dynamic time warping is used. (Appendix 3)

7.3.5 Several Features of the SPLIT Method

The SPLIT method has the following significant features over the

direct-matching method.

— 171 —



(1) Memory saving for word templates

In the SPLIT system, word templates are represented by sequences
of phoneme-like templates., Thus, drastic memory saving can be achieved
in comparison with the direct-matching system. The saving ratio is
calculated approximately as a function of the number of word templates.

Assume the vocabulary size is L words. The i-th word has: M i
frames. Each frame is N dimensional feature vector and its accuracy is
Na bits. Denote the number of phoneme-like templates as Ng © Using
these notations, the memory amount for word templates in the

direct-matching method (Rd) and SPLIT method (Rg) are given as

L

Ry= ¢ gM-‘)NNa | (7.3)
L

Rg= Ng NN, +( 21 M) np (7.4)
1=

where n b =log2 NS
The reduction ratio for the SPLIT method to the direct-matching

method is

R (L) = - - (7.5)

(2) Distance calculation saving for a dynamic time warping

In the SPLIT system, spectral calculation amount depends only on
the number of phoneme-like templates. The savings ratio is calculated
as follows.

The frame number for input speech is M g The window 1length in
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dynamic time warping is  assumed to be Nw . Calculation amounts are

represented, respectively, by :

Cd = MQ Nw L (7.6)

Cs = My Ng (7.7)

where C4 1is the distance calculation amount in the direct-matching
method and C g is the calculation amount in the SPLIT method.

The reduction ratio is

My Ng Ng

Real(l) = - , (7.8)

The reduction ratio for spectral distance calculation and memory
amount for word templates, compared with direct-matching method, is
shown in Fig. 7.3 as a function of the number of words to be

recognized. In this figure, parameter values are assumed to be :

Mi = 50 frames (for all i,for simplicity)
N = 16 parameters
Na= 16 bits

NS = 256 templates

Nw= 15 frames

nb= 8 bits

7.4 lLarge Vocabulary Size Speaker-Dependent Word Recognition
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7.4.1 Using 256 Phoneme-like Templates

In order to verify the SPLIT system ability in large vocabulary
word recognition, 641 city name utterances (Appendix 4) by four male
speakers were used. Every speaker uttered each word twice at two week
intervals. Experimental conditions are as follow.

Input speech is band limited to 4 kHz, sampled at 8 kHz and then
converted into digital signals by a 12 bit AD converter. After passing
the 32 msecond Hamming window, thirteen auto-correlation coefficients
are derived every 16 mseconds. After these processes, the 10th order
LPC analysis is executed. The first utterance set is used in generating
phoneme-like templates and word templates. The second utterance set was
used for an evaluation at the first experiment. At the second
experiment, such conditions were inverted. In the experiments, 2048
frames were used for generating phoneme-like templates and 256
phoneme-like template were generated for every speaker. In these
experiments, the following points were tested.

(1) Comparison of recognition accuracies between SPLIT method and
the direct-matching method.

(2) Comparison of the spectral measure efficiency between cepstrum
distance and WLR distance.

Experimental results are concentrated in Fig. 7.4. This figure
shows the relationship between ranking and the accumulated recognition
accuracy. Based on these results, the following conclusions were
reached.

(1) 96.3 % recognition accuracy can be obtained in 641 word

recognition on an average for four speakers by the SPLIT method, wusing
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WLR spectral distance measure. Degradation from the direct-matching
method was only 0.4 %. These results mean that spectral information can
be roughly quantized in each frame without largely  decreasing
recognition accuracy.

(2) 98.3 % recognition accuracy can be obtained within the top
five choices.

(3) Recognition accuracy using WLR is much higher than that for
cepstrum distance in both systems. This means that the WLR spectral

distance measure is effective in large vocabulary word recognition.

7.4.2 Classification of Unrecognized Words

Words which were not recognized correctly in the experiments are

classified into the following categories.

