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On Homotopy Type Problems of Special Kinds
of Polyhedra I

Hiroshi UEHARA*

1. Introduction

It is one of the aims of modern topology to classify topological spaces
by their homotopy types. Two spaces X and Y have the same homotopy
type if there exist maps / : X-*Y and g: Y-^X such that gf and fg are
homotopic to the identity maps X—>X and Γ—»Γ respectively. The problem
of determining by means of invariants of X and Y whether X and Y are
of the same homotopy type or not, is of great importance in modern
topology. This general problem has not yet been solved. A number of
particular results are well known.

In 1936 Witold Hurewicz solved in his famous paper [8]* the homotopy
types of an n dimensional locally connected compact metric space aspheri-
cal in dimensions less than n, and of a locally connected compact metric
space aspherical in dimensions greater than unity. After this, many
endeavours have been made to solve this general problem by several
modern topologists, J. H. C. Whitehead, R. H. Fox, S. C. Chang, and others.
Among them the .recent brilliant results of J. H. C. Whitehead [3], [4]
and of S. C. Chang [6] have much to do with the present paper. White-
head reported in [3] that two simply connected, 4 dimensional polyhedra
are of the same homotopy type if and only if their cohomology rings are
properly isomorphic. According to Whitehead, an arcwise connected
polyhedron P is referred to as ϋ-complex if dim. P<n+2 and τr<(P)=0
for each i<jι. Though the author is unfortunate enough to be inaccessible
to [4] here, he is informed of Whitehead's far reaching results through
the introduction of Chang's paper [6]. They are stated as follows. Two
AS-complexes are of the same homotopy type if and only if their coho-
mology systems are properly isomorphic. Chang introduced new nu-
merical invariants called secondary torsions to characterize the homotopy
type of "an AS-polyhedron together with the Betti numbers and coeffic-
ients of torsion. Furthermore he reduced a given Al-complex to a
reduced ^complex which consists of elementary Al-pblyhedra.

The main purpose of this paper is to determine the homotopy type

The number in square bracket is referred to the bibliography listed at the end of this paper
Yukawa Fellow.
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of an A* -complex P with vanishing O+l)-st homotopy group of P.
Throughout the whole paper we assume n^>3. Let Hr(r=0, n, n + 1,
n+2, n+3) be the r dimensional integral cohomology group and let
Sqn_2 :Hn(2k^Hn+2(2}andSqn_l: Hn+l->Hn+3(2ybe Steenrod's squaring

operations. Then, following J. H. C. Whitehead, we refer to FH~
H\H°, H", Hn+\ Hn + *, Hn+*, H\2k\ Hn+\2\ Hn+\2\ μ, Δ, Sqn_2, Sq^}
as Ara-cohomology system. It will be shown in Theorem 1 that two such
complexes are of the same homotopy type if and only if their cohomology
systems are properly isomorphic. The method of proving this is analogous
to that of Whitehead [3]. The reduction of such a given A*-complex
to a reduced complx is also shown. Before performing this, the author
gives another elementary but elegant way of proving Chang's reduction
of an -An -complex to a reduced complex, which was pointed out for him
by Gaishi Takeuti. The author would like to express his sincere gra-
titude to Professor G. Takeuti for his kind criticisms and encouragements.

2. A Spectrum

A brief sketch of the definition of spectrum of cohomology groups
and related lemmas used in the sequel seems to be desirable for the
convenience and the clearness of the applications in this paper. All the
concepts and lemmas in this section are in [3]. Let a sequence c=[cn]
(n = Q, 1, ...) of free abelian groups of finite rank be related by a
" coboundary " homomorphism S : cn-+cn+l for each n, such that 88= 0.
By an usual procedure, the ^-dimensional cohomology group H\m) with
integers reduced mod. m can be defined in terms of C and δ. For
integers zΓX) and #>0 two operations Δβf μp,g are defined such that

Let x £ Hn(q) and let xf G x. That is to say, xf is a cocycle mod. q. Then
§xr=qyf

t where yf is an O+l) absolute cocycle. We define Δβ#= y, α coho-

molog class containing yf. Let c— (p, 'q)9 then ~xf is a cocycle mod. p,
c

and we define μp, qx as its cohomology class mod. p. It is easily verified
that Δα# and μpt qx depend only on x e Hn(q) and not on the particular
choice of xr G x. They are obviously homomorphisms. The union of all
the groups Hn(m), for every integer n>Q and for every integer m>0,
related by the homomorphisms Δ, μ. will be called the cohomology
spectrum of the set of groups C, or merely spectrum of the groups C.
We shall denote it by H. By a proper homomorphism / : H-+H of a
spectrum H into a spectrum H, we mean a transformation such that
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i) f\H\m}:H\m)-*Hn(m) is a homomorphism for all values of m, n,
II) /Δ = Δ/ and fμ = μf.

If / is a proper homomorphism and f\H\mγ.Hn(m)-^Hn(m} is an iso-
morphism onto for all values of m, n, f is called a proper isomorphism.
Then a spectrum H is called to be properly isomorphic to a spectrum H.

Let Zn(m) be a subgroup of C"2 which consists of all the cocycles
mod. m, and let jm be a natural homomorphism of Zn(m] onto Hn(m).
We shall also use ;m to denote the natural homomorphism of cocyles

mod. m, in Cn onto Hn(m). A cochain map #: cn—>cn foi every n,

obviously induces a proper homomorphism of H into H. Now let / be

a given proper homomorphism of H into H. If / jma=jmga for any
α G Z\m\ a cochain map # is said to realize a proper homomorphism /.

Lemma 1. (WHITEHEAD [3], p. 57, Lemma 4) Any proper homo-
morphism f:H-+H can be realized by a cochain map g.

3. Two types of homorphisms

Let C* of a sequence C be an n dimensional group of cochains of
a finite simplicial complex K. Then two types of homomorphisms are
defined among cohomology groups Hn(m). One of them is a well known
squaring homomorphism of Steenrod [7] and the other is q^homomor-
phism, which was introduced elsewhere [11] by N. Shimada and myself.
For convenience, they are put down here. Steenrod showed that

if p—i is odd, there exists the i-th square

Sqt: 7P(m)-^2#
2p-' (m),

and that
if p—i is even and m is also even, the i-th square mod. 2 can be
defined such that

Sqt : #*(m)-*#2p-' (2).

