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Abstract
Let D be a bounded homogeneous domairCih and letg be an automorphism
of D which generates a discrete subgrdupf Auto(D). It is shown that the com-
plex spaceD/I" is Stein.

1. Introduction

Let D C C" be a bounded domain of holomorphy and ¢ebe an automorphism
of D such that the cyclic group := (¢) := {¢¥; k € Z} is a discrete subgroup of the
automorphism group Agf(D). It follows that I' acts properly onD and hence that
the quotientX := D/I'" is a complex space. In this situation one would like to know
conditions onD or ¢ which guarantee thaX is a Stein space.

Since the groufd” is cyclic, it is either finite or isomorphic t@. In the first case
it is a classical result that Steinness@fimplies Steinness oK. Therefore we assume
that " is infinite cyclic. In the case thaD is biholomorphically equivalent to the unit
ball B, it is proven in [4] and [5] thatX = D/(g) is Stein for hyperbolic and parabolic
automorphismsp. We will generalize this result to arbitrary bounded honmumis
domains.

Theorem. Let D C C" be a bounded homogeneous domain. gdbe an auto-
morphism of D such that the group = (¢) is a discrete subgroup odhutn(D). Then
the quotient X= D/T is a Stein space.

The main steps of the proof are as follows. Since the group 8D} has only fi-
nitely many connected components, we may assumeptisatontained irG = Auto(D)°.
By Kaneyuki’'s theorem the grou@ is isomorphic to the identity component of a real-
algebraic group. Hence, every element G may be written a® = @ephpy Where g,
is elliptic, ¢n is hyperbolic,p, is unipotent and where these elements commute. It can be
shown that the group’ := (¢ne,) is again discrete is. Since the groupk andI™ differ
by the compact torus generated qy, the quotientX” = D/I" is Stein if and only ifX
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is Stein. Consequently we may work with the grdtpwhich has the advantage of being
contained in a maximal split solvable subgroBpf G which acts simply transitively on
D. Exploiting the structure theory & we obtain the existence of e&equivariant holo-
morphic submersion : D — D’ onto a bounded homogeneous domBihwhose fibers
are biholomorphically equivalent to the unit bBll,. If I’ acts properly orD’ we are in
position to use an inductive argument to prove Steinness while if I'" stabilizes every
n-fiber we use the fact that the quotiefitg /T are already known to be Stein.

This paper is organized as follows. In the first section wevig® the necessary
background on bounded homogeneous domains and their aygioisro groups. In the
second section we establish the existence of a Jordan—K&yedecomposition inG
and reduce the problem to discrete subgroupsSofin Section 3 we study in detail
the unit ballB, and obtain a new proof of the fact th@} /T is Stein. Afterwards we
prove the existence of th&-equivariant submersiom: D — D’ which allows us to
prove the main result in the last section.

2. Background on bounded homogeneous domains

We review several facts from the theory of bounded homogenemmains. For
further details we refer the reader to [20] and [15] and tHeremces therein.

2.1. The automorphism group of a bounded homogeneous domainLet D C
C" be a bounded domain. A theorem of H. Cartan ([3]) states tlemgtoup Aub (D)
of holomorphic automorphisms db is a real Lie group with respect to the compact
open topology such that its natural action Bnis differentiable and proper. We write
G for the connected component of A(D) which contains the identity. We iden-
tify the Lie algebrag = Lie(G) with the Lie algebra of complete holomorphic vector
fields on D.

DEeFINITION 2.1. The bounded domaiD is called homogeneous if Ay{D) acts
transitively on it.

REMARK. (1) Let D be a bounded homogeneous domain andzje¢ D be a
base point. Sinc® = Autp(D)/Autp(D),, is connected, the (compact) isotropy group
Autp(D),, meets every connected component of AD). This shows that Aui(D)
has at most finitely many connected components.

(2) If D is homogeneous, the@ = Auty(D)° acts transitively onD, too.

From now on we assume that the bounded donfaic C" is homogeneous. It
follows from [2] that the groupG is semi-simple (and then in particular real-algebraic)
if and only if D is symmetric. For arbitrary homogeneous domains the grGujs
semi-algebraic by Kaneyuki’s theorem.
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Theorem 2.2 ([14]). There exists a faithful representatiprof G such thap(G) C
GL(N, R) is the identity component of a real-algebraic group. In pautar, g is iso-
morphic to an algebraic Lie algebra.

Recall that a real Lie algebrais called split solvable if it is solvable and if the
eigenvalues of ag) are real for every € s. A Lie group is called split solvable if
it is simply-connected and if its Lie algebra is split solkablf G is semi-simple, the
Iwasawa decompositioK x Ax N — G exhibits G as diffeomorphic to the product of
its maximal compact subgrould and its maximal split solvable subgrop:= AN =~
Ax N. The following theorem of Vinberg generalizes this decosifion to the group
G = Autp(D)° for arbitrary bounded homogeneous domaibs

Theorem 2.3 ([25]). Let H be the connected component of a real-algebraic group.
Then there exist a maximal compact subgroup K and a maxintialssfvable subgroup
S of H such that the map K S— H, (k, s) — ks, is a diffeomorphism. Each maximal
split solvable subgroup of H is conjugate to S by an inner auttiphism of H.

REMARK. Let K x S— G be the decomposition d& from Theorem 2.3. Then
S acts simply transitively orD.

For later use we collect some properties of split solvabke drioups.