(A) Endpoint detection error (ex. SAKU —> KUSATSU)
(B) Vowel confusion (ex. UOZU ——> 00ZU)
(C) Head consonant confusion (ex. SAGA ——> KAGA)

(D) Consonant confusion, other than 3 (ex. OOGAKI-> OOMACHI)

(E) Others segregation categories (ex. MINOO —> MINO)

Classification results for four speakers are shown in Fig. 7.5.
From this figure, the following conclusion can be obtained.

(1) Endpoint detection error is about 1 % of all errors.

(2) vowel confusion were very few.

(3) Consonant confusions decrease, when using WLR spectral measure.

7.4.3 For Fewer Than 256 Phoneme-like Templates
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The relation between the number of phoneme-like templates and the
spectral distortion in generating word templates was examined ‘and the
results are shown in Fig. 7.6. The points indicated by the arrow show
the maximum recognition accuracy. In this figure, strong correlation is
observed between spectral distortion in generating word templates and
recognition accuracy.

Next, the recognition accuracy was investigated versus the number
of phoneme-like templates. Five kinds of phoneme-like template sets
were generated, each of which consist of 16, 32, 64, 128 or 256
templates, by changing the threshold value © for clustering for one
of four speakers. @ values were set from 0.05 to 0.30 at every 0.05
intervals. Using these six phoneme~-like template sets, recognition
experiments were executed for ome of the four  speakers. The
relationship between recognition accuracy and the number of
phoneme-like templates is shown in Fig. 7.7. This result shows that
high recognition accuracy can be obtained when there are fewer than 64
phoneme-like templates, if @ 1is set appropriately. Furthermore, even
when there are 16 phoneme-like templates, 94.0 7% recognition accuracy
was obtained. Surprisingly, this number is much 1less than Japanese
phonemes number. This result means the spectral pattern sequence has as
much information which characterizes a word as spectral accuracy in
each frame.

Based on results obtained from this experiment, phoneme-like
templates were generated, so that total spectral distortion in the word
templates, represented by the phoneme-like template sequences, became
minimum. Using these optimum template sets, recognition experiments

were carried out by the utterances of the same four speakers. The
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relation between the averaged recognition accuracy and the number of
phoneme-like templates is shown in Fig.7.8 and Table 7.1.

This figure shows that the recognition accuracy does not decrease'
rapidly due to the decreasing in the number of phoneme-1like templates,
and 92.9 % recognition accuracy was obtained, even when there were 16
phoneme-like templates.

When there were 32 phoneme-like templates, degradation from the
direct-matching method was 2.2 %, where the amount of distance
calculation and memory size for word templates are 0.3 % and 2% of the
direct-matching method, respectively. The small number of phoneme-1like

templates can be used in several application fields.

7.4.4 Relationship Between Phoneme-like Templates and Real Phonemes

The relation between 32 phoneme-like templates and real phonemes
was investigated. Each frame in several words was labeled phonemes
thréugh a human process. Correspondence between phoneme-like template
and phoneme in each frame was investigated. The selected 32
phoneme-like templates are mapped on a two dimensional plane - by
multiple dimensional analysis, as shown in Fig. 7.9. Five or six
phoneme-like templates belong to the same vowel cluster and several
templates correspond to consonants, such as /s /,/ m,n /,/ p,t,k /.
Spectral envelopes of these 32 phoneme-like templates are shown in Fig.

7.10.

7.5 Speaker-Independent Isolated Word Recognition

Based On Multiple Word Templates
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This section describes a speaker-independent word recognition
system based on multiple word templates wusing the SPLIT ‘method. One
powerful speaker-independent word recognition method is based on
multiple templates which cover the variance among speakers. However,
this system has several defects. One of these is the increase in
computation amount in proportion to the number of word templates.

In the SPLIT system, as the spectral distance calculation amount
is independent of the number of word templates, the best wuse can be
made in speaker-independent word recognition based on multiple word
templates. When applying the SPLIT system to speaker-independent word
recognition based on multiple templates, there are séveral important
study items.

