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0. Introduction

Let G be one of the split classical groups SOtn, SO2H+i9 Sp2n or a unitary-
group defined over the finite field Fq of q elements. Let F be the Frobenius
mapping, GF the subgroup of jF-stable elements, W the Weyl group of G and let
δ be the smallest positive integer such that F8 acts trivially on W. For w^W,
Deligne-Lusztig [3] has defined the i^-stable variety X(w) for any connected
reductive group. If w is a Coxeter element of W, the zeta function of X{w) was
obtained by Lusztig [9] as a by-product when he determined the Green poly-
nomial associated with w. In this paper we shall determine the zeta function of
X(w) for any wEίW.

To state our result more explicitly, let B be a fixed F-stable Borel subgroup
of G, %K(W) the Hecke algebra of the representation of Gpm induced from the
trivial representation of Bpm and let {a^; w^W} be the natural basis of $lκ(W).
When δ divides m the number of JPw-stable points of X(w) is expressed in terms
of the dimensions of the unipotent representations of GF and the trace of αj on
each irreducible representation of %K{W).

The crucial point of our arguments depends on the lifting theory due to
Shintani-Kawanaka ([15], [7], [8]) and a result of Lusztig ([12], Corollary 3.9),
which says that for any unipotent representation p of GF, the eigenvalues of F8

on the p-isotypic component of Hι

c(X(w)) are independent of i and w up to a
multiple factor of the form qi8, i^Z.

Finally the author expresses his heartfelt gratitude to Professor N. Kawanaka
for his valuable suggestions and kind encouragement during the preparation of
this paper.

1. General results

1.1. First we summarize the known results (Shintani [14], Kawanaka [7],
[8]) to apply for our use.
Let m be a positive integer (maybe 1), k—Fq9 K=Fqmt G a connected algebraic
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group defined over k, F the Frobenius over k, σ=F\GF
m and A the cyclic group

(of order m) generated by σ. Let xl9 x2^GFm. xxσ and x2σ are conjugate in

GpmA (semi-direct) if and only if there exists h^Gpm such that Xϊ=h~ιxσ

2h. If

this is the case, we say xx and x2 are σ-conjugate and we write x1^x2. Iίm—\y

we simply write x1^x2 instead of x1~~x2. The following lemma is proved in [7].

Lemma 1.1.1. For χ(=Gpm, take a<=G such that x=a~1Fa. Let y=pma

a'1. Theny^.Gp, and the conjugacy class of y in GF is uniquely determined by the

σ-conjugacy class of x in GFtn. And the mapping χ\-^y defines a bijection: G F W / ~ - >

G F / ~ .

DEFINITION 1.1.2. We denote the bijection Gpm/^-^GPl^ in the above

lemma by nκjk. (Notice nK/k is defined even if w = l . ) Define <ίflκ/k=n'k/1k nκ/k.

This also is a bijection from GFm/~ onto GF/~.

REMARK 1.1.3. The reader should refer Kawanaka [8] for the relation

between the norm mapping in [loc. cit.] and our norm mapping ^tκ/k.

The following lemma features some property of the mapping 3lκ/k> which is

not used in this paper. The proof is omitted.

Lemma 1.1.4. Let G be a connected reductive group and Z{G) the center

of G. Let s^Z(G)F and u^GF. Let r be the order of s. Assume m=\ mod r.

Then 9l;ί*(«ι)=j^ik(iι).
/\ /\m

For %^eG F m < r (=the set of σ-invariant irreducible characters of Gpm)y there
/\ /\

exists Xκ<=GpmA such that Xκ\GF
m=Xκ. Let Xk^GF.

DEFINITION 1.1.5. Let m>ί. We say Xκ is the lifting of Xk in GF if

there exists a constant c such that Xκ(yo')=cXk{(^κ/ky) for any y^Gpm. (The

lifting of Xk is uniquely determined by Xk if it exists. See [7].)

Theorem 1.1.6 ([7], [8], [15]).

Let m>l. Assume one of the following.

(1) G = GLn.

(2) G=Uu,(tn,p)=l.

(3) G = SO2n+1, Sp2n or SOU K 2p) = 1 .
/\ /\m

Then any Xk^GF has the lifting XK^GF . And the mapping Xk*->XK defines a
/\ /\

bijection between GF and Gpmσ.

