

Title	Correction to "Exponential decay of positivity preserving semigroups on L^p " (This Journal Vol. 37 (2000), 603--624)
Author(s)	Hino, Masanori
Citation	Osaka Journal of Mathematics. 2002, 39(3), p. 771–771
Version Type	VoR
URL	https://doi.org/10.18910/6354
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Hino, M.
Osaka J. Math.
39 (2002), 771–771

**CORRECTION TO “EXPONENTIAL DECAY OF POSITIVITY
PRESERVING SEMIGROUPS ON L^p ”
(THIS JOURNAL VOL. 37 (2000), 603–624)**

MASANORI HINO

(Received December 19, 2002)

The proof of Theorem 2.8 in the paper titled above contains an error. The identity

$$\int_X \rho_k^{q-1} \rho_k dm = \int_X (S^n \rho_k^{q-1}) \rho_k dm$$

in the proof is true only when $n = 1$ in general. We modify the proof as follows. By applying the original proof to S^n itself, we can take $\tilde{\rho} \in \text{Ker}(1 - (S^n)^*)$ such that $\tilde{\rho} \geq 0$ and $\tilde{\rho} \not\equiv 0$ m -a.e. Define $\rho = \sum_{j=0}^{n-1} (S^j)^* \tilde{\rho}$. Then $S^* \rho = \rho$, $\rho \geq 0$ and $\rho \not\equiv 0$ m -a.e. This completes the proof.

Department of Applied Analysis
and Complex Dynamical Systems
Graduate School of Informatics
Kyoto University
Kyoto, 606-8501, Japan
e-mail: hino@i.kyoto-u.ac.jp