(1) How to make the multiple word templates [82], [83].

(2) How to make the phoneme-like templates which are used commonly
for all speakers.,

Nearly the same algorithm as that used in generating phoneme-like
templates is applied for selecting multiple templates. The difference
points are in replacing the spectral distance between two vectors by
the spectral distance between two words using dynaﬁic time warping and
selecting word templates instead of computing average templates. The
word templates are selected on the basis of the word utterances
distribution. Namely, if Wi has many words in its mnear neighbourhood,
that word Wi is picked up as one of the word templates. For the second
problem, phoneme-like templates were generated wusing utterances by
three male speakers and one female speaker.

In the recognition experiments, 8184  words (31 words/speaker)
uttered by 264 speakers through telephone lines were used. (Appendix 5)

To verify the effect of choosing multiple templates, the following

— 178 —



experiment was executed.

(1) Using 264 utterances, multiple templates were generated for
each word by the clustering technique. Average number of word templates
for each word was set to 18. Utterances by all the .speakers, excepting
the speaker whose utterance was used as one of the multiple templates,
were used for recognition test. |

(2) The recognition experiment without clustering was also carried
out. 264 speakers were arbitrarily divided into groups of about 31
speakers. A speaker was selected from 31 speakers and word utterances
by that speaker were recognized using utterances from 30 other speakers
as multiple templates. Rotating this 31 times, the average recognition
accuracy was calculated for each group.

Experimental results are shown in Table 7.2. Results show that

multiple templates, which were generated by clustering, work quite well.
7.6 Conclusions

This chapter proposed a new word recognition system, named SPLIT,
and described some feature of this system., The efficiency of this
method in speaker-dependent largé vocabulary word recognition and
speaker-independent isolated word recognition, based on
multiple-templates, was clarified through several experiments. These
experimental results mean that spectral ‘information in isolated word
recognition based on dynamic time warping can be roughly quantized in
each frame without a large decrease in the recognition accuracy.

(1) 96.3 Z recognition accuracy was obtained in 641 city names
word recognition for four male speakers, when there were 256

phoneme-like templates.
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(2) 94.5 % recognition accuracy was obtained when there were 32
phoneme-like templates. In this case, the amounts of spectral distance
calculation and memory for word templates are 0.3 % and 2 7% of the same
categories obtained by the direct-matching method, respectively.

(3) A simple clustering technique was proposed to generate word

templates in speaker—independent word recognition.
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Table 7.1 Recognition accuracy for each speaker in relation to
the number of phoneme-like templates.

SPEAKER

AR NS | KA | K1 | KS |AVE.
RR.| 925 | 945 | 930 | 91.6

16 , 1 92.9
8 | 020 [ 025 | 025 | 020 |
RR.| 942 | 964 | 942 | 930

32 - { 945
8 | 020 | 020 | 015 | 0.5
RR.| 952 | 963 | 955 | 94.2

64 953
8 | 015 | 015|010 | 010
RR.| 96.7 | 961 | 967 | 956

128 \ 96.3
8 | 010 | 010 [ 010 | 010 |
RR.| 966 | 966 | 970 | 952 |

256 . 9'6.4
8 | 010 | 010 | 0.10 | 010

*MBQ%ECH,NGE 970 | 97.0 | 977 | 96.4 | 97.0

Table 7.2 Recognition accuracy in speaker-independent
word recognition using multiple word templates.

Condition

With Clustering
( 18 templates/word)

Without ClUstering
( 30 templates/word)

Recognition
Accuracy

98.0 %

97.2 %
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CHAPTER 8 EPILOGUE

8.1 Conclusions of This Thesis

This research has been. executed in: order - to ‘represent '‘a . speech
signal efficiently at an extremely low bit rate.  The conclusions -are
summed up as follows..

