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Let A be a faithful algebra over a commutative ring R with unit
element 1, and G a finite group of R-algebra automorphisms of A. In
the following we shall identify R-1 with R. We shall call A a (central,
abelian) Galois algebra over R with group G, if A is a galois extension
of (the center) R relative to (abelian) group G in the sense of [1], [7]
and [8]. In [3], Chase, Harrison and Rosenberg proved the nomal
basis theorem for a commutative Galois algebra overa semi-local ring,
and in [5], De Meyer proved it for a central abelian Galois algebra A
over its center with group of inner automorphisms of A. In this note,
in §1, we shall prove the nomal basis theorem for any abelian Galois
algebra over a semi-local ring. Furtheremore, we show that if the normal
basis theorem holds for an R-algebra A with a finite abelian group G
of R-algebra automorphisms of A, and if A is a strongly separable
algebra (see [9]) then A is a Galois algebra over R with G. In §2 and
§3, we shall show some properties an abelian Galois algebra over an
indecomposable commutative ring. Throughout this note, we assume
that every fing has a unit element.

1. Normal basis. Let A be an algebra over a commutative ring,
and G a finite abelian group of R-algebra automorphisms of A.

Theorem 1. Let R be a local ring, and N an abelian Galois algebra
over R with abelian group G. Then A is isomorphic to the group ring
RG of group G over ring R as RG-module.

Proof. Since R is local and G is abelian, by [10], A is a Galois
extension of the center C with the subgroup H and the center C is a
Galois extension of R with group G/H, where H= {c =G : o |C =identity}.
Therefore, AR xC is a Galois extension of the center CRX zC with group
H and C®QiC is a Galois extension of RR zC=C with group G/H. Let
{e.=1, o,, -+, 7,} be a representative system of the residue class group
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G/H. By [3], CQRLC= E:]l ®Ce,;= Zr ®Coy(e,), where ¢, e,,, -, €, are
orthogonal idempotent elements in C®xC and Z e,;=1, and hence
ADRC= 3 OARC)oie) = 31 BolA®C)e).  On  the other hand,

(A®xC)e, is a central Galois extension of Ce,=(CQ zC)e, with group H.
Since C is semi-local, by Lemma 1 in [10], H is a group of inner
automorphisms of (AR zC)e,. By [5], there is an element ¢ in (AR zC)e,
such that (A® RC)elzTeZ;IGBC-r(ﬂ). Therefore, we have

A®C = DBo(AQC)e) = 31 ®Coir(d) = T BCo(®).

Hemce A® zC is isomorphic to the group ring CG of group G over ring
C as CG-module. Since C is a finite rank R-free module, CG is a finitely
generated RG-projective module and A® RC is a finitely generated RG-
projectine module. Since R is a direct summund of C as R-module, A
is a finitely generated projective RG-module. For the remainder of the
proof, we proceed similarly to the proof of Theorem 4.2 in [3]. For the
maximal ideal m of R, we have ARpC/mC=RGR rR/mC. Using the
Krull-Schmidt Theorem, we obtain A/mA=R/mG as R/m G-module.
Since mRG is a radical ideal of the group ring RG, and A is a RG-
projective module, by Lemma 3.14 in [11] A and RG are isomorphic
RG-modules.

Corolary 1. Let A be an abelian Galois algebra over R with abelian
group G. Then N is a finitely generated rank 1 RG-projective module,
and therefore A is a rank |G| R-projective module (|G| denotes tne order

of G).

Proof. Since RG is a commutative ring, for any prime ideal P of RG

AQra(RG)p = (A® RRP)® R,,G(RG)P

where p=RNP. By Theorem 1, A®PszRPG as RPG—module, hence
AR rc(RG),=~=(RG), as (RG),~module. Therefore, by p. 138, Theorem 1
in [2], A is an RG-projective module with rank 1.

Corollary 2. Let R be a semi-local ring, A an abelian Galois algebra
over R with aberian group G. Then A is isomorphic to RG as RG-module.

