

Title	A note on abelian Galois algebra over a commutative ring
Author(s)	Kanzaki, Teruo
Citation	Osaka Journal of Mathematics. 1966, 3(1), p. 1-6
Version Type	VoR
URL	https://doi.org/10.18910/6309
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kanzaki, T.
Osaka J. Math.
3 (1966), 1-6

A NOTE ON ABELIAN GALOIS ALGEBRA OVER A COMMUTATIVE RING

TERUO KANZAKI

(Received September 6, 1965)

Let Λ be a faithful algebra over a commutative ring R with unit element 1, and G a finite group of R -algebra automorphisms of Λ . In the following we shall identify $R \cdot 1$ with R . We shall call Λ a (central, abelian) Galois algebra over R with group G , if Λ is a Galois extension of (the center) R relative to (abelian) group G in the sense of [1], [7] and [8]. In [3], Chase, Harrison and Rosenberg proved the normal basis theorem for a commutative Galois algebra over a semi-local ring, and in [5], De Meyer proved it for a central abelian Galois algebra Λ over its center with group of inner automorphisms of Λ . In this note, in §1, we shall prove the normal basis theorem for any abelian Galois algebra over a semi-local ring. Furthermore, we show that if the normal basis theorem holds for an R -algebra Λ with a finite abelian group G of R -algebra automorphisms of Λ , and if Λ is a strongly separable algebra (see [9]) then Λ is a Galois algebra over R with G . In §2 and §3, we shall show some properties of an abelian Galois algebra over an indecomposable commutative ring. Throughout this note, we assume that every ring has a unit element.

1. Normal basis. Let Λ be an algebra over a commutative ring, and G a finite abelian group of R -algebra automorphisms of Λ .

Theorem 1. *Let R be a local ring, and Λ an abelian Galois algebra over R with abelian group G . Then Λ is isomorphic to the group ring RG of group G over ring R as RG -module.*

Proof. Since R is local and G is abelian, by [10], Λ is a Galois extension of the center C with the subgroup H and the center C is a Galois extension of R with group G/H , where $H = \{\sigma \in G : \sigma|C = \text{identity}\}$. Therefore, $\Lambda \otimes_R C$ is a Galois extension of the center $C \otimes_R C$ with group H and $C \otimes_R C$ is a Galois extension of $R \otimes_R C = C$ with group G/H . Let $\{\sigma_1 = 1, \sigma_2, \dots, \sigma_r\}$ be a representative system of the residue class group

G/H . By [3], $C \otimes_R C = \sum_{i=1}^r \bigoplus C e_{\sigma_i} = \sum_{i=1}^r \bigoplus C \sigma_i(e_1)$, where $e_1, e_{\sigma_2}, \dots, e_{\sigma_r}$ are orthogonal idempotent elements in $C \otimes_R C$ and $\sum_{i=1}^r e_{\sigma_i} = 1$, and hence $\Lambda \otimes_R C = \sum_{i=1}^r \bigoplus (\Lambda \otimes_R C) \sigma_i(e_1) = \sum_{i=1}^r \bigoplus \sigma_i(\Lambda \otimes_R C) e_1$. On the other hand, $(\Lambda \otimes_R C) e_1$ is a central Galois extension of $C e_1 = (C \otimes_R C) e_1$ with group H . Since C is semi-local, by Lemma 1 in [10], H is a group of inner automorphisms of $(\Lambda \otimes_R C) e_1$. By [5], there is an element ϑ in $(\Lambda \otimes_R C) e_1$ such that $(\Lambda \otimes_R C) e_1 = \sum_{\tau \in H} \bigoplus C \tau(\vartheta)$. Therefore, we have

$$\Lambda \otimes_R C = \sum_{i=1}^r \bigoplus \sigma_i((\Lambda \otimes_R C) e_1) = \sum_{i=1, \tau \in H}^r \bigoplus C \sigma_i \tau(\vartheta) = \sum_{\tau \in G} \bigoplus C \sigma(\vartheta).$$

