<table>
<thead>
<tr>
<th>Title</th>
<th>Almost QF rings and almost QF# rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Harada, Manabu</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 30(4) P.887-P.892</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/6356</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/6356</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
ALMOST QF RINGS AND ALMOST QF* RINGS

MANABU HARADA

(Received June 2, 1992)

In this paper we assume that every ring R is an associative ring with identity and R is two-sided artinian. The author has defined almost projective modules and almost injective modules in [8], and by making use of the concept of almost projectives he has defined almost hereditary rings in [7], whose class contains that of hereditary rings and serial rings. Similarly to [7] we shall define an almost QF ring, which is a generalization of QF rings.

It is well known that an artinian ring R is QF if and only if R is self injective. Following this fact, if R is almost injective as a right R-module, we call R a right almost QF ring. Analogously we call R a right almost QF* ring if every injective is right almost projective. On the other hand, the author studied rings with $(*)$ (resp. $(*)^*$) (see §1 for definitions) in [4]. K. Oshiro called such a ring a right H- (resp. co-H) ring in [10]. In this note we shall show that a right almost QF (resp. almost QF*) ring coincides with a right co-H (resp. H-) ring. In the final section we shall give a characterization of serial rings in terms of almost projectives and almost injectives.

In the forthcoming paper [9] we shall study certain conditions under which right almost QF rings are QF or serial.

1. Almost QF rings

In this paper we always assume that R is a two-sided artinian ring with identity and that every module is a unitary right R-module. We use the same notations in [7]. We have studied almost hereditary rings in [7], i.e. J, the Jacobson radical of R, is right almost projective. We shall study, in this paper, some kind of the dual concept to almost hereditary rings (see Theorem 1 below). We call R a right almost QF ring if R is right almost injective as a right R-module [8]. We can define similarly a left almost QF ring. It is clear that R is right almost QF if and only if every finitely generated projective R-module is right almost injective. Hence the concept of almost QF rings is preserved under Morita equivalence and we may assume that R is basic.

On the other hand, the author studied the two conditions in [3] and [4]. Let M be an R-module. If $\text{MSoc}^1(R) \neq 0$ (resp. $\text{M Soc}^1(R) \neq 0$) then we call M non-
small (resp. non-cosmall) [4], where Soc′(R) (resp. Soc′(R)) is the left (resp. right) socle of R.

(*) Every non-small module contains a non-zero injective module.

(**) Every non-cosmall module contains a projective direct summand.

K. Oshiro called rings with (*) (resp. (**)) right H (resp. right co-H) rings in [10]. Relating with those two concepts we have

Theorem 1. Let R be an artinian ring. Then the following are equivalent:
1) R is right almost QF.
2) The Jacobson radical J of R is almost injective as a right R-module.
3) R is a right co-H ring.

Proof. 1) «→ 2). This is clear from [8], Corollary 1* and Proposition 3.
1) «→ 3). We know, from the above implication, [8], Proposition 3, [4], Theorem 3.6 and [11], Theorem 4.1, that the structure of right almost QF rings coincides with that of right co-H rings.

Corollary. R is right almost QF if and only if R is right QF-2, QF-3 and every submodule containing a projective submodule of eR is local for any primitive idempotent e.

Proof. If R is right almost QF, R satisfies the conditions in the corollary by [8], Corollary 1* and Proposition 3. Conversely assume that R satisfies the conditions. Let A be a submodule of eR such that eR ⊃ A ⊃ fR, where e, f are primitive idempotents. Then A ≈ gR/B by assumption, where g is a primitive idempotent. Hence we obtain a natural epimorphism θ: gR → A. Put K = θ⁻¹(fR). Since fR is projective, K = B ⊕ K'. Further gR is uniform, and hence B = 0. Therefore A is projective, and R is right almost by Theorem 1 and [8], Proposition 3.

2. Almost QF² rings

In this section we shall study the dual concept to almost QF. If every indecomposable injective module is almost projective, we call R a right almost QF² ring. If every indecomposable injective module is local, we call R right QF-2². If a projective cover of every (indecomposable) injective module is injective, we call R right QF-3².

As the dual to Theorem 1, the following theorem is clear from [1], Theorem 2, [8], Theorem 1 and [10], Theorem 3.18.

Theorem 2. Let R be artinian. Then the following are equivalent:
1) R is right almost QF².
2) R is a right H-ring.

K. Oshiro [11] showed that R is right almost QF² if and only if R is left al-
most QF.

The following is dual to Corollary to Theorem 1.

Proposition 1. Let R be an artinian ring. Then R is right almost QF$^\sharp$ if and only if 1): R is right QF-2^\sharp, 2): R is right QF-3^\sharp and 3): if eR/A is injective for $A\neq 0$, then eR/B is uniform for any $B\subset A$. 1) together with 2) is equivalent to 4): every indecomposable injective is a factor module of some local projective and injective module, where e is a primitive idempotent.