Theorem 2.4. Let S be a split solvable Lie group.
(1) The group S is isomorphic to a closed subgroup of the groupppkutriangular
matrices inGL(N, R).
(2) The exponential mapxp: s — S is a diffeomorphism.
(3) Every connected subgroup of S is closed and simply-corthecte
(4) For each element & S the group{g¥; k € Z} is a discrete subgroup of S iso-
morphic toZ.
(5) Let S C S be a connected subgroup and (8)¢ c S be their universal complex-

ifications in the sense ¢10]. Then the homogeneous spade/&)C is biholomorphic
to Cdim S—dimS’_

Proof. The first three statements are classical (see for @eaf@6]). The fourth
assertion is a direct consequence of the second one. A pfabiedast assertion can
be found in [9]. O

2.2. Siegel domains and the grading of. In this subsection we will describe
the notion of Siegel domains of the first and of the second.k{ddr motivation for the
study of these domains comes from the fact that each boundewdeneous domain
can be realized as a Siegel domain ([24]). In addition weudiscthe grading of
which has been introduced in [16].



334 C. MIEBACH

Let V be a finite-dimensional real vector space andStet V be a regular cone,
i.e. an open convex cone which does not contain any affine line

DEFINITION 2.5. The tube domai := D(Q):={zeV®; Im@) e Q} =V +iQ
is called the Siegel domain of the first kind associated with

REMARK. The assumption thaD is a tube domain over a regular cone is quite
strong. Although the unit ball ir€" is biholomorphically equivalent to a tube domain
over a convex domain iiR", it can not be realized as a Siegel domain of the first kind.

The automorphism grou(2) of @ is defined by
G(©2) := {g € GL(V): 9(2) = Q}.

Since the conditiorg(2) = Q is equivalent tog(Q) = , the groupG(R) is closed
in GL(V) and hence a Lie group. We emb&i{2) into the automorphism group of
D = D(2) by g — ¢4 with ¢4(2) = gz

Let W be a finite-dimensional complex vector space. A ndapW x W — VC is
called Q-Hermitian if the following holds:
(1) For allw" € W the mapw — ®(w, w’) is complex-linear.
(2) We haved(w', w) = ®(w, w’) for all w, w’ € W.
(38) We haved(w, w) € Q for all w e W, and ®(w, w) = 0 if and only if w = 0.

REMARK. If V =R and Q = R>?, then anQ-Hermitian form is the same as a
positive definite Hermitian form oWw.

DEFINITION 2.6. Given2 and ® as above, the domain
D := D(R, ) :={(z, w) € VE x W; Im(2) — ®(w, w) € Q}
is called the Siegel domain of the second kind associated tnd .

Proposition 2.7. Every Siegel domain of the first or second kind is convex and bi
holomorphically equivalent to a bounded domain. Heraeh Siegel domain D is a do-
main of holomorphy and its automorphism group is a real Ligugracting properly on D.

Proof. Convexity of Siegel domains is elementary to cheak. &proof of the fact
that D is biholomorphically equivalent to a bounded domain werétfie reader to [20].
O

Theorem 2.8 ([24]). Every bounded homogeneous domain can be realized as a
Siegel domain of either the first or the second kind.



QUOTIENTS OF BOUNDED HOMOGENEOUSDOMAINS 335

Let D = D(£2, ®) be a Siegel domain. As usual we wri@ for the connected
component of the identity in Agt(D). Let us introduce linear coordinateg, 1 <k <
dime VE, in V€ and w,, 1 <o <dimc W, in W. It follows from the definition that
g contains the vector field

0 1 0
=Sz 1y
k a Wa

Theorem 2.9 ([16]). The Lie algebrag admits a decomposition

0=901DPg 12D 9 D 912D 91,

whereg, is the eigenspace &d() for the eigenvalue.. Then the following holds.
(1) We havelg,, g,] C 9,4, for all A, n € {+1, £1/2, 0}.

(2) The translation vector field8/dz,, 1 < k < dim¢ V€, form a basis ofg_,. Con-
sequentlywe havedimg_; = dim¢ V.

(3) The elements of ,,, are of the form

. 0 0 -
2i Z Dy (w, C)B_Zk + Z Cag (c e ¢dime Wy,
k a o

Consequentlydimg_,, = 2dim¢ W, and g_,,, = {0} if and only if D is a Siegel
domain of the first kind.
(4) The Lie subalgebrgy, consists of all elements of the form

a a
Z Lk — + Z ba,Bwa_a
Kl 32] wp BU)ﬁ
where the matrix A= (ay) lies in the Lie algebra of @2) and B:= (bys) € gl(W)
fulfills

A®(w, w') = ©(Bw, w') + ®(w, Bw')

for all w, w € W.
(5) The subalgebrag_; © g_1,, @ go is the Lie algebra of the group of affine auto-
morphisms of D.

Theorem 2.9 allows us to find a particularly nice maximaltsphlvable subalgebra
s of g.

Proposition 2.10. Letsy be a maximal split solvable subalgebragf Thens :=
g9_1® g_1/2 D 50 is @ maximal split solvable subalgebra gf

Proof. This is the content of Proposition 2.8 in [15]. ]
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2.3. Normal j-algebras. We have seen that every bounded homogeneous do-
main D is diffeomorphic to a split solvable Lie algebra Transferring the complex
structure and the Bergman metric Dfto s we obtain the notion of a normglalgebra
which was introduced by Pyateskii-Shapiro. We follow theasition in [12]. Com-
plete proofs and further details can be found in [20].

