

Title	A note on abelian Galois algebra over a commutative ring
Author(s)	Kanzaki, Teruo
Citation	Osaka Journal of Mathematics. 1966, 3(1), p. 1-6
Version Type	VoR
URL	https://doi.org/10.18910/6309
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Kanzaki, T. Osaka J. Math. 3 (1966), 1-6

A NOTE ON ABELIAN GALOIS ALGEBRA OVER A COMMUTATIVE RING

Teruo KANZAKI

(Received September 6, 1965)

Let Λ be a faithful algebra over a commutative ring R with unit element 1, and G a finite group of R-algebra automorphisms of Λ . In the following we shall identify $R \cdot 1$ with R. We shall call Λ a (central, abelian) Galois algebra over R with group G, if Λ is a galois extension of (the center) R relative to (abelian) group G in the sense of [1], [7]and [8]. In [3], Chase, Harrison and Rosenberg proved the nomal basis theorem for a commutative Galois algebra overa semi-local ring, and in [5], De Meyer proved it for a central abelian Galois algebra Λ over its center with group of inner automorphisms of Λ . In this note, in $\S1$, we shall prove the nomal basis theorem for any abelian Galois algebra over a semi-local ring. Furtheremore, we show that if the normal basis theorem holds for an R-algebra Λ with a finite abelian group G of R-algebra automorphisms of Λ , and if Λ is a strongly separable algebra (see [9]) then Λ is a Galois algebra over R with G. In §2 and §3, we shall show some properties an abelian Galois algebra over an indecomposable commutative ring. Throughout this note, we assume that every fing has a unit element.

1. Normal basis. Let Λ be an algebra over a commutative ring, and G a finite abelian group of R-algebra automorphisms of Λ .

Theorem 1. Let R be a local ring, and Λ an abelian Galois algebra over R with abelian group G. Then Λ is isomorphic to the group ring RG of group G over ring R as RG-module.

Proof. Since *R* is local and *G* is abelian, by [10], Λ is a Galois extension of the center *C* with the subgroup *H* and the center *C* is a Galois extension of *R* with group *G/H*, where $H = \{\sigma \in G : \sigma | C = \text{identity}\}$. Therefore, $\Lambda \otimes_R C$ is a Galois extension of the center $C \otimes_R C$ with group *H* and $C \otimes_R C$ is a Galois extension of $R \otimes_R C = C$ with group *G/H*. Let $\{\sigma_1 = 1, \sigma_2, \dots, \sigma_r\}$ be a representative system of the residue class group

TERUO KANZAKI

G/H. By [3], $C \otimes_R C = \sum_{i=1}^r \oplus Ce_{\sigma_i} = \sum_{i=1}^r \oplus C\sigma_i(e_1)$, where $e_1, e_{\sigma_2}, \dots, e_{\sigma_r}$ are orthogonal idempotent elements in $C \otimes_R C$ and $\sum_{i=1}^r e_{\sigma_i} = 1$, and hence $\Lambda \otimes_R C = \sum_{i=1}^r \oplus (\Lambda \otimes_R C)\sigma_i(e_1) = \sum_{i=1}^r \oplus \sigma_i(\Lambda \otimes_R C)e_1$. On the other hand, $(\Lambda \otimes_R C)e_1$ is a central Galois extension of $Ce_1 = (C \otimes_R C)e_1$ with group H. Since C is semi-local, by Lemma 1 in [10], H is a group of inner automorphisms of $(\Lambda \otimes_R C)e_1$. By [5], there is an element ϑ in $(\Lambda \otimes_R C)e_1$ such that $(\Lambda \otimes_R C)e_1 = \sum_{r \in H} \oplus Cr(\vartheta)$. Therefore, we have

$$\Lambda \otimes_R C = \sum_{i=1}^r \oplus \sigma_i((\Lambda \otimes_R C)e_1) = \sum_{i=1,\tau \in H}^r \oplus C\sigma_i\tau(\vartheta) = \sum_{\tau \in G} \oplus C\sigma(\vartheta).$$

