<table>
<thead>
<tr>
<th>Title</th>
<th>Almost QF rings and almost QF# rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Harada, Manabu</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 30(4) P.887-P.892</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/6356</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/6356</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
In this paper we assume that every ring R is an associative ring with identity and R is two-sided artinian. The author has defined almost projective modules and almost injective modules in [8], and by making use of the concept of almost projectives he has defined almost hereditary rings in [7], whose class contains that of hereditary rings and serial rings. Similarly to [7] we shall define an almost QF ring, which is a generalization of QF rings.

It is well known that an artinian ring R is QF if and only if R is self-injective. Following this fact, if R is almost injective as a right Λ-module, we call R a right almost QF ring. Analogously we call R a right almost QF* ring if every injective is right almost projective. On the other hand, the author studied rings with (\ast) (resp. $(\ast)^*$) (see §1 for definitions) in [4]. K. Oshiro called such a ring a right H- (resp. co-H) ring in [10]. In this note we shall show that a right almost QF (resp. almost QF*) ring coincides with a right co-H (resp. H-) ring. In the final section we shall give a characterization of serial rings in terms of almost projectives and almost injectives.

In the forthcoming paper [9] we shall study certain conditions under which right almost QF rings are QF or serial.

1. Almost QF rings

In this paper we always assume that R is a two-sided artinian ring with identity and that every module is a unitary right R-module. We use the same notations in [7]. We have studied almost hereditary rings in [7], i.e. J, the Jacobson radical of R, is right almost projective. We shall study, in this paper, some kind of the dual concept to almost hereditary rings (see Theorem 1 below). We call R a right almost QF ring if R is right almost injective as a right R-module [8]. We can define similarly a left almost QF ring. It is clear that R is right almost QF if and only if every finitely generated projective R-module is right almost injective. Hence the concept of almost QF rings is preserved under Morita equivalence and we may assume that R is basic.

On the other hand, the author studied the two conditions in [3] and [4]. Let M be an R-module. If $MSoc^{1}(R) \neq 0$ (resp. $M \text{ Soc}^{1}(R) \neq 0$) then we call M non-
small (resp. non-cosmall) [4], where \(\text{Soc}'(R) \) (resp. \(\text{Soc}''(R) \)) is the left (resp. right) socle of \(R \).

\((*)\) Every non-small module contains a non-zero injective module.

\((*)^*\) Every non-cosmall module contains a projective direct summand.

K. Oshiro called rings with \((*)\) (resp. \((*)^*\)) right H (resp. right co-H) rings in [10]. Relating with those two concepts we have

Theorem 1. Let \(R \) be an artinian ring. Then the following are equivalent:

1) \(R \) is right almost QF.
2) The Jacobson radical \(J \) of \(R \) is almost injective as a right \(R \)-module.
3) \(R \) is a right co-H ring.

Proof. 1) \(\iff \) 2). This is clear from [8], Corollary 1\(^* \) and Proposition 3.
1) \(\iff \) 3). We know, from the above implication, [8], Proposition 3, [4], Theorem 3.6 and [11], Theorem 4.1, that the structure of right almost QF rings coincides with that of right co-H rings.

Corollary. \(R \) is right almost QF if and only if \(R \) is right QF-2, QF-3 and every submodule containing a projective submodule of \(eR \) is local for any primitive idempotent \(e \).

Proof. If \(R \) is right almost QF, \(R \) satisfies the conditions in the corollary by [8], Corollary 1\(^* \) and Proposition 3. Conversely assume that \(R \) satisfies the conditions. Let \(A \) be a submodule of \(eR \) such that \(eR \supset A \supset fR \), where \(e,f \) are primitive idempotents. Then \(A \approx gR/B \) by assumption, where \(g \) is a primitive idempotent. Hence we obtain a natural epimorphism \(\theta : gR \to A \). Put \(K = \theta^{-1}(fR) \). Since \(fR \) is projective, \(K = B \oplus K' \). Further \(gR \) is uniform, and hence \(B = 0 \). Therefore \(A \) is projective, and \(R \) is right almost by Theorem 1 and [8], Proposition 3.

2. Almost QF\(^* \) rings

In this section we shall study the dual concept to almost QF. If every indecomposable injective module is almost projective, we call \(R \) a right almost QF\(^* \) ring. If every indecomposable injective module is local, we call \(R \) right QF-2\(^* \). If a projective cover of every (indecomposable) injective module is injective, we call \(R \) right QF-3\(^* \).

As the dual to Theorem 1, the following theorem is clear from [1], Theorem 2, [8], Theorem 1 and [10], Theorem 3.18.

Theorem 2. Let \(R \) be artinian. Then the following are equivalent:

1) \(R \) is right almost QF\(^* \).
2) \(R \) is a right H-ring.

K. Oshiro [11] showed that \(R \) is right almost QF\(^* \) if and only if \(R \) is left al-
most QF.

The following is dual to Corollary to Theorem 1.