This squaring operation will be used essentially in the sequel, while we

shall not need the qf-homomorphism except for cohomological properties

in a reduced complex (refer to § 8).
If p—i is odd and m>0 is an even integer, q < : ZPCm)-^//2^ can

be defined as follows. Let x G Hp(m) and xf G x. Since xf is a cocycle

mod. m, we have δxr—myf. Putting δ'mxf=—δx'=y', we have a (2p—ί)
m

absolute cocycle

9<V = xf Y^+m^δ^ +C-l/^δ α ̂ δ α;'.

Notice that qίχr—xf^>xf in case m = 0. If we define that qcα? is a
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cohomology class containing a cocycle q x'9 it is verified that this defini-
tion does not depend on the choice of a representative xr of x. The
spectrum H related by squaring operations, will be called the cohomology
system, which is denoted by FH.

4. An -cohomology system

If a finite simplicial comylex K referred to in §3, is an An -complex,
some conditions are obviously assigned on its cohomology system. It is
evident that

i) //'(m)— 0, for any m and n^>ί^>Q,
ii) Hl(m)=Q, for any m and for each i^>n+3,

iii) H* contains no element of finite order,
iv) H° is cyclic infinite.

Thus, for the reasonable brevity we shall sytfibolize Al -cohomology system
by

FH = H[H°, Hn, Hn+1, H"+2, Hn+*, ffn(2fc), H**\Z), ίP+3(2), Δ, μ,

In this notation the operations Δ, μ are explained in § 2, and the other
two operations are as follows :

Sqn_2: £Γ(2fc)->ίP+2(2) for every integer fc>0,

Sq^: Hn+I-+HΛ+*(Z).

Let FH, FH be the cohomology systems of K, # respectively. By
a proper homomorphϊsm we mean the transformation / : FH^>FH such
that

i) / is not the trivial homomorphism FH-+Q,
ii) / induces a proper homomorphism, as defined in § 2, of the

spectra,
iii) fSqn_2 = Sqn_2f and fSqn_^ = Sq^f,
iv) f\H° is an isomorphism onto.

If a proper homomorphism /induces a proper isomorphism onto of the
spectra, / is called a proper isomorphism. Then FH is said to be

properly isomorphic to FH.
Let P be an (n -f- 3) dimensional finite connected simplicial complex

such that τrc(P)= 0 for each i<jι and i=n + l, and let us refer to such
a complex as AJ-complex. Then our theorems are :

Theorem 1. Two Άl-complexes are of the same homotopy type if
and only if their cohomology systems are properly isomorphic.

Theorem 2. Let P, P be Al-complexes. Any proper homomorphism
/* : FH(P}-+FH(P} can be realized by at least one homotopy class of maps
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/ : P—>P. That is to say, there exists a map f : P—>P such that the
proper homomorphism induced by f is the same as /*.

It is verified as follows that Theorem 2 implies Theorem 1. Now
let K and L be finite simply connected complexes of arbitrary dimen-
sionality and let / : K-+L be a map which induces an isomorphism of
each cohomology group Hn(L}, with integral coefficients, onto the corres-
ponding group H\K). Then J. H. C. Whitehead proved in [2] that K
and L are of the same homotopy type and / is a homotopy equivalence.
If we use this, it is easily seen that Theorem 2 implies Theorem 1. In
virtue of Theorem 2 there exists at least one map /: P->P which induces
the proper isomorphism FH(P}-»FH(P}. If we utilize the above mentioned

result of Whitehead, it is seen that P and P are of the same homotopy

type, when their cohomology systems are properly isomorphic. The con-

verse of this is obvious. If P and P have the same homotopy type, there
exist maps / : P-»P and g: P->P such that fg—ef and #/~e, where e, ef

denote the identical transformations of P, P respectively. Let us denote
the proper homomorphisms induced by /, g by /*: FH(P}-*FH(P} and
g* : FH(Pϊ-»FH(P) respectively. Since /*<?* :'"FH(P)'-»FH(P) and g*f* :
FH(P}-*FH(P} are proper isomorphisms, /* is an proper isomorphism.
Thus our aim is to prove Theorem 2.

5. Reduction of ^41-complex to a reduced complex.

This section was proved by G. Takeuti. Before we perform this
reduction, we give here some notations, definitions, and essential Lemmas
for subsequent discussions.

Let X, R be topological spaces and let Γ be a closed subset of X.
Attaching X to R by a map / : Y-*R, we have a space (R + X, /, Γ),
which may be simply denoted by (R + X9 /). More generally, we
designate by (R + χ^...+χn9 fl9 ..., fn, Γ l f ..., Γn) or merely (R + x^
— + -£„, A, ..., /„) a space attaching Xi(i=\9 ..., n) to R by a map f t :
Yi-*R, where Ύi is a closed subset of Xim In case where R is a space
of a point O and Yt(i=i9 ..., m) consists of a single point Ot of Xi9 the
space (θ+Xι + — +Xm9 flt ..., /J will be often denoted by (0, X19 ...,
Xm Ol9 ..., Om) or, as usually designated, by Xl v χ2 v „ v χm9 where
/«(0ί)=0 is evidently assumed. Particularly, if Xt is an oriented n sphere

'S?, the n-th homotopy group τrn(Sn

L v ... v Si) (n>l) of a space S? v _ v 5™
may be regarded as the m-dimensional vector space with free base
\S?9 ..., Sn], where S? denotes an element of the homotopy group as
well as an n sphere. In the sequel we shall often use the notation
A~S, when two spaces A, B have the same homotopy type.
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Lemma 2. (J. H. C. WHITEHEAD [5], p. 239, Lemma 2) // two spaces
P, Q are of the same homotopy type and f : P-+Q is a homotopy equivalence,
and if a map a: dEn+1=Sn-*P is given, (P + En+1, a) has the same
homotopy type as (Q + En+l, fa}, where En+1 is an (n + T) element.

