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The Thickening of Combinatorial
n-Manifolds in (n+1)-Space

By Hiroshi NoGuUcHI

1. Intrpduction

The Schonflies conjecture for dimension # is the following statement :
Let a combinatorial (n—1)-sphere S™* be piecewise linearly imbedded in
Euclidean n-space R". Then the closure of the bounded component of
R*—S""' is a combinatorial n-cell. For n<3 this has been affirmatively
proved, see Alexander [1], Graeub [2] and Moise [5].

The purpose of this paper is to prove the following (Theorem 3 in
section 6): Let a combinatorial, closed (=compact and without boundary),
orientable n-manifold M” be imbedded as a subcomplex of a combinatorial,
orientable (n-+1)-manifold W™ without boundary. Let UM?”, W**") be a
regular neighborhood of M” in W', Suppose that the Schinflies conjecture
is true for dimension <mn. Then thereis a piecewise linear homeomorphism
into 0: M"*X J->W" such that 6(x,0)=x for all x€ M” and such that
OM”*x Jy=UM", W**), where J is the interval —1<s<1. (The regular
neighborhood U(M™”, W”*') in this paper is necessarily a closed neighbor-
hood of M” in W”*' in the sense of the set-theory, see Definition 1 in
section 3. The simplicial subdivision of M” gives, in the usual way [3],
p. 35, a simplicial subdivison of M”X J; and the mapping 6 is to be
piecewise linear relative to such an induced simplicial subdivision of
M"*x J.)

In fact, the above theorem is a consequent of the following main
theorem (Theorem 2 in section 5): Let a combinatorial, closed n-manifold
M7 be imbedded as a subcomplex of a combinatorial, orviented (=orientable,
oriented) (n+1)-manifold W3+ without boundary, i=1, 2. Let UM?T, W3™)
be a regular neighborhood of M%7 in Wi, and ¢ M1—M?% be a piecewise
linear homeomor phism onto. Suppose that the Schinflies conjecture is true
for dimension <n. Then there is a piecewise linear homeomorphism onto
Joo UMy, WitYy—UM3, W5™) such that |Mt=$, and such that the
oriented image of oriented UM?T, W) is the oriented UMy, Wi, where
the orientation of UM?%, W7+ is induced by that of W5*'. Another applica-
tion of Theorem 2 is Theorem 4 in section 6.

In the proofs of these theorems, we shall make extensive use of
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combinatorial methods and results of J. H.C. Whitehead [7] and V.K.
A.M. Gugenheim [3], [4]. In particular, the following (Theorem 1 in
section 3) is a modification of results of Whitehead. Let a finite polyhedron
P be imbedded as a subcomplex of a combinatorial manifold W without
boundary, and let U (P, W) be regular neighborhoods of P in W, i=1, 2.
Then there is a piecewise linear homeomorphism onto . W—W such that
(U(P, W))=U,P, W) and such that | P=identity where < is an orienta-
tion preserving piecewise linear homeomorphism onto if W is orientable.

The expositions is as follows: In section 2 Definitions and notation
will be explained. In section 3 a modification of the regular neighborhood
of Whitehead and Theorem 1 will be given. Section 4 will prepare the
preliminary lemmas and notation needed in the latter. Section 5 will be
devoted to prove Theorem 2. In section 6 applications of Theorem 2
will be stated.

In his delightful paper “Embeddings of spheres”, Bull. Amer. Math.
Soc., vol. 65 (1959), pp. 59-65, Professor B. Mazur mentioned an unpublished
lemma of mine. The present paper is the revised version of the manu-
script in question.

It is a pleasure to express my gradittde to Professor V.K.A.M.
Gugenheim for many useful suggestions, and to Professors E.E. Moise
and J. R. Stallings for their advices during revising the paper.

2. Definition and Notation

By a simplex we shall always mean a closed Euclidean simplex and
the word complex will mean a closed, rectilinear, locally finite, simplicial
complex of some Euclidean space. If K is a complex, then |[K| denotes
the point-set which is the union of the simplices of K. Such a set |K]|
will be called a polyhedron, and K will be called a simplicial subdivision
of the polyhedron |K|. K’ and K’ will stand for the first and second
barycentric subdivisions of K. Let K be a g-complex. We say that K is
homogeneous (see, [6], p. 48), if every p-simplex (p<_q) is a face of at
least one ¢g-simplex. Then 0K denotes its boundary (modulo 2), that is,
the totality of all (¢—1)-simplices which are incident to an odd number
of g-simplices; and if P=|K|, then 9P denotes the polyhedron |9K].
The point set P—9P will be called the interior of P, and will be denoted
by Int P. A polyhedron will be called finite if it has a simplicial
subdivision which is a finite complex.

