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1. Introduction

Let us recall some results about linear and semilinear wave equations. We examine
the Cauchy problems

2 = ( ) (0 ) = 0( ) (0 ) = 1( )(1.1)

2 = 0 (0 ) = 0( ) (0 ) = 1( )(1.2)

where2 = ∂2−△, ( ) ∈ R × R and ∈ ∞ with (0) = 0. We suppose that the
initial data 0, 1 satisfy 0 ∈ , 1 ∈ −1 for some > /2 + 1. Then it is known
that solutions exist in ([0 ] )∩ 1

(
[0 ] −1

)
for some small > 0.

Further, we assume that0, 1 belong to ∞ outside some closed set ofR . If sin-
gularities starting from two different points of this set ofsingularities meet, nothing
happens in the linear case. They ignore each other and continue on their track. How-
ever, in the semilinear case, the nonlinear interaction of singularities may generate new
singularities. These are weaker than those of by at least oneSobolev order, which
can be seen immediately as follows: we have2( − ) = ( ) ∈ ([0 ] ); hence
− ∈

(
[0 ] +1

)
.

The aim of this publication is to prove a similar result for weakly hyperbolic
equations whose lower order terms satisfy sharp Levi conditions. To demonstrate the
phenomena which may occur in this setting, we recall a resultof [15]. Let = ( )
be the solution of

(1.3) − 2 − = 0 (0 ) = 0( ) (0 ) = 0 ∈ R

If = 4 + 1 and ∈ N0, then the solution is given by

(1.4) ( ) =
∑

=0

2 (∂ 0)

(
+

2

2

)

with some constants ; and does not vanish. We observe two phenomena. The
first is the loss of regularity: if 0 ∈ , then ( )∈ − . There isno classical
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solution for > −5/2! The second is that singularities of the datum only propagate
along one characteristic.

The loss of regularity makes the investigation of the semilinear problem

(1.5) − 2 − = ( ) (0 ) = 0( ) (0 ) = 0

difficult, because the standard iteration procedure and fixed point principles do not
work. The existence of a solution with ( )∈ − for some number can
be proved by a modified iteration technique, see for instance[11], [16]. See also [5]
for similar considerations in the ∞ class. However, that method gives no informa-
tion about the propagation of singularities, because only rough estimates of can be
found, which are generally not sharp.

If one is interested in the propagations of singularities inSobolev spaces, then it is
of great importance to know the spaces in which the description of singularities makes
sense. To clarify this point, let us consider (1.1) and (1.2)with 0 ∈ , 1 ∈ −1.
It is a true statement that, for instance, and belong to

(
[0 ] −5

)
, while

− ∈
(
[0 ] −4

)
. However, it makes no sense to investigate singularities in

that space, because the singular support is the empty set. The right statement is ∈
([0 ] ) and − ∈

(
[0 ] +1

)
, but, in general, 6∈

(
[0 ] +1

)
.

Results of the following general type tell us that the strongest singularities of
and coincide: we construct two function spaces2 ⊂ 1, where the functions of 2

have higher smoothness than that of1. Then we prove that ∈ 1 and − ∈ 2.
These statements are sharp in the sense that examples show that 6∈ 2.

The usual iteration procedure, even in its modified version mentioned above, is not
able to give us asharp description of the smoothness of and solving (1.3), (1.5).
Another way to attack (1.5) consists in the construction of aspecial function space.
This space contains all functions ( ) withϑ( ξ) ˆ ( ξ) ∈ ([0 ] 2), where
ϑ(0 ξ) = O(〈ξ〉 ) and ϑ( ξ) = O(〈ξ〉 − ) ( 6= 0) for 〈ξ〉 → ∞. Utilizing this idea,
in [7] it was shown that the solution of (1.5) belongs to

(
[0 ] − )

and that
− ∈

(
[0 ] − +1/2

)
. By (1.4), 6∈

(
[0 ] − +1/2

)
. In other words, also

the strongest singularities of propagate only along one characteristic. The idea to as-
sign a weightϑ( ξ) to the hyperbolic operator and to estimate a certain norm ofthe
product ϑ( ξ) ˆ ( ξ) goes back to [17]. The coefficients in the Cauchy problems of
[7] and [17] did not depend on . Therefore it was possible to apply partial Fourier
transform and study the arising ODEs, in contrast to the situation in this publication,
where the coefficients may depend on , too.

Consider the model problems

− 2 − (4 ( ) + 1) = ( ) (0 ) = 0( ) (0 ) = 0

− 2 − (4 ( ) + 1) = 0 (0 ) = 0( ) (0 ) = 0

where ∈ ∞(R) and ≥ 0. One expects a loss of ( ) derivatives at the point
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. In Section 7, we will show that this variable loss of regularity happens indeed. As
explained above, a reasonable description of singularities in spaces of Sobolev type re-
quires to find the right spaces. Therefore we have to employSobolev spaces with vari-
able order of differentiation + ( ):

+ ( ) := { ∈ 2(R) : 〈 〉 + ( ) ( ) ∈ 2(R)} ≥ 0

The main results of this publication (Theorems 4.1, 6.1 and 6.2) applied to these
model problems yield:

Proposition 1.1. Assume that = ( ) is entire analytic with (0) = 0 and 0 ∈
+ ( ) with > 5/2. Then some > 0 exists with

∈
(
[0 ]

)
− ∈

(
[0 ] +1/2

)

Examples show that the statement about the regularity of is the best possible.

The Cauchy problems to be studied in this paper have the form

= ( ) (0 ) = 0( ) (0 ) = 1( )(1.6)

= 0 (0 ) = 0( ) (0 ) = 1( )(1.7)

where

= 2 + 2
∑

=1

∗ ( ) −
∑

=1

2 ∗ ( )

−
∑

=1

∗ ∗−1 ( ) + 0( ) ∗ ∈ N+

In [1] and [18], special linear model equations of this kind have been investigated
and it was shown that the propagation of singularities depends in a sensitive way on
lower order terms. Similarly to (1.3), sometimes the singularities propagate only in
one direction. The special choice of -exponents reflects theso-called Levi conditions
which are necessary and sufficient conditions for the∞ well-posedness, compare [9]
and [14]. For related results on propagation of∞ singularities, for example see [10].

Our assumptions are the following:

∈ ∞([0 0] × R R)(1.8)

∑

=1

( )ξ ξ +



∑

=1

( )ξ




2

≥ α0|ξ|2(1.9)

α0 > 0 ( ξ) ∈ [0 0] × R2
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( ) =
∞∑

=1

( ) ∈ ∞([0 0] × R )(1.10)

sup
[0 0]

∞∑

=1

‖ ( )‖ <∞ ∀ ∈ N ∀ ∈ R(1.11)

The paper is organised as follows. A theory of Sobolev spacesof variable order is
presented in Section 2. We also list some properties of special symbol classes which
are a main ingredient in the construction of parametrix in Section 3. This fundamental
solution is utilized to prove the well-posedness of the linear Cauchy problem in Sec-
tion 4. The investigation of the semilinear Cauchy problem in Section 6 relies on the
algebra property of our function spaces proved in Section 5.Finally, we show that our
results are sharp and discuss an application to propagationof singularities in Section 7.

2. Function spaces and symbol classes

For convenience, we introduce the notationλ( ) = ∗ , ( ) =
∫

0 λ(τ ) τ . If is
some set fromR , then ( ) denotes the space of all functions, whose derivatives
up to the order are continuous and bounded functions over . Let ̺ δ and ̺ δ

denote the usual spaces of symbols and pseudodifferential operators, respectively,

̺ δ := { ( ξ) ∈ ∞(R × Rξ) : πα β( ) <∞ ∀ α β ∈ N }

πα β( ) := sup
{∣∣∣∂α∂βξ ( ξ)

∣∣∣ 〈ξ〉− +̺|β|−δ|α| : ( ξ) ∈ R2
}

where we employ the usual multi-index notation and〈ξ〉 = (1 + |ξ|2)1/2. To simplify
notation, we adjust the measure in the cotangent space,ξ = (2π)− ξ1 · · · ξ . If

( ξ) is some symbol, the corresponding pseudodifferential operator will be denoted
by the upper case letter, = ( ). If ( ) and ( ) are pseudodifferen-
tial operators, then · = ( · )( ) is defined as the operator with the symbol
(sym( · ))( ξ) := ( ξ) ( ξ). If ( ξ) and ( ξ) are symbols, the symbol
( ◦ )( ξ) is defined by the asymptotic expansion

( ◦ )( ξ) ∼
∞∑

|α|=0

1
α!

( α
ξ ( ξ))(∂α ( ξ)) ξ := − ∂ξ := − ∂

∂ξ

This symbol is unique modulo−∞. Let us derive some auxiliary results, citing ideas
from [8], Chapter 22.

DEFINITION 2.1. LetK̺ δ be the set of symbols

K̺ δ =

{
∈
⋃

∈R

̺ δ :
∣∣∣∂α∂βξ ( ξ)

∣∣∣ ≤ αβ ( ξ)〈ξ〉−̺|β|+δ|α| ∀ξ α β

}
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Proposition 2.2. Let 0 1 ∈ K̺ δ. Then 0 · 1, ∈ K̺ δ for all ∈ R.

Proof. The statement about0 · 1 follows from the Leibniz formula. Concerning
, we employ Fàa di Bruno’s formula

∂α∂βξ ( ( ξ)) =
|α|+|β|∑

ν=1

(ν)( ( ξ))
∑

(α β ν)

ν∏

µ=1

(
∂α

µ

∂β
µ

ξ ( ξ) αβνµ

)

∑

(α β ν)

:=
∑

(α1 β1)+···+(αν βν )=(α β)
|αµ|+|βµ|>0

with ( ) = and the proof is complete.

