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Throughout this paper, A denotes a (left and right) artinian ring with

identity 1, J the Jacobson radical of A, and all modules are assumed to be (uni-
tary) finitely generated one-sided ^4-modules unless otherwise stated. Further
k denotes an algebraically closed field and by the word algebra we mean a finite

dimensional algebra over k.

As defined in [I], we say that A is a ring of right 2nd local type in case the

2nd top toρ2M:~ M/MJ2 of every indecomposable right yϊ-module M is in-

decomposable. In [II, sections 3 and 4], we have determined all possible
structures of indecomposable protective right and left modules over an algebra

of right 2nd local type; and proved that conversely this classification condi-

tion on indecomposable projectives is sufficient for left serial algebras to be
of right 2nd local type. Here we will generalize these results. Namely in

section 1, corresponding to the first result above, we give a complete classifi-
cation of local left and right modules over an arbitrary artinian ring of right
2nd local type (Theorem I). And in section 2, we prove the same statement
as the second result above is still true for left serial rings with selfduality (Theo-
rem II). In the last section, as examples of algebras of right 2nd local type,

we give all the sincere simply connected (representation-finite) algebras of
right 2nd local type using the method outlined in Ringel [10], and then char-

acterize such algebras in terms of their ordinary quivers which include inter-
pretations of lemmas used in the proof of the classification theorem above (Theo-

rem III). This characterization leads us to necessary and sufficient condi-

tions for representation-finite algebras to be of right 2nd local type (Theorem

IV), by making use of the covering technique developed in [5], [7] and [6].

Since the property to be of right 2nd local type is Morita invariant, we

may and will assume throughout that A is a basic ring. We keep the notation
and terminology used in [I] or [II].

1. Classification of local modules

We prove the following theorem.
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Theorem I. Assume that A is a ring of right 2nd local type. Then
(R) Every local right A-module P has one of the following structures:

(RJ P is uniserial.
(R2) P is of height 2 with the socle of length>2.
(R3) P is non-unίserial of height 3 and colocal.
(R4) PJ is a direct sum of a simple right module and a non-uniseri

colocal right module of height 2.
(R5) PJ is a direct sum of two non-zero uniserial right modules.

(L) Every local left A-module P has one of the following structures :
(Zq) P is uniserial.
(L2) P is non-uniserίal of height 2.
(L3) P is non-unίserial of height 3 and colocal.
(L4) P is non-unίserial of height 4 with J*P a uniserial waist in P.

If, in addition, A is a ring with selfduality, the case of (L4) does not occur.

At present we have no example of a ring of right 2nd local type having
a local left module of type (L4). To prove the theorem we assume up to the
end of this section that A is a ring of right 2nd local type. We quote the fol-
lowing as a special case of [II, Theorem 2.5

Lemma 1.0. Let L1 and L2 be local right modules and S{ a simple sub-
module of LI for each i such that S^L^ and S2<L2J

2. Then for every iso-
morphism a: S^Sz, a is extendable to a homomorphίsm Ll->L2 or αΓ1 is extend-
able to a homomorphίsm L2-*Lι.

Lemma 1.1. Let PA be a local module of height 3, LA a local module of
height 2 and SA a simple submodule of LJ. Then every homomorphism a: S-+PJ2

is extendable to a homomorphism L-+P.

Proof. We may assume that a is not zero, whence is a monomorphism.
By Lemma 1.0, we have only to show that a"1: Im a-^S is not extendable to any
homomorphism φ: P-+L. But otherwise, 3 — h(Coim<p)— h(Im<p)<h(L)=2,
a contradiction.

Lemma 1.2. Let PA be a local module of height 3 and LA a local submodule
of PJ and put socL=S1® ξ&Sn with each S{ simple. Then there is a uni-
serial module L{ with socLi=Si for each ie{l, " ,n} such that L+Lλ-i —
+LΛ_1=L10L2φ Ln_1φLΛ. In particular , L is contained in a sum of uniserial

modules.

