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1. Introduction

We study the phase structure of the two-dimensional (2Dic&awWidom-Rowlinson
model. LetQ ={-1,0, +1}Zz be the configuration space with product topology. The
Borel o-algebra ofQ is denoted by. For A C Z?, we considerQ, =-1,0, +1}*
and its Borelo-algebraZ,. We write x ~ y if x,y € Z? are adjacent, namelj; —
yi| +|x2 — y2| =1. We say thatx ang are)adjacent and writer ~ y if max{|x; —
yil, |x2—y2|} = 1. A configurationw € Q, is said to befeasibleif w(x)w(y) # —1 for
all adjacentx, y € A.

We write A € Z? if Ais a finite subset ofZ?. For A € Z? and a feasible bound-
ary conditionw € €, the finite volume Gibbs distributiop , , is defined by

1 o .
i an(0) = ——L{oww: feasibig [T A ehw.
AN eA

Here A > 0 is a parameter calledctivity, andz € R is a parameter which plays a
similar role as the external field in the Ising model. The raliming constantzZy , ,
is called thepartition function The configuratiorr xw € Q is defined by

B {a(x) if x €A,
oxw(x)= )
w(x) if x € A“.

A probability measure. on (2, ) which satisfies thdOLR equation
p(- 1 Fae) @) =pion()  praaw (A €77

is said to be aGibbs measure with parametép, 4). The set of all Gibbs measures
with parameter X, #) is denoted byG(A, ). It is well-known thatG(A, k) is a non-
empty compact convex set. We writg«(\, i) for the set of all extremal Gibbs mea-
sures. (For the general properties of Gibbs measures, we teef4] or [11].)

Russo [12] introduced the infinite cluster method for stadythe phase structure
of the 2D Ising model, which is the key step to a final answel, ([2]). In [5],
the structure of phases is described in terms of percolatiwh possible extensions
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are given. In this paper, we consider the 2D Widom-Rowlinsoodel. Although this
model is generally thought to be similar to the 2D Ising modieé proof of [5] does
not work.

We state our main results. Van den Berg and Steif conjecttinatl the hard-
core lattice gas model o? with parity-dependent activities has no phase transition,
and Haggstrom proved it in the 2D case (see §8]4 and [7]). In [6] §3.5, it is
conjectured that the Widom-Rowlinson model @4 with asymmetric activities (i.e.

h # 0) admits no phase transition. We expect that Haggstdgmethod can be also
adapted to the asymmetric Widom-Rowlinson model Zm Unfortunately, our result
does not answer this question completely.

Theorem 1.1. For each\ > 0, there existsh, = h.(\) > 0 such that
|h| > h. = |G\, h)| = L.

Especially 4.(A\) =0 when|G(), 0)] > 1.

Now we turn to the symmetric case (ife. =0). In [10], it is simothat the Gibbs
measures is unique whex < p./(1 — p.) and non-unique whetx > 8p./(1 — p.),
where p. denotes the critical probability of Bernoulli sitergaation onZ?. Although
our result is restricted to the large activity case, we cascdee the structure of a
class of Gibbs measures in which all translationally irsatriones are contained.

Theorem 1.2. Assume that =0 and A > 8p./(1 — p.). Let u} and p, be the
limiting Gibbs measures with plus and minus boundary camut respectively
() The limiting Gibbs measure with free boundary condition gsia to (1.} + 4, )/2.
(i) If ue G(A, 0)is either horizontally periodic or vertically periodigdhen

= apy + (1 a)uy

with someq € [0, 1].

Remark 1. The proof of Theorem 1.2 (i) is valid for any dimension. tggithe
same argument, we can prove that for sufficiently lakgevery limit point of u% , o
with w > 0 or w < 0 is a mixture ofu} and y; .

The remainder of this paper is organized as follows. In $ac#, we review im-
portant properties of Gibbs measures of Widom-RowlinsordehoThe infinite cluster
method introduced by Russo is explained in Section 3. We theeproof of Theo-
rem 1.1 in Section 4. In Section 5 and Section 6, we concentatthe symmetric
case. We define the site-random cluster representationeofiriiie volume Gibbs dis-
tribution in Section 5, which allows us to compare it with Beulli site percolation.
The proof of Theorem 1.2 is given in Section 6.
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2. Preliminaries

Forw,w’ € Q and A C Z?, we writew = ' on [off] A if w(x) = &'(x) for all
x € A [x € A°]. Let OA and 9~ A be outer and inner boundaries af , respectively:

OAN={y¢ A;y~x for somex € A},
O A={x€A;y~xfor somey¢ A}.

A cylinder functionis a function which isF,-measurable for soma e Z2. For
a cylinder functionf , supp denotes the smallast  such fhat Fjameasurable,
ie.

suppf = [{A € Z?; f is Fa-measurablp

An eventE is called aylinder eventf its indicator function X is a cylinder function.