Let K be a complex and A one of its simplex. The set of all
simplices of K having A as a face is called the star of A in K, whose
polyhedron is denoted by S#(A, K) and is called the star set of A in K.
The set of simplices of K which are faces opposite A in some simplex
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of the star of A in K is called the Znk of A in K, whose polyhedron
is denoted by Lk(A, K) and is called the link set of A in K. Let x be
a point of |K|. We denote by St(x, K) the point set of points of all
simplices of K containing x and by Lk(x, K) the point set of points of
simplices of St#(x, K) not containing x. If x is a vertex of K, these
definitions coincide with those given just above, see [4], p. 134. Let L
be a subcomplex of K. Then N(L, K) will stand for the point set of
points of all simplices of K meeting |L|, and will be called the star
neighborhood of L in K, see [7], p. 251.

As usual two complexes K,, K, are combinatorially equivalent if K,
and K, have isomorphic simplicial subdivisions L,, L,. In this case, we
shall say that the polyhedra |K,| and |K,| are equivalent. By a q-cell
we shall mean a polyhedron equivalent to ¢-simplex, by a g-sphere one
equivalent to the boundary of (¢+1)-simplex. When polyhedra |K,| and
|K,| are equivalent, there is a homeomorphism

b: K || K,

which maps each simplex of L, linearly onto the corresponding simplex
of L, This ¢ is simplicial relative to L, and L,, and piecewise linear
relative to the original complexes K, and K,. All mappings used in this
paper will be piecewise linear homeomorphisms. Thus, whenevre we
mention a homeomor phism, it should be understood that we mean a piecewise
linear homeomorphism. If the mapping is onto, this will be indicated by
a double-headed arrow, as in the displayed formula above. If P, @ are
polyhedra and ¢: P— @ is a homeomorphism of P into @, and 9P is well
defined, then 9¢ denotes the homeomorphism ¢|oP.

A complex K is called the combinatorial q-manifold if for each point
x of |K|, St(x, K) is the g-cell, alternatively Lk(x, K) is the {g—1)-cell
if xe |9K| and Lk(x, K) is the (g—1)-sphere if x€ Int |K|. (See [3],
p. 31) A polyhedron is called the combinatorial q-manifold if it has a
simplicial subdivision which is a combinatorial g-manifold. Whenever we
mention a manifold, it should be understood that we mean a combinatorial,
connected manifold. We shall call a finite manifold closed if it has no
boundary. For the sake of convenience, a polyhedron P in a polyhedron
Q will stand for the polyhedron P being piecewise linearly imbedded as a
subcomplex of a simplicial subdivision of the polyhedron Q.

If a polyhedron M is an orientable g-manifold, we shall denote by
{M> the oriented manifold obtained by assigning one of the possible
orientations ; M with the opposite orientation will be denoted by —J{M>.
As a matter of convention, 1<M>, —1<{M> will mean <M>, —<M>
respectively. If NCM is an orientable g-manifold, we shall write
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(N> XM if <N> has been oriented by giving to each of g-simplices
the orientation of {M>. If oM is not empty and orientable, by o{M)>
we shall denote the oriented ©M obtained by giving to each of its (g—1)-
simplices the orientation coherently induced by that of the oriented g-
simplex <A>C<{M> which is incident to the former. Let {M>, <N> be
oriented ¢g-manifolds and ¢ : M—N be a homeomorphism. If the orienta-
tion of {N> and the orientation induced by ¢ and that of <{M)> are
identical, we shall write ¢: <M>—<N>, and denote the oriented image
of M by ¢{M>.

Let P, QM be polyhedra, M be an orientable manifold and
¢: MM be an orientation preserving homeomorphism such that ¢P=@Q.
In this case, we shall say that P, @ are congruent in M.

By I and J we shall denote the linear intervals 0<<¢t<<1and —1<s=1
respectively. We shall denote by C/yX or C/ X the closure of X in Y.
Let X, Y be point sets of some Euclidean space. We shall denote by
XY=YX the join of X and Y, that is, the set of points fx+(1—1¢)y
where x€ Y, yeY and £€ 1, using vector notation.

3. The Regular Neighborhood

Let P be a finite polyhedron in an m-manifold V. The regular
neighborhood of P in V, defined by Whitehead [7], p. 297, is an m-
manifold U(P, V) contained in V and containing P, which contracts
geometrically into P. The following results of Whitehead are necessary
in this paper, see [7], pp. 293-296.