REMARK 1.1.7. The theorem is proved by Shintani [15] in case (1), by

Kawanaka [7] in case (2) and by Kawanaka [8] in case (3).

The following lemmas can be extracted from [7].
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L e m m a 1.1.8. Letfλ andf2 be class functions on Gpm A. Define class func-

tions gλ and g2 on GF by: gi0ftK/ky) =fi{y<r) for anJ y ^ GF". Then

pmI -IG

L e m m a 1.1.9. Let H be an F-stable closed subgroup. Let f and g be class

functions on Hpm A and HF respectively. If g(^lκ/ky)==f(yo') for any y^Hpm, then

(Ind G/Fg) (Slκ/ky)=(Ind fF>Af) {yσ)for

1.2. Henceforth G is a connected reductive group defined over k=Fqi B

is an F-stable Borel subgroup, U is the unipotent radical of B> T is an JP-stable

maximal torus of B and W=NG(T)jT.

Let w<=WFm and ώ its representative in NG(T)Ftn.

Let X(w), Sΰ, T(w)F and R1

Tw be as in [3]. They are as follows.

Sή = {geΞG;g-1FgtΞώU}9 T(w)F = {t^T; wFtw~ι = t} ,

X(w)=S^T(w)FUΠtυUw-1 and R1

Tw is the virtual character of GF such that

Then we have

Lemma 1.2.1 (cf. Remark 1.4.2). Let x(=GF. Take a(=G such that x=
Fma~ιa. Lety^aFa~ι^GF (cf. Lemma 1.1.1). Then

where rf=dim U Π ίυUw'1.

1.3. Let Zκ=lnάG^n l (^the representation of Gpm induced from the trivial

representation of Bpm). Then Zκ= 2 QιSυ a s vector spaces with Bpm act-
gGGFm/BFm

ing trivially on Qι v. As is known, End GF
mZκ= 2 Qta%, where a* is defined

W<EWFm

by: aζυ= 2 uw~ιv with U^=U[ΠwU~w~1 (U~ is the maximal unipotent
u<=Uw*Fm

subgroup opposite to U). Define the linear mapping Iσ on Zκ by:

!<?' Σ cggv\-+ Σ CggΌ(cg^Qi). Then for any g^Gpm and
Fm/Fm FmFm

Then we have

Lemma 1.3.1 (cf. Remark 1.4.2). For g e GF" and w e W"", Ύr(yaξlσ, Zκ)

, whered=dim

1.4. For any ΐ G G f , write x=F"a~ιa with « ε G and let y=aFa~1GGF'°.

By Lemma 1.2.1 and 1.3.1, Ύr((χ-ψm)*,^l(-iyHi(X(w)))=τt{yaξIσ, Zκ).
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Since Ύr(ya^Iσy Z
κ) does not depend on the σ -conjugacy class of y, we have

Theorem 1.4.1. For any J G G ^ T r ^ ί y ) - 1 ; 1 " ) * , 2 ( - i y f f | ( % ) ) )

=Ύv(yaκJσy Zκ).

REMARK 1.4.2. (i) The above formula (and also Lemma 1.2.1, 1.3.1) were

first appeared in [2]. This was informed to the author by Kawanaka.

(ii) It should be noted here that there are similar formulae to that of the

theorem. If Fm acts canonically on Rθ

τ or RLζzp(π), the analogy of the theorem

is also true as is easily checked.

1.5. Let δ be the smallest integer > 1 such that Fδ acts trivially on W.

Let p^β(GF, {1}) (=the set of all (equivalence classes of) unipotent represen-

tations of GF). By Lusztig [12], Coro. 3.9, if p<=Hι

c(X{w))μ (=the generalized

μ-eigenspace of .Fδ* on Ht

c(X(w))), then μ is uniquely determined (up to an

integral power of q8) by p (not depending on / or w).

DEFINITION 1.5.1. For p<=6(GF, {1}), let μ be as above. Define λp to be

the constant such that \p=μq8r for some r e Z a n d 1< | λp | <q8.

For p^β{GF, {1}), let W^w)), be the largest subspace of H^Xiw)) on

which GF acts by a multiple of p. Then

Lemma 1.5.2. For any p<=β{GF, {1}) and w(ΞW, there exists /

Z[Xy X~λ] such that if δ divides ni,

^ for any X<ΞGF and fp>w(l)=

2. Split case

2.1. In introducing the notation we only assume that G splits over K. Let

$lκ(W)=ΈndGFm Zκ and S the set of simple reflections of ^(corresponding to B).