DErINITION 2.11. A normalj-algebra is a pairs( j) of a split solvable Lie al-
gebras and a complex structurg¢ on s such that

(2.1) E. &1+ ili& &1+ il€, j&1-[i€, j&§1=0
for all £,&’ € 5. In addition, we demand the existence of a linear fasra s* such that

(gr $,>w = w([JS! g/])

defines aj-invariant inner product om.

REMARK. If we extend the complex structureon s to a left invariant complex
structureJ on the simply-connected group, then condition (2.1) guarantees tHais
a complex manifold with respect td.

Let us describe the fine structure of a nornjahlgebra §, j) via a root space
decomposition. Since is solvable, its derived algebna:= [s, s] is nilpotent. Leta
denote the orthogonal complement wfwith respect to{ -, -),. Hence, we obtain
s = a @ n and one can show that is a maximal Abelian subalgebra consisting of
semi-simple elements af. The dimensiorr := dima is called the rank of. Sinces
is split solvable, we can form the root space decomposition

(2.2) 5=a€B@5a,

a€A

where we writes, := {§ € 5; [, &] = a(n)&} for a € a* and A := A(s, a) := {a €
a* \ {0}; s, # {O}}.

Proposition 2.12. Let (s, j) be a normal j-algebra.
(1) The root space decompositi@@.2) is orthogonal with respect tg¢-, - ).

(2) There exist r linearly independent roats, ..., o, such that all other roots are of
the form

1 1
5% (1<k<r) and E(oqﬂ:ozk) A<sk<l=r).

Note that not all possibilities have to occur.
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(3) Let(n1,...,nr) be the basis oft dual to (—ay,..., —o) and set& := —jnk. Then
we haves, = Ré§ for all 1<k =<r.

(4) Forall 1<k <!| <r we have Be—uw)2 = S +am)/2-

(5) Forall 1<=k=r we have pu /o = 5q,2.

Finally, we sets := n1 + --- + n, and writes;, for the eigenspace of agj( with
eigenvaluer € R. Then we obtain the grading

§=5_1@5-1/2D S0

of s where
r
s1=Pse® P sanrz
k=1 1<k<l=<r
r
(2.3) 5-12 = @ Sa /2y
k=1
=08 P Se-wy2
1<k<l=<r
hold.

Next we explain how the domai® can be recovered froms,(j). Let S be the
simply-connected Lie group with Lie algebraand let S be the analytic subgroup
whose Lie algebra is given by,. We define¢ := & + --- + & and Q := Ad(S)E.
One can show tha® is a regular cone is_;.

Sinces_y, is invariant underj, we may considers(,,, j) as a complex vector
space. Then the ma@: s_1/» x 5_1/ — 5,

i 1 H I H 7
P, &) = Z([Jé,é] +i[§, &'])
is an Q-Hermitian form ons_;,». Hence, we obtain the associated Siegel domain
D, := {(€, §) € 55y x 5_12: IM(§) — @(§, §') € ).

Let S_ be the analytic subgroup @& corresponding ta_; ®s_1,2. Then the group
S=S xS acts by affine maps o, via

(2.4) (exp€ +&'),9)-(z,w) := (Ad(s)z+& + 2 P(AD(S)w, &) +i D(¢', &), Ad(S)w + £'),

where& €s_1, £ €5_12, S€ § and @ w) € s&; xs5_1, hold. One can show that this
action is simply transitive o, which implies thatD, is biholomorphically equivalent
to a bounded homogeneous domain.
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Theorem 2.13. The construction described above yields a one-to-one spared-
ence between equivalence classes of homogeneous boundeihsiand isomorphism
classes of normal j-algebras.

Finally we note the following corollary of (2.4).
Lemma 2.14. The group $ acts transitively ons®; x s_y,.

3. Cyclic groups acting on bounded homogeneous domains

We carry out the first step towards a proof of SteinnesXef D/I" by showing
that it is enough to assume that the cyclic graugies in a maximal split solvable
subgroup ofG.

3.1. Reduction to automorphisms inG. Let D ¢ C" be a bounded homo-
geneous domain and lete Autp(D) be such that the subgroup:= (¢) := {¢™; me
Z} is discrete in Aup(D). Since every discrete subgroup is also closed, this implie
thatI" acts properly onD, and hence thaK := D/T" is a complex space.

Since the groufd” is cyclic, it is either finite or isomorphic t@. In the first case it
is classical that Steinness Bf implies Steinness oK (see for example [7]). Therefore
we will assume in the following thaf is isomorphic toZ. Since every propeZ-action
is automatically free, the quotierX is a complex manifold in this case.

Recall that the group Agt(D) has only finitely many connected components which
implies thatT™® := I' N G is a normal subgroup of finite index in. SinceD/T is Stein
if and only if D/T'° is so, we may assume without loss of generality thag contained
in G = Autp(D)°.

3.2. Jordan—Chevalley decomposition. In this subsection we will explain how
Kaneyuki's Theorem 2.2 implies the existence of the Jorddrevalley decompos-
ition in G.

Let us quickly review the Jordan—Chevalley decompositibril is a real-algebraic
group, then every elemett € H can be uniquely written aB = hsh, = h,hs where
hs € H is semi-simple anch, € H is unipotent. Following [17] we decompose the
semi-simple parhs further ashs = hgh, where the eigenvalues d&f, € H lie in the
unit circle in C and whereh, € H has only positive real eigenvalues. We dall the
elliptic and hy, the hyperbolic part oh. Note that the elements., h, andh, commute.

