

Title	Multiplicative operations in BP cohomology
Author(s)	Araki, Shôrô
Citation	Osaka Journal of Mathematics. 1975, 12(2), p. 343-356
Version Type	VoR
URL	https://doi.org/10.18910/6234
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Araki, S.
 Osaka J. Math.
 12 (1975), 343-356

MULTIPLICATIVE OPERATIONS IN BP COHOMOLOGY

SHÔRÔ ARAKI

(Received June 27, 1974)

Introduction. In the present work we study multiplicative operations in BP cohomology. In § 1 we show that all multiplicative operations in BP^* are automorphisms (Theorem 1.3). Thus they from the group $\text{Aut}(BP)$. In §2 we define Adams operations in BP^* by the formal group μ_{BP} of BP cohomology and study the basic properties of them. These operations are primarily defined for units in $\mathbf{Z}_{(p)}$ and then extended to p -adic units. Thereby we discuss BP^* by extending the ground ring $\mathbf{Z}_{(p)}$ to the ring of p -adic integers \mathbf{Z}_p . To achieve this extension simply by tensoring with \mathbf{Z}_p we restrict our cohomologies to the category of finite CW -complexes. Correspondingly we consider all multiplicative operations in $BP^*(\) \otimes \mathbf{Z}_p$ whenever it becomes necessary to do so. Adams operations could be defined also for non-units, but we are not interested in such a case in this paper. In §3 we prove that the center of $\text{Aut}(BP)$ consists of all Adams operations (Theorem 3.1).

We regard the lecture note [2] as our basic reference and use the results contained there rather freely.

1. Multiplicative operations in BP^* .

Let BP^* denote the Brown-Peterson cohomology for a specified prime p . By a *multiplicative* operation in BP^* we understand a stable, linear and degree-preserving cohomology operation

$$(1.1) \quad \Theta_a: BP^*(\) \rightarrow BP^*(\)$$

which is multiplicative and $\Theta_a(1)=1$. The set of all multiplicative operations in BP^* forms a semi-group by composition, which will be denoted by $\text{Mult}(BP)$.

With respect to the standard complex orientation of BP^* [1], [2], [7], we denote by $e^{BP}(L)$ the Euler class of a complex line bundle L and by μ_{BP} the associated formal group. Let $\Theta_a \in \text{Mult}(BP)$. Putting

$$\Theta_a(e^{BP}(L)) = \sum_{i \geq 0} \theta_i (e^{BP}(L))^i$$

for an arbitrary line bundle L , by naturality we obtain a well-determined power

series

$$\theta_a(T) = \sum_{i \geq 0} \theta_i T^i, \quad \theta_i \in BP^{2-2i}(T).$$

By naturality $\theta_0=0$ and by stability $\theta_1=1$. In particular θ_a is invertible.

Put

$$\phi_a(T) = \theta_a^{-1}(T).$$

Then

$$(1.2) \quad \Theta_a(pt) * \mu_{BP} = \mu_a, \quad \mu_a = \mu_{BP}^{\phi_a}.$$

Recall that μ_{BP} is typical. Hence μ_a is a typical formal group and ϕ_a is a typical curve over μ_{BP} .

Conversely, given a typical curve ϕ_a over μ_{BP} , by the universality of BP^* , [2], Theorem 7.2, ϕ_a determines uniquely a multiplicative operation Θ_a in BP^* satisfying

$$(1.3) \quad \Theta_a(e^{BP}(L)) = \phi_a^{-1}(e^{BP}(L)).$$

Thus, via (1.3) multiplicative operations Θ_a in BP^* correspond bijectively with typical curves ϕ_a over μ_{BP} such that

$$(1.4) \quad \phi_a(T) \equiv T \bmod \deg 2 \quad \text{and} \quad \dim \phi_a^{-1}(e^{BP}(L)) = 2$$

for complex line bundles L .

Recall that a typical curve ϕ_a satisfying (1.4) can be expressed uniquely as a Cauchy series

$$(1.5) \quad \phi_a(T) = \sum_{k \geq 0}^{\mu} a_k T^{p^k}, \quad a_0 = 1, \quad a_k \in BP^{2(1-p^k)}(pt),$$

where $\mu = \mu_{BP}$ (cf., [2], [3]). Thus multiplicative operations Θ_a correspond bijectively with sequences

$$(1.6) \quad a = (a_1, a_2, \dots, a_n, \dots), \quad a_n \in BP^{2(1-p^n)}(pt),$$

via (1.3) and (1.5). The identity operation corresponds to the zero sequence $0 = (0, 0, \dots)$.

First we remark

Proposition 1.1. *Let Θ_a and Θ_b be multiplicative operations in BP^* such that*

$$\Theta_a(pt) = \Theta_b(pt).$$

Then $a = b$ as sequences (1.6). Hence $\Theta_a = \Theta_b$.