2.1. Sobolev spaces of variable order The space ([0 ] ) consists of
all functions ( ) with 〈ξ〉 ˆ ( ξ) ∈ ([0 ] 2(Rξ)). We generalize this space,
replacing 〈 〉 by some pseudodifferential operator ( ), whose symbol
ϑ ( ξ) may have different growth rates with respect to〈ξ〉, depending on and

. In the following, adapted symbol classes, embeddings in the usual Sobolev spaces
(and vice versa), and mapping properties of operators from̺δ are described.

Let ϑ ∈ ([0 ] +
1−ε ε), 0< ε < 1/2, be a symbol such that

ϑ( ξ) ≥ 1〈ξ〉 −
1 > 0 ( ξ) ∈ [0 ] × R2(2.1)

ϑ( ) ∈ K1−ε ε uniformly in(2.2)

We choose some ∈ R and defineϑ ( ξ) := ϑ( ξ)〈ξ〉 . Let us describe the
symbolϑ more closely.

Proposition 2.3. If ϑ ∈ ([0 ] +
1−ε ε) satisfies(2.1), (2.2),then

(2.3)
α β

ξ ϑ( ξ)

ϑ( ξ)
∈ −(1−ε)|β|+ε|α|

1−ε ε α β ∈ N 0< ε <
1
2

Proof. The assertion follows from the Leibniz rule and Proposition 2.2.

Proposition 2.4 ([8], Theorem 22.1.3). For eachϑ as above, there are symbols
ϑ♯ ∈ ∞([0 ] − −

1−ε ε) and ∞ ∈ ∞([0 ] −∞) with ♯ = + ∞.

The usual symbol calculus andϑ( ) ∈ K1−ε ε lead to the following result.



414 M. DREHER

Lemma 2.5. For each ˜ ∈ ∞([0 ] 1−ε ε) there are symbols˜ ∈
∞([0 ] 1−ε ε) with the property that

ϑ− ˜ ◦ ϑ ϑ− ˜ ◦ ϑ ∈ ∞([0 ] −∞)

Similar statements hold, whenϑ is the factor on the left.

The class of these symbolsϑ is a special case of the fairly general symbol
classes µ

φ of Beals and Fefferman ([2], [3], [4]) which consist of symbols sat-
isfying

∣∣∣∂α∂βξ ( ξ)
∣∣∣ ≤ αβ exp(µ( ξ))φ( ξ)−|α| ( ξ)−|β|

with

φ ≤ φ ≥
≤ ( ξ) ( η)−1 ≤ and ≤ φ( ξ)φ( η)−1 ≤

if | − | ≤ φ( ξ) and |ξ − η| ≤ ( ξ)

( 0)≤ 〈 〉 where = φ−1

≤ ( ξ) ( η)−1 ≤
if |ξ − η| ≤ ( ξ)δ+1/2 | − | ≤ ( ξ)δ ( η)−1/2 δ > 0

|µ( ξ)− µ( η)| ≤ if | − | ≤ φ( ξ) |ξ − η| ≤ ( ξ)

( φ)− ≤ µ − φ− ≤ ( φ) for some

In our case, expµ = ϑ , = 〈ξ〉1−ε, φ = 〈ξ〉−ε. The results of [3] enable us to
characterize Sobolev spaces of variable order, which we define now.

DEFINITION 2.6 (Sobolev spaces of variable order). If +− ≥ 0, then let

ϑ be the space

ϑ := { ∈ ([0 ] 2) : ( ) ∈ ([0 ] 2)}

This space is calledSobolev space of variable orderand has the norm

‖ ‖ := sup
[0 ]

(‖ ( ) ( )‖ 2 + ‖ ( )‖ 2)

The next two propositions follow from Theorem 6.1 of [3].

Proposition 2.7. The Banach spacesϑ satisfy the embeddings

(
[0 ] + +

)
⊂ ϑ ⊂

(
[0 ] + −

)
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Proposition 2.8. If ∈ ([0 ] ̺ δ) with min(̺ 1− ε) > max(δ ε), then

: ϑ + → ϑ continuously.

2.2. Symbol classes inZhyp(N) We split the ( ξ) space into two zones, the
so-calledpseudodifferential zone ( ) and thehyperbolic zone ( ), where
is some large number:

( ) := {( ξ) : |ξ| ≥ 1 ( )〈ξ〉 ≤ }
( ) := {( ξ) : |ξ| ≥ 1 ( )〈ξ〉 ≥ }

Let ξ ∈ R+ be defined by (ξ)〈ξ〉 = .
In order to describe the -dependence of the pseudodifferential operators referred

to in this paper more precisely, we introduce the following classes of symbols in
( ). A detailed theory of these symbols can be found in [19].

DEFINITION 2.9. We say that ( ξ) ∈ ∞([0 ] ×R2 ) belongs to the symbol
class { 1 2 3} if ∂ ∈ ([0 ] 1 0) for all and some and

(2.4)
∣∣∣∂ ∂α∂βξ ( ξ)

∣∣∣ ≤ αβ〈ξ〉 1−|β|λ( ) 2 3−

for all ≥ 0, α β ∈ N , and all ( ξ) ∈ ( ).

Proposition 2.10. The symbols of these classes satisfy

{ 1 2 3} ⊂ { 1 + 2 + 3 + } ∀ ≥ 0(2.5)

∈ { 1 2 3} =⇒ β
ξ ∈ { 1− |β| 2 3− }(2.6)

∈ { 1 2 3} ∈ { 1 2 3}
=⇒ ◦ ∈ { 1 + 1 2 + 2 3 + 3}(2.7)

∈ { 1 2 3} ( ξ) ≡ 0 if ( )〈ξ〉 6∈ [ ′]

=⇒ ∈ { 1− 2− 3− } ∀ ≥ 0(2.8)

Proposition 2.11. (a) Assume that ∈ { 1 2 3} ( ∈ N0) with 1 ց
−∞ as →∞. Suppose that each vanishes in ( ). Then there is a(unique up
to ∞([0 ] −∞)) symbol ∈ { 1(0) 2 3} with support in ( ) and

(2.9) −
−1∑

=0

∈ { 1 2 3} ∀

(b) Suppose that ∈ { 1− 2− 3− } ( ∈ N0). Assume that each
vanishes in ( ). Then there is a(unique up to∩ ≥0 { 1− 2− 3− })
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symbol ∈ { 1 2 3} with support in ( ) and

(2.10) −
−1∑

=0

∈ { 1− 2− 3− } ∀

Sketch of proof. We choose some smooth functionχ with χ( ) = 1 for | | ≤ 1,
χ( ) = 0 for | | ≥ 2 and set

( ξ) :=
∞∑

=0

(1− χ(ε 〈ξ〉)) ( ξ)

( ξ) :=
∞∑

=0

(1− χ(δ ( )〈ξ〉)) ( ξ)

Here {ε }, {δ } are sequences of positive numbers, monotonically converging to zero.
If we choose these numbers appropriately, then (2.9), (2.10) can be shown. For details,
we refer the reader to [19, Proposition 3.3.2].

Proposition 2.12 (Parametrix of elliptic operators).Assume that the matrix sym-
bol ∈ {0 0 0} is constant in ( ) and satisfies

| det ( ξ)| ≥ const > 0

for all ( ξ) ∈ [0 ] × R2 . Then a parametrix ( ) exists,

− − ∈ ∞([0 ] −∞)

with the property that ∈ {0 0 0} and

( ξ) = ( ξ)−1 in ( )

Proof. We set 0( ξ) := ( ξ)−1 and observe that0 ∈ {0 0 0}. Now
we recursively define symbols (≥ 1) by

∑

|α|=1

1
α!

( α
ξ ( ξ))(∂α −|α|( ξ)) =: − ( ξ) ( ξ)

and see that ( ξ) ≡ 0 in ( ) and ∈ {− 0 0}. Proposition 2.11 gives
us a symbol ∈ {0 0 0} with

−
−1∑

=0

∈ {− 0 0} ∀ ( ξ) = ( ξ)−1 in ( )



SOBOLEV SPACES OFVARIABLE ORDER 417

By construction, we have ◦ − ∈ ∞([0 ] −∞). The statement about the left
parametrix can be proved in a similar way.

Finally, we connect the symbol class {0 0 −1} with the weight symbols from
the classK̺ δ.

Proposition 2.13. If the symbol vanishes in ( ) and satisfies(2.4) with
{ 1 2 3} = {0 0 −1} and = 0, then

exp

(∫

0
(τ ξ) τ

)
∈ K1−ε ε ∀ ε > 0 0≤ ≤

exp

(∫

0
(τ ξ) τ

)
∈ ∞([0 ]

+

1−ε ε) ∀ ε > 0

with + := sup{| ( ξ) ( )/λ( )| : ( ξ) ∈ [0 ] × R2 }.

Proof. We only note that|∂βξ
∫

0 (τ ξ) τ | ≤ β〈ξ〉−|β| ln〈ξ〉, due to

∫

ξ

〈ξ〉−|β| 1
τ
τ = 〈ξ〉−|β| ln

( )
( ξ)
≤ 〈ξ〉−|β| ln〈ξ〉

In Section 4, we will fix some symbol̃β which has, basically, the form

β̃( ξ) =
λ( )

( )
β( ) ∈ {0 0 −1}

in the hyperbolic zone. Then we will set (compare (4.2), (4.3))

ϑ(0 ξ) := exp

(∫

ξ

β̃(τ ξ) τ

)
= ( )〈ξ〉β( )

This is a symbol whose growth rate will depend on . That is the reason why we
studied such weight symbols.