Proof. If R is right almost QF$^\sharp$, we obtain the conditions 1), 2) and 3) by [8], Corollary 1$. Conversely we assume 1), 2) and 3). Let eR/A be injective and $B\subset A$. Then eR/B is uniform by 3). Take a diagram

$$
\begin{array}{c}
0 \to eR/B \to E(eR/B) \\
\downarrow = \mu \\
eR/A \end{array}
$$

where i is the inclusion and ν is the natural epimorphism. Since eR/A is injective, we have μ with $\mu i=\nu$. ν being an epimorphism, $E(eR/B)=eR/B+\mu^{-1}(0)$. Further $E(eR/B)$ is local by 1) and 3), and hence $E(eR/B)=eR/B$. Therefore eR/A is almost projective by [8], Theorem 1$. Hence R is right almost QF$^\sharp$.

If R is hereditary and QF, then R is semisimple. Concerning with this fact, we have

Proposition 2. Let R be an artinian ring. Then the following are equivalent:

1) R is serial.
2) R is right almost QF$^\sharp$ and right co-serial. (cf. [11], Theorem 6.1.)
3) R is right almost QF and right almost hereditary.
4) R is right almost QF$^\sharp$ and right almost hereditary.
5) R is left almost QF and right almost hereditary.

Proof. 1) \to 2), 3), 4) and 5). This is clear from [7] and [10].

2) \to 1). Let f be a primitive idempotent and $E=E(fR)$. Then we may assume $E=e_1R\oplus \cdots \oplus e_sR \oplus g_1R/A_1 \oplus \cdots \oplus g_tR/A_t$, where the e_jR and the g_jR are injective and $A_j\neq 0$ for all j by Proposition 1. Let θ be the natural epimorphism of $(\sum_{j=1}^s e_jR \oplus \sum_{j=1}^t g_jR)$ onto E with $\theta^{-1}(0)=A_1 \oplus \cdots \oplus A_t$. Then since fR is projective, $\theta^{-1}(fR)=P \oplus \theta^{-1}(0)$; $P \cong fR$. Set $E_1=\Sigma \oplus e_iR$ and $E_2=\Sigma \oplus g_jR$ and $\pi_1: E\to E_1$ the projection. Since $\theta^{-1}(0)$ is essential in E_2, $P \cap E_2=0$. Hence $fR \cong P \cong \pi_1(P) \subset E_1$. Next we shall show that every submodule of E_1 is standard. Take submodules $K_1 \subset L_i \subset e_iR$ for $i=1,2$ such that
\(\mu: L_1/K_1 \cong L_2/K_2. \) We may assume \(|e_i R/K_1| \leq |e_2 R/K_2|. \) Since \(e_i R \) is uniserial, we can suppose that \(e_i R/K_1 \) and \(e_2 R/K_2 \) are contained in \(F = E(L/K_1) \), which is also uniserial. We can extend \(\mu \) to an automorphism \(\mu^* \) of \(F. \) Since \(|e_i R/K_1| \leq |e_2 R/K_2| \), \(\mu^*(e_i R/K_1) \subseteq e_2 R/K_2. \) On the other hand, \(e_i R \) being projective, \(\mu^* \) is liftable to a homomorphism of \(e_i R \) into \(e_2 R. \) Hence \(f R \) is a standard submodule of \(E_i \) by [6], Lemma 5. Accordingly \(f R \subset \) some \(e_i R \) (isomorphically) for \(f R \) is local. Therefore \(f R \) is uniserial for any \(f_j \) and hence \(R \) is serial by [2], Theorem 5.4.

3) \(\rightarrow \) 1). If \(R \) is hereditary, \(R \) is a serial ring in the first category by Corollary to Theorem 1 and [7], Corollary 3. Assume that \(R \) is of the form (9) in [7], Theorem 2. Now we follow [7] for the notations. Then \(h_i R \) is not injective provided \(R \) is not serial by [7], Corollary 3. However \(h_i R \) must be contained in an injective and projective \(f R \) by Corollary to Theorem 1, which is impossible from the construction of \(R \) in [7].

4) \(\rightarrow \) 1). Let \(R \) be right almost hereditary and right almost QF*. We use the same notations as in [7]. If \(R \) is not serial, \(T_1 \neq 0 \) in [7], the figure (9). Then \(E(h_i R/h_i J) \) is a factor module of an injective and projective \(f R \) by Proposition 1, which is impossible by the structure of \(R. \) Hence \(R \) is serial.

4) \(\rightarrow \) 5). This is clear from the remark after Theorem 2 [11].

3. Serial rings

We have studied generalizations of QF rings in §§1 and 2. We shall consider, in this section, the remaining generalizations following previous sections.

Theorem 3. Let \(R \) be artinian. Then the following are equivalent:
1) Every almost projective is almost injective.
2) Every almost injective is almost projective.
3) \(R \) is serial.