Proof. By Corollary 1, A is a finitely generated rank 1 RG-projective
module. If R is a semi-local ring, then RG is also semi-local, therefore
by p. 143, Proposition 5 in [2], A is RG-free module with rank 1.

Therem 2. Let A be an algebra over a commutative ring R with
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unit element, and G a finite abelian group of R-algebra automorphisms
of A. If A is isomorphic to the group ring RG as RC-module, and if
A is a strongly separable algebra over R (see [9)), then A is a Galois
algebra over R with group G.

Before proving the Theorem, we prove the following lemma.

Lemma 1. Let A be an algebra over R, and G a finite group of R-
algebra automorphisms of A. If A is stromngly separable over R and
Tr(A)=21, where Tr(x) = 2 o(x) for xEA, then a crossed product A(A, G)

ced
of A and G with trivial factor set is separable over R.

Prof. Let A(A, G)= 2} BAu,, uu,=u,., and u x=c(\)u, for AnEA.

TeG
We set A=right annihilator of ker ¢ in A(A, G)°’=AA,G)R (AN, G)),
where ¢: A(A, G)Qr(A(A, G))—A(A, G) is defined by @(x®Qy)=xy, and
set A=right annihilator of ker @ in A°=AQ®zA° where ¢: AQrA'—A
is defined by @(x®y)=xy. From the proof of Theorem 4 in [7], it
follows that A contains the elements yggfyxq/(a)uyéz)uz-l in A(A, G)° for

every a in A. Therefore, ¢ (3} v X v(a) u,Quj-)= Tr (p(a)) is contained
in ¢(A). Since A is strongly separable over R, A is separable over R
and A=CO®B[A, A]. Thus ¢(4)D Tr(ep(A))= Tr(C). Since Tr(A)>1,
there exists a=c+0b in A=C®B[A, A] such that Tr(a)= Tr(c)+ Tr(b)=1,
ceC, be[A, A], therefore T7(C)=>Tr(c)=1. Accordingly, ¢(4)>1,
A(A, G) is separable over R.

We have easily the following lemma.

Lemma 2. Let A be a faithful algebra over R, G a finite abelian
group of R-algebra automorphisms of A, and let A°=R. Then an element
SINu, of the crossed product A(N, G) is contained in its center if and
ceq

only if N, is in R for ever o =G and satisfies A, c(\)=A\, for every NEA
and o<G.

Proof of Theorem 2. We suppose A= Zg@Ro(ﬁ) for some element

? in A. We have easily A°=RTr(%)=Tr(A). Since A€ is a ring and
contains R, T7(d) is contained in R, therefore A®=T»(A)=R. By Lemma
1, the crossed product A(A, G) is separable over R, and by Lemma 2,
the center of A(A, G) is R. Because, if >IA,u, is any element of the

Ted
center of A(A, G), tnen A, €R and A, o(F)=2,F for every oG, hence
,=0 for o=1. Therefore, A(A, G) is a central separable algebra over
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R. Now, we consider the natural homomorphism §: A(A, G)—=Hompg(A, A).
By [1], Homg (A, A) and Im 8 are central separable algebras over R.
Since the commutor ring Vyemgca, »(Im38) of Im 8 in Hompg (A, A) is R,
by Lemma 2.3 in [4], § is an isomorphism. Therefore, A is a Galois
extension of R with group G.

REMARK. By Proposition 8 in [10], an abelian Galoif algebra A
over any commutative ring R with abelian group G is strongly separable
over R. Therefore if R is a semi-local ring, then A is a Galois algebra
over R with aberian group G if and only if A is a strongly separable
algebra and a Galois algebra over R with abelian group G in the sense
of Hasse [6] or Wolf [13].