2.1. Strong Markov property. By definition, uf , , enjoys the Markov prop-
erty, namelyuy , , (o) depends only on the values @fon OA. Moreover we can state
the strong Markov property as follows. Late G(A, k). We say that a random subset
' of Z? is determined from outsidé {I" = A} € Fa. for any A € Z?. We consider
a o-algebra

Fre={A€F;An{T = A} € Fx for any A € Z?}.

Lemma 2.1 (Strong Markov property). Each Gibbs measurg enjoys the strong
Markov property If T is finite y-a.s. and determined from outsidéhen

(| Fre) @) = pfoyan()  praaw.

RemARk 2. Let A be a cylinder event. I «) = (), then we Sefuf.y(4) = 1a W)
If I'(w) contains infinitely many points, then we st ,(A) = u(A).

The proof is elementary and we omit it.

2.2. Stochastic domination. First we state the Holley-FKG inequality for rather
general settings.

Let A be a finite set and be a finite subsetfaf We set2, = S2. Foro, o’ €
Qa, we write o < o’ if o—(x) <o'(x) for all x € A. Let u, i/ be probablllty measures
on . We write u < 1/ if u(f) < @/ (f) for any mcreasmg functiory o&,. For a
probability measure: on &2,, we defineQ% = {o € Q4 ; u(o) > O} We say thaw is
nice if there existsM =M f) € 52“ such thate < M for all o € SZ“ Foro, o’ € Q4,
we sayo ~ ¢’ if there existsx € A such thato(x) # ¢/(x) and o = ¢’ off x. We can
define the connectedness of the subsef2qf with respect to the relation-. We call
u irreducible if €% is connected in this sense.
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Theorem 2.2. (i) (Holley's inequality) Let i, i’ be nice and irreducible proba-
bility measuresIn addition we assume tha¥(x) < M (). If for any x € A, a € S,
7,1 € Qp\xy such thatn </, u(c =7 off x) >0 and p/(c =7’ off x) >0,

po(x) = alo=noffx) < p'(o(x) = alo=n" off x)

holds then p < /.
(i) (the FKG inequality)Let 1 be a nice and irreducible probability measure 6%y,.
If for any x € A, a € S, 0,7 € Qa\(x) such thaty < #, u(o = n off x) > 0 and
w(o=n" off x) > 0,

plo(x) > a|o=noff x) < ulo(x) >a|o=17"off x)

is satisfied then i, has positive correlationsi.e. u(fg) > u(f)u(g) holds for increas-
ing functions f, g onQ2,.

The proof of this theorem is obtained by a slight modificatmnthe argument
in [6] §4.2.

Now we return to the Widom-Rowlinson model. Forw’ € , we writew < o’
if w(x) < W'(x) for all x € Z?, regarding{—1, 0, +1} C R. Let x andv be probability
measures on¢f, F). We sayu < v if u(f) < v(f) for any increasing cylinder func-
tion f on . The finite Gibbs distribution il € Z? with boundary conditions = +1
(resp. 0—1) is denoted byuj , , (resp.u%_kh,ug’m).

Lemma 2.3. The finite Gibbs distributions have following properties
() The FKG inequality holds fops , -
(W) 45 g < 15 1w <0
(i) pR xp < HR A R <K
(V) If A C A, thenpy 5, > py g @nd iy 5 < fip g

Proof. Since the set of feasible configurations is connegigd, , is irreducible.
It is clear that bothu¢ , , and %', , are nice. Indeed,

0 on{xed A;w(y)=-1for somey € A with y ~ x},
+1 otherwise

M(:U‘{;\),)\,h) = {

and M @£, ) is similar. We note that 1 , ,) < M(MXjA,/,) becausev < w’.
Fix any x € A. Forn € Qu\,} such thaty xw is feasible, we can easily see that
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pxanlo(x) =+1] o =n off x) is equal to

0 if 7xw(y) =—1 for somey ~ x,
el ) B

s i [ nxw(y)=0forally~ux,

—)\eh otherwise

del +1

It turns out that this conditional probability is increagim w, n and 4 . Similarly, we

can see thaty , ,(c(x) > 0] o =n off x) is increasing inw, n and/ (but not inA!).

Hence (i)—(iii) follows from Theorem 2.2. (iv) is proved byasdard application of (i).
O

RemArRk 3. Since the above conditional probability is not incregsin A, the
monotonicity of phase transition depends on the underlgraph. Examples are found
in [2] and [8].

2.3. Extremal Gibbs measures. Let i , and u, , be the limiting Gibbs mea-
sures ofu} ,, and uy ,, asA / Z? These exist by virtue of Lemma 2.3 (iv). It
is well-known that limiting Gibbs measures satisfy the DLRuation. Bothy} , and
iy , are invariant under any graph automorphisniZf It follows from Lemma 2.3 (ii)
that

on < 1< X

for any € G(X, h). From this, it is easy to see that ,, 1, , € Gex(A, h). Let T =
(Naezz Fac, Which is called thetail o-algebra The following lemma is well-known.