(1) LSR parameters properties'»were examined as. .a function "of
spectral distortion. LSR parameters are one of the representations
which are equivalent to LPC in an all pole digital: filter :model .in
speech generation. It was:  clarified - as the = result of' several
experiments that LSR parameters have. better interpolation properties
-compared . to -PARCOR = coefficients.' 'An 'optimum - bit allocation :to - LSR
parameters was proposed by spectral . sensitivity analysis.  Spectral
sensitivities for LSR parameters were proved to be rather -more ‘uniform
than those for PARCOR coefficients,

(2) Another representation of LPC, line spectrum pair (LSP), was
presented. Their physical meanings were explained analytically. °The
quantization and interpolation -properties of . LSP parameters: —were
examined experimentally. The optimum quantization "method -was. proposed
through spectral distortion analysis; in the same manner as for - LSR
parameters. The relationship between information bit rates-and spectral
distortion by quantization was discussed, comparing PARCOR - coefficients
and LSR parameters. The synthesized speech quality was - tested by
objective and subjective measurements. Consequently, the -PARCOR 'system
60.% information rate is sufficient to obtain equivalent speech quality -
by-LSP parameters..The LSP speech analysis synthesis method®is.  the “‘one

of the most efficient vocoder methods ‘used nowadays.
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(3) The parameter quantization technique with variable frame rate
(VFR) was proposed using the speech signal non-uniformity in the time
domain. Optimum frame selection, based on dynamic programming, was
executed as a function of time spectral distortion. This method gave a
minimum distortion when time intervals and the number of divisions were
given., A straight forward variable frame rate scheme was also proposed
and verified by subjectively. Synthesized speech quality at 1500 bps
with VFR was proved to be equivalent to 14 S/N speech quality. However,
other factors, including excitation signals, must be considered to
obtain higher quality speech.

(4) Vector quantization, using LSP parameters, was presented. to
reduce the redundancy in parameter scalar quantizationmn. Vector
quantization has an advantage of 10 bits saving per frame over the
conventional scalar quantization. Synthesized speech quality at 800 bps
is proved to be equivalent to 2000 bps by scalar quantization.

(5) The vector quantization technique was applied to an .isolated
word recognition based on dynamic time warping. Word templates were
represenﬁed as discrete spectral patterns sequences, According to this
processing, dramatic reduction can be achieved in spectral calculations
and memory requirements without degrading the performance, compared to
a conventional pattern matching method, based on dynamic time warping.
The relationship between the number of phoneme—like templates - and
recognition accuracy was clarified. It was proved that word templates
can be quantized with 7 or 8 bits in each frame without degrading
recognition accuracy

~ The relationship between the information rate and synthesized
speech quality was clarified as a function of spectral distortion.

During the process of this research, a speech synthesized technique,
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based on LPC, was implemented on a single LSI chip and speech signal
processing techniques have been paid much more attention. Some
application systems, based on this research, are going to be realized
in several fields.

To represent speech signals at an extremely low bit rate is a very
interesting problem. It is related with speech property itself and it
is closely connected with speech synthesis and recognition or other
speech processings. The most suitable method exists in each information
rate,

Several techniques proposed in this thesis are very . popular
nowadays. The author hopes that the basic idea and approaches in this
thesis will be the foundation of speech processing research efforts in

the near future.
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APPENDIX 1 Proof of theorem.

The theorem is proved by introducing the folldwing rational

function of z .

ZPHAP(l/z) ‘ p 1 -?i z
Rp(z) = =z .IT (Al.1)
i=1 v
AP (2) z -z
lzi|> 1

where z,; denote the zeros of AP (2).

When z moves round on the unit circle, namely z=e ¢® y~T<WL ,
RP(z) circulates (pt+l) times on the unit circle. Denoting values of
W at which RP'(e-Jw )=1 is satisfied by w, ,Ww;, w3 --—---——, and
denoting values of @ aﬁ which RP(e'éw)--—-l is satisfied by
0105503 —- » the the following inequality holds

0= Wy< B < W< <Op<wp<Bpy =Tt (AL.2)

Since RP (z) = +1 leads to P (2)=0 or Q (z)=0, respectively, the

theorem is proved.
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APPENDIX 3 Dynamic time warping algorithm [80].

