

Title	Equivalent sizes of Lipschitz manifolds and the smoothing problem
Author(s)	Weller, Glenn P.
Citation	Osaka Journal of Mathematics. 1973, 10(3), p. 507-510
Version Type	VoR
URL	https://doi.org/10.18910/6359
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Weller, G. P.
Osaka J. Math.
10 (1973), 507-510

EQUIVALENT SIZES OF LIPSCHITZ MANIFOLDS AND THE SMOOTHING PROBLEM

GLENN P. WELLER*

(Received September 2, 1972)

1. Introduction

A criterion for smoothing a closed topological manifold M was given by Y. Shikata in [3]. His criterion was based on the notion of the *size* of M , which will be denoted by $|M|_s$.

Shikata's Theorem. *A closed topological manifold M is smoothable if and only if $|M|_s=0$.*

In this paper we introduce another “size” of M , denoted $\|M\|$, which is conceptually somewhat simpler and which is definable for all open or closed Lipschitz manifolds. We then can prove the following result.

Theorem. *A closed Lipschitz manifold M is smoothable if and only if $\|M\|=0$.*

This theorem follows directly from Shikata's theorem and the following proposition, which shows that the two “sizes” are equivalent.

Proposition. *For each positive integer n there are positive numbers $\alpha(n)$ and $\beta(n)$ such that if M is a closed n -dimensional Lipschitz manifold then*

$$\alpha(n)\|M\| \leq |M|_s \leq \beta(n)\|M\|.$$

REMARK. Neither of these sizes is trivial, for L. Siebenmann has given examples in [4, pp. 135-137] of Lipschitz manifolds X^n , $n \geq 6$, having no piecewise linear manifold structure. In particular, X^n is not smoothable, and so $0 < \|X^n\| < \infty$.

2. Lipschitz manifolds and their sizes

We recall from [2] that if (X_1, d_1) and (X_2, d_2) are metric spaces and $f: X_1 \rightarrow X_2$ is a map then the *Lipschitz size of f* (relative to d_1 and d_2) is

* This research is partially supported by NSF Grant GP 28487.

$$l(f) = \begin{cases} \inf \{k \geq 1 \mid k^{-1}d_1(x, y) \leq d_2(fx, fy) \leq kd_1(x, y) \text{ for all } x, y \in X_1\} \\ \infty, \text{ if the above set is empty.} \end{cases}$$

If $l(f) < \infty$, f is a *regular Lipschitz map*. It is clearly seen that relative to the obvious distances $l(f) = l(f^{-1})$ and $l(gf) \leq l(f) \cdot l(g)$.

We further recall from [6, p. 165] that a topological n -manifold M is a *Lipschitz manifold* if there is a coordinate cover $C = \{(U_i, h_i)\}_{i \in I}$ such that U_i is an open subset of M , h_i is a homeomorphism of an open subset of Euclidean n -space onto U_i , and

$h_i^{-1}h_j: h_j^{-1}(U_i \cap U_j) \rightarrow h_i^{-1}(U_i \cap U_j)$ is a regular Lipschitz homeomorphism for all i, j . We may always assume C is finite when M is compact.

For any metric d on M denote

$$\begin{aligned} l_d(C) &= \sup_{i \in I} l(h_i) \text{ relative to Euclidean metric and } d, \\ l(C) &= \sup_{i, j \in I} l(h_i^{-1}h_j) \text{ relative to Euclidean metric.} \end{aligned}$$

Then we may define two “sizes” for M :

$$\begin{aligned} |M| &= \inf \log l_d(C) \quad \text{and} \\ ||M|| &= \inf \log l(C), \end{aligned}$$

where both infima are taken over all coordinate covers C and all metrics d on M .