Let P be a space attaching E?+l(i=l,..., ra) to P one by one by a

map /« : dE?+1->P. Then the homotopy type of P is completely determined
by the homotopy elements βί(i=l, ..„, ra) of πn(P} represented by maps

/*, so that without confusion we may represent P by the symbol (F;
A> ...» AJ This is seen from Lemma 5, [3]. It is also verified that
the following three operations, called elementary operations

1) (A, .-., βt, .-., AO ->(/?!. -.., -βt> .... βm)

ii) (A, ..., A. ..., βjf ..., AJ->(A, ..., βj, ..., βl9 ..., AJ
iii) (&, ..., A, ..., βj, ..., £m)-»(£ι. .... βι + βj. ..., βj. .... βm)

do not alter the homotopy type of P. That is to say, we have

i) (P βi. ..., A, ..„ βm) — (P;βι. .... ~A, .... AJ
ϋ) (P:βι. .... A, ..., βj. ..., βnΰ~(Pi βι. .... βj. .... A, .... £„)

iii) (P; A— A, .... A, ..., ^m)~(P; A, ..., A+A, .... A, ..*, /?»)•
Given P=(0 xlf ..., xμ;al9 ..., <xλ), where TZ spheres a?4(i=l, ..., p)

have a point 0 in common and ̂ +1 (ί=l, ..., λ) are attached to xl v ... v #p

by the maps /< : 9£7+1->#ι v ... v ^p> which represent the homotopy elements
P

cίi=ΣβtjXj. Consider two maps /, g between P0 = (0;xlt ..., #p) and
J = ] p p

QQ=(O ;xlf ..., tfp) such that / : xt-*ΣiflXj and flf : Xj-+Σf>ιtχk9 where (α^),
^=1 fc=l

(6^ ) are reciprocal unimodular matrices. Then it is obvious that /, g are
homotopy equivalences. In virtue of Lemma 2, we have

P~Q = (O xl9 ..., xp /αlf ..., /αλ)

'=(O;xl9 ..., ^p Σ^(Σ^ Λ). .... έ^(Σ^Λ))
J=l fc=l J=l Λ=l

To get Q from P is said to carry out the transformation xj=^ 6.>A
fc= I

Especially, when this transformation is an elementary transformation, Q
is said to be made from P through an elementary operation with respect
to x. In the sequel these terminologies will be often used.

Theorem 3. Let [mlt ..., raj be the invariant system of the n-th
homology group Hn(P} of a given A\-complex P and let N be the (n + V)~th
Betti number of P. Then we have

where Q^=(x? ' w^?) (i=l, ..., Z) and S?+1(i=l, ..., N} have a point in
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common, x%(i=l, ..., Z) denoting n spheres.
Proof. This theorem can be easily proved by a Theorem due to

Hurewicz [8] and by Lemma 2.
Lemma 3. Let P be a connected simply connected polyhedron. (P-f x

a+2pmx} denotes a complex P + x + en+I, where en+1 is attached to P+x
by a map f : den+l—*P + xt which represents an element a + 2pmx of
πn(P+x}. a 6 τrw(P), 2a=Q, and x is an n sphere. Moreover, m is odd
and p is an integer. Then we have

{P + x a+2pmx}>^{P+y + z a+2py, mz}9

where y, z are n spheres and x, y, z are attached to P at a point.
Proof. It is obvious that { P -f x a + 2°mx } ~ { P -f x -f- %' # + 2mxt x' \

where xf is an n sphere. Now we define homotopy equivalences /, g of
two complexes P+x+xr, P + y + z such that

i) f\ P = g \P is the identical map,

ϋ) f(χ) = Ay+Bz,

iii) /(V) = -2py+mz,

v) g(z)=

where A9 B are integers satisfying mA+2pB= 1. Then it is easily seen
that fg ~ gf ~ e (identical map). Applying Lemma 2 and elementary
operations to the following arguments, we have

z9 a+2py9 -

z, a+2py,

+ 2PV, a+mz]

If we put a+z=zt in virtue of Lemma 2 we have

{ P-f y+z ;a + 2py9 a + mz] — {P-f y+ z a+2py9

where z is an n sphere and a+ma=0 from 2a=0. This proves the
Lemma 3.

Now we refer to the polyhedra of the following types as elementary
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ϋ) Q2 = Snve

n+\ where en+1 is attached to Sn by a map / : den+l-»S*
of degree odd,

iii) Q3 = Sn^en+2

9 where ew+2 is attached to Sn by an essential
map f:de*+*-+SΛ,

iv) Qi=(S*vSa+I)ve»+*9 where β*+2 is attached to S'VS**1 by a
map f:c>en+2-»Snvsn+l of the form α + 6; a is an essential

map : Sn+I-+Sn and 6 denotes a map : Sn+1-*Sn+1 of degree 2P ,
v) Q5 = Sw^en+lv-/ew+a, where e"*1 is attached to Sn by a map / :

den+1-»S* of degree 2* and en+2 is attached to S" by an essential
map : den+*-*S"9

vi) Q6 = (Savsn+l)ve«+ιve»+*9 where e"+1 is attached to Sn by

a map : 3e'l+1->Sli of degree 2* and e"+2 is attached to Sn v S*+1

by a map of type iv),
vii) Q7=Sn^en+\ where e"+1 is attached to Sn by a map : 3e^+1->Sw

of degree 25,
viii) Q8 = Sn+luβn+2, where ert+2 is attached to Sn+1- by a map:

den+*-»Sn+I of degree odd,
ix) Q9 = Sn+l^en+2

f where β^+2 is attached to Sn+l by a map:
ae"+2->S"+1 of degree 2P.

Then we have
Theorem 4. // P is an (n+2} dimensional finite connected polyhedron

which is aspherical in dimensions less than n, P is of the same honwtopy
type as a reduced complex which consists of a collection of elementary
polyhedra of the above mentioned types, where the elementary polyhedra
have a point in common.