Proof. By (1.2) we see that

$$\mu_a = \mu_b.$$

Then, by the uniqueness of logarithm we see that

$$\begin{aligned} \log_{\mu_a} &= \log_{\mu_b}, \\ \text{or} \quad \log_{BP} \circ \phi_a &= \log_{BP} \circ \phi_b. \end{aligned}$$

thus $\phi_a = \phi_b$. q.e.d.

Let $\Theta_a \in \text{Mult}(BP)$. We have

$$\Theta_a(pt) * \log_{BP}(T) = \log_{BP} \circ \phi_a(T)$$

over $BP^*(pt) \otimes \mathbf{Q}$. Putting

$$\log_{BP}(T) = \sum_{k \geq 0} n_k T^{p^k}, \quad n_k = [CP_{p^k-1}] / p^k,$$

expanding both sides of the above formula as power series of T and comparing coefficients of T^{p^k} we get

$$(1.7) \quad \epsilon \quad \sum_{j=0}^k n_j a_{k-j}^{p^j}, \quad k \geq 0.$$

This is a recursive formula to describe $\Theta_a(n_k)$, hence determines $\Theta_a(pt)$. We discuss another formula to describe $\Theta_a(pt)$.

Denote by \mathbf{f}_p and \mathbf{f}_p^a the Frobenius operators for the prime p on curves over μ_{BP} and μ_a respectively. Recall that, if we put

$$(1.8) \quad (\mathbf{f}_p \gamma_0)(T) = \sum_{\mu} \mathbf{f}_p^* T^* \gamma_0, \quad \mu = \mu_{BP}, \quad \gamma_0(T) = T,$$

then $v_k \in BP^{2(1-p^k)}(pt)$ and the sequence $(v_1, v_2, \dots, v_n, \dots)$ forms a polynomial basis of $BP^*(pt)$, [2].

Since $\Theta_a(pt) * \mu_{BP} = \mu_a$, we have

$$(\mathbf{f}_p^a \gamma_0)(T) = (\Theta_a(pt) * \mathbf{f}_p \gamma_0)(T) = \sum_{k \geq 1}^{\mu_a} \Theta_a(v_k) T^{p^{k-1}}.$$

Using the fact that $\phi_a: \mu_a \cong \mu_{BP}$, a strict isomorphism, we compute $(\phi_a * \mathbf{f}_p^a \gamma_0)(T)$ in two ways as follows:

$$\begin{aligned} (\phi_a * \mathbf{f}_p^a \gamma_0)(T) &= (\mathbf{f}_p \phi_a * \gamma_0)(T) \\ &= (\mathbf{f}_p \phi_a)(T) = \sum_{k \geq 0}^{\mu} \mathbf{f}_p(a_k T^{p^k}) \\ &= (\mathbf{f}_p \gamma_0)(T) + \sum_{k \geq 1}^{\mu} [\mathbf{f}_p]_{BP}(a_k T^{p^{k-1}}) \\ &= \sum_{k \geq 1}^{\mu} v_k T^{p^{k-1}} + \sum_{l \geq 0}^{\mu} \sum_{k \geq 1}^{\mu} w_l a_k^{p^l} T^{p^{k+l-1}} \end{aligned}$$

by [2], Propositions 2.4, 2.5 and 2.9, on one hand, where

$$[\mathbf{f}_p]_{BP}(T) = \sum_{l \geq 0}^{\mu} w_l T^{p^l}, \quad w_0 = p, \quad w_k \in BP^{2(1-p^k)}(pt);$$

on the other hand

$$\begin{aligned}
(\phi_{a*} f_p^a \gamma_0)(T) &= \phi_{a*} \sum_{k \geq 1}^{\mu_a} \Theta_a(v_k) T^{p^{k-1}} \\
&= \sum_{k \geq 1}^{\mu_a} \phi_a(\Theta_a(v_k) T^{p^{k-1}}) = \sum_{k \geq 1}^{\mu_a} \sum_{l \geq 0}^{\mu_a} a_l \Theta_a(v_k) T^{p^l} T^{p^{k+l-1}}.
\end{aligned}$$

Thus we obtain

$$\begin{aligned}
(1.9) \quad & \sum_{k \geq 1}^{\mu_a} \sum_{l \geq 0}^{\mu_a} a_l \Theta_a(v_k) T^{p^l} T^{p^{k+l-1}} \\
&= \sum_{k \geq 1}^{\mu_a} v_k T^{p^{k-1}} + \sum_{l \geq 0}^{\mu_a} \sum_{k \geq 1}^{\mu_a} w_l a_k T^{p^l} T^{p^{k+l-1}}.
\end{aligned}$$

This is a recursive formula to describe $\Theta_a(v_k)$.

