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1. Introduction and statement of results

Let G be a 1-dimensional complex linear algebraic group. In [7] Horrocks

has shown that when G is the additive group C of complex numbers acting

regularly on a normal (complex) projective variety, say X, or an algebraic variety
X which is algebraically locally factorial, then the closure C of each G-orbit of is

nonsingular. Moreover, Mabuchi [9] has shown that, if C touches a 1-

codimensional component in X of the set XG of fixed points, then C is nonsingular

and it intersect XG transversally for any complex manifold X.

On the other hand, when G=C*, the multiplicative group of complex numbers,

Horrocks [7] showed that on a variety X as above the closure of each orbit is

locally irreducible. If x is any point of X, this is equivalent to saying that either

xεXG, or 0(X)/oo(x), where 0(x) = limt^0t(x) and oo(x) = lim f_> 0 0/(x) for teC*.

Furthermore, this fact was generalized as follows (cf. [3], [4]). Let X be a complex

manifold on which G = C* acts biholomorphically and meromorphically. Then a

sequence of points xί9 9xs9 s>l, of X is said to generate a quasi-cycle if xte

X—XG for each /, and co(xt) and 0(^ί+1) are contained in one and the same
connected component of XG for \<i<s9 where / is counted modulo s9 so that

5+1 = 1 by definition. Then the result is: If A" is a compact Kahler manifold,

then there exists no sequence of points on X which generates a quasi-cycle.

Here, we say that a biholomorphic action of G on X is meromorphic if the

morphism of complex spaces G x X-> ^defining the action extends to a meromorphic

map Px X^> X with respect to the natural inclusion G<—»P, where P denotes the

complex projective line. The purpose of this note is then to generalize the above

results in the following two theorems:

Theorem 1.1. Let X be a normal compact Kahler space (cf. §4) on which a

\-dimensional complex linear algebraic group G acts biholomorphically and

meromorphically. Then the following hold:

1) Suppose that G = C*. Then there exists no sequence of points xl9 -,xseX—XG

which generates a quasi-cycle.
2) Suppose that G = C. Then the closure C of any orbit is nonsingular, and C

intersect XG transversally at a (single) point x, where the transversality means that
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ΎxX
GnTxC={Q}9 Tx being the Zariski tangent space at x.

Theorem 1.2. Let X be a compact complex manifold in the class %> (cf. §4)

on which a \-dimensional complex linear algebraic group G acts biholomorphically
and meromorphically. Then the following hold:

1) Suppose that G = C*. Let xv, - -,xs be a sequence of points in X which generates

a quasi-cycle. Let Ct be the closure of the orbit of ;cf. Then the \-cycle

C— CΊ 4- ••• -f Cs is Q-homologous to zero in X.
2) Suppose that G = C. Let C be a closure of some orbit such that either C is
singular or (C is nonsingular but) the intersection of C with XG is not transversal. Then

C is Q-homomologous to zero in X.

Note that if a given C*-action admits no quasi-cycle in Theorem 1.2, then
the associated Biyalynicki-Birula decomposition has a good property and the

Hodge version of the Frankel equality holds true on X (cf. [3] [4]). In [7] the

main ingredient of the proof was the study of the induced G-action on the Picard

group PicZ = //1(Z,0£) of a certain G-variety Z. In the Kahler case, we consider

instead the G-action on the real vector space H1(Z90*Z)9 where 0*z is the sheaf of
germs of pluriharmonic functions on Z. This will be treated in §3. As preliminaries
for this, in §2 we prove some general results on pluriharmonic functions on a
complex space, which are of some independent interest. The proof of the theorems
will then be given in §4; we also prove there a weaker form of Theorem 1.1 when

X is noncompact. Finally, in §5 we give an example which shows that the
conclusion of 2) of Theorem 1.1 is in general not true when A^ is a normal

non-kahlerian Moishezon surface.

2. Sheaf of pluriharmonic functions

Let X be a (reduced) complex space. We denote by Θx the sheaf of germs
of holomorphic functions on X. Then we have the following standard exact

sequence of sheaves of real vector spaces on X\

Im

0 -> R -> Gx -> 0>x -> 0

where R is considered as the constant sheaf and Im denotes taking the imaginary

part. We consider the associated long exact sequence

(1) -> 7/ WO ̂  Hl(X,βx) -+

of real vector spaces. We first note the following result on pluriharmonic functions

on a normal complex space.
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Proposition 2.1. Let X be a normal complex space and r\X ^ X a resolution
of the singularity of X. Then we have a natural isomorphism 0>x ^ r^χ.

Proof. Fix any point x of X. Then A:=r~l(x) is compact and since X is
normal it is connected. Take any pluriharmonic function h defined on a
neighborhood U of A. Then it suffices to show that h descends to a pluriharmonic
function defined in a neighborhood of x. Fix a point oeA. Write /z = Re/for

some holomorphic function / in a neighborhood of o. Then / can be analytically

continued along any closed path y contained in U with base point o. It suffices
to show that the result of any such analytic continuation, say/ l5 coincides with the

original branch / at o. In fact, then / would descend to a holomorphic function

/on X by the normality of X, and h would be the pullback of a pluriharmonic
function Re/

Now restricting U if necessary, we may assume that πv(A) ^ π^ί/), and hence

that y as above is contained in A. But since A is connected and compact, h is
constant on A\ hence /, =/ when restricted to A. On the other hand, the real

parts o f/and/! coincide, being equal to Λ, and hence/j—/is a pure imaginary
constant. Together with the equality/! =/on A, this implies that/ =/as a germ

at o. Π

The following general extension result of a pluriharmonic function seems
noteworthy though it is not used in the sequel.

Corollary 2.2. Let X be a normal complex space and A a nowhere dense

analytic subset of X. Set U=X—A. Then any bounded pluriharmonic function u

on U extends to a pluriharmonic function on the whole X.

