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Alexander Polynomials as Isotopy Invariants, I

By Shin'ichi KINOSHITA

Introduction

As an isotopy invariant J. W. Alexander [1] introduced polynomials
of knots, so-called the Alexander polynomials A(t) of knots. Recently
R. H. Fox generalized this notion to the case of links and the polynomials
Δ(t19 ~- ytμ) of links with multiplicity μ are called again the Alexander
polynomials of links. The relation between the Alexander polynomials
A(t) and Δ(ίx, ••• , ί j to the groups of knots and links, i.e. the funda-
mental groups of the complementary domain of knots and links, is studied
by R. H. Fox [3] [4] by the use of his free differential calculus.

The notion of the Alexander polynomials is naturally extended to
the more general cases. But the way of the extension does not seem
to be unique in the method and in the subject. In this paper we shall
treat the case of ^-dimensional cycles Kn(n2>l) with integral coefficients
in the (w-+-2)-dimensional sphere Sn+2. Of course we shall study them
from the semi-linear stand point of view.

In § 1 we define the Alexander polynomials of Kn in Sn+2 by the
use of free differential calculus. It should be remarked that according
to R. H. Fox [4] not only one Alexander polynomial but the sequences
of the Alexander polynomials are defined. In fact we have two sequences
of the Alexander polynomials i.e. Δ^f^, ••• , tj and ACd>(t). In §2 we
give a presentation of the fundamental group of Sn+2—\Kn\^ and from
this we are led to the Alexander polynomials. In §3 a theorem of
ΔCΌ(tly ••• , tμ) is proved, which is similar to that of G.Torres [7] for
the case of links. In § 4 we treat briefly the general cases of theorems
of E. Artin [2] and H. Seifert [6]. In § 5 we shall give an example of
a linear graph, which will seem to be of interest to some readers.

1. Let Kn be an //-dimensional complex with integral coeffecients
in the (w4-2)-dimensional sphere Sn+2(n>s 1). Further suppose that Kn is

1) K" is a complex with integral coefficients and \Kn\ is a polyhedron.
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a cycle. Of course the fundamental group F(Sn+2—\Kn\) is an isotopy
invariant of Kn in Sn+2.

Now suppose that \KM\ consists of μ components \K"\y ~- >\K"\.
Let g be an element of F(Sn+2—\Kn\) and g a closed path which repr-
sents g. Put

( 1 ) λ. = Link (g, K^\ (j=l,...,μ)

Then Xj is an integer and independent of the choice of g.
Let Zj be an infinite cyclic group (j = 1, ••• , μ) and t5 a generator

of Zr Put
r

Further if we put

for every geF(Sn+2- \Kn\)y then φ is a homomorphism of F(Sn+2-\Kn\)
into Zμ . Let {&, g19 ••• ,g β} be a set of generators of F ( S W + 2 - \Kn\) and
{i?!, , i?3} be a set of relators. Further let X be a free group of oc + 1
generators. Then there exists a homomorphism ψ of X onto F(Sn+2— \Kn\).

Using the Fox's free differential calculus [3] [4], we put

The matrix M is the so-called Alexander matrix and its elements are
polynomials of tx, , t^.

Now let d be an arbitrary integer. The greatest common factor
ΔQd^(tly ••• ,tj of the minor determinats of M of order (cc-hl) — d, where
a 4-1 is the number of columns of M, is called the d-th Alexander poly-
nomial. Of course Acd:>(t1> ••• , tj is determined only up to a factor
±fi* ••• Vμ. . It should be understood that Δ ^ f t , -> ,tj = l for d ^ α : + l
and that AW )(^, ••• , ί J = 0 if M has fewer than (a+l)—d rows. If the
group F{Sn+2-\Kn\) and φ is fixed, then the sequence Δ ^ , ... , fμ)
(t/ = 0, 1, •••) is their invariant^. Therefore we have the following

Theorem 1. The sequence ACd\tly ••• , tj is an isotopy invariant of
Kn in Sn+2.

2. Let Z be an infinite cyclic group and t a generator of Z. If we
put

λ = (g, K\

instead of (1), and put

2) Link (£, K") is the linking number of g and K".
3) See R. H. Fox [4].
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for every geF(Sn+2— \Kn\), then we have another homomorphism φ' of
F(Sn+2— \Kn\) into Z. From this in the same way we have the Alexander
matrix

and also a sequence A^(t) of the Alexander polynomials. Of course Δc</)(£)
is determined only up to a factor ±tλ. Just as Theorem 1 we have

Theorem 2. The sequence of the Alexander polynomials ACd\t) is an
isotopy invariant of Kn in Sn+2.

REMARK. If \Kn\ is connected, then two sequences of the Alexander
polynomials are the same.