Let $I = \overline{BP}^*(pt)$, the kernel of the augmentation $\varepsilon: BP^*(pt) \rightarrow \mathbf{Z}_{(p)}$. By [2], §10, we see that

"the left hand side of (1.9)"

$$\begin{aligned}
&\equiv \sum_{k \geq 1}^{\mu_a} \Theta_a(v_k) T^{p^{k-1}} \pmod{I^2} \\
&= \Theta_a(v_1) T + \Theta_a(v_2) T^p + \dots \pmod{I^2},
\end{aligned}$$

and

"the right hand side of (1.9)"

$$\begin{aligned}
&\equiv \sum_{k \geq 1}^{\mu_a} v_k T^{p^{k-1}} + \sum_{k \geq 1}^{\mu_a} p a_k T^{p^{k-1}} \pmod{I^2} \\
&\equiv (v_1 + p a_1) T + (v_2 + p a_2) T^p + \dots \pmod{I^2}
\end{aligned}$$

Hence (1.9) implies

$$(1.10) \quad \Theta_a(v_k) = v_k + p a_k \pmod{I^2}$$

for all $k \geq 1$. In particular

$$\Theta_a(v_k) \equiv v_k \pmod{(p) + I^2}$$

for $k \geq 1$. This shows that $\{\Theta_a(v_k), k \geq 1\}$ forms a polynomial basis of $BP^*(pt)$. Thus we obtain

Proposition 1.2. *For any $\Theta_a \in \text{Mult}(BP)$*

$$\Theta_a(pt): BP^*(pt) \cong BP^*(pt), \text{ an isomorphism.}$$

Let Θ_a and Θ_b be two multiplicative operations in BP^* with corresponding sequences $a = (a_1, a_2, \dots)$ and $b = (b_1, b_2, \dots)$. Putting

$$\Theta_c = \Theta_a \circ \Theta_b, \quad c = (c_1, c_2, \dots),$$

we shall discuss the sequence c . Put

$$\tilde{\phi}_b(T) = \Theta_a(pt) * \phi_b(T) = \sum_{k \geq 0}^{\mu_a} \Theta_a(b_k) T^{p^k}.$$

Then

$$\begin{aligned}\Theta_a(pt)_*\mu_b &= \Theta_a(pt)_*(\phi_b^{-1} \circ \mu \circ \phi_b \times \phi_b) \\ &= \tilde{\phi}_b^{-1} \circ \mu_a \circ \tilde{\phi}_b \times \tilde{\phi}_b = \mu_{BP}^{\phi_a \circ \tilde{\phi}_b}.\end{aligned}$$

On the other hand

$$\Theta_a(pt)_*\mu_b = \Theta_a(pt)_*\Theta_b(pt)_*\mu_{BP} = \Theta_c(pt)_*\mu_{BP} = \mu_c.$$

Thus, likewise in the proof of Proposition 1.1, we have

$$(1.11) \quad \phi_c = \phi_a \circ \tilde{\phi}_b,$$

or equivalently

$$\begin{aligned}(1.12) \quad \sum_{k \geq 0}^{\mu} c_k T^{p^k} &= \phi_a \left(\sum_{k \geq 0}^{\mu} \Theta_a(b_k) T^{p^k} \right) \\ &= \sum_{i \geq 0}^{\mu} \sum_{k \geq 0}^{\mu} a_i \Theta_a(b_k) T^{p^{k+i}}.\end{aligned}$$

This is a recursive formula to describe c_k .

A multiplicative operation Θ_a in BP^* is called an *automorphism* of BP^* if

$$\Theta_a(X, A): BP^*(X, A) \cong BP^*(X, A), \quad \text{isomorphic}$$

for all finite CW -pair (X, A) . Clearly a multiplicative operation Θ_a is an automorphism of BP^* iff it has an inverse. The set of all automorphisms of BP^* forms a group, which will be denoted by $\text{Aut}(BP)$.

Theorem 1.3. $\text{Aut}(BP) = \text{Mult}(BP)$.

Proof. It is sufficient to prove that every multiplicative operation Θ_a has a right inverse.

Let $t = (t_1, t_2, \dots)$ and $s = (s_1, s_2, \dots)$ be sequences of indeterminates with $\dim t_k = \dim s_k = 2(1-p^k)$. Put

$$(*1) \quad \sum_{k \geq 0}^{\mu} u_k T^{p^k} = \sum_{k \geq 0}^{\mu} \sum_{i \geq 0}^{\mu} t_i s_k^{p^i} T^{p^{k+i}},$$

where $s_0 = t_0 = u_0 = 1$. Then over $BP^*(pt)[t, s]$ we have

$$\sum_{k \geq 0}^{\mu} u_k T^{p^k} \equiv T + u_1 T^p + u_2 T^{p^2} + \dots \pmod{\tilde{I}^2},$$

and

$$\sum_{k \geq 0}^{\mu} \sum_{i \geq 0}^{\mu} t_i s_k^{p^i} T^{p^{k+i}} \equiv T + (s_1 + t_1) T^p + (s_2 + t_2) T^{p^2} + \dots \pmod{\tilde{I}^2},$$

where $\tilde{I} = (s, t)$, the ideal of $BP^*(pt)[s, t]$ generated by $s_1, s_2, \dots, t_1, t_2, \dots$. Thus we can put

$$(*2) \quad u_k = t_k + s_k + P_k(t_1, \dots, t_{k-1}, s_1, \dots, s_{k-1}), \quad k \geq 1.$$