Lemma 1. *For all closed Lipschitz manifolds M ,*

$$|M| \leq ||M|| \leq 2 \cdot |M|.$$

Proof. For the first inequality let $\varepsilon^* > 0$ be arbitrary and pick C as above so that $\log l(C) \leq ||M|| + \varepsilon^*$. Denote $L = l(C)$. Let $\{f_i\}$ be a partition of unity subordinate to $\{U_i\}$, $V_i = \text{Carrier}(f_i)$ and $W = \bigcup_i V_i \times V_i$. For $(x, y) \in W$, the functions $\varphi_i(x, y) = f_i(x)f_i(y)[\sum_j f_j(x)f_j(y)]^{-1}$ define a partition of unity on W so that $\varphi_i(x, y) = \varphi_i(y, x)$. For $(x, y) \in W$ define $\rho(x, y) = \sum_i \varphi_i(x, y) \|h_i^{-1}x - h_i^{-1}y\|$.

We can choose sequences $S = \{x = x_0, x_1, \dots, x_t = y\}$ so that for all i , $(x_{i-1}, x_i) \in W$ and define $[S] = \sum_i \rho(x_{i-1}, x_i)$ and $d(x, y) = \inf_s [S]$. It is easily verified that d is a pseudo-metric on M giving the original topology on M . By [1, Theorem 5.26, p. 154] there is a Lebesgue number η for the cover $\{V_i\}$ with respect to d .

Assertion. d is a metric, i.e., $d(x, y) = 0$ implies $x = y$.

Choose $\varepsilon > 0$ with $\varepsilon < \eta$. Then pick $[S] < \varepsilon$. Since $d(x_i, x_j) \leq [\{x_i, x_{i+1}, \dots, x_j\}] \leq [S] < \varepsilon$, diameter $(S) < \eta$ and $S \subset V_j$ for some j . Now

$$\begin{aligned} L^{-1} \|h_j^{-1}x_{i-1} - h_j^{-1}x_i\| &\leq \|h_k^{-1}h_j h_j^{-1}x_{i-1} - h_k^{-1}h_j h_j^{-1}x_i\| \quad \text{and} \\ L^{-1} \|h_j^{-1}x_{i-1} - h_j^{-1}x_i\| &= L^{-1} \sum_k \varphi_k(x_{i-1}, x_i) \cdot \|h_j^{-1}x_{i-1} - h_j^{-1}x_i\| \\ &\leq \sum_k \varphi_k(x_{i-1}, x_i) \cdot \|h_k^{-1}x_{i-1} - h_k^{-1}x_i\| \\ &= \rho(x_{i-1}, x_i) \end{aligned}$$

and

$$\begin{aligned} L^{-1} \cdot \|h_j^{-1}x - h_j^{-1}y\| &\leq L^{-1} \sum_i \|h_j^{-1}x_{i-1} - h_j^{-1}x_i\| \\ &\leq \sum_i \rho(x_{i-1}, x_i) = [S] < \varepsilon. \end{aligned}$$

Thus, $x = y$ since ε is arbitrary.

Now let $\{W_i\}$ be a cover of M so that diameter $(W_i) < \eta$. Then $W_i \subset V_j$ for some j . Let $k_i^{-1} = h_j^{-1}|W_i$ and $C^* = \{(W_i, k_i)\}$.

Assertion. k_i is regular Lipschitz relative to Euclidean metric and d .
If $h_j x, h_j y \in W_i \subset V_j$ and $d(h_j x, h_j y) < \eta$, then $d(h_j x, h_j y) \leq \rho(h_j x, h_j y) = \sum_k \varphi_k(h_j x, h_j y) \cdot \|h_k^{-1} h_j x - h_k^{-1} h_j y\| \leq \sum_k \varphi_k(h_j x, h_j y) \cdot L \cdot \|x - y\| = L \cdot \|x - y\|$.