Let $l(W) be the generic algebra of %K(W) over the extension field of Q{X)

(X: indeterminate) and {aw; w^W} be its basis. ($iκ(W) is obtained from SI(PF)

by the specialization X\-^qm or more precisely by the homomorphism from the

integral closure of Q[X] to Q which maps X to qm.) Let W be the set of equi-

valence classes of the irreducible representation of W. For any X G W, let vXi

v$> P* be the corresponding irreducible representation (or its character) of

yi(W), %K(W), Gpm respectively. Then Zκ can be written in the form: Zκ=

θ vξ®pξ. For an F-stable subset / e 5, let Wj be the subgroup of W generated

by J, Pj the corresponding standard parabolic subgroup of G, Lj its standard

Levi subgroup and Zj=lndB

J

Fm l ( = I n d £ g n L %1 as L/W-modules). Zκj is cano-
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nically regarded as a subspace of Zκ and Endpf mZKj = 2 Q/ aw I zf The follow-

ing are also defined: 9ίκ(Wj)9 «(PF», {v%,vξ, pζ; X<ΞWJ}. Since Wj is a

parabolic subgroup of W> %(Wj) (resp. SP^W7/)) is regarded as a subalgebra of

Sl(ίF) (resp. 3I*(PF)). For any % ' e ^ ; and %eT^, define the non-negative

integer nχy by: IndJ^ % ' = Σ «x,x/X- F o r χ ' e ^/> l e t z\' ( r e s P z / x') b e t h e

largest subspace of Zκ (resp. Z 7 ) on which $lκ(Wj) acts by a multiple of v\t. For
y Z$ is defined similarly. The following are checked easily: for %'e Wj>

κ

%, and for % ' G ^ ; and

2.2. Henceforth in this section we assume G to be split over k. Then the
mapping Iσ commutes with any a%(w^W), thus with %K(W). Therefore each
ρ% is regarded as an irreducible Gpm ^4-modules which is denoted by pζ. By
Theorem 1.4.1, we have

Lemma 2.2.1. For any y e G F W ,

Tt((nKk/(y)-ψm)*, Σ (-l)Ήi(X(to))) = Σ vξ{aξ)pκ

%{yσ).

Let / C 5 be F-stable. ρk

%,(X'eityj) are similiarly defined as pξ(X^W).

Now,foranyzζΞZjandgϊΞGFmJσ(gz)=σgIσ(z). Thus for X' # g = ^

=Z^/ as GFW ^4-modules. Hence

Lemma 2.2.2. Assume IndJ^X' = 2 n%yX{X' e T^7, nXfX/ > 0).

SIρί'= Σ^xx'Pί and

Lemma 2.2.3. Assume the Dynktn graph of G does not have irreducible
components of type E7 or E8. Assume that for any J^S and X'^LWJ, there exists

the lifting of p\, in $". Then for any %e W and y£ΞGFm, pk

%(yiκ/k(y))=pξ(yσ-).

Proof. By Lemma 1.1.9, ( Ind | ί 1) ( ^ / ^ ) = ( I n d ^ y 1) (yσ) for any j G
Gpm. Thus

(a) Σ dim X h0JlK/ky) - Σ dim X κ(yσ) for

The existence of the lifting of each pk

% shows for each %G W there exists X'^W
such that ρkyffiκ/ky)=c p\'(y<r) f°r any j e G F W and c=l. (This is checked by
taking the inner product with the relation (a). See Lemma 1.1.8.) If % = 1 , the
statement of the lemma is obvious. If X=Stw (=the sign character of W), it is
also obvious. This proves the case when the semisimple rank of G is 1. Assume
the semisimple rank of G > 2 and the statement holds for any Lj with



26 T. ASAI

Let J^S. Then for any X'eWj and y^Gpm

y pk

%i^K/ky)=p\iyo)' Write
I n d ^ χ ' = Σwx,χ/X. Then by Lemma 2.2.2, Σ ^ χ , χ ^ ? ( ^ / ^ ) = Έn%xpξ(yσ)

for any y^Gpm. Thus the lemma is an easy consequence of the following well
known result (cf. Benson-Curtis [1]):

Let (Wy S) be the Weyl group which does not have the irreducible factors
of type G2y E7 or EB and assume rank (Wy S) > 2. For Xly X2 e W> if Xx \ Wj=X21 Wj

for a n y / £ 5 , then X1=X2.