Proof. Let K be the set of somooth points of X. It is well-known that u

extends across Ar\V. Hence, we may assume from the beginning that U= V. Take

a resolution r: X —> X of X whose exceptinal set E of r has at worst normal
crossings. Then the pullback r*//, which is bounded on U:=r~^(U\ extends across
E to a pluriharmonic function on X by the smoothness of X. Then by the lemma

above, h descends to a pluriharmonic function on X. Π

In general for a (reduced) complex space Z we denote by <§z the sheaf of

germs of real valued C°° functions on Z\ i.e., those functions on Z which are

induced locally, with respect to a local holomorphic embedding of X into a domain
D of C", by a smooth function on the domain. Here, a real C°° function u on

D is regared to be identically zero on Z if it is identically zero on the smooth

part of Z. We have a natural inclusion ^z

c—><fz. Denote by Φz the cokernel

of this inclusion so that we have an obvious exact sequence
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q
(2) 0 -> 0>z -> S'z -> Φz -> 0

of sheaves of real vector spaces. Note that when Z is smooth, Φz is identified

with the sheaf of germs of real d-closed (l,l)-forms on Z with q = ^f^ΛdS.

We shall prove the following result by using a theorem of Spallek [12].

Proposition 2.3. Let X be a complex space and n: X -> X the normalization

of X. Then a C°° function u on X is pluriharmonic if and only if its pull-back

u'.— n^u to X is pluriharmonic.

Proof. The necessity is clear. We show the sufficiency. The problem is

local. So we take any point o e X and identify X with the analytic germ it defines

at o. Let n~1(o)={oί9 ,om}. Accordingly, X (as a germ along n~l(ό)) consists
of m connected components Xt with o^X^ By assumption we may write w = Re/

for some holomorphic function / on X with ](ot) = ύ(o^ = u(o] for any i, \<i<m.

We claim that / descends to a weakly holomorphic function on X.
First we show that/descends to a well-defined continuous function on X. Let

R:=Xx XX be the natural fibered product with the first and the second projections

Pi:R-> X9 i = 1,2. We have to show that/t =/2, where/ =p*f. Set ύi =p*u. For

g:=/ι-/2 we have

where /?: 7? -> A" is the natural projection. Hence, the holomorphic function g is

locally constant on R. In fact, if we take any locally finite decomposition R = (JΛRΛ

of R into complex submanifolds Ra, then g is clealy locally constant on each RΛ,

and then so is it also on the whole R by the continuity. Now note that R consists

of m2 connected components Rtj with (o^o^eR^. Then g is constant on each R^

with the corresponding value equal to g(obo^=j(o^—j(o]) = 0. Therefore, g is

identically zero on the whole R as desired. Hence, we can find a contimuous

function/on X such that «*/=/ Then we clearly have Re/=w. Moreover, it

is clear that / is holomorphic at smooth points of X. Thus, / is a weakly
holomorphic function on X whose real part is a C°° function on X. Then by a
theorem of Spallek [12, Satz 4.2] / is holomorphic on X, and hence u is

pluriharmonic. Π

Corollary 2.4. Let X be a germ of complex spaces. Then a C™ function u on X

is pluriharmonic if so is the restriction of u to each irreducible component X{ of X.

Proof. Let X be the disjoint union of X{ and m:X-+X the natural

morphism. By assumption ra*w is pluriharmonic on X. Let n\X-*X be the

normalization of X. Then we have a natural morphism q\X^X such that
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n = mq. Thus, n*u = q*m*u, and hence by Proposition 2.3 u also, is pluriharmonic.

D

Let p : Z -> A^ be a morphism of complex spaces and p£ : H°(X,ΦX) -> 7/°(Z,Φz)
a natural linear map. The results of the above proposition and corollary can
then be stated in terms of p£ as follows.

Lemma 2.5. Suppose that either p is the normalization of X or that Z is the
disjoint union of the irreducible components of X and p is the natural map. Then
the map p£ is injective.

3. Action on Hl(X,0>x)

3.1. Case of normal complex spaces

Suppose that a connected complex Lie group G acts biholomorphically on a
compact complex space X. Then it acts naturally on the exact sequence (1) by
real linear transformations, which is trivial on the terms lf(X,R) because G is
connected. We are interested in the action of G on Hl(X,0*x) when G is an
algebraic group acting meromorphically on X and X is a compact complex space
in #, i.e., is bimeromorphic to a compact Kahler manifold.

Lemma 3.1. Let X be a normal compact complex space in <β on which a
connected complex linear algebraic group G acts biholomorphically and meromorphical-
ly. Then the induced action on the real vector space Hl(X,0*x) is trivial.

Proof. When X is nonsingular, by the Hodge theory we know that
H^X^R) -» Hl(X9Θx) is necessarily surjective, and hence H\X90>X) is injectively
mapped into Hi+ί(X,R). Thus by the above remark the induced actions on

H\X^χ] are trivial for all i. In the general case we take a resolution r\X-+ X of
X and consider the following commutative diagram of real vector spaces

Hl(X,Px) H2(X,R).

By Proposition 2.1 we have r^x = 0*X9 and hence by the Leray spectral sequence
r| is injective. Hence, the diagram shows that δx is injective as well as δx. Thus, the

action on Hl(X^x) is again trivial. Π

REMARK 3.1. We can prove the injectivity of δx also as follows. According

to [5, Lemma 8] Pic0^ -> Pic0X is a closed embedding, which in turn implies that
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Pic0^is a complex torus, or equivalenty, the natural homomorphism a:Hl(X,R)-+
H l(X, @x) is surjective. Here Pic0A^ denotes the identity component of Pic X. Thus,

the exact sequence (1) shows that δx is injective. Conversely, from the injectivity

of δx in the proof of the lemma follows the surjectivity of α. This gives an
alternative direct proof of the compactness of Pic0X for a compact complex space

in <g.

3.2. Case of certain non-normal complex spaces

Next we consider some non-normal spaces. Namely, let B be one of the

following four types of compact connected nonnormal complex spaces.