Lemma 2.4. Following conditions(i)—(iii) are equivalent
() 1 € Gex(N, h).
(i) p is tail-trivial, which means thap:(A) =0 or 1 for any A € 7.
(i) im p rzz i 5, = p for p-a.aw.

From this lemma, we can find that every extremal Gibbs measatisfies the
FKG inequality. It is also well-known that any Gibbs measigainiquely represented
as a convex combination of extremal Gibbs measures.

The following criterion of the uniqueness of Gibbs meassreseful (see [6] The-
orem 4.17).

Proposition 2.5. Following conditions(i)—(iii) are equivalent
(i) G(A, h) is a singleton
(”) :LL-')-\,h = :LL):h'
(iii) For all x € Z2, uf ,(o(x)) = py ,(o(x)).



242 Y. HGUCHI AND M. TAKEI

3. The infinite cluster method

Russo [12] created the infinite cluster method for detemngjrthe phase structure
of the 2D Ising model. As in [5], we state his key results in fbem of lemmata. In
addition, we study the uniqueness of the infinite clustereargkriodic Gibbs measures
in Section 3.6.

3.1. Basic concepts of percolation theory. A sequencep =x3, ..., x;) of dis-
tinct points of Z? is a (finite) path from x; to x; if x; ~ xi41 (( = 1,...,k —1). We
similarly define an infinite pattp =x{, x2,...). We sayp is a path ir§ c Z? if
p C S. A path p is calledcircuit if x; ~ x1. A region C C Z? is said to beconnected
if for any x,y € C there exists a path i from to . Alusterin S ¢ Z? is a
maximal connected component 8f . A cluster which contairigitely many points
is called aninfinite cluster A sequencep =x, ..., x;) of distinct points ofZ? is a
(+x)path from x; to x; if x; ~ x;+1 (i =1, ...,k —1). In the similar manner, we define
a (x)circuit, a ()cluster and £)connectedness.

For w € 2, we set

S*(w) = {x € Z?%; w(x) = +1},

S%w) = {x € Z?; w(x) = 0},
S™(w) = {x € Z?; w(x) = -1},
§%(w) = {x € Z? ; w(x) > 0},
§%(w) = {x € Z? ; w(x) < O}.

A path in S*(w) is called a (+)path inv. In the analogous way, we define a (+)circuit
and a (+)cluster. We say that y € Z? are (+)connected i if there is a (+)path
from x to y inw. The event thatk ang are (+)connected is denoteq)by+—> v}
For C C 72 we write {x & C} for the event thatr and some point &8  are
(+)connected. AxX)path (resp. £)circuit, (x)cluster) inS*(w) is called a (+)path (resp.

a (+)circuit, a (+)cluster). We call a prefix such as#*the type of this path. Lete*

be the event that there exists an infinite (+)cluster. Thetetreatx belongs to an infi-
nite (+)cluster is denoted byix < co}. Let I* = I*(w) = {x € Z2; x < o0 in w},
which is equal to the union of all infinite (+)clusters dn There correspond analogous
notions for$%(w), S~ (w), $%(w) and %~ (w) as well. Note thatt* ¢ E** ¢ E%* and
S0 on.

3.2. Transformations of 2. We consider the following transformations ©f
(i) The translationsfy, s € Z2: which are defined by

Ow)) =wlx —s5)  (x €Z?)

for w € Q. Particularly, letfnor = 61,0y and Overr = 00,1). The collection §;),cz2 is a
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group. Fora,b € N, let Z?(a, b) = {(ak, bl) € 72 ; k,1 € Z}. We say thatu € G(\, h)
is ((a, b)-) periodic if it is invariant under the subgrouy),czz.;). In particular, it
is called translation-invariantif this holds for @,») = (1 1). We say that is hor-
izontally periodicif it is invariant underf o) for somea € N. Similarly, we define
vertical periodicity.

(i) The spin-flip transformationFor w € Q, Tw € Q is defined by

(Tw)(x) = —w(x) (x € 72).
(i) The reflections For k € Z, let

Rinor: Z% 3 x = (x1, x2) — (x1, 2k — xp) € 72,
River: 72 > x = (1, x2) — (2k — x1,x2) € Z2.

Let R be a reflection, i.eR Ry hor OF Ry verrt fOr somek € Z. We defineR Q2 — Q
by

(Rw)(x) =w(Rx) (weQ, xelZd.

3.3. Characterization of Gibbs measures by percolation. By the strong
Markov property, the following lemma is easily obtained.

Lemma 3.1. (cf. [5] Lemma 2.1)Let pn € G(\, h). If uw(E®) =0, thenp = Hoxp-
We need a variant of this lemma.

Proposition 3.2. Let u € G(\, h). If w(E®) =0, thenx is a convex combination
of M;h and ,U,;’h.

