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1. Introduction

In this article, we consider the regularity theorems of weak solutions to boun-
dary value problems for first order systems of partial differential equations which
satisfy some U a priori inequality. Let L be a first order system of partial
differential operators

L = L(xy D) = ± AJ(X)DJ+A0(X) , D~ - V = ϊ / -
j-*i OX

with smooth pxp matrix coefficients, which are defined in a domain ΩciR"
having the smooth, compact boundary Γ. We write the formal adjoint of L

L*v = L*(x, D)Ό= Σ Dj(A*(x)v)+A$(x)υ(x),

where AJ is the conjugate transpose of Aj(x), j=0, ~ ,n. Throughout this
paper we assume that Γ is non-characteristic for L, i.e., for the exterior unit

n

normal vector v{x) on Γ, the matrix /3(#)=Σ AJ(X)VJ(X) is non-singular on Γ.
i= i

We associate with L the following two function spaces

B = { φ j G C - p n ^ Ω ) ; M(x)u(x) = 0 o n Γ } ,

£* = { ^ G C - p n ^ Ω ) ; M*β*v = β*υ on Γ} .

Here the boundary operator M(x) is apxp idempotent matrix (i.e. M2(x)=M(x)
on Γ), /S* is the conjugate transpose of β(x) and H^Ω) is a Sobolev space
defined in §2.

We shall call z/e=L2(Ω) a weak solution of inhomogeneous boundary value
problem, Lu=f in Ω, Mu=g on Γ, if there exists / G L 2 ( Ω ) and ^ G L 2 ( Γ ) Π

Range M such that

(II, L*υ) = (/, v)+i<βg, v>, ^Efi*

where ( , ) , < , > are L2(Ω), L2(T) inner products respectively. Under this situa-
tion, we suppose the following inequality (P. 1) holds
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(P.I) q\\v\\l.o<\\Lv\\l.o+C,\\v\\*-i.o,

here | | \\s>Q is a suitable Sobolev norm over Ω defined in §2.

Theorem 1. Let r be a given non-negative integer. Let u be a weak solution

of Lu—f and Mu=g with f^Hr(Ω), g^Hr+l/2(T). Furthermore we assume that

(P. 1) is valid with sufficiently large positive q and some constant Cq (how large q

must be depends on ry certain derivatives of the coefficients Aj(x), j=l> •••, n> and

M(x) but not on u, f and g). Then u belongs to Hr(Ω).

REMARKS. 1. If the stronger estimate

holds, then this estimate implies (P. 1), so Theorem 1 holds in this case. Here

( ) ί Γ indicates the Sobolev norm over Γ defined in §2.

2. It is well known that if a matrix M is idempotent then the trace of M

is equal to the rank of M. Thus our matrix M(x) is of constant rank over Γ.

But we do not need this fact.

We suppose the following another estimate (P. 2) holds

(P. 2) q\\v\\lΩ^Lv\\lΩ+CgM\2-i,a+<Mvyir, ϊ ε C - ^ n ^ Ω ) .

In this case, we obtain the following regularity theorem.

Theorem 2. Let r be a positive integer. Let u be a weak solution of

Lu=f and Mu=g withf<=Hr(Ω), g <=Hr(Γ). Suppose that the inequality (P. 2)

holds with a sufficiently large number q (compared with derivatives of order ^r of

the leading coefficients of L and M). Then the vector u belongs to Hr(Ω).

D.S. Tartakoff [6] considered the regularity theorems under the same

situation. He obtains the same theorems. However, in the second theorem

case he assumes (P. 2) and the dual estimate of (P. 1). Using a mollifier method,

he first obtains the regularity theorem of homogeneous boundary value problem

(i.e. £=0) supposing the inequality (P. 1). In the inhomogeneous case, he

applies the regularity and existence theorems of homogenous case and the

technique of functional analysis. But our method is a more unified one.

To verify the theorems, we use the function space Hms(RΊ) described in

[3]. Since Γ is non-characteristic for L, the trace u | Γ on Γ of the weak solution

u has a meaning in the distribution sence, and Mu \ Γ coincides with the date

g as a distribution on Γ. By the transformation from a part of Π near each

boundary point of Ω to some neighbourhood ω of the origin in ϊ?+, the inequality

(P. 1) implies the following inequality,

(P. 1)' q\\w\\l^C\\Lw\\l+Cq

f\\w\\lt_2+C\Mwyu wtΞCo(Rlf]ω).
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Thus, Theorm 1 and 2 will be proved by the same method, using the mollifier
technique. K. Kubota [5] suggests the use of the function space mentioned
above and its trace theorem, which is essential in our proof.