Proof. By induction on n. If #— 1, then the assertion holds for Ln:=L.
So assume n>\. Then h(L)=2. Put ΛΓ:=L/(S20 — ®Se) and S: = socM
(o*S^. Then by Lemma 1.1, the canonical injection a: S-^S^PJ2 is ex-
tendable to a homomorphism φ: M^>P. Put Ll: = Imφ. Then L1 is uniserial
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of length 2 and socL1=S^ Since φπ:L-^Ll is an extension of the identity

map of S1 = LΓ\L1 (where π: L-+M is the canonical projection), we have
L+L1—L1^L' where L' is the image of the map 1L—φπ\ L-^L+Zq (whence

Lf is a local submodule of PJ). In addition, as easily verified we have
8θcL'=S2@ ®Sn. Applying the induction hypothesis to Z/, we have uniserial

modules L2, •••,!/„ such that socLi=Si for all z'e{2, •••,/*} and Z/+L2+ +
A-i^θ ΘA -iθA,. Hence L+L1+.. +Ln_1=Ll+L'+L2+ +Ln_l=
L1+(L20 φLw_1φLΛ) and the last sum is direct since soc L, = *?,- for all

ίe={l, . ,n}. //

Proposition 1.3. If PA is a local module of height 3, then PJ is expressed
as an ίrredundant sum of uniserial modules.

Proof. Clear from Lemma 1.2. //

Lemma 1.4. Let L be a right module. Then the following are equivalent'.
(1) L is uniserial.
(2) top2L is uniserial.

(3) soc2 L is uniserial.

Proof. The implications (1)=K2) and (1)=^(3) are clear.
(2)=Φ(1). Assume that toρ2L is uniserial but L is not. Let t be the smallest

natural number such that \LJt/LJt+1\>l. Then by assumption t>l. Put

P:=LJ'-*ILJM. Then P is a local module of height 3 and PJ is also local.

Hence P/is uniserial by Proposition 1.3. This implies l = \PJ2\=-\LJt/LJt+1\>ϊy

a contradiction.
(3)=Φ>(1). Assume that soc2L is uniserial but L is not. Let t be the smallest
natural number such that | socί+1 L/soc* L \ > 1. Then by assumption t> 1. Put

P:=soct+1 L/soc^L. Then P is of height 3 and soc2P=socίL/soc/"2L is

uniserial. Again by assumption |topP|>l. Hence P is expressed as an
irredundant sum of at least two local modules Lf . Put M:=L1 + L2. Then

soc2M=soc2P and L1J=soc2M=L2J. Hence, in particular, Z^ and L2 are

uniserial of length 3. By Lemma 1.1 ISOCM ig extendable to a homomorphism

φ\Lλ-*L2. Putting L':= (lLl — φ) (A) (=f=0), we have M=L' + L2 and

| L / n / ^ | < I A n L 2 | = |soc2M\ = 2. Since M is indecomposable, L'ΠL2^p0

whence L'ΠL2

=socM. Then l = |soc2M/socM|-|soc(M/socM)| = |soc((L' + L2)/

(U Π L2)) I =2, a contradiction. //

Lemma 1.5 ([2]). Let L be a non-zero proper submodule of a right module
M. Then L is a waist in M iff LILJ is a waist in M/LJ. //

Corollary 1.6. Let L be a right module of height>2 such that top2!/ is
colocal. Then L is uniserial.



110 H. ASASHIBA

Proof. Since top2L=L/L/2 is colocal, we have L//L/2=soc(Z//Z//2) is a

waist in L/LJ2. Hence by Lemma 1.5, LJ is a waist in L. We first show
that LJ is uniserial. Let x be any element in L\LJ. Then xe&LJ for some
e^ρi(A). Putting N:=xeA, N is a local submodule of L with N^LJ. By
the above, L/<ΛΓ. Then since NJ<LJ<N and AT is local, we have NJ=LJ
and NJ/NJ2=LJ/LJ2 is simple. Thus top2 JV is uniserial. Hence by Lemma
1.4, N is uniserial. So L/ is uniserial since L/<Λr. Now put A:—h(L). Since
LJ=soch~lL is uniserial and h—1>1, soc2L is uniserial, whence so is L by
Lemma 1.4. //

Lemma 1.7. Let L be a local right module. If L]2 is simple, then
|socL| <2; more precisely L is colocal or LJ is a direct sum of a simple right
module and a colocal right module of height 2.

Proof. Since LJ3=0 and A/J3 is also a ring of right 2nd local type, we
may assume that/3—0. Consider the following exact sequence

(1) Q-*Ic-*eA-»L-*Q

where e^pi (A) and eA is the projective cover of L. Put Ti^eJ2 ΓΊ /, M:=eA/T

and S:=Mf. Then M is local and S=eJ2/T^Lfί is simple.
We first show that |socM"|<2. Assume |socM|>3. Then there are

simple right modules *SΊ and S2 such that S^S^S^socM. Define an
isomorphism α by the following commutative diagram