Hemce $\Lambda \otimes_R C$ is isomorphic to the group ring CG of group G over ring C as CG-module. Since C is a finite rank R-free module, CG is a finitely generated RG-projective module and $\Lambda \otimes_R C$ is a finitely generated RG-projectine module. Since R is a direct summund of C as R-module, Λ is a finitely generated projective RG-module. For the remainder of the proof, we proceed similarly to the proof of Theorem 4.2 in [3]. For the maximal ideal m of R, we have $\Lambda \otimes_R C/mC \simeq RG \otimes_R R/mC$. Using the Krull-Schmidt Theorem, we obtain $\Lambda/m\Lambda \simeq R/mG$ as R/m G-module. Since mRG is a radical ideal of the group ring RG, and Λ is a RG-projective module, by Lemma 3.14 in [11] Λ and RG are isomorphic RG-modules.

Corolary 1. Let Λ be an abelian Galois algebra over R with abelian group G. Then Λ is a finitely generated rank 1 RG-projective module, and therefore Λ is a rank |G| R-projective module (|G| denotes the order of G).

Proof. Since RG is a commutative ring, for any prime ideal P of RG

$$\Lambda \otimes_{RG} (RG)_P = (\Lambda \otimes_R R_p) \otimes_{R_pG} (RG)_P$$

where $p=R \cap P$. By Theorem 1, $\Lambda \otimes_P R_p \simeq R_p G$ as $R_p G$ -module, hence $\Lambda \otimes_{RG} (RG)_p \simeq (RG)_p$ as $(RG)_p$ -module. Therefore, by p. 138, Theorem 1 in [2], Λ is an RG-projective module with rank 1.

Corollary 2. Let R be a semi-local ring, Λ an abelian Galois algebra over R with aberian group G. Then Λ is isomorphic to RG as RG-module.

Proof. By Corollary 1, Λ is a finitely generated rank 1 RG-projective module. If R is a semi-local ring, then RG is also semi-local, therefore by p. 143, Proposition 5 in [2], Λ is RG-free module with rank 1.

Therem 2. Let Λ be an algebra over a commutative ring R with

unit element, and G a finite abelian group of R-algebra automorphisms of Λ . If Λ is isomorphic to the group ring RG as RC-module, and if Λ is a strongly separable algebra over R (see [9]), then Λ is a Galois algebra over R with group G.

Before proving the Theorem, we prove the following lemma.

Lemma 1. Let Λ be an algebra over R, and G a finite group of Ralgebra automorphisms of Λ . If Λ is strongly separable over R and $Tr(\Lambda) \ni 1$, where $Tr(x) = \sum_{\sigma \in G} \sigma(x)$ for $x \in \Lambda$, then a crossed product $\Delta(\Lambda, G)$ of Λ and G with trivial factor set is separable over R.

Prof. Let $\Delta(\Lambda, G) = \sum_{\sigma \in \mathcal{G}} \bigoplus \Lambda u_{\sigma}$, $u_{\sigma}u_{\tau} = u_{\sigma\tau}$, and $u_{\sigma}\lambda = \sigma(\lambda)u_{\sigma}$ for $\lambda \in \Lambda$. We set A = right annihilator of ker φ in $\Delta(\Lambda, G)^e = \Delta(\Lambda, G) \otimes_R (\Delta(\Lambda, G))^{\circ}$, where $\varphi : \Delta(\Lambda, G) \otimes_R (\Delta(\Lambda, G))^{\circ} \rightarrow \Delta(\Lambda, G)$ is defined by $\varphi(x \otimes y) = xy$, and set A = right annihilator of ker φ in $\Lambda^e = \Lambda \otimes_R \Lambda^{\circ}$, where $\varphi : \Lambda \otimes_R \Lambda^{\circ} \rightarrow \Lambda$ is defined by $\varphi(x \otimes y) = xy$. From the proof of Theorem 4 in [7], it follows that A contains the elements $\sum_{\gamma \in \mathcal{G}} \gamma \times \gamma(a)u_{\gamma} \otimes u_{\gamma^{-1}}^{\circ}$ in $\Delta(\Lambda, G)^e$ for every a in A. Therefore, $\varphi(\sum \gamma \times \gamma(a)u_{\gamma} \otimes u_{\gamma^{-1}}^{\circ}) = Tr(\varphi(a))$ is contained in $\varphi(A)$. Since Λ is strongly separable over R, Λ is separable over Rand $\Lambda = C \oplus [\Lambda, \Lambda]$. Thus $\varphi(A) \supset Tr(\varphi(A)) = Tr(C)$. Since $Tr(\Lambda) \supseteq 1$, there exists a = c + b in $\Lambda = C \oplus [\Lambda, \Lambda]$ such that Tr(a) = Tr(c) + Tr(b) = 1, $c \in C$, $b \in [\Lambda, \Lambda]$, therefore $Tr(C) \supseteq Tr(c) = 1$. Accordingly, $\varphi(A) \supseteq 1$, $\Delta(\Lambda, G)$ is separable over R.