Case 1

a) A rational curve with one node

b) A weakly normal compact connected complex space with irreducible
components Bi9 !</<m, such that the following conditions are satisfied:

i) Each BI is nonsingular and

ii) for each !</<m, B{ and Bi+ί intersect transversally at a unique point

Pi, where / is considered modulo m, and BtnBk = 9 if \i—k\>l.

Case2
a) A rational curve with an ordinary cusp
b) A union of a nonsingular rational curve C and a compact connected

complex space Y such that C and Y have a unique point p in common and that

Cn Y is defined in C by m2, where m is the maximal ideal of Φc p.

Suppose that a 1-dimensional connected commutative algebraic group G acts

nontrivially on B biholomorphically and meromorphically. We assume that G is

the multiplicative group C* in Case 1 and is the additive group C in Case

2. Furthermore, we make the following additional assumptions:
In Case 1, b): Let J be the set of indices j such that the action is nontrivial

on BJ. Then Bj is a nonsingular rational curve for any ye/. We assume further

that fory e/and xεBj— {pt_ 19/?,-}, we have 0(x)=pi and oo(x)=pi+1? wherep0 =pm.
In Case 2, b): We assume that the action of G on Y is trivial.
In these situations we consider the induced action of G on the real vector

space Hl(B^B) and on the Picard group PicB=Hί(B,Θ$ of B. Since the possible
intersections of two irreducible components are of zero-dimension, we have a
natural isomorphism ®iH

2(Bi,R) ^ H2(B,R\ where Bt in general denote the

irreducible components of B.
In the above four cases we define the notion of a degree of an element η of

Hl(B^B) as a real number as follows. Define a subspace ff of B by

( B in Cases l,a) and 2,a)

(3) ff= J (JjeJBj in Case l,b)

C in Case 2,b).
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Then the degree of η is the image of the composite map (cf.(l))

(4) Hl(B&Λ) -> Hl(B',0>B,) -1 H\B',R) I /?,

where the first arrow is the restriction map, δ is as in (1) and finally tr is the
natural isomorphism in Case l,a) and Case 2, and in Case l,b) it is given by
(aj) -> ΣjOj with (aj)e®jeJH

2(BpR) ^ φjR. The degree of an element L of PicB
is then defined to be that of its refined chern class c(L)eHί(B9^

>

B) (cf.(13) below).

Proposition 3.2. Let the notations and assumptions be as above. In either of
the above situations the following hold.
1) Let η be any element of Hί(B,^>

B). Then η is G-invariant with respect to the

natural action of G on Hl(B90>B) if and only if the degree of η is zero.
2) Let L be any holomorphic line bundle on B. Then LEH1(B,Θξ) is G-invariant
if and only if its degree degL = 0.

Note that the assertion 2) in Cases l,a) and 2,a) is due to Horrocks [7]. For
the proof of the proposition we first compute the effect of standard G-action on
the Fubini-Study form of a complex project!ve line P. Write />=C(z)u{oo} once
and for all, and consider the action of G= C* = C*(f) (resp. C= C(t)) of the form

(5) z -> tz (resp. z -+ z +1) on P.

We consider the real (l,l)-form τ = ̂ /— lθ<31og(l 4- |z|2) on P. We write
w=l/z. Then the following is a simple verification.

Lemma 3.3. For any 1 6 G the form λ = t*τ — τis written in the form λ = ^/—
where h is a C°° function on P defined by the formula',

(6)

when G = C*, and

(7) A(zHlog{(l + |z + /|2)/^^^

when G = C.

Proof of Proposition 3.2. Define B to be the normalization of B in Cases
l,a),b) and 2,a), and to be the disjoint union Bΐ = C and B2 = 7 in Case 2,b). Let

(8) n:B-+B

be the natural morphism. The G-action on B naturally lifts to a biholomorphic
and meromorphic G-action on B making n a G-morphism. We start with the

assertion 1).



372 A. FUJIKI

Let K be the kernel of n£:Hl(B,0>B)-+Hl(B,0>B). Take any element g of G
and set ξ=g*η — η. We claim that the image ζ of ξ in Hί(B9^B) vanishes. Let

ή = (ηj be the image of η in H1(B,0>B)=(&iH
1(Bi90>Bi) with ήieHl(Bi9^B^9 where

Z?f are connected components of B. (Similar notations will be used in the

sequel). Then we have <f =(£) with ξi=g*ήi — ήi. But g*ήi — ή. = 0 for all ι; for if Bi

is not a nonsingular rational curve this follows from our assumption in the Case

l,b) and Case 2,b), and if B{ is a nonsingular rational curve, this is clear (cf. Lemma

3.1). Thus <f=0, and ξ is contained in K.

Now since $z is a fine sheaf, we have the following commutative diagram of

exact sequences of cohomology groups associated to the sheaf sequence (2);

H°(B^B) -» H°(B,£B) -> H°(B,ΦB) -> Hl(B9^B) -» 0
I * I * 1 *

d I J 1
H°(B^B) -> H°(B9&B) -> H°(B,ΦB) -* Hl(B9£PB) -> 0

II II II II
®iH

0(Bi,^
>

B) -> ®iH°(Bi,S'B) ->• ®iH
Q(Bi,ΦB) ->• ®iH

l(Bh0
>

B) -> 0.

Since «| is injective by Lemma 2.5, we have the naturally induced injection

c:* β:=jF/0(Jf,ίg)/(Imrf+Im/ιjf),

where Im denotes the image. Note that the given action of G induces a natural
G-action on the above commutative diagram. It then suffices to show the following:

Claim. c(ξ) is zero in β for any element g of G if and only if the degree of

η is zero.
First we describe c(ξ). For this purpose we lift η to an element veH°(B,ΦB)

in the above exact sequence. Then ξ is represented by ω=g*v — v. Let ώ = (ώi)
be the image of ω in H°(B,ΦB). Then ώ is mapped to zero in Hί(B,^>

B)9 and

hence we can find an element

which is mapped to ώ. Then c(ξ) is nothing but the image q of / in Q by the
natural projection.