Lemma 3.1. Let H ¢ GL(N, R) be a real-algebraic group and let & H® be
given. If h= hchph, is the multiplicative Jordan decomposition of h in, then we
have h, hp, hy € HO.

Proof. Leth = hs+h, be the additive Jordan decompositionRA*N. As is well
known the matriceds and h, can be expressed as polynomials Hin Furthermore,
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the multiplicative Jordan decomposition bf is then given byh = hsh, with h, =

In + h;lhn. Since H is real-algebraic, we havhs, h, € H and the matriceds and
h, depend continuously oh. Moreover, the matriceh, and h;, lie in H and depend
continuously onh, too.

If h € HC holds, we find a continuous curve— h(t) € H® t e [0, 1], with
h(0) = Iy and h(1) = h. Forming the multiplicative Jordan decomposititiit) =
he(t)h,(t)hy(t) we obtain continuous curves— hg(t) € H, t = hy(t) e H andt —
hy(t) € H. Because oh(0) = hy(0) = h,(0) = Iy the claim follows. ]

Since Kaneyuki's theorem asserts that there exists a @hitbpresentationp: G —
GL(N,R) such thatpo(G) = H° for a real-algebraic subgroug ¢ GL(N,R), we obtain
the following notion of Jordan—Chevalley decompositionGn

DEFINITION 3.2. We say that an elemegte G is elliptic, hyperbolic or uni-
potent if the elemenp(g) has this property.

Proposition 3.3. Every element g¢ G may be uniquely written as g g.0n0u
where g is elliptic, g, is hyperbolic and g is unipotent and where these three elem-
ents commute with each other.

The following proposition generalizes Propositions 2.8 &5 of [17].

Proposition 3.4. Every elliptic element of G is conjugate to an element in the
maximal compact subgroup ,Kvhile every element g G with g = e is conjugate to
an element in the maximal split solvable group S.

Proof. The claim follows from the facts that elliptic elem®rgenerate compact
groups, that elements with trivial elliptic part generafditssolvable groups and that
maximal compact respectively split solvable groups argugate. O

3.3. Reduction to automorphisms with trivial elliptic part. In this subsection
we will show that it is enough to consider automorphissme G whose elliptic part
vanishes.

Let ¢ = pephp, be the Jordan—Chevalley decompositionpofind sety’ := ¢hp, as
well asT' := (¢’). By Proposition 3.4 we may assume that the grélgds contained
in the split solvable subgrou@ of G. This implies in particular thal” is a closed
subgroup ofG. Thus we may consider the complex manifod := D/T’. We will
show thatX is Stein if and only if X" is Stein.

The closureT of the group generated by, is a compact torus iIG. Since¢’ and
@e commute, we conclude that and I’ lie in the centralizerZs(T). Consequently,
the setsTT and TT are subgroups o6.
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Lemma 3.5. We have T = TI”, and the action of T’ on D is proper. Hence
Y:=D/(TI') = D/(TI") is a Hausdorff topological space.

Proof. The identityTI" = TI’ is elementary to check.

SinceT is compact, theT -action onX' is proper, hence the product grodpx I’
acts properly onD. Since the elemenp’ has by definition trivial elliptic part, the
group TI is isomorphic toT x I'. O

Since the group$ andI'" are normal inTI" = TI”, the torusT acts properly on
X and X’ and we obtain the following commutative diagram:

The following proposition is the main result of this subsatt

Proposition 3.6. The manifold X is Stein if and only if'Xs Stein. Hencewe
can restrict our attention to automorphisms with trivialiglic part.

Proof. In a first step we investigate hoW-invariant functions onX’ induce
T-invariant functions onX. For this let f: X’ — R be any smooth function which
is invariant underT. It follows that the pull-back |f')*f: D — R is smooth andr I"’-
invariant. Sincel’ is a normal subgroup of I'’, we obtain aT-invariant smooth func-
tion f: X - R.

Since the above diagram commuteis,and f induce the same continuous func-
tion on Y. By compactness off this implies that if f is an exhaustion, therf is
also an exhaustion. Moreover, ff is strictly plurisubharmonic, thenp()* f is strictly
plurisubharmonic and hencé is strictly plurisubharmonic.

If X’ is Stein, then there exists a strictly plurisubharmonicaestion function on
X’. SinceT is compact, we can assume that this functio ivariant. By the above
arguments, we obtain a strictly plurisubharmonic exhaunsfunction onX. Hence, X
is Stein.

The converse is proved similarly. ]

4. Example: The unit ball in C"

In this section we discuss the automorphism group and thenaloj-algebra of
the unit ballB, := {z € C"; ||| < 1} in C". It has been proven in [4] and [5] that
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Table 1. Automorphisms off,, generatingB, =~ Ax Np.

One-parameter group of automorphisms Vector field
(z, w) — (z+t, w) £ =0/0z
. . = 2iwg d/9z+0d/d
(z, w) = (24 2itwe+it?, we, ..., we+t, ..., wn_1) 8 hwi 9/ Z—(i_lélg)kfnfl)
. . = 2wy d/dz+i 3/9
(z, w) = (24 2twi +it%, wa, . .., we+it, ..., wn_1) Mk wi 3/ Z—la.f/ku;(nfl)
(z, w) > (€'Z, €/2w) 8 =208/0z+(1/2) 0% wy 8/0wi

the quotient manifoldB,/(¢) is Stein for hyperbolic and parabolic automorphisms
Autp(Br). We will give here a different proof of this fact.

