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Abstract
Let D be a bounded homogeneous domain inCn and let' be an automorphism

of D which generates a discrete subgroup0 of AutO(D). It is shown that the com-
plex spaceD=0 is Stein.

1. Introduction

Let D � Cn be a bounded domain of holomorphy and let' be an automorphism
of D such that the cyclic group0 WD h'i WD {'k I k 2 Z} is a discrete subgroup of the
automorphism group AutO(D). It follows that 0 acts properly onD and hence that
the quotientX WD D=0 is a complex space. In this situation one would like to know
conditions onD or ' which guarantee thatX is a Stein space.

Since the group0 is cyclic, it is either finite or isomorphic toZ. In the first case
it is a classical result that Steinness ofD implies Steinness ofX. Therefore we assume
that 0 is infinite cyclic. In the case thatD is biholomorphically equivalent to the unit
ball Bn it is proven in [4] and [5] thatX D D=h'i is Stein for hyperbolic and parabolic
automorphisms'. We will generalize this result to arbitrary bounded homogeneous
domains.

Theorem. Let D � Cn be a bounded homogeneous domain. Let' be an auto-
morphism of D such that the group0 D h'i is a discrete subgroup ofAutO(D). Then
the quotient XD D=0 is a Stein space.

The main steps of the proof are as follows. Since the group AutO(D) has only fi-
nitely many connected components, we may assume that' is contained inGD AutO(D)0.
By Kaneyuki’s theorem the groupG is isomorphic to the identity component of a real-
algebraic group. Hence, every element' 2 G may be written as' D 'e'h'u where'e

is elliptic, 'h is hyperbolic,'u is unipotent and where these elements commute. It can be
shown that the group00 WD h'h'ui is again discrete inG. Since the groups0 and00 differ
by the compact torus generated by'e, the quotientX0 D D=00 is Stein if and only ifX
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is Stein. Consequently we may work with the group00 which has the advantage of being
contained in a maximal split solvable subgroupS of G which acts simply transitively on
D. Exploiting the structure theory ofS we obtain the existence of anS-equivariant holo-
morphic submersion� W D ! D0 onto a bounded homogeneous domainD0 whose fibers
are biholomorphically equivalent to the unit ballBm. If 00 acts properly onD0 we are in
position to use an inductive argument to prove Steinness ofX while if 00 stabilizes every�-fiber we use the fact that the quotientsBm=00 are already known to be Stein.

This paper is organized as follows. In the first section we provide the necessary
background on bounded homogeneous domains and their automorphism groups. In the
second section we establish the existence of a Jordan–Chevalley decomposition inG
and reduce the problem to discrete subgroups ofS. In Section 3 we study in detail
the unit ballBn and obtain a new proof of the fact thatBn=0 is Stein. Afterwards we
prove the existence of theS-equivariant submersion� W D ! D0 which allows us to
prove the main result in the last section.

2. Background on bounded homogeneous domains

We review several facts from the theory of bounded homogeneous domains. For
further details we refer the reader to [20] and [15] and the references therein.

2.1. The automorphism group of a bounded homogeneous domain. Let D �Cn be a bounded domain. A theorem of H. Cartan ([3]) states that the group AutO(D)
of holomorphic automorphisms ofD is a real Lie group with respect to the compact
open topology such that its natural action onD is differentiable and proper. We write
G for the connected component of AutO(D) which contains the identity. We iden-
tify the Lie algebrag D Lie(G) with the Lie algebra of complete holomorphic vector
fields on D.

DEFINITION 2.1. The bounded domainD is called homogeneous if AutO(D) acts
transitively on it.

REMARK . (1) Let D be a bounded homogeneous domain and letz0 2 D be a
base point. SinceD � AutO(D)=AutO(D)z0 is connected, the (compact) isotropy group
AutO(D)z0 meets every connected component of AutO(D). This shows that AutO(D)
has at most finitely many connected components.
(2) If D is homogeneous, thenG D AutO(D)0 acts transitively onD, too.

From now on we assume that the bounded domainD � Cn is homogeneous. It
follows from [2] that the groupG is semi-simple (and then in particular real-algebraic)
if and only if D is symmetric. For arbitrary homogeneous domains the groupG is
semi-algebraic by Kaneyuki’s theorem.
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Theorem 2.2 ([14]). There exists a faithful representation� of G such that�(G)�
GL(N, R) is the identity component of a real-algebraic group. In particular, g is iso-
morphic to an algebraic Lie algebra.

Recall that a real Lie algebras is called split solvable if it is solvable and if the
eigenvalues of ad(� ) are real for every� 2 s. A Lie group is called split solvable if
it is simply-connected and if its Lie algebra is split solvable. If G is semi-simple, the
Iwasawa decompositionK � A�N ! G exhibits G as diffeomorphic to the product of
its maximal compact subgroupK and its maximal split solvable subgroupS WD AN �
AË N. The following theorem of Vinberg generalizes this decomposition to the group
G D AutO(D)0 for arbitrary bounded homogeneous domainsD.

Theorem 2.3 ([25]). Let H be the connected component of a real-algebraic group.
Then there exist a maximal compact subgroup K and a maximal split solvable subgroup
S of H such that the map K� S! H , (k, s) 7! ks, is a diffeomorphism. Each maximal
split solvable subgroup of H is conjugate to S by an inner automorphism of H.

REMARK . Let K � S! G be the decomposition ofG from Theorem 2.3. Then
S acts simply transitively onD.

For later use we collect some properties of split solvable Lie groups.