Here P_k is a polynomial of $t_1, \dots, t_{k-1}, s_1, \dots, s_{k-1}$ with $\dim P_k = 2(1-p^k)$ and

$$P_k \equiv 0 \pmod{I^2}.$$

We want to find a right inverse of Θ_a . Putting

$$(*3) \quad \Theta_a \circ \Theta_b = id$$

with undecided sequence $b = (b_1, b_2, \dots)$, we shall decide the sequence b . By (1.12), (*1) and (*2), we get

$$(*4) \quad a_k + \Theta_a(b_k) + P_k(a_1, \dots, a_{k-1}, \Theta_a(b_1), \dots, \Theta_a(b_{k-1})) = 0$$

for all $k \geq 1$. Since the coefficients of P_k depend neither on (a_1, a_2, \dots) nor on $(\Theta_a(b_1), \Theta_a(b_2), \dots)$ we may use (*4) as a recursive formula to obtain $\Theta_a(b_k)$, so we get $\Theta_a(b_k)$ as polynomials of a_1, \dots, a_k successively for $k \geq 1$. By Proposition 1.2 $\Theta_a(pt)$ is an isomorphism. Thus we get a sequence (b_1, b_2, \dots) so that it satisfies (*4). Thereby Θ_b is obtained to satisfy (*3). q.e.d.

2. Adams operations in BP^* .

Let $\mathbf{Z}_{(p)}$ be the ring of integers localized at the prime p and \mathbf{Z}_p its completion, i.e., the ring of p -adic integers. As is well known the endomorphism

$$[\alpha]_{BP} \in \text{End}(\mu_{BP})$$

is defined for each $\alpha \in \mathbf{Z}_{(p)}$ so that

$$[\alpha]_{BP}(T) = \alpha T + \text{higher terms.}$$

It is convenient for us to extend these endomorphisms $[\alpha]_{BP}$ to $\alpha \in \mathbf{Z}_p$. For this purpose we extend the group ring $\mathbf{Z}_{(p)}$ of BP^* to \mathbf{Z}_p by tensoring, i.e., we consider $BP^*(\mathbf{Z}_p) \otimes \mathbf{Z}_p$ whenever it is necessary to talk of p -adic integers.

Let $A = BP^*(pt) \otimes \mathbf{Z}_p$. Let F and G be formal groups over A . Let

$$c: \text{Hom}_A(F, G) \rightarrow A$$

be the homomorphism sending f to a_1 when $f(T) = a_1 T + \text{higher terms}$. Since A is an integral domain of characteristic zero, c is injective as is well known (cf., [4], [5]).

Since A is a direct sum of copies of \mathbf{Z}_p (corresponding to each monomials of v_k 's) we give a direct limit topology to A . (Each direct summand is given the topology of \mathbf{Z}_p). Then, using the argument of Lubin [5], Lemma 2.1.1, we see that c is an isomorphism onto a closed subgroup of A .

In case $F = G = \mu_{BP}$,

$$\text{Im } c \supset \mathbf{Z}_{(p)},$$

because $c([\alpha]_{BP}) = \alpha$ for $\alpha \in \mathbf{Z}_{(p)}$. Hence

$$\text{Im } c \supset \bar{\mathbf{Z}}_{(p)} = \mathbf{Z}_p.$$

Since c is injective, for each $\alpha \in \mathbf{Z}_p$ there exists a unique

$$[\alpha]_{BP} \in \text{End}_A(\mu_{BP})$$

such that $c([\alpha]_{BP}) = \alpha$. Thus the definition of $[\alpha]_{BP}$ is extended to Z_p .

Since $c: \text{End}_A(\mu_{BP}) \rightarrow A$ is a ring homomorphism, for any p -adic integers α and β we have the following relations:

$$(2.1) \quad [\alpha]_{BP}(T) = \alpha T + \text{higher terms},$$

$$(2.2) \quad [\alpha]_{BP} + ^\mu [\beta]_{BP} = [\alpha + \beta]_{BP}, \quad \mu = \mu_{BP},$$