4.1. The automorphism group of the unit ball. Let us first describe the full
automorphism group of the unit bail, C C". For this we embed" into the complex
projective spacé,(C) by (z1,...,2n)—[z1:---:2,:1]. The image ofB, under this
embedding is given by

Di={[z1::2Zn1] € Pa(C); |z1f* + - -+ + |za|? — |Zns1l* < O

Consequently, the group Shl(1), acting as a subgroup of SL{ 1, C) by project-
ive transformations oP,(C), leavesD invariant. Hence, we obtain a homomorphism
®: SU(, 1) — Autp(B,). One can show tha® is a surjective homomorphism of Lie
groups whose kernel coincides with the (finite) center of W) (see for example [1]).

In order to find explicit formulas for the automorphismsByf belonging to a max-
imal split solvable subgroufB, of G = Autn(B,) we make use of the realization of
B, as the Siegel domain

H, := {(z, w) € C xC"1; Im(2) — ||w|? > O}.
From Theorem 2.9 we obtainn2one parameter subgroups of automorphismsHgf

which generate the group,. These are listed together with their corresponding com-
plete holomorphic vector fields in Table 1.

4.2. The normal j-algebra of the unit ball. Let b, be the Lie algebra of the
group B,. Its derived algebra, := [by, by] is given by

MM=R{ORE D -ORE_1 PR B --- DRy,

while a := R$§ is maximal Abelian consisting of semi-simple elementsaf One com-
putes directly that the only non-vanishing commutators are

1 1
[8, &] = —EEk, [6, mk] = — 5k [6,¢]1=—¢, [&k m] =4¢.
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In particular,n, is a (h—1)-dimensional Heisenberg algebra with cerer. Choosing
the base pointy = (i, 0) € H, we obtain via the isomorphisrh, — by, - zg = T, Hj
the following complex structurg on by:

=16, j& =1k

These data describe the normahklgebra §,, j) of the unit ballB,.
In the rest of this subsection we will prove several techniaats which lead to a
proof of Steinness oB,/T".

Lemma 4.1. Let& € n, be arbitrary. Then there exists an n-dimensional Abelian
subalgebran;, of n, which containst.

Proof. We proof the claim by induction over. For n = 1 the subalgebra;
itself is one-dimensional and Abelian. Hence, tet- 1 and let us assume that the
claim holds forn — 1. We write & = &' + £” according to the decomposition, =
-1 D RE_1 ®Rnn_1. By our induction hypotheses there exists an-(1)-dimensional
Abelian subalgebra,_, of n,_; containingé’. Thenn; :=n;_, @RE” has the required
properties. ]

As a consequence we obtain the following

Proposition 4.2 ([27], [11]). Let N, be the analytic subgroup of,Bwith Lie al-
gebran;,. Then every Norbit in B, is totally real andB, is biholomorphically equiva-
lent to a tube domain D irC" such that N acts by translations on D.

For the proof we have to review parts of the theory of (unigBrglobalizations
of local holomorphic actions. We use [8] as a general refaren

Let M be a complex manifold endowed with a local holomorphic actié a com-
plex Lie groupL. A globalization of this local action consists in an opendmbrphic
embedding of M into a (possibly non-Hausdorff) complex manifold* on which L
acts holomorphically such thatis locally equivariant andM* = L .((M). A globaliza-
tion M* is called universal if for every locally.-equivariant mapp: M — M’ into an
L-manifold M’ there exists a uniqué&-equivariant mapp*: M* — M’ such that the
diagram

commutes. By remark in 83 in [8] the universal globalizatimiha local L-action on
M exists if and only if any globalization exists.
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Proof of Proposition 4.2. Since the grouyy, is Abelian andH, is hyperbolic,
every Ny -orbit in H, must be totally real.

Let (N/)¢ be the universal complexification df;,. Since (/)¢ acts by affine-
linear transformations o€", the universal globalizatiofil;; of the local (N;)C-action
on H, exists. Since ever\/-orbit is totally real and of maximal dimensiam every
(N/)C-orbit in H} is open. ThusH* =~ (N/)/(N})S is homogeneous and in particular
Hausdorff. MoreoverH, is biholomorphically equivalent to &l -invariant domain in
this homogeneous space. Because of Hiin= n = dim(N})¢ the isotropy N/)¢ is
discrete. SinceN/)® =~ C" is simply-connected, we may apply Lemma 2.1 of [13] in
order to conclude thaH is simply-connected which implies\()$ = {e}. Hence the
claim follows. O

Lemma 4.3. Leté =&, + &, € a ®n, = b, be an element witl§, # 0. Then
there exists an elementgB,, with Ad(g)¢ < a.

Proof. We prove the lemma by induction ower If n = 1, we identify the Lie

algebrab; with {(g _St); t,se R}. If &€ = (}) _St) with t £ 0 is given, one verifies

thatg = (5 ¥/2') < By fulfils Ad(g)é < a.

Let n > 1 and let us assume that the claim is provenror 1. We write § =
&' +¢&” according tob, = bp_1 ® (R&—1 D Ryn_1). Sinceé, =&, # 0 (and in particular
& # 0), our induction hypothesis implies the existence of ammelet g € B,_; such
that Ad@)&’ € a holds. Since we have

[é/, é//] — [%.‘;’ é_.//] + [51/1,1,1' %.//] — _)\5”

for some i # 0, the subspac® Ad(g)é’ & R Ad(g)é” C a & n, is a subalgebra of

by isomorphic tob;. Since Ad@)¢’ # 0, there is an elemerd’ in the corresponding

subgroup with Adg")(Ad(Q)¢’+Ad(9)¢”) = Ad(d'g)¢ € a. Hence, the lemma is proven.
O

Lemma 4.4. The subspacé, := a @R& & - - - D REq_ is an n-dimensional sub-
algebra ofb,, such that every orbit of the corresponding subgrouyp d B, is totally
real in H,.

