A note on abelian Galois algebra over a commutative ring

Kanzaki, Teruo

Osaka Journal of Mathematics. 3(1) P.1-P.6

1966

publisher

https://doi.org/10.18910/6309

10.18910/6309

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/
A NOTE ON ABELIAN GALOIS ALGEBRA OVER A COMMUTATIVE RING

TERUO KANZAKI

(Received September 6, 1965)

Let Λ be a faithful algebra over a commutative ring R with unit element 1, and G a finite group of R-algebra automorphisms of Λ. In the following we shall identify $R \cdot 1$ with R. We shall call Λ a (central, abelian) Galois algebra over R with group G, if Λ is a galois extension of (the center) R relative to (abelian) group G in the sense of [1], [7], and [8]. In [3], Chase, Harrison and Rosenberg proved the normal basis theorem for a commutative Galois algebra over a semi-local ring, and in [5], De Meyer proved it for a central abelian Galois algebra Λ over its center with group of inner automorphisms of Λ. In this note, in §1, we shall prove the normal basis theorem for any abelian Galois algebra over a semi-local ring. Furthermore, we show that if the normal basis theorem holds for an R-algebra Λ with a finite abelian group G of R-algebra automorphisms of Λ, and if Λ is a strongly separable algebra (see [9]) then Λ is a Galois algebra over R with G. In §2 and §3, we shall show some properties an abelian Galois algebra over an indecomposable commutative ring. Throughout this note, we assume that every ring has a unit element.

1. Normal basis. Let Λ be an algebra over a commutative ring, and G a finite abelian group of R-algebra automorphisms of Λ.

Theorem 1. Let R be a local ring, and Λ an abelian Galois algebra over R with abelian group G. Then Λ is isomorphic to the group ring RG of group G over ring R as RG-module.

Proof. Since R is local and G is abelian, by [10], Λ is a Galois extension of the center C with the subgroup H and the center C is a Galois extension of R with group G/H, where $H = \{\sigma \in G : \sigma | C = \text{identity}\}$. Therefore, $\Lambda \otimes_R C$ is a Galois extension of the center $C \otimes_R C$ with group H and $C \otimes_R C$ is a Galois extension of $R \otimes_R C = C$ with group G/H. Let $\{\sigma_1 = 1, \sigma_2, \ldots, \sigma_r\}$ be a representative system of the residue class group
By [3], \(C \otimes_R C = \sum_{i=1}^{r} \bigoplus C e_i = \sum_{i=1}^{r} C \sigma_i(e_i) \), where \(e_1, e_2, \ldots, e_r \) are orthogonal idempotent elements in \(C \otimes_R C \) and \(\sum e_i = 1 \), and hence \(\Lambda \otimes_R C = \sum_{i=1}^{r} \bigoplus (\Lambda \otimes_R C) \sigma_i(e_i) = \sum_{i=1}^{r} \sigma_i (\Lambda \otimes_R C) e_i \). On the other hand, \((\Lambda \otimes_R C) e_i \) is a central Galois extension of \(C e_i \) with group \(H \). Since \(C \) is semi-local, by Lemma 1 in [10], \(H \) is a group of inner automorphisms of \((\Lambda \otimes_R C) e_i \). By [5], there is an element \(\theta \) in \((\Lambda \otimes_R C) e_i \) such that \((\Lambda \otimes_R C) e_i = \sum_{\theta \in H} C \tau(\theta) \). Therefore, we have

\[
\Lambda \otimes_R C = \sum_{i=1}^{r} \bigoplus \sigma_i (\Lambda \otimes_R C) e_i = \sum_{i=1}^{r} \bigoplus C \sigma_i(\theta) = \sum_{\theta \in H} C \sigma(\theta).
\]

Hence \(\Lambda \otimes_R C \) is isomorphic to the group ring \(C[G] \) of group \(G \) over ring \(C \) as \(CG \)-module. Since \(C \) is a finite rank \(R \)-free module, \(CG \) is a finitely generated \(RG \)-projective module and \(\Lambda \otimes_R C \) is a finitely generated \(RG \)-projective module. Since \(R \) is a direct summand of \(C \) as \(R \)-module, \(\Lambda \) is a finitely generated projective \(RG \)-module. For the remainder of the proof, we proceed similarly to the proof of Theorem 4.2 in [3]. For the maximal ideal \(m \) of \(R \), we have \(\Lambda \otimes_R C/mC \cong RG \otimes_R R/mC \). Using the Krull-Schmidt Theorem, we obtain \(\Lambda/m\Lambda \cong R/mG \) as \(R/m \) \(G \)-module. Since \(mRG \) is a radical ideal of the group ring \(RG \), and \(\Lambda \) is a \(RG \)-module, by Lemma 3.14 in [11] \(\Lambda \) and \(RG \) are isomorphic \(RG \)-modules.