We have easily the following lemma.

Lemma 2. Let Λ be a faithful algebra over R, G a finite abelian group of R-algebra automorphisms of Λ , and let $\Lambda^G = R$. Then an element $\sum_{\sigma \in G} \lambda_{\sigma} u_{\sigma}$ of the crossed product $\Delta(\Lambda, G)$ is contained in its center if and only if λ_{σ} is in R for ever $\sigma \in G$ and satisfies $\lambda_{\sigma} \sigma(\lambda) = \lambda \lambda_{\sigma}$ for every $\lambda \in \Lambda$ and $\sigma \in G$.

Proof of Theorem 2. We suppose $\Lambda = \sum_{\sigma \in G} \bigoplus R\sigma(\vartheta)$ for some element ϑ in Λ . We have easily $\Lambda^G = RTr(\vartheta) = Tr(\Lambda)$. Since Λ^G is a ring and contains R, $Tr(\vartheta)$ is contained in R, therefore $\Lambda^G = Tr(\Lambda) = R$. By Lemma 1, the crossed product $\Delta(\Lambda, G)$ is separable over R, and by Lemma 2, the center of $\Delta(\Lambda, G)$ is R. Because, if $\sum_{\sigma \in G} \lambda_{\sigma} u_{\sigma}$ is any element of the center of $\Delta(\Lambda, G)$, then $\lambda_{\sigma} \in R$ and $\lambda_{\sigma} \sigma(\vartheta) = \lambda_{\sigma} \vartheta$ for every $\sigma \in G$, hence $\lambda_{\sigma} = 0$ for $\sigma \neq 1$. Therefore, $\Delta(\Lambda, G)$ is a central separable algebra over

Teruo Kanzaki

R. Now, we consider the natural homomorphism $\delta: \Delta(\Lambda, G) \rightarrow \operatorname{Hom}_{R}(\Lambda, \Lambda)$. By [1], $\operatorname{Hom}_{R}(\Lambda, \Lambda)$ and $\operatorname{Im} \delta$ are central separable algebras over *R*. Since the commutor ring $V_{\operatorname{Hom}_{R}(\Lambda, \Lambda)}(\operatorname{Im} \delta)$ of $\operatorname{Im} \delta$ in $\operatorname{Hom}_{R}(\Lambda, \Lambda)$ is *R*, by Lemma 2.3 in [4], δ is an isomorphism. Therefore, Λ is a Galois extension of *R* with group *G*.

REMARK. By Proposition 8 in [10], an abelian Galoif algebra Λ over any commutative ring R with abelian group G is strongly separable over R. Therefore if R is a semi-local ring, then Λ is a Galois algebra over R with aberian group G if and only if Λ is a strongly separable algebra and a Galois algebra over R with abelian group G in the sense of Hasse [6] or Wolf [13].