(1) N(K”,L"”) is a regular neighborhood of P in V where K, L
are simplicial subdivisions of P, V and where K is a subcomplex of L.

(2) If P is a cell, then U(P, V) is an m-cell.

The regular neighborhood defined above is not necessarily a neigh-
borhood in the point-set theoretic sense and Theorem 1 in this section
does not hold for this regular neighborhood. Therefore we shall put
some restrictions to it as follows.

DeriNITION 1. Let P be a finite polyhedron in an m-manifold W
without boundary. The regular neighborhood U(P, W) of P in W means
an m-manifold contained in W and containing P in the interior, which
contracts geometrically into P.

In sections 3 and 4 however we shall use the regular neighborhood
defied by Whitehead which will be called the regular neighborhood in
the weak semse there.

Lemma 1. The properties (1) and (2) above mentioned still hold for
the regular neighborhood.
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Proof. Since the regular neighborhood is also the regular neighbor-
hood in the weak sense, it is enough to prove (1) that N(K”, L”) contains
P in the interior where K, L are simplicial subdivisions of P, W and where
K is a subcomplex of L. Let x be a point P. Then St(x, L”) is an m-
cell containing x in the interior, for W is an m-manifold without boundary.
Since Int St(x, L") is open in W and contained in Int N(K”, L"), P is
contained in Int N(K”, L”). The property (2) follows immediately from
the property (2) for the regular neighborhood in the weak sense.

Let N be a g-manifold and C a g-cell such that

a (g—1)-cell. We shall say that N and C have regular contact in F. In
this situation, a transformation

N=N\JC,

or the resultant of a finite sequence of such transformations will be called
the regular expansion of N, see [7], p. 291. Then, suppose that N is
in an m-manifold W without boundary. Let DN be a g-cell such that

ONN\aD>F.
Let G W be an m-cell containing C\ /D in the interior, and

0: G — R be a homeomorphism such that 6(C\/ D) = A,

a g¢-simplex in Euclidean m-space R. Then we call C a flat attachment
to N, see [3], p. 33.

Lemma 2. Let N be an m-manifold in an m-manifold W without
boundary, and N and an m-cell CC W have regular contact in an (m—1)-
cell F. Then C is a flat attachment to N.

Proof. Let D be a regular neighborhood U(F, N) in the weak sense.
By the property (2) of Whitehead, D is an m-cell in N and 9N/ \oD DF.
Since C and D have regular contact in F, C and C\ /D are equivalent,
see [3], p. 35, and C\/D is an m-cell. By (2) of Lemma 1,a regular
neighborhood U(C\JD, W)=G, say, is an m-cell containing C\/D in the
interior. Let & : G—R be a homeomorphism. This is possible, for G
is an m-cell. By Theorem 3 in [3], p. 32, there is a homeomorphism
¢: R—R such that ¢¢’(C\/D)=A, an m-simplex in R. Therefore 0=¢0’ :
G—R is a homeomorphism such that 6{C\/D)=A. Hence C is a flat
attachment to N.
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Lemma 3. Let P be a finite polyhedron in an m-manifold W without
boundary. Let U(P, W) and U,P, W) be regular neighborhoods of P in
W such that U(P, W) expands regularly into U(P, W). Then there is a
homeomor phism . WeW such that

(U(P, W) = U/P, W) and | P = identity
where " is an orientation preserving homeomorphism if W is orientable.

Proof. Let N,, -+, N, be a sequence of m-manifolds in W such that
N,=U/(P, W), N,=U,P, W) and N;_=N;=N;_,\JC; is a regular expan-
sion where N;_, and an m-cell C; have regular contact in an (m—1)-cell
F;, ¢§=2,---, k). By Lemma 2, C; is a flat attachment to N;_,. Namely
there are m-cell G; W containing C; and D;=U(F;, N;_,) in the interior,
and a homeomorphism 6;: G;—R such that 6,(C;\/D;)=A, an m-simplex.
By Theorem 6 in [3], pp. 48-49, there is a homeomorphism

7;: . 0,G; o 0,G;
such that
7:10:(0G; \J (CUN;_,—D;) N\ G;)) = identity and 7,0;D; = A .
Then ;: WeW defined by taking
;| CUAW—G;) = identity and ;|G; = 67,0,
is a homeomorphism such that
Y;N;_, = N; and ;| CI(N;_,— D;) = identity ,

where Vr; is an orientation preserving homeomorphism if W is orientable.
In this situation, D; = U(F;, N;_,) will be taken so that D, does not
meet P. This is possible, because P Int N, Int N;_, and by the
property (2) of Whitehead if we give a sufficiently fine simplicial subdivi-
sion to N;_,, then D; may be arbitrarily near F; which is contained in
ON;_,. Then P CIN;.,—D;) and +r;| P=identity.
Hence »: W« W defined by taking

Vo=
is the required homeomorphism.