Corollary 1. Let \(\Lambda \) be an abelian Galois algebra over \(R \) with abelian group \(G \). Then \(\Lambda \) is a finitely generated rank 1 \(RG \)-projective module, and therefore \(\Lambda \) is a rank \(|G| \) \(R \)-projective module (\(|G| \) denotes the order of \(G \)).

Proof. Since \(RG \) is a commutative ring, for any prime ideal \(P \) of \(RG \)

\[
\Lambda \otimes_{RG}(RG) \big|_P = (\Lambda \otimes_{p} R_p) \otimes_{R_p} (RG) \big|_P
\]

where \(p = R \cap P \). By Theorem 1, \(\Lambda \otimes_{p} R_p \cong R_p G \) as \(R_p G \)-module, hence \(\Lambda \otimes_{RG}(RG) \cong (RG) \big|_{p} \) as \((RG) \big|_{p} \)-module. Therefore, by p. 138, Theorem 1 in [2], \(\Lambda \) is an \(RG \)-projective module with rank 1.

Corollary 2. Let \(R \) be a semi-local ring, \(\Lambda \) an abelian Galois algebra over \(R \) with abelian group \(G \). Then \(\Lambda \) is isomorphic to \(RG \) as \(RG \)-module.

Proof. By Corollary 1, \(\Lambda \) is a finitely generated rank 1 \(RG \)-projective module. If \(R \) is a semi-local ring, then \(RG \) is also semi-local, therefore by p. 143, Proposition 5 in [2], \(\Lambda \) is \(RG \)-free module with rank 1.

Theorem 2. Let \(\Lambda \) be an algebra over a commutative ring \(R \) with
unit element, and \(G \) a finite abelian group of \(R \)-algebra automorphisms of \(\Lambda \). If \(\Lambda \) is isomorphic to the group ring \(RG \) as \(RC \)-module, and if \(\Lambda \) is a strongly separable algebra over \(R \) (see [9]), then \(\Lambda \) is a Galois algebra over \(R \) with group \(G \).

Before proving the Theorem, we prove the following lemma.

Lemma 1. Let \(\Lambda \) be an algebra over \(R \), and \(G \) a finite group of \(R \)-algebra automorphisms of \(\Lambda \). If \(\Lambda \) is strongly separable over \(R \) and \(Tr(\Lambda) \equiv 1 \), where \(Tr(x) = \sum_{\sigma \in G} \sigma(x) \) for \(x \in \Lambda \), then a crossed product \(\Delta(\Lambda, G) \) of \(\Lambda \) and \(G \) with trivial factor set is separable over \(R \).

Proof. Let \(\Delta(\Lambda, G) = \sum_{\gamma \in G} \Lambda_{\gamma}u_{\gamma} \), where \(\varphi : \Delta(\Lambda, G) \otimes_R (\Delta(\Lambda, G))^\circ \to \Delta(\Lambda, G) \) is defined by \(\varphi(x \otimes y) = xy \), and set \(A = \text{right annihilator of ker } \varphi \) in \(\Lambda \). For every \(a \) in \(A \), therefore, \(\varphi(\sum_{\gamma \in G} \gamma(x \otimes u_{\gamma}) = Tr(\varphi(a)) \) is contained in \(\varphi(A) \). Since \(\Lambda \) is strongly separable over \(R \), \(\Lambda \) is separable over \(R \) and \(\Lambda = \mathbb{C}[\Lambda, \Lambda] \). Thus \(\varphi(A) = Tr(\varphi(A)) = Tr(C) \). Since \(Tr(\Lambda) \equiv 1 \), there exists \(a = c + b \) in \(\Lambda = \mathbb{C}[\Lambda, \Lambda] \) such that \(Tr(a) = Tr(c) + Tr(b) = 1 \), \(c \in \mathbb{C}, \ b \in [\Lambda, \Lambda] \), therefore \(Tr(C) \equiv Tr(c) = 1 \). Accordingly, \(\varphi(A) \equiv 1 \), \(\Delta(\Lambda, G) \) is separable over \(R \).

We have easily the following lemma.