$$(2.3) \quad [\alpha]_{BP} \circ [\beta]_{BP} = [\alpha\beta]_{BP}.$$

Let $\alpha \in \mathbf{Z}_{(p)}$ (or $\in \mathbf{Z}_p$) be a unit. Put

$$\psi_\alpha(T) = [\alpha^{-1}]_{BP}(\alpha T).$$

Since

$$(\mathbf{f}_q \psi_\alpha)(T) = \mathbf{f}_q([\alpha^{-1}]_{BP}(\alpha T)) = [\alpha^{-1}]_{BP}([\alpha^q] \mathbf{f}_q \gamma_0(T)) = 0$$

for every $q > 1$ such that $(p, q) = 1$ by [2], Propositions 2.3 and 2.9, where $\gamma_0(T) = T$, we see that ψ_α is a typical curve over μ_{BP} . Moreover ψ_α satisfies (1.4) as is easily seen. Thus there corresponds a multiplicative operation in BP^* to ψ_α . We denote this multiplicative operation by Ψ^α and call *Adams operations* in BP^* .

REMARK 1. Even for non-units α Adams operations can be defined on the same way as above. But these operations are defined in $BP^*(\) \otimes \mathbf{Q}$ or $BP^*(\) \otimes \mathbf{Q}_p$. And these cohomology theories are essentially ordinary cohomologies (corresponding to generalized Eilenberg-MacLane spectra), so we are not interested in these operations in the present work.

REMARK 2. Adams operations in complex cobordism are defined by Novikov [6]. When we regard BP^* as a direct summand of $U^*(\)_{(p)}$, our Adams operations will be the restrictions of Novikov's Adams operations to BP^* .

Let α be a unit of $\mathbf{Z}_{(p)}$ (or of Z_p). Since

$$\Psi^\alpha(\alpha^{-1}[\alpha]_{BP}(T)) = [\alpha^{-1}]_{BP} \circ [\alpha]_{BP}(T) = T,$$

we see that

$$(2.4) \quad \Psi^\alpha(e^{BP}(L)) = \alpha^{-1}[\alpha]_{BP}(e^{BP}(L))$$

for any complex line bundle L .

Since $\Psi^\alpha(pt)_* \mu_{BP} = \mu_{BP} \Psi^\alpha$ we see that

$$\Psi^\alpha(pt) * \log_{BP} = \log_{BP} \circ \psi_\alpha.$$

Here

$$\begin{aligned} (\log_{BP} \circ \psi_\alpha)(T) &= \log_{BP} [\alpha^{-1}]_{BP}(\alpha T) \\ &= \alpha^{-1} \cdot \log_{BP}(\alpha T) = \sum_{k \geq 0} \alpha^{p^{k-1}} n_k T^{p^k}. \end{aligned}$$

Thus

$$\sum_{\mathbf{f} \in \mathbb{G}_0} \Psi^\alpha(n_{\mathbf{f}}) T^{p^k} = \sum_{\mathbf{f}; i > 0} \alpha^{p^{k-1}} n_{\mathbf{f}} T^{p^k},$$

or

$$(2.5) \quad \Psi^\alpha(\mathbf{f} \circ \mathbf{0}) = \alpha^{p^{k-1}} n_{\mathbf{f}}, \quad k \geq 1,$$

after extending $\Psi^\alpha(pt)$ to $\Psi^\alpha(pt) \otimes 1_Q$.

Proposition 2.1. $\Psi^\alpha(pt) BP^{-2s}(pt) = \alpha^s id$.

Proof. (n_1, n_2, \dots) is a polynomial basis of $BP^*(pt) \otimes \mathbb{Q}$. Since Ψ^α is linear and multiplicative, for every polynomials x_s of n_k 's with $\dim x_s = -2s$ by (2.5) we see easily that

$$\Psi^\alpha(x_s) = \alpha^s x_s. \quad \text{q.e.d.}$$

Corollary 2.2. *If we put*

$$\mu_{BP}(X, Y) = \sum_{i,j} a_{ij} X^i Y^j,$$

then

$$\mu_{BP} \Psi^\alpha(X, Y) = \sum_{i,j} \alpha^{i+j-1} a_{ij} X^i Y^j.$$

Next we prove

Proposition 2.3. $\Psi^\alpha \Psi^\beta = \Psi^{\alpha\beta} = \Psi^\beta \Psi^\alpha$.

Proof. Put

$$[\alpha]_{BP}(T) = \sum_{s \geq 0} \alpha_s T^{(p-1)s+1}, \quad \alpha_s \in BP^{-2(p-1)s}(pt).$$