Theorem 1. Let P be a finite polyhedron in an manifold W without
boundary. Then for any two rvegular neighborhoods U(P, W) and U,P, W)
of P in W there is a homeomorphism r: W W such that

Y(U(P, W)) = U,(P, W), | P = identity,
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where r is an orientation preserving homeomorphism if W is orientable.

Proof. Let K, L be simplicial subdivisions of P, W where K is a
subcomplex of L and where each of U;(P, W), considering it as subcomplex
of L, contracts formally into K. Then by Whitehead [7], p. 296, we
have the following

U/(P, W)= NU(P, W), L") <= N(K", L"),

where /=1, 2 and = means the regular expansion.

By the property (1) of Whitehead and Definition 1, N(U/(P, W), L")
is a regular neighborhood of U;(P, W) in W and a regular neighborhood
of Pin W. By Lemma 3 we have homeomorphisms {;, p;: W W such
that

v, UI(P, W) = NU{(P, W), L"),
p:N(U (P, W), L") = N(K”, L")

and
\l/‘,IP = szP = identity ’

where +r;, p; are orientation preserving homeomorphisms if W 1is orien-
table. Therefore

Y= Ptprtp: Weo W

is the required homeomorphism.

4. Preliminaries for Thickening

Let M be a closed #z-manifold in an m-manifold W without boundary,
where n<m.

NotaTtioN 1. By K and L we shall denote simplicial subdivisions
of M and W respectively where K is a subcomplex of L. By A we shall
denote a simplex of L’ and then x will denote the barycenter of A. If
A is an (n—gq)-simplex of K’, we shall denote by Vv the g-cell dual to
A in K’ with the simplicial subdivision Y which is a subcomplex of K",
and by [J we shall denote the g+ (m—#n)-cell dual to A in L’ with the
simplicial subdivision Z which is a subcomplex of L”. Let us denote
the g-skeleton of K’ by (K’)? where (K’)"' means the empty set. By
&7 we shall denote the polyhedron of the g-cellcomplex which consists
of all the dual cells V and by N?*“"~" the polyhedron of the g-{m—mn)-
cellcomplex which consists of all the dual cells [], where A ranges over
K‘/_(K/)n—q——‘l.
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Lemma 4. Let A be an (n—q)-simplex of K'. Then
\/ij = N(aY» aZ)

and \J,1; is a regular neighborhood of the (q—1)-sphere OV in the
(q+ (m—n)—1)-sphere O[], where A; ranges over the (n—q-+1)-simplices
of K’ incident to A.

Proof. As a matter of convenience N will stand for N(QY, 9Z). If
A,, -, A, are simplices of K’ which have A as a proper face and
A, .- A,, then by the proof of Theorem II of [6], p. 230, the join
x, - x, 18 a simplex of 9Y and conversely every simplex of 9Y is such
a join. Similarly a join x, - x5 is a simplex of 9Z if and only if the
simplices A,, -+, A; are in L/, which have A as a proper face and
Ab< <AB~

By the definition of N, a simplex B=x, --- x5 of 9Z is in N if and
only if there is a simplex A=x, --- x, of 9Y such that AB is a simplex
of 9Z. Let A, ---A,. Then A, is a simplex of K’ having A as a
proper face, and there is an (#—¢+1)-simplex A; of K’, incident to A,,
which is a face of A,. Then the simplex x;x, x5 is in the complex
Z;, and \J;[J;DN. Conversely every (g+(m—n)—1)-simplex C of [];
is written by x;%, ** Xg1(n-m-, Where A; is an (n—g+1)+i-simplex of L',
1<=i<q+(m—n)—1, such that A,CA - CAyig,om-,. Since x; is a
vertex of 9Y, C is in N. Since Z;CL"” is a (¢+ (m—n)—1)-homogeneous
complex, \/,[];CN. Therefore \/,[J,=N.