2. Splitting ring. In this section, we shall show that an abelian Galois algebra over a local ring has a splitting ring.

Theorem 3. Let Λ be an abelian Galois algebra over a commutative ring R with abelian grou G. If R is indecomposable, then there exist a maximal commutative subalgebra S of Λ and a subgroup G_1 of G such that $\Lambda^{G_1}=S$. Therefore, S is a commutative Galois extension of R with group G/G_1 and Λ is a finitely generated projective S-module. Thus, if C is the center of Λ then central separable algebra Λ over C is split by S in the sense of [1]. In particular, if R is a local ring, then $\Lambda \otimes_R R$ is isomorphic to the full matrix ring of degree $|G_1|$ over the commutative ring $C \otimes_R S =$ $\sum_{\overline{\sigma} \in G/H} \bigoplus Se_{\overline{\sigma}}$ where $H = \{\sigma \in G : \sigma | C = identity\}, \{e_{\overline{\sigma}} : \overline{\sigma} \in G/H\}$ are orthogonal idempotent elements and $\sum_{\overline{\sigma} \in \overline{\sigma}} = 1$.

Proof. For the first part, we prove by the induction on the order |G|. If |G| is prime, then by [5], Λ is commutative, i.e. $\Lambda = S$. We suppose Λ is non-commutative. Since R is indecomposable, by [10], Λ is a Galois extension of the center C with group H, and $\Lambda = \sum_{\sigma \in H} \oplus J_{\sigma}$, $J_{\sigma} = \{a \in \Lambda : \sigma(x)a = ax \text{ for all } x \in \Lambda\}$. By [5], we may assume that H is not cyclic. For an element σ in H, we denote the σ -fixed subring of Λ by $\Lambda^{(\sigma)}$, then the commutor ring $V_{\Lambda}(\Lambda^{(\sigma)}) = \sum_{i} \oplus J_{\sigma^{i}}$ is the center of Λ (cf. [10]). Since $\Lambda^{(\sigma)}$ is a Galois extension of R with group $G/(\sigma)$, using the inductive assumption on roder $|G/(\sigma)|$, there exist a maximal commutative subalgebra S of Λ and a subgroup $\overline{G}_{1} = G_{1}/(\sigma)$ of $G/(\sigma)$ such that $(\Lambda^{(\sigma)})^{G_{1}} = \Lambda^{G_{1}} = S$. But $\Lambda^{(\sigma)} \supset S \supset V_{\Lambda}(\Lambda^{(\sigma)})$, hence $V_{\Lambda}(S) \subset (\Lambda^{(\sigma)})$, therefore $V_{\Lambda}(S) = S$. Accordingly, S is a maximal commutative subalgebra of Λ .

4

R, therefore Λ is a finitely generated projective *S*-module (see [7]). By Proposition 2.4 in [4], central separable algebra Λ over *C* is split by *S*. Thus we have the first part. For the last part, we assume *R* is local. Then *S* is a semi-local ring and by §5, Proposition 5 in [2], Λ is a *S*-free module with rank $|G_1| = m$. By Proposition 2.4 in [4], $\Lambda \otimes_C S =$ Hom_S(Λ, Λ)=(*S*)_m. On the other hand, by [3], $C \otimes_R C = \sum_{\bar{\sigma} \in G/H} \bigoplus Ce_{\bar{\sigma}}$, and therefore

$$\Lambda \otimes_R S = (\Lambda \otimes_C S) \otimes_C (C \otimes_R C) = (S)_m \otimes_C (C \otimes_R C) = (S)_m \otimes_S (S \otimes_R C)$$
$$= (\sum_{\bar{\sigma} \in \mathcal{A} \mid \sigma} \oplus Se_{\bar{\sigma}})_m.$$

3. Central Galois extenlsion

Lemma 3. Let C be any commutative ring, and G a finite group such that the order |G| is unit in C. Then for any CG-module M, $M^G = \{x \in M : \sigma x = x \text{ for all } \sigma \in G\}$ is a direct summund of M as C-module.

Proof. $Tr'(x) = \frac{1}{|G|} \sum_{\sigma \in G} \sigma(x)$ for $x \in M$. Then $Tr'; M \to M^G$ is a *C*-epimorphism, and $Tr' | M^G =$ identity, therefore, M^G is a direct summund of M as *C*-module.