For any complex line bundle L we have

$$\begin{aligned} \Psi^\beta(\Psi^\alpha(e^{BP}(L))) &= \Psi^\beta(\alpha^{-1}[\alpha]_{BP}(e^{BP}(L))) \\ &= \alpha^{-1} \cdot \Psi^\beta\left(\sum_{s \geq 0} \alpha_s (e^{BP}(L))^{(p-1)s+1}\right) \\ &= \alpha^{-1} \sum_{s \geq 0} \beta^{(p-1)s} \alpha_s (\Psi^\beta(e^{BP}(L)))^{(p-1)s+1} \quad \text{by Proposition 2.1} \\ &= \alpha^{-1} \beta^{-1} \sum_{s \geq 0} \alpha_s (\beta \Psi^\beta(e^{BP}(L)))^{(p-1)s+1} \\ &= \alpha^{-1} \beta^{-1} \cdot [\alpha]_{BP}([\beta]_{BP}(e^{BP}(L))) \quad \text{by (2.4)} \\ &= (\alpha\beta)^{-1} [\alpha\beta]_{BP}(e^{BP}(L)) \quad \text{by (2.3)} \\ &= \Psi^{\alpha\beta}(e^{BP}(L)). \end{aligned}$$

Therefore, by the universality of BP^* , [2], Theorem 7.2, we concludes the Proposition.

Let α and β be p -adic units. By Propositions 1.1 and 2.1 we see that

$$(2.6) \quad \Psi^\alpha = \Psi^\beta \quad \text{iff} \quad \alpha^{p-1} = \beta^{p-1}.$$

Let $\mathbf{U}(\mathbf{Z}_p)$ be the multiplicative group of p -adic units and $\mathbf{U}_1(\mathbf{Z}_p)$ be its subgroup consisting of p -adic integers α such that

$$\alpha \equiv 1 \pmod{p}.$$

As is well known

$$\mathbf{U}_1(\mathbf{Z}_p) = \{\alpha^{p-1}; \alpha \in \mathbf{U}(\mathbf{Z}_p)\}.$$

By Proposition 2.3 all Adams operations (for p -adic units) form a multiplicative subgroup of $\text{Aut}(BP)$. We denote this subgroup by $\text{Ad}(BP)$. Then, (2.6) implies that

Proposition 2.4. $\text{Ad}(BP) \cong \mathbf{U}_1(\mathbf{Z}_p)$.

And also

Proposition 2.5. $\Psi^\lambda = 1$ iff $\lambda^{p-1} = 1$.

Next we discuss the relations of Adams operations with Quillen operations (of Landweber-Novikov type). We recall the definition of Quillen operations, [2], [7]. Let $t = (t_1, t_2, \dots)$ be a sequence of indeterminates such that $\dim t_k = 2(1-p^k)$ and

$$\phi_t(T) = \sum_{k>0} t_k T^{p^k}, \quad t_0 = 1,$$

a typical curve over μ_{BP} by extending the ground ring of μ_{BP} to $BP^*(pt)[t]$. Then

$$r_t: BP^*(\) \rightarrow BP^*(\) [t]$$

is the multiplicative operation such that

$$r_t(e^{BP}(L)) = \phi_t^{-1}(e^{BP}(L))$$

for any complex line bundle L . Putting

$$r_E(x) = \sum_E r_E(x) t^E, \quad x \in BP^*(X, A),$$

where $E = (e_1, e_2, \dots)$ runs over all sequences of non-negative integers such that all e_k but a finite are zero, we get linear stable operations

$$r_E: BP^*(\) \rightarrow BP^{*+2|E|}(\)$$

of degree $2|E|$, where $|E| = \sum_i e_i(p^i - 1)$.

Now for a p -adic unit α we have

$$(2.7) \quad \begin{aligned} r_t \circ \Psi(e^{BP}(L)) &= r_t(\psi_\alpha^{-1}(e^{BP}(L))) \\ &= (r_t(pt)_*\psi_\alpha)^{-1}(r_t(e^{BP}(L))) \\ &= (\phi_t \circ r_t(pt)_*\psi_\alpha)^{-1}(e^{BP}(L)). \end{aligned}$$

And

$$(r_t(pt)_*\psi_\alpha)(T) = r_t(pt)_*([\alpha^{-1}]_{BP}(\alpha T)) = [\alpha^{-1}]_{\mu'}(\alpha T),$$

where $\mu' = \mu_{BP}^{\phi_t}$. Thus

$$(2.8) \quad \begin{aligned} (\phi_t \circ r_t(pt)_*\psi_\alpha)(T) &= \phi_t([\alpha^{-1}]_{\mu'}(\alpha T)) \\ &= [\alpha^{-1}]_{BP}(\phi_t(\alpha T)) = [\alpha^{-1}]_{BP}(\sum_{k \geq 0}^{\mu} \alpha^{p^k} t_k T^{p^k}). \end{aligned}$$