Thus, what we have to show is that q is zero for any element of g if and

only if the degree of η is zero. For this purpose we shall specify appropriate choices

of /*. First we note that for iφj (with / defined in all cases as in Case l,b)) we

have ώ.=g*v. — v. = 0 since G acts on St trivially, so that we may take^ = 0, where

(9) 7£ = 0, jφJ.

We next assume that ieJ; in particular, we may identify B{ with a complex

project! ve line P=Cl[z)u{oo} and may assume that the action of G = C* (resp. C)
on Bt is of the form (5) with respect to this identification. We denote an element
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g of G by the corresponding complex number t. Now after adding a suitable element

in the image of //%£,, <fg.) we may assume that vt is of the form (ai/2π)τ, where

at is the degree of the restriction of η to Bi ( = $$&) an^ τ is as in Lemma
3.3. (Recall that Φg. is identified with the sheaf of germs of real ^-closed (l,l)-forms

on Bt with the quotient map SB. -» Φg. given by / -> ,/^Tθθ/). Then by Lemma
3.3 we can take

fi = (ai/2π)h,

where h is the C00 function on Bi = P given in (6).

We shall now identify the image qe Q of /for the above choices. Consider the
diagram

1-
TV

where TV is the cokernel of n* with /? the natural projection. We then describe
p in each of the four cases. We begin with:

Case l,b)
In this case we may identify /?, with B{. We have N ^ ©j/?(ί) with a copy R(ί} of

R one for each/1,,1 <*<m, and for anyf^^eφfl^B^^p^^^-f^^).
Thus, /?φ ) for r = (ri)e Qfl^B^^ -+ ®tR is given by pd(r) = ((ri-ri+ 0). Hence,
we have Q = R and the induced map p:®iH

0(Sί.>S
>β)^ R is identified with the

M/1)) = Σ i < i < m( -/<pi _ i) +/)(pi)) Thus, for /=/ with / above we have

= Σ(-ΛΛ-ι)+/^Λ=^
ieJ \ieJ /

(H)

ieJ

= 1 / 2π Σ aog\t\2 = (deg v) / 2π log|ί|2.

Thus as long as |ί|^l, /?(/) = 0 if and only if degv = degf/ = 0.

Case l,a)
In this case m=l, and we omit the index /. We have N ^ R corresponding

to the node of B and p(?) = (a/2π)(-h(Q) + h(σo)) = (a/2π)\og\t\2. Since the image

of H°(8^β) £ R in TV is zero, we have /?(/) = c(<!;) = 0 if and only if the degree a

of η is zero provided that \t\^\.
Next we consider Case 2. We start with

Case 2,a)
Again m = 1 and we omit the suffix /. The image of d is contained in that of
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«|, and hence, N=Q, which is nonzero by our assumption. By Lemma 3.3 we

get that

(1 2) c(ξ) =p(J) = ah = 0(2Re(ίn>) + ) mod the image of nf,

where h is given by (7) and denotes the terms which are of order > 2 in w and w, the

complex conjugate of w. Since this contains a nonzero linear term for tΦ 0, it follows

that p(f) = c(ξ) = 0 if and only if the degree a of η is zero.

It remains to treat the final:

Case 2,b)

Recall that B= Cu Y and we set B± = C and B2 = Y. We have a direct sum

decomposition H°(Z,£>

z) = Rξ&H0(Z,mz£
>

z), where raz denotes the maximal ideal of

δZtp for Z = B,Y or C. In the diagram (10) applied to this case, the image of d

is exactly R®R. Hence, we have an exact sequence

Ύ) -> Q -» 0

On the other hand, we have a natural surjection

where V is the vector space V=Vc®Vγ with Kz = w z//w z, Z=C,7. We show

that for our / the image qv'^btf—ftp)} is not in the image of H°(B9mBS
>

B) (and

hence q is nonzero), if the degree of η is nonzero. First note that qv is of the

form qv = (2aRe(tw)β), where a is the degree of η in the sense of the proposition

(cf. (12)). Now suppose that b(f—}(p)) comes from some element / of

H°(B9mS>

B). Then since / is identically zero on Y as well as / and since TXC is

contained in TXY by our assumption, we must have that the first component of

its image in V must also vanish identically. Hence αRe(Λv) = 0 for any w. This

is impossible unless β = 0, and the assertion is proved.

Conversely, suppose that a = Q. Then in/=(/i,/2) we have/!=/c = 0 by (12)

and /2 =fγ = 0 by (9). Hence, c(ζ) = q = Q.

Proof of the assertion 2). From the short exact sequence

we get the associated long exact sequence

(13) ->

on which the group G naturally acts. Then by what we have proved above, it

turns out that if deg L = deg c(L) ̂  0, then L is not G-invarian t. The necessity follows.

We show the sufficiency. We have only to consider Cases l,b) and 2,b)(cf.

[7]). In Case l,b) we shall give a direct proof of both directions. Define H to

be the algebraic torus Πi^i^mC*(i\ where C*(ί) are copies of C*. Then, from the
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exact sheaf sequence

where & is the quotient sheaf, we get the exact sequence of connected algebraic groups

(14) 0 -> C *->//-»// -1 Pic B -» Pic B -> 0

with the induced C*-action. Here the homomorphism u is defined by
w((^) —(Cv vΛ))* ^ eC*(ί); thus an element (t^eH is in the image of u if and only
if 11^=1. We also see that Pic B is a principal C*-bundle over Pic 8.