Let p be a point in 2V. Then St(p, 9Z) is a (¢g+ (m—n)—1)-cell
containing p in the interior, for o[] is a (¢+ (m—mn)—1)-sphere. Since
Int St(p, 2Z) Int N, we have oV Int N.

It remains to prove that N is a regualr neighborhood of 9V in 9]
in the weak sense. To show this we first prove the following three
assertions (see, [7], p. 293).

(@) None of the simplices and its interior of 9Z—92Y has all its
vertices in oV.

(b) If a simplex A of 9Z does not meet oV, then oV /\Lk(A, 0Z)
is a cell (possibly the empty set).

(c) If B is a simplex of 0Z, then the complexes Y /\Lk(B, 0Z) and
Lk(B, 0Z) also satisfy the conditions (a) and (b).

Proof of (a). If a simplex x,---x, of ©OZ or its interior has all its
vertices in 9V, then the simplices A, -+, A, are in K’. Hence the
simplex x, - x, and its interior are in 9V, proving (a).

Proof of (b). Let A=x,---x, where A,, ---, A, are simplices of L’
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having A as a proper face and A, ---CA,. Since A does not meet
oV, there does not exist { among «, -+, « such that A; is in K’. In
particular A, is not in K’.

Suppose that OV/\Lk(A, 2Z) is not empty. Since Lk(A, 9Z)
=\/pLk(A, B) where B ranges over all simplices of 9Z having A as a
face, there is a B for which 9V /\Lk(A, B) is not empty. Let Lk(A, B)=C,
a simplex of 9Z. If A,CA,and A, is in K’, then A, is also in K’. Then
C=x,-x,x7+ %y, where A_,--- | A, are simplices of K’ having A as a
proper face and Ag, .-+, A, are not simplices of K’ but simplices of L’
such that A - CA, A, -+-A,. Then oV/\Lk(A, B) =0V N\C=x, - x,
which is not empty. Since B is a simplex of L” having A, C as faces,
A, is a face of A,, which is in K’ and has A as a proper face.

Let p=n—qg+1 be the dimension of a face of A, as follows. There
is a p-face A? having A as a proper face, which is in K’, and there is
no s-face A° (s_>p) having A as a proper face, which is in K’. This
is possible, because A, is in K’ and A, is not in K’, and both of which
have A as a proper face. Suppose that there is an »-face A” of 4,, in
K’, having A as a proper face, and that none of A? and A” is a face of
the other. Then all vertices of the simplex A?A”, a face of 4,, is in K’
and the simplex A?A” is in L’. The dimension of A?A” is at least p+1.
By the maximum property of p, A?A” is not in K’. This contradicts the
well known result [7], p. 294, that no simplex of L’ has all its vertices
in K’. Therefore every face of A, which is in K’ and has A as a proper
face is a face of A?, Therefore every simplex of 9V /\Lk(A, 0Z) is the
join x,---x, where AC - CA,C -+ CA, -+ CA?, the dimension of
A,=n—q+1 and p=n, and conversely.

By A, we denote the (p—#n-+¢g—1)-simplex such that A?=AA,. Then
every simplex x, - x, is in Lk(x, xA,), where xA, will be thought of as
a subcomplex of K”. Conversely every simplex of Lk(x, xA,) is such a
join. Hence oy /\Lk(A, 8Z)=Lk(x,'xA,,) which is a (p—n+qg—1)-cell,
because x4, is the (p—mn-+gq)-simplex containing x on the boundary,
proving (b).

Proof of (c). For (a) is obviously satisfied. If A is a simplex of
Lk(B, 9Z) not meeting oV /\Lk(B, 9Z), then AB is a simplex in ©Z not
meeting oV and oV /\Lk(AB, 3Z) is a cell, by (b). Since Lk(AB, 2Z)
=Lk(A, L(B, 9Z)) and Lk(AB, 9Z)_Lk(B, 22),