Proof. Using the commutator relations one checks diretthy ti, is a subalgebra
of bp.

To prove the second claim note that far#) € C x C"~! we haveT,,,)(B},-(z, w)) =
b, - (z, w) = R(z, w) B RE(Z, w) B - - - B REq_1(Z, w). Elementary considerations show
that this real subspace @f" is totally real if and only if the the matrix whose columns
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are given by the above vector fields has non-zero determisamte one computes

2z 2 w1 2i wy - 2 Wn-1
w1 1 o - 0
det| w» 0 1 : = ()" t2z-2iw? - = 2w ),
: : 0
whpy O .- 0 1

the orbit of B}, - (z, w) fails to be totally real if and only ifz = i >~} w? holds.
Because of

n-1 n-1
Im(i > wﬁ) —w|®> = -2 Im(wy)? < 0

k=1 k=1

such a point does not lie ifil, which proves the claim. O
We have established the following fact.

Corollary 4.5. Let& € b, be an arbitrary element. Then there exists an n-dimensional
subalgebrab;, of b, containingé such that the corresponding group, Bas only totally
real orbits inH,.

The same argument as in the proof of Proposition 4.2 applishiow the following

Proposition 4.6. Let & € b, be arbitrary. Then there exists a subgroup) & B,
containing exp§) such thatH, is biholomorphically equivalent to a /Bnvariant do-
main in (B/)¢ where (B;)C acts by left multiplication on itself.

4.3. Quotients of the unit ball. Let ¢ be an automorphism of the unit bal,
which generates a discrete subgrobp- G. The following proposition gives a suffi-
cient condition forX = B,/T" to be Stein.

Proposition 4.7. Let Q be a domain in a Stein manifold M. Thé&n is Stein if
and only if some covering d® is Stein.

Proof. Let us assume that there is a coveringoivhich is Stein. It follows from
[23] that the universal covering: Q@ —  is then Stein, too. &2 is not Stein, then
there exists a Hartogs figuréi( P) in M such thatH C Q and P ¢ Q hold (see [6]).
Since H is simply connected, each componentwfi(H) is mapped biholomorphically
onto H by p. Let H be a component op~1(H) and writes := (plg): H — H.
Since by assumptio® is a Stein manifold, we can embed it as a closed submanifold
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into someCN. Hence, the majs extends to a mag: P — Q c CN. Thus the com-
position pos: P — Q C M is defined. Sincefo s)|y = idy holds, the continuation
principle showsp o s = idp, which contradicts our assumptidd ¢ . O

Theorem 4.8. Let ¢ € G be any automorphism generating a discrete subgrbup
of G. Then the quotient X B,/I" is a Stein space.

Proof. By virtue of Proposition 3.6 we can assume thdies in the maximal split
solvable subgrouB, C G. Then we find am-dimensional closed subgroug, C By
containingl” such that eactB/-orbit is totally real inB,. By Proposition 4.6 we may
embedB,, as aB/-invariant domain into B/)¢ where B,)¢ acts by left multiplication
on itself. LetCr be the complex one parameter subgroup Bf)f which contains
I'. Since B))C/T is a C*-principal bundle over B/)¢/Cr =~ C"1, we conclude that
(B,)€/I" is a Stein manifold. Therefore the claim follows from Prafios 4.7. ]

5. Existence of equivariant holomorphic submersions

In [20] the j-invariant ideals of a normaj-algebra are investigated. For the sake
of completeness we indicate how the root space decompogifia normalj-algebra
may be used to find g-invariant ideal which is isomorphic to the normalalgebra
of the unit ball.

5.1. Existence of-invariant ideals isomorphic to the unit ball. Let (s, j) be a
normal j-algebra with gradation = s_, ®s_1,2®s0. We defines’ := s’ ; s’ ,Bs, by

r—1
5/—1 = ®5ak ® @ 5 (o +ax) /2
k=1

1<k<l<r—1

r-1
/ Lp—
5_1/2 = @ Say /2y
k=1

s =Rm@--- &Ry 1P GB S(o—ax)/2:

1<k<l<r—-1

i.e.s’ is the direct sum of all root spaces in which the roets (1/2); or (1/2)(cr +
ax) (1 <k =<r —1) do not appear.

Lemma 5.1. The subspace’ is a j-invariant subalgebra of. Moreover there
exists anw’ € (s')* such that(s’, j’) is a normal j-algebra where'j= j|.

Proof. The fact that’ is closed under the Lie bracket follows from the properties
of the root space decomposition anfdnvariance is a direct consequence of Propos-
ition 2.12 (3)—(5). Settingy’ := wl|s the claim follows. 0
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Let 7: s — s be the orthogonal projection ontd with respect to(-, -),.

Lemma 5.2. The mapr is a homomorphism of normal j-algebras algebras whose
kernel is given by

r—1 r-1
b:= 50, ® D) s(e+andy2 ® 52 B Ry & D 50 —an)/2
k=1 k=1

and hence induces an isomorphistb = s'. In particular, b is a j-invariant ideal in
s and thus inherits the structure of a normal j-algebra.