Proof. Fix A € Z?. By assumption,A is surrounded by either a (+)circuit or a
(—)circuit p-a.s. In such a case, we will say that is surrounded by /a-Jeircuit.
For anye > 0, we can choose a large finite s&t> A such that

1 (A is surrounded by a (#)circuit in A) > 1—e.
For each circuitC surrounding. i , we consider the events

A} a.c ={C is the maximal (#—)circuit surroundingA inA and its type is}+
Ay ac =1{C is the maximal (#—)circuit surroundingA inA and its type is },

and

— _ +/— _
Al p = UAX,A,Cv Apa = UAA,A.C’ AA{A = AR AUAL L,
c c
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where the union runs over all the circuits surroundiig Ain edtly,
H (AX.A) tu (AX,A) = H (Aj\/;) >1-e
Let f be a nonnegative increasing function such that sfipp A. We have
(=0 (f Ly, ) +u (20 )+ (F 2as))

S ) () (2

The Markov property ofu implies that

p(f) = Z {M (:U'i;t(c).)\,h(f) ' 1AX.A_C) + (Miﬁt(c).,\,h(f) 1, )}
C

on (1)

where intC ) is the bounded«(connected component d¢t? \ C. For any circuitC
surroundingA , we note that

154 (F) = tingeyan(F) < Baxa(F)s Haxn(F) < Bingeyrn () < x4 ().
So we have
u(f) < zcj {maon(Nm (AR ae) * (O (Axac)} +ell fll
= i (O (AR o) + s n (O (Ax o) +ell fllse-

Similarly,

1(f) = pan(Oe (Axa) + px a1 (AX,A) — || flloo-

Take a sequenca ' Z?. Note thatAZ/’g is increasing inA . Since finite subsets
of Z? are countably many ang (AR‘A) € [0, 1], by a diagonal-sequence argument
we can choose a subsequencerof  such that} ,) converges for allA € Z2. We
write a4 for this limit. By letting A Z? along this subsequence amd\, 0, we
have u(A} A) — aa, (A, ,) — 1—aa, and

anpin(f) + @ = an)py 4 (F) < p(f) < anpy x () + (1= an)py ,(f).

Next we take an increasing sequenge / Z2. As a, € [0, 1], we can choose
a suitable subsequence of  such that converges to somer € [0, 1]. By letting
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A /77 along this subsequence, we have

u(f) = apy i (f) + (1= a)py ,(f)

for any nonnegative increasing . Because heth, and ., , are extremal inG(X, i),
the extremal decomposition theorem implies thats unique and independent of the
choice of subsequences. This completes the proof. O

3.4. Flip-reflection domination. We assume that = 0. In this case, the inter-
action is invariant under th#lip-reflection transformatiorRo 7', whereR is any reflec-
tion. This implies that{w ; w is feasiblé = {w ; R o T(w) is feasiblé. Thus we can
obtain the following lemma.

Lemma 3.3 (Flip-reflection domination). df. [5] Lemma 2.3)Let € G(\,0)
and R be any reflectianf p-aaw any A € Z? is surrounded by gx)circuit which is
R-invariant and on whichv > R o T(w), then we havey > ppo RoT.

3.5. Percolation in half-planes. A half-planeis the set of the formr = {x =
(x1,x2) € Z2 ; x; > (<) n} for somen € Z andi € {1, 2}. The linel ={x = (x1,x2) €
72 ; x; =n} is called theboundary lineof this half-plane. Let

Tupn = {x¥ €Z?; x2 > n},  Tdownn = {x € Z?; x2 < n}.

We simply write myp, mdown if 7 = 0. In the analogous waygiett ., Trightn, et and
Tright are defined.

A path p = (x1,...,x) is called ahalf-circuit of the half-planer with boundary
line [ if p C 7w andpnl={x1,x}. For a half planer, let £ be the event that there
exists an infinite (+)cluster imr. The union of infinite (+)clusters im is denoted by
I} = I}w) = {x € 7; x < o0 inwl|,}. Whenr =y, We write Ejj, or I, for
short. Analogous notations will be used for infinite clustef other types.

Lemma 3.4 (Shift lemma). ¢f. [5] Lemma 3.4)Let # and 7 be half-planesAs-
sume thatr is a translate off. Then £} = EX p-as. for everyp € G(A, k). This also
holds for infinite clusters of any other types

This lemma is proved by using so-called ‘random Borel-Cifihtggument (see [5]).