Hence $\Lambda \otimes_R C$ is isomorphic to the group ring CG of group G over ring C as CG -module. Since C is a finite rank R -free module, CG is a finitely generated RG -projective module and $\Lambda \otimes_R C$ is a finitely generated RG -projective module. Since R is a direct summand of C as R -module, Λ is a finitely generated projective RG -module. For the remainder of the proof, we proceed similarly to the proof of Theorem 4.2 in [3]. For the maximal ideal m of R , we have $\Lambda \otimes_R C / mC \cong RG \otimes_R R / mC$. Using the Krull-Schmidt Theorem, we obtain $\Lambda / m\Lambda \cong R / mG$ as R / m G -module. Since mRG is a radical ideal of the group ring RG , and Λ is a RG -projective module, by Lemma 3.14 in [11] Λ and RG are isomorphic RG -modules.

Corollary 1. *Let Λ be an abelian Galois algebra over R with abelian group G . Then Λ is a finitely generated rank 1 RG -projective module, and therefore Λ is a rank $|G|$ R -projective module ($|G|$ denotes the order of G).*

Proof. Since RG is a commutative ring, for any prime ideal P of RG

$$\Lambda \otimes_{RG} (RG)_P = (\Lambda \otimes_R R_p) \otimes_{R_p G} (RG)_P$$

where $p = R \cap P$. By Theorem 1, $\Lambda \otimes_p R_p \cong R_p G$ as $R_p G$ -module, hence $\Lambda \otimes_{RG} (RG)_P \cong (RG)_P$ as $(RG)_P$ -module. Therefore, by p. 138, Theorem 1 in [2], Λ is an RG -projective module with rank 1.

Corollary 2. *Let R be a semi-local ring, Λ an abelian Galois algebra over R with abelian group G . Then Λ is isomorphic to RG as RG -module.*

Proof. By Corollary 1, Λ is a finitely generated rank 1 RG -projective module. If R is a semi-local ring, then RG is also semi-local, therefore by p. 143, Proposition 5 in [2], Λ is RG -free module with rank 1.

Theorem 2. *Let Λ be an algebra over a commutative ring R with*

unit element, and G a finite abelian group of R -algebra automorphisms of Λ . If Λ is isomorphic to the group ring RG as RC -module, and if Λ is a strongly separable algebra over R (see [9]), then Λ is a Galois algebra over R with group G .

Before proving the Theorem, we prove the following lemma.

Lemma 1. *Let Λ be an algebra over R , and G a finite group of R -algebra automorphisms of Λ . If Λ is strongly separable over R and $Tr(\Lambda) \ni 1$, where $Tr(x) = \sum_{\sigma \in G} \sigma(x)$ for $x \in \Lambda$, then a crossed product $\Delta(\Lambda, G)$ of Λ and G with trivial factor set is separable over R .*

Prof. Let $\Delta(\Lambda, G) = \sum_{\sigma \in G} \oplus \Lambda u_{\sigma}$, $u_{\sigma} u_{\tau} = u_{\sigma\tau}$, and $u_{\sigma} \lambda = \sigma(\lambda) u_{\sigma}$ for $\lambda \in \Lambda$.

We set A = right annihilator of $\ker \varphi$ in $\Delta(\Lambda, G)^e = \Delta(\Lambda, G) \otimes_R (\Delta(\Lambda, G))^0$, where $\varphi: \Delta(\Lambda, G) \otimes_R (\Delta(\Lambda, G))^0 \rightarrow \Delta(\Lambda, G)$ is defined by $\varphi(x \otimes y) = xy$, and set A = right annihilator of $\ker \varphi$ in $\Lambda^e = \Lambda \otimes_R \Lambda^0$, where $\varphi: \Lambda \otimes_R \Lambda^0 \rightarrow \Lambda$ is defined by $\varphi(x \otimes y) = xy$. From the proof of Theorem 4 in [7], it follows that A contains the elements $\sum_{\gamma \in G} \gamma \times \gamma(a) u_{\gamma} \otimes u_{\gamma^{-1}}^0$ in $\Delta(\Lambda, G)^e$ for every a in A . Therefore, $\varphi(\sum_{\gamma \in G} \gamma \times \gamma(a) u_{\gamma} \otimes u_{\gamma^{-1}}^0) = Tr(\varphi(a))$ is contained in $\varphi(A)$. Since Λ is strongly separable over R , Λ is separable over R and $\Lambda = C \oplus [\Lambda, \Lambda]$. Thus $\varphi(A) \supset Tr(\varphi(A)) = Tr(C)$. Since $Tr(\Lambda) \ni 1$, there exists $a = c + b$ in $\Lambda = C \oplus [\Lambda, \Lambda]$ such that $Tr(a) = Tr(c) + Tr(b) = 1$, $c \in C$, $b \in [\Lambda, \Lambda]$, therefore $Tr(C) \ni Tr(c) = 1$. Accordingly, $\varphi(A) \ni 1$, $\Delta(\Lambda, G)$ is separable over R .