Let

$$\sigma_\alpha: \mathbb{Z}_{(p)}[t] \rightarrow \mathbb{Z}_{(p)}[t]$$

be an algebra homomorphism such that

$$\sigma_\alpha(t_k) = \alpha^{p^{k-1}} t_k, \quad k \geq 1,$$

and define an operation

$$\bar{\Psi}^\alpha: BP^*(\)[i] \rightarrow BP^*(\)[i]$$

by $\bar{\Psi}^\alpha = \Psi^\alpha \otimes \sigma_\alpha$. Then

$$(2.9) \quad \begin{aligned} (\bar{\Psi}^\alpha \circ r_t)(e^{BP}(L)) &= \bar{\Psi}^\alpha(\phi_t^{-1}(e^{BP}(L))) \\ &= (\bar{\Psi}^\alpha(pt)_*\phi_t)^{-1}(\bar{\Psi}^\alpha(e^{BP}(L))) \\ &= (\Psi_\alpha \circ \bar{\Psi}^\alpha(pt)_*\phi_t)^{-1}(e^{BP}(L)). \end{aligned}$$

Remark that

$$\bar{\Psi}^\alpha(pt)_*\mu_{BP} = \mu_{BP}^{\psi_\alpha}.$$

Thus

$$(\bar{\Psi}^\alpha(pt)_*\phi_t)(T) = \sum_{k \geq 0}^{\mu''} \alpha^{p^{k-1}} t_k T^{p^k},$$

where $\mu'' = \mu_{BP}^{\psi_\alpha}$. And

$$(2.10) \quad \begin{aligned} (\Psi_\alpha \circ \bar{\Psi}^\alpha(pt)_*\phi_t)(T) &= \psi_\alpha(\sum_{k \geq 0}^{\mu''} \alpha^{p^{k-1}} t_k T^{p^k}) \\ &= \sum_{k \geq 0}^{\mu} \psi_\alpha(\alpha^{p^{k-1}} t_k T^{p^k}) \\ &= \sum_{k \geq 0}^{\mu} [\alpha^{-1}]_{BP}(\alpha^{p^k} t_k T^{p^k}) \\ &= [\alpha^{-1}]_{BP}(\sum_{k \geq 0}^{\mu} \alpha^{p^k} t_k T^{p^k}). \end{aligned}$$

Thus by (2.8) and (2.10) we see that

$$\phi_t \circ r_t(pt)_* \psi_a = \psi_a \circ \bar{\Psi}^a(pt)_* \phi_t,$$

then, by (2.7) (2.9) and the universality of BP^* we obtain

Proposition 2.6. *For any unit of Z_p there holds the commutativity*

$$r_t \circ \Psi^a = \bar{\Psi}^a \circ r_t.$$

Corollary 2.7. *Let $E = (e_1, e_2, \dots)$ be a sequence of non negative integers of which all but a finite terms are zero. There holds the commutativity*

$$r_E \circ \Psi^a = \alpha^{|E|} \Psi^a \circ r_E.$$

Corollary 2.8. *For any linear stable cohomology operation*

$$\Xi_s: BP^*(\) \rightarrow BP^{*+2s}(\)$$

of degree $2s$ there holds the commutativity

$$\Xi_s \circ \Psi^a = \alpha^s \Psi^a \circ \Xi_s.$$

Remark that every stable cohomology operation in BP^* can be expressed as linear combinations of Quillen operations r_E over $BP^*(pt)$. Then Corollary 2.8 follows from Proposition 2.1 and Corollary 2.7.

Corollary 2.9. *Adams operations in BP^* commute with all multiplicative operations.*

REMARK. Properties of Adams operations in complex cobordism which correspond to Propositions 2.1, 2.2, 2.3, 2.7 and 2.8 are obtained in Novikov [7] by different arguments.

3. The center of $\text{Aut}(BP)$.

For any $b \in BP^{2^{l-1}-p^k}(pt)$ we define a sequence

$$(b, k) = (0, \dots, 0, b, 0, \dots)$$

with b as the k -th term and with all other terms zero. By (1.9) we obtain

$$\begin{aligned} & \sum_{l \geq 1}^{\mu} \Theta_{(b, k)}(v_l) T^{p^{l-1}} + \sum_{l \geq 1}^{\mu} b \cdot \Theta_{(b, k)}(v_l) T^{p^k} T^{p^{k+l-1}} \\ &= \sum_{l \geq 1}^{\mu} v_l T^{p^{l-1}} + \sum_{l \geq 0}^{\mu} w_l b^{p^l} T^{p^{k+l-1}}. \end{aligned}$$

In particular

$$\sum_{l=1}^k \Theta_{(b, k)}(v_l) T^{p^{l-1}} \equiv \sum_{l=1}^k v_l T^{p^{l-1}} + p b T^{p^{k-1}} \pmod{\deg p^{k-1} + 1}.$$

Recursively on l , $1 \leq l < k$, and deleting the same terms successively we see that

$$(3.1) \quad \Theta_{(b,k)}(v_l) = v_l, \quad 1 \leq l < k,$$

and

$$(3.2) \quad \Theta_{(b,k)}(v_k) = v_k + pb.$$

These imply that

$$(3.3) \quad \Theta_{(b,k)}(x) = x \quad \text{for any } x \in BP^{-2s}(pt), s < p^k - 1,$$

and

$$(3.4) \quad \Theta_{(b,k)}(y) = y + pcb \quad \text{for } y \in BP^{2(1-p^k)}(pt)$$

when $y = cv_k$ mod decomposables, $c \in \mathbb{Z}_p$.