3.6. Percolation under periodic Gibbs measures.

Proposition 3.5. Let A\ > 0andh € R. If € G(\, h) is ((a, b)-) periodic then
there is at most one infinite cluster of each typea.s.
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Proof. By the ergodic decomposition theorem ([4] Chap. 2§ can assume
that 11 is (0s)sez2(a.)-€rgodic. We want to apply the Burton-Keane uniqueness-theo
rem, but its proof requires the finite energy property to emrdifferent clusters with
positive probability. In spite of lack of the finite energyoperty in our case, this is
still possible in a similar manner as noted in [7] and [5] foe thard-core lattice gas
model. The €;),cz2 5-€rgodicity is sufficient to show that in a finite box there stxi
encounter points whose number has the same order as the evaltitihe box. Thus
we can show the uniqueness of the infinite cluster. U

By virtue of this proposition, we can establish the non-éstexce of infinite clus-
ters of different kinds by using Zhang’'s argument.

Proposition 3.6 (Zhang's argument). The following statements hold
(i) (cf. [6] Theorem 5.18)If 1 € G(\, h) is a periodic and rotation-invariant proba-
bility measure with positive correlationshen we have(E* N E%—*) = 0.
(i) (cf. [5] Lemma 3.1)If u € G(\, 0) has positive correlations and is flip-reflection
invariant (i.e. 4= o RoT for any reflectionR), then we haveu(E* N E~) = 0.

4. Number of phases: asymmetric case

In this section, we shall prove Theorem 1.1.

4.1. Differentiability of the pressure and uniqueness of Gibs measures. We
review the relation between the differentiability of theepsure and the uniqueness of
Gibbs measures.

We set
— 1 w
p(Av Av hv CU) - |A| |Og ZA,)\,h‘

Differentiating twice byh , we can see that A(\, 4, w) is a convex function of

Lemma 4.1. Let S, be a box inZ? with side lengthn. The limit
P\ k) = lim p(S,, \, h,w)

exists and is independent of It is also a convex function of, therefore it is differ-
entiable except at most countably makms. We call P(\, ) the pressure

Proof. By standard subadditive argument, we can show ghéft;, X, #, 0) con-
verges. We writeP X, k) for the limit. For an arbitrary boundary condition, we
can see thatzy ,, > z¢,, > Z3 ,, for all n > 3, which implies that
p(Su, A, h,w) — P(\, h) asn — oo. O
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The following result is well-known.
Theorem 4.2([3]). |G(\, k)| =1if and only if P(\, x) is differentiable atx = .

Together with the preceding lemma, for eakh> 0, except at most countably
many h'’s, there is a unique Gibbs measure fdyK).

4.2. Proof of Theorem 1.1. We assume that > 0. The case: < 0 is treated
analogously. First we remark that , < u, , if A > 0.

Proposition 4.3. Let A > 0. If u} o # p; o, then we havgG(\, k)| = 1 for all
h > 0.

Proof. We can show thai’;’o(Eo—) =0 if u} o # 11y o (se€ Corollary 5.3 below).
So we haveu, ,(E%") < u’;’o(EO—) =0. By Lemma 3.1, we can see thaf , = i} ;-
Proposition 2.5 gives the result. U

Next, we fix A > 0 such thatuj , = ;o For the unique Gibbs measurg €
G(\, 0), we can show thato(E*UE~) =0 (see Proposition 5.2 below). Therefore, for
arbitrary o € G(A, h) we haveu(E™) < uy ,(E7) < po(E™) = 0. We define

hf = hi(\) =inf{h >0} ,(E") = 13,
he =h;(N)=inf{h > 0; uy ,(E*) =1}
Becauseu; ,(E*) > p, ,(E™), we haveh! < h;. Whenh? < h;, 3 ,(E7) = 1 and

iy, (ET) =0 for all h € (h;, h.). This impliess ;, # iy, for uncountabler s, which
is impossible. We can conclud€ = 4., sayh, .

Proposition 4.4. If p3 o = o, then|G(A, h)| = 1 for A > h.()).

Proof. Whenh > h., we haveu;’h(E*) = 1. It follows from Proposition 3.6 (i)
that ui ,(E®~*) = 0. Lemma 3.1 again shows thaf , = 7 ;. O

5. Site random-cluster representation

Hereafter we assume that = 0 and orhit . Tdie random-cluster representa-
tion of Widom-Rowlinson model is used in several papers; e.g. [&] [8]. Here we
introduce the site random-cluster representation of Gilibgibution with an arbitrary
boundary condition.

Fix A € Z2. For ¢ € {0, 1}*, let

SHO)={xeA;e(x) =1, 5% ={xeA;&x)=0}
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A path in () is called a (1)path ir¢. Analogously, we define a (1)circuit and a
(L)cluster. We say that, y € Z? are (1)connected if there is a (1)path from jto in

£ The event thatt ang are (1)connected is denotec[)byL y}. For C c 72,

{x MEIN C} denotes the event that and some poinCin  are (1)connectedlaBy,
we define (¥)connectedness and so on.
Let w € Q be a feasible boundary condition. We set

Wiw)={x € 0A ;w(x) =+1}, W, (w)={x € 0A; w(x) = -1}
For ¢ € {0, 1}4, let

1 _ )1 if there is no (1)path connectin (w) and W, (w) in &,
D) 0 otherwise

Let A > 0. The site random-cluster distributiorR} , is a probability measure on
{0, 1}* which is defined by

R A =

1
A

= Loy [[ A2 (g e {01,

A XEA

where k €, w, A) is the number of (1)clusters i§ which touch neitherW; (w) nor
W, (w), and Z¢ , is a normalizing constant.