3. Fundamental solutions

The solution to the Cauchy problem = ( ), (0 ) =0( ), (0 ) =

1( ), behaves differently in the two zones ( ) and ( ). In order tostudy
fundamental solutions in each zone separately, we introduce the following cut func-
tions. Fix someχ ∈ ∞(R) with χ( ) = 1 for ≤ 1, χ( ) = 0 for ≥ 2, and
0≤ χ( ) ≤ 1 else. Then we set

χ+ ( ξ) := χ

(
( )〈ξ〉)

χ−( ξ) := 1− χ+ ( ξ)
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define the weight symbol

(3.1) ( ξ) = λ( )|ξ|χ−( ξ) + −1
ξ χ+ ( ξ)

and consider ( ) = ( ( ) ( ) ( )) . This vector solves the following
pseudodifferential system of first order:

=

(
0∑

λ2 −1 −2
∑
λ

)

+

(
( ) −1 0

−∑( λ) −1 0

)
+

(
0 0
0 − 0

)
+

(
0
)

=: (A0 + A1 + A2 ) + =: A +

For the further description of the symbolsa , we define the setH ( (2 )):H ( (2 )) :=
{

( ξ) ∈ ∞( (2 )) :
∣∣∣∂α∂βξ ( ξ)

∣∣∣ ≤ αβ ( ξ)〈ξ〉−|β| ( ξ) ∈ (2 )
}

We observe that

a0 a1 a2 ∈H ( (2 ))

a0 ∈ {1 1 0} a1 ∈ {0 0 −1} a2 ∈ {0 0 0}

In the sequel, we consider the fundamental solutionE( ), which satisfies

E( ) = A ( )E( ) E( ) = 0≤ ≤

3.1. Diagonalization Let τ∓( ξ) be the characteristic roots ofa0 (in
(2 )),

τ∓( ξ) :=
(
− ( ξ)∓

√
( ξ)2 + ( ξ)

)
λ( )|ξ|χ−( ξ)

∓ −1
ξ χ+ ( ξ)(3.2)

( ξ) :=
∑

=1

( )
ξ

|ξ| ( ξ) :=
∑

=1

( )
ξ ξ

|ξ|2(3.3)

Then we set

m( ξ) :=




1
(

(− −
√

2 + )χ−
)

( ξ)− χ+ ( ξ)

1
(

(− +
√

2 + )χ−
)

( ξ) + χ+ ( ξ)
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From (1.9) it follows that detm ≥ min(2 2
√
α0) > 0. We havem ∈ {0 0 0} and

the matrix m is constant in ( ). Then Proposition 2.12 gives us a parametrix M♯

for the operatorM. Sincea ∈ {1 1 0}, we have

m♯ ◦ a ◦m = m♯a m + r1 + r∞

with remaindersr1 ∈ {0 1 0}, r1 ≡ 0 in ( ) and r∞ ∈ ∞([0 ] −∞). It
remains to consider the product of symbolsm♯a m. By the choice ofm,

m♯a0 m =

{
diag(τ− τ+) : ( )〈ξ〉 ≥ 2

∈H ( (2 )) : ( )〈ξ〉 ≤ 2

We introduce the notationd := diag(τ− τ+). It can be shown that

m♯a1 m =

{
h(0) : ( )〈ξ〉 ≥ 2

∈H ( (2 )) : ( )〈ξ〉 ≤ 2

h(0)( ξ) =
λ( )

2λ( )




1− ( ξ)+ ( ξ)√
( ξ)2+ ( ξ)

1− ( ξ)+ ( ξ)√
( ξ)2+ ( ξ)

1 + ( ξ)+ ( ξ)√
( ξ)2+ ( ξ)

1 + ( ξ)+ ( ξ)√
( ξ)2+ ( ξ)




+ r1( ξ) r1 ∈ {0 0 0}

( ξ) :=−
∑

=1

( )
ξ

|ξ|(3.4)

Finally, m♯a2 m ∈ {0 0 0}. In the sequel,R∞ denotes a generic regularizing oper-
ator from ∞([0 ] −∞). Then we obtain

( ♯( )E) = ( M♯)(MM♯ + R∞)E + M♯A (MM♯ + R∞)E

= (D + H(0) Opχ− + H̃(1) + R0)M♯E + R∞E

h̃(1) ∈ {−1 −1 −2} r0 ∈H ( (2 ))

supph̃(1) ⊂ ( ) suppr0 ⊂ (2 )

Here we have modified the termr1 in the definition of h(0) in order to include all
terms from {0 0 0}.

This was the first step of diagonalization. We shall apply further steps in order to
diagonalizeh(0) and h̃(1) modulo∩ {− − − − 1}. For this purpose, we define

k(0) :=

(
h(0)

11 0

0 h(0)
22

)
χ− ∈ {0 0 −1}

n(1) :=


 0 h(0)

12
τ+−τ−

h(0)
21

τ−−τ+ 0


χ− ∈ {−1 −1 −1}
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and observe thatN(1)D − DN(1) = H(0) Opχ− − K(0) + R(0) with remainderr(0) ∈
{−1 0 −1} ⊂ {−1 −1 −2}. Then it can be concluded that

H(1) := ( − D− H(0) Opχ− − H̃(1))( + N(1))− ( + N(1))( − D− K(0))

= ( N(1)) + R(0) − H̃(1) − H(0) Opχ−N(1) − H̃(1)N(1) + N(1)K(0);

hence h(1) ∈ {−1 −1 −2}. We see thatk(0) ≡ n(1) ≡ 0 in ( ). Modulo
([0 ] −∞), we haveh(1) ≡ 0 in ( ). Inductively we set (forν ≥ 2)

k(ν−1) :=

(
h(ν−1)

11 0

0 h(ν−1)
22

)
∈ {−ν + 1 −ν + 1 −ν}

n(ν) :=


 0 h(ν−1)

12
τ+−τ−

h(ν−1)
21

τ−−τ+ 0


 ∈ {−ν −ν −ν}

H(ν) :=
(
− D− H(0) Opχ− − H̃(1)

)

 +

ν∑

µ=1

N(µ)




−


 +

ν∑

µ=1

N(µ)




 − D−

ν−1∑

µ=0

K(µ)




From the induction assumption and Proposition 2.10, it follows that h(ν) ∈
{−ν −ν −ν − 1} and h(ν) ≡ 0 in ( ), modulo ([0 ] −∞).

Employing Proposition 2.11, we find symbolsn and k̃ that satisfy

n ∈ {0 0 0} k̃ ∈ {−1 −1 −2}
n( ξ) ≡ k̃( ξ) ≡ 0 in ( )

n ∼ +
∞∑

µ=1

n(µ) mod
⋂

≥0

{− − − }

k̃ ∼
∞∑

µ=1

k(µ) mod
⋂

≥0

{− − − − 1}

Then the operator identity

( − D− H(0) Opχ− − H̃(1))N = N( − D− K(0) − K̃) + K(∞)

holds, whereK(∞) is an operator with full matrix symbol

k(∞) ∈
⋂

≥0

{− − − − 1} ∩H ( (2 ))
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To complete the diagonalization, we need a parametrix for the operatorN. The matrix
norm of its symbol satisfies

‖n( ξ)− ‖ ≤
( )〈ξ〉 ≤

1
3

if ( )〈ξ〉 ≥ 1, where 1≫ is an appropriate number. We define

ñ( ξ) := n( ξ)− χ+
1
( ξ)(n( ξ)− )

and observe thatn− ñ ∈ ∩ ≥0 {− − − } and

(3.5) ‖ñ( ξ)− ‖ ≤ 1
3
∀ ( ξ)

Sincen is uniquely determined only modulo∩ ≥0 {− − − }, we may drop the
tilde and assume thatn satisfies (3.5), too. Proposition 2.12 shows that a parametrix
N♯ to the operatorN exists, whose symbol belongs to {0 0 0} and coincides with
the identity matrix in ( ).

If we allow some modifications in the termK(∞), we can show

(3.6) ( − D− K(0)− K̃− K(∞))(N♯M♯E) = R∞E

Thus we have proved:

Proposition 3.1. The fundamental solutionE( ) to the operator −A ( ) sat-
isfies(3.6), whereN♯ and M♯ are elliptic operators with symbols from∞([0 ] 0

1 0);
and D, K(0), K̃ are diagonal operators with symbols from {1 1 0}, {0 0 −1},
{−1 −1 −2}, respectively. The ( full matrix) symbol of K(∞) belongs to

∩ ≥0 {− − − − 1} and H ( (2 )). In ( ), the symbol of D is
independent of( ) and the symbols ofK(0), K̃ vanish. Moreover, the symbols ofD
and K(0) are given by

d = diag(τ− τ+) k(0) = diag(k(0)
− k(0)

+ )

k(0)
∓ =

λ

2λ

(
1∓ +√

2 +

)
χ− + r∓χ

− r∓ ∈ {0 0 0}(3.7)

see(3.2), (3.3)and (3.4).

3.2. Construction of the fundamental solution Now we are going to construct
E( ). Let P2, P1, P0 denote the operators

P2 := D + K(0) + K̃ + K(∞) P1 := D + K(0) + K̃ P0 := D
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and E ( ), ( = 0 1 2), the fundamental solutions to − P :

( − P ( ))E ( ) = 0 E ( ) =

SinceE( ) = M( )N( )E2( )N♯( )M♯( ) + R∞( ), it suffices to constructE2. This
task is done in three steps. First, we constructE0, which is a diagonal Fourier integral
operator of order zero. Then we computeE1 = E0Q0 by means of Egorov’s Theorem.
It turns out thatQ0 is a diagonal pseudodifferential operator which describesthe loss
of regularity. Finally,E2 = E1Q1, whereQ1 is some matrix pseudodifferential operator
of order zero.

Since these constructions are quite standard, we only sketch them. For an exhaus-
tive representation and related problems, see [19].