Proposition 1. Let R be an artinian ring. Then R is right almost QF* if and only if 1): R is right QF-2*, 2): R is right QF-3* and 3): if eR/A is injective for $A=\varnothing$, then eR/B is uniform for any $B \subset A$. 1) together with 2) is equivalent to 4): every indecomposable injective is a factor module of some local projective and injective module, where e is a primitive idempotent.

Proof. If R is right almost QF*, we obtain the conditions 1), 2) and 3) by [8], Corollary 1*. Conversely we assume 1), 2) and 3). Let eR/A be injective and $B \subset A$. Then eR/B is uniform by 3). Take a diagram

$$
\begin{array}{ccc}
0 & \rightarrow & eR/B \\
& \downarrow & \\
& \mu & \rightarrow \ E(eR/B)
\end{array}
$$

where i is the inclusion and ν is the natural epimorphism. Since eR/A is injective, we have $\mu_i = \nu$. ν being an epimorphism, $E(eR/B) = eR/B + \mu^{-1}(0)$. Further $E(eR/B)$ is local by 1) and 3), and hence $E(eR/B) = eR/B$. Therefore eR/A is almost projective by [8], Theorem 1*. Hence R is right almost QF*.

If R is hereditary and QF, then R is semisimple. Concerning with this fact, we have

Proposition 2. Let R be an artinian ring. Then the following are equivalent:

1) R is serial.
2) R is right almost QF* and right co-serial. (cf. [11], Theorem 6.1.)
3) R is right almost QF and right almost hereditary.
4) R is right almost QF* and right almost hereditary.
5) R is left almost QF and right almost hereditary.

Proof. 1) \rightarrow 2), 3), 4) and 5). This is clear from [7] and [10].

2) \rightarrow 1). Let f be a primitive idempotent and $E=E(fR)$. Then we may assume $E=e_iR \oplus \cdots \oplus e_sR \oplus \sum_j g_jR/A_j \oplus \cdots \oplus \sum_j g_sR/A_s$, where the e_iR and the g_jR are injective and $A_j \neq \varnothing$ for all j by Proposition 1. Let θ be the natural epimorphism of $(\sum_j e_1R \oplus \sum_j g_jR)$ onto E with $\theta^{-1}(0)=A_1 \oplus \cdots \oplus A_s$. Then since fR is projective, $\theta^{-1}(fR)=P \oplus \theta^{-1}(0)$; $P \approx fR$. Set $E_1=E \oplus e_iR$ and $E_2=E \oplus g_jR$ and $\pi_i: E \rightarrow E_1$ the projection. Since $\theta^{-1}(0)$ is essential in E_2, $P \cap E_2=0$. Hence $fR \approx P \approx \pi_i(P) \subset E_i$. Next we shall show that every submodule of E_i is standard. Take submodules $K \subset L \subset e_iR$ for $i=1, 2$ such that
We may assume $|e_1R/K_1| \leq |e_2R/K_2|$. Since e_1R is uniserial, we can suppose that e_1R/K_1 and e_2R/K_2 are contained in $F=E(L_1/K_1)$, which is also uniserial. We can extend μ to an automorphism μ^* of F. Since $|e_1R/K_1| \leq |e_2R/K_2|$, $\mu^*(e_1R/K_1) \subseteq e_2R/K_2$. On the other hand, e_1R being projective, μ^* is liftable to a homomorphism of e_1R into e_2R. Hence fR is a standard submodule of E_1 by [6], Lemma 5. Accordingly $fR \subset$ some e_iR (isomorphically) for fR is local. Therefore fR is uniserial for any f, and hence R is serial by [2], Theorem 5.4.

3) \rightarrow 1). If R is hereditary, R is a serial ring in the first category by Corollary to Theorem 1 and [7], Corollary 3. Assume that R is of the form (9) in [7], Theorem 2. Now we follow [7] for the notations. Then h_1R is not injective provided R is not serial by [7], Corollary 3. However h_1R must be contained in an injective and projective fR by Corollary to Theorem 1, which is impossible from the construction of R in [7].

4) \rightarrow 1). Let R be right almost hereditary and right almost QF*. We use the same notations as in [7]. If R is not serial, $T_1 \neq 0$ in [7], the figure (9). Then $E(h_1R/h_1J)$ is a factor module of an injective and projective fR by Proposition 1, which is impossible by the structure of R. Hence R is serial.

4) \rightarrow 5). This is clear from the remark after Theorem 2 [11].

3. Serial rings

We have studied generalizations of QF rings in §§1 and 2. We shall consider, in this section, the remaining generalizations following previous sections.

Theorem 3. Let R be artinian. Then the following are equivalent:

1) Every almost projective is almost injective.

2) Every almost injective is almost projective.

3) R is serial.