Lemma 5.1 (Site random-cluster representation)lhe finite volume Gibbs distri-
bution 1% , is related to the site random-cluster distributiaty, , as follows
(i) First we pickY € {0, 1}* according toRY ,. For x € A with Y(x) = 0, we set
X(x) = 0. For each (1)cluster C ofY, we assign+1l or —1 to all the sites of this
cluster as follows|f C is connected toW;(w), then we setX = +1 on C. If C is
connected toW, (w), then we setX = —1 on C. Otherwise we toss a fair coin to
determine the signThen the distribution ofX € Q4 is uj .
(i) We chooseX € €, according tou{ , and setY(x) = X (x)? for eachx € A.
Then the distribution ofy € {0, 1}* is RY .

The proof is straightforward and we omit it. Note that thetritisition of S°(o2) =
$%o) with respect topy , is equal to the distribution o8°(¢) with respect toRY ,.

For example, we haves | (x 2 y) = RY (x <2 y) for any x, y € A.
Using the site random-cluster representation, we can ptiogefollowing charac-
terization of the phase transition of Widom-Rowlinson mloideterms of percolation.

Proposition 5.2. (cf. [6] Theorem 4.17, 8.13, [8}3) Suppose\ > 0. Following
(i)—(v) are equivalent
(i) G()) is a singleton
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(i) w3 =py.

(i) g3 (o(x) = +1) =, (o(x) = +1) for all x € Z2.
(V) M o -z2 RY \(x <= OA) =0 for all x € Z2.
(V) uh(x < o00) =0 for all x € Z2

Remark 4. This equivalence holds in Widom-Rowlinson model not oaoly Z?2
but also on an arbitrary infinite connected graph.

Corollary 5.3. If A >0 and u} # py, then u3(E®*) = uy (E®**) = 0.

Proof. If i} # p,, then we haveu}(E™) = u, (E~) = 1 by Proposition 5.2. We
get the conclusion from Proposition 3.6 (i). U

For anyx € A, we shall calculate the conditional probabili ,((x) =1|¢& =
n off x), wheren € {0, }*\I*} satisfiesRY (¢ = n off x) > 0. We definen,, €
{0, 1}*(s =0,1) by

_)ny) ity #x,
Mes(¥) = .
s if y=x.
Then we have

RR A€ =1 1)
R?\},)\(f = nx,l) + R;‘\},)\(f = 7])(,0)

From RY (£ =n off x) > 0, it follows that

R A(E(X) =1[&=n off x) =

1pwmo) =1
Thus we have

RX.)\(g = nx.l)

=22 T =X-1p e 2k(7]"'1’W'A)_k(7],\.o.w,A)'
R \(§=mx0) (W.2.1)

The values of 3, 5.,y andk @x,1, w, A)—k(n.0,w, A) are closely related to the num-
ber of (1)clusters im each of which contains a site adjacentxto . The number of such
(1)clusters is denoted by , and the number of ones which taadther W} (w) nor

W, (w) is denoted byr . It is clear that &€ n < N < 4. We definex(n, w, x, A) as
follows: If there are two disjoint (1)clusters containinges adjacent tar , of which
one touchesWj(w) and another touche®, (w), then we setk(n, w,x, A) = —oc.
Otherwise, we set

1-n if N=n,
—-n if N> n.

k(m,w, x, A) = {
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Noting thatRY , (€ = 1x.1)/R% 5 (€ = 1v.0) = A - 280@x-A) "we have

) - 26(nw.x.A)

RX)\(ﬁ(x) =1 | 5 =n off .X') = - 2r(nw.x,A) 4 1°

Remark 5. By the definition ofx, it turns out thatrRy , does not satisfy the con-
ditions of Theorem 2.2.

Let P, denote the Bernoulli probability measure ¢, 1}ZZ with density p . For
x € A andn € {0, 13"\t such thatRY , (¢ =7 off x) > 0, we can see thatoo <
k(n,w, x, A) < 1. Holley’s inequality implies thaRy, , < P,y @x+1). Moreover, ifw €
Q satisfiesw > 0 or w < 0 on 9A, then -3 < k(n, w, x, A) < 1. Thus we obtain the
following lemma.

Lemma 5.4. If a feasible boundary condition € Q satisfiesw > 0 or w <0
on JA, then we have

6. Number of phases: symmetric, large activity case

In this section, we shall prove Theorem 1.2.
6.1. Preliminary results.
Proposition 6.1 ([10]). If A > 8p./(1— p.), then | # u, .