Proof. Using properties of the root space decomposition arexks directly that
the mapr preserves the Lie brackets. The kernelsofis given by the orthogonal

complement ofs’ in s with respect to(-, - ), which in turn coincides withb by
Proposition 2.12 (1). Sinc€ andb are j-invariant, it follows thatr o j = j oz holds.
This finishes the proof. O

Lemma 5.3. The normal j-algebrab, j) is isomorphic to the normal j-algebra
of the unit ball.

Proof. One computes directly

r—1 r—1
[6, ] = 50, & EP 5(es a2 D 5 /2 B ED (0 —a2-
k=1 ket

Hence,Rn, is maximal Abelian inb and in particularb has rank one. The claim will
follow if we show that p, b] is a Heisenberg algebra. For this one checks thatis
the center of §, b] and that the Lie bracket

[+ -]:boypx by — s,

defines a symplectic form on

r-1 r—1
b71/2 = @ 5(a; +ak)/2 S Sa,/2 S @ S (0 —ai)/2- O
k=1 k=1

Lemma 5.4. Let7z: S— S ~ S/B,, be the homomorphism on the group level.
The short exact sequende—~ B, > S— S — 1 splits i.e. S is isomorphic to ‘& B,.

Proof. The claim follows from the fact that — s is a homomorphism of Lie
algebras and a section to. ]
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5.2. Geometric realization of the fibration. In this subsection we view as a
map s€; x 512 — (5" 1)¢ x 8’ , by restriction andC-linear extension.

Lemma 5.5. The mapr maps D into D,.

Proof. First we note that maps the base poirgy = & +--- + & onto the base
point &) = &1 +---+&_1. Sincern: s — ¢’ is a homomorphism of Lie algebras, it gives
rise to a unique morphism : S— S between the corresponding Lie groups such that

m(Ad(s)§) = Ad(7(s))7 (§)

holds. Sincer also respects the grading efands’, we conclude thatr maps the cone
Q = Ad(S)% onto the cone’ = Ad(S))&;. Since theQ-Hermitian form @ is deter-
mined by the complex structuré and the Lie bracket oé which both are respected
by 7, we obtain®’'(n(§), #(§)) = n®(&, &’). This proves the claim. 0

Choosing the base poip := (i &, 0) € D; we obtain the diffeomorphisi® — D,
s+ s-Zp. Equipping S with the left invariant extensiord of j this diffeomorphism
becomes biholomorphic (see Lemma 1.2 in [12]). |[Btbe the normal subgroup of
S with Lie algebrab and let S be the analytic subgroup with Lie algebsa Note
that S is isomorphic t0S/B via 7: S— S. The base point; := 7 (zy) yields the
isomorphismS — D,. Now we are in position to prove the main result of this sectio

Proposition 5.6. The following diagram commutes

It follows thatz: D, — D, is an S-equivariant holomorphic submersion whose fibers
are isomorphic to the unit ball.

Proof. We have to show that
n(s-z0) = 7(s)- 7

holds for alls € S. In the proof of Lemma 5.5 we have already seen that this holds
true fors € §. Using the explicit formula (2.4) for th&-action on D, one verifies
the claim for the whole groufs. O

REMARK. Letn: D — D’ be the S-equivariant holomorphic submersion whose
fibers are biholomorphically equivalent By,. It follows from Proposition 5.6 that is
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a smooth principal bundle with grouBn,. If # was a holomorphic fiber bundle, then
by a result of Royden ([21]) it would be holomorphically Y i.e. D =~ D’ x Bp,.
This shows thatr admits in general no local holomorphic trivializations.

6. Proof of the main theorem

6.1. Equivariant fiber bundles. In this subsection we present an auxiliary re-
sult concerning the quotient of an equivariant fiber bun@ece it seems to be hard
to find an explicit reference for it, we give a proof here.

Proposition 6.1. Let p: B — X be a fiber bundle with typical fiber F and struc-
ture group S. Let G be a group acting on B by bundle automonphisWe assume
that the induced G-action on X is free and proper. Then G agshyf and properly
on B, and hence we obtain the commutative diagram

B%—B/G

p p

X —— X/G.

The induced mapp: B/G — X/G is again a fiber bundle with the same typical fiber
and structure group.

Proof. We prove first that the mar B/I" — X/I" admits local trivializations. To
see this letU C X be an open set such that there exists a trivializagioild x F —
p~1(U). Shrinking U if necessary, we may assume that there exists a slice for the
G-action onU := G - U, i.e. thatU is G-equivariantly isomorphic t& x S where G
acts onG x S by g-(¢', X) := (gg, x). It follows that p~1(S) is a slice for theG-action
on p1(U) (see [19]), hence we obtain @-equivariant isomorphisnp=2(U) ¢ G x
p~1(S). Therefore the map

p:UxF — pfl(o), P(g-X,y) =g 90X, y),

with g € G and x € S is well-defined and hence &-equivariant trivialization. This
implies that the map: B/G — X/G admits local trivializations.

Since G acts by bundle automorphisms d®, the transition functions between
different G-equivariant local trivializationg) and ¥ induce isomorphisms oF given
by the action of the structure group. Thus the structure group of the fiber bundle
p: B/G — X/G is again given byS. O

EXAMPLE. Let G be a complex Lie group and le4; C H, C G be closed com-
plex subgroups. According to Theorem 7.4 in [22] the natumalp G/H; — G/H;
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is a holomorphic fiber bundle with fibef,/H;. The structure group of this bundle is
given by H,/(H1)o where H;)o denotes the largest subgroup léf which is normal in
H,. In particular, if H, is connected, then the structure group is connected. Moreove
the mapsg'H; — gg'H;, g € G, are bundle automorphisms &/H; — G/H,. Hence,
we may apply Proposition 6.1 to any subgro@pof G which acts properly and freely
on G/H; to obtain the quotient bundle

G'\G/H; — G'\G/H,.