2. Splitting ring. In this section, we shall show that an abelian
Galois algebra over a local ring has a splitting ring.

Theorem 3. Let A be an abelian Galois algebra over a commutative
ring R with abelian grou G. If R is indecomposable, then there exist a
maximal commutative subalgebra S of A and a subgroup G, of G such that
ANC1=S. Therefore, S is a commutative Galois extension of R with group
G/G, and A is a finitely generated projective S-module. Thus, if C is the
center of N then central separable algebra A over C is split by S in the
sense of [1]. In particular, if R is a local rving, then AQ xR is isomorphic

to the full matrix ving of degree |G,| over the commutative ring CRQ xS=
> PSe; where H= {c =G : o |C=identity}, {¢;:6G/H} are orthogonal

TEG/H
idempotent elements and 3 e; = 1.

TeECG'H
Proof. For the first part, we prove by th= induction on the order
|G|. If |G|is prime, then by [5], A is commutative, i.e. A=S. We
suppose A is non-commutative. Since R is indecomposable, by [10], A
is a Galois extension of the center C with group H, and Azé@]w

J.={ae A :o(x)a=ax for all xeA}. By [5], we may assume that H is
not cyclic. For an element o in H, we denote the o-fixed subring of
A by A, then the commutor ring V,(A“°)=21®],: is the center of A

(cf. [10]). Since A is a Galois extension of R with group G/(s), using
the inductive assumption on roder |G/(s)|, there exist a maximal com-
mutative subalgebra S of A and a subgroup @,=G,/(c) of G/(s) such
that (A)1=A%=S. But A>>SD V,(A“), hence V,(S)C(A), therefore
Va(S)=S. Accordingly, S is a maximal commutative subalgebra of A.
Since S is a Galois extension of R with group G/G,, S is separable over
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R, therefore A is a finitely generated projective S-module (see [7]). By
Proposition 2.4 in [4], central separable algebra A over C is split by S.
Thus we have the first part. For the last part, we assume R is local.
Then S is a semi-local ring and by §5, Proposition 5 in [2], A is a S-
free module with rank |G,|=m. By Proposition 2.4 in [4], AQS=
Homgs(A, A)=(S),.. On the other hand, by [3], CQC= > @Ce;, and
therefore ee

AR RS = (AQcS)R(CRRC) = (S)n®(CRRC) = (S)n®s(S®EC)
=( 2 DSes),.

SeG/H

3. Central Galois extenlsion

Lemma 3. Let C be any commutative ring, and G a finite group such
that the order |G| is unit in C. Then for any CG-module M, M€= {x& M :
ocx=x for all =G} is a direct summund of M as C-module.

1
Proof. Tr’(x):TG—IGZ}Ga(x) for xeM. Then T7 ; M—MC is a C-

epimorphism, and 77’ |MC¢=identity, therefore, M€ is a direct summund
of M as C-module.

Theorem 4. Let A be a central abelian Galois extension of the center
C with abelian group G, and C an indecomposable ring. Then

1) for every subgroup H of G, there exists a subgroup H' of G such
that A= >} ®DJ,,

CEH

2) if AH= 3 @], then then A=V, (A#) and and AH =V, (AH).
oced’

Proof. By [10], Azux(',«@]" and |G| is unit in C. Since o(/J,)=

Joro-1=J, (see [10], J. is CG-module. For any subgroup H of G, by
Lemma 3, J¥ is a finitely generated projective C-module. Since C is
indecomposable, for every maximal ideal p of C, rank of J¥®.C , over
C, is constant (see p. 138, Theorem 1 in [2]), hence J¥®.C,+0 for
every maximal ideal p of C if J¥=+0. Since J, is a rank 1 projective
C-module (see [12]), we have J¥®R.C,=/J.®.C, for every maximal ideal
p of C if JH#=+0. Therefore, we have either J#¥=0 or JH=], for each

r€G.  Accordingly, A= 3 ®JF= 3 @J,, where H'={reG:J¥=]}.
oe TEH’

Since A¥ is a subring, by [10], H’ is a subgroup of G. Since A¥’ is
separable over C, T,(A#")= E/ @J.=A" is separable over C, and
TEH

VoV (AH)=AH" (see [7]). Therefore, V,(A¥)=A"" and V, (AH)=AH.

OsakA GAKUGEI DAIGAKU
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