OV N\Lk(B, 9Z) \Lk(A, L(B, 9Z)) = oV "\Lk(AB, 9Z),

a cell, satisfying (b) and also proving (c).
Finally we shall prove that N is a regualr neighborhood of 2V in
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o] in the weak sense (see, [ 7], p. 293-294). This will be proved by induc-
tion on the dimension g+ (m—n)-1 of 9. This is trivial if ¢+ (m—n)—1=0.
By (a) and the definition of N, N is a normal neighborhood of Y (see,
[7], p. 250). Since oV N and Lk(A, N)=Lk(A, 2Z)/\N, we have that
oV N\LE(A, N)=9V/\Lk(A, 2Z), which is a cell, by (b), where A is a
simplex of N not meeting V. Then N is a contractible neighborhood
of 2Y, [7], p. 250. By Theorem 2 of [7], p. 250, N contracts into 2Y.
It remains to prove that N is a manifold. Let b be a vertex in N. If
b is in Y, then Lk(b, N)=Lk(b, 9Z) which is a (g+ (m—mn)—2)-sphere,
for 8] is a (¢+(m—mn)—1)-sphere. Suppose that b is not in 9Y. A
simplex Ab of OZ meets OV if and only if A meets oV. Therefore
Lk(b, N)=N@Y N\ Lk(b, 0Z), Lk(b, 9Z)). By the hypothesis of induction
and (c), Lk(b, N) is a regular neighborhood of the cell 9V /\Lk(b, 9Z)
in Lk(b, 0Z) in the weak sense, and Lk(b, N) is a (¢ -+ (m—mn)—2)-cell, by
the property (2) of Whitehead in section 3. Therefore N is a manifold,
and a regular neighborhood of 9V in 9] in the weak sense, completing
the proof of Lemma 4.

DEFINITION 2. Let us take a finite sequence a=A,, -+, A, of suc-
cessively incident simplices of K’ such that A,=A%* a fixed n-simplex.
We call @ the way in K’ to 4,. By <{A*> we shall denote the oriented
n-simplex. Since A,=A* we have the well defined oriented simplex,
written <A,>,, inductively such that {(A;> is either 9<A;>D>A;_> or <A
CoXA;_> according the case.

Let M; be a closed #z-manifold in an oriented m-manifold <W,>
without boundary where #<m and i=1,2. Let ¢: MM, be a
homeomorphism.

NotaTioN 2. Using Notation 1, suppose that ¢ is simplicial relative
to the complexes K, and K, which are isomorphic under the isomorphism
induced by ¢. Then ¢ is also simplicial relative to K{ and K}, and
relative to Ky and K;. From now on by A;, A;, we denote simplices
of K satisfying ¢A,=A,, ¢A;=A,.. Then ¢V,=V, and thus, ¢ will
induce a homeomorphism onto between the polyhedra % and 8%. The
correspondence between cells of M7 and cells of NP induced by the cor-
respondence between [], and [ ], is one-to-one. By <{A¥> we shall denote
n-simplices with orientations such that ¢<A¥>=<{A¥>, which will keep
fixed in the rest of the paper. Let « be a way in K{ to A,, then the
simplices of K% corresponding the simplices of the way in K| will be
naturally thought of as a way in K% to A,, which will be again denoted
by «, and these are called the ways to A;. It is well known [6], p. 249,
that for the oriented simplex <{A;>, in the oriented manifold {W;> there
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is the oriented dual cell, written <[J;>,, whose orientation is uniquely
determined such that the intersection number of <A;>, and <{[],>, is
equal to 1 in <W>.

Lemma 5. Let «, B be the ways to A, If {[1D,= €[] os. Then
{Dpu= €8, and if B; is a vertex and <[>, €<W.,>, then
s CeXW,>, where € =1 or —1.

Proof. If {{J>,= €<y s, then <A >,=€<A >s. Since K{ and K}
are isomorphic under the correspondence $pA,=A,, (A,>, = € (A,>; and then

{pa=€<{0pp. If <O s, Ce<W,> then (A>,=¢€A,. By the same
reason mentioned above and ¢<KAF>=C(A¥> we have that {Ap,= €A,

and that <{[],>,C €<{W,.

5. The Proof of Theorem 2

Lemma 6. Let T be a (g—1)-sphere in a q-sphere S and U(T,S) a
regular neighborhood of T in S. Suppose that the Schinflies conjecture is
true for dimension q. Then therve is a homeomorphism 0: T,X J—-S such
that

T, x]J)=UT,S) and (T, x0) =T,
where T, is a (g—1)-sphere.

Proof. Let A,, A, and A, be ¢g-simplices in S similarly situated with
respect to a center of similitude in Int A, such that A, Int A, and

A, Int A,. By Corollary to Theorem 8 of [7], p. 260, C/(A,—A,) is
a regular neighborhood of 24 in S. There is a homeomorphism

b1 DA X J > CUD,—A,)

such that $(0A,%x0)=94,. By the assumption and Theorems 3 and 4 of
[3], p. 32, there is an orientation preserving homeomorphism

Y0 Se S

such that ,0A,=T. It is immediate that + (Cl(A,—A,)) is a regular
neighborhood of 7 in S. By Theorem 1 in section 3 there is an orienta-
tion preserving homeomorphism

Y0 S S
such that Y (CHA,—A))=U(T, S) and ,| T=identity. Putting T,=0A,
and O0=+rp) ¢}, it completes the proof.