As an application we mention that (P. 1) is valid with given sufficiently large
q for positive symmetrizable systems in the sense of Friedrichs and Lax [1], [2].
Hϋrmander [4] and others consider "subelliptic" case and obtain hypoellipticity
results. Our estimate (P. 1) is weaker than subelliptic estimate, so our result gives
an extension of subelliptic case in a certain sense.

For the higher order single equations with normal boundary operators, we
can also prove the analogous regularity theorems.

The author heartly thanks to Professor T. Shirota and Mr. K. Kubota for
helpful discussions.

2. Analytic preliminaries

a) Function spaces and families of norms.

We use some function spaces which are slight modifications of L. Hϋr-
mander's [3j.

DEFINITION 2.1.

i) For real s and δe(0, 1], we define HCsJO(Rn) as the completion of Co(Rn)
under the norm

where ύ(ξ) denotes the Fourier transform

ύ(ξ) =

When δ = l , we write merely HCsΌ(Rn)=Hs(Rn) and N L ^ H N L
ii) For real s and δe(0, 1], by HίStS)(Ω) we mean the set of all

such that there exists U^HCsδ^(Rn) with U=u in iD'(Ω). The norm of
is defined by

the infimum being taken over all such U. Similarly, HCs D(Ω)=HS(Ω), | |κ||c, D

= IML-
iii) For real m, s and δe(0, 1], we define HmQs 8)(Rn) as the completion of

Co(Rn) under the norm

where ξ' is the co-variable of x'=(χly
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iv) For real, m, s and δe(0 , 1], by HmCs ^(R^) we mean the set of all

Rn+) such that there exists a distribution U^HmCs^(Rn) with Ό=u in

R\. Here Rn

+ = {x; xn>0}> Rn

+ = {x) *«>()}. The norm of u is defined by

the infimum being taken over all such U. For simplicity, we write HmCsD(Rrl)

Hm>s(Rl) and \\u\\m>Cs>1)==\\u\\m>s.

In the following, we state several properties of these norms and spaces,

whose the greater part are described in chapter II of [3].

To prove our regularity theorms, we must consider that the norms of

HCsS)(Rn) and Hmίs8^(Rvl) are invariant under the C~-local transformations.

Let ΩXy Ωγ be bounded open sets in Rn, Y=(ylf -- ,yn) be a diίfeomorphism

from Ωx to Ωγ and X be the inverse transformation.

Proposition 2.1.

i) Let K be a given compact subset of Ωx. For real s, there exists Cs such

that ifsuppuczK, u{x) belongs to Hs(Rn), then u(y)=u(X(y)) also belongs to Hs(Rn)

and

ii) If — - = -^-=8^- for t—n or j=n, and K is a compact subset of ΩX)

then for a non-negative ίntegar m and a real number sy there exists Cms such that if

u(x)<=HmCStS)(Rl) and supp udK, then u(y) = u(X(y))^ HmCs>8,(Rn

+) and

\\u(y)\\mtCs>δ,<CmJ\u(x)\\MίCs>8,9 for 0 < δ ^ l .

Here Cs and Cms are independent of δ.

The proof of i) is denoted in D. S. Tartakoff [6]. By Proposition 2.7 stated

below, a similar fact holds for IMU^δ)-

Proposition 2.2.

i) u(x)GHS+1(R») iff u(x) GΞHs{Rn) and sup \\u\ | ( 5 > δ ) < oo.
δ

ii) For a non-negative integer sy u(x)(=Hs(Ω) iff Dau^L2(Ω) for \a\<s.

Proposition 2.3. The subspace Co(R%) is dense set in Hm>Cs δ)(J?+).

Proposition 2.4. In order that Hmi Csi ^{R%)ciHm2>CS2^(RΊ), it is necessary

and sufficient that m2^m^ and m2-\-s2f^mλ-\-sλ.