Theorem 2.4. Let S be a split solvable Lie group.
(1) The group S is isomorphic to a closed subgroup of the group of upper triangular
matrices inGL(N, R).
(2) The exponential mapexpW s! S is a diffeomorphism.
(3) Every connected subgroup of S is closed and simply-connected.
(4) For each element g2 S the group{gk I k 2 Z} is a discrete subgroup of S iso-
morphic toZ.
(5) Let S0 � S be a connected subgroup and let(S0)C � SC be their universal complex-
ifications in the sense of[10]. Then the homogeneous space SC=(S0)C is biholomorphic
to Cdim S�dim S0 .

Proof. The first three statements are classical (see for example [26]). The fourth
assertion is a direct consequence of the second one. A proof of the last assertion can
be found in [9].

2.2. Siegel domains and the grading ofg. In this subsection we will describe
the notion of Siegel domains of the first and of the second kind. Our motivation for the
study of these domains comes from the fact that each bounded homogeneous domain
can be realized as a Siegel domain ([24]). In addition we discuss the grading ofg
which has been introduced in [16].
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Let V be a finite-dimensional real vector space and let� � V be a regular cone,
i.e. an open convex cone which does not contain any affine line.

DEFINITION 2.5. The tube domainD WD D(�) WD {z2 VC I Im(z) 2�}D VCi�
is called the Siegel domain of the first kind associated with�.

REMARK . The assumption thatD is a tube domain over a regular cone is quite
strong. Although the unit ball inCn is biholomorphically equivalent to a tube domain
over a convex domain inRn, it can not be realized as a Siegel domain of the first kind.

The automorphism groupG(�) of � is defined by

G(�) WD {g 2 GL(V)I g(�) D �}.

Since the conditiong(�) D � is equivalent tog(�) D �, the groupG(�) is closed
in GL(V) and hence a Lie group. We embedG(�) into the automorphism group of
D D D(�) by g 7! 'g with 'g(z) D gz.

Let W be a finite-dimensional complex vector space. A map8 W W �W! VC is
called�-Hermitian if the following holds:
(1) For all w0 2 W the mapw 7! 8(w, w0) is complex-linear.
(2) We have8(w0, w) D 8(w, w0) for all w, w0 2 W.
(3) We have8(w, w) 2 � for all w 2 W, and8(w, w) D 0 if and only if w D 0.

REMARK . If V D R and� D R>0, then an�-Hermitian form is the same as a
positive definite Hermitian form onW.

DEFINITION 2.6. Given� and8 as above, the domain

D WD D(�, 8) WD {(z, w) 2 VC �W I Im(z) �8(w, w) 2 �}

is called the Siegel domain of the second kind associated to� and8.

Proposition 2.7. Every Siegel domain of the first or second kind is convex and bi-
holomorphically equivalent to a bounded domain. Hence, each Siegel domain D is a do-
main of holomorphy and its automorphism group is a real Lie group acting properly on D.

Proof. Convexity of Siegel domains is elementary to check. For a proof of the fact
that D is biholomorphically equivalent to a bounded domain we refer the reader to [20].

Theorem 2.8 ([24]). Every bounded homogeneous domain can be realized as a
Siegel domain of either the first or the second kind.
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Let D D D(�, 8) be a Siegel domain. As usual we writeG for the connected
component of the identity in AutO(D). Let us introduce linear coordinateszk, 1� k �
dimC VC, in VC andw�, 1� � � dimC W, in W. It follows from the definition that
g contains the vector field

Æ WD∑
k

zk
��zk
C 1

2

∑

� w� ��w� .

Theorem 2.9 ([16]). The Lie algebrag admits a decomposition

g D g�1� g�1=2� g0� g1=2� g1,

whereg� is the eigenspace ofad(Æ) for the eigenvalue�. Then the following holds.
(1) We have[g�, g�] � g�C� for all �, � 2 {�1,�1=2, 0}.
(2) The translation vector fields�=�zk, 1� k � dimC VC, form a basis ofg�1. Con-
sequently, we havedim g�1 D dimC VC.
(3) The elements ofg�1=2 are of the form

2i
∑

k

8k(w, c)
��zk
C∑� c� ��w� (c 2 CdimC W).

Consequently, dimg�1=2 D 2 dimC W, and g�1=2 D {0} if and only if D is a Siegel
domain of the first kind.
(4) The Lie subalgebrag0 consists of all elements of the form

∑

k,l

akl zk
��zl
C∑�,� b��w� ��w� ,

where the matrix AWD (akl ) lies in the Lie algebra of G(�) and B WD (b��) 2 gl(W)
fulfills

A8(w, w0) D 8(Bw, w0)C8(w, Bw0)
for all w, w0 2 W.
(5) The subalgebrag�1 � g�1=2 � g0 is the Lie algebra of the group of affine auto-
morphisms of D.

Theorem 2.9 allows us to find a particularly nice maximal split solvable subalgebra
s of g.

Proposition 2.10. Let s0 be a maximal split solvable subalgebra ofg0. Thens WD
g�1� g�1=2� s0 is a maximal split solvable subalgebra ofg.

Proof. This is the content of Proposition 2.8 in [15].
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2.3. Normal j-algebras. We have seen that every bounded homogeneous do-
main D is diffeomorphic to a split solvable Lie algebras. Transferring the complex
structure and the Bergman metric ofD to s we obtain the notion of a normalj -algebra
which was introduced by Pyateskii-Shapiro. We follow the exposition in [12]. Com-
plete proofs and further details can be found in [20].

DEFINITION 2.11. A normal j -algebra is a pair (s, j ) of a split solvable Lie al-
gebras and a complex structurej on s such that

(2.1) [� , � 0] C j [ j � , � 0] C j [� , j � 0] � [ j � , j � 0] D 0

for all � , � 0 2 s. In addition, we demand the existence of a linear form! 2 s� such that

h� , � 0i! WD !([ j � , � 0])
defines aj -invariant inner product ons.

REMARK . If we extend the complex structurej on s to a left invariant complex
structureJ on the simply-connected groupS, then condition (2.1) guarantees thatS is
a complex manifold with respect toJ.