II 11

where the vertical maps are the canonical isomorphisms. Then it follows
from (S®Si)/Si=(M/Si)J2 for each / that a is extendable to a homomorphism
β:MjS1-^M/S2 or αΓ1 is extendable to a homomorphism β: M/Sa-^M/Sj.
In either case β is an isomorphism. In fact, (M/S^J2^ Ker /3 implies h(Im β)
= 3, thus β is an epimorphism, whence is an isomorphism since \MISι\ = \MIS2\
Therefore we may suppose that α is extendable to some β : M/51->Λf/*Sf

2. Let
S'i be the unique submodule of eA containing T such that S/

i/T=Si for each
i. Then M/Si^eA/S' for each /. The homomorphism β induces an iso-

morphism β':eA/Si-*eA/S2 which is clearly given by the left multiplication
by an element t in eAe\eJe. Thus tSί=S2. Taking S^eβ/T into account
it follows from S{ Π 5=0 that S'i ΓΊ ej*= T for each ί. Hence tT=t(S{ Π eJ2)=
tSΊnteJ2=S2ΓleJ2=T. Thus the left multiplication by t induces an auto-

morphism 7 of M. As easily checked γ is a lift of β, i.e. the diagram
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7
M

i
is commutative where the vertical maps are the canonical epimorphisms. Then
since fy(S)—<γ(MJ2)=MJ2=Sy the diagram above induces the following com-
mutative diagram

Thus γ|S=ls. This means that t—e^eje, whence t=e+j for some
Then Sί = tS{ = (e+j)S[<teS[-[-jS{^S{+eJ2 since jS{<jeJ<ef. Thus
S2<Sl®Sy a contradiction. Accordingly we must have |socM|<2.

Since T</, (1) induces an exact sequence

L/ΦO implies MJ*^K. Hence K^\MJ2=Q since MJ2 is simple. By [II,
Lemma 3.2.2] MJ=K®H for some H<MJ. Hence |socL| = |socL/| =
\soc(MJ/K)\ = \socH \<\socMJ\ = \socM\<2. This completes the proof
of the first part of the statement. Now suppose that L is not colocal. Then
by the above |socL| =2. Since LJ2 is simple, socL=X@LJ2 for some simple
X < L. In particular X Π LJ*= 0. It follows from X < LJ that LJ=X® Y for
some Y<LJ by [II, Lemma 3.2.2]. Since Lf=YJ is simple, h(Y) — 2.
Further Y is colocal since 2 — | soc L \ — | soc LJ \ = \ X\ + | soc Y \ . Hence L
is a direct sum of a simple X and a colocal F of height 2. //

Proposition 1.8. IfPA is a local module, then \ Pf/PJ3 \ <2.

Proof. We may assume that h(P)— 3. Suppose that \PJ2\>3. Then
n

by Proposition 1.3 we have an irredundant sum PJ= Σ A of PJ for some

uniserial modules LJ. So PJ2=Σ LjJ where L{J is simple or zero, whence

we may assume that PJ2=® L{] for some m>3. Put L:=P/(® L{J) and

π\ P->L to be the canonical epimorphism. Then L is local and L/^Lj/ is
simple. Hence by Lemma 1.7 |socL|<2. But by construction 3=\πL1jQ)

3 \ < | soc L | , a contradiction. //

Proposition 1.9. Let PA be a local module. If \PJ2/PJ3\=ly then P has
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one of the following structures:
(1) P is colocal of height 3.
(2) PJ is a direct sum of a simple right module and a colocal right module

of height 2.
(3) P is uniserial.
(4) PJ is a direct sum of a simple module and a nonzero uniserial module.

Proof. If h(P)=3, then by Lemma 1.7 P is of type (1) or (2). So we
may assume that h(P)>3. By Lemma 1.7 P/P/3 is of type (1) or (2).

(a) In case P/P/3 is of type (1). Since top2(P/)=P//P/3 is colocal and
h(P/)>3, PJ is uniserial by Corollary 1.6. Thus P is of type (3).

(b) In case P/P/3 is of type (2). Put PJIPJ3=Xξ& Y where X is simple
and y is colocal of height 2. Then since toρ2(PJ)=PJ/PJ3 is decomposable,
soisP/. LetPJ=X'®Y' where X' and Y' are non-zero. Then
top2X'0toρ2y. By Krull-Schmidt's theorem we may assume that ^Γ^t
and y^toρ2y. Since X is simple, so is X' by Nakayama's lemma. Thus
h(y')>3 since OΦP/3— Y'J2. Then since top2y^ Y is colocal, Y' is uniserial
by Corollary 1.6. Hence P is of type (4). //

Lemma 1.10. Let PA be a local module of height 3. // \PJ2\=2, then

(1) Every colocal submodule of PJ is uniserial'; and
(2) socP=PJ2 (i.e. PJ has no simple direct summand).