By Lemma 2.2.1 and 2.2.3 we have

Lemma 2.2.4. Assume the assumption of Lemma 2.2.3. Then

Ύr((χ-Ψm)*, Σ (-iγHί(X(w)) = Σ vξ(aκ

w)pk

%(nτ}kx) for any XΪΞGF .

2.3. If G=GLny we can easily check the following theorem, which is proved
in [2] and also by Lusztig independently.

Theorem 2.3.1. Assume G=GLn. Then

( i ) pϊ(nκ/ky) = pξ(yσ) for any X^W andyEΞG*"",

(ii) fPXtW(X) = vx(aw) for any X<=Wand W<ELW,

(iii) \XζM\ = Σ ^ K

2.4. In 2.4 we assume G=Sρ2n, SO2n+1 or SOtn

Lemma 2.4.1. If (m, 2p) = l, then

(i) Σ / p , Λ > ? P - Σ * M %h

(ϋ ) ΈfoMΊK dim p = Σ ^(^) dim 9\ ,

where p ranges over <5(GF, {1}).

Proof. By Lemma 1.5.2 and 2.2.1, Σ / P w{f)Kp(^κ/ky)= Σ vζ(aζ)ρζ(
p ' ί

for any J I G G Λ By Theorem 1.1.6 and Lemma 2.2.3, /5f(yσ ) =

Pv.{rikKnKiky) f°r anY J ̂  G^"1. Thus we have (i). Since nk/k{ {1} ) = {1}, we have
(ϋ).

To proceed further we need some lemmas. The following one is obvious.

Lemma 2.4.2. Let cly ~ycr,xly -,jc rGQ/. Assume Σ £, #£=0 for t=ly •••,

r. Then there exist 1 <z*Φj < r such that Xi—Xj.

Lemma 2.4.3. Let f(X)y g(X)φO^Qι[X]y t a positive integer (maybe 1)
and λeQf. Assume f(qM)Xm=g(qm) for any positive integer m such that (my t) = ί.
Then \=ζqa with ζ a t-th root of unity and a an integer.
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Proof. Write f(X)= Σ a{X\ g(%)= Σ biX\ah δ. e©,). By the assump-

tion, f(qmt+1)\mt+1=g(qmt+1) for any mGΞiV. Thus Σ aiq
i\(qti\t)m= Σ btfiq'T

for any m<=iV. If fφy, g' 'Φί"' and gίι'λ'Φg"V. Thus, by Lemma 2.4.2, g"V

=g°' for some 0<z<r, 0 < j Ό . Therefore \=ζq* with f a f-th root of unity
and a a positive integer.

The following proposition is known when q is larger than the Coxeter
number of G (cf. Lusztig [12], p. 25, (d)).

Proposition 2.4.4. For any p<=£(GF, {1}), λ p = l or — 1 .

Proof. If p is not cuspidal, the computation of λp is reduced to the groups
of smaller ranks. Thus it remains to check for the cuspidal poe<?(GF, {1}).
Take to ϊΞW such that <p0, i?^>Φ0. Then/Po>w(X) ΦO (cf. 1.5). If (m, 2/>)=l,
Σ / P w(qm)K dim p = Σ *%{?*) dim ρ£ by Lemma 2.4.1, (ii). We may assume if

pΦp0, λ p = l or — 1 . Thus, for any positive integer m such that (m, 2p)=l, we

have/Pθ)M;(^)λ^odimp0+ 2 / p f » ( O λ P d i m P = Σ ^(«5)dimp*. Applying Lemma
P + P O χeif

2.4.3 we have λJJ=l (since 0< |λ P o |<g) . Thus it suffices to prove λP oGQ.