In order to detect the C* action on Pic B we represent an element L of Pic B

by a pair {(Z^),̂ )}, where L^LIg.ePic^ and h{ are the canonical isomorphisms
hi\Lj\pi ^ Lί+1|/?f, l<i<m. When we describe the C* action on such a

representative we may assume that for ieJ L{ = Nk\ where kt is the degree of L{

on 5f. Here, Nk is the line bundle defined by

^k'-—(^ox Qίo))u(tΛ x Qίι))> with Co = M;~ fcCi over C/ 0nC/ l 5

where t/0 = C(z) and C/1 = CI[w). For ίeC* the line bundle ?*7Vk has the new

transition function l~kw~k instead of w~k. Then the formula Co ~* Co» Ci ->ί~*Cι
gives an isomorphism ί*/V fc ^ Nfc.

Now for any f e C * we are interested in the map f=ft: Pic B -> Pic B defined

by f(L) = t*L®L~l. From the above and the fact that C* acts trivially on B{

for iφj we infer that f*(L) is represented by the pair {(Z^A/1)}, and then,/(L)

by the pair {(l(ί)),(ffcί)}> which is nothing but the image by v in (14) of (tkί)eH,
where we have put fct = 0 if iφj, and l(l) is the trivial line bundle on B{. Hence,
by what we have noted above,/(L) is trivial (for all t) if and only if Π f(fk i)=l,

or equivalently, degL = Σki = Q.
Finally, consider Case 2,b). Since degL = 0, L\C is trivial by the definition

of degree in this case. Then /(L) defined as above is trivial when restricted to

both C and to Y. Since Pic B^ Pic B in this case as follows from (14), we get

that /(L) is trivial on B9 which proves that L is G-invariant.

In the above arguments we have used the C°°-objects on singular complex

spaces, but we could have also used the corresponding real analytic objects as in [2].

4. Proof of theorems

First we recall some definitions: A complex space X is said to be a Kahler

space if there exist an open covering {Uμ} of X and a system of C°° strictly

plurisubharmonic functions {uμ} such that each uμ is defined on Uμ and φμv:=uμ-uv

is pluriharmonic on Uμn C/v. In this case, ω := ̂ /^ίdSuμ on Uμ defines a global
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real positive ^/-closed (l,l)-form on X, called a Kάhler form on X. Moreover, the

class [ω] in Hί(X,0>

x) (well-)defined by the cocycle {φμv} is called the (refined)

Kάhler class of ω. On the other hand, a compact complex manifold is said to

be in the class %> if it is bimeromorphic to a compact Kahler manifold.

In 4.1 we prove the theorems in the introduction and in 4.2 discuss the

noncompact case also.

4.1 Compact case

Proof of Theorem 1.1. Suppose that the statement of the theorem is not

true. Then we define a (/-invariant complex subspace B of X as follows. First

consider the case G = C* and assume that we have a sequence of points .x^ ,̂ ,

s>l, generating a quasi-cycle. Let Ct be the closure of Gxt and Fi the connected

component of XG which contains both oo(xt) and 0(xi+1), 1 <i<s, s + l = l. Then

3 is by definition the union of complex subspaces Bt which is defined by: Bί = Cl,

B2=F2, 53 = C2, >^2s-ι=:C's» S2s = Fs.
Suppose next that G=C and assume that there exists a closure C of an orbit

such that either C is not smooth or C does not intersect XG transversally. We

define, in the first case, B=C and in the second case S=CuXG.

We then define a complex space B in respective cases as follows. First in

the case G= C* we define B to be the weak normalization of B. In the first case for
G=C, we define B to be an irreducible rational curve with an ordinary cusp as

in Case 2,a) in 3.2. In the second case for G = C let m be the maximal ideal of

@Ctp, where p = x as in Theorem 1.1, and denote by E the subspace of C defined

by the ideal m2. By our assumption we have a natural embedding k\E Y.

Then we define B to be the pushout Cu£Fwith respect to the natural embeddings

ι\E C and k (cf. [8,(1.8)]). In all the cases B is a meromorphic G-space and

we have a natural G-morphism B -+ B. Composed by the inclusion B Xwe get a

G-morphism h : B -> X.

Clearly, B is G-equivariantly isomorphic to one of the G-spaces defined at

the beginning of 3.2. Thus by Lemma 3.1 and Proposition 3.2 the image of the

induced map h*:Hl(X,0>

x) -> Hl(B^B) consists of elements of degree zero in the

sense defined before that proposition. On the other hand, the pullback of any

Kahler class on Xto B is necessarily of positive degree, which is a contradiction.

Proof of Theorem 1.2. As in the above proof our assumption implies that
we can find a G-morphism h : B —> X such that the image of the induced map

h*:Hl(X,0>x)^>Hl(B,0>B) consists of elements of degree zero. On the other
hand, since X is a manifold in Ή9 we have

(15)

where HIΛ(X) is the Hodge (l,l)-component. Let the subspace B' of B be defined
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by (3) before Proposition 3.2 with the induced map h': B' -> X. Then the image
of h'*:H2(X,R)^H2(B',R) coincides with h*'(H^\X)R] since B' is of dimension
1. Then by the definition of the degree this image is contained in the kernel of
tr:H2(B',R)-*R (cf. (4)). This implies then the conclusion of the theorem by the
definition of the map tr.

REMARK 4.1. 1) As the above proof shows Theorem 1.2 holds true for any
compact complex manifold X for which the Hodge decomposition theorem holds

for H\X,R\ / = 1,2.
2) We can consider XG also in the category of general complex spaces which are
not necessarily reduced. It is in fact more natural to do so in the case G = C. Then
we may ask if Theorems 1.1 and 1.2 are still true when XG is given with
this refined structure.

4.2 Noncompact case

In this subsection we prove a weaker form of Theorem 1.1 when X is not
necessarily compact. We say that a sequence of points xί9 ,xs, s > 1, of Xgenerates
a cycle if Xi^X—X0 for each /and cx)(^f) = 0(x/+1)for 1 <i<s, where s-{-1 = 1. Then

we prove

Theorem 4.1. Let X be a connected (not necessarily compact) Kάhler manifold
on which a I-dimensional complex linear algebraic group G acts biholomorphically
and meromorphically. Then the following hold:

1) Suppose that G = C*. Then there exists no sequence of points xl9 9xs of X

which generates a cycle.
2) Suppose that G=C. Then the closure C of any orbit is nonsίngular.