Proposition 2.5. In order that u<=HmCs8)(Rl) iff u^Hm_ιis+1^(Rl) and

Dnu<EΞHm_ί>ίs>v(Rn

+). Moreover
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Proposition 2.6. If m and s are non-negative integers, the space Hm S{R%)

consists of all u^L2(R%) such that Dau^L2(R1) when \a\ ̂ s+m and an^m.

For the norm we have the etimate

Λn<m

where Cx is a positive constant, depending on s and m but not on u.

Proposition 2.7. If m is a non-negative integer, the space HmCs8)(R*l)

consists of all u^3)'(RX) such that Dlύn is a measurable function whenj^m and

Σ (2*) 1- (ΓIDίύJίξ', xn)\\l+ IΠT + > "" y + 1 ( l+ I δξ'\y1dxHdξ'<oo .
j= o J Jo

The left-hand side is a norm equivalent to \\u\\mtas^, where ύn(ξ'> ^«) denotes a

partial Fourier transform

Proposition 2.8. Let m be a non-negative integer, then u e i / m s + 1 ( i ? + )

iffu(x)^Hm>s(Rn

+) and sup |ML, c , , δ ) < oo.
a

Proposition 2.9. If m and j are integers, 0^j<,m, the mapping

can for fixed x M ^ 0 be extended in one and only one way to a continuous mapping

of Hmis v(RX) into H<is+m_j_^^(Rn~1) with the following inequality

Proposition 2.10. For an arbitrary non-negative integer m and fk^

fn_k_ιtv(Rn~λ)y k = 0, •••, 1, there exists a function u^HmCs^(RΊ) with

( , 0)=fkk=09 "',m—l and

Where if the fk belongs to S(Rn~1) (k=0, •••, m—\) the choice of u is independent

of m, s and C is not dependent on 8 and fk (k=0, •••, m—1).

REMARK. For the proof in L. Hϋrmander [3] (Theorem 2.5.7), if

fk^Co(Ω) k=0, •••, m— 1, then we can choose u such that CJΓ(Ω), where O is a

bounded open set in i?M-1 and Ω is an open set with Ω n f e = 0 } = Ω . For

by the following proposition we can cut the function u outside a neighbourhood

of β in Rn.
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Proposition 2.11. If u<=HmSs^{RX) and a<^S(Rn)> it follows that

^RX) and

When Γ is a C°° compact, n—\ dimensional surface without boundary in
Rn

y we may also define HCSt^(T). Let {Ω,}^!,.^ be an open covering of the
neighbourhood of Γ, {-ψT1},-̂  ... ̂  be a diffeomorphism defined on Ω, such
that Ωf Π Γ is mapped on an open set of I?*1"1. Let {λ,}ί=1...fN be the partition
of unity subordinated to {Ω,},^ ... ̂  We mean by u^HCs^(T) that (\iu)oψi

tΞH^R"-1) ι = l , ..-, N and denote Σ I K λ ^ o ψ f c by <«>»,,». We remark

that different choices of {Ωt } and {λt } will yield equivalent norms,
b) Mollifier.

DEFINITION 2.2.

i) Let X^Co(Rn) and assume that for some integer k^O

but that X(tξ)=0 for all real t implies ξ=0 if f ei?Λ, then the family J={JA
of operators, defined for 0 < £ < 1 by

(J*u)(x) = (Xt*u)(x), Xs(x) = £-nX(x/S), u^W\Rn)

is called a full mollifier of type k with kernel %(#).
ii) Let %/(Λ?/)eCo(i?Λ"1) satisfy the corresponding conditions required of

X(x) in i). If we define for 0 < 6 < 1 and φ <EΞ C°°(JRM)

(X/dx')(φ) = J %/

then evidently %/Jx7 belongs to ^(i?*1) and a family J'={J/} with J/u=X/dx'*u
is called a tangential mollifier of type & with kernel X\x').

