
Title A note on abelian Galois algebra over a
commutative ring

Author(s) Kanzaki, Teruo

Citation Osaka Journal of Mathematics. 1966, 3(1), p. 1-6

Version Type VoR

URL https://doi.org/10.18910/6309

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



Kanzaki, T.
Osaka J. Math.
3 (1966), 1-6

A NOTE O N ABELIAN GALOIS ALGEBRA OVER
A COMMUTATIVE RING
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Let Λ be a faithful algebra over a commutative ring R with unit
element 1, and G a finite group of i?-algebra automorphisms of Λ. In
the following we shall identify RΛ with R. We shall call Λ a (central,
abelian) Galois algebra over R with group G, if Λ is a galois extension
of (the center) R relative to (abelian) group G in the sense of [1], [7]
and [8]. In [3], Chase, Harrison and Rosenberg proved the nomal
basis theorem for a commutative Galois algebra overa semi-local ring,
and in [5], De Meyer proved it for a central abelian Galois algebra Λ
over its center with group of inner automorphisms of Λ. In this note,
in § 1, we shall prove the nomal basis theorem for any abelian Galois
algebra over a semi-local ring. Furtheremore, we show that if the normal
basis theorem holds for an 7?-algebra Λ with a finite abelian group G
of i?-algebra automorphisms of Λ, and if Λ is a strongly separable
algebra (see [9]) then Λ is a Galois algebra over R with G. In § 2 and
§3, we shall show some properties an abelian Galois algebra over an
indecomposable commutative ring. Throughout this note, we assume
that every fing has a unit element.

1. Normal basis. Let Λ be an algebra over a commutative ring,
and G a finite abelian group of i?-algebra automorphisms of Λ.

Theorem 1. Let R be a local ring, and Λ an abelian Galois algebra
over R with abelian group G. Then /Y is isomorphic to the group ring
RG of group G over ring R as RG-module.

Proof. Since R is local and G is abelian, by [10], Λ is a Galois
extension of the center C with the subgroup H and the center C is a
Galois extension of R with group G/H, where H= {CΓGG : σ |C = identity}.
Therefore, Aξξ>RC is a Galois extension of the center Cξ$RC with group
H and C®RC is a Galois extension of R<ξ§RC = C with group G/H. Let
{σ1 = l9 σ2, •••, σr) be a representative system of the residue class group
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G/H. By [3], C®RC= Σ ®Ceσi= Σ θCσ,^), where ^, £σ2, - , eσr are

orthogonal idempotent elements in C®RC and Σ^σ t

 = l> a n ( i hence

A®RC = Σ Θ(Λ® *<:>,•«) = Σ Θ ^ A ® / ) ^ ) . On the other hand,
ι = l ι = l

(A®RC)e1 is a central Galois extension of Ce1 = (C®RC)e1 with group H.
Since C is semi-local, by Lemma 1 in [10], H is a group of inner
automorphisms of (A®RC)e1. By [5], there is an element # in (A®RC)e1

such that (A®RC)e1 = Σ θCτ(#). Therefore, we have

Hemce Λ<g)ΛC is isomorphic to the group ring CG of group G over ring
C as CG-module. Since C is a finite rank i?-free module, CG is a finitely
generated i?G-projective module and A®RC is a finitely generated RG-
projectine module. Since R is a direct summund of C as j?-module, Λ
is a finitely generated projective RG-moάύle. For the remainder of the
proof, we proceed similarly to the proof of Theorem 4.2 in [3]. For the
maximal ideal m of /?, we have A®RC/mC^RG®RR/mC. Using the
Krull-Schmidt Theorem, we obtain Λ/mΛ^]f/mG as R/xn G-module.
Since mRG is a radical ideal of the group ring RGy and Λ is a RG-
projective module, by Lemma 3.14 in [11] Λ and RG are isomorphic
i?G-modules.

Corolary 1. Let Λ be an abelian Galois algebra over R with abelian
group G. Then Λ is a finitely generated rank 1 RG-projective module,
and therefore Λ is a rank \G\ R-projective module ( |G| denotes tne order
o/G).

Proof. Since RG is a commutative ring, for any prime ideal P of RG

K®RG{RG)P = (A®RRp)®RpG(RG)P

where p = R(λP. By Theorem 1, K®PRp^RpG as /v^G-module, hence
K®RG(RG)p^(RG)p as (i?G)/,-module. Therefore, by p. 138, Theorem 1
in [2], Λ is an /?G-projective module with rank 1.