Let us describe the fine structure of a normalj -algebra (s, j ) via a root space
decomposition. Sinces is solvable, its derived algebran WD [s, s] is nilpotent. Leta
denote the orthogonal complement ofn with respect toh � , � i!. Hence, we obtain
s D a � n and one can show thata is a maximal Abelian subalgebra consisting of
semi-simple elements ofs. The dimensionr WD dim a is called the rank ofs. Sinces

is split solvable, we can form the root space decomposition

(2.2) s D a�⊕�21 s�,

where we writes� WD {� 2 sI [�, � ] D �(�)�} for � 2 a� and1 WD 1(s, a) WD {� 2
a� n {0}I s� ¤ {0}}.

Proposition 2.12. Let (s, j ) be a normal j-algebra.
(1) The root space decomposition(2.2) is orthogonal with respect toh � , � i!.
(2) There exist r linearly independent roots�1, : : : , �r such that all other roots are of
the form

1

2
�k (1� k � r ) and

1

2
(�l � �k) (1� k < l � r ).

Note that not all possibilities have to occur.
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(3) Let (�1, : : : , �r ) be the basis ofa dual to (��1, : : : ,��r ) and set�k WD � j�k. Then
we haves�k D R�k for all 1� k � r .
(4) For all 1� k < l � r we have js(�l��k)=2 D s(�lC�k)=2.
(5) For all 1� k � r we have js�k=2 D s�k=2.

Finally, we setÆ WD �1 C � � � C �r and write s� for the eigenspace of ad(Æ) with
eigenvalue� 2 R. Then we obtain the grading

s D s�1� s�1=2� s0

of s where

(2.3)

s�1 D r
⊕

kD1

s�k � ⊕

1�k<l�r

s(�lC�k)=2,

s�1=2 D r
⊕

kD1

s�k=2,

s0 D a� ⊕

1�k<l�r

s(�l��k)=2
hold.

Next we explain how the domainD can be recovered from (s, j ). Let S be the
simply-connected Lie group with Lie algebras and let S0 be the analytic subgroup
whose Lie algebra is given bys0. We define� WD �1 C � � � C �r and� WD Ad(S0)� .
One can show that� is a regular cone ins�1.

Since s�1=2 is invariant underj , we may consider (s�1=2, j ) as a complex vector
space. Then the map8 W s�1=2 � s�1=2! sC�1,

8(� , � 0) WD 1

4
([ j � , � 0] C i [� , � 0])

is an�-Hermitian form ons�1=2. Hence, we obtain the associated Siegel domain

Ds WD {(� , � 0) 2 sC�1 � s�1=2I Im(� ) �8(� 0, � 0) 2 �}.

Let S� be the analytic subgroup ofS corresponding tos�1�s�1=2. Then the group
SD S� Ì S0 acts by affine maps onDs via

(2.4) (exp(�C� 0),s) �(z,w) WD (Ad(s)zC�C2i8(Ad(s)w, � 0)C i8(� 0, � 0), Ad(s)wC� 0),
where� 2 s�1, � 0 2 s�1=2, s 2 S0 and (z,w) 2 sC�1� s�1=2 hold. One can show that this
action is simply transitive onDs which implies thatDs is biholomorphically equivalent
to a bounded homogeneous domain.
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Theorem 2.13. The construction described above yields a one-to-one correspond-
ence between equivalence classes of homogeneous bounded domains and isomorphism
classes of normal j-algebras.

Finally we note the following corollary of (2.4).

Lemma 2.14. The group SC acts transitively onsC�1 � s�1=2.

3. Cyclic groups acting on bounded homogeneous domains

We carry out the first step towards a proof of Steinness ofX D D=0 by showing
that it is enough to assume that the cyclic group0 lies in a maximal split solvable
subgroup ofG.

3.1. Reduction to automorphisms inG. Let D � Cn be a bounded homo-
geneous domain and let' 2 AutO(D) be such that the subgroup0 WD h'i WD {'mI m 2Z} is discrete in AutO(D). Since every discrete subgroup is also closed, this implies
that 0 acts properly onD, and hence thatX WD D=0 is a complex space.

Since the group0 is cyclic, it is either finite or isomorphic toZ. In the first case it
is classical that Steinness ofD implies Steinness ofX (see for example [7]). Therefore
we will assume in the following that0 is isomorphic toZ. Since every properZ-action
is automatically free, the quotientX is a complex manifold in this case.

Recall that the group AutO(D) has only finitely many connected components which
implies that00 WD 0\G is a normal subgroup of finite index in0. SinceD=0 is Stein
if and only if D=00 is so, we may assume without loss of generality that' is contained
in G D AutO(D)0.

3.2. Jordan–Chevalley decomposition. In this subsection we will explain how
Kaneyuki’s Theorem 2.2 implies the existence of the Jordan–Chevalley decompos-
ition in G.

Let us quickly review the Jordan–Chevalley decomposition.If H is a real-algebraic
group, then every elementh 2 H can be uniquely written ash D hshu D huhs where
hs 2 H is semi-simple andhu 2 H is unipotent. Following [17] we decompose the
semi-simple parths further ashs D hehh where the eigenvalues ofhe 2 H lie in the
unit circle in C and wherehh 2 H has only positive real eigenvalues. We callhe the
elliptic andhh the hyperbolic part ofh. Note that the elementshe, hh andhu commute.

Lemma 3.1. Let H � GL(N, R) be a real-algebraic group and let h2 H0 be
given. If hD hehhhu is the multiplicative Jordan decomposition of h in H, then we
have he, hh, hu 2 H0.