Proof. (1) Let C be a colocal submodule of PJ. If h(C) = l, then the
assertion is trivial. So we may assume that h(C)=2. Since C/=socC is
simple and \Pf\= 2, PJ2=CJ@S for some simple S<PJ*. Put L:=P/CJ.
Then L is local and LJ2^S is simple. Hence by Lemma 1.7 |socL|<2.
Then since C/C/IΊ£/=(), C/C/ΘL/^socL, whence |C/C/|=1. Thus C
is uniserial.

(2) Assume that socPΦPy2. Then P has a simple direct summand S.
n

By Proposition 1.3 there are uniserial modules L, such that P/=ΣA is an
ι = l

irredundant sum. Since IP/2!— 2, we may assume that PJ2=L1J®L2J. Put
L:—PIL2J and π: P-*L to be the canonical epimorphism. Then L is local and
Lf^LJ is simple. So by Lemma 1.7 |socL|<2. But 3< \nLJ®nL2@
πS I < I soc LI, a contradiction. //

Lemma 1.11. Let PA be a local module of height 3 with \PJ2\=2 and
n

PJ= Σ LJ be an irredundant sum of uniserial modules. Then soc L, Φ soc Lj for

each ίΦj in {1, •••, n}.

Proof. Assume socL, —socLy— :S. If the identity map ls of S is ex-
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tendable to a homomorphism 92: Z^-^Ly, then L,'+Z,y = L®L, where L: =
(\L.—φ) (L^ is simple. So since PJ= Σ Lt+L-\-Lj is an irredundant sum of

local modules, PJ has a simple direct summand L. This contradicts Lemma
1.10 (2). Hence ls is not extendable to any homomorphism L, - »Ly. There-
fore Lf+Lj is colocal by [12, Lemma 1.2 (2)]. Hence £,•+£/ is uniserial by
Lemma 1.10 (1). Thus L{=Ljy i.e. i=j. //

Proposition 1.12. Let PA be a local module. If \PJ2IPβ\=2y then PJ
is a direct sum of two non-zero uniserial modules.

Proof. First we prove the assertion in the case of h(P)=3. By Proposi-
n

tion 1.3 PJ=*ΣLi is an irredundant sum of some uniserial modules L, . Put
ί = l

Si\=LJ for each ί. By Lemma 1.10 (2) |Lf |=h(L,)=2 for each i. Since
IP/2! =2, we may assume that socPJ=PJ2=S1ζ&S2. We show that n=2.
Assume n>3. Define a,: S3-^S{ by αrt :=τrt |s3 where τr, : Sl®S2-+Si is the
canonical projection for each ί=l, 2. Then tfjφO and α2=t=0. For, otherwise,
say ^==0, we would have S3—S2 contradicting Lemma 1.11. By Lemma 1.1
(Xι is extendable to a monomorphism φ: L3— >P. If φ(L3)-{-L1 is colocal, then
φ(L3)=L1 by Lemma 1.10 (1). In this case we put λ: = l j t j. If φ(L3)-\-Ll

is not colocal, then !Sl is extendable to an isomorphism 9?(L3)->L1. In this
case we put λ to be this isomorphism. In either case we have a commutative
diagram

Then Ll+L3=L1+U3 where L3:=(lLs-\φ) (L3). Since (lι,-λ90)|.S8=l5i—
^ = ̂ 2=^=0, l£a— λ^>: L3->Z/3 is an isomorphism. Hence socLa = (ll3— λ^)
(socL3) = a2S3 =S2=socL2. But the sum P/=ΣA +^3 is also an irre-

ίφ3

dundant sum of uniserial modules. This contradicts Lemma 1.11. As a con-
sequence n<, 2. If n=l9 then IP/2 1=1, a contradiction. Hence n= 2. Thus
PJ=Ll@L2.

In the general case, since h(P/P/3)=3, we have top2PJ=PJIPJ3=L1®L2

for some uniserial modules L, of length 2 by the special case above. Then
PJ is decomposable. Put PJ=Xl@X2 with JC. ΦO for each ί. Then L!0L2-=
top^iStop2^. By Krull-Schmidt's theorem each top2-X",- is uniserial. Hence
each Xt is uniserial by Lemma 1.4. //

The following statement holds without the assumption that A is a ring
of right 2nd local type.
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Lemma 1.13. Let e be in pi (A) such that eJ=U@V for some uniserial

right modules U and V which are of length 2, and f and g be in pi (A) with
topU^fA/fJ and socU^gA/gJ. Assume that Af and Ag are nnύerial left
modules' Then every local submodule L of ej rtith top L^fAjfJ is uniserial.