3.2.1. Fundamental solutions to scalar first order operators

DEFINITION 3.2. Let τ = τ ( ξ) be either τ− or τ+. The Hamilton flowH ( η) := ( ξ) = ( ξ)( η) is defined as the solution to the system of ODEs

= −∇ξτ ( ξ) ( η) =

ξ
= ∇ τ ( ξ) ξ( η) = η

It is known that for small , 0< ≤ 0, the solution ( ξ) exists (uniformly
with respect to ( η)) for 0≤ ≤ and that

{
( )−
− ∂ ( ) ∂ ( )

}

0≤ ≤
is bounded in 0

1 0(R × Rη)

{
ξ( )− η
− ∂ ξ( ) ∂ ξ( )

}

0≤ ≤
is bounded in 1

1 0(R × Rη)

If is sufficiently small, then an inverse function = ( η) to the mapping
= ( η) can be found. Then the set

{
( )−
− ∂ ( ) ∂ ( )

}

0≤ ≤

is bounded in 0
1 0(R × Rη).

Now we can construct the phase functionφ which solves the eikonal equation

∂ φ( ; ξ)− τ ( ∇φ( ; ξ)) = 0



SOBOLEV SPACES OFVARIABLE ORDER 423

with the initial conditionφ( ; ξ) = · ξ. We set

( η) = · η −
∫

(ξ · ∇ξτ − τ )(σ (σ η) ξ(σ η)) σ

and can express the phase function in the form

φ( 0; ξ0) := ( ( 0 ξ0) ξ0)

The representation of and the properties of ( ξ) imply

(3.8)
∣∣∣∂α∂βξ (φ( ; ξ)− · ξ)

∣∣∣ ≤ αβ〈ξ〉1−|β| ( ∨ ) ∨ ≥ ξ

where ∨ := max( ). The functionτ ( ξ) does not depend on ( ) if ( ξ) ∈
( ). Consequently,

(3.9) φ( ; ξ) = · ξ − ( − )τ (ξ) ≤ ξ

In order to formulate the transport equations for the amplitude functions ofE0,
we recall a theorem about compositions of pseudodifferential operators and Fourier in-
tegral operators, see e.g., [12].

Theorem 3.3. Let 1 be a pseudodifferential operator with symbol1( ξ) ∈
1

1 0 and let 2φ be a Fourier integral operator with phase functionφ( ξ) and am-
plitude 2( ξ) ∈ 2

1 0. We assume thatπ1
α β(φ( ξ)− · ξ) ≤ δ < 1 for |α| + |β| ≤ 2.

Then the composition 1 2φ is a Fourier integral operator with phase functionφ and
amplitude ( ξ) ∈ 1+ 2

1 0 which can be written as

( ξ) = 1( ∇φ( ξ)) 2( ξ) +
∑

=1

(∂ξ 1)( ∇φ( ξ)) 2( ξ)

−
2

∑

=1

(
∂2
ξ ξ 1

)
( ∇φ( ξ))

(
∂2 φ( ξ)

)
2( ξ) + 2( ξ)

with some 2 ∈ 1+ 2−2
1 0 . We have the asymptotic expansion

( ξ) ∼
∞∑

|α|=0

1
α!

α
(
(∂αξ 1)( ∇̃ φ( ξ)) 2( ξ)

)
=

where∇̃ φ( ξ) :=
∫ 1

0 (∇φ)( + ( − ) ξ) .

This theorem is now employed to find the fundamental solutionto − D.
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Proposition 3.4. The fundamental solutionE0( ) to the operator − D is a
diagonal Fourier integral operator,

E0( ) = diag(E−
0 ( ) E+

0( ))

(E∓
0 ( ) )( ) =

∫
φ∓( ; ξ) ∓( ; ξ) ˆ (ξ) ξ

φ∓( ; ξ) = · ξ ∓( ; ξ) = 1

The phase functionsφ+, φ− satisfy (3.8), (3.9), and the amplitude functions
∓( ; ξ) belong to ([0 ]2 0

1 0).

Proof. We shall express∓ as an asymptotic series,

∓( ; ξ) ∼
∞∑

=0

∓( ; ξ) ∓ ∈ ([0 ]2 −
1 0)

with the initial conditions ∓( ; ξ) = 0 for ≥ 1. Obviously,

( E∓
0 ( ) )( ) =

∫
φ∓( ; ξ)((φ∓ ∓) + −1 ∓)( ; ξ) ˆ (ξ) ξ

Let E∓
0 ( ) denote the Fourier integral operator with phase functionφ∓( ; ξ) and

amplitude ∓( ; ξ). Theorem 3.3 yields

(τ∓( )E∓
0 ( ) )( ) =

∫
φ∓( ; ξ)

{
τ∓( ∇φ∓( ; ξ)) ∓( ; ξ)

+ −1(∇ξτ∓)( ∇φ∓( ; ξ))∇ ∓( ; ξ)

−
2

∑(
∂2
ξ ξ τ

∓) ( ∇φ∓( ; ξ))
((
∂2 φ∓

) ∓) ( ; ξ)

+ 2( ; ξ)} ˆ (ξ) ξ ord( 2) = −1−

This leads us to the eikonal equation

φ∓( ; ξ)− τ∓( ∇ φ∓( ; ξ)) = 0

and the transport equations ( = 0 1 2. . . )

(∂ − (∇ξτ∓)( ∇φ∓( ; ξ))∇ ) ∓( ; ξ)(3.10)

− 1
2

∑(
∂2
ξ ξ τ

∓) ( ∇φ∓( ; ξ))
(
∂2 φ∓( ; ξ)

) ∓( ; ξ)
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=
−1∑

=0

∑

|α|= +1−
α!

α
((
∂αξ τ

∓) ( ∇̃ φ∓( ; ξ)) ∓( ; ξ)
)

=

To solve the transport equations, we recall a well-known result from the theory of
first order PDEs. Consider the Cauchy problem with parameter,


∂ −

∑

=1

( ; )∂


 ( ; )− 0( ; ) ( ; ) = ( ; )

( ; ) = 0( ; )

Let γ = γ( 0; ) : [0 ]2 × R × R → R be the solution to

∂ γ ( 0; ) = − ( γ( 0; ); ) = 1 . . .

γ( 0; ) = 0

Then the solution satisfies

( ; ) = 0(γ( ; ); ) exp

(∫
0( γ( ; ); )

)
(3.11)

+
∫

exp

(∫

σ
0( γ( ; ); )

)
(σ γ(σ ; ); ) σ

In our situation, = ( ξ), ( ; ) = ∓( ; ), (0≤ ≤ ), with

∓( ; ) =
(
∂ξ τ

∓) ( ∇φ∓( ; ξ)) 1≤ ≤
∓
0 ( ; ) =

1
2

∑(
∂2
ξ ξ τ

∓) ( ∇φ∓( ; ξ)
)
∂2 φ∓( ; ξ)

and = ∓( ; ) is given by the right side of (3.10). Consequently,

∓
0 ( ; ξ) = exp

(∫
∓
0 ( γ( ; ξ); ξ)

)

∓( ; ξ)

=
∫

exp

(∫

σ

∓
0 ( γ( ; ξ); ξ)

)
∓(σ γ(σ ; ξ); ξ) σ

The coefficients , (0≤ ≤ ), belong to ([0 ]2 0
1 0); more precisely,

∣∣∣∂α∂βξ
∓( ; ξ)

∣∣∣ ≤
{

αβλ( )〈ξ〉−|β| : ξ ≤
αβ

−1
ξ 〈ξ〉−|β|−1 : ≤ ξ

1≤ ≤
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∣∣∣∂α∂βξ
∓
0 ( ; ξ)

∣∣∣ ≤





αβλ( )〈ξ〉−|β| ( ∨ ) : ξ ≤
αβ

−1
ξ 〈ξ〉−|β|−1 ( ) : ≤ ξ ≤

0 : ≤ ξ

see (3.8), (3.9). Then we obtainγ ∈ ([0 ]3 0
1 0) with |γ( ; ξ)− | ≤ | − |.

The representation of∓0 implies ∓
0 ( ; ξ) = 1 if ∨ ≤ ξ and

∣∣∣∂α∂βξ
∓
0 ( ; ξ)

∣∣∣ ≤ αβ〈ξ〉−|β|

if ∨ ≥ ξ. Inductively we conclude that

∣∣∣∂α∂βξ ∓( ; ξ)
∣∣∣ ≤





αβ λ( )〈ξ〉− −|β| : ξ ≤
αβ

−1
ξ 〈ξ〉− −1−|β| : ≤ ξ ≤

0 : ≤ ξ

and

∣∣∣∂α∂βξ ∓( ; ξ)
∣∣∣ ≤





αβ ( )〈ξ〉− −|β| : ξ ≤
αβ ( )〈ξ〉− −|β| : ≤ ξ ≤

0 : ≤ ξ

We see that ∓ ∈ ([0 ]2 −
1 0 ). If we set

˜∓( ; ξ) = ∓
0 ( ; ξ) +

∞∑

=1

(1− χ(ε 〈ξ〉)) ∓( ; ξ)

and choose the sequence{ε } with ε ց 0 suitably, then

˜∓( ; ξ) ∼
∞∑

=0

∓( ; ξ) mod ([0 ]2 −∞)

and ˜∓( ; ξ) = 1 for ∨ ≤ ξ. The function˜ is the amplitude to an approximate
fundamental solutioñE∓

0 which satisfies

( − τ∓( ))Ẽ∓
0 ( ; ) = ∓

∞( ; )

with ∓
∞ ∈ ([0 ]2 −∞). In order to find the exact solutionE∓

0 , we set

1( ) := − ∓
∞( ) ν+1( ) :=

∫
1( σ) ν(σ ) σ
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Then the desired fundamental solution to− D is given by

E∓
0 ( ) := Ẽ∓

0 ( ) +
∫

Ẽ∓
0 ( σ)

∞∑

ν=1

ν(σ ) σ

Now we constructE1( ).