Recall the complex space B considered in 3.2. According to the situation of
the above theorem, we consider only Cases l,a),b) and Case 2,a) there: moreover,
in Case l,b) we assume that all the irreducible components ̂  of B are a nonsingular
rational curve on which G acts effectively, namely we assume /={l, ,w}
there. Then we shall not distingush Cases l,a) and l,b) and call it simply Case
1. We also call Case 2,a) simply Case 2 in what follows. In particular, we set

m = l in Case 2.
Let D be a compact Riemann surface. More precisely, we take D = P when

G = C* (Case 1), and take D to be of genus > 1 when G = C (Case 2). Let ξ : P -» D
be a nontrivial principal G-bundle on D. Let p: Y-+ D be the fiber bundle with

typical fiber B associated to ξ and to the natural action of G on B. By our

choice of D we have a canonical exact sequence

b
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We set A=Rm and Az = Zm. Define tτ:A -+R by tr((ai)) = Σiai. We then define

maps θL:Hl(Y9Θf)->Az and β:H1(Y,0*γ)-+ A by the composite maps in the
following commutative diagram

Cl b
H\Y,&?) -» H2(Y,Z) -> H2(B,Z) £ ®H2(B{,Z) £ Λ z

I . I . I I I
H\Y,0>Ύ) -> H\Y9R) -> H2(B,R) ^ ®H2(Bi9R) ^ A.

We call an element (αt ) of Λ positive if αt > 0 for all /.

Lemma 4.2. There exists no element of Hl(Y,έPγ) which is mapped to a positive
element by β.

Proof. We first note that the image of a.:H1(Y,Θ$)-*Az is precisely the
kernel of tr:^z->Z. In fact, when B is irreducible, this is due to Horrocks
[7]. By 2) of Proposition 3.2 the same proof works also in the general case. Then
since H\Y^Ύ) is a real vector space, the image of β contains the hyperplane
Kertr in A, where Ker denotes the kernel. Suppose now that there exists an
element, say y, which is mapped to a positive element of A. Then by what we
have noted above β becomes surjective. This implies that δ:Hί(Y9^

>

γ)-> H2(Y,R)
also is surjective since the subspace H2(D,R) is clearly in its image. Then from
the commutative diagram of exact sequences

-» H2(Y,R) -+ H2(Y,ΘY) -»

we get that cί is surjective. Hence α also is surjective. This contradicts our first

remark. Π

Let ξ:P-» D be the principal (7-bundle on D as before. Let f\E-> D be the
fiber bundle with typical fiber X associated to ξ and to the given action of G on
X. Let Ed=f~1(d) denote the fiber over deB.

Lemma 4.3. There exists an element of Hl(E,0*E) which restricts to a Kάhler
class in Hl(Ed9^Ed) for general d.

We first need some construction. Adding 0-section and oo-section (resp. just
oo-section) we may compactify ξ to a P-bundle ξ:Q-+D, in case G = C* (resp.
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C). We consider the pull-back/^: ξ *E= Q x DE -» Q of/to Q via ξ. The restriction

of/Q to P is canonically isomorphic to the product PxX over P. Moreover,

since the action of G on X is meromorphic, the isomorphism extends to a

bimeromorphic map u: ξ*E ^> Q x X\ namely, the closure of the graph of the above
isomorphism (as a subspace of (P x DE) x P(P x X)) is an analytic subspace, say Λ,

°f (Q x oE)x Q(£? x ^0 which is mapped properly and bimeromorphically onto both
factors via the natural projections. In fact, in this case Λ is itself a fiber bundle

over D whose fiber is isomorphic to the graph Γ c Px Xx X of the meromorphic

action P x X -> A" if we identify a fiber of (Q x D£) x Q(β x X) over any point d of

D with (PxJQx F (Px^r) = P x Λ r x ^ via a fixed isomorphism ξ~\d)^P. (Note

here that the projections /?1 2: Γ -» P x ̂  and /?13: Γ -» P x A' onto respective factors

are both proper and bimeromorphic.) Now we are ready to start:

Proof of Lemma 4.3. By taking a resolution of Λ, we get a complex manifold

T and proper bimeromorphic morphisms a:T-*ξ*E and b:T-+QxX. Take a

Kahler form ωx (resp. ωQ) on A" (resp. Q) so that ω'=π%ωQ-\-π$ωx is a
Kahler form on QxX, where πz is the projection to the factor Z chosen to be

Q or X. Then define a rf-closed positive current ω' (of type (1.1)) on ξ*E by

ω':=ajb*ω, where α# is the direct image of the form b*ω considered as a current
on T. Since ξ*E is nonsingular, ω' then defines an element y of Hl(ξ*E,0>

ξ*E) as

usual.

Now take any holomorphic section s: D -> Q such that the image is not

contained in Q — P. Since s*ξ*E ^ £, by restricting the class y over s(/)) we obtain

the induced class y of Hί(E,^>

E). On the other hand, since u is isomorphic over

P9 ω' is a Kahler form over P. Thus, for any deD with s(d)eP, y restricts to a

Kahler class on the fiber Ed. Π

Proof of Theorem 4.1 (cf.[7, Proof of Cor.]). Let ξ:P-+D be the principal

G-bundle as above. By Lemma 4.3 there exists an element y of Hl(E^E) which

restricts to a Kahler class in H1(Ed,^
>

Ed) for a general Je/λ Suppose now that
the statement of the theorem is not true. Define the subspace 5 of X and the

G-morphism h\B-+X with image B as in the proof of Theorem 1.1. (In Case 1,

B now consists of the union of the clousre of orbits of points xt generating a

cycle.) Associated to h we obtain a bundle map K : Y -> E which is a finite

morphism of complex spaces. By the property of y we see that κ*y is mapped

to a positive element of A by /?, which contradicts Lemma 4.3. Thus, the proof

of the theorem is complete.