Proof. If h(L)—1, then the statement is trivial. So we may assume

that h(L)=2. Assume that L is not uniserial. Then LJ=eJ2. Put L=uλA
and U=u2A where u^ejf^j2/ for each i. Since Lf! U=socU^gAlgJt we

have OΦttjαi — u2a2 for some βi^fjg^βg Since Ag is uniserial, JglJPg is
simple, whence there is some t^fAf\fJf such that a2^alt-\-J2g. Thus

U1a1 = u2a2 = u2ta1 since u2J
2g<eJ3 = Q. Hence (u1 — u2t)a1 = 0. Consider the

homomorphism a: Af-*Ag defined by the right multiplication by av Since
Afίs uniserial and αQjQB^ΦO, Kerα<yy. As a consequence u^uJ^J2/.
Thus L=ulA<u2tA+eJ2fA<U+eJ2 = Uξ&VJ. Comparing the composition
lengths, we see that L=U(&VJ which contradicts that L is local. //

REMARK. In the above it is necessary that Af is uniserial as the following

example says. Let Aop be an algebra defined by the bounden quiver

a

β

Then e1J=aAφβA with aA and βA uniserial, and topaA^e2A/e2J and
socaA^e3A/e3J. But eλj has a non-uniserial local module L:=(a+β)A with

In this case Ae3 is uniserial but Ae2 is not.

Proof of Theorem I. The statement (R) immediately follows from
Propositions 1.8, 1.9 and 1.12. We show the statement (L). By [II, Theorem
2.5 (!R)=φ(3-iL)] J*e is a uniserial waist in Ae if T^ΦO for each ^^ρi(^4).

Hence we have only to show that every local left module P of height 5 is uni-
serial. Further since A/J5 is also a ring of right 2nd local type, we may assume

that J*=Q and P=Ah for some htΞpi(A). Let Jhjfh^® AgilJgh fhjβh^

AflJf and fh/JW^Ae/Je where e, f and gt are in pi (^4). Then all Ag{ and
Af are uniserial by the argument used in the proof of [I, Proposition 2.4.1].
It is enough to show that n=l. Suppose that n>l. Then there are some
Xί^giJI^giJPh for /=!, 2 such that the sum Y:=Ax1+Ax2 is irredundant and
Ax1Γ\Ax2=Jx1=Jx2=J2h=JY. Hence we have y\x\=y&ι and Ayxl=^J2h for
some yi^fjgi\fβgi- Further there is some z^ejf^ffi such that Asίy1x1=J3h.
Consider a homomorphism
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a:= (-^ *y2): Ae/Je -* AgJβg&AgJβgz

where for each t&A, t is the map defined by the right multiplication by t.
By the argument similar to that used in the proof of the implication (3)=Φ(1) in
Lemma 1.4, it follows from the structure of Y/J3Y that a is infusible. There-
fore by [I, Corollary 1.4.2] the map

is a monomorphism where for each t^A, t is the map defined by the left
multiplication by t. Thus [zy^Aζ&lzyzlA^eJP/eJ3 where [syi]:=syi+ej3 for
each ί. By the statement (R), we have ej/ej3 = Uι® U2 for some uniserial
modules U{ of length 2. Hence eJ2/eJ3=[zyl]Aξ&[zy2]A<[z]A where [*]: =
z+ej3. On the other hand, since eJf/e^f^Q, we have fA/fJ^ top C/, for some

ί, say ί=l. Further since soc Ul is a direct summand of [XVipί φ [-2̂ 2]̂  >
soc U^gjA/gjJ for some 7. Hence by Lemma 1.13, [z]A must be a uniserial
module, a contradiction. This completes the proof of (L). Finally assume
that A is a ring with self duality. Then by Lemma 1.4, the following holds.

(a) Let L be a left module. If soc2 L is uniserial, then so is L.
As easily seen this implies that every local left module of height Ξ>4 is uniserial.
Hence in this case (L4) does not occur. //

2. Left serial rings with selfduality

Theorem Π. Assume that A is a left serial ring with selfduality. Then
the following are equivalent-.

(1) A is of right 2nd local type.
(2) For every e&pί(A), if h(^4)>2, then ej is a direct sum of two uniserial

modules.

(3) Every indecomposable right module ofheίght>2 is local.