Proof. LethD hsChn be the additive Jordan decomposition inRN�N . As is well
known the matriceshs and hn can be expressed as polynomials inh. Furthermore,
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the multiplicative Jordan decomposition ofh is then given byh D hshu with hu D
IN C h�1

s hn. Since H is real-algebraic, we havehs, hu 2 H and the matriceshs and
hu depend continuously onh. Moreover, the matriceshe and hh lie in H and depend
continuously onh, too.

If h 2 H0 holds, we find a continuous curvet 7! h(t) 2 H0, t 2 [0, 1], with
h(0) D IN and h(1) D h. Forming the multiplicative Jordan decompositionh(t) D
he(t)hh(t)hu(t) we obtain continuous curvest 7! he(t) 2 H , t 7! hh(t) 2 H and t 7!
hu(t) 2 H . Because ofhe(0)D hh(0)D hu(0)D IN the claim follows.

Since Kaneyuki’s theorem asserts that there exists a faithful representation�W G!
GL(N,R) such that�(G)D H0 for a real-algebraic subgroupH �GL(N,R), we obtain
the following notion of Jordan–Chevalley decomposition inG.

DEFINITION 3.2. We say that an elementg 2 G is elliptic, hyperbolic or uni-
potent if the element�(g) has this property.

Proposition 3.3. Every element g2 G may be uniquely written as gD geghgu

where ge is elliptic, gh is hyperbolic and gu is unipotent and where these three elem-
ents commute with each other.

The following proposition generalizes Propositions 2.3 and 2.5 of [17].

Proposition 3.4. Every elliptic element of G is conjugate to an element in the
maximal compact subgroup K, while every element g2 G with ge D e is conjugate to
an element in the maximal split solvable group S.

Proof. The claim follows from the facts that elliptic elements generate compact
groups, that elements with trivial elliptic part generate split solvable groups and that
maximal compact respectively split solvable groups are conjugate.

3.3. Reduction to automorphisms with trivial elliptic part . In this subsection
we will show that it is enough to consider automorphisms' 2 G whose elliptic part
vanishes.

Let ' D 'e'h'u be the Jordan–Chevalley decomposition of' and set'0 WD 'h'u as
well as00 WD h'0i. By Proposition 3.4 we may assume that the group00 is contained
in the split solvable subgroupS of G. This implies in particular that00 is a closed
subgroup ofG. Thus we may consider the complex manifoldX0 WD D=00. We will
show thatX is Stein if and only if X0 is Stein.

The closureT of the group generated by'e is a compact torus inG. Since'0 and'e commute, we conclude that0 and 00 lie in the centralizerZG(T). Consequently,
the setsT0 and T00 are subgroups ofG.
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Lemma 3.5. We have T0 D T00, and the action of T00 on D is proper. Hence,
Y WD D=(T0) D D=(T00) is a Hausdorff topological space.

Proof. The identityT0 D T00 is elementary to check.
SinceT is compact, theT-action onX0 is proper, hence the product groupT �00

acts properly onD. Since the element'0 has by definition trivial elliptic part, the
group T00 is isomorphic toT � 00.

Since the groups0 and00 are normal inT0 D T00, the torusT acts properly on
X and X0 and we obtain the following commutative diagram:

D

!p

!
� !p0

X

!q

X0
! q0

Y.

The following proposition is the main result of this subsection.

Proposition 3.6. The manifold X is Stein if and only if X0 is Stein. Hence, we
can restrict our attention to automorphisms with trivial elliptic part.

Proof. In a first step we investigate howT-invariant functions onX0 induce
T-invariant functions onX. For this let f W X0 ! R be any smooth function which
is invariant underT . It follows that the pull-back (p0)� f W D! R is smooth andT00-
invariant. Since0 is a normal subgroup ofT00, we obtain aT-invariant smooth func-
tion Qf W X ! R.

Since the above diagram commutes,f and Qf induce the same continuous func-
tion on Y. By compactness ofT this implies that if f is an exhaustion, thenQf is
also an exhaustion. Moreover, iff is strictly plurisubharmonic, then (p0)� f is strictly
plurisubharmonic and henceQf is strictly plurisubharmonic.

If X0 is Stein, then there exists a strictly plurisubharmonic exhaustion function on
X0. SinceT is compact, we can assume that this function isT-invariant. By the above
arguments, we obtain a strictly plurisubharmonic exhaustion function onX. Hence,X
is Stein.

The converse is proved similarly.

4. Example: The unit ball in Cn

In this section we discuss the automorphism group and the normal j -algebra of
the unit ballBn WD {z 2 Cn I kzk < 1} in Cn. It has been proven in [4] and [5] that
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Table 1. Automorphisms ofHn generatingBn � AËNn.

One-parameter group of automorphisms Vector field
(z, w) 7! (zC t , w) � D �=�z

(z, w) 7! (zC2i twkC i t 2, w1, : : : , wkC t , : : : , wn�1) �k D 2iwk �=�zC�=�wk
(1� k � n�1)

(z, w) 7! (zC2twkC i t 2, w1, : : : , wkC i t , : : : , wn�1) �k D 2wk �=�zC i �=�wk
(1� k � n�1)

(z, w) 7! (et z, et=2w) Æ D z �=�zC (1=2)
∑n�1

kD1 wk �=�wk

the quotient manifoldBn=h'i is Stein for hyperbolic and parabolic automorphisms' 2
AutO(Bn). We will give here a different proof of this fact.

4.1. The automorphism group of the unit ball. Let us first describe the full
automorphism group of the unit ballBn � Cn. For this we embedCn into the complex
projective spacePn(C) by (z1, : : : , zn) 7! [z1 W � � � W zn W 1]. The image ofBn under this
embedding is given by

D WD {[z1 W � � � W znC1] 2 Pn(C)I jz1j2C � � � C jznj2 � jznC1j2 < 0}.