Proof. In virtue of Theorem 3, the (n + ϊ) skelton Pn+l of P has
the same homotopy type as the complex

&ϊ v Q#ϊ v - v Q#ϊ v Q"*1 v - v Qn

r

1 v S; v .., v si

where r19 ..., rt are odd, and l<?ι<?2< — <9fc

 are integers. Thus we
have

v 2 v ••• v 1 v - v 1 v -

where Λ l f ..., Rm are all the relations. Denoting by xt the homotopy
element represented by a map S*+1— >S?+1 of degree 1, we have

II,
Ri = Σ λ^ + tf, (i =1, ..., m),
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where al(i=\9 ..., m) afe homotopy elements of πn+1 (Q^ v ...
By elementary operations with respect to {5^+1, ..., Sy+1| and {#!, ..., Rm]
we have

where 6ί+v (y=0f ..., — i) are integers greater than unity, and 7* (i=l, ..., fc)
are homotopy elements of πn+1(Qy} v ... v s»). Since ^^(Q^^O (λ=l,

..., i), we have

""

Then it is obvious that we have

P — 1 v -

where 7* (i — 1, ... , p) are homotopy elements of
Utilizing Lemma 3, and changing suffixes, we have

so that it is sufficient for us to try to reduce

^-, 7ι ..7p} to a normal form. Without loss of generality it may be
assumed that yl9 ... , 7P are linearly independent with respect to integer
coefficients mod. 2. Here a number of Sn+2 may be removed from bracket.
If we denote by yt (i = 1, "... , λ) the homotopy element represented by a
map /, : Sn-+Sn

i of degree 1 and by zt (i = 1, ... , μ) the homotopy element
represented by a map /, : Sn-+Sϊ c Q^1 of degree 1, and if, for example,

.7ι = (l/i?) .+ •••+(*, ?) 4-

it is seen by means of the following operation

yι = Vι (i = 2, ... , λ)

that τ~ι = (y"ι ?), where ?; denotes an essential map Sn+l-*Sn. If we change

notations, and if {ΛΓI, ..., Λrs 7σι, ..., 7σ f] contain γx = (̂  η], we change

them, by elementary operations, to
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Then we have

+i v ...

,7ι, ... , 7P} ,

where "^(i = 1, ... , μ) and %(i = 2, ... , p) do not contain (yλ η} — 7ι
It follows that

where en+2 is attached to S? by an essential map: 9e"+2->S?. By the
same process all the 7t involving at least one (y^n) may be deleted from the
interior of the bracket together with S3, so that, changing notations, we have

aμ. + 2pxμι, 7ι,. . , 7T}+ (Snwβ f l+2)+ — -f (Snven+2), where 7ι,. . , 7T do
not contain any (^77) (i = 1, ... , σ) .

Putting
f v S " v ... v s - v s j f + i v ... vs»/ι, ^

we proceed to reduce P2 to a normal form. Let pλ <*p2 <^ ... <^pμ, and
let 0,4-2^ be the term of the greatest PJ among all the terms containing
at least one of (y&) 0" = 1 , ... , σ). Then, for instance,

If we carry out the operation

we have cci=(y1^. If there ex
(αί + 2p<a?ι) from (otj+2** xi) by
(aJ+2*Jχj)-&t+2v*xt)=(aj-ai) ^-2
by elementary operation

st α^ containing (2/1^7), we substract
elementary operations. Then we have

^-2p«"•J>Jα?ί), where PJ<P{. Again

XP = XP (p = 1, ... , Λ ... , ̂ ) ,

it follows that the relation α, +2vtχi9 an w sphere 55, and an O + l) sphere
S?+l are deleted from the contents interior the bracket { } and that

^2 ~ ί Q&1 v ... v Q£l v s; v _ v sw v sf1 v ... v s;:j v s?̂ 1 v ... v s;+1
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+2, where (S; v5?+1)uen+2 — Q4 .

By the same procedure P2 can be reduced to a complex

iv...vS5+ 1; α1+2pιa? l f... f ae +

If, for example, 7ι = (zι */) + ... > by elementary operations

we have TI = (^17) . Then, if αvι, ... , α:v, γ/χ ... γ/t contain 7ι, we change

them, by elementary operations, to

Then it is seen that, changing notations,
v S ... Λ ιa? γ2, ..

where Q ί̂ ^β?M"2 = Qs Repeating the same process and changing
notation, we have

Now we arrive at the finial stage of reduction. Let ω+2pi%i be the
term of the greatest pi among the terms containing at least one of (z3η)
(;" = !,..., O K» for instance,

by the elementary operation

^i^Zi+'

Zi = Zi (i = 2, . . . ,/)

we have α:f = (2^). If there exist some as containing fay), we substract

ab 4- 2p«a?< from <*>+ 2pJa?j by elementary operation. Then we have (a3+ 2P^)

— (Ok +2^0?,) = (α,— iά^) +2*j(xj—2*t-pJXi)9 where Pj<pt. Again, by the
elementary operation

It is seen that, changing notation,
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where (Sn v 'Sn*1)ue f l J 1 wβw + 2 = Q6 . Repeating the same process, we have
P4~Q6 + ..^Q6 + Q7 + +Q7 + Q8 + . +Q8^Q9 + H-Q94-S^1^.. -f^+1.

This completes the proof.