Also we may pick $S = \{h_j x = x_0, x_1, \dots, x_p = h_j y\}$ with $d(h_j x, h_j y) \leq [S] < \eta$. Then for all t , $d(h_j x, x_t) \leq \sum_{k=1}^t \rho(x_{k-1}, x_k) \leq [S] < \eta$ and $x_t \in V_j$. Hence

$$\begin{aligned} [S] &= \sum_{i,k} \varphi_k(x_{i-1}, x_i) \cdot \|h_k^{-1} h_j^{-1} x_{i-1} - h_k^{-1} h_j^{-1} x_i\| \\ &\geq L^{-1} \cdot \sum_{i,k} \varphi_k(x_{i-1}, x_i) \cdot \|h_j^{-1} x_{i-1} - h_j^{-1} x_i\| \\ &= L^{-1} \cdot \sum_i \|h_j^{-1} x_{i-1} - h_j^{-1} x_i\| \\ &\geq L^{-1} \cdot \|x - y\|. \end{aligned}$$

Thus, $L^{-1} \cdot \|x - y\| \leq d(k_i x, k_i y) \leq L \cdot \|x - y\|$ and $l(k_i) \leq L = l(C)$. Hence, $l_d(C^*) \leq l(C)$ and $|M| \leq |M| + \varepsilon^*$. Since ε^* is arbitrary, $|M| \leq |M|$.

For the second inequality let $\varepsilon > 0$ and choose C and d so that $2 \log l_d(C) \leq 2 \cdot |M| + \varepsilon$. Then $l(h_i^{-1} h_j) \leq l(h_i) \cdot l(h_j) \leq l_d(C)^2$ and $l(C) \leq l_d(C^*)^2$. Thus $|M| \leq 2 \cdot |M| + \varepsilon$ and $|M| \leq 2 \cdot |M|$.

The above proof also shows an equivalent way of defining Lipschitz manifolds. We state this as a corollary.

Corollary. *A closed manifold M is Lipschitz manifold if and only if there is a coordinate cover $C = \{(U_i, h_i)\}_{i \in I}$ such that each homeomorphism h_i is regular Lipschitz with respect to the usual metric on Euclidean space and some metric d on M .*

3. A reformulation of Shikata's criterion

Shikata [3] defined the “size” of a compact topological n -manifold M to be

$$|M|_s = \inf_{C,d} (8\gamma)^{m(C)} \log l_d(C),$$

where $\gamma > 0$ depends only on n and $m(C)$ is the maximum number of U_j that any U_i can intersect. It is clear that any C can be replaced by a coordinate cover C' refining it, provided we use the restrictions of the appropriate homeomorphisms h_i from C in computing $l_d(C')$. In [5] we show that there is a positive integer $\mu(n)$ depending only on n such that any C has a refinement C' as above with $m(C') \leq \mu(n)$. Let $\alpha'(n) = (8\gamma)^{\mu(n)}$ and $\beta'(n) = 1$ if $8\gamma \leq 1$, and

vice versa if $8\gamma \geq 1$. Then noting the definitions of $|M|$ and $|M|_s$, we have proved the following lemma.

Lemma 2. *There are positive numbers $\alpha'(n)$ and $\beta'(n)$ depending only on n such that for all closed manifolds M*

$$\alpha'(n)|M| \leq |M|_s \leq \beta'(n)|M|.$$

Taken together, Lemmas 1 and 2 clearly yield the proposition. Hence, the theorem is established.

THE UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE

References

- [1] J.L. Kelley: *General Topology*, Van Nostrand, Princeton, 1955.
- [2] Y. Shikata: *On a distance function on the set of differentiable structures*, Osaka J. Math. 3 (1966), 65–79.
- [3] ———: *On the smoothing problem and the size of a topological manifold*, Osaka J. Math. 3 (1966), 293–301.
- [4] L.C. Siebenmann: *Topological manifolds*, Proceedings of the International Congress of Mathematicians, Nice, 1970.
- [5] G.P. Weller: *The intersection multiplicity of compact n -dimensional metric space*, Proc. Amer. Math. Soc. to appear.
- [6] J.H.C. Whitehead: *Manifolds with transverse fields in euclidean space*, Ann. of Math. 73 (1961), 154–212.