6.2. Globalizing the submersion. Let D be a homogeneous Siegel domain and
let 7: D — D’ be the S-equivariant holomorphic submersion whose fibers are bi-
holomorphically equivalent to the unit bali,,. By Lemma 2.14S® acts transitively
on S°-D = C", hence we obtairs®-D = C" = S°/S. SinceC" is simply-connected,
it follows that % is connected. This implies thdd* := S® - D is the universal glo-
balization of the localSt-action onD. Similarly, (D")* := (S)¢ - D’ = C"™ is the
universal globalization of the localS()C-action onD’.

Proposition 6.2. There exists a unique®Sequivariant mapr*: D* — (D’)* which
exhibits D' as a holomorphic fiber bundle ovéD’)* with typical fiberH;, = BS -Hy, =
C™. The structure group is a connected complex Lie group.

Proof. Since the submersion D — D’ is S-equivariant, we havel}’)* = (S)°-
D' =S°. D' =C"™™. Since moreoveD* = S°/S and (D')* = S‘C/%, the ex-
istence ofz* follows from the fact that% is contained ins‘g. It is then immedi-
ate thatz*: D* — (D’)* is unique. SinceD* and (’)* are simply-connected, the
groups ¢ and S‘Z are connected. Hence, it follows from Theorem 7.4 in [22]t tha
D* is a holomorphic fiber bundle oveD()* with fiber SZ/% such that the struc-
ture group is a connected complex Lie group. Sigg is a normal subgroup oS,
it lies in the S-isotropy of each point inD’. Hence, BS is a normal subgroup of
S;. Because ofS N BT = (BY), the inclusionBY — S7 induces an isomorphism

BS/(BS)z, — %/% which proves that the fibers ot* are isomorphic toH}, =
Bﬁ "Hp = Bg/(Bﬁi)zo- O

Corollary 6.3. We have(z*)}(D’) = BS - D. Hence the restricted map
n*: BE.D — D’ is a holomorphic fiber bundle with typical fibdi;.

Proof. Letz e (7*)~%(D’) be given. By definition ofD* there exist ay € S¢ and
a z € D such thatz = g-z hold. SinceS acts transitively onD’, we find ag' € S
such thatg- 7 (2) = n*(2) = ¢’ - n(2) holds. SinceS acts freely onD’, we conclude
g(g)t € BE. This shows thaZ = g(g')™ - (¢’ - 2) € BS - D holds. The converse
inclusion follows from the fact that* is BS-invariant. Ul
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Corollary 6.4. Let B, be a subgroup of B having only totally real orbits in
Hy. Then the universal globalization of the locéB/,)C-action on D is a(B,)¢-
principal bundle over D

Proof. SinceD’ is a contractible Stein domain, we may apply Grauert's Olga-pr
ciple to the bundleBS - D — D’ in order to obtain aBS-equivariant biholomorphism
BS-D — D’ x H},. Then Proposition 4.6 implies that the universal globaiaaof the
local (B/,)C-action onD is isomorphic toD’ x (B/,)¢ which proves the claim. [

6.3. Proof of the main theorem. Finally we are in position to prove that our
main result.

Theorem 6.5. Let D C C" be a bounded homogeneous domain. kebe an
automorphism of D such that the grodp= (¢) is a discrete subgroup ohuty (D).
Then the quotient X% D/T" is a Stein space.

Proof. Due to our reduction steps in Section 3 we may assuatetts contained
in a maximal split solvable subgroup C G. Moreover, we assume th& is realized
as a Siegel domain i€" such thatS acts by affine-linear transformations @

We prove this theorem by induction am = dim¢ D. If n = 1, then D is bi-
holomorphically equivalent to the unit disc @ and the claim follows.

Letn > 1 and let us assume that the claim is proven for evéry n. Letn: D —

D’ be the S-equivariant holomorphic submersion with fibers isomoepto H,, onto
the homogeneous Siegel domadi ¢ C"™ ™. In the first step we consider the case
thatT" is contained in the normal subgrougy,, hence thatr is I'-invariant. By Corol-
lary 4.5 there exists am-dimensional subgrou;, of By, which containsI' such that
every B/ -orbit in Hy, is totally real. Applying Corollary 6.4 we see that the umaad
globalization D* of the local B/,)¢-action onD is a (B,)C-principal bundle overD’
which must be holomorphically trivial. Therefof@*/T" is a Stein manifold and Prop-
osition 4.7 applies to show tha{ is Stein.

If T is not contained inBy, then we obtain a proper-action onD’. SinceTl
normalizes the grouBS, it follows thatT" acts by bundle automorphisms on the holo-
morphic fiber bundleBS - D — D’. We conclude from Proposition 6.1 that the quotient
bundle

(BS - D)/T — D'/T

is a holomorphic fiber bundle with fibéil* and connected structure gromﬁ/(%)o.
Since the base is Stein by our induction hypothesis, a reiMatsushima and Morimoto
(Theorem 6 in [18]) implies thatRS - D)/T" is Stein, hence thaX is Stein. This finishes
the proof. Ul
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