6. Reduced complexes

As-complexes K is referred to as a reduced complex when it satisfies
the following conditions

i) KQ = Kl = ••• = K"-1 = β°, a single point,
ϋ) .κn = S; + — +S?, where n spheres S?(i = 1, ...*,) are attached

at a point e\ and S?-e° = β?(f = 1, ... *) are w-cells,
iii) Xn t l=X l l + e;+1 + ...+erHΛ:ϊ + — +e!ίίf where e?+1 (*' = 1,. ..,&)

is attached to S? by a map /, : aβy+1->Sj of odd degree σf^and ej£}

(i = 1, ... , Z) is attached to S%+ί by a map /, : 3e2ii-*S2+< of degree 2^,

where effi(i = l, ...,ΐ) is attached to Sj^ by an essential map: 3β^f

->Sj?+ί, and eSί?+ί(i = l, ... , *-fc-Z) is attached to S?+z+£ by an essential

map : deR?+t-*Sl+l+i .
v) If K0=Kn+2-(eΐ+lvS'ϊ+— + e%+1\jS£), a finite number of (n+ 3)

cells e?+3(i = 1, ... , a) are attached to K0 by maps A : 3βΓ3-^- 0̂ -
Notice that β?+1uS7(i = l, ..., fc) are not bounded, and that ^-spheres

S? (i = 1, ... , K) are all bounded. Of course, the case where k = 0, or
fc = 0, or £ = 0, may be possible, but the most general reduced complex

of A^-comρlex is the cell complex of the type just referred to above.
Theorem 5. Any As-complex P is of the same homotopy type as

some reduced complex.
Proof. Let P"+a be the (n + 2) skelton of P, then τr<(Pll+2) = 0 for

each i<^n. In virtue of Theorem 4, PΛ + 2 is of the same homotopy type
as a cell complex Qn+z consisting of a number of elementary A^-complexes.
It is evident that πn+1(P^πn+l(Pn+^, and τrw+1(Q*+2)^7rw+1(P"+2), so that
we have τrn+l(Qn+^ = 0. By the recurrent use of a result of G. W.
Whitehead [9] or a slight generalization of a lemma of Blakers and Mfassay

[10], we have τrw+1(Q?i+2)^ΣΣI^+ι(Qθ> where the upper-suffix /*of Qj,
λ=ι μ

indicates the number of elementary polyhedra of the type Qλ. It follows
that if 7rw+1(Oλ

A) Φ 0, such polyhedra Qί are deleted from Qn+z. As τrn+1(Sn)
^ 72 for 7z>2, and π n+1(SΛ+1) ̂  /, Sn

r ^
+1 must be deleted from Qn+2.



On Homotopy Type Problems of Special Kinds of Polyhedra 157

It is verified that we have πn+1 (<?4) ̂  72ι»+ι . For we have c& + 6 = 0, so

that 26 = 0. Thus the element represented by a map Sn+l-+Sn+1 C Q4 of
degree 1, is the generator of 7rw+1(Q4), whose order is 2 2P = 2P+1.
Therefore all the Q; are deleted from 0?a+2. From the same arguments
and from πn+l(en+1\jS^ ^ πn+l(Sn} , we have τrn+1(Q6) ̂  /2*+ι, so that all

the Qί are deleted from Qn+2. Since τrw+1(Q7) ̂  72, τrw+1(Q8) *=* 7σ, and

π-n+iCQp) ~ V » a11 the Q?' Φ' #9are Dieted from ζΓ+2. From the verifi-
cations just referred to above and from the vanishing (n + ϊ) homotopy
groups of Sn+2, Q2, Q39 Q5, it is concluded that Pn+2 is of the same homotopy
type as Kn+z in the definition of a reduced complex. Let / : p»+*-+κn+2

be a homotopy equivalence, and let <+3 be an O + 3) simplex of P. Then
from Lemma 2, P is of the same homotopy type as a cell complex, (n + 3)
simplexes σf+3(i = 1, ... , a) of which are attached to Kn+2 by maps f^ :
dσf+3—>Kn+z, where e is the identical map of P. However, the element
of τrw+2(^+2) represented by a map fe may be regarded as an element
of τrn+2(K0\ so that from Lemma 5, [3], P is of the same homotopy type
as a reduced complex defined above. This completes the proof.

7 <ττ< CK"n + z}'• ^ίz-^-ft- ) -

Let us consider Kn+z satisfying i), ii), iii), iv) in § 5. It is easily
verified that

+ 4). for
-

It is also verified (for example, see [11]) that

τ»+2CS?we?+1) = 0, for i = 1, ... , fc,
πn+2(Sΐ+ι+i\JeRΪ+i) ^ /, for i = 1, ... , κ — k—l ,

^^CSS+iWβJ^uej:?) ^ /4-/ 2, for i = 1, , ... , I .

Now, let us denote by Sf+2 the generator πn^2(S^\ which is represented
by a map S*+2-^Sγ+2 of degree 1. The generator ωk+l+ί of π-n+2(S2+z+<

ueKz

2

+ί) is represented by a map ω fc+z+ί : S
n+2-*Sϊ+l+i\je2ϊ2

+i as follows.

Denote the northern hemisphere of Sn+z by V^2 and the southern hemi-
sphere by 7ϊ;+

0

2, then S^+2 == VgfvVQ1 and the equator of Sn+2 is

represented by P£0

2 A 7 0̂

2 =SΛ+1. Then the partial map ωjc+l+i \ Vn^2 A V*£2

represents 2η: Sn+l = F 0̂

2 AF^0

2->^+z+ί , where 77 is an essential map of

Sn+1 onto S*. Since ωk+l+i\3Vn^0

2 is inessential, we have an extended
map : Vr£g-»Sj,+l+i . From these considerations that 3eK2

+£->S^z+ί repre-

sents an essential map η and that ωk+l+l\Vn£§ represents 2η9 it follows
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that we have a map: V£S-»Sϊ+l+t\j eRϊ+t of degree two. It is proved in
[11] that the map ωk+l+t thus obtained represents the free generator of
πn+2(Sϊ+l+t\jeϊϊ?+l). Notice that the free generator itself will be also
denoted by ωk+l+ί . Next, the free generator of πn+2(Sκ+i\jeΓ+\\jelll') is

represented by a map ωk+ί: S
n+z^S2+<^e2ΐ2 of the same property as

referred to above, and the generator vk+t (i = 1, ..., Z) of order two are
represented by maps vk+ί: Sn+2-+Sΐ+i\jelί] as follows. Remember here

that eftί is attached to Sΐ+i by a map: de&}-»Si+t of degree 2pt. Let

Tn+1 = sn\jen+1, where en+1 is attached by a map den+I-»Sn of degree 1.
Construct a map Tn+l^Sn-*S%+ί of degree 2pi

9 we can extend it to a map
/<: τn+1-*Sl+ί\je%H such that e"+1 of Tn+l is mapped homeomorphically

onto el+

+}. For 621? is attached to S2+ί by a map 3e2ίJ—>S2+< of degree

2A If the equator Vn£§r\V£$ = Sn+1 is mapped onto the ^-sphere Sn

of Tn+l by an essential map η and if we construct a suspension 6(77)

[13] : Vg?-+Tn+τ of ^, then Λ - 6(97)13F^0

2 is inessential because 2pί

η = 0.