Corollary 2. Let R be a semi-local ring, Λ an abelian Galois algebra
over R with aberian group G. Then A is isomorphic to RG as RG-module.

Proof. By Corollary 1, Λ is a finitely generated rank 1 i?G-projective
module. If R is a semi-local ring, then RG is also semi-local, therefore
by p. 143, Proposition 5 in [2], Λ is RG-ΐτee module with rank 1.

Therem 2. Let Λ be an algebra over a commutative ring R with
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unit element, and G a finite abelian group of R-algebra automorphisms

of A, If A is isomorphic to the group ring RG as RC-module, and if

A is a strongly separable algebra over R {see [9]), then A is a Galois

algebra over R with group G.

Before proving the Theorem, we prove the following lemma.

Lemma 1. Let A be an algebra over R> and G a finite group of R-

algebra automorphisms of Λ. // Λ is strongly separable over R and

7>(Λ)3l, where Tr(x) = Σ σ(x) for i e Λ , then a crossed product Δ(Λ, G)

of A and G with trivial factor set is separable over R.

Prof. Let Δ(Λ, G)= Σ φAuσy uσ.ur = uστ, and uσλ = σ(\)uσ. for λ e Λ .

We set A = right annihilator of ker φ in Δ(Λ, G)' = Δ(Λ,G)®*(Δ(Λ, G))°,
where φ: Δ(Λ, G)®R(A(A, G))°->Δ(Λ, G) is defined by φ{x®y) = xyy and
set A=right annihilator of ker φ in Λe = Λ®/?Λ°, where φ: A®RA°^A

is defined by φ(x®y) = xy. From the proof of Theorem 4 in [7], it
follows that A contains the elements Σ γ x γ ( φ 7 ® ^ - i in Δ(Λ, G)e for

every a in A Therefore, φ(nΣι

fγxrγ(a)ui®Uy-i)= Tr(φ(a)) is contained
in φ(A). Since Λ is strongly separable over R, A is separable over R
and Λ = CΘ[Λ, Λ]. Thus φ{A)Z) Tr(φ(A)) = Tr(C). Since 7>(Λ)3l,
there exists a=c + b in Λ=C0[Λ, Λ] such that Tr(a)=Tr(c)+Tr(b) = l,
c<=Cy J E [ Λ , Λ ] , therefore Tr(C)^Tr(c) = 1. Accordingly, φ(A)^l>
Δ(Λ, G) is separable over R.

We have easily the following lemma.

Lemma 2. Let A be a faithful algebra over Ry G a finite abelian

group of R-algebra automorphisms of Λ, and let AG=R. Then an element

2 ^<ru<r °f the crossed product Δ(Λ, G) /s contained in its center if and

only if λ σ /s m R for ever σ^G and satisfies \σ.σ(\) = Wσ. for every λ G Λ

Proof of Theorem 2. We suppose Λ = Σ 0/?σ(z9) for some element

& in Λ. We have easily AG = RTr(β) = Tr(A). Since ΛG is a ring and

contains i?, Tr{β) is contained in i?, therefore AG=Tr(A) = R. By Lemma

1, the crossed product Δ(Λ, G) is separable over R9 and by Lemma 2,

the center of Δ(Λ, G) is /?. Because, if Σ λ^^ is any element of the

center of Δ(Λ, G), tnen λ σ e i ? and λ(rσ(ϊ9)=λ<Γz? for every σ e G , hence

λ σ = 0 for σ Φ l . Therefore, Δ(Λ, G) is a central separable algebra over
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R. Now, we consider the natural homomorphism δ: Δ(Λ, G)->HomΛ(Λ, Λ).
By [1], Honitf (Λ, Λ) and Im δ are central separable algebras over R.
Since the commutor ring VHomi?CΛ>Λ)(Im δ) of Im δ in Horn* (Λ, Λ) is R,
by Lemma 2. 3 in [4], δ is an isomorphism. Therefore, Λ is a Galois
extension of R with group G.

REMARK. By Proposition 8 in [10], an abelian Galoif algebra Λ
over any commutative ring R with abelian group G is strongly separable
over R. Therefore if R is a semi-local ring, then Λ is a Galois algebra
over R with aberian group G if and only if Λ is a strongly separable
algebra and a Galois algebra over R with abelian group G in the sense
of Hasse [6] or Wolf [13].