Dynamié time warping [élj is modified into an unconstrained
endpoint type. In this modificatiqp, only two,‘direction paths are
permitted at the starting point, conéidering thé cost function. Assume
that input word is B, word template is A and D(i,j) is defined as the
spectral distance between the i-th framevof B and j-th frame of A.
G(i,j) denotes the cost function at :(i,j) point, The dynamic time

' warﬁing algorithm is shown in Fig. 1A o

Initial conditions and iterations are given as follows.
(1) Initialization: G(1,1) = 2 D(1,1)

G(1,3) = 6(1,J-14D(1,3):  2ige/2

G(i,1) = G(i-1,1)+D(i,1): 2Zi<r/2 (A2.1)
G(1,j) = oo :r/2j<r
G(i.1) = 00 :r/2i¢r

where r/2 is a permissible width for starting.

(2) Iterationmns

G(i,j) = min[G(i-1,j~2)+2 D(i,j-1),
G(i-1,j-1)+D(1,j), (A2.2)
G(i-2,j-1)+2 D(i-1,3)]
+D(i,3)

Zéiggend, 2<{j<jend

where iend is the frame number of word template and jend is the £frame
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number of input word.

(3) Decision: Final matching score S(A:B) is defined as follows.
S(A:B) = min(G(i,j)/(i+j)) (A2.3)
(i.4) - v

(i,j) € end region

In this dynamic time warping, (iend-r/2~iend,jend) and
(iend,jend-r/2~ jend) are free regionms. Then, even if (iend,jend) 1is
out of the adjustment window, S(A:B) can be calculated under conditions
satisfying l iend-jend |< r+r/2. In other cases, the input word is

rejected.
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APPENDIX 4
641 city names list for speaker-dependent word recognition.

OONO GBI

SAPPORO
HAKODATE
OTARU
ASAHIKAWA
MURORAN
KUSHIRO
OBIHIRO
KITAMI
YU :BARI
IWAMIZAWA
ABASHIRI
RUMOI .
TOMAKOMAI -
WAKKANAI
BIBAI }
ASHIBETSU
EBETSU
AKABIRA
MON-BETSU
SHIBETSU
NAYORO
MIKASA
NEMURO
CHITOSE
TAKIKAWA
SUNAGAVWA
UTASHINAI
FUKAGAWA
FURANO
NOBORIBETSU
ENIWA
DATE
AOMOR1
HIROSAKI
HACHINOHE
GOSHOGAWARA
TOWADA
MISAWA
MUTSU
MORIOKA
MIYAKO
0:FUNATO
MIZUSAWA
HANAMAKI
KITAKAMI
KUJI
TO:NO
ICHINOSEKI

RIKUZEN-TAKATA.

KAMAISHI
ESASHI
NINOHE
SEN-DAI
ISHINOMAKI
SHIOGAMA
FURUKAWA
KESEN-NUMA
SHIROISHI
NATORI
KAKUDA
TAGAJO:
1ZUMI
IWANUMA
AKITA
NOSHIRO
YOKOTE
0:DATE
HON-JO:
0ca
YUZAWA
0:MAGARI
KAZUNO
YAMAGATA
YONEZAWA
TSURUOKA
SAKATA
SHIN-JO:
SACAE
KAMINOYAMA
MURAYAMA

81
82
a3
84
85
86
87
88
89
%0
91
92
93
%4
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
138
134
135
136
137
138
139
140
141
142
143

