<table>
<thead>
<tr>
<th>Title</th>
<th>A criterion of exactness of the Clemens–Schmid sequences arising from semi-stable families of open curves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Asakura, Masanori</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 40(4) P.977–P.980</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-12</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/6248</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/6248</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
A CRITERION OF EXACTNESS OF THE CLEMENS-SCHMID SEQUENCES ARISING FROM SEMI-STABLE FAMILIES OF OPEN CURVES

MASANORI ASAKURA

(Received April 4, 2002)

1. Introduction

Let $\pi: X \to \Delta$ be a semistable family of projective algebraic varieties over the unit disk. In other words, π is flat and projective over Δ, smooth over $\Delta^* = \Delta - \{0\}$, and the central fiber $Y = \pi^{-1}(0)$ is a divisor with normal crossings without multiple components. We write $X_t := \pi^{-1}(t)$ for $t \in \Delta^*$ and $X^* := X - Y$. There is the Wang exact sequence

\begin{equation}
\cdots \to H^q(X^*, \mathbb{Q}) \to H^q(X_t, \mathbb{Q}) \xrightarrow{N} H^q(X_t, \mathbb{Q}) \to H^q(X^*, \mathbb{Q}) \to \cdots ,
\end{equation}

and the localization exact sequence

\begin{equation}
\cdots \to H^q_{\log}(X, \mathbb{Q}) \to H^q(X, \mathbb{Q}) \to H^q(X^*, \mathbb{Q}) \to H^q_{\log}(X, \mathbb{Q}) \to \cdots .
\end{equation}

Here N denotes the log monodromy around $\Delta^* = \Delta - \{0\}$. Combining those sequences and the natural isomorphism $H^q(X, \mathbb{Q}) \simeq H^q(Y, \mathbb{Q})$, we obtain a sequence

\begin{equation}
\cdots \to H^q(Y, \mathbb{Q}) \to H^q_{\log}(X, \mathbb{Q}) \to H^q(Y, \mathbb{Q}) \to H^q(X_t, \mathbb{Q}) \xrightarrow{N} H^q(X_t, \mathbb{Q}) \to \cdots .
\end{equation}

This is called the Clemens-Schmid sequence. A theorem of Clemens and Schmid says that the sequence (1.3) is exact ([1, §3]). In particular, the first piece

\begin{equation}
H^q(Y, \mathbb{Q}) \longrightarrow H^q(X_t, \mathbb{Q}) \xrightarrow{N} H^q(X_t, \mathbb{Q})
\end{equation}

is called the local invariant cycle theorem ([3, (5.12)]).

In [2, (12.3.1)], S. Usui et al. proposed a problem whether the Clemens-Schmid sequence (1.3) or (1.4) is exact when we remove the assumption that π is proper. In this paper, we give a necessary and sufficient condition for that the sequence (1.4) is exact when π is a semistable family of open curves. In particular, we see that the Clemens-Schmid sequences of non-proper families are not exact in general.

The author would like to express his sincere gratitude to Professor Sampei Usui for stimulating discussions.
2. A Criterion and an example

In this section, we assume that \(\pi \) is a family of curves. Let \(D \) be a divisor on \(X \) which is smooth and projective over \(\Delta \), and such that \(D + Y \) is a normal crossing divisor. We write \(D_t = D \cap X_t \) for \(t \in \Delta \) and \(D^* = D \cap X^* \).

We discuss when the following sequence

\[
(2.1) \quad H^1(Y - D \cap Y) \stackrel{i}{\rightarrow} H^1(X_t - D_t) \stackrel{N_0}{\rightarrow} H^1(X_t - D_t)
\]

is exact, where \(N_0 \) denotes the log monodromy on \(H^1(X_t - D_t) \). (We omit to write the coefficient \(\mathbb{Q} \).) The sequence (2.1) fits into the commutative diagram

\[
\begin{array}{ccc}
H^0(D \cap Y) & \xrightarrow{\cong} & H^0(D_t) \\
\uparrow r_0 & & \uparrow r_t \\
H^1(Y - D \cap Y) & \xrightarrow{i} & H^1(X_t - D_t) \\
\uparrow & & \uparrow N_0 \\
0 & \rightarrow & H^1(Y) \\
\uparrow & & \uparrow N \\
0 & \rightarrow & H^1(X_t) \\
\end{array}
\]

(2.2)

\[
0 \rightarrow H^1(X_t) \rightarrow H^1(Y) \rightarrow H^1(X_t) \rightarrow 0
\]

in which each vertical sequence is exact. The bottom sequence is exact by the local invariant cycle theorem ([3, (5.12)]). Therefore, the map \(i \) is injective.

The following lemma is the key of our criterion.

Lemma 2.1. The image of \(N \) coincides with the image of \(N_0 \).