But for any positive integer m, fPo>w{qm)K dim p o + Σ A ίOλp dim p -
PφP
Σ

PφP0

Σ (— l)ίίίί(-ϊ(ω)))= I I H ^ I. Thus/^^ί^Vo^β f o r a ny positive integer m.
Since fPo w(X)Φ0, there exists an integer τw0 such that if m^mQy fPo>α,(^w)

Thus if m > m0, λd

w

0 G Q. Therefore λ P o =(λ P o ) w o + 1 χ- w o e Q.

Lemma 2.4.5. Σ/p ̂ ^QλφP— Σ vχ(aw)p%'nϊ/\ as Q[X]-linear combinations

of class functions of GF.

Proof. Fix y<=GF. By Lemma 2.4.1 and Proposition 2.4.4, if (my 2p)=l,

then Σ/p,u;(?m) '̂pP(3;)— Σ v%(aw)pί(rik/ky) Since there exist infinitely many

p(nTβpositive integers m such that (m, 2/>) = l, Σ / P »(^)^P/0(3 ;)= = : Σ p%(aw)p%(nTβy) a s

polynomials in X (with y^GF being fixed). This proves the lemma.

For % e # , let Λ χ - I IF I -1 Σ OC(to) Rι

τ . Then

Lemma 2.4.6. p
P

Proof. By the specialization X\-*l, the relation in Lemma 2.4.5 is specialized

to: Σ C ^ Γ , py^Pp= Σ X(w)pί wΓA Hence
P W χ e ^

A nτM= l ^ l " ι Σ
-1 Σ x(«0 Σ <^rκ, P>λPp = Σ <-Rχ,

»εr p P
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Lemma 2.4.7. (i) For any weWand peβ(GF, {I}), f,,J(X)= Σ>χ(««,)

x,P>

Proof, (i) λ P / P > r ( X ) = < Σ / p 1 , » ( ^ ) λ P ι p 1 ) p > = Σ ^ K ) < p ί wΓΛ, P> (by
pi x e ^

Lemma 2.4.5)= Σ v%(<*wKRχ> i°>λp ( b y Lemma 2.4.6). This proves ( i ) . (ii) is

an easy consequence of ( i ) .

Theorem 2.4.8. Let w<=W.

(i) If mis odd, I X{w)Fm I = Σ *?(<£) dim p\ .

(ii) // in ύ even, I X(α;)FW | - Σ *?(<£) dim Rx .

Proof. I X(a)F" \ =Έf,.m(f)K d ί m P Assume w is odd. Then | X{w)F>" \
P

= Σ / P «,(ίw)λP dim p (since λ P = l or - 1 ) = Σ < ( 4 ) P Ϊ ( W M U } ) (bY Lemma

2.4.5)= Σ ^ ( α ί ) dim pi Assume m is even. Then |X(^)F m | = Σ / P w(f) dim p
XGΞW P

= *5\vζ{a*) dimi?χ (by Lemma 2.4.7, (ii)).
xeί

The following lemma is well known (cf. [4]).

Lemma 2.4.9. Let SI be a semίsimple and symmetric algebra over the
algebraic closed field of characteristic 0. Let {eλ, -~,er} be a basis o/Sί and {ef, •••,
ef} be its dual basis. Let %1? X2 be the irreducible characters of SI. Then Σ ^i(ed

i

X2(ef)=0 if and only if X

Theorem 2.4.10. (i) If mis odd, pl{yσ)=pk

%(&κlky) for any X e W and
Gpm.
(ii) If m is even, P%{yσ)=R%{nκ/ky) for any XG WandyeGpm.

Proof. For any y^GFm and w^W, Σ 4{aκ

w)p^{yσ)=Ύr{{{nκ/ky)-ψmf,

Σ (-lyHi^w)) (by Lemma 2.2.1) = Σ / P w(qm)Kp(nκ/ky) Assume m is odd.
* P

Then Σ Pζ(aζ)pξ{yσ)=Σ/p,w(?m)λpP(%/^/*j) = Σ ^{aϊ)p^κny) (by Lemma
X£# p xε#

2.4.5). Thus Σ ^(«f)/5ί(yσ ) = Σ vζ{€^)pi^Slκ/ky). Hence we have (i) by the
xe^ xer

orthogonality relations in Lemma 2.4.9. (ii) is proved similarly.