Proposition 2.12.
i) Let J be a full mollifier of type k with kernel X(x) and let s, p be real

numbers with s<k. Then there exist positive constants Cλ and C2 independent of S

and u such that

•*J:
2
S+p-L

ii) Let ]r be a tangential mollifier of type k with kernel X\x') and let m be a

non-negative interger and s, p be real numbers with k>s. Then there exist positive

constants C1 and C2 independent of 8 and u such that
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Proof, i) can be proved by applying Theorem 2.4.1 [3] (p=0) to the inverse
Fourier transform of (1+ \ξ\2)p/2ύ(ξ). In the case ii) applying above i) and
Proposition 2.7, let us replace u by the inverse partial Fourier transform of

Proposition 2.13.
i) Let a e S(Rn) and J be a full mollifier of type k with kernel X(x) and let

s,p be arbitrary real numbers with k>s. Then there exists a positive constant C

independent of 8 and u such that

(Ίl[β,7.]«L
Jo

for all u^Hs+p.2(Rn

+).

ii) Let us replace J in i) by J' and let m be a non-negative integer. Then

there exists a positive constant C independent of S and u such that

Here the commutator [a, Je] means ajt—jta.

Proof, i) The proof for p — 0 is given in L. Hormander [3] (Theorem
2.4.2). For arbitrary^), let Λ^ be a pseudo-differential opeator such that

We remark that the operator Λ* commutes with /„ and

ll«llc>.» = IIΛ*«||C..» , u

since Λ*[α, /,]=[A*, α]/,+ [a, /JΛ>+/,[β, A*],

llk
o

Ίl7,[β,
o



644 K. YAMAMOTO

Here the commutator [a> Ap] is of order p— 1. Hence in view of Proposition
2.12 and Theorem 2.4.2 of L. Hϋrmander [3], we obtain following inequalities,

tΊl/.[β, KΉ
Jo

The proof is complete.
ii) By Proposition 2.7, \\[a9 J/]u\\mP is equivalent to

f ] (27Γ)1-* ( ΓI Dl([a, J/]u)£(ξ', xn) | 2(1+ | ξ'\ T+p-jdξ'dxn
^O J J o

and

Dί([a,J,']u) = $

For fixed xn*t0, we have only to estimate the following

since once this is established the desired inequality is obtained after integration
with respect to xn and using Fubini's theorem.

3. The proof of theorems

In order to prove Theorem 1 and 2, we make use of a special open covering

{[/y}y=o,.,ΛΓ of Ω> such that
i)' i70cΩand t^ΠΓΦφ (;=1, -,iV)

ii) The matrix β(x) is non-singular in U UJf

iii) There exists a diίfeomorphism α j 1 from C/y (j Φθ) to some neighbo-
urhood of the origin in Rn, such that αj1lrnί/ i is also the diffeomorphism to
some neighbourhood of the origin in I?*"1. Furthermore for all x^. Uj, ym which
is n-ύί component of aj\x), is equal to±distance (x, T) where if Λ G Ω then
yn—dist(x, Γ) and if x^CΩ theny n = — dist(#, Γ).

Lemma 3.1. Let the vector valued functions u(x) and Lu(x) belong to L2(Ω).
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Then for an arbitrary φ<=Co(Uj) (/=i=0), (<pu)oaj belongs to Hlt ^

Proof. From the assumption L{φu)=fΈI2(Ω), and L is represented by the
transformation aj1 in the following form

where β(y) is non-singular in a neighbourhood of {yM=0} which is denoted by
Im aj1. Hence

β(y)Dn((φu)oaj) =foaj^Ek(y)Dk((φu)oaj)-E0(y)((φu)oaj).

From Proposition 2.7 and 2.11, the right hand side of the above equality belongs
to Ho _t(i?+). Thus we obtain the lemma by Proposition 2.5 with δ = l .

Lemma 3.2. Let the vector valued functions u(x) and Lu(x) be in L2(Ω) and
supp McΠίi Uj O'ΦO). Then

(u, L*v) = (Lu, v)+Kβuf v\ v^C°°{Π).

By Lemma 3.1 and Proposition 2.9, we may consider that u(x) belongs to H-λj2(T).