Proposition 3.5. The fundamental solutionE1( ) to the operator − D −
K(0) − K̃ can be written asE1( ) = E0( )Q0( ), where Q0 is a diagonal pseu-
dodifferential operator, Q0 ∈ ∞([0 ]2 0

1−ε ε) for some 0. With someq̃0 ∈
∞([0 ]2 0

1−ε ε), its symbol can be written in the form

q0( ξ) = exp

(∫
k(0)(τ ξ) τ

)
q̃0( ξ)

k(0)( ξ) = diag
(

k(0)
−
( H −( ξ)

)
k(0)

+

( H + ( ξ)
))

where the Hamilton flowsH ∓( ξ) have been defined inDefinition 3.2; and k(0)
± is

given by(3.7).

Proof. We look forE1 having the formE1 = E0Q0 and obtain

Q0( ) = E0( )(K(0)( ) + K̃( ))E0( )Q0( )

According to Egorov’s Theorem (see [19]),E0( )(K(0)( ) + K̃( ))E0( ) is a pseudod-
ifferential operatorK( ), whose diagonal principal symbolk(0)( )+k(1)( ) is given
by

k(0)
∓ ( ; ξ) + k(1)

∓ ( ; ξ) = k(0)
∓ ( H ∓( ξ)) + k̃∓( H ∓( ξ))

see also Definition 3.2. Therefore, we write

sym(K( )) =: k( ) =: k(0)( ) + k(1)( ) + k(2)( )

with lower order termsk(2)( ) and look forQ0 having the form

(Q0( ) )( ) =
∫

ξq0( ξ) ˆ (ξ) ξ q0( ξ) =

We expandq0 into an asymptotic series
∑∞

=0 q0 with ord(q0 ) = − and

q0 ( ) =
∑

|α|=0

1
α!

( α
ξ k( ))(∂αq0( −|α|)( ))
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Recalling that all matrices are diagonal, we see that

q00( ) = exp

(∫
k(τ ) τ

)

q0 ( ) =
∫

exp

(∫

σ

k(τ ) τ

)∑

|α|=1

1
α!

(
α
ξ k
) (
∂αq0( −|α|)

)
(σ ) σ

We know that thek( ) vanish in ( ) and that

k(0) ∈ λ
([0 ] 0

1 0) k(1) ∈ λ
2

([0 ] −1
1 0)

k(2) ∈ λ
2

([0 ] −2
1 0) ⊂ ([0 ] 0

1 0)

uniformly with respect to ∈ [0 ]. Consequently,

∫ ∨

∧

∣∣∣∂α∂βξ k( )(τ ξ)
∣∣∣ τ ≤ αβ〈ξ〉−|β| = 1 2

The proof of Proposition 2.13 gives the rough estimate

∫ ∨

∧

∣∣∣∂α∂βξ k(0)(τ ξ)
∣∣∣ τ ≤ αβε〈ξ〉−|β|+ε ∀ ( ξ)

for every positiveε. By induction we obtain

∣∣∣∂α∂βξ q0 ( ξ)
∣∣∣
∥∥∥∥exp

(
−
∫

k(0)(τ ξ) τ

)∥∥∥∥

≤ αβε 〈ξ〉−(1−ε) +ε|α|−(1−ε)|β|

There is a positive real number+ with

exp

(∫ ∥∥k(0)(τ ξ)
∥∥ τ

)
≤





(
( ∨ )
( ∧ )

)
+

: ′
ξ ≤

(
( ∨ )
( ξ)

)
+

: ∧ ≤ ′
ξ ≤ ∨

1 : ≤ ′
ξ

Here ′
ξ is given by ( ′ξ)〈ξ〉 = /2. We shall see that the number+, which gives

a bound for the loss of regularity, is the same number as in Section 2.1. Sinceq0 ∈
∞([0 ]2 +−(1−ε)

1−ε ε ), the series
∑

q0 defines in a canonical way the symbolq̃0

of an approximative solutioñQ. The solutionQ1 can be constructed from̃Q in the
same way as in the proof of Proposition 3.4.
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3.2.2. Fundamental solutions to matrix first order operators Finally, we
considerE2. If E2( ) = E1( )Q1( ), then

(3.12) Q1( ) = E1( )K(∞)( )E1( )Q1( ) Q1( ) =

The following proposition describes the factor on the right-hand side.

Proposition 3.6. The operatorK(∞)( ) := E1( )K(∞)( )E1( ), ≤ , is a
pseudodifferential operator whose(matrix) symbol satisfies, for every ≥ 0,

∥∥∥∂α∂βξ k(∞)( ξ)
∥∥∥(3.13)

≤





αβε

(
( )
( )

)2 +
λ( )

( ) ( ( )〈ξ〉)− 〈ξ〉ε|α|−(1−ε)|β| : ′
ξ ≤ ≤

αβε

(
( )
( ξ)

)2 +
λ( )

( ) ( ( )〈ξ〉)− 〈ξ〉ε|α|−(1−ε)|β| : ≤ ′
ξ ≤

αβε
−1
ξ 〈ξ〉ε|α|−(1−ε)|β| : ≤ ≤ ′

ξ

Proof. We start with the compositionK(∞)( )E1( ), which can be written as

(K(∞)( )E1( ) )( ) =
∫

φ−( ξ)k1−( ξ) ˆ (ξ) ξ

+
∫

φ+( ξ)k1+( ξ) ˆ (ξ) ξ

The amplitudesk1−, k1+ are given by expansions of the form

∞∑

|α|=0

1
α!

α
(
(∂αξ k(∞))( ∇̃ φ( ξ))e( ξ)

)
=

and satisfy, for every ≥ 0,
∥∥∥∂α∂βξ k1±( ξ)

∥∥∥(3.14)

≤





αβε

(
( )
( )

)
+
λ( )

( ) ( ( )〈ξ〉)− 〈ξ〉ε|α|−(1−ε)|β| : ′
ξ ≤ ≤

αβε

(
( )
( ξ)

)
+
λ( )

( ) ( ( )〈ξ〉)− 〈ξ〉ε|α|−(1−ε)|β| : ≤ ′
ξ ≤

αβε
−1
ξ 〈ξ〉ε|α|−(1−ε)|β| : ≤ ≤ ′

ξ

On the other hand,

∣∣∣∂α∂βξ φ±( ξ)− ξ
∣∣∣ ≤

{
αβ ( )|α|+|β|〈ξ〉|α| : ′

ξ ≤ ≤
β〈ξ〉−|β| : ≤ ≤ ξ
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Since (3.14) holds for every ≥ 0, the operatorK(∞)( )E1( ) is a pseudodifferen-
tial operator. The symbol of that operator (and its derivatives) can be bounded by the
right-hand side of (3.14), for every ≥ 0. In a similar way we can consider the oper-
ator E1( )(K(∞)( )E1( )) and obtain (3.13).

REMARK 3.7. We can write (3.13) in the form
∥∥∥∂α∂βξ k(∞)( ξ)

∥∥∥ ≤ αβε ( ξ)〈ξ〉ε|α|−(1−ε)|β| ∀ ( ξ)

with

( ξ) :=





(
( )
( ξ)

)2 +
λ( )

( ) ( ( )〈ξ〉)− : ′
ξ ≤

−1
ξ : ≤ ′

ξ

By direct computation,
∫

0 ( ξ) ≤ if 2 + − < 0.

Now we are in a position to describeQ1.

Proposition 3.8. There is a pseudodifferential operatorQ1( ) that solves
(3.12) and whose matrix symbol belongs to∞([0 ]2 0

1−ε ε).

Proof. We look for q1 in the form q1 ∼
∑∞

=0 q1 mod ∞([0 ]2 −∞)
where

q1 ( ξ) =
∑

|α|=0

1
α!

(
α
ξ k(∞)( ξ)

) (
∂αq1( −|α|)( ξ)

)

with the initial conditionsq10( ) = and q1 ( ) = 0 for ≥ 1. We write this
matrix ODE in the form

∂ q1 ( ) = k(∞)( )q1 ( ) + r ( )

and introduce the notations

0( ) := ν+1( ) :=
∫

k(τ ) ν(τ ) τ

0 ( ) :=
∫

r (τ ) τ (ν+1) ( ) :=
∫

k(τ ) ν (τ ) τ

Then the representations

q10( ) =
∞∑

ν=0

ν( ) q1 ( ) =
∞∑

ν=0

ν ( ) ( ≥ 1)
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hold. By means of induction, we show that

∥∥∥∂α∂βξ ν( ξ)
∥∥∥ ≤ αβε〈ξ〉ε|α|−(1−ε)|β| 1

ν!

(∫
(τ ξ) τ

)ν

for all ( ξ) with ≥ and all ν. This is true forν = 0. Then we have

∥∥∥∂α∂βξ ν+1( ξ)
∥∥∥

≤ αβε〈ξ〉ε|α|−(1−ε)|β| 1
ν!

∫
(τ ξ)

(∫ τ

(σ ξ) σ

)ν
τ

= αβε〈ξ〉ε|α|−(1−ε)|β| 1
(ν + 1)!