REMARK 2.4.11. If char /^=t=2, then Rx=R% nJ/\ by the following lemma.
Therefore "nk/k,, in (ii) of Theorem 2.4.10 can be replaced by "9^/*,, if char Fq

Φ2. This seems to be true even if char Fq=2.
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L e m m a 2.4.12. Let G be a connected reductive group over Fr (We do not
assume the assumption imposed on G in 2.4.) Let x^GF and x=su be the Jordan
decomposition (s: a semisimple element, u: a unipotent element). Assume u is con-
tained in the identity component of the centralizer of u in ZG(s)°. (Notice u^ZG(s)°
by [16], Corollary 4.4.) Then for any F-stable maximal torus T of G and linear
character θ of TF, Rθ

τ(nk/k(x))=Rθ

τ(x).

Proof. Let H=ZG(s)°. Let T be an F-stable maximal torus of H. Take
α G Γ such that s=a~1Fa. Take b<=ZH(uf such that u=b~1Fb. Then x=su=
sb-1Fb=b-1sFb=b-1a-1FaFb=(ab)-1F(ab). Thus nk/k(x)=F(ab) (abγι=FaFbb-ιa-1

Fabub~1a~1=Faua~1 (b commutes with u)=Faa~1aua~ι—saua~1. Therefore nk/k(x)
=saua~ι. Since s commutes with aua'1 and aua'1 is a unipotent element, nk/k(x)
=s(aua~ι) is the Jordan decomposition of nk/k(x). Let {gi," ,gr} be the repre-
sentatives of HF\{g^GF;g~1sg^T}. Then by [2], Theorem 4.2, we have
Rθτ(x) =ΣQgiTgr\H(u)θ(gτls2d. Similarly, Rθ

τ(nk/k(x)) =J>lQgiτgί*Jl(ma~1)

θ(gj1sgi). Let Had be the adjoint group of H and π: H-+Had be the canonical
mapping. Since a~1Fa—s^Z(H)y π(a)^Hζd. Thus π(u) and π(aua~ι) are con-
jugate in HF

ad. Therefore Qgiτg-\H(u)=Qπ(giTg-^Hjπ(u))=Q^Tgτ\H(aua-1).
Hence Rθ

τ(x)=Rθ

τ(nk/k(x)).

2.5. In 2.5, we wish to describe some conjectural statements flourishing
from Lemma 2.4.6, if we assume Conjecture 4.3 of Lusztig [12]. To do this
we need to recall some results of [11], [12]. For Λ G Φ B (resp. ΦJ), let pΛ be
the corresponding unipotent representations of SpF

n or SOF

n+i (resp. Sθ2ήF)-

For %e Wn (resp. Wn)y let Λ be the corresponding symbol class in φn (resp. ΦJ)
and we put RA=R%. For Λ G Φ « (resp. Φ£), write Λ = ( I U ( F - / ) , I U / ) , where
X, Y are finite subsets of {0, 1, 2, •••}> I D Y=φ, I is a subset of Y such that
2 | / | + 1 = | Y | mod 4 (resp. 2 | / | = | F | mod 4). Now, fix X and Y. We put
I Y\=2s or 2H-1, and assume s>0 if | Y\=2s. Let Y= {λ o <λ 1 <λ 2 }, Y°=
{λo,λ2,λ4, •••} and Yι= {^lyXz^y ""}• Let (P be the set of all subsets of Y and
(?$= {/^(P: | / | =s mod 2}. Then (P is regarded as a vector space over F2 by
the addition: /, J^(P\-^IJ=IU /—/ Π J and (Po is regarded as a subspace. By
the bijection (PS->(PO (/π-^/y1), we can regard (Ps as a vector space over F2.
Define Q: (Ps-^{±1} ( / ^ ( - l ) ( | / ' - s ) / 2 ) . If we identify F 2 canonically with {±1},
the mapping Q is regarded as a quadratic form on (Ps whose associated bilinear
form B is: / , / G ( P s ^ J S ( / , / ) - ( - l ) | / n x ° 1 + l ^ r l | + ' / u ^ . Thus the Fourier trans-
form of Lusztig [11], [12] takes the form:

Aχu/Uu/) = 2 - J Σ δ ( / J ) / ) U u ; U u / ) for J e f l \ .