Proof. Image \(N \subset \text{Image } N_0 \) is trivial. We show the converse. The cohomology groups \(H^1(X_t, \mathbb{Q}) \) and \(H^1(X_t - D_t, \mathbb{Q}) \) carry the limit mixed Hodge structures due to Steenbrink and Zucker ([3], [4]). The weight filtration \(W_* \) on \(H^1(X_t, \mathbb{Q}) \) is the weight monodromy filtration, which is explicitly given as follows:

\[
W_2 H^1(X_t) = H^1(X_t), \quad W_1 H^1(X_t) = \ker N,
\]

\[
W_0 H^1(X_t) = \text{Image } N, \quad W_{-1} H^1(X_t) = 0.
\]

We put the weight filtration on \(H^0(D_t) \) by \(\text{Gr}_2^W H^0(D_t) = H^0(D_t) \). Then the weight filtration \(W_* \) on \(H^1(X_t - D_t) \) (called the relative monodromy filtration) is explicitly given by

\[
W_2 H^1(X_t - D_t) = H^1(X_t - D_t), \quad W_1 H^1(X_t - D_t) = W_1 H^1(X_t),
\]

\[
W_0 H^1(X_t - D_t) = W_0 H^1(X_t), \quad W_{-1} H^1(X_t - D_t) = 0.
\]
The map N_0 is a morphism of the mixed Hodge structure of type $(-1, -1)$ ([4, (3.13).iii]). Therefore $\text{Image } N_0$ is contained in $W_0 H^1(X_t - D_t, \mathbb{Q}(0)) = W_0 H^1(X_t)$. However, this is the image of N. Thus we have $\text{Image } N_0 \subset \text{Image } N$.

Since the map i is injective, the sequence (2.1) is exact if and only if

$$h^1(Y - D \cap Y) = \dim H^1(Y - D \cap Y) = \dim \ker N_0.$$ \hspace{1cm} (2.3)

By Lemma 2.1, we have

$$\dim \ker N_0 = h^1(X_t - D_t) - \dim \text{Image } N$$
$$= h^1(X_t - D_t) - h^1(X_t) + h^1(Y)$$
$$= \dim \text{Image } r_t + h^1(Y).$$

On the other hand,

$$h^1(Y - D \cap Y) = \dim \text{Image } r_0 + h^1(Y).$$

Therefore, (2.3) holds if and only if

$$\dim \text{Image } r_0 = \dim \text{Image } r_t.$$ \hspace{1cm} (2.4)

Let n be the number of the irreducible components of Y, and e the number of the components Y_i of Y such that $D \cap Y_i \neq \emptyset$. Then we have

$$\dim \text{Image } r_t = \dim \ker (H^0(D_t) \to H^2(X_t))$$
$$= \deg D_t - 1,$$

and

$$\dim \text{Image } r_0 = \dim \ker (H^0(D \cap Y) \to H^2(Y))$$
$$= h^0(D \cap Y) - h^2(Y) + h^2(Y - D \cap Y)$$
$$= \deg D_t - n + (n - e)$$
$$= \deg D_t - e.$$

Thus we have the following criterion:

Theorem 2.2. The Clemens-Schmid sequence (2.1) is exact if and only if $e = 1$, that is, the support of $D \cap Y$ is contained in one irreducible component of Y.

Example 2.3. We denote by (x, y, z) homogeneous coordinates of the projective plane \mathbb{P}^2_C. Let X be a complex submanifold of $\mathbb{P}^2(C) \times \Delta$ defined by an equation

$$zy^2 =zx^2 + t(x^3 - z^3),$$
and $\pi : X \to \Delta$ the projection. The morphism π is smooth and proper over Δ^*, and the central fiber $Y = \pi^{-1}(0)$ is a reduced divisor with normal crossing. Let Y_1, Y_2 and Y_3 be the irreducible components of Y given by

\begin{align*}
Y_1 & : z = 0, \quad t = 0, \\
Y_2 & : y + x = 0, \quad t = 0, \\
Y_3 & : y - x = 0, \quad t = 0
\end{align*}

respectively. Let $D = D_1 + D_2 + D_3$ be flat sections of π given by

\begin{align*}
D_1 & = \{(0, 1, 0)\} \times \Delta, \\
D_2 & = \{(1, -1, \omega)\} \times \Delta, \\
D_3 & = \{(1, 1, \omega')\} \times \Delta,
\end{align*}

where ω and ω' are 3rd roots of unity. The divisor $D + Y$ is normal crossing.

The divisor D_1 (resp. D_2, D_3) meets only with Y_1 (resp. Y_2, Y_3). Thus, the Clemens-Schmid sequence (2.1) is not exact by Theorem 2.2.

A family $\pi : X \times X' \to \Delta$ with $X' \to \Delta$ a constant family of a projective nonsingular variety gives a non-exact Clemens-Schmid sequence (1.4) for all $q \geq 1$.

References

Graduate School of Mathematics
Kyushu University
Hakozaki Higashi-ku, Hukuoka 812-8581
JAPAN
e-mail: asakura@math.kyushu-u.ac.jp