(∫
(τ ξ) τ

)ν+1

Now we prove that

(3.15)
∥∥∥∂α∂βξ q1 ( ξ)

∥∥∥ ≤ αβε 〈ξ〉ε|α|−(1−ε)|β|−(1−2ε) ∀ ( ξ)

Due to
∫

0 ( ξ) ≤ for large , this holds for = 0. Assuming that (3.15)
is true for − 1, we show (3.15) for . Clearly,

∥∥∥∂α∂βξ r ( ξ)
∥∥∥ ≤ αβε 〈ξ〉ε|α|−(1−ε)|β| ( ξ)

Then it follows immediately that

∥∥∥∂α∂βξ 0 ( ξ)
∥∥∥ ≤ αβε 〈ξ〉ε|α|−(1−ε)|β|

∫
(τ ξ) τ

Similarly to the estimate of ν , we can show that

∥∥∥∂α∂βξ ν ( ξ)
∥∥∥ ≤ αβε 〈ξ〉ε|α|−(1−ε)|β|−(1−2ε)

(ν + 1)!

(∫
(τ ξ) τ

)ν+1

which implies (3.15).
So far, we have constructedq1 ∈ ∞([0 ]2 −(1−2ε)

1−ε ε ). Therefore, we find a
symbol q̃1 ∼

∑∞
=0 q1 mod ∞([0 ]2 −∞) which satisfies

q̃1( )− k(∞)( ) ◦ q̃1( ) = r∞( ) ∈ ∞([0 ]2 −∞)

The solutionQ1 can be constructed from the approximative solutionQ̃1 in a standard
way, compare the proof of Proposition 3.4.
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4. The linear Cauchy problem

Let us consider the solution to

(4.1) = ( ) (0 ) = 0( ) (0 ) = 1( )

We define the weight symbolϑ( ξ) by

ϑ( ξ) = exp

(∫
0 λ(τ )

(τ )
χ−(τ ξ)β( ) τ

)
(4.2)

β( ) := ∗
2( ∗ + 1)

max
∓ ξ

∣∣∣∣
(

1∓ +√
2 +

)
(0 ξ)

∣∣∣∣(4.3)

compare (3.7). The numberβ( ) tells us the amount of Sobolev regularity that was
lost at the point when we passed from (0 ) to ( ) (> 0), where ( ) =
( ( ) ( ) ( )), see (3.1). By computation,

β( ) = ∗
2( ∗ + 1)

(
1 +
(

( ) ( ( ))−1 ( )
)1/2

)

where ( ) ( ( )) is the uniquely determined vector (symmetric matrix, respectively)
such that

( ) ξ = ( (0 ξ) + (0 ξ))|ξ| ξ ( )ξ = ( (0 ξ)2 + (0 ξ))|ξ|2

Observe that ( ) is positively definite, uniformly in , due to (1.9).

ASSUMPTION A. The vector ( (0 )− (0 )) =1 either vanishes identically on
R , or it never vanishes.

Under this assumption,β( ) ∈ ∞(R ). Now we choose the Sobolev space of
variable order ϑ and space ϑ of traces of functions of ϑ at = 0,

‖ ‖ := sup
[0 ]

(‖ ( ) ( )‖ 2 + ‖ ( )‖ 2)

‖ (0)‖
ϑ

:= ‖ (0 ) (0 )‖ 2 + ‖ (0 )‖ 2

The main result of this section is the followinga priori estimate:

Theorem 4.1. SupposeAssumption A, 0 ∈ ϑ +1/( ∗+1) and 1 ∈ ϑ with
≥ 0. Then there are a time interval[0 ] and a constant with the property

that a solution ∈ ϑ +1/( ∗+1) to (4.1) exists and satisfies

‖ ‖ ≤ (‖ (0)‖
ϑ

+ ‖ ‖ )
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where ( ) = ( ( ) ( ) ( )) , see(3.1).

The proof is split into several lemmas.

Lemma 4.2. If H ∓( ξ) denotes the Hamilton flow ofDefinition 3.2and 0≤ ,
σ ≤ ≤ , then

ϑ( H ∓
σ( ξ))

ϑ( ξ)
∈ ∞([0 ]3 0

1−ε ε)

Proof. Due to Hadamard’s formula, we can write

λ(τ )
(τ )

(χ−β)(τ H ∓
σ( ξ))

=
λ(τ )

(τ )
(χ−β)(τ ξ) +

λ(τ )
(τ )

(τ σ ξ)( − σ)

with some remainder ∈ ∞([0 ]3 0
1 0). Our assumptions and ≤ τ show that

λ(τ )| − σ|/ (τ ) ≤ , which yields the assertion.

The same argument gives the following improvement of Proposition 3.5.

Lemma 4.3. The symboldiag(q−
0 q+

0) of the operatorQ0( ) has the form

q∓
0 ( ξ)

= exp

(∫
λ′(τ )
2λ(τ )

χ−(τ ξ)

(
1∓ +√

2 +

)
(0 ξ) τ

)
◦ q̃∓

0 ( ξ)

where q̃∓
0 ∈ ∞([0 ]2 0

1−ε ε).

The next lemma is a variant of Egorov’s theorem.

Lemma 4.4. There are operatorsR( ) ∈ ∞([0 ]2 0
1−ε ε) and R∞( ) ∈

∞([0 ]2 −∞) with the property that

E0( ) ( )E0( ) = R( ) ( ) + R∞( ) 0≤ ≤ ≤

Proof. In the sequel, we consider as fixed and let be running in[0 ]. We
write ˜ ( ) := E0( ) ( )E0( ) and obtain

˜ ( ) = [D( ) ˜ ( )] = D( ) ˜ ( )− ˜ ( )D( )
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We look for ˜ having the form

( ˜ ( ) )( ) =
∫

ξϑ̃( ξ) ˆ (ξ) ξ ϑ̃ ∼
∞∑

=0

ϑ̃

where ϑ̃ = diag(ϑ̃− ϑ̃+ ) are diagonal symbols satisfying

∂ ϑ̃ ( ξ)

=
∑

|α|=1

(
∂αξ D( ξ)

) (
∂αϑ̃ ( ξ)

)
−
(
∂αD( ξ)

) (
∂αξ ϑ̃ ( ξ)

)

+
−1∑

=0

∑

|α|= +1−
α!

((
α
ξ D( ξ)

) (
∂αϑ̃ ( ξ)

)

−
(
∂αD( ξ)

) (
α
ξ ϑ̃ ( ξ)

))

with the initial conditionsϑ̃∓0 ( ξ) = ϑ ( ξ), ϑ̃∓( ξ) = 0 ( ≥ 1). This
first order PDE can be written as

∂ ϑ̃∓( ξ) =H ∓ϑ̃∓( ξ) + ∓( ξ) ∓
0 ≡ 0

whereH ∓ =
∑

|α|=1(∂αξ τ
∓)∂α − (∂ατ∓)∂αξ is the Hamilton vector field. Then the

solutionsϑ̃∓ are given by

ϑ̃∓0 ( ξ) = ϑ ( H ∓( ξ))

ϑ̃∓( ξ) =
∫

∓( σ H ∓
σ( ξ)) σ 0≤ ≤ ≤ ≥ 1

From Lemma 4.2, we deduce thatϑ̃∓0 ( ξ) = ∓
0 ( ξ)ϑ ( ξ) with ∓

0 ∈
∞([0 ]2 0

1−ε ε). By ϑ ( ) ∈ K1−ε ε, it can be concluded that ∓1 ( ξ) =
˜ ∓
1 ( ξ)ϑ ( ξ), with ˜ ∓

1 ∈ ∞([0 ]2 −(1−2ε)
1−ε ε ). Applying Lemma 4.2 again

showsϑ̃∓1 ( ξ) = ∓
1 ( ξ)ϑ ( ξ), where ∓

1 ∈ ∞([0 ]2 −(1−2ε)
1−ε ε ). Fol-

lowing this procedure we get

ϑ̃∓( ξ) = ∓( ξ)ϑ ( ξ) ∓ ∈ ∞([0 ]2 −(1−2ε)
1−ε ε )

We defineϑ∗ ∓ ∼ (
∑∞

=0
∓)ϑ , which gives us an approximative solution,

∗( )− [D( ) ∗( )] = R0 ∞( ) ∈ ∞([0 ]2 −∞)

It remains to show that̃ − ∗ is a smoothing operator. This is equivalent to prove
that ( ) :=E0( ) ( )− ∗( )E0( ) smooths. We have

( − D( )) ( ) = −R0 ∞( )E0( )
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and ( ) = 0. Then Duhamel’s principle yields

( ) = −
∫

E0( τ )R0 ∞( τ )E0(τ ) τ ∈ −∞

This completes the proof.

Proof of Theorem 4.1. The vector can be written as

( ) =E( 0) (0 ) +
∫

0
E( ) ( )

=M( )N( )E0( 0)Q0( 0)Q1( 0)N♯(0)M♯(0) (0 )

+
∫

0
M( )N( )E0( )Q0( )Q1( )N♯( )M♯( ) ( )

+ R∞( 0) (0 ) +
∫

0
R∞( ) ( )

Lemma 2.5 shows that there arẽM( ) Ñ( ) ∈ ∞([0 ] 0
1−ε ε), and Q̃1( ) ∈

∞([0 ]2 0
1−ε ε), such that modulo regularizing operators we have

( )M( )N( ) = M̃( )Ñ( ) ( ) ( )Q1( ) = Q̃1( ) ( )

Then we have, modulo smoothing operators,

( )M( )N( )E0( )Q0( ) = M̃( )Ñ( )E0( )R( ) ( )Q0( )

see Lemma 4.4. From Lemma 4.3 and the choice ofϑ, it follows that

( )Q0( ) = R0( ) ( ) + R∞( )

with someR0 ∈ ∞([0 ]2 0
1−ε ε). As a summary, we have

( )M( )N( )E0( )Q0( )Q1( )N♯( )M♯( )

= R( ) ( ) + R∞( ) 0≤ ≤ ≤

with someR( ) ∈ ∞([0 ]2 L( 2)). Then it follows that

‖ ( ) ( )‖2 ≤ ‖R( 0) (0) (0 )‖2 + ‖R∞( 0) (0 )‖2

+
∫

0
‖R( ) ( ) ( )‖2 +

∫

0
‖R∞( ) ( )‖2

Integration overR gives the desired inequality.
The weight symbol ( ξ) of (3.1) satisfies ( ξ) ≥ 〈ξ〉1/( ∗+1), > 0. Then we

have‖ ‖ +1/( ∗+1) ≤ ‖ ‖ ; hence ∈ ϑ +1/( ∗+1) .
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5. The algebra property

One variant of the extension of the result of Theorem 4.1 to semilinear Cauchy
problems relies on the algebra property of the spaceϑ . This idea was used in [7],
where Cauchy problems similar to (1.6) and (1.7) were studied. In this section, the
algebra property of the spacesϑ is proved.