Consequently, the group SU(n, 1), acting as a subgroup of SL(n C 1, C) by project-
ive transformations onPn(C), leavesD invariant. Hence, we obtain a homomorphism8 W SU(n, 1)! AutO(Bn). One can show that8 is a surjective homomorphism of Lie
groups whose kernel coincides with the (finite) center of SU(n, 1) (see for example [1]).

In order to find explicit formulas for the automorphisms ofBn belonging to a max-
imal split solvable subgroupBn of G D AutO(Bn) we make use of the realization ofBn as the Siegel domain

Hn WD {(z, w) 2 C � Cn�1I Im(z) � kwk2 > 0}.

From Theorem 2.9 we obtain 2n one parameter subgroups of automorphisms ofHn

which generate the groupBn. These are listed together with their corresponding com-
plete holomorphic vector fields in Table 1.

4.2. The normal j-algebra of the unit ball. Let bn be the Lie algebra of the
group Bn. Its derived algebrann WD [bn, bn] is given by

nn D R� � R�1� � � � � R�n�1� R�1� � � � � R�n�1,

while a WD RÆ is maximal Abelian consisting of semi-simple elements ofbn. One com-
putes directly that the only non-vanishing commutators are

[Æ, �k] D �1

2
�k, [Æ, �k] D �1

2
�k, [Æ, � ] D �� , [�k, �k] D 4� .
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In particular,nn is a (2n�1)-dimensional Heisenberg algebra with centerR� . Choosing
the base pointz0 D (i , 0) 2 Hn we obtain via the isomorphismbn ! bn � z0 D Tz0Hn

the following complex structurej on bn:

j � D Æ, j �k D �k.

These data describe the normalj -algebra (bn, j ) of the unit ballBn.
In the rest of this subsection we will prove several technical facts which lead to a

proof of Steinness ofBn=0.

Lemma 4.1. Let � 2 nn be arbitrary. Then there exists an n-dimensional Abelian
subalgebran0n of nn which contains� .

Proof. We proof the claim by induction overn. For n D 1 the subalgebran1

itself is one-dimensional and Abelian. Hence, letn > 1 and let us assume that the
claim holds forn � 1. We write � D � 0 C � 00 according to the decompositionnn D
nn�1�R�n�1�R�n�1. By our induction hypotheses there exists an (n�1)-dimensional
Abelian subalgebran0n�1 of nn�1 containing� 0. Thenn0n WD n0n�1�R� 00 has the required
properties.

As a consequence we obtain the following

Proposition 4.2 ([27], [11]). Let N0
n be the analytic subgroup of Bn with Lie al-

gebran0n. Then every N0n-orbit in Bn is totally real andBn is biholomorphically equiva-
lent to a tube domain D inCn such that N0n acts by translations on D.

For the proof we have to review parts of the theory of (universal) globalizations
of local holomorphic actions. We use [8] as a general reference.

Let M be a complex manifold endowed with a local holomorphic action of a com-
plex Lie groupL. A globalization of this local action consists in an open holomorphic
embedding� of M into a (possibly non-Hausdorff) complex manifoldM� on which L
acts holomorphically such that� is locally equivariant andM� D L � �(M). A globaliza-
tion M� is called universal if for every locallyL-equivariant map' W M ! M 0 into an
L-manifold M 0 there exists a uniqueL-equivariant map'� W M� ! M 0 such that the
diagram

M !'
!�

M 0

M�
!'�

commutes. By remark in §3 in [8] the universal globalizationof a local L-action on
M exists if and only if any globalization exists.
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Proof of Proposition 4.2. Since the groupN 0
n is Abelian andHn is hyperbolic,

every N 0
n-orbit in Hn must be totally real.

Let (N 0
n)C be the universal complexification ofN 0

n. Since (N 0
n)C acts by affine-

linear transformations onCn, the universal globalizationH�
n of the local (N 0

n)C-action
on Hn exists. Since everyN 0

n-orbit is totally real and of maximal dimensionn, every
(N 0

n)C-orbit in H�
n is open. ThusH�

n � (N 0
n)C=(N 0

n)Cz is homogeneous and in particular
Hausdorff. Moreover,Hn is biholomorphically equivalent to aN 0

n-invariant domain in
this homogeneous space. Because of dimH�

n D n D dim(N 0
n)C the isotropy (N 0

n)Cz is
discrete. Since (N 0

n)C � Cn is simply-connected, we may apply Lemma 2.1 of [13] in
order to conclude thatH�

n is simply-connected which implies (N 0
n)Cz D {e}. Hence the

claim follows.

Lemma 4.3. Let � D �a C �nn 2 a � nn D bn be an element with�a ¤ 0. Then
there exists an element g2 Bn with Ad(g)� 2 a.

Proof. We prove the lemma by induction overn. If n D 1, we identify the Lie

algebrab1 with
{(

t s
0 �t

)I t , s 2 R}. If � D ( t s
0 �t

)

with t ¤ 0 is given, one verifies

that g D ( 1 s=2t
0 1

) 2 B1 fulfills Ad(g)� 2 a.

Let n > 1 and let us assume that the claim is proven forn � 1. We write � D� 0C� 00 according tobn D bn�1� (R�n�1�R�n�1). Since� 0
a
D �a ¤ 0 (and in particular� 0 ¤ 0), our induction hypothesis implies the existence of an element g 2 Bn�1 such

that Ad(g)� 0 2 a holds. Since we have

[� 0, � 00] D [� 0
a
, � 00] C [� 0

nn�1
, � 00] D ��� 00

for some� ¤ 0, the subspaceR Ad(g)� 0 � R Ad(g)� 00 � a � nn is a subalgebra of
bn isomorphic tob1. Since Ad(g)� 0 ¤ 0, there is an elementg0 in the corresponding
subgroup with Ad(g0)(Ad(g)� 0CAd(g)� 00)D Ad(g0g)� 2 a. Hence, the lemma is proven.