‘144

145
146
147
148
149

150

151
152
153
154
155
156
187
158
159
160

NAGAI
TEN-DO
HIGASHINE
OBANAZAWA
NAN-YO
FUKUSHIMA
AIZUWAKAMATSU
KO:RIYAMA
IWAKI
SHIRAKAWA
HARAMACHI
SUKAGAWA
KITAKATA
SO:MA
NIHON-MATSU
MITO
HITACHI
TSUCHIURA
KoGA
ISHIOKA
SHIMODATE
YU:KI
RYU:GASAK]
NAKAMINATO
SHIMOTSUMA
MITSUKAIDO:
HITACHIO:TA
KATSUTA
TAKAHAGI
KITAIBARAKI
KASAMA
TORIDE
IWAI -
UTSUNOMIYA
ASHIKAGA
TOCHIGI
SANO
KANUMA
NIKKO:
IMAICHI
OYAMA
MAOKA
0:TAWARA
YAITA
KUROI1SO
MAEBASHI]
TAKASAKI
KIRYU:
ISESAKI
0:TA
NUMATA
TATEBAYASHI
SHIBUKAWA
FUJIOKA
TOMIOKA
AN-NAKA
KAWAGOE
KUMAGAYA
KAWAGUCHI
URAWA
O:MIYA
GYO:DA
CHICHIBU
TOKOROZAWA
HAN-NO
KAZo
HON-JO:
HIGASHIMATSUYAMA
IWATSUK]
KASUKABE
SAYAMA
HANYU:

KO :NOSU
FUKAYA
AGEO

YONO

S0:KA
KOSHIGAYA
WARABI

TODA
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161
162
163
164
165
166
167
168
169
i7e
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
249

IRUMA
HATOGAYA
ASAKA
SHIKI
WAKO:
NI:ZzA
OKEGAWA
KUKI
KITAMOTO
YASHIO
FUJIMI
KAMIFUKUOKA
MISATO
HASUDA
CHIBA
CHO:SHI
ICHIKAWA
FUNABASHI
TATEYAMA
KISARAZU
MATSUDO
NoDA
SAWARA
MOBARA
NARITA
SAKURA
TO:GANE
YO:KAICHIBA
ASAHI
NARASHINO
KASHIWA
KATSUURA
ICHIHARA
NAGAREYAMA
YACHIYO
ABIKO
KAMOGAWA
KAMAGAYA
KIMIZU
FUTTSU
HACHIO:JI
TACHIKAWA
MUSASHINO
MITAKA
O:ME
FUCHU:
AKISHIMA
CHO:FU
MACHIDA
KOGANEI
KODAIRA
HINO
HIGASHIMURAYAMA
KOKUBUN-J I
KUNITACHI
TANASHI
HO:YA
FUSSA
KOMAE
HIGASHIYAMATO

'KIYOSE

HICASHIKURUME
MUSASHIMURAYAMA
TAMA

INAGI

AKIKAVWA
YOKOHAMA
YOKOSUKA
HIRATSUKA _
KAMAKURA

FUJISAWA
ODAWARA

- CHIGASAK1

ZUSHI
SAGAMIHARA
MIURA
HADANO
ATSUGI
YAMATO
ISEHARA



241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

EBINA

ZAMA
MINAMIASHIGARA
NI:GATA
NAGAOKA
SAN-JO:
KASHIWAZAKI
SHIBATA
NI:TSU
oJIYA

KAMO
TO:KAMACHI
MITSUKE
MURAKAMI
TSUBAME
TOCHIO
ITOIGAWA
ARAI

GOSEN
RYO:TSU
SHIRONE
TOYOSAKA
JO:ETSU
TOYAMA
TAKAOKA
SHIN-MINATO
uozu

HIMI
NAMERIKAWA
KUROBE
TONAMI
OYABE
KANAZAWA
NANAO
KOMATSU
WAJIMA
SUZU

OBAMA
Q:NO
KATSUYAMA
SABAE
KO:FU
FUJIYOSHIDA
EN-ZAN
TSURU
YAMANASHI
0:TSUKI
NIRASAKI
NAGANO
MATSUMOTO
UEDA
OKAYA
1IDA
SUWA
SUZAKA
KOMORO
INA
KOMAGANE
NAKANO
0:MACHI
I1TYAMA
CHINO
SHIOJIRI
KO0 :SHOKU
SAKU
GIFU
0:GAKI
TAKAYAMA
TAJIMI
SEKI
NAKATSUGAVWA
MINO
MIZUNAMI
HASHIMA