Theorem 5.1. Assume > /2 + 1. Then there is a constant0 such that

‖ 1 2‖ ≤ 0 ‖ 1‖ ‖ 2‖

for all 1, 2 ∈ ϑ .

Corollary 5.2. Let ( ) satisfy (1.10), (1.11)and suppose > /2 + 1.
Then there is, for each > 0, a constant 1( ) with the property that

‖ ( )− ( )‖ ≤ 1( ) ‖ − ‖

provided that ∈ ϑ and ‖ ‖ , ‖ ‖ ≤ .

The proof is split into several parts. In Lemma 5.3 and Corollary 5.4, we replace
the operator by a new operator whose Schwartz Kernel has support close to the
diagonal{ = } of R ×R . Then this new localized operator is locally decomposed
into a product of two operators; the first is an operator of small order, the second has
a symbol independent of . Exploiting an estimate given in Proposition 5.5, the de-
sired inequality is proved locally in Lemma 5.6. Finally, all these local estimates are
glued together in Lemma 5.7.

Let { ̺( 0)}∞=0 be a locally finite covering ofR with balls of radius̺ and cen-
ter 0 and let {ϕ ( )}∞=0 be its associated partition of unity. Fix someψ ∈ ∞

0 (R )
with ψ( ) = 1 for | | ≤ 2, ψ( ) = 0 for | | ≥ 3 and defineψ̺( ) = ψ( /̺).

Lemma 5.3. For ∈ 1 ε, define ̺ = ̺( ) by

( ̺ )( ) =
∞∑

=0

∫

Rξ

∫

R

( − )ξϕ ( ) ( ξ)(1− ψ̺)( − 0) ( ) ξ

Then ̺ is a smoothing operator, ̺ ∈ −∞.

Proof. The Schwartz Kernel of̺,

∞∑

=0

∫

Rξ

( − )ξϕ ( ) ( ξ)(1− ψ̺)( − 0) ξ
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vanishes for| − | ≤ ̺.

Corollary 5.4. The following norm is an equivalent norm forϑ :

‖ ‖2 ∼ sup
[0 ]

( ∞∑

=0

∥∥ϕ ( ) ( )(ψ̺( − 0) ( ))
∥∥2

2 + ‖ ‖2
2

)

Proposition 5.5. Suppose that ( ξ) ∈ ∞([0 ] 1 0) satisfies

( ξ) = ( |ξ|) is monotonically increasing in|ξ|(5.1)

( 2ξ) ≤ 0 ( ξ)(5.2)

0 ( ξ) ≥ 〈ξ〉 /2+1+γ γ > 0(5.3)

|∇ξ ( ξ)| ≤ 0 ( ξ)〈ξ〉−1(5.4)

for all ( ξ) ∈ [0 ] × R and some 0 > 0. If δ ≥ 0, then the estimate

‖ ( )− − ‖ δ ≤ 1 ‖ ‖ δ−1/2 ‖ ‖ δ−1/2

holds for all with , ∈ δ−1/2; and 1 = 1( 0 γ δ).

Proof. If is an arbitrary function of 2(Rξ), then

∫

Rξ

〈ξ〉δ( ( )− − ) (̂ξ) (ξ) ξ

=
∫

Rξ

∫

Rη

(〈ξ − η〉δ−1/2 (ξ − η) ˆ (ξ − η))(〈η〉δ−1/2 (η) ˆ (η))×

× (ξ η) (ξ) η ξ

holds, where we have neglected the variable and

(ξ η) :=
| (ξ)− (ξ − η)− (η)|〈ξ〉δ〈η〉1/2〈ξ − η〉1/2

(ξ − η) (η)〈η〉δ〈ξ − η〉δ

Assume that we had shown

(5.5) sup
ξ

∫

Rη

(ξ η)2 η = 2
1 <∞

Then the Cauchy-Schwarz inequality implies

∣∣∣∣∣

∫

Rξ

〈ξ〉δ( ( )− − ) (̂ξ) (ξ) ξ

∣∣∣∣∣
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≤
(∫

Rη

∫

Rξ

|〈ξ − η〉δ−1/2 (ξ − η) ˆ (ξ − η)〈η〉δ−1/2 (η) ˆ (η)|2 ξ η

)1/2

×
(∫

Rξ

∫

Rη

(ξ η)2| (ξ)|2 η ξ

)1/2

≤ 1 ‖ ‖ 2(Rξ) ‖ ‖ δ−1/2 ‖ ‖ δ−1/2

which completes the proof. Therefore, it remains to show (5.5).
For eachξ, we split Rη into four parts:

= {η : |η| ≥ 2|ξ|} =

{
η : |η| ≤ 2|ξ| |ξ − η| ≤ |η|

2

}

= {η : |η| ≤ 2|ξ| |ξ − η| ≥ 2|η|}

=

{
η : |η| ≤ 2|ξ| |η|

2
≤ |ξ − η| ≤ 2|η|

}

If η ∈ , then |ξ − η| ≥ |η|/2; hence

(ξ η) ≤ (η)〈η〉1/2〈ξ − η〉1/2

(ξ − η) (η)
≤ 〈ξ − η〉

(ξ − η)
≤ 〈η〉 /2+γ

This implies
∫

(ξ η)2 η ≤ .
If |ξ− η| ≤ |ξ|/2, then|ξ|/2≤ |η| ≤ 3|ξ|/2 and |ξ− η| ≤ |η|. Consequently, (ξ η)

is the shortest side in the triangle with the corners 0ξ η. Then we can find a positive
number with

min(|η| |ξ|) ≤ |αη + (1− α)ξ| ≤ max(|η| |ξ|) ∀ 0≤ α ≤ 1

From this and (5.4), we deduce that

| (ξ)− (η)| ≤ max
0≤α≤1

|∇ (αξ + (1− α)η)| · |ξ − η|

≤ max
0≤α≤1

(αξ + (1− α)η)
〈αξ + (1− α)η〉 · 〈ξ − η〉

| (ξ)− (η)| ≤ (ξ)
〈ξ〉 〈ξ − η〉 ∀ |ξ − η| ≤ |ξ|

2
(5.6)

Now let η ∈ . From (5.6), we get

| (ξ)− (η)− (ξ − η)| ≤ (η)
〈η〉 〈ξ − η〉 + (ξ − η)

(ξ η) ≤ (η)〈ξ − η〉3/2〈η〉1/2

(ξ − η) (η)〈η〉 +
(ξ − η)〈η〉1/2〈ξ − η〉1/2

(ξ − η) (η)
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≤ 〈ξ − η〉
(ξ − η)

+
〈η〉
(η)

This implies
∫

(ξ η)2 η ≤ .
The caseη ∈ is treated similarly; we just change the roles ofη and ξ − η.
Finally, if η ∈ , then

(ξ η) ≤ (η)〈η〉1/2〈ξ − η〉1/2

(ξ − η) (η)
≤ 〈ξ − η〉

(ξ − η)
≤ 〈η〉 /2+γ

The proof is complete.

We define two additional cut-off functions,

ζ(1)( ) =

{
1 : | | ≤ 3

0 : | | ≥ 4
ζ(2)( ) =

{
1 : | | ≤ 5

0 : | | ≥ 6

and setζ( )
̺ ( ) := ζ( )( /̺), = 1 2. Then we introduce the notations1 ( ) =

ζ(1)
̺ ( − 0) 1( ), 2 ( ) = ψ̺( − 0) 2( ), and it follows that ψ̺( −
0) 1( ) 2( ) = 1 ( ) 2 ( ). We define the symbol

ϑ( )( ξ) = exp

(∫
λ(τ )

(τ )
χ−(τ ξ)(β( )− β( 0)) τ

)

and conclude that ( ) = ( )( ) ( 0 ).