Proof. The proof is quite similar to that of [II, Theorem 4.1]. The
implication (3)=Φ(1) is trivial, and (1)=Φ(2) follows from Theorem I and the
selfduality of A. By the selfduality of A the condition (3) is equivalent to
the following.

(3') Every indecomposable left module ofheίght>2 is colocal.
The implication (2)=Φ(3') also follows as in [II], with the following (necessary)
changes and additions.

First the definition of a simple left module being of F-type is changed.

DEFINITION. Let S be a simple left module. Then S is said to be of
V-type in case E(S)fS is a direct sum of two uniserial left modules and ej is
a direct sum of two uniserial right modules where E(— ) denotes the injective
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hull of (—) and e is an element in pi(.4) such that Ae/Je^S.

Then the following lemma (quite similar to [II, Lemma 4.3]) holds.

Lemma 2.1. Assume that A is a left serial ring with selfduality which
satisfies the condition (2) of Theorem II. Let S be a simple left module. If
SsszsocL for some left module L of height>2, then S is of V-type.

Proof. Let D be a selfduality of A. Since h(E(S))^h(L)>2, D(E(S))J
is a direct sum of two uniserial modules by the condition (2) of Theorem II,
whence so is E(S)/S^D(D(E(S))J). Let e be in pi (A) such that S^Aetfe.
There is some local submodule M of L such that h(M)>2. Since A is left
serial, M^Af/Jhf for some/in pi(A) where h:=h(M)>2. Since Ae/Je^S=
socL=socM^/A-1///Y, ζ/^'/ΦO. Thus e/^ΦO, i.e. h(eA)>h>2. Hence
ej is a direct sum of two uniserial right modules by the condition (2) of Theo-
rem II. //

Lemma 2.2. Let L be a quasi-projective uniserial left module of length
2 such that soci is of V-type. Then άλmD2(L}ΐ>l(L)<2 ([II, 4.2]).

Proof. Assume that dimz,2(L)Z)1(L)>3. Then there exist a2 and α3 in
D^L) such that {ls, a2ί a3} is a linearly independent set in ĵ D^L). Put

S:=socL and a:=(a? ~}s °* }: S(2)-*L(3). Since L is quasi-projective,
\«3 U —15 /

Λf:=Cokerα is a colocal left module of height 2 and |M/S|=3 by the argu-
ment used in [12, Lemma 5.3] (or the dual version of [1, Theorem]). This
contradicts that S is of F-type, since M<tE(S). //

Completion of the proof of Theorem II. The above lemma enables us
to prove [II, Lemma 4.8] in the selfdual artinian case by the argument used
in [12, Lemma 3.7]. Now the proof of the implication (2)==»(3') of Theorem
II proceeds along the same way of that of [II, Theorem 4.1 (2)=Φ(3)']. //

3. Examples: representation-finite algebras of right 2nd local type

In this section we give necessary and sufficient conditions for representa-
tion-finite algebras to be of right 2nd local type, using the method outlined in
Ringel [10]. This gives many examples of algebras of right 2nd type, and
helps further considerations. Throughout this section, we assume that our
algebra A is (basic) representation-finite and, in addition, (without loss of gener-
ality) is connected. Following Ringel [11], we say that a left ^4-module M
is sincere in case eMΦO for every e in pi (A), and that an algebra is sincere if
it has a sincere indecomposable left module. First we give the result for sin-
cere, simply connected (in the sense of Bongartz-Gabriel [5]) algebras, and
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then reduce the general case to this special one. We identify algebras with
their isomorphism classes and with their bounden quivers below.

EXAMPLE 3.1. (1) Consider the following list _£ of sincere simply con-

nected algebras:

(An) Quiver algebras of (Dynkin) type An with the following orientation.

\ /
w::./

(DΛ) Quiver algebras of type Dn of height 2 (fl

(EΛ) Quiver algebras of type EΛ of height 2 (n=6, 7, 8).
(X4) A bounden quiver algebra

βa = δγ .
j f f S 8

(Xn) Bounden quiver algebras (w

ov;

(Y5) An algebra defined by the quiver

with full commutativity relations.

Then it is easy to see that all algebras in Jl are of right 2nd local type.

(2) The quiver algebras in the following list S are not of right 2nd local
type:

(AO

(DO

(D.) («2:5) f
o ό o
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where each edge represents an arrow with an arbitrary orientation.

The two lists in Example 3.1 determines the right 2nd local type for sin-
cere simply connected algebras as the following theorem says.