Proof. 3) \(\rightarrow \) 1) and 2). This is clear from [7], Figure (2) and [8], Corollary 1 and Corollary 1*.

1) or 2) \(\rightarrow \) 3). Let \(\{g_j R\} \) be the set of indecomposable, projective and injective modules, which is not empty by 1) or 2) and [8], and rename \(\{g_j R\} = \{e_1 R, \ldots, e_k R, f_1 R, \ldots, f_q R\} \), where the \(e_i R \) are uniserial and the \(f_j R \) are not. Assume \(q > 0 \), i.e. \(R \) is not serial. We shall find the set of non-projective, non-injective, non-uniserial and indecomposable almost projectives. Since \(f_j R \) is not uniserial, there exists an integer \(k_j \) such that \(f_j R/Soc_{k_j}(f_j R) \) is injective for all \(0 \leq r < k_j \) and \(f_j R/Soc_{k_j}(f_j R) \) is not injective. Then \(f_j R/Soc_{k_j}(f_j R) \) is non-projective, non-injective, non-uniserial and almost projective module by [8], Corollary 1. Further \(f_j R/Soc_{k_i}(f_i R) \cong f_i R/Soc_{k_i}(f_j R) \) for \(i \neq j \). Therefore since \(e_i R \) is uniserial, we obtain just \(q \) non-projective, non-injective, non-uniserial almost projective modules
\{f_j R / \text{Soc}_{k_j}(f_j R)\}_{j \leq q}

by [8], Theorem 1. On the other hand, if \(f_i J \) is projective, \(f_i J \cong g_i R \) for some primitive idempotent \(g \) (note that \(f_i R \) is uniform). Continuing this argument, we may suppose
\[f_i R \supset f_i J \supset \cdots \supset f_i J'_{i-1}(i \leq q), f_i J'_{i-1} \cong f_i h_i R \] and \(f_i r_i J \) is not projective, where the \(f_i s \) are primitive idempotents.

Hence since \(f_i R \) is not uniserial, non-projective, non-injective, non-uniserial almost injective is of \(f_i J^s (= f_i r_i J) \) for \(s \leq q \) by [8], Theorem 1'. Further \(f_i J'^s \cong f_i J' t \) for \(s \neq t \), since \(f_i R \) and \(f_i J \) are indecomposable and injective. Hence we obtain just \(q \) non-projective, non-injective, non-uniserial and almost injective modules
\[\{f_i J'^s\}_{i \leq q}. \]

From 1) we shall show that \(f_i r_i J \) is local. By 1) \(f_j R / \text{Soc}_{k_j}(f_j R) \) is almost injective. Hence \(\{f_j R / \text{Soc}_{k_j}(f_j R)\}_{i \leq q} = \{f_j J'^s\}_{i \leq q} \) up to isomorphism. Therefore the \(f_j J'^s = f_j r_j J \) are local. On the other hand, since every indecomposable projective \(g R \) is almost injective by assumption, \(g R \cong e_i J^t \) for some \(t \) or \(g R \cong f_i J'^t \) for some \(t' \leq r_i - 1 \) by [8], Corollary 1'. Hence \(g J \) is local from the above. Therefore \(R \) is right serial by [5], Proposition 1, and \(R \) is serial by [10], Theorem 6.1.

Assume 2). Then \(\{f_j R / \text{Soc}_{k_j}(f_j R)\}_{i \leq q} = \{f_j J'^t\}_{i \leq q} \) as above. Hence the \(f_i R / \text{Soc}_{k_i}(f_i R) \) are uniform and \(R \) is co-serial by [8], Corollary 1 and [5], Proposition 1'. Therefore \(R \) is serial by Proposition 2.

Proposition 3. Let \(R \) be artinian. Then the following are equivalent:
1) Every almost projective is injective.
2) Every almost injective is projective.
3) \(R \) is semi-simple.

Proof. Assume 1). Then \(R \) is QF. Since \(e R / \text{Soc}(e R) \) is almost projective by [8], Theorem 1, \(e R / \text{Soc}(e R) \) is injective by 1). Hence \(e R / \text{Soc}(e R) \) is projective. Therefore \(\text{Soc}(e R) = e R \). Remaining parts are also clear.

The final type is

Proposition 4. Let \(R \) be as above. Then the following are equivalent:
1) Every almost projective is projective.
2) Every almost injective is injective.
3) \(R \) is a direct sum of semi-simple rings and rings whose every projective is never injective.

Proof. 1) \(\rightarrow\) 3). Let \(R \) be basic and \(e R \) injective. Then \(e R / \text{Soc}(e R) \) is almost projective by [8], Theorem 1, and hence \(e R / \text{Soc}(e R) \) is projective by 1). Therefore \(e R \) is simple and \(R = e R \oplus (1 - e) R \) as rings. Thus we obtain 3).
The remaining implications are also clear.

References

Department of Mathematics
Osaka City University
Sugimoto-3, Sumiyoshi-ku
Osaka 558, Japan