Lemma 7. Let <S;> be an oriented q-sphere and T;S; a (g—1)-
sphere where i=1,2. Suppose that the Schinflies conjecture is true for
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dimension q, and that there is a homeomorphism
¢: KU(T, S)> - <U(T, S.)»
such that ¢T,= T, where CU(T;, S;)>KS;>. Then there is a homeomor phism

Y Sp & <S8
such that | U(T,, S,)=¢.

Proof. By Lemma 6 there are a (¢—1)-sphere 7, and homeomor-
phisms 0;: T,x J U(T;, S;) such that 6,(T,x0)=7;. By the assumption
the (¢g—1)-spheres 6,(T,%x 1) and 6,(T,x —1) are congruent to the boundary
of g-simplex in S;. Then CIS;—U(T;, S;)) consists of two g-cells C; and
D; such that oC;=0,(T,x1) and 0D;=0,(T,x —1). If we put p.=¢|2C,,
then p(2C,) is either 9C, or 9D,, say oC,. If we put p,=¢|oD,, then
ps(oD)=0D,. By &U(T,, S,)>=<U(T,, S,)>, we have that

pe: KCp e KC, and py: KD,p e KDy,

where <C;>, <D;><S.
By Lemma in 3.12 of [3], p. 37, there are homeomorphisms

7.1 {C><C, and 7,: <D <Dy
such that 97,=p, and 979,=p,;. Then : {5 >—<S,> defined by taking
VIUT,, S) = ¢, ¥[C, =9, and ¥[D, = 7,
is the required homeomorphism.

Lemma 8. Let M} be a closed n-manifold in an oriented (n+1)-
manifold <WTY> without boundary, i=1, 2. Using Notation 2, let

¢: M} M3

be a homeomor phism which is simplical relative to K, and K,. Suppose that
the Schonflies conjecture is true for dimensin <n. Then there is a home-
omor phism

Vi KIS o (RETS such that | M3 = ¢ where RS W,

To prove the lemma we first prove the following ;
(0). Let a homeomorphism ¢ . M M3 be simplicial relative to K, and
K,. Then there is a homeomor phism

YO N NE such that |8 = ¢ and V<10, = {1 s

for each n-simplex A; of K and each way o to A;.
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Proof of (0). Since A; is an #n-simplex, 9[]; is a O-sphere and we
have a homeomorphism

Yot KO e K[, for a way «.

Since V; is the point such that [];=V;(3[];), we have a homeomorphism

\P‘é: <Dl>w(_" <DZ>
such that
Y4 = i and Y4V, = V,, by 3.11 of [3], p. 36.

Let B be another way to A;, then <[])s= €<[],>, implies <{[1,0s=
€<, s, by Lemma 5. Therefore we have that

‘J’Z<Dl>s ={s-
Thus we can put ¥/ =+,. Then °: NN} defined by taking °|[],
=+’ is 2 homeomorphism such that
VIR = ¢ and YD, = <[
for A; and «a to A;, proving (0).

Next we shall prove the following ;
(g—1)—(q). Suppose that there is a homeomorphism
Y? 7t N N
such that
PR = b and UKDy = <oy
for each (n—q-+1)-simplex A; of Ki and for each way  to A;, and

suppose that the Schonflies conjecture is true for dimension q. Then there
is a homeomor phism

,\Pq . SR«{+1 > mg+l
such that
‘P‘q"@g = ¢ and ‘!’q<‘:\1>m = <D2>w
for each (n—q)-simplex A; of Ki and for each way « to A;.

Proof of (g—1)—(q). By A;; we denote an (n—q+1)-simplex of K}
incident to an (z—gq)-simplex A;. By y we denote the way to A;; which
is obtained from a way « to A; adding A;; as the final term. Then

iy CX[dDg. Since YK, ;5y=<[",;>y, we have that
‘Pq—1<\jj‘:]1j>w=<\/j[]2j>my Where <UjDij>m<a<Di>m'
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By Lemma 4, \/;[];; is a regular neighborhood of the (¢—1)-sphere
oV; in the g-sphere 9[];. Then by the assumption and Lemma 7 there
is a homeomorphism