Proof. Here we give a proof based on Proposition 5.2. Whefh + 8) > p,

(i.e. A > 8p./(L— p.), Prjpug)(0 <= o0) = 6 > 0. For A € 72, it follows from
Lemmata 5.1 and 5.4 that

1 A (0 << AA) > 4§ (0 = A)

1
= ER(,)\'/\(O 15 0n)

1 1 1 1 0
ZEPA(CM—}@A)ZEPﬁ(O%OO)_E>O'

A48

By letting A 72, we havep3 (0 5 o) > 6/2 > 0. It follows from this and
Proposition 5.2 thaj} # . O

When activity is large, we can determine the limiting Gibbsasure with free
boundary condition.
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Proposition 6.2. When\ > 8p./(1 - p.),

. 1 _
px = lim M?\,A—E(,&;"’H,\)-

Proof. Take a sequencé  Z?. By taking a suitable subsequen¢d,}, uQ
converges to a probability measure €n , $8y asn — oo.

We shall proveuS(E®) = 0 when A > 8p./(1 — p.). Let p* be the criti-
cal probability of infinite ¢)cluster of Bernoulli site percolation of?. It is well-
known thatp. +p* = 1 ([13]). Now, as 1- \/(\A + 8) < p?, there is no infinite
(Ox)cluster Py /(x+g)-a.s. Fixx € Z?. For anye > 0, we can choose a largé  so that

Py jog)x <2 9A,) < ¢ for all n > N. By Lemmata 5.1 and 5.4, fon > n > N
we have

O o OA,) = RS (6 <25 OA,) < P (x 2 OA,) < e

By letting m — oo, n — oo ande Y\, 0, we haveul (x & 00) = 0 for all x € Z2.
Thus p{(E%) = 0.

By Proposition 3.2,3 = ayu +(1—a)u, for some coefficienty € [0, 1]. We note
that 1 ,(A) = ,oT(A) for eachn and anyl € F4,. By letting n — oo, we have
13 (A) = u§ o T(A). This implies thatr = 1/2. We can conclude that} , converges
to (i} + iy )/2, independent of the choice of the subsequencé of 72. O

Proposition 6.3. Suppose thatn > 8p./(1 — p.). If u € G(), 0) satisfies that
u(E™) > 0, thenu(E"NE~) > 0.
(E%) > 0, then u(E* )>0

Proof. Without loss of generality, we can assume that Gex()\, 0) and u(E®) =
1. We shall show that(E* N E™) = 1.

Suppose thap(E*) = 0, which implies that any finite sek  ¢£? is surrounded
by a (0-x)circuit p-a.s. On the other hand, since> 8p./(1 — p.), for x € Z? and
e >0, we can choose a large € Z? containingx such thaP /(\+g)(x AL JA) < e.
As A is surrounded by a (©«)circuit p-a.s., we can choose a large € Z? such
that with p-probability > 1 — ¢ there is such a (0x)circuit in A. LetI" be the region
surrounded by the maximal {&)circuit in A if it exists. Otherwise we saf & Be-
causel’ is determined from outside, we can show by using tbagstvarkov property
of u that

p(x <= OA)

= 1S, 1oy (8 < OM)Lir(oyzoy) + ul{x <= OA} N{T(w) = 0}).
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By Lemmata 5.1 and 5.4, we have

B r) (8 < OA) = R rp(x < OA) < Py (x < OA) < e.

Thus we haveu(x <X OA) < e+ = 2-. By letting A 72, ¢ \, 0 andA /' 72,
we can see thati(x &, o0) = 0. Sincex is arbitrary, we can concluggE®) = 0,
which is a contradiction. Thus we haygE*) = 1.

In the same way, we can show thatf~) = 1. U

6.2. Periodic phases. When X is large, we can get the complete description of
periodic Gibbs measures.

Theorem 6.4. If A > 8p./(1— p.), then any periodic € G(\, 0) is a mixture
of u3 and p; .

Before proving this, we prepare a lemma. We say#() is a pair of conjugate
half-planesif half-planesw, © share only a common boundary line. An associated pair
of infinite clusters (%™, 19**) or (19*, I127*) is called abutterfly. In particular, a but-
terfly in (mes, 7rignt) is called ahorizontal butterfly A vertical butterflyis the one in

(7Tup, Tdown)-

Lemma 6.5 (Butterfly lemma). ¢f. [5] Lemma 3.1)Suppose that > 8p./(1 —
p.) and p € G(\, 0). If u(E®) > 0, then there exists at least one butterfly with positive
probability.

Proof. By the extremal decomposition theorem, there exists Gex(\, 0) such
that Q (%) = 1. By Proposition 6.3,0 K* N E~) = 1. If Q-a.s. there is no but-
terfly, then it turns out thap s flip-reflection invariant. &mise this is impossible by
Proposition 3.6 (ii), we can see that there exists at leasthatterfly O -a.s. This gives
the result. O

We can prove Theorem 6.4 by using Proposition 3.2 and thewollg proposi-
tion.