Thus /, 6(^)1 ay^0

2 can be extended to a map: Fw<+

0

2->SS?+ί. If we define

vk+ί |F^"0

2 = ft -6(97) and ^fc+jF^o2 is the map: F\+

0

2->5g+ί constructed

above, it is verified that this map vk+i is essential and of order two.
Then in the reduced complex K we have the homotopy boundary

βeΓ* =Σλ^S5+2 + Σ* μtJωj+*Σ ϊ^+Σ ΎU<»J (for each i<α).
«

If we carry out two operations, referred to in § 5, with respect to
{S;+8

f..,f St+*} and {#*f+8, ... , βen+3} , we have a slightly modified
reduced complex L of the same homotopy type as K in § 6 such that

I»+* = κ?+*9 and
«

Σ 7«a>j (for each i<a).
= + l = + l -fc+ί+1

Notice that in this reduced complex L, e?+3 bounds only one O + 2)-sρhere
or bounds none. In the sequel we shall refer to L as a reduced complex.

8. Cohomological properties in a reduced complex L.

Referring to §7, §8, we have

i) el+i (i = 1, ... , Z) are cocycles mod 2A ,
ii) β?(i = fc + Z + 1, ... , /c) are absolute cocycles ,

in) SeΓ2 = Σ 2/^ji βj'+3 (i = fc 4- 1, ... , fc-f 0 and

δβr2 - Σ2γΛ βr3 (f = fc + ϊ fl, ... , *) ,
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iv) e?+1 (i = fc-f-1, ... , /£ + Z) are absolute cocycles.
It should be noted that " 2 " in the terms δe? +2 come from the degree of
the maps ω and that ef+2 (i = k + lί...9 *) are cocycles mod. 2. Then
we have

Theorem 6.

a) Joe"^2io<V+2 = WΓ* (ί = fc + Z + lf ... , *) ,

b) /2

p*β*+«;^2*<e* M = iι&+t Ci = 1, ... » 0 »

c) ;0β?+1vίo€?+1 = i3ι;Λ;2^
+s (t = fc + l, ... , fc-f 0,

w * '-*
d) qn-s;X = Σ'>rΛ?>5+s (i

'-1 *
e) qn_3:/2pi62+i = Σ ̂ , fc+*;X+3 -C*
Proof. Putting M = L W f 2 and considering the injection K : M-+L, we

have a proper homomorphism K* : FH(L}-*FH(M} induced by K. Put

where βt = 0 or 1 (mod. 2).

+ Σ
j— fc+l J— fc+Z

β?^./ββ?=^ Σ «^»β"+2+ Σ «jJ
2 =

It follows that 6j = 0 (;=.fc + l, ... , fc+Z). 6^ = 0 ( = k + Z + l, ... ,
fc + Z + i— 1, fc + Z+ i+l,...f /c) and £k+l+ί Ξ 1 (mod. 2). This proves Theorem
6 a).

Similary we have Theorem 6 b).
Let M = Sn+1v en+3

9 where en+3 is attached to Sn+l by an essential
map η: den+3-*Sn+l . Then M is regarded as a cell complex composed
of three cells, a point e°, an (w-f 1) cell en+1, and an (w + 3) cell en+3. Let
us define a cellular map /c : L-^M such that

i) «(ST2) = e° (i = !,../, ί)
ii)

iii)
iv) Λr(S?

=:β° (i = fc + l, ... , fc+i— 1,
vΊ WSf n \ / p w + 1 v yp n + 2 > l — Sn + 1

\J K^tOjc + i :\J^Jc+t ^JVlc + t) - ° 9

vi) if i^+iΦO, el+3 is mapped by ^ topologically onto en+3, and
otherwise, ej+s is mapped to e° by /c,
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It is verified in the following way that this map K can be constructed.
v) is constructed such that κ maps Sg+ίweSί? into e° and elsewhere
topological. Let K! \ c(M)->c(L) be a cochain map induced by K and let K* :

be a proper homomorphism induced by K. In M we have

so that

Since we have /e'e7'*1 = βg ί, and /c'e7**3 = Σ w, *+^Γ3» we have

This relation holds true for each ί = 1, ... , Z, so that c) is completely
established.

Though d), e) will not be used in the sequel, we prove them here
for the completeness and the convenience of our discussions. They are
essentially used in solving the (n+3) extension cocycle and corresponding
classification problem, which N. Shimada and I will discuss in our forth-
coming paper [11]. From a) we have

en

t ̂  ey = (-iγe%+2+2cn+2 + Scn+1 for each i = k + Z + l, ... , K, where

cn+2> cn+1 are cochains. Considering the coboundary of both sides, we have

2( - l)ne? ̂ e ? = 2( -1)* ί + 2

3

By the definition of q4 -operation, in case where m = 0, we have

so that ;

Qn-s/o^? = Σ ΎjtioΦ* for each i = k + 1 + 1, ... , κ .

This proves d).
The proof of e) is analogous to that of d). For the completeness

of discussions we prove e).
From b),

e*+*^eΐ+* = C -!)"«

(-ir€2+<n^8e?+<^
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Since

we have

Substituting ii) for the term ell}^el+i of i), we have

2 (-17eϊ+in^eΐ+ί + 2(-l)* 2* ̂ ^^ + 2̂ ^̂ ^̂

Thus it follows that

d i + i - +t 2 + i

From the definition of q f- operation it is proved that

qn^eζco^ ηHen^ for each i = k+ 1, ... , k -f I .
.7 = 1

This proves

*-»-« == ΣW*+< ;>Γ3 for each i = 1, ... , Z .