" a<Dl>w «> 8<D2>m
such that
Z’IU]‘DI]‘ = ‘)l'q—l-

Let x; be the barycenter of A;, then [];=x,;(3[ ;) and V,=x,(0V;), by
Theorem II of [6], p. 230. By 3.11 of [3], p. 36, we have a homeomor-
phism

\!’;: <D1>m(_’<l:|2>w such that a‘!"; = #'\Z ’

and V|V, is simplicial relative to Y, and Y,, see Notation 1. Let 8 be
another way to A;, then we have that

<J>s =<[Js, by Lemma 5.
Thus we can put ¥,=v'". Then J?: N{*" — N defined by taking
YO, =
is a homeomorphism such that
VIR = ¢ and <[>, = <[
for each (n—gq)-simplex A; and « to 4;, proving (g—1)—(q).

Proof of Lemma 8. By assertions (0) and (¢—1) — (¢) there is a
homeomorphism

P P o N
such that
PR = ¢ and D, = <[,
for each O-simplex A; and each way « to A;. By Lemma 5 we have

that if {[1,>,C € {Wi™ then {[J,>,C € <W5*). Therefore ¥*([J,>=<1,»,

and
PRI = <N, where {[1,> T<WETH.
If we put "=+, then this completes the proof of the lemma.
Theorem 2. Let M} be a closed n-manifold in an oriented (n+1)-
manifold <W'i™> without boundary where i=1,2 and let
b M? e M3

be a homeomorphism. Suppose that the Schinflies conjecture is true for
dimension <n. Then for any regular neighborhoods UM?%, Wit') there is
a homeomor phism
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Yo UMY, Wiy s CUMs, W5 such that
V| M3} = ¢ where <UM?T, Wity C<KWE™.

Proof. Let K;, L; be simplicial subdivisions of M%7, W™ where K;
is a subcomplex of L; and ¢ is simplicial relative to K, and K,. By
Lemma 8 there is a homeomorphism

PR o R
such that
Y [Mt = ¢ where (R C<WE™D.
Let A;; be a O-simplex of K/, then [1;;=N(A,;, L{). On the other hand
it is well known [7], p. 294, that N(K{, L{)=\/,[J;;. Therefore we have
that N(K7, L{)=%"". Hence vy’ is a homeomorphism
¥ V(KT , LY)> & <N(K3, L:)>
such that
¥ My = ¢ where <N(K{,L{)> C<WitH.
By Theorem 1 there are orientation preserving homeomorphisms
\lj‘i : W¥+1 PEEN W’f:.b+1
such that
YA(UME, W) =N(K{, L) and ;| M? = identity.
Then vr=+z"’ yr, is the required homeomorphism.

6. Apﬁlications

Theorem 3. Let M” be an orintable, closed n-manifold in an orientable
(n+1)-manifold W* without boundary. Let UM”, W"*') be a regular
neighborhood of M™ in W"*'. Suppose that the Schionflies conjecture is
true for dimension <n. Then there is a homeomor phism

0: M*x J— W
where J is the linear interval —1<s<1, such that
O(x, 0) = x for each point x of M”

and such that
oM*x J) = Uum», W+,

Proof. Let us consider the Cartesian product M”x R where R is a
Euclidean 1-space containing J. Then M”"x R is an orientable (z-+1)-
manifold without boundary. By Theorem 8 of [7], p. 260, and Definition
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1, M"xJ is a regular neighborhood of M”xX0 in M"xR. A map
¢: M"x0—M" defined by ¢(x, 0)=x for each x is a homeomorphism
onto. If we give orientations to M"xX R and W”*"', then by Theorem 2
we have a homeomorphism

0 : Mn X]_) W”+1
which satisfies the theorem.

Theorem 4. Let M” be an orientable, closed n-manifold in an orientable
(n+1)-manifold W*** without boundary. Let
¢ M"—>M"
be a homeomorphism which is onto isotopic to the identity (see, [3], p. 30).

Suppose that the Schinflies conjecture is true for dimension <mn. Then
there is an orientation preserving homeomor phism

Yo Wt e W™ such that | M” = ¢.

Proof. By Theorem 3 each point of a regular neighborhood
UM?”, W™y will be denoted by a pair (x,s) where x is a point of M”
and s€J and (x,0)=x. Let ¢,: M"—M" tcl, be an onto isotopy
between ¢,=¢ and ¢,=identity. Then +: W**'«s W”*' defined by taking

Y(2) = z, if a point z€ CAW™"'—UM", W"))
and V(2) = (bis(x), 8), if z€ UM™, W) and z=(x, )

is the required homeomorphism.

(Received February 21, 1960)
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