Lemma 4.4. The subspaceb0n WD a�R�1� � � � �R�n�1 is an n-dimensional sub-
algebra ofbn such that every orbit of the corresponding subgroup B0

n of Bn is totally
real in Hn.

Proof. Using the commutator relations one checks directly that b0n is a subalgebra
of bn.

To prove the second claim note that for (z,w) 2 C�Cn�1 we haveT(z,w)(B0
n �(z,w))D

b0n � (z, w) D RÆ(z, w)�R�1(z, w)� � � � �R�n�1(z, w). Elementary considerations show
that this real subspace ofCn is totally real if and only if the the matrix whose columns
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are given by the above vector fields has non-zero determinant. Since one computes

det



















2z 2iw1 2iw2 � � � 2iwn�1w1 1 0 � � � 0

w2 0 1
...

...
...

.. . 0wn�1 0 � � � 0 1



















D (�1)n�1(2z� 2iw2
1 � � � � � 2iw2

n�1),

the orbit of B0
n � (z, w) fails to be totally real if and only ifz D i

∑n�1
kD1 w2

k holds.
Because of

Im

(

i
n�1
∑

kD1

w2
k

)

� kwk2 D �2
n�1
∑

kD1

Im(wk)2 � 0

such a point does not lie inHn which proves the claim.

We have established the following fact.

Corollary 4.5. Let� 2 bn be an arbitrary element. Then there exists an n-dimensional
subalgebrab0n of bn containing� such that the corresponding group B0n has only totally
real orbits inHn.

The same argument as in the proof of Proposition 4.2 applies to show the following

Proposition 4.6. Let � 2 bn be arbitrary. Then there exists a subgroup B0
n � Bn

containing exp(� ) such thatHn is biholomorphically equivalent to a B0n-invariant do-
main in (B0

n)C where (B0
n)C acts by left multiplication on itself.

4.3. Quotients of the unit ball. Let ' be an automorphism of the unit ballBn

which generates a discrete subgroup0 � G. The following proposition gives a suffi-
cient condition forX D Bn=0 to be Stein.

Proposition 4.7. Let � be a domain in a Stein manifold M. Then� is Stein if
and only if some covering of� is Stein.

Proof. Let us assume that there is a covering of� which is Stein. It follows from
[23] that the universal coveringp W Q�! � is then Stein, too. If� is not Stein, then
there exists a Hartogs figure (H , P) in M such thatH � � and P � � hold (see [6]).
Since H is simply connected, each component ofp�1(H ) is mapped biholomorphically
onto H by p. Let QH be a component ofp�1(H ) and write s WD (pj QH )�1 W H ! QH .

Since by assumptionQ� is a Stein manifold, we can embed it as a closed submanifold
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into someCN . Hence, the maps extends to a mapsW P ! Q� � CN . Thus the com-
position p Æ sW P ! � � M is defined. Since (p Æ s)jH D idH holds, the continuation
principle showsp Æ sD idP, which contradicts our assumptionP � �.

Theorem 4.8. Let ' 2 G be any automorphism generating a discrete subgroup0
of G. Then the quotient XD Bn=0 is a Stein space.

Proof. By virtue of Proposition 3.6 we can assume that' lies in the maximal split
solvable subgroupBn � G. Then we find ann-dimensional closed subgroupB0

n � Bn

containing0 such that eachB0
n-orbit is totally real inBn. By Proposition 4.6 we may

embedBn as aB0
n-invariant domain into (B0

n)C where (B0
n)C acts by left multiplication

on itself. Let C0 be the complex one parameter subgroup of (B0
n)C which contains0. Since (B0

n)C=0 is a C�-principal bundle over (B0
n)C=C0 � Cn�1, we conclude that

(B0
n)C=0 is a Stein manifold. Therefore the claim follows from Proposition 4.7.

5. Existence of equivariant holomorphic submersions

In [20] the j -invariant ideals of a normalj -algebra are investigated. For the sake
of completeness we indicate how the root space decomposition of a normal j -algebra
may be used to find aj -invariant ideal which is isomorphic to the normalj -algebra
of the unit ball.

5.1. Existence ofj-invariant ideals isomorphic to the unit ball. Let (s, j ) be a
normal j -algebra with gradationsD s�1�s�1=2�s0. We defines0 WD s0�1�s0�1=2�s00 by

s0�1 WD
r�1
⊕

kD1

s�k � ⊕

1�k<l�r�1

s(�lC�k)=2,

s0�1=2 WD
r�1
⊕

kD1

s�k=2,

s00 WD R�1� � � � � R�r�1� ⊕

1�k<l�r�1

s(�l��k)=2,

i.e. s0 is the direct sum of all root spaces in which the roots�r , (1=2)�r or (1=2)(�r ��k) (1� k � r � 1) do not appear.

Lemma 5.1. The subspaces0 is a j-invariant subalgebra ofs. Moreover, there
exists an!0 2 (s0)� such that(s0, j 0) is a normal j-algebra where j0 WD j js0 .

Proof. The fact thats0 is closed under the Lie bracket follows from the properties
of the root space decomposition andj -invariance is a direct consequence of Propos-
ition 2.12 (3)–(5). Setting!0 WD !js0 the claim follows.
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Let � W s! s be the orthogonal projection ontos0 with respect toh � , � i!.

Lemma 5.2. The map� is a homomorphism of normal j-algebras algebras whose
kernel is given by

b WD s�r �
r�1
⊕

kD1

s(�rC�k)=2� s�r =2� R�r � r�1
⊕

kD1

s(�r��k)=2,

and hence induces an isomorphisms=b � s0. In particular, b is a j-invariant ideal in
s and thus inherits the structure of a normal j-algebra.