Lemma 2. Let \(\Lambda \) be a faithful algebra over \(R \), \(G \) a finite abelian group of \(R \)-algebra automorphisms of \(\Lambda \), and let \(\Lambda^G = R \). Then an element \(\sum_{\sigma \in G} \chi_{\sigma}u_{\sigma} \) of the crossed product \(\Delta(\Lambda, G) \) is contained in its center if and only if \(\chi_{\sigma} \) is in \(R \) for every \(\sigma \in G \) and satisfies \(\lambda_{\sigma}(\chi_{\sigma}) = \lambda_{\sigma}(\chi_{\sigma}) \) for every \(\lambda \in \Lambda \) and \(\sigma \in G \).

Proof of Theorem 2. We suppose \(\Lambda = \sum_{\delta \in \Delta} \oplus R\sigma(\delta) \) for some element \(\delta \) in \(\Lambda \). We have easily \(\Lambda^G = RTr(\delta) = Tr(\Lambda) \). Since \(\Lambda^G \) is a ring and contains \(R \), \(Tr(\delta) \) is contained in \(R \), therefore \(\Lambda^G = Tr(\Lambda) = R \). By Lemma 1, the crossed product \(\Delta(\Lambda, G) \) is separable over \(R \), and by Lemma 2, the center of \(\Delta(\Lambda, G) \) is \(R \). Because, if \(\sum_{\sigma \in G} \chi_{\sigma}u_{\sigma} \) is any element of the center of \(\Delta(\Lambda, G) \), then \(\chi_{\sigma} \in R \) and \(\chi_{\sigma}(\delta) = \lambda_{\sigma}(\delta) \) for every \(\sigma \in G \), hence \(\lambda_{\sigma} = 0 \) for \(\sigma \neq 1 \). Therefore, \(\Delta(\Lambda, G) \) is a central separable algebra over
Now, we consider the natural homomorphism $\delta: \Delta(\Lambda, G) \to \text{Hom}_R(\Lambda, \Lambda)$. By [1], $\text{Hom}_R(\Lambda, \Lambda)$ and $\text{Im} \delta$ are central separable algebras over R. Since the commutor ring $V_{\text{Hom}_R(\Lambda, \Lambda)}(\text{Im} \delta)$ of $\text{Im} \delta$ in $\text{Hom}_R(\Lambda, \Lambda)$ is R, by Lemma 2.3 in [4], δ is an isomorphism. Therefore, Λ is a Galois extension of R with group G.

Remark. By Proposition 8 in [10], an abelian Galois algebra Λ over any commutative ring R with abelian group G is strongly separable over R. Therefore if R is a semi-local ring, then Λ is a Galois algebra over R with abelian group G if and only if Λ is a strongly separable algebra and a Galois algebra over R with abelian group G in the sense of Hasse [6] or Wolf [13].

2. **Splitting ring.** In this section, we shall show that an abelian Galois algebra over a local ring has a splitting ring.

Theorem 3. Let Λ be an abelian Galois algebra over a commutative ring R with abelian group G. If R is indecomposable, then there exist a maximal commutative subalgebra S of Λ and a subgroup G_1 of G such that $\Lambda^{G_1}=S$. Therefore, Λ is a commutative Galois extension of R with group G/G_1, and Λ is a finitely generated projective S-module. Thus, if C is the center of Λ then central separable algebra Λ over C is split by S in the sense of [1]. In particular, if R is a local ring, then $\Lambda \otimes_R S$ is isomorphic to the full matrix ring of degree $|G|$ over the commutative ring $C \otimes_R S = \sum_{\sigma \in G/H} e_{\sigma}$ where $H = \{\sigma \in G : \sigma | C = \text{identity}\}$, $\{e_{\sigma} : \sigma \in G/H\}$ are orthogonal idempotent elements and $\sum_{\sigma \in G/H} e_{\sigma} = 1$.

Proof. For the first part, we prove by the induction on the order $|G|$. If $|G|$ is prime, then by [5], Λ is commutative, i.e. $\Lambda = S$. We suppose Λ is non-commutative. Since R is indecomposable, by [10], Λ is a Galois extension of the center C with group H, and $\Lambda = \sum_{\sigma \in H} J_\sigma$, $J_\sigma = \{a \in \Lambda : \sigma(x)a = ax \text{ for all } x \in \Lambda\}$. By [5], we may assume that H is not cyclic. For an element σ in H, we denote the σ-fixed subring of Λ by $\Lambda^{(\sigma)}$, then the commutor ring $V_{\Lambda}(\Lambda^{(\sigma)}) = \sum_i J_\sigma^i$ is the center of Λ (cf. [10]). Since $\Lambda^{(\sigma)}$ is a Galois extension of R with group $G/(\sigma)$, using the inductive assumption on roder $|G/(\sigma)|$, there exist a maximal commutative subalgebra S of Λ and a subgroup $G_1 = G/(\sigma)$ of $G/(\sigma)$ such that $(\Lambda^{(\sigma)}) = \Lambda = S$. But $\Lambda^{(\sigma)} \supset S \supset V_{\Lambda}(\Lambda^{(\sigma)})$, hence $V_{\Lambda}(S) \subset (\Lambda^{(\sigma)})$, therefore $V_{\Lambda}(S) = S$. Accordingly, S is a maximal commutative subalgebra of Λ. Since S is a Galois extension of R with group G/G_1, S is separable over
ABELIAN GALOIS ALGEBRA