§ n
Δ.

1. Let Kn (n^>l) be an ^-dimensional cycle with integral coeffi-
cients in Sn+2. Then we may suppose that Kn is contained in the
(#4-2)-dimensional Euclidean space En+2. Further we may assume that
vertices of Kn are linearly independent, i.e., if Ao, A19 ••• ,An+2 are n + 3
vertices of Kn

y then they are not cotained in a (w-f-l)-dimensional hyper-
plane of En+2. Then there is a projection p of Kn into an (w-f-^-dimen-
sional hyperplane En+1 such that if Ao, ••• ,An.vl are vertices of Kn, then
p(A0), ••• ,p(An+1) are linearly independent in En+1. The projection of
this kind will be called a regular projection of Kn.

En+1—p(\Kn\) is decomposed in regions. We put

Let BoeGo, Bλ^Gly ••• ,Bα£Gα. Further let P and Q be two points satis-
fying the following conditions:

(1) P and Q are contained in the different components of En+2—En+\

(2) (PBt VB£>)^K« = 0 for every i (= 0, 1, - , αγ\
Convensionally we may suppose that

E " + 1 = (*i, ,*,,+i, 0),

P = ( 0 , .-.,0, 1),

Q = ( 0 , .-.,0, - 1 ) .

2. Now we put

g. = PB^BiQ v QBovBoP. (i = 0, 1, - , α)

4) Kΐ={y\y€xp(x), x e K«}.
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Then g. is a simple closed curve in Sn+2—\Kn\. Let g{ be the element
of F(En+2- \Kn'\) such that gt represents gg. Then it is easy to see that
go, gi, ~-,g* generate F(En+2- \Kn\). By definition g0 = 1.

Let sa and sb be a pair of open ^-dimensional simplices of Kn such
that p(sa) nPisJΦO. Then L=p(sa) ^p(sb) is an (n—l)-dimensional
open disk. Put

L->= {x\p-1(x)r\(\KH\-(savSb)) = 0, x£L}.

Then L—Lab is at most («—2)-dimensional. Let Lf, ••• , Z,?? be compo-
nents of Lβft. Then each Lf (k = l9 ••• , ΛO is the boundary of at most
four regions. Let Gry Gs, Gty Gu be these four regions, where it may

occur that some of them
coincide. The position of Gry

Gsf Gty Gu may be supposed
as follows: Let sa be the
under simplex with regards to
Lf and sb the over one. Of
course we consider only a suf-
ficiently small neighborhood of
Lf. Suppose that the normal
vectors of p{sa) with sufficien-
tly small absolute value are
contained in Gr and Gs. As-
sume that Gr and Gu have an
^-dimensional common boun-

dary and that Gs and Gt have an ^-dimensional common boundary in a
sufficiently small neighborhood of Lf.

Then it is easy to see that for each Lf we have a relation

grg^gtgZ1 = 1. (Lf)

It is easy to see that a presentation of F(En+2— \Kn\) is given as follows:

Generators. go, gi> — ,g*>

Relations.

This is a kind of so-called over presentations.
3. Now we construct the Alexander matrix of the over presentation

Of F(En+2- \Kn\). Suppose that sa e \Kn

y\ and sbe \Kn

δ\, where |Kn

y\ and
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I Ki I are components of | K" |. Suppose further that coefficients of sa

and sb of K" are βa and βb respectively.
First we suppose that the normal vectors of p(sb) with sufficiently

small absolute value are contained in Gr and Gu in a sufficiently small
neighborhood of Lf. If

then

?»(&) = ft1-Φ+β ••*»»•••'£*,
?>(&) = ft*-Φ ««+ f l* f > .

Put Rf=grgj1gtg:1. Then

( 7)

Secondly we suppose that the normal vectors of s6 with sufficiently
small absolute value are contained in Gs and Gt in a sufficiently small
neighborhood of Lf. If

then

Then
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§3.

Let Kn be an ^-dimensional cycle with integral coefficients in SM+2.

Let M be the Alexander matrix obtained from the over presentation

(in §2) of F{Sn+2~ \Kn\). Further let φ{gi) = fa ... # μ (/ = o, •••, a). Put

CΓQ C Γ J * Cx, * * * CXQJ

/ I 0 ••• 0 ••• 0'

Then 2 ί - i ^ = 0. Further it is easy to see that

Hence

Then

/ I
Λ

O - O •0

Now put

1 O O O

I 0 0 0

0y>

0

Let &i{t19 -" , O be the greatest common factor of determinants of order

a of M{. If /ϊ1'1 •••/£'!*—1 = 0, then all the determinants of order cc of

Mi are equal to 0. From now on we consider the terms fa ••• ί ^ - l Φ O .