DEFINITION 2.5.1. (i) For a class function / on GF, let fA=f nk/k. Δ 2 = l
and dim/ Δ =dim/. (Notice that for any connected algebraic group G over Fqy
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if /GZG(x)°, thennr

k/k{{x})={x}.)
(ii) Let 3ΐvy= ΣQ/P(γu//Xu/). Define the linear automorphims Δ of

s. Since dim/$αu/',xu/)
= 0 if | / | Φs, we have dim fA=dim /for

It can easily be checked the following

Lemma 2.5.2. For

Theorem 2.5.3. Assume Conjecture 4.3 iw [12] w ίπ/£. Then for

Proof. By the induction of the semisimple rank of G, it is needed to check
only for the cuspidal P(zu/j,xu/o)(^o o r ^o= Y) Thus we may assume the state-
ment is true if /Φ/o> ̂ o. Since we have assumed Conjecture 4.3 in [12],
R(XVI',XVI) = β(xvi',xvi) if \I\=s- T h u s by L e m m a 2.4.6, R(Xυi\xυi) =

But diml2 Δ

u υ j / J r u / ) = dinuR

dim Λ Σ

( X u Λ x u 7 ) . Thus 2 - Σ B(I,J)Q(J) dim P ( x u , , t X „ Λ = 2 - Σ B(/, / )

dim P(χ\}j'tχvj) by Lemma 2.5.2. This relation shows our statement.

REMARK 2.5.4. (i) The statement of Theorem 2.5.3 is a counterpart of the
statements for some families of the unipotent representations of the exceptional
groups given in Lusztig [12], p. 45 and [13], p. 335.

(ii) Assume char Fqφ2. Lemma 2.4.12 and the proof of Theorem 2.5.3
show that Δ and Λ coincide on the subspace © of ίRXtY which is spanned by
ίPttu/'.jru/), PΔuuj'fxu/);/e(Pβ, \I\=s} and {Λ(*u/'f*u/>; /GίP« 11\ =*} under
the assumption of Theorem 2.5.3. If | Y \ =1, 3 or 4, @=9ΪZ r . If | Y \ =5 or
6, dim@=dim3ΐz y — 1 . We may ask if the following is true (cf. Remark 2.4.11).

CONJECTURE 2.5.5. Δ = Δ .

3. Unitary case

The method which we applied in the case of split classical groups is also
effective for the unitary groups. Let G be the unitary group Un over Fq and
we assume m is an even integer. The Weyl group W is canonically identified
with the symmetric group Sn and we assume the generic algebra %{W) (cf. 2.1)
is over the extension field of 9ί(X) which contains X1/2 (X1/2 being fixed). Let
(P(n) be the set of all partitions of n. For «E(P(w), let Xa (resp. vXa) be the
corresponding irreducible representation (or its character) of W (resp.
The following lemma is easily checked by the induction on n.
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Lemma 3.1. Let w0 be the longest element of W and a={a{^ •

e(P(ιi). Define Ca=(£)+Jjl(j--i). Then alo acts as a scalar Xc« on the re-

Presentation v%a of%(W).

Let the notation be as in 2.1. We write pκ

Λ instead pκ

%<A of for a^(P(n) to
iimplify the notation. Since a*Jσ commutes with %K(W), each irreducible com-
3onent p# of Zκ is regarded as a Gpm ^4-module ρκ

Λ by the mapping σ\-+(qm)~c<*/m

For αG(P(«), let p* = \ W\ ~ι Σ Xdjw>ώRτw-
 I f w e P u t ?*=the signature of

iim pk

a, then by [14], ηaρ
k

a is the irreducible representation of GF and all the uni-

3θtent representations of GF are of this form. For the simplification of the no-

ation we htfatW(X) = ηafηΛP
k

Λ,w{χ) (a<ΞΞ(P(n), wEΞΪV), Xa=\ηΛp
k

a. T h e n

Theorem 3.2. Assume char Fq φ 2. Let a<^(? (n) and w(=W. Then
( i ) Pm(nK/ky)=(— l)mC*/2PΪ(yσ) for any e^n integer m andy e Gpm

y

(ii) fa,w(Qm)K/2=vK

%«(a*a*o) (-9)for any even integer m,
(iii) \X(w)Fm I = Σ 4 K 4 0 ) (—qYmC«n dim p* /or

Our proof is based on Kawanaka [7] as is stated in the introduction. In
ihis respect, (i) of the theorem for cuspidal or subcuspidal p*'s is essential.
Γhe detailed arguments, which is slightly tedious, are omitted.
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