2. Splitting ring. In this section, we shall show that an abelian
Galois algebra over a local ring has a splitting ring.

Theorem 3. Let A be an abelian Galois algebra over a commutative
ring R with abelian grou G. If R is indecomposable, then there exist a
maximal commutative subalgebra S of A and a subgroup Gλ of G such that
AGl = S. Therefore, S is a commutative Galois extension of R with group
G/G1 and A is a finitely generated protective S-module. Thus, if C is the
center of A then central separable algebra A over C is split by S in the
sense of [1]. In particular, if R is a local ring, then A®RR is isomorphic

to the full matrix ring of degree \G1\ over the commutative ring C®RS =
_ Σ θS0 f f where H= {σGG : σ\C = identity}, {e^: σ<=G/H} are orthogonal
v<Ξ.G IH

idempotent elements and Σ e# = 1.

Proof. For the first part, we prove by the induction on the order

\G\. If IGI is prime, then by [5], Λ is commutative, i.e. A=S. We

suppose Λ is non-commutative. Since R is indecomposable, by [10], Λ

is a Galois extension of the center C with group H, and Λ = Σ θ / σ ,

Jσ= {ΛGΛ : σ(x)a = ax for all x^A}. By [5], we may assume that H is

not cyclic. For an element σ in H, we denote the σ—fixed subring of

Λ by Λcσ), then the commutor ring F Λ ( Λ c < Ό ) = Σ θ / σ ' is the center of Λ
i

(cf. [10]). Since Λc<n is a Galois extension of R with group G/(σ), using
the inductive assumption on roder \G/(σ)\, there exist a maximal com-
mutative subalgebra 5 of Λ and a subgroup G1=GJ(σ) of Gj(σ) such
that (Λcσ))Gi = ΛGi = S. But Λcσ)Z)SiD FΛ(Λcσ)), hence 7 A (S)c(A w ) , therefore
VA(S) = S. Accordingly, S is a maximal commutative subalgebra of Λ.
Since S is a Galois extension of R with group GjGx, S is separable over
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i?, therefore Λ is a finitely generated projective S-module (see [7]). By
Proposition 2.4 in [4], central separable algebra Λ over C is split by S.
Thus we have the first part. For the last part, we assume R is local.
Then S is a semi-local ring and by §5, Proposition 5 in [2], Λ is a S-
free module with rank \G1\=m. By Proposition 2.4 in [4], A®CS =
Homs(Λ, A) = (S)m. On the other hand, by [3], Cίg^C^ Σ ©Ceff, and
therefore

A®RS = (A®CS)®C(C®RC) = (S)m®c(C®RC) = (S)m®s(S®RC)

3. Central Galois extenlsion

Lemma 3. Let C be any commutative ring, and G a finite group such
that the order \G\ is unit in C. Then for any CG-module M> MG= {χ(=M:

σχ = x for all O-GG} is a direct summund of M as C-module.

Proof. T/(*) = 77^rΣ!<φ;) for #<ΞM Then Trf \M->MG is a C-

epimorphism, and Trf\MG= identity, therefore, MG is a direct summund
of M as C-module.

Theorem 4. Let A be a central abelian Galois extension of the center
C with abelian group G, and C an indecomposable ring. Then

1) for every subgroup H of G, there exists a subgroup H' of G such
that AH= Σ θ / σ ,

2) if AH= Σ ΘΛ then then Λ " = Vh(AH') and and AH'= VA(AH).

Proof. By [10], Λ = Σ Θ Λ and |G| is unit in C. Since σ(/τ) =

7στσ1=/σ ( s e e [1°]> Λ i s CG~module. For any subgroup H of G, by
Lemma 3, J? is a finitely generated projective C-module. Since C is
indecomposable, for every maximal ideal p of C, rank of J?®cCp over
Cp is constant (see p. 138, Theorem 1 in [2]), hence J?®cCp^0 for
every maximal ideal p of C if /?Φθ. Since Jτ is a rank 1 projective
C-module (see [12]), we have J?®CCp=Jr®cCp for every maximal ideal
p of C if /?Φθ. Therefore, we have either J? = 0 or J?=Jr for each
TGG. Accordingly, Λ f f = Σ θ / ? - Σ θ / τ , where Hf={τ^G:J?=Jτ}.

Since ΛH is a subring, by [10], i/7 is a subgroup of G. Since AH' is
separable over C, TA(AH')= Σ @JT = AH is separable over C, and

^Λ(^Λ(ΛH0) = Λ ί f / (see [7]). Therefore, 7Δ(ΛH) = Λ" ' and VA(AH') = AH.

OSAKA GAKUGEI DAIGAKU
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