Proof. Using properties of the root space decomposition onechecks directly that
the map� preserves the Lie brackets. The kernel of� is given by the orthogonal
complement ofs0 in s with respect toh � , � i! which in turn coincides withb by
Proposition 2.12 (1). Sinces0 andb are j -invariant, it follows that� Æ j D j Æ� holds.
This finishes the proof.

Lemma 5.3. The normal j-algebra(b, j ) is isomorphic to the normal j-algebra
of the unit ball.

Proof. One computes directly

[b, b] D s�r �
r�1
⊕

kD1

s(�rC�k)=2� s�r =2�
r�1
⊕

kD1

s(�r��k)=2.

Hence,R�r is maximal Abelian inb and in particularb has rank one. The claim will
follow if we show that [b, b] is a Heisenberg algebra. For this one checks thats�r is
the center of [b, b] and that the Lie bracket

[ � , � ] W b�1=2 � b�1=2! s�r

defines a symplectic form on

b�1=2 WD r�1
⊕

kD1

s(�rC�k)=2� s�r =2�
r�1
⊕

kD1

s(�r��k)=2.

Lemma 5.4. Let O� W S! S0 � S=Bm be the homomorphism on the group level.
The short exact sequence1! Bm! S! S0! 1 splits, i.e. S is isomorphic to S0ËBm.

Proof. The claim follows from the fact thats0 ,! s is a homomorphism of Lie
algebras and a section to� .



QUOTIENTS OF BOUNDED HOMOGENEOUSDOMAINS 347

5.2. Geometric realization of the fibration. In this subsection we view� as a
map sC�1 � s�1=2! (s0�1)C � s0�1=2 by restriction andC-linear extension.

Lemma 5.5. The map� maps Ds into Ds
0 .

Proof. First we note that� maps the base point�0 D �1C � � � C �r onto the base
point � 00 D �1C� � �C�r�1. Since� W s! s0 is a homomorphism of Lie algebras, it gives
rise to a unique morphismO� W S! S0 between the corresponding Lie groups such that

�(Ad(s)� ) D Ad( O� (s))�(� )

holds. Since� also respects the grading ofs ands0, we conclude that� maps the cone� D Ad(S0)�0 onto the cone�0 D Ad(S00)� 00. Since the�-Hermitian form8 is deter-
mined by the complex structureJ and the Lie bracket ofs which both are respected
by � , we obtain80(�(� ), �(� 0)) D �8(� , � 0). This proves the claim.

Choosing the base pointz0 WD (i �0, 0)2 Ds we obtain the diffeomorphismS! Ds,
s 7! s � z0. Equipping S with the left invariant extensionJ of j this diffeomorphism
becomes biholomorphic (see Lemma 1.2 in [12]). LetB be the normal subgroup of
S with Lie algebrab and let S0 be the analytic subgroup with Lie algebras0. Note
that S0 is isomorphic toS=B via O� W S! S0. The base pointz00 WD �(z0) yields the
isomorphismS0! Ds

0 . Now we are in position to prove the main result of this section.

Proposition 5.6. The following diagram commutes:

S !�
!O�

Ds

! �
S0 !� Ds

0 .
It follows that� W Ds ! Ds

0 is an S-equivariant holomorphic submersion whose fibers
are isomorphic to the unit ball.

Proof. We have to show that

�(s � z0) D Q�(s) � z00
holds for all s 2 S. In the proof of Lemma 5.5 we have already seen that this holds
true for s 2 S0. Using the explicit formula (2.4) for theS-action on Ds one verifies
the claim for the whole groupS.

REMARK . Let � W D ! D0 be the S-equivariant holomorphic submersion whose
fibers are biholomorphically equivalent toBm. It follows from Proposition 5.6 that� is
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a smooth principal bundle with groupBm. If � was a holomorphic fiber bundle, then
by a result of Royden ([21]) it would be holomorphically trivial, i.e. D � D0 � Bm.
This shows that� admits in general no local holomorphic trivializations.

6. Proof of the main theorem

6.1. Equivariant fiber bundles. In this subsection we present an auxiliary re-
sult concerning the quotient of an equivariant fiber bundle.Since it seems to be hard
to find an explicit reference for it, we give a proof here.

Proposition 6.1. Let pW B! X be a fiber bundle with typical fiber F and struc-
ture group S. Let G be a group acting on B by bundle automorphisms. We assume
that the induced G-action on X is free and proper. Then G acts freely and properly
on B, and hence we obtain the commutative diagram

B

!p
B=G
! Np

X !X=G.

The induced mapNpW B=G! X=G is again a fiber bundle with the same typical fiber
and structure group.

Proof. We prove first that the mapNpW B=0! X=0 admits local trivializations. To
see this letU � X be an open set such that there exists a trivialization' W U � F !
p�1(U ). Shrinking U if necessary, we may assume that there exists a slice for the
G-action on OU WD G �U , i.e. that OU is G-equivariantly isomorphic toG � S where G
acts onG�S by g � (g0, x) WD (gg0, x). It follows that p�1(S) is a slice for theG-action
on p�1( OU ) (see [19]), hence we obtain aG-equivariant isomorphismp�1( OU ) �G G �
p�1(S). Therefore the map

O' W OU � F ! p�1( OU ), O'(g � x, y) WD g � '(x, y),

with g 2 G and x 2 S is well-defined and hence aG-equivariant trivialization. This
implies that the mapNp W B=G! X=G admits local trivializations.

Since G acts by bundle automorphisms onB, the transition functions between
different G-equivariant local trivializationsO' and O induce isomorphisms ofF given
by the action of the structure groupS. Thus the structure group of the fiber bundleNp W B=G! X=G is again given byS.