Theorem III. Assume that A is a sincere simply connected algebra. Then
the following are equivalent:

(1) A is of right 2nd local type.
(2) eEAeE $ S for any E e pi (A).
(3) 4eX

where we put eE: = Σ £•

Proof of (3)=^(1) and (1)==>(2). Example 3.1 (1) says the implication
(3)=^(1). By Example 3.1 (2), the implication (1)=^(2) follows from the next
statement for an arbitrary artinian ring A. \\

Proposition 3.2. If A is a ring of right 2nd local type, then so is eAe for
every idempotent e in A.

Proof. Obviously we may assume that £ΦO. Put B:=eAe and denote by
T and by H the functors — ®BeA: mod .B-*>mod ^4 and Hom^(^4, —): mod A
->mod.B, respectively where modC denotes the category of finitely generated
right C-modules for C=A and B. Then T is a left adjoint of H and HT ̂  lmodβ,
the identity functor of mod B. We first claim

(i) T preserves indecomposables.

In fact, let M be an indecomposable module in mod B and assume that TM
is decomposable, say TM=X®YwithX, YΦO. ThenM^HTM=HX®HY.
Since M is indecomposable, we may assume that HX=0. But then OΦHom^
(TMy X)^HomB(M, HX)=Q, a contradiction.

Next putting j:=ejey direct calculation shows

(ii) Let M be in modfi and a: Mj2-^>M the inclusion map. Then

MΓ(M/))<(TM)/ where a*:=T(a): T(MJ2)-*T(M).

Now since T is right exact, Γ(toρ2M)^ΓM/αHί(Γ(M/)). Assume that
B is not of right 2nd local type, thus top2M=X®Y with X, FΦO for some
indecomposable M in mod.B. Then by (i), TM is indecomposable in mod A
but top2(ΓM) is decomposable as follows.

rγ2\
top2 (TM) = TMI(TM)Γ - TMMΊWfb = TM/a*(T(Mf))

P ^ ^ '( J (ΓM)/'/«*(7 *

-
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We denote by n(A) the number of isomorphism classes of simple right
A -modules, i.e. n(A) is equal to the cardinality of pi (A). The following re-
sult in [11] makes it possible to prove the implication (2)=^(3) in Theorem III
by induction on n(A). We put D:=Homk(—, k) to be the usual selfduality
of A.

Proposition 3.3 ([11, Proposition 6.5 (2)]). Assume that A is a sincere

( τ> p\

I

/ - -1 ° *'or a one-point coextension I I of a sincere simply connected algebra B by an
\JL/J\. K/

indecomposable left B-module R such that HomB(R, -/V)ΦO or HomB(N, Λ)ΦO

for some sincere indecomposable left B-module N, respectively.

Proof of (2)=Φ(3) of Theorem III. First note that this assertion is easily
verified for quiver algebras and for bounden quiver algebras whose relation
ideal is generated by a single commutativity relation. The proof proceeds by
induction on n(A). If n(A)=l, then A=k, and so there is nothing to show.
Assume n(A)>l. Then by Proposition 3.3 A is a one-point extension or a
one-point coextension of a sincere simply connected algebra B by an inde-

composable left .B-module R such that HomB (R, N) Φ 0 or HomB(N, Λ)ΦO
for some sincere indecomposable left β-module N, respectively. Assume that

A satisfies the condition (2) of Theorem III. Then so does B since

where e := I 1. By the induction hypothesis it follows from n(B)=n(A) — 1

that B is in _£. Hence it suffices to check that the algebras obtained by the
above type of one-point extension and one-point coextension from some B
in JC are again in X if they are representation-finite and satisfy the condition
(2) of Theorem III. In doing so, as noted above, we can remove the quiver
algebras and the bounden quiver algebras whose relation ideal is generated by
a single commutativity relation. Further the condition that A is representation-
finite requires that (i) |topΛ|<3 (resp. |soc.R|<3) in the one-point exten-
sion (resp. coextension) case, and (ii) dimJ?(tf)<l for the vertex a of (Dn) or
(En) in X which has three neighbours. In particular, the second condition
yields that dim R(ά) < 1 for all vertices a of (Dn) or (En) in X. This makes the
verification easy, and details are left to the reader. Above all, since the condi-
tion Homβ(72, ΛΓ)ΦO (resp. Hom5 (N, R) Φ 0) in the extension (resp. coexten-
sion) case guarantees that the obtained algebras are sincere, we can ignore non-
sincere algebras from the start. //

REMARK, (a) In Theorem III, the condition (2) is equivalent to the
following condition which is easier to check.
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(2') eEAeE^S for any set of vertices EC:pi(.4) of any connected subquίver
of the ordinary quiver of A.
For, the verification of (2)=^(3) is, in fact, done by that of (2')=Φ(3).