5

i?, therefore Λ is a finitely generated projective S-module (see [7]). By Proposition 2.4 in [4], central separable algebra Λ over C is split by S. Thus we have the first part. For the last part, we assume R is local. Then S is a semi-local ring and by §5, Proposition 5 in [2], Λ is a S-free module with rank \(|G| = m\). By Proposition 2.4 in [4], \(\text{Hom}_S(Λ, A) = (S)_m\). On the other hand, by [3], C \(\otimes K C = \sum \oplus C \epsilon\), and therefore

\[\Lambda \otimes_R S = (\Lambda \otimes_C S) \otimes_C (C \otimes_R C) = (S)_m \otimes_C (C \otimes_R C) = (S)_m \otimes_S (S \otimes_R C)\]

3. Central Galois extension

Lemma 3. Let C be any commutative ring, and G a finite group such that the order \(|G|\) is unit in C. Then for any CG-module M, \(M^G = \{x \in M : \sigma x = x \text{ for all } \sigma \in G\}\) is a direct summand of M as C-module.

Proof. \(Tr'\left(x\right) = \frac{1}{|G|} \sum_{\sigma \in G} \sigma(x)\) for \(x \in M\). Then \(Tr \colon M \to M^G\) is a C-epimorphism, and \(Tr' \mid M^G = \text{identity}\), therefore, \(M^G\) is a direct summand of M as C-module.

Theorem 4. Let Λ be a central abelian Galois extension of the center C with abelian group G, and C an indecomposable ring. Then

1) for every subgroup H of G, there exists a subgroup H' of G such that \(\Lambda^H = \sum_{\sigma \in H'} \oplus J\),

2) if \(\Lambda^H = \sum_{\sigma \in H'} \oplus J\) then then \(\Lambda^H = V_\Lambda(\Lambda^{H'})\) and and \(\Lambda^{H'} = V_\Lambda(\Lambda^H)\).

Proof. By [10], \(\Lambda = \sum \oplus J_\sigma\) and \(|G|\) is unit in C. Since \(\sigma(J_\sigma) = J_{\sigma^{-1}}\sigma = J_\sigma\) (see [10]), \(J_\tau\) is CG-module. For any subgroup H of G, by Lemma 3, \(J^H_\tau\) is a finitely generated projective C-module. Since C is indecomposable, for every maximal ideal \(p\) of C, rank of \(J^H_\tau \otimes_C C_p\) over \(C_p\) is constant (see p. 138, Theorem 1 in [2]), hence \(J^H_\tau \otimes_C C_p \neq 0\) for every maximal ideal \(p\) of C if \(J^H_\tau \neq 0\). Since \(J_\tau\) is a rank 1 projective C-module (see [12]), we have \(J^H_\tau \otimes_C C_p = J_\tau \otimes_C C_p\) for every maximal ideal \(p\) of C if \(J^H_\tau \neq 0\). Therefore, we have either \(J^H_\tau = 0\) or \(J^H_\tau = J_\tau\) for each \(\tau \in G\). Accordingly, \(\Lambda^H = \sum_{\sigma \in G} \oplus J^H_\sigma = \sum_{\tau \in H'} \oplus J_\tau\), where \(H' = \{\tau \in G : J^H_\tau = J_\tau\}\).

Since \(\Lambda^H\) is a subring, by [10], \(H'\) is a subgroup of G. Since \(\Lambda^{H'}\) is separable over C, \(T_\Lambda(\Lambda^{H'}) = \sum_{\tau \in H'} \oplus J_\tau = \Lambda^{H'}\) is separable over C, and \(V_\Lambda(V_\Lambda(\Lambda^{H'})) = \Lambda^{H'}\) (see [7]). Therefore, \(V_\Lambda(\Lambda^{H'}) = \Lambda^{H'}\) and \(V_\Lambda(\Lambda^{H'}) = \Lambda^H\).
References