We have easily the following lemma.

Lemma 2. *Let Λ be a faithful algebra over R , G a finite abelian group of R -algebra automorphisms of Λ , and let $\Lambda^G = R$. Then an element $\sum_{\sigma \in G} \lambda_{\sigma} u_{\sigma}$ of the crossed product $\Delta(\Lambda, G)$ is contained in its center if and only if λ_{σ} is in R for every $\sigma \in G$ and satisfies $\lambda_{\sigma} \sigma(\lambda) = \lambda \lambda_{\sigma}$ for every $\lambda \in \Lambda$ and $\sigma \in G$.*

Proof of Theorem 2. We suppose $\Lambda = \sum_{\sigma \in G} \oplus R\sigma(\vartheta)$ for some element ϑ in Λ . We have easily $\Lambda^G = RTr(\vartheta) = Tr(\Lambda)$. Since Λ^G is a ring and contains R , $Tr(\vartheta)$ is contained in R , therefore $\Lambda^G = Tr(\Lambda) = R$. By Lemma 1, the crossed product $\Delta(\Lambda, G)$ is separable over R , and by Lemma 2, the center of $\Delta(\Lambda, G)$ is R . Because, if $\sum_{\sigma \in G} \lambda_{\sigma} u_{\sigma}$ is any element of the center of $\Delta(\Lambda, G)$, then $\lambda_{\sigma} \in R$ and $\lambda_{\sigma} \sigma(\vartheta) = \lambda_{\sigma} \vartheta$ for every $\sigma \in G$, hence $\lambda_{\sigma} = 0$ for $\sigma \neq 1$. Therefore, $\Delta(\Lambda, G)$ is a central separable algebra over

R. Now, we consider the natural homomorphism $\delta: \Delta(\Lambda, G) \rightarrow \text{Hom}_R(\Lambda, \Lambda)$. By [1], $\text{Hom}_R(\Lambda, \Lambda)$ and $\text{Im } \delta$ are central separable algebras over R . Since the commutor ring $V_{\text{Hom}_R(\Lambda, \Lambda)}(\text{Im } \delta)$ of $\text{Im } \delta$ in $\text{Hom}_R(\Lambda, \Lambda)$ is R , by Lemma 2.3 in [4], δ is an isomorphism. Therefore, Λ is a Galois extension of R with group G .

REMARK. By Proposition 8 in [10], an abelian Galois algebra Λ over any commutative ring R with abelian group G is strongly separable over R . Therefore if R is a semi-local ring, then Λ is a Galois algebra over R with abelian group G if and only if Λ is a strongly separable algebra and a Galois algebra over R with abelian group G in the sense of Hasse [6] or Wolf [13].