Proof. From Lemma 3.1, u octj is an element of Hι f _j(j?+). Hence, there
exists a sequence {vfc}dCo (R*l) such that {vk} converges to uoccj in the topology
of Hlt -^RVj Let a function φ be an element of Co (i?n), such that supp φd Uj
and is equal to 1 in supp(woα^.). By Proposition 2.11,

uocCjWt,-! = \\φ(vk—

Therefore the sequence {φvk} also converges to uocίj in the topology of
H^-^R"). Clearly, it follows from Proposition 2.4 that {φvk} converges to
uoccj in the topology of L2(i?+). Now, it we set uk=(φvk)oaj1, then uk is an
element of C°°(Π) and {uk} converges to u in the topology of L2(Ω). On the
other hand, by Proposition 2.9 and by the fact that ukoctj converges to u°dj in
the topology of Hx _1(j?+), we conclude that ukoaj-^u°cίj in the topology of
H-^R"-1). This shows that uk->u in the topology of i/-*(Γ) by deffinition.
Now

(L(uk-u)y Ό)Q = ((L(uk-u))oaj,J(vo

where J is the Jacobian of transformation aj1. Hence

\{L{uk-u\ v)Ω\ ^

This shows that (Luk v)Ω-*(Lu, v)Ω. We obtain, by using Green's formula, the

equality
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(uk> L*v) = {Luki v)+i<βuky υ> ,

When £—>oo in the above equality we obtain

(u, L*v) = (Lu, v)+i(βuy v) .

Lemma 3.3. Let {̂ y}y=0,-,AT be a partition of unity subordinated to an open
covering {Uj}J=0... N, and let the vector-valued function u(x) be a weak solution of
the boundary value problem Lu=f, Mu=g. Then

Proof. If a vector valued function ί G ΰ * , then by commutativity of ψj and
My β, we obtain that ψjV is also in β*. Since u(x) is a weak solution, we obtain
that

(u, L*((ψjv)) = (/, ψfi>)+i<βg, ψjv>, ί G δ * .

Now, let a function ψj be in Co(Rn) such that supp ψjCzUj and \jr=l in
supp ψj. Then

(foil, L*(ψjv)) = (/, ψjv)+i<:βgy ψjv> , ^ G B * .

Since u is a weak solution, and Co(Ω)cB*, we have Lu=f in ϋ^Ω). Hence
Lw is equal to / in L\Ω). Therefore, ψjU satisfies the conditions required in
Lemma 3.2. So we apply Lemma 3.2 to ψjU and obtain

A vector-valued function u is approximated by the elements of C°°(Π). Thus

Therefore, we obtain

For an arbitrary zί>eC°°(Ω), we have a decomposition

β*w = M*/3*^+(/-M*)yβ*^ .

Since M is a idempotent matrix,

<M^yw, (7-M*)^*«;> - <ψ i<?, (I-M*)β*w> = 0 .

This and /5*~1M*/9*«;eJB* show that

Λ β*w> ,
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Since the matrix β is non-singular, and the restriction mapping: COO(Ω)~>COO(Γ)
is surjective, we obtain the required lemma.

Lemma 3.4. Let us assume the following estimate is valid

u(ΞCo(Rl Γl ω) and Mu = 0 in {xn = 0} ,

where L is a first order partial differential operator, M is a smooth idempotent
matrix and ω is an open set in Rn. Then we obtain the following inequality

where w is an arbitrary element of Co (ϊ?+ Π ω) and the constant C4 is independent

of C1 and C3.

Proof. In Proposition 2.10, we take Mw in place of /0, and 0 for fk

(k= 1, , m— 1). Then there exists v e Co (Ω) such that

and

Since M(w—v) \Xn=0=M(I— M)w |Λ j > ϊ = 0=0, inserting w—v in the inequality of the
assumption, we see the following

On the other hand by the trace theorem we see that

+Ci ί J"' ύ"{ξ'' *-

and

Thus applying the three inequalities above, we obtain the lemma.

Proof of Theorem 1. We may assume without loss of generality that the



648 K. YAMAMOTO

non-singular matrix β(x) is the identity matrix. For, if u is a weak solution of
boundary value problem Lu=f, Mu=g> then the L2(Ω)-vector u is also a weak
solution of β~1Lu=β~1f, Mu=gy where β is extended over Ω. Inductively we
assume u^Hr^1(Γί)y since by hypothesis weL2(Ω). It suffices, by Leibnitz'
formula, to show each ψjU belongs to Hr(Ω). For 7—0, ψou^Hr(Ω) if and only
if ψou<=Hr(Rn). For X), it suffices to show (ψju)oaj^Hr(R%). Since Γ is
non-characteristic for L and Lu~f in L2(Ω), the normal derivative Dn{ψjU)°<Xj is
expressed by / and tangential derivatives of (ψjU)oaj. Therefore, if we assume
(ψju)oaj^Hor(Rl) then by Proposition 2.5, (ψjiήoaj belongs to H^-^Rl).
Using above fact and Proposition 2.5 inductively, we can show that (ψjtήoaj
belongs to Hkr_k{RΊ) (O^k^r). Thus, it will suffice to show ψou<=Hr(R")
and (ylrju)oaj<=Hor(Rl). That is, in view of Proposition 2.1 and Proposition
2.8, it suffices to prove