Then (ίi>i.. # μ - l ) divides Δ . ( ^ , . . . , ^ ) (/?Ί - f j > - l ) for * = 1, •- , ^

and therefore it must divide Δ ^ , ••• , ίμ) δ ( ^ , ... , /J , where δ ( ^ , ••• , tj

is the greatest common factor of fa ••• / £ v - l , •••, /ίΛ l ••• / μ V - 1 . But it

is easy to see that

Then the common value of

Therefore

* —1 is , ί ).

5) In the proof we use the notation \ mening delation of £.
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Theorem 3.6> Δ .(t19 ... , tμ) = A™(t19 - , tμ) -%'^ f^Jj-

It i?w is an orientable manifold with multipicity μ = l, then 8(t) =
t-1. If ϋCn is that with μ^.2, then δ(^, ... , tj= 1.

Let EV2 be the subset of En+2 such that (*„ ••• , xn+2) eEn+2 if and
only if xn+2^>0. Let if* be an ^-dimensional complex in El+2 and Kn+1

be the (n-hl)-dimensional complex in En+Z obtained from Kn by the
rotation about the axis xn+2 = 0 in En+2. Then we have the following

Theorem 4. F(E¥2-\K"\) is isomorphic to F(En+3- \Kn+1\).
This theorem was proved by E. Artin [2] for n = l. The proof for

arbitrary n will be done similarly.
If Kn is a cycle with integral coefficients, then Knvi is also a cycle

with the same one. Clearly we have

Theorem 5. A^(t19 ••• , fμ) and Δ^(ί) o/ /ίw m ET2 are equal to
that of Kn+1 in EnJr\ respectively.

Let /(/) be a polynomial satisfying the following conditions:
(1) |/(1)| = 1,
(2 ) The coefficients of f(t) are symmetric.

Then it was proved by H. Seifert [6] that there exists a knot whose
Alexander polynomial ΔC1)(/) is equal to f(t). Using Theorem 2, we can
see the following

Theorem 6. Let f(t) be a polynomial satisfying the following con-

ditions :

( 1 ) |/(1)| = 1 ,
( 2 ) The coefficients of f(t) are symmetric.

Then there exists a connected n-dimensional manifold in En+2, whose Alex-

ander polynomial ΔC1)(£) is equal to /(/).

Further by a remark of E. Artin [2] a connected manifold can be
replaced by Sn.

Recently the above Seifert's theorem is extended to the case of links
by F. Hosokawa [5]. Of course his theorem can be generalized along
the same way.

6) By the same way it can be proved that
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§5.

Let Ko be a linear graph
as shown in Fig. 2, where two
simple arc from A to B have the
coefficients 1 and other one simple
arc from B to A has the coefficient
2. Then the presentation of F(S3-
\K0\) is as follows :

Generators. g0, gλ,
go = 1, gtg^gβgo1 = 1,

= 1.

gΊ

gβg^gigϊ1 = 1, gtg^g
The homomorphism <p maps gΌ-^1, g±-*t~\ g2-+l, g3-*t, gA-*t\ gB-^ty

ft-^ί"1* S?"^!- Therefore the Alexander matrix is given by the following
one:

go

1

- 1

0

- Γ 1

0

, -f

gl

0

0

0

1

Γ 1

f

g*
0

0

0

- Γ 1

0

&
0

0

- /

0

0

- 1

0

1

1

0

0

1

&
0

- ί

- 1

0

0

0

ge

0

t

0

r1

1

0

gl

0

0

0

- 1

- 1

0

From this it follows that

On the other hand if Kx is a trivial 0-curve (as shown in Fig. 3), then

Therefore Ko and Kγ are not isotopic. It

should be remarked that three simple closed
curves constructed from Ko are trivial knots.

(Received September 29, 1958)

References

[ 1 ] J. W. Alexander: Topological invariants of knots and links, Trans. Amer.
Math. Soc. 30, 375-306 (1928).



Alexander Polynomials 271

[ 2 ] E. Artin : Zur Isotopie zweidimensionaler Flachen in R4, Abh. Math. Semin.
Hamburg Univ. 4, 174-177 (1925).

[3] R. H. Fox: Free differential calculus. I, Ann. Math. 57, 547-560 (1953).
[ 4 ] R. H. Fox: Free differential calculus. II, Ann. Math. 59, 196-210 (1954).
[ 5 ] F. Hosokawa: On F-polynomials of links, Osaka Math. J. 10 (1958).
[ 6 ] H. Seifert: Ueber das Geschlecht von Knoten, Math. Ann. 110, 571-592 (1935).
[ 7 ] G. Torres: On the Alexander polynomial, Ann. Math. 57, 57-89 (1953).