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

368

369
370
371
372
373
374
37v5
376
377
378
379
389
381
382
383
384
385
386

387

388
389
390
391
392
393
394
3935
396
397
398
399
400

ENA
MINOKAMO
TOK1
KAKAMIGAHARA
SHIZUOKA
HAMAMATSU
NUMAZU
SHIMIZU
ATAMI
MISHIMA
FUJINOMIYA
I1TO:
SHIMADA
FUJ1
IWATA
YAIZU
KAKEGAWA
FUJIEDA
GOTEN~BA
FUKURO1
TEN-RYU :
HAMAKITA
SHIMODA
SUSONO
KOSAI
NAGOYA
TOYOHASHI1
OKAZAK]
ICHINOMIYA
SETO
HAN-DA
KASUGAI
TOYOKAWA
TSUSHIMA
HEKINAN
KARIYA
TOYOTA
AN-JO:
NISHIO
GAMAGO:RI
INUYAMA
TOKONAME
KO:NAN
BISA1
KOMAK I
INAZAWA
SHIN-SHIRO
TO:KAl
0:BU
CHITA
CHIRYU:
OWARIASAHI
TAKAHAMA
IWAKURA
TOYOAKE
TSU
YOKKAICHI
ISE
MATSUSAKA
KUWANA
UENO
SUZUKA
NABARI
OWASE
KAMEYAMA
TOBA
KUMANO
HISAI
0:TSU
HIKONE
NAGAHAMA
O:MIHACHIMAN
YO:KAICHI
KUSATSU
MORIYAMA
KYO:TO
FUKUCHIYAMA
MAIZURU
AYABE

uJ1
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401
402
403
4904
405
466
407
408
4909
4190
411

412
413
414
4135
416
417
418
419
420
421

422

423

424
425
426
427
428
429
4390
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
453
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

MIYAZU
KAMEOKA
JO:YO:

" MUKO:

NAGAOKAKYO:
0:SAKA
SAKAI
KISHIwWADA
TOYONAKA
IKEDA
SUITA
1ZUMIO:TSU
TAKATSUKI
KAIZUKA
MORIGUCHI .
HIRAKATA
IBARAKI
YAO
IZUMISANO
“TON-DABAYASHI
NEYAGAWA
KAWACHINAGANO
MATSUBARA
DAITO:
1ZUMI

MINOO
KASHIWARA
HABIKINO
KADOMA
SETTSU
TAKAISHI
FUJIIDERA
HIGASHIO:SAKA
SEN-NAN
SHIJO:NAWATE
KATANO
KO:BE
HIMEJI
AMAGASAKI
AKASHI
NISHINOMIYA
SUMOTO
ASHIYA
ITAMI

ATO0I
TOYOOKA
KAKOGAVWA
TATSUNO
AKO:
NISHIWAKI
TAKARAZUKA
MIKI
TAKASAGO
KAWANISH1
ONO

SAN-DA
KAsAl

NARA
YAMATOTAKADA
YAMATOKO:RIYAMA
TEN-RI
KASHIHARA
SAKURA[
G0JO:

GOSE

IKOMA
WAKAYAMA
KAINAN
HASHIMOTO
ARIDA

GOBO:
TANABE
SHIN-GU:
TOTTORI
YONAGO
KURAYOSHI
SAKAIMINATO
MATSUE
HAMADA
1ZUMo



481
482
483
484
483

487
488
489
499
491
492
493
494
495
496
497
498

499 °

500
501
502
503
504
505
506
507
508
509
510
511

512 .