Proposition 6.6. If A > 8p./(1 — p.), then u(E%) = 0 for any periodicy €
Gg(A, 0).

Proof. By the ergodic decomposition theorem, it is suffitiéa show that
w(E®) =0 for ergodicy.. So we assume that is ergodic.

Suppose thaf(E®) = 1. By Proposition 6.3, we havg(E* N E~) > 0. By
butterfly lemma, we can assume that there is a verticak)@itterfly with positive
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probability. We can find a large square € Z? such that with positive probability

A intersectsI{y*, 19 and I~. Without loss of generality, we can assume ttat

leaves on the right betweeff;* and 195 with positive probability. Fork € Z, let
Ay ={(k,0) € I§* N Igw. (k+1,0)e I~} and A, be the event tha#t, occurs for in-

finitely many k € Z. By changing the configuration in  suitably, we hawéAo) > 0.
Poincaré’s recurrence theorem ([4] Lemma (18.15)) shdwast(A~) = 1. But on A
there exist infinitely many infinite<{)clusters. This contradicts Proposition 3.5. Conse-
quently u(E®) = 0. O

6.3. 1-periodic phases: proof of Theorem 1.2.Let p € G(A, 0). We say that
an infinite cluster in a half-plane has thiae touching propertyif the cluster touches
the boundary line of the half-plane infinitely many timesa.s.

We define+ € Q by

+1 if xo >0,
+(x)=<0 if xo =0,
-1 if x<0O.

It follows from Lemma 2.3 (iv) thatulfp =1limy,, g, Mip exists and isfho-invariant.

Lemma 6.7. (cf. [5] Lemma 4.2)ui(E3*) =0 whenX > 8p./(1— p,).

This lemma is proved by using Theorem 6.4 and flip-reflectiomithation. Now
we are ready to derive the line touching property of infinitesters of several types.
But note that the same argument as in the Ising model do net thie line touching
property of the infinite clusters of types +4,+0, 0«, — and —x.

Lemma 6.8 (Line touching lemma). df. [5] Lemma 4.1)Let A > 8p./(1 — p.)
and ¢ € G(XA, 0). The infinite (O+)cluster in any half-planer have the line touching
property u-a.s. if it exists The same holds for infinite clusters of typex or 0— or
0—x.

Corollary 6.9. Suppose\ > 8p./(1— p.) and u € G(A, 0). In an arbitrary half
plane 7, there exists at most one infini(e-)cluster u-a.s. The same holds for infinite
clusters of typess or — or —x.

Lemma 6.10 (Orthogonal butterflies). cf. [5] Lemma 4.3)Let A > 8p./(1— p.)
and i € G(\, 0). If (E®) > 0, then there exist both horizontal butterflies and vertical
butterflies u-a.s.

Proof. We can see that(E* N E~) > 0 by Proposition 6.3. By the extremal
decomposition theoremp E(¢ N E~) =1 for someQ € Gex(A, 0). By butterfly lemma,
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there exist at least one butterfly -a.s.
Assume that there is a vertical (@butterfly but no horizontal butterfly, for ex-
ample. In this caseQ ¥ o Ryvero T for any k € Z. ThereforeQ is horizontally

periodic. Fixn € N. By shift lemma, we hava) H(;: N Edaw,_,) = 1. Fork € Z, we
set

O+x O+
Al={weq; (k. n) € Lyp» (k. =) € Lgown -
wk,)=0for —-(n—-1)<I<n-1

and A”_ = {A} occurs for infinitely manyk € Z}. We can easily see tha® Af) > O.
Poincaré’s recurrence theorem and tail-triviality @f  Iynphat Q (A%) = 1 for all n.
Thus we haveQ (ﬂjﬁl A’;O) = 1. If for somen there is an infinite{)cluster inmyp .,
Poincaré’s recurrence theorem again shows that infinitefny infinite )clusters
appear, which contradicts Corollary 6.9. Hence for any ehisr a unique infinite
(O+x)cluster inmyp,. Similarly, the infinite (O+)cluster inmgown—» IS also unique. We
can find that any finite region i? is surrounded by a (Gdcircuit in w € (72, A",
which contradictsQ £* N E~) = 1.

Consequently, both vertical butterflies and horizontatdstltes existQ -a.s., which
implies that this occurs with positive-probability. O

Proof of Theorem 1.2 (ii). By the ergodic decomposition tle®me, we can as-
sume thaty is horizontally ergodic and satisfigg £%) = 1. Because at least one ver-
tical butterfly must exist, as in the proof of Lemma 6.10, wa& chow thatu(E* N
E~)=0. This is a contradiction, which implies tha{£%) = 0. Together with Propo-
sition 3.2, we can find that is a mixture ofx} and ) . [l
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