Let Θ_a be in the center of $\text{Aut}(BP)$. Then

$$\Theta_{(v_k, k)} \circ \Theta_a = \Theta_a \circ \Theta_{(v_k, k)}$$

for all $k \geq 1$. And by (1.12) we have

$$\begin{aligned} & \sum_{l \geq 0} {}^\mu \Theta_{(v_k, k)}(a_l) T^{p^l} + {}^\mu \sum_{l \geq 0} v_k \cdot \Theta_{(v_k, k)}(a_l) T^{p^k} T^{p^{k+l}} \\ &= \sum_{l \geq 0} {}^\mu a_l T^{p^l} + {}^\mu \sum_{l \geq 0} a_l \cdot \Theta_a(v_k) T^{p^l} T^{p^{k+l}}. \end{aligned}$$

In particular

$$\begin{aligned} & \Theta_{(v_k, k)}(a_k) T^{p^k} + {}^\mu v_k T^{p^k} \\ & \equiv a_k T^{p^k} + {}^\mu \Theta_a(v_k) T^{p^k} \quad \text{mod } \deg p^k + 1. \end{aligned}$$

Thus

$$(3.5) \quad \Theta_{(v_k, k)}(a_k) + v_k = a_k + \Theta_a(v_k).$$

Put

$$(3.6) \quad a_k \equiv \lambda_k v_k \quad \text{mod decomposables, } \lambda_k \in \mathbb{Z}_p.$$

Then by (3.4) and (3.5) we obtain

$$(3.7) \quad \Theta_a(v_k) = (1 + p\lambda_k)v_k, \quad k \geq 1.$$

Next, putting

$$v'_k = v_k + v_1^{(p^k-1)/(p-1)}$$

for $k > 1$, by commutativity

$$\Theta_{(v'_k, k)} \circ \Theta_a = \Theta_a \circ \Theta_{(v'_k, k)}$$

and by the same argument as (3.5) we obtain

$$(3.8) \quad \Theta_{(v_k', k)}(a_k) + v_k' = a_k + \Theta_a(v_k') .$$

Applying (3.4) and (3.7) to (3.8) we obtain

$$(1 + p\lambda_k)v_1^{(p^{k-1})/(p-1)} = ((1 + p\lambda_1)v_1)^{(p^{k-1})/(p-1)} .$$

thus

$$(3.9) \quad 1 + p\lambda_k = (1 + p\lambda_1)^{(p^{k-1})/(p-1)} .$$

Let λ be a p -adic unit such that

$$\lambda^{p-1} = 1 + p\lambda_1 .$$

Then (3.9) implies that

$$(3.10) \quad 1 + p\lambda_k = \lambda^{p^{k-1}}$$

for all $k \geq 1$. Thus, by (3.7), (3.10) and Proposition 2.1 we see that

$$\Theta_a \text{I}BP^*(pt) = \Psi^\lambda \text{I}BP^*(pt) .$$

Then by Proposition 1.1

$$\Theta_a = \Psi^\lambda .$$

In other words every multiplicative operation which is in the center of $\text{Aut}(BP)$ is a suitable Adams operation. Let $Z(\text{Aut}(BP))$ denote the center of $\text{Aut}(BP)$. The above result and Corollary 2.9 imply

Theorem 3.1. $\text{Ad}(BP) = Z(\text{Aut}(BP))$.

Corollary 3.2. $Z(\text{Aut}(BP)) \cong U_1(\mathbb{Z}_p)$.

OSAKA CITY UNIVERSITY

References

- [1] J.F. Adams: Quillen's Work on Formal Groups and Complex Cobordism, University of Chicago, 1970.
- [2] S. Araki: Typical Formal Groups in Complex Cobordism and K -theory, Lectures in Mathematics 6, Kyoto University, Kinokuniya Book-Store, 1973.
- [3] P. Cartier: *Modules associés à un groupe formel commutatif. Courbes typiques*, C.R. Acad. Sci. Paris **265** (1967), 129-132.
- [4] A. Fröhlich: Formal Groups, Lecture Notes in Mathematics 74, Springer-Verlag, 1968.
- [5] J. Lubin: *One-parameter formal Lie groups over p -adic integer rings*, Ann. of Math.

- 80** (1964), 464-484.
- [6] S.P. Novikov: *The method of algebraic topology from the view point of cobordism theories*, Izv. Akad. Nauk SSSR **31** (1967). Translation: Math. USSR-Izv. 1 (1976), 827-913.
- [7] D. Quillen: *On the formal group laws of unoriented and complex cobordism theory*, Bull. Amer. Math. Soc. 75 (1969), 1293-1298.