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

531 -

532
533
534
535
536
537
538
539
540
541
542
543
544
5435
546
547
548
549
550
5351
552
553
554
555
556
557
558
559
560

MASUDA
0:DA
YASUGI
GO:TSU
HIRATA
OKAYAMA
KURASHIK]
TSUYAMA
TAMANO
KASAOKA
IBARA
S0:JA
TAKAHASHI
NI:MI
BIZEN
HIROSHIMA
KURE
TAKEHARA
MIHARA
ONOMICHI
IN-NOSHIMA
FUKUYAMA
FUCHU:
MIYOSHI
SHO: BARA
0:TAKE
HIGASHIHIROSHIMA
SHIMONOSEKI
UBE
YAMAGUCHI
HAGI
TOKUYAMA
HO:FU
KUDAMATSU
IWAKUNI
ONODA
HIKARI
NAGATO
YANAIL

MINE
SHIN-NAN-YO:
TOKUSHIMA
NARUTO
KOMATSUSHIMA
ANAN
TAKAMATSU
MARUGAME
SAKAIDE
ZEN-TSU:JI
KAN-ON-J1
MATSUYAMA
IMABARI
UWAJIMA
YAWATAHAMA
NI:HAMA
SA1JO:
0:2u
KAWANOE
IYOMISHIMA
1YO0

HO:JO:
TO:YO
KO:CHI
MUROTO

AKI
NAN-KOKU
TOSA
SUSAKI
NAKAMURA
SUKUMO
TOSASHIMIZU
KITAKYU:SHU:
0:MUTA

TAGAWA
YANAGIGAWA
YAMADA
AMAGI

361
562
563
564
565
566
567
568
569
570
571

572
573
574
373
576
577
578
579
580
581

582
583
584
585
586
587
588
589
590
591

592
593
594
595
596
597
598
599
600
601

602
603

604

605
606
607
608
609
610
611
612
613
614
6135
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

CHIKUSHINO
KASUGA
0:NOJO:
FUKUOKA
SAGA
KARATSU
TOSU
TAKU
IMARI
TAKEO
KASHIMA
NAGASAKI
SASEBO
SHIMABARA
ISAHAYA
0 :MURA
FUKUE
HIRADO
MATSUURA
KUMAMOTO
YATSUSHIRO
HITOYOSHI
ARAO
MINAMATA
TAMANA
HON-DO
YAMAGA
USHIBUKA
KIKUCHI
UTO

0:1ITA
BEPPU
NAKATSU
HITA
SAIK]
USUK1
TSUKUMI
TAKETA
BUN-GOTAKADA
KITSUKI
Usa
MIYAZAKI
MIYAKONOJO:
NOBEOKA
NICHINAN
KOBAYASHI
HYU:GA
KUSHIMA
SAITO
EBINO
KAGOSHIMA
SEN-DAI
KANOYA
MAKURAZAK]
KUSHIKINO
AKUNE
NAZE
1ZuM1
0:KUCHI
IBUSUK1T
KASEDA
KOKUBU
NISHINOOMOTE
TARUMIZU
NAHA
ISHIKAWA
GUSHIKAWA
GINOWAN
HIRARA
ISHIGAKI
URASOE
NAGO
ITOMAN
OKINAVWA
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APPENDIX 5
31 words list for speaker-independent word recognition

1. HAI
2. IIE
3. SYU:RYO: JIKAN
4. SYORI JIKAN
5. UNYO: KEIKAKU
6. ONSEI TO:ROKU
7. KAIGI SHITSU
8. SENTA: BATTI
9. EFU BATTI
10. ICHI GO:
11. NI GO:
12. YOKOSUKA
13. UNTEN KEIKAKU
14. RENRAKU JIKO:
15. GYO0:JI YOTEI
16. KON SYU:
17. RAI SYU:
18. GETSU YO:
19. KA YO:
20. SUI YO:
21. MOKU YO:
22. KIN YO:
23. DO YO:
24, ICHI MARU NI
25. GO: MARU GO:
26. TEREBI KAIGI SHITSU
27. GOZEN
28. GOGO
29. ICHI NICHI
30. YAMADA TARO:
31. SUZUKI HANAKO
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