2. Splitting ring. In this section, we shall show that an abelian Galois algebra over a local ring has a splitting ring.

Theorem 3. *Let Λ be an abelian Galois algebra over a commutative ring R with abelian group G . If R is indecomposable, then there exist a maximal commutative subalgebra S of Λ and a subgroup G_1 of G such that $\Lambda^{G_1} = S$. Therefore, S is a commutative Galois extension of R with group G/G_1 and Λ is a finitely generated projective S -module. Thus, if C is the center of Λ then central separable algebra Λ over C is split by S in the sense of [1]. In particular, if R is a local ring, then $\Lambda \otimes_R R$ is isomorphic to the full matrix ring of degree $|G_1|$ over the commutative ring $C \otimes_R S = \sum_{\bar{\sigma} \in G/H} \bigoplus S e_{\bar{\sigma}}$ where $H = \{\sigma \in G : \sigma|C = \text{identity}\}$, $\{e_{\bar{\sigma}} : \bar{\sigma} \in G/H\}$ are orthogonal idempotent elements and $\sum_{\bar{\sigma} \in G/H} e_{\bar{\sigma}} = 1$.*

Proof. For the first part, we prove by the induction on the order $|G|$. If $|G|$ is prime, then by [5], Λ is commutative, i.e. $\Lambda = S$. We suppose Λ is non-commutative. Since R is indecomposable, by [10], Λ is a Galois extension of the center C with group H , and $\Lambda = \sum_{\sigma \in H} \bigoplus J_{\sigma}$, $J_{\sigma} = \{a \in \Lambda : \sigma(x)a = ax \text{ for all } x \in \Lambda\}$. By [5], we may assume that H is not cyclic. For an element σ in H , we denote the σ -fixed subring of Λ by $\Lambda^{(\sigma)}$, then the commutor ring $V_{\Lambda}(\Lambda^{(\sigma)}) = \sum_i \bigoplus J_{\sigma^i}$ is the center of Λ (cf. [10]). Since $\Lambda^{(\sigma)}$ is a Galois extension of R with group $G/(\sigma)$, using the inductive assumption on order $|G/(\sigma)|$, there exist a maximal commutative subalgebra S of Λ and a subgroup $\bar{G}_1 = G_1/(\sigma)$ of $G/(\sigma)$ such that $(\Lambda^{(\sigma)})^{G_1} = \Lambda^{G_1} = S$. But $\Lambda^{(\sigma)} \supset S \supset V_{\Lambda}(\Lambda^{(\sigma)})$, hence $V_{\Lambda}(S) \subset (\Lambda^{(\sigma)})$, therefore $V_{\Lambda}(S) = S$. Accordingly, S is a maximal commutative subalgebra of Λ . Since S is a Galois extension of R with group G/G_1 , S is separable over

R , therefore Λ is a finitely generated projective S -module (see [7]). By Proposition 2.4 in [4], central separable algebra Λ over C is split by S . Thus we have the first part. For the last part, we assume R is local. Then S is a semi-local ring and by §5, Proposition 5 in [2], Λ is a S -free module with rank $|G_1|=m$. By Proposition 2.4 in [4], $\Lambda \otimes_C S = \text{Hom}_S(\Lambda, \Lambda) = (S)_m$. On the other hand, by [3], $C \otimes_R C = \sum_{\bar{\sigma} \in G/H} \oplus C e_{\bar{\sigma}}$, and therefore

$$\begin{aligned} \Lambda \otimes_R S &= (\Lambda \otimes_C S) \otimes_C (C \otimes_R C) = (S)_m \otimes_C (C \otimes_R C) = (S)_m \otimes_S (S \otimes_R C) \\ &= \left(\sum_{\bar{\sigma} \in G/H} \oplus S e_{\bar{\sigma}} \right)_m. \end{aligned}$$

3. Central Galois extenlsion

Lemma 3. *Let C be any commutative ring, and G a finite group such that the order $|G|$ is unit in C . Then for any CG -module M , $M^G = \{x \in M : \sigma x = x \text{ for all } \sigma \in G\}$ is a direct summand of M as C -module.*

Proof. $Tr'(x) = \frac{1}{|G|} \sum_{\sigma \in G} \sigma(x)$ for $x \in M$. Then $Tr' : M \rightarrow M^G$ is a C -epimorphism, and $Tr'|M^G = \text{identity}$, therefore, M^G is a direct summand of M as C -module.