5. Examples

In this section we shall construct examples of C-actions on some compact

normal non-algebraic and non-kahlerian Moishezon surfaces X such that the



380 A. FUJIKI

closures of some (or all the) 1 -dimensional orbits are singular. We also give
examples, where the closures of all the orbits are nonsingular, but the intersection
of XG with any of them is not transversal. Thus Theorem 1.1,2) does not hold in
general for Moishezon spaces at least when we allow singularities. For the

corresponding couterexamples in the case of C*-actions see [11].

We use the examples of the surfaces of the above type constructed by Grauert
in [6]. Let C be a compact Riemann surface of genus g>2. We fix a holomorphic
line bundle L of degree d on C such that /z°(L)>0 and Λ1(L)>0, where

hί(L) = dimHi(C9L)9 / = 0,1. For any element ξ of Hl(C,L) we can construct naturally

a holomorphic P-bundle over C as follows.
Fix a finite Stein open covering φ = {£/J of C with respect to which L is

defined by a system of transition functions {a^}. We may then represent ξ by

an alternating cocycle {ξ^} with respect to ^ and then define an affine C-bundle

/o : V -> C by V= (J/( E/, x C), where (;c,Q e £/, x C and (jc,Q e Uj x C with x e t/v := Ut

n C/,. are identified if and only if

(16) ί^yMfj + ίuM

Then adding a point at infinity to each fiber we obtain a P-bundle f:Y-+C. We
set E—Ύ—V, which is a subspace of F mapped isomorphically onte C via
/ Further, the normal bundle N of E in F is isomorphic to L*, the dual of
L. By our assumption on L, TV is thus negative, and hence E can be blown down

to a point o of a (compact) normal Moishezon surface X. Let π:Y-+X be the
natural map. ^ is known to be non-algebraic (in the sense of Weil) (cf.[6, §4,

Sect.8]) and even to be non-kahlerian (cf.[10, §2]) as long as £^0, which we shall

assume in the sequel. Note that A" depends on L and the choice of ξ e H J(C,L).

We now describe C-actions on the surface X. Let η be any nonzero element
of f/°(C,L) represented by a cochain {f/J with respect to .̂ Then it defines a

natural C-action on Y by the formula;

ζt^ζi + tη^ /eC, on C/f.χC(Q.

Let Z = {pί9 9pm} be the zero set of η. Then the fixed point set YG of this action
is given by

(In general for any point peC, Fp denotes the fiber over f~l(p) over p.) In
particular, the C-action on Y descends to one on X. We write this actions on
X and on Y by ση when we emphasize its dependence on η.

Now our purpose is to show that by suitable choices of C, L, ξ and η as
above the action ση on X=X(C,L,ξ) have the properties mentioned at the beginning

of this section. Here, we also note that X (resp. ση) depends on ξ (resp. η) only

up to multiplicative constants.
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For any point p of C we write Fp = π(Fp). Then the fixed point set XG on
X is written as

(17) *G = UV
i

The closures of 1 -dimensional orbits on X are then precisely the curves Fp for
pφZ. We are thus interested in the smoothness of Fp in general for peC. We
identify E with C via / in the sequel. Let «/ be the ideal sheaf of E in Y. Then
we have a natural isomorphism ΘE(Lk) ^ ̂ k/Jk+1 as $E-πιodules, which we
consider as an identification in what follows. We then get a long exact sequence

(18) -»7

associated to the short exact sequence

0 -» ΘE(L2) -> «/ / ,/3 -> #£(L) -> 0,

of 0£(2)-modules, where in general Zs(fc) is the subspace of 7 defined by the ideal
sheaf J^k+l. More generally, for any k>3 we may similarly consider the long
exact sequence

(19) -> H°(E(k}^
2/J^k+1) -* H°(E(k)9S I Jk+ l ) -> H°(E,L) -> .

We shall examine the smoothness of Fp through the following:

Lemma 5.1. Let p be a point of C=E.
1) If Fp is nonsingular, then there exists an element, say λ, of //°(C,L) with
which is liftable to an element of H°(E(2),^ / J3) in (18).

2) Conversely, if there exists an element μ of H°(C,L) with μ(/?)/0 which is liftable
to H°(E(k},J' /J^k+l) for any positive integer k in the sequence (19), then Fp is
nonsingular.

Proof. Note first that Fp is nonsingular if and only if there exists a holomorphic
function, say β, on X defined in a neighborhood of o such that β(o) = Q and β:=π*β
vanishes at oop:=FpnE to the first order when restricted to Fp. Now we show

1). Supposing that Fp is nonsingular, take any function β as above. Since β
vanishes along E, we may take its image λ in H°(E,<f / <#2) = H°(E,L). The above
condition then implies that λ(p) φ 0 and clearly λ is liftable to an element of

2) Let Mk be the line bundle on Y defined by Mk = [£]fc+ *®KΎ, where K denotes
the canonical bundle. Then the restriction Mk\E to E is isomorphic to Nk®Kc

and hence is negative itkd>2g — 2. Fix any such k. Then, Mk is negative also
in a small strongly pseudoconvex neighborhood W of E in Y, and hence, by the
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Grauert-Riemenschneider vanishing theorem H l ( l V , < f k + ί ) = Q. Now let μ be an
element as in the condition of 2). Take any lift of μ to an element μk of
H°(E(k}^ /Jίk+}) which extends, by the above vanishing result, to a holomorphic
function β defined on W. This β descends to a holomorphic function β on X
such that β ( = π*β) fulfills the condition stated at the beginning of the proof;

hence Fp is nonsingular. Π

In view of the above lemma it is important to identify the kernel of δ in
(18). This will be given in the next lemma. We denote by

φ : H°(E,L) xHl(E,L) -> Hl(EJL2)

be the natural bilinear pairing induced by the cup product. Then:

Lemma 5.2. Let ψ = ψξ:H°(E,L) -» Hl(E9L
2) be the linear map induced by φ

and the given element ξeH1 (E,L) = // * (C,L). Then, δ = ψ. In particular, the kernels
of δ and ψ coincide.