Proof. 3) \rightarrow 1) and 2). This is clear from [7], Figure (2) and [8], Corollary 1 and Corollary 1*.

1) or 2) \rightarrow 3). Let $\{g_iR\}$ be the set of indecomposable, projective and injective modules, which is not empty by 1) or 2) and [8], and rename $\{g_iR\} = \{e_1R, \ldots, e_pR, f_1R, \ldots, f_4R\}$, where the e_iR are uniserial and the f_jR are not. Assume $q > 0$, i.e. R is not serial. We shall find the set of non-projective, non-injective, non-uniserial and indecomposable almost projectives. Since f_jR is not uniserial, there exists an integer k_j such that $f_jR/\text{Soc}_s(f_jR)$ is injective for all $0 \leq r < k_j$ and $f_jR/\text{Soc}_{k_j}(f_jR)$ is not injective. Then $f_jR/\text{Soc}_{k_j}(f_jR)$ is non-projective, non-injective, non-uniserial and almost projective module by [8], Corollary 1. Further $f_jR/\text{Soc}_{k_j}(f_jR) \neq f_iR/\text{Soc}_{k_i}(f_iR)$ for $i \neq j$. Therefore since e_iR is uniserial, we obtain just q non-projective, non-injective, non-uniserial almost projective modules.
Almost QF Rings

\{f_j R/\text{Soc}_k(f_j R)\}_{j \leq q}

by [8], Theorem 1. On the other hand, if \(f_i J\) is projective, \(f_i J \approx g R\) for some primitive idempotent \(g\) (note that \(f_i R\) is uniform). Continuing this arument, we may suppose

\[f_i R \supset f_i J \supset \cdots \supset f_i J^{r-1}(i \leq q), f_i J^{r-1} \approx f_i h R \text{ and } f_i r_i J \text{ is not projective, where} \]

the \(f_is\) are primitive idempotents.

Hence since \(f_i R\) is not uniserial, non-projective, non-injective, non-uniserial almost injective is of \(f_i J^{t'}(= f_{r-t} J)\) for \(s \leq q\) by [8], Theorem 1'. Further \(f_i J^{t'} \approx f_i J'\) for \(s = t\) since \(f_i R\) and \(f_i R\) are indecomposable and injective. Hence we obtain just \(q\) non-projective, non-injective, non-uniserial and almost injective modules

\[\{f_i J'\}_{j \leq q}. \]

From 1) we shall show that \(f_j r_j J\) is local. By 1) \(f_j R/\text{Soc}_k(f_j R)\) is almost injective. Hence \(\{f_j R/\text{Soc}_k(f_j R)\}_{j \leq q} = \{f_j J'\}_{j \leq q}\) up to isomorphism. Therefore the \(f_j J' = f_{r_j} J\) are local. On the other hand, since every indecomposable projective \(e R\) is almost injective by assumption, \(g R \approx e_i J'\) for some \(t\) or \(g R \approx f_i J^{t'}\) for some \(t' \leq r_i - 1\) by [8], Corollary 1'. Hence \(g J\) is local from the above. Therefore \(R\) is right serial by [5], Proposition 1, and \(R\) is serial by [10], Theorem 6.1.

Assume 2). Then \(\{f_j R/\text{Soc}_k(f_j R)\}_{j \leq q} = \{f_j J'\}_{j \leq q}\) as above. Hence the \(f_j J'/\text{Soc} J/f_j R\) are uniform and \(R\) is co-serial by [8], Corollary 1 and [5], Proposition 1'. Therefore \(R\) is serial by Proposition 2.

Proposition 3. Let \(R\) be artinian. Then the following are equivalent:

1) Every almost projective is injective.
2) Every almost injective is projective.
3) \(R\) is semi-simple.

Proof. Assume 1). Then \(R\) is QF. Since \(e R/\text{Soc}(e R)\) is almost projective by [8], Theorem 1, \(e R/\text{Soc}(e R)\) is injective by 1). Hence \(e R/\text{Soc}(e R)\) is projective. Therefore \(\text{Soc}(e R) = e R\). Remaining parts are also clear.

The final type is

Proposition 4. Let \(R\) be as above. Then the following are equivalent:

1) Every almost projective is projective.
2) Every almost injective is injective.
3) \(R\) is a direct sum of semi-simple rings and rings whose every projective is never injective.

Proof. 1) \(\rightarrow\) 3). Let \(R\) be basic and \(e R\) injective. Then \(e R/\text{Soc}(e R)\) is almost projective by [8], Theorem 1, and hence \(e R/\text{Soc}(e R)\) is projective by 1). Therefore \(e R\) is simple and \(R = e R \oplus (1 - e) R\) as rings. Thus we obtain 3).
The remaining implications are also clear.

References

[9] \textit{Almost QF rings with }J^3=0\textit{, to appear.}

Department of Mathematics
Osaka City University
Sugimoto-3, Sumiyoshi-ku
Osaka 558, Japan