Lemma 5.6. Let δ be a positive number with

(5.7) sup sup
| − 0|≤8̺

∣∣β( )− β( 0)
∣∣ ≤ δ ≤ 1

4

Then there is some constantδ ̺, independent of , , and , such that

∥∥ϕ ( ) ( )(ψ̺( − 0) 1( ) 2( ))
∥∥

2

≤ δ ̺(
∥∥ζ(2)
̺ ( − 0) ( ) 1 ( )

∥∥
2 + ‖ 1 ( )‖ 2)×

× (
∥∥ζ(2)
̺ ( − 0) ( ) 2 ( )

∥∥
2 + ‖ 2 ( )‖ 2)

Proof. We have the decomposition

ϕ ( )( 1 2 ) = 1 + 2 + 3

= ϕ ( )( ( 0 )( 1 2 )− 1 ( 0 ) 2

− 2 ( 0 ) 1 )
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+ ϕ ( )( 1 ( 0 ) 2 ) + ϕ ( )( 2 ( 0 ) 1 )

By the choice ofδ, we deduce thatϑ( )( ξ) ≤ 〈ξ〉δ, as long as| − 0| ≤ 8̺.
Then it follows thatϕ ϑ( ) ∈ ∞([0 ] δ

1 ε). Proposition 5.5 gives

‖ 1‖ 2 ≤
∥∥ ( 0 ) 1

∥∥
δ−1/2

∥∥ ( 0 ) 2

∥∥
δ−1/2

Now we show that

∥∥ ( 0 )
∥∥

δ−1/2

≤
∥∥ζ(2)
̺ ( − 0) ( )

∥∥
2 + ‖ ‖ 2(5.8)

According to Proposition 2.4, the operator( ) has a parametrix ♯
( ). Then we can

write

( 0 ) = ( ♯
( ) )( ) + ∞

= ♯
( )((1− ζ(2)

̺ ( − 0) + ζ(2)
̺ ( − 0)) ) + ∞

Since the symbol of the operator♯( )(1− ζ(2)
̺ ( − 0)) vanishes on the support of

(modulo smoothing operators), we see that

(5.9)
∥∥∥ ♯

( )((1− ζ(2)
̺ ( − 0)) )

∥∥∥
δ−1/2

≤ ‖ ‖ 2

The order of the operator ♯( ) is at most δ in a neighbourhood of the support of
ζ(2)
̺ ( · − 0). Therefore,

∥∥∥ ♯
( )(ζ

(2)
̺ ( − 0) )

∥∥∥
δ−1/2

≤
∥∥ζ(2)
̺ ( − 0)

∥∥
2

This proves (5.8) and yields the estimate of1.
For each operator ∈ δ

1 ε (δ < 1), there is a constant such that for all Lip-
schitz continuous functions and all∈ δ−1 the estimate

(5.10) ‖[ ] ‖ 2 ≤ ‖∇ ‖ ∞ ‖ ‖ δ−1

holds. This is a special case of Theorem 5.1 in [13]. Using (5.10) and

2 = 1 ϕ ( ) 2 + [ϕ ( ) 1 ] ( 0 ) 2

we deduce that

‖ 2‖ 2 ≤ ‖ 1 ‖ 1 (‖ϕ 2 ‖ 2 +
∥∥ ( 0 ) 2

∥∥
δ−1)
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From 〈ξ〉 ≤ ϑ ( ξ) and > /2 + 1, we obtain

‖ 1 ‖ 1 ≤
∥∥(1− ζ(2)

̺ ( − 0) + ζ(2)
̺ ( − 0)) ( ) 1

∥∥
2

+ ‖ 1 ‖ 2

The application of the reasoning that led to (5.9) implies

‖ 1 ‖ 1 ≤
∥∥ζ(2)
̺ ( − 0) ( ) 1

∥∥
2 + ‖ 1 ‖ 2

The term 3 can be treated similarly.

Lemma 5.7. Under the conditions ofLemma 5.6,we have

∞∑

=0

∥∥ϕ ( ) ( )(ψ̺( − 0) 1( ) 2( ))
∥∥2

2

≤ δ ̺ ‖ 1‖2 ‖ 2‖2 ∀ 1 2 ∈ ϑ

Proof. It suffices to show

∞∑

=0

∥∥ζ(2)
̺ ( − 0) ( )

∥∥2
2 ≤ ‖ ‖2(5.11)

Applying Lemma 2.5 twice, we find an operator1 ∈ ∞([0 ] 0
1−ε ε) with

( ) ◦ ζ(1)
̺ ( − 0) = 1 ( ) ( ) + ∞

= 1 (1− ζ(3)
̺ ( − 0) + ζ(3)

̺ ( − 0)) ( ) + ∞

whereζ(3)
̺ ( ) = ζ(3)( /̺) and ζ(3)( ) = 1 for | | ≤ 7, ζ(3)( ) = 0 for | | ≥ 8. Exploiting

the idea behind Lemma 5.3 and Corollary 5.4, we get

∞∑

=0

∥∥ζ(2)
̺ ( − 0) 1 ((1− ζ(3)

̺ ( − 0)) 1)
∥∥2

2 ≤ ̺ ‖ 1‖2
2

On the other hand,ζ(2)
̺ ( − 0) 1 is an operator of order zero, uniformly bounded

with respect to ; hence

∞∑

=0

∥∥ζ(2)
̺ ( − 0) 1 (ζ(3)

̺ ( − 0) 1)
∥∥2

2

≤
∞∑

=0

∥∥ζ(3)
̺ ( − 0) 1

∥∥2
2 ≤ ‖ 1‖2
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This gives (5.11) for = 1. The case = 2 runs similarly.

Proof of Theorem 5.1. We apply Corollary 5.4 and Lemma 5.7.

6. The semilinear Cauchy problem

Theorem 4.1 gives us the existence of a solution to the Cauchyproblem (1.7)
in some space ϑ +1( ∗+1) provided 0 ∈ ϑ +1/( ∗+1), 1 ∈ ϑ . The main goal of
this section is to show that, for small time , a solution to (1.6) exists and belongs
to the same space as . Moreover, we prove that the difference− has higher reg-
ularity than and , see Theorem 6.2. This implies that the strongest singularities of

and are the same.

Theorem 6.1. SupposeAssumption Aand 0 ∈ ϑ +1/( ∗+1), 1 ∈ ϑ , and
> /2 + 1. Then there is a , 0< ≤ 0, such that a solution ∈ ϑ +1/( ∗+1)

to (1.6) exists with ∈ ϑ , where ( ) = ( ( ) ( ) ( )) .

Proof. We consider the mappingA : 7→ defined by

= ( ) (0 ) = 0( ) (0 ) = 1( )

and show that it has a fixed point inϑ +1/( ∗+1) for small , 0< ≤ 0. Fix a
constant 2 such that

(6.1) ‖ ( )‖ ≤ 2 ‖ ( ) ( )‖

for all with ∈ ϑ and all . Then we fix some positive number ,

:= 2 2 (‖ (0 ) 0( )‖
ϑ

+ ‖ 1( )‖
ϑ

+ 1)

where is the constant of Theorem 4.1, and choose 0< ≤ 0 such that

1( ) ≤ 1
2 2

(6.2)

where 1( ) is from Corollary 5.2. We fix some set ⊂ ϑ ,

=

{
∈ ϑ +1/( ∗+1) : ‖ ‖ + ‖ ‖ ≤

2

}
⊂ ϑ

Let denote the closure of in ϑ . If ˜ ∈ , then we have
‖ ‖ ≤ , see (6.1); and, consequently,‖ ( )‖ ≤ 1( ) ‖ ‖ ,
‖ ( )− ( ˜ )‖ ≤ 1( ) ‖ − ˜ ‖ . By (6.2) and Theorem 4.1,A
maps into and is a contraction. Then Banach’s fixed point theorem gives us a
fixed point ofA.
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Finally, we show that the difference− has higher regularity than and .

Theorem 6.2. Let and be the solutions to(1.6), (1.7) and let the assump-
tions of Theorem 6.1be valid. Then

− ∈ ϑ +1/( ∗+1) − ∈ ϑ +2/( ∗+1)

Proof. From ∈ ϑ +1/( ∗+1) and Corollary 5.2, we deduce that ( )∈
ϑ +1/( ∗+1) . The function − solves ( − ) = ( ) and has vanishing initial

data. Then Theorem 4.1 gives the assertion.

7. An example

Let us illustrate the results of this paper by an example. In [6], the example of Qi
Min-You [15] has been extended to Cauchy problems of the type

= + 2 ∗ − 2 ∗ − ∗ ∗−1 = 0 ∈ R

(0 ) = 0( ) (0 ) = 0

Looking for a solution ( ) =
∑

=0
( ∗+1) (∂ 0)( + µ ∗+1) we obtain

µ1 2 =
1

∗ + 1

(
− ±

√
2 +

)
1 2 = ∗

2( ∗ + 1)

(
−1± +√

2 +

)

Assuming that 1 ∈ N ( 2 ∈ N), we see a loss of 1 ( 2) derivatives and propagation
of singularities along one characteristic only. We find thatthe loss of regularity given
by (4.2), (4.3) and Theorem 4.1 is sharp for this example.

Now suppose that are functions of . We choose two distinct points 0
1, 0

2

on the initial line and neighbourhoods1, 2 of 0
1 and 0

2. Moreover, assume that
are constant in 1, 2, and that their values are arranged in such a way that

1 = 1( ) ∈ N for ∈ 1 and 2 = 2( ) ∈ N for ∈ 2 with 1 6= 2. Then,
locally, has a loss of derivatives in a neighbourhood of0. This can be seen as
follows. The solution to a weakly hyperbolic Cauchy problemis unique if the initial
data have high Sobolev smoothness, see [11], [14], [16]. Since unique solutions have
finite speed of propagation, the solution coincides with a function in a neighbour-
hood of ( 0 0), where solves

+ 2 ( 0) ∗ − ( 0) 2 ∗ − ( 0) ∗ ∗−1 = 0

(0 ) = ϕ ( ) 0( ) (0 ) = 0

with suppϕ ⊂ , ϕ ≡ 1 near 0. On the other hand, is given by

( ) =
∑

=0

( ∗+1) (∂ (ϕ 0))( + µ ∗+1)
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This proves that the solution suffers from a loss of1 derivatives near 0
1 and of

2 derivatives near 0
2, which is exactly the loss predicted in (4.3). Furthermore,we

observe that singularities of the datum0 in 1 or 2 propagate along one character-
istic only. Now let be the solution to = ( ), (0) =0, (0) = 0, where
satisfies (1.11). Then Theorem 6.2 states that− has higher regularity than . This
means that the strongest singularities of and coincide. Thefunction may have
additional singularities produced by nonlinear interaction, but these additional singu-
larities are weaker, at least by the Sobolev order 1/( ∗ + 1).
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