Proof. Take any element f/ = {*/,-} of H°(E9L) = H°(^,L), where η^a^ηj on
Utj. It suffices to show that δ(η) is represented by the 1-cocycle fy&j} with respect
to <%. For this purpose we first describe the structure of E(2). Set τ f = 1 / ζ{. Then
τ{ is a defining equation of E on f~l(U^. From (16) we compute easily the
relation of coordinates on each f~{(U and find

(20) τ^bj^-bfatf mod,/3,

where bij = a^1. Now, regarding ηt as a section of «/ /J*2 consider τ^ mod,/3

as a function on E(2} over U{, then

{α0 } with α^τΓ^V/i-τ//;) mod,/3

is a 1 -cocycle representing the class δ(η) e H l (E,L2). By substituting (20) we compute

Hence the assertion is proved. Π

In order to get concrete examples we specializes to the case where L2 ^ K,
where K is the canonical bundle of C. Namely, L is a theta characterestic of
C. In this case the pairing φ above becomes

φ : H°(C,L) x H\C,L] -+ Hl(C,K) ^ C,

which is perfect by the Serre duality. We assume moreover that the base locus
B = Bs\L\ of the linear system \L\ defined by 7/°(C,L) is nonempty.

The kernel of ψ = ψξ is now a hyperplane V= Vξ of //°(C,L). Let Bξ be the
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(set-theoretic) base locus of the sublinear system of \L\ defined by the elements of
V. Obviously, we have two cases depending on the choice of ξ. Case k'.BΦB^ and
Case B: B — Bξ. It is easy to see that both cases occur if λ°(L)>3, while if h°(L)=l
or 2, only Case A occurs. Here, in case Λ°(L)=1, we understand that K={0}
and B = C.

Lemma 5.3. 1) If B^Bξ, then for any point peBξ — B, Fp is not smooth and
there exists an element ηEH°(C,L) such that the associated C-action ση on X admits
Fp as a closure of an orbit.

2) If B = Bξ, then for any element η of H°(CJL)9 the closure Fp of any
l-dimensίonal orbit for the associated C-action ση on X is smooth. However, ifηφVξ

and the zeroes of η are all simple, then the intersection of the fixed point set XG

and Fp is not transversal.

Corollary 5.4. 7/Ά°(L) = l, then with respect to the unique C-action on X the
closure Fp of any \-dimensional orbits are singular.

Proof. 1) Every element of V— Vξ vanishes at/? by our assumption. Hence,
by Lemmas 5.2 and 5.1 and the sequence (18), Fp must be singular. Moreover,
there exists an element τ/e//°(C,L) with η(p)^Q. Then the associated action ση has
Fp as a closure of an orbit (cf. (17)). The assertion is proved.

2) By our assumption, for any point pφB there exists an element λεV such
that λ(p)=£Q. By the definition of V and Lemma 5.2 λ is liftable to
H°(E,S/S3). Then since H1(E,Lm) = Q for m>3, we can successively lift λ to
H°(E(k}^ / J^k+ί) for any k. Hence, by Lemma 5.1 Fp is nonsingular. On the
other hand, if η is any nonzero element of H°(C,L), the closures of 1 -dimensional

orbits of the associated action ση is of the form Fp with pφB by (17), and hence
is nonsingular.

Now suppose that η satisfies the condition of the second statement. Take
any holomorphic function g defined in a neighborhood of o in X vanishing

identically along XG. Let Z be the zero set of η on C ( = E). Then g:=π*g

vanishes identically along YG = Eu((jpeZFp\ and hence its image λεH°(E,L) vanishes
on Z. Since λ and η are both sections of L and η has only simple zeroes, it
follows that λ = cη for some constant c. But since ηφV9 it is not liftable even to

7/°(/i(2),*/ / </3). Hence, we must have c = 0 so that g is a section of,/2. Therefore,
for any eC, g vansihes at oop at least to the second order when restricted to
Fpι and hence so does g at o when restricted to Fp. This implies that Fp does

not intersect transversally with XG. Π

Note that the conclusion of the first assertion of 2) is true for any line bundle

L with degree g— 1 which is not necessarily a theta characterestic, as the above proof

clearly shows.
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EXAMPLE. Concrete examples which fall under either of the assumptions of
the above lemma are given as follows. Take C to be a hyperelliptic curve with

the canonical double covering y:C-+P with branch points /?ι, ,/?20+2 Let m
be any integer with 0<m<(g—1)/2. Then we may take L to be the line bundle

associated to the divisor p^ -\- ••• +/;,-f my*[oo], where l=g— 1 —2m>0. Then we

have L2^K, h°(L) = m+\ and £={/>„••-,/?,}. (See [1, p.288].) Moreover, the
general members of//°(C,L) have only simple zeroes. Thus the various assumptions
of Lemma 5.3 are realized for suitable choices of ξ and η and the corresponding

C-actions give examples of the type mentioned at the beginning of this section.

For instance, suppose that g = 2. We fix C and let L vary among all the line
bundles of degree g— 1 = 1 and whith h°(L)= 1. These are naturally parametrized
by C\L = Lφ qeC. Here L is a theta characterstic if and only if q is one of the

haperelliptic branch points ph l</<6. The corresponding Moishezon surfaces
Xφ which is independent of ξ in this case, form a flat family parametrized by C
(In fact, one can check that the geometric genus pθ of the normal surface germs

(Xq,oq) is equal to four, independently of q.) The natural C-action on Xq forms

a holomorphic family of C-actions, which are good for q¥=pi and degenerates to
a bad one at each pt. (This is legitimate since the closures of orbits do not form

a flat family over C.)
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