(3.1) ll^o^ll,2-i,δ+ΣII(Ψ^)°αyll2o,c,-i,δ)^C

for all δ with 0 < δ < l . Here we have to remark that by the assumption of
induction, Proposition 2.5 and Lu=f, (ψjiήoaj belongs to Hr..1(Rrl). We
begin with the estimation of

From the inequality (P. 1)

By Proposition 2.1, when u is an element of HS(Ω) with supp ud Uj, then
||w||,fQ and ||tt°#i||5fo are equivalent norms. Therefore we obtain

where L( )=(L( oajλ))oaj. Thus from Lemma 3.4, we see that

where w^Co(Rl Π Im αj 1), M=Moaj and C" is independent of q. From the
Lemma 3.1, when u is a weak solution, UienJ2'(yIrju)o(Xj is an element of i/1(JR+).
Here {J/} is a tangential mollifier of type r + 1 with kernel %'(#'), whose
support is small, containing the origin of Rn

y such that for all £e(0, 1], supp
Jζ'(ψjU)oaj is contained in ImαJ 1 . Since J/(ψjU)oaj is approximated by an
element of Co (Rl Π Im aj1) in the topology of H^Rl), we have

(3.2) tfllΛ^aW l l ^ o ^

Here, the first term on the right of (3.2)
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Furthermore we observe that as a distribution in i?"

Jt'tirjoa,)l(uoaj) = J.'&jfloccj .

For

l ) , φ) = (U

where we use the fact (ψjoaj)Js'*φ^Co(Rn+). By using Lemma 3.3,

Therefore we obtain the inequality

(3.3) 3

+1|//[I, *,°ay](«°a,)| IS.O+1\JΆΨjf)°<Xj\I5.o

Since the coefficient of Dn is the identity matrix and [L, yjrjoccj] is the smooth
function, the first and second terms in the right hand side (3.3) are estimated by
the following form

Σ \\[Ek(y), Js']Dy(ψJu)oaJ\\l0+1| [E^y), J/

where Ek<=Co(lmaJι), k = 0, "-,n—\, F(y)^Co(Im aj1) and ψyEC
is equal 1 in supp (ψj°aj). Let us insert this in (3.3) and multiply the inequality
thus obtained by S~2r~\l + 8Z[£2)~\ and then integrate with respect to £ in the
interval (0, 1). Then applying Proposition 2.12 and Proposition 2.13, we see

Σ
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where We used Proposition 2.1 and the fact that (1 + \ξ'\ 2f

( 1 + I f I *)'(! H- I δf I )" 1 (r ̂  1)

where we used that Γ is non-characteristic for L and Proposition 2.5. Therefore
the required inequality becomes

(3.4) (tfC.-Q Σ H(ψ y«)°αyIIS.cr-,,

ii) Next we shall estimate |hKMll<r-i,»-
Let {J,,} be a full mollifier of type r-\-1 with kernel X(x), whose support is small
such that supp X+supp ψ jCΩ. Applying (P. 1) to/ s ( ψ 0w), we have

By the analogous calculation for \\(ψju)oaj\\0>cr-i,ti)> we obtain

(3.5)

where ψ>oeCβ(Ω) is equal to 1 on supp ψ0. By using inducitvely that Γ is
non-characteristic for L and from Lu=f in L2(Ω), we obtain

(3.6) Σ Ψ l l ? Σ

Combining (3.4), (3.5) and (3.6), we have that for certain C8, C9 and C

If q is larger than C9/Cs, then the inequality (3.1) is completed.
The proof of Theorem 2 is performed by the same method as Theorem 1.
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Instead of the above inequality in this case we obtain the following one. Let us

replace (P. 1)' by (P. 2), then by < >r we can do <•>,.».* in the above proof in

Theorem 1. Therefore we see

Thus taking a sufficient large q such that q >Cn/C 1 0, the proof is completed.
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