Theorem 4. Let Λ be a central abelian Galois extension of the center C with abelian group G, and C an indecomposable ring. Then

1) for every subgroup H of G, there exists a subgroup H' of G such that $\Lambda^{H} = \sum_{\sigma \in H'} \oplus J_{\sigma}$,

2) if $\Lambda^{H} = \sum_{\sigma \in H'} \oplus J_{\sigma}$ then then $\Lambda^{H} = V_{\Lambda}(\Lambda^{H'})$ and and $\Lambda^{H'} = V_{\Lambda}(\Lambda^{H})$.

Proof. By [10], $\Lambda = \sum_{\sigma \in \mathcal{G}} \oplus J_{\sigma}$ and |G| is unit in *C*. Since $\sigma(J_{\tau}) = J_{\sigma\tau\sigma^{-1}} = J_{\sigma}$ (see [10], J_{τ} is *CG*-module. For any subgroup *H* of *G*, by Lemma 3, J_{τ}^{H} is a finitely generated projective *C*-module. Since *C* is indecomposable, for every maximal ideal *p* of *C*, rank of $J_{\tau}^{H} \otimes_{C} C_{p}$ over C_{p} is constant (see p. 138, Theorem 1 in [2]), hence $J_{\tau}^{H} \otimes_{C} C_{p} \neq 0$ for every maximal ideal *p* of *C* if $J_{\tau}^{H} \neq 0$. Since J_{τ} is a rank 1 projective *C*-module (see [12]), we have $J_{\tau}^{H} \otimes_{C} C_{p} = J_{\tau} \otimes_{C} C_{p}$ for every maximal ideal *p* of *C* if $J_{\tau}^{H} \neq 0$. Therefore, we have either $J_{\tau}^{H} = 0$ or $J_{\tau}^{H} = J_{\tau}$ for each $\tau \in G$. Accordingly, $\Lambda^{H} = \sum_{\sigma \in \mathcal{G}} \oplus J_{\tau}^{H} = \sum_{\tau \in \mathcal{A}'} \oplus J_{\tau}$, where $H' = \{\tau \in G : J_{\tau}^{H} = J_{\tau}\}$. Since Λ^{H} is a subring, by [10], H' is a subgroup of *G*. Since $\Lambda^{H'}$ is separable over *C*, $T_{\Lambda}(\Lambda^{H'}) = \sum_{\tau \in \mathcal{A}'} \oplus J_{\tau} = \Lambda^{H}$ is separable over *C*, and $V_{\Lambda}(V_{\Lambda}(\Lambda^{H'})) = \Lambda^{H'}$ (see [7]). Therefore, $V_{\Lambda}(\Lambda^{H}) = \Lambda^{H'}$ and $V_{\Lambda}(\Lambda^{H'}) = \Lambda^{H}$.

Osaka Gakugei Daigaku

TERUO KANZAKI

References

- [1] M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960) 1-24.
- [2] N. Bourbaki: Algebre commutative, Chap. I-II, 1964.
- [3] S. U. Chase, D. K. Harrison and A. Rosenberg: Galois theory and Galois cohomology of commutative rings, Memoirs Amer. Math. Soc. 52 (1965).
- [4] S. U. Chase and A. Rosenberg: Amitsur cohomology and the Brauer group, Memoirs Amer. Math. Soc. 52 (1965).
- [5] F. R. DeMeyer: Some note on the general Galois theory of rings, Osaka J. Math. 2 (1965) 117-127.
- [6] H. Hasse: Invariant Kennzeichnung galoissche Körper mit vorgegebener Galois Gruppe, J. reine angew. Math. 187 (1950) 14-43.
- [7] T. Kanzaki: On commutor ring and Galois theory of separable algebras, Osaka J. Math. 1 (1964) 103–115.
- [8] ------: On Galois extension of rings, Nagoya Math. J. 27 (1966), 43-49.

- [11] A. Rosenberg and D. Zelinsky: On Amitsur complex, Trans. Amer. Math. Soc. 97 (1960) 327-356.
- [12] : Automorphisms of separable algebras, Pacific. J. Math. 11 (1961) 1109-1129.
- [13] P. Wolf : Algebraische Theorie der galoisschen Algebren, Berlin, 1965.