EXAMPLE . Let G be a complex Lie group and letH1 � H2 � G be closed com-
plex subgroups. According to Theorem 7.4 in [22] the naturalmap G=H1 ! G=H2
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is a holomorphic fiber bundle with fiberH2=H1. The structure group of this bundle is
given by H2=(H1)0 where (H1)0 denotes the largest subgroup ofH1 which is normal in
H2. In particular, if H2 is connected, then the structure group is connected. Moreover,
the mapsg0H1 7! gg0H1, g 2 G, are bundle automorphisms ofG=H1! G=H2. Hence,
we may apply Proposition 6.1 to any subgroupG0 of G which acts properly and freely
on G=H2 to obtain the quotient bundle

G0nG=H1! G0nG=H2.

6.2. Globalizing the submersion. Let D be a homogeneous Siegel domain and
let � W D ! D0 be the S-equivariant holomorphic submersion whose fibers are bi-
holomorphically equivalent to the unit ballBm. By Lemma 2.14SC acts transitively
on SC �D D Cn, hence we obtainSC �D D Cn � SC=SCz0

. SinceCn is simply-connected,

it follows that SCz0
is connected. This implies thatD� WD SC � D is the universal glo-

balization of the localSC-action on D. Similarly, (D0)� WD (S0)C � D0 D Cn�m is the
universal globalization of the local (S0)C-action on D0.

Proposition 6.2. There exists a unique SC-equivariant map��W D�! (D0)� which
exhibits D� as a holomorphic fiber bundle over(D0)� with typical fiberH�

m D BCm �Hm DCm. The structure group is a connected complex Lie group.

Proof. Since the submersion� W D! D0 is S-equivariant, we have (D0)� D (S0)C �
D0 D SC � D0 D Cn�m. Since moreoverD� � SC=SCz0

and (D0)� � SC=SCz00, the ex-

istence of�� follows from the fact thatSCz0
is contained inSCz00. It is then immedi-

ate that�� W D� ! (D0)� is unique. SinceD� and (D0)� are simply-connected, the
groups SCz0

and SCz00 are connected. Hence, it follows from Theorem 7.4 in [22] that

D� is a holomorphic fiber bundle over (D0)� with fiber SCz00=SCz0
such that the struc-

ture group is a connected complex Lie group. SinceBm is a normal subgroup ofS,
it lies in the S-isotropy of each point inD0. Hence, BCm is a normal subgroup of
SCz00. Because ofSCz0

\ BCm D (BCm)z0 the inclusionBCm ,! SCz00 induces an isomorphism

BCm=(BCm)z0 ! SCz00=SCz0
which proves that the fibers of�� are isomorphic toH�

m D
BCm �Hm � BCm=(BCm)z0.

Corollary 6.3. We have (��)�1(D0) D BCm � D. Hence, the restricted map�� W BCm � D ! D0 is a holomorphic fiber bundle with typical fiberH�
m.

Proof. Let Qz2 (��)�1(D0) be given. By definition ofD� there exist ag 2 SC and
a z 2 D such thatQzD g � z hold. SinceS0 acts transitively onD0, we find a g0 2 S0
such thatg � �(z) D ��(Qz) D g0 � �(z) holds. SinceS0 acts freely onD0, we conclude
g(g0)�1 2 BCm. This shows thatQz D g(g0)�1 � (g0 � z) 2 BCm � D holds. The converse
inclusion follows from the fact that�� is BCm-invariant.
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Corollary 6.4. Let B0m be a subgroup of Bm having only totally real orbits inHm. Then the universal globalization of the local(B0
m)C-action on D is a (B0

m)C-
principal bundle over D0.

Proof. SinceD0 is a contractible Stein domain, we may apply Grauert’s Oka prin-
ciple to the bundleBCm � D ! D0 in order to obtain aBCm-equivariant biholomorphism
BCm �D! D0�H�

m. Then Proposition 4.6 implies that the universal globalization of the
local (B0

m)C-action on D is isomorphic toD0 � (B0
m)C which proves the claim.

6.3. Proof of the main theorem. Finally we are in position to prove that our
main result.

Theorem 6.5. Let D � Cn be a bounded homogeneous domain. Let' be an
automorphism of D such that the group0 D h'i is a discrete subgroup ofAutO(D).
Then the quotient XD D=0 is a Stein space.

Proof. Due to our reduction steps in Section 3 we may assume that ' is contained
in a maximal split solvable subgroupS� G. Moreover, we assume thatD is realized
as a Siegel domain inCn such thatS acts by affine-linear transformations onD.

We prove this theorem by induction onn D dimC D. If n D 1, then D is bi-
holomorphically equivalent to the unit disc inC and the claim follows.

Let n> 1 and let us assume that the claim is proven for everyn0 < n. Let �W D!
D0 be the S-equivariant holomorphic submersion with fibers isomorphic to Hm onto
the homogeneous Siegel domainD0 � Cn�m. In the first step we consider the case
that 0 is contained in the normal subgroupBm, hence that� is 0-invariant. By Corol-
lary 4.5 there exists anm-dimensional subgroupB0

m of Bm which contains0 such that
every B0

m-orbit in Hm is totally real. Applying Corollary 6.4 we see that the universal
globalization D� of the local (B0

m)C-action on D is a (B0
m)C-principal bundle overD0

which must be holomorphically trivial. ThereforeD�=0 is a Stein manifold and Prop-
osition 4.7 applies to show thatX is Stein.

If 0 is not contained inBm, then we obtain a proper0-action on D0. Since0
normalizes the groupBCm, it follows that0 acts by bundle automorphisms on the holo-
morphic fiber bundleBCm �D! D0. We conclude from Proposition 6.1 that the quotient
bundle

(BCm � D)=0 ! D0=0
is a holomorphic fiber bundle with fiberH�

m and connected structure groupSCz00=(SCz0
)0.

Since the base is Stein by our induction hypothesis, a resultof Matsushima and Morimoto
(Theorem 6 in [18]) implies that (BCm � D)=0 is Stein, hence thatX is Stein. This finishes
the proof.
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