(b) In case n(A)>l3, the implication (2)=Φ(3) of Theorem III is easily
verified by Bongartz' theorem [4, Klassifikationssatz] (see also [11, Theorem
6.3(1)]).

We go on to the general case. This is done as usual by the covering tech-
nique developed in [5], [7] and [6]. Put Γ to be the Auslander-Reiten quiver
of A and Γ the universal cover of Γ (see [5]). By mod A and by ind ^4 we de-
note the category of finite dimensional right ^4-modules and the full subcategory
of mod A consisting of the chosen representatives of isomorphism classes of
indecomposable right -4-modules where projective indecomposables are cano-
nical ones, respectively. Then as well known, there exists a well-behaved
([9]), covering functor E: k(ϊ*)-+mdA where &(Γ) is the mesh category of Γ.
Let A be the full subcategory of k(T) consisting of projective vertices
of Γ. Then it is well known that k(ΐ*)^'mdA by which we identify these cate-
gories. We have a commutative diagram

A »ind A
Fl \E

A >mdA

where the horizontal functors are Yoneda embeddings, and E and F are cover-
ing functors. Since ind ^4 is locally bounded and ind A is basic, ind A is local-
ly bounded by [7, Proposition 1.2 a)], i.e. A is locally representation-finite.
Hence by [7, Proposition 2.7], the push down Fκ:modA-+modA preserves
Auslander-Reiten sequences and E^Fλ\ίnάA In particular, for every Me mod A,
M is indecomposable iff so is Fλ(M)^modA.

Proposition 3.4. A is of right 2nd local type iff so is A.

Proof. Note that for every M^indA, M=Fλ(ΆΪ) for some ΛΪ&indA
by [7, Proposition 1.2 b)]. Now let M be in ind A and ΛΪ in ind A such that
M=Fλ(RΪ). Since Fλ is an exact functor and preserves the radical by [5, Pro-
position 3.2], -Fλ(toρ2Λ2r)s^toρ2Λί. Hence by the above top2^ is indecom-
posable iff so is toρ2M. //

Note that by [6, Remark 3.3 (a)] A is directly constructed from A. Since
A is representation-finite, there exists a connected subquiver Q of Q% with
the set Qo of vertices finite such that for every Me ind A, there exists an
RΪ&'mdA such that Fλ(Λί)=M and spMQζ)0> where sp ΛΪ is the support of
ίϊ9 i.e. the set of vertices v of Q% such that ΆΪ(v)^0. By A we denote the
factor category of A by the ideal generated by all the vertices v of Qz such that
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Since A has only a finite number of objects, A can be regarded as a
representation-finite algebra. Further the Auslander-Reiten quiver Γ of A has
no oriented cycle since so does Γ.

Theorem IV. Assume that A is a (basic, connected) representation-finite
algebra (of finite dimension over k). Then the following are equivalent.

(1) A is of right 2nd local type.
(2) eEΆeE$:S for every E^v'ι(A).
(3) Sp (M) &J?for every indecomposable right Ά-module M.

In the above, Sρ(M) denotes the support algebra of M, i.e. Sp(M):=esAes

where S:=sp(M).

Proof. (1)=>(2). Assume that A is of right 2nd local type. Then so
is A by Proposition 3.4, and so is A since A is a factor of A. Hence eEAeE^S
for every E^pi(A) by Proposition 3.2.

(2)=Φ>(3). Assume that (2) holds, and let Me ind A. Then eE Sp (M)eE $ <S
for every E^sp(M)9 and Sp(Λf) is a sincere representation-finite algebra.
Further the Auslander-Reiten quiver of Sρ(Af) has no oriented cycle since so
does Γ. Hence Sρ(M) is a sincere tilted algebra by [8, Corollary 8.3]. Thus
Sρ(Λf) is a sincere simply connected algebra by [3, Theorem 3.1]. Hence by
Theorem III, Sp (M) e X

(3)=>(1). Let MeindA Then M=F^(M) for some Meind A. Clear-
ly we can regard ΛfeindSp(M). Since Sρ(M)ejC is of right 2nd local type,
top2M is indecomposable, whence so is top2Λf. //

REMARK. The list S is closely related to Lemmas 1.4 and 1.7 and to the
conditions (R) and (L) in Theorem I. In fact, it is possible to describe the
condition (2) in Theorems III and IV by certain conditions on local ^4-modules.
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