Theorem 4. *Let Λ be a central abelian Galois extension of the center C with abelian group G , and C an indecomposable ring. Then*

- 1) *for every subgroup H of G , there exists a subgroup H' of G such that $\Lambda^H = \sum_{\sigma \in H'} \oplus J_\sigma$,*
- 2) *if $\Lambda^H = \sum_{\sigma \in H'} \oplus J_\sigma$ then then $\Lambda^H = V_\Lambda(\Lambda^{H'})$ and and $\Lambda^{H'} = V_\Lambda(\Lambda^H)$.*

Proof. By [10], $\Lambda = \sum_{\sigma \in G} \oplus J_\sigma$ and $|G|$ is unit in C . Since $\sigma(J_\tau) = J_{\sigma\tau\sigma^{-1}} = J_\tau$ (see [10]), J_τ is CG -module. For any subgroup H of G , by Lemma 3, J_τ^H is a finitely generated projective C -module. Since C is indecomposable, for every maximal ideal p of C , rank of $J_\tau^H \otimes_C C_p$ over C_p is constant (see p. 138, Theorem 1 in [2]), hence $J_\tau^H \otimes_C C_p \neq 0$ for every maximal ideal p of C if $J_\tau^H \neq 0$. Since J_τ is a rank 1 projective C -module (see [12]), we have $J_\tau^H \otimes_C C_p = J_\tau \otimes_C C_p$ for every maximal ideal p of C if $J_\tau^H \neq 0$. Therefore, we have either $J_\tau^H = 0$ or $J_\tau^H = J_\tau$ for each $\tau \in G$. Accordingly, $\Lambda^H = \sum_{\sigma \in G} \oplus J_\tau^H = \sum_{\tau \in H'} \oplus J_\tau$, where $H' = \{\tau \in G : J_\tau^H = J_\tau\}$. Since Λ^H is a subring, by [10], H' is a subgroup of G . Since $\Lambda^{H'}$ is separable over C , $T_\Lambda(\Lambda^{H'}) = \sum_{\tau \in H'} \oplus J_\tau = \Lambda^H$ is separable over C , and $V_\Lambda(V_\Lambda(\Lambda^{H'})) = \Lambda^{H'}$ (see [7]). Therefore, $V_\Lambda(\Lambda^H) = \Lambda^{H'}$ and $V_\Lambda(\Lambda^{H'}) = \Lambda^H$.

References

- [1] M. Auslander and O. Goldman : *The Brauer group of a commutative ring*, Trans. Amer. Math. Soc. **97** (1960) 1-24.
- [2] N. Bourbaki : *Algèbre commutative*, Chap. I-II, 1964.
- [3] S. U. Chase, D. K. Harrison and A. Rosenberg : *Galois theory and Galois cohomology of commutative rings*, Memoirs Amer. Math. Soc. 52 (1965).
- [4] S. U. Chase and A. Rosenberg : *Amitsur cohomology and the Brauer group*, Memoirs Amer. Math. Soc. 52 (1965).
- [5] F. R. DeMeyer : *Some note on the general Galois theory of rings*, Osaka J. Math. **2** (1965) 117-127.
- [6] H. Hasse : *Invariant Kennzeichnung galoissche Körper mit vorgegebener Galois Gruppe*, J. reine angew. Math. **187** (1950) 14-43.
- [7] T. Kanzaki : *On commutor ring and Galois theory of separable algebras*, Osaka J. Math. **1** (1964) 103-115.
- [8] _____ : *On Galois extension of rings*, Nagoya Math. J. **27** (1966), 43-49.
- [9] _____ : *Special type of separable algebra over a commutative ring*, Proc. Japan Acad. **40** (1964) 781-786.
- [10] _____ : *On Galois algebra over a commutative ring*, Osaka J. Math. **2** (1965) 309-317.
- [11] A. Rosenberg and D. Zelinsky : *On Amitsur complex*, Trans. Amer. Math. Soc. **97** (1960) 327-356.
- [12] _____ : *Automorphisms of separable algebras*, Pacific. J. Math. **11** (1961) 1109-1129.
- [13] P. Wolf : *Algebraische Theorie der galoisschen Algebren*, Berlin, 1965.