9. Proof of Theorem 2.

In virtue of Theorem 5 there exist reduced complexes L, L which

are of the same homotopy type as P, P respectively. Let u : L-*P
and v: P — * L be homotopy equivalences such that vu-~e and uv ~ e.

If M*: FH(P}-*FH(L} and v* : FH(U)-*FH(P} are proper homomor-
phisms induced by -w, v respectively, we have

££%* — x and ^*w^ = 1 ,

from vu — e and uv ~ e. Suppose that u*f* : FH(P) -* FH(L) is realized

by a map Λ : L-*P. Then the proper homomorphism induced by the

map hv: P — > P, is -y^A^ = v*(u*f*°) = /*, so that it is sufficient for us

to prove this Theorem in case where two reduced complexes L, L take

the place of two given complexes P, P respectively.

In virtue of Lemma 1 the proper homomorphism H(U) -> H(U) induced

by /*: FH(L)-»FH(L) is realized by a cochain map ^* : c(L)->c(L).

If a chain map g : c(L) -> c(L) dual to g* [12] is realized by a cellular

map / : L — > L, the proper homomorphism induced by / is the given
proper homomorphism /*. Thus we intend to construct step by step a

cellular map /: L->Z7, which realizes the chain map g: c(L)->c(L).
In performing this, we utilize a lemma of J. H. C. Whitehead, which is
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of great importance and of use together with lemma 5, [3].
The lemma is stated as follows
Lemma 4 (J. H. C. WHITEHEAD [3] Lemma 7).
Let K, L, be simply connected complexes and let βn be a principal

cell, where n > 2. Suppose that g : cr(K} — » cr(U) be a chain map such
that the map g\ cr(KQ}(τ =Q, 1, ...) can be realized by a cellular map /0 :
#0->L, where K0 =K-en. If f0βen = βgen, then /0 can be extended to
a map / : K-+L, which realizes the chain map g.

Since /*|#°(L) is an isomorphism onto, we have g(e0') = e0. Thus

g c0(L) can be realized by a map / : Ln~l = e° -> e° = L"-1. Next, let

K'
g\cn(L) be given such that g(fe?) = 2 0ue5(i = 1, ... , •*)• Then a cellular

map / : (SJ1, e°) -*(Ln, e°), for eachi ;i = 1, ... , K, can be constructed such
& — _

that / represents a homotopy element Σα^ s?» where S5 denotes also a

homotopy element represented by a map : S™ -> S^ of degree unity. Then

it is obvious that the cellular map /: Ln—>Ln thus constructed realizes

the chain map g\cn(L). Since πn(Ln} ^ Hn(Ln\ and πn(L") ^ Hn(Ln\ we
identify elements corresponding by these isomorphisms. Then we have

βgeΓ1 = dgeΐ+l = g^eΓl = fdeΓ1 = fdeΓ* for each i = 1, ... fc + 1 ,

so that in virtue of Lemma 4 g\cn+l(L} can be realized by an extended

cellular map / : Lw+1 ->ί>+1.

Now we are going to extend this cellular map / : Ln+1 — * Ln+1 to a
map / : Ln+1+ef+2(t > i > 1) -> Z/*+2 such that this extended map / realizes

if V
the chain map g \c(Ln+l + eΓ2) K

"+ . Σ3 διrβ?+ 2, we have . &ί, f c/+ β: = 0 and 6;>=0 mod. 2. This is proved
r=fc / '+ί / + ι '

in the following way. Evidently we have^

(9.1) ff*S,+A =7= --f^'+5er2-4-- for each q = l, ... , ϊ'. '

From Lemma 1

;"2ff*^ί? = /*/2^+4 , for each ^ = lf , ... V ,

and from b), Theorem 6,

"j&'v'ϊv = i2*«e& +Q^2ϊ2

pqβκ' +Q for each q = 19 ...lf.

By the property of /* we have

Mβ&^
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Again, from f*j2

pq = J2**9* & *s seen t ;̂a

= /a{( Σ ̂ *'+Λ)^2( Σ <**, *+«*?)
ί=l Z i=l

= /»(. Σ 4*'̂ Γ)
j = fc + l

We have

.Σ α5*+βJ2*Γ2 = ••• + &; fc'

The left side of the last equation does not contain any β^+2(i — 1, ... , t),
so that we have
(9. 2) ^ 6^ f c/+ g =0 mod. 2 for each 0 = 1, ... , Z' and

for each i = 1, ... , t .

Through analogous arguments we have
(9 3) &;',, = 0 mod. 2 f or r = fc' + ̂  -f 1, ... , «'•• and

for i~ 1, ..; , t .

From (9.2) and (9.3) it is easily seen that

— 0 4- Σ δ</,*'+ί(flfe'+<rf7)+ Σ b'lr(arη) = 0 ,

where η: Sn+I->Sn denotes an essential map at: Sn-*S? (i = kf + l,...,
*') of degree unity, and (a^}(i = k'+l,..., */) are homotopy elements

represented by maps aίη: Sn+1—*Sn—^Sj'. On the other hands we
have

fβen+2 = 0 for each i = 1,..., ίf

so that

βge™+2 = fβe%+2 for each i = 1,..., t.

This shows the existence, of the desired extended map /: Ln + ̂ e?+2 —>

In the next place we intend to extend / t o a map /: LΓ** ^-IP**
such that / realizes the chain map g\cn+2(L). It is easily seen that
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(9. 4) fβen^ = Σ a^q(aq^ = Σ altq(aqη) for each i =
β = i <Z = fc'+l

for TT^CS? vβ?+1) = 0 (i = 1,..., fc'). Putting
.f ' 2' *'

(9. 5) geΓ2 = Σ citpey 2 +Σ c'ιt* +<&"?+* + Σ <rβ?+2, we have

(9. 6) /3flfe?+ 2 - ΣA<*+*(«*'+<?)+ r_fjιf+<*!,&rri-

If the following relations

(
^ —— L I Ί "L* I 7 V
v A/ "τ~ -JL, . . , Λ/ ~τ~ v \

)
-f -if I

( A ) ; Q-1 ;

ii) α.,Q =c'lq mod. 2

/ i = k + l + 1,..., K \
i) at,* >+q=cί,* +q mod. 2 ( - ,, )

(B)| U=1 " '
ii) aiίq = c?,q mod. 2

are proved, we have fβen

t

+2 = /3^e^+2 from (9. 4) and (9. 6).
From (9.1) and (9.5) it is seen that

(9. 7) fiWΛ - Σ 6;,fc'+^"2 +' Σ3 ^k>+qeΓ2 for each q = l, ... , Γ.
i=l l=k+ι

It is also verified that

= Λ K Σ flϊ.^O^C Σ α*.^« Ol
ί=ι *• « = ι

(9.8) = Σ α?,^+J^r2 .
, J^Jc+l

From (9. 7) and (9. 8) we have

, , , ft / i = fc + l, ... , fcfZ, ... , K \
^,*'+β = α?,fc+(ϊ = αί.*'+β mod. 2 ( 7/ )

\ ^ — J., ... , 6 /

This proves (A) i) and (B) i). By analogous arguments we have (A) ii)
and (B) ii). Thus, in virtue of Lemma 4 there exists the desired map / :
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Now we are at the last stage of proving this theorem. An easy
example shows that fβe?+3 = βge?+B (for each i = l, ..., ct) is not always
possible, so that we shall modify the map /, which has been established.
in Ln+2

f to a map fQ. In this modification of f we notice that fQ\Ln+l = f
and f is modified in all the (n+2} cells of L. From the last part of § 7
we have

(9.9) βeΓ3 = λyS5+2 + Σl μt,jo>J+ Σ
jZte + l J = k+l

From (9. 1) we have

Then we may define /0|SΓ2 (for each i = l, ..,, ί) such that
•' ' Λ r K' h ff

(9.10)

where b/,fc/+Q = 0, and 6J'r = 0 mod. 2, are utilized here. T/MS modification
does not alter g. From (9.5) we have

flfβ5+2=έcΛpβ;+2+Σc;ffc.+ββrA'+ Σ cJfPe?+2 0" = fc + l f..., «).
P=l β = ι r»fc +Z'+l

Thus it can be also defined that

(9. ii) /Oω,= Σ 2cΛpS5+2+ Σ cW*W+«+ Σ ^Λ** ( =fc+ι, .... *) .
P=l « = ι r=fc'+ί' + l

*' + z'
If we define ge]+l= Σ 0M»e2+1, we have

2»=1

(9. 13) /0^ = § 0J.Λ. ( = fc+1, ...
P = fc/+l

From (9. 9). (9. 10), (9. 11). and (9. 13), it follows that

+ S^|^+ Σ A./υ.* +β+ Σ 7ι,ίcί*,+βjy=ι ώ ;=fc+ι ;=fc+ί+ι '

(9.14) + Σ (λ^+ Σ Λ>Jc;.r+ Σ 74>Jc;.rK

* As we have often referred to, it should be noticed that homology and homotopy are
distinguished adequately according as the place where they are used.

** From the following reasons we can modify / to /0. Let us denote S^{Je^+z by 11 ,̂
then there exists'a map φ: Π->ΓI1VΠ2 such that φ maps Sn of Π to Sf\/S$ with degree (1,1)
Besides this, let a mapψ: II-»Π be given such that ψ maps Sn of Π to Sn of Π with degree
a, and a^c mod. 2. Then we can construct a map ψ : Π - > f f by modifying ψ such that
ψΊ5n= ψ|5w and ψ maps en+z of Π to en+2 of Π) with degree c. We use/in the above
modification of/to/0, the relations (A), (B) on the previous page and also πw+2(/S'w|Jew+i)=0,
where en+i is attached to Sn by a map den+ι~*Sn of degree odd. It is clear that this
modification does not alter the realization of a chain map g.
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fc-4-Z' fr + Z _- .

. + Σ Σ vt,,θi>fvf• ' « P=fc/+l J = k+l

Putting

(9. 15) geΓ3 = Σ fc,»β?+8

ί)=1

we have

(9.16) ...... =

+ Σ
β=-J:/+ί'

Proving the following relations

- ! Σ

iv) Σ 0j,,»t,j = ib-pt.i>>j,p mod. 2. (p = fc' + l, ... , fc' + ί').
j-*+l J-l

we have fβeΓ3 = βgeΓ3 (for each ί = 1, ... , α) from (9. 14) and (9. 16).
From (9. 1), (9. 5) we have

g*er2 = Σ 6<1Per 2 + Σ clf,β?+ί for each p= 1, ... , ί'.
<-i ί=fc+l

Taking the cobotmdary of both sides of this equation,

Sg*eΓ* = Σ (bitp\β-)er3 +Σ ( Σ 2cί,,/vίVr
ί = ι y = ι \ί=A;-ι-l /

It is also seen that

= ̂ ΣΛ^^It follows that

λj pPi,j=\,fij,P+ Σ 2cj,pU,J+ Σ 2cj,P7t,j (P = l
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This proves i). Again, from (9. 1) and (9. 5) we have

Σ

Considering the coboundary, we have

l\\ = Σ (*W+^>Γ3 + Σ Σ 2c'j,κ+qμeΓ*

Σ

It is seen that

Thus it is concluded that

b fr+ί

= --^

This proves ii). Similarly iii) can be proved. Lastly we proceed to prove
iv). From (9. 15) we have

Thus

o. i?) Σ?«ί7*"^.β?r8 = Σ(Σ
P = I ί = l\ί = l

^*3 = /* Σ

from (9.12)

= Σ^V+/ΣυJ,, i/2e5+Λ from Hi) of Theorem 6
i=i \»-l /

-(9.18) =
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From (9.17) and (9.18) we have

Σpi9jpj,p= Σ θ*j,*»t,j= Σ θj,*»t,j mόcL2 (p = fc' + l,...'f fc' + Z')
J=l J=k+l J = fc + l

This completes the proof.
Added in proof: I could read [4], and I hope, I shall come back

soon to some subjects related to this paper (refer to my paper of the
same title in this issue).

(Received November 22, 1951)
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