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Let R be an order in a semisimple ring Q, and let M be a finite dimensional
torsionless right Λ-module. Zelmanowitz[15] has shown that k=End MR is
also an order in a semisimple ring End MQQ. Subsequently Cozzens[3] has

shown that k is a maximal order whenever R is a maximal order and MR is finite
dimensional, reflexive and faithful.

On the other hand, Marubayashi[10] has defined Krull orders in simple
Artinian rings as a Krull type generalization of non-commutative Dedekind
rings, and a number of results on Krull orders have been obtained in [6], [7],
[8], [9], [10] and [11].

In this paper, we shall prove the following:

Theorem. Let R= Π RP Π S be a Krull order in Q, and let M be a finite
J

dimensional reflexive right R-module. Then, Λ— End MR is a Krull order if and
only if MS is projectίve as a right S-module.

As an easy consequence, we have

Corollary. Let R= f] RP Π S be a Krull order in Q. Then gl.dim. S^2 if

and only if, for each finite dimensional reflexive right R-module M, k=Έnd MR is

a Krull order.

If R is bounded and if M is a right ΐ -ideal of R, then the theorem is due to

Marubayashi. However, in his proof, it is essential that R is bounded (see

§2 of [7]).
Throughout this paper, all rings are associative with identity and all modules

are unital. We always write homomorphisms on the opposite side of the sca-
lars. Conditions are assumed to hold on the left and right sides unless other-

wise stated. R is an order in a simple Artinian ring Q. M^resp. RM) signifies

that M is a right (resp. left) .R-module.
Let n be a positive integer. Then, wQ(resp. Qn) and Qn denote the set of

column(resρ. row) vectors and the full nxn matrix ring over Q. Then, we
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can assume that ΛQ(resp. Qn) is a right(resρ. left) Q-module, and that Qn=
HomQ(wQ,Q), nQ=UomQ(QΛ

9 Q), Qn=EndQQn=End"QQ and Q-End Q\ =
ΈndQn

nQ. Now, we prepare a Morita context (Q«,Q,ΛQ,Q",( , ), [ , ]), where
the mappings ( , ): "QxQn-*Qn and [ , ]: Qnx"Q-*Q are defined as follows:

(x,f)x'=x(fxf) and [f,x]=fx, where x, x'<="Q and f<=Qn=HomQ(nQ>Q).
Since R is an order in Q, wQ^(resp. ΛQW) is the injective hull of "^(resp.

RR") and End "QQ=End "QR(resp. EndQQ*=ΈndRQn). Therefore we can as-
sume that Rn=EndRR"=EndnRR<^.Qn=EndQQn=EndnQQy and Rn is an order

inQΛ .
We write Fr(

nR) (resp. F^R")) for the set of essential right(resp. left) R-
submodules Mof *QΛ(resρ. RQn) with Af c& *R(resp. Mc.Rn b) for some regular
element b<=Qn. If n=l, then -FΓ(-R) (resp. -F/(jR)) is the set of right(resp. left)
Λ-ideals.

/ 0 \

Suppose that MR is essential in nQR. Let β, =ί "Q, and let /,.=

\ό/
. Then /,- contains a regular element a^R, because /,- is an

.
essential right ideal of R. Then a=[ '•. is a regular element of Qw and a nR

\0 α./
CM. Therefore, M<=Fr("R) if and only if a^RdMab-'R for some regular
elements a, b^Qn.

If M(ΞFr("R) and NeF,(R"), we put (M/p)*={/eQ"|[/JM]c^} and
Then MΛ*^HomδM, Λ and

The following lemma is well known if n= 1 (see [6]).

Lemma 1. Lei M, N^Fr("R), and let a be a regular element of Qn. Then
(1) M+NtΞFr(

nR).
(2) (MR)**<=Fr(

nR), and Mc:N implies (M^^NJ**.
(3) M— Σαλ

 nΛ, where aλ is a regular element of Qn with aλ

 nRdM.
(4) (MR)**= Γlb^R, where 6λ is a regular element of Qn with Mc.bκ "R.
(5) (aMR}**=a(MR)**.

Proof. (1) Since Rn is an order in Qn, this follows from the same proof
of the case when n=\.

(2) Since M^Fr(
nR), there exist regular elements a, b^Qn such that.

α ΉcMcft 'ΊZ. Therefore Rn b-1d(MR)*c:Rn a-1

J hence (MR)*t=F,(R*)
and (MR) * * e Fr(

ΛjR) . It follows from the definition that MdN implies (MR) * *
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(3) Since Rn is an order in QnJ any right ΛΛ-ideal is generated by regular
elements which it contains, by Lemma 2.2 of [6], Let ρ(M)= {q^Qn \ q "Rc:M} .
Then ρ(M) is a right jf?n-ideal, so that p(M)=2a^Rn, where aλ is a regular
element of Qn with ax "Rc:M. Since p(M)"R=M, M= 2aλ

 nR.
(4) This follows from (3).
(5) This follows from (4).

We now extend a definition and a part of Lemma 1.1 of [11] which are
concerned with right Λ-sets (i.e. essential right 72-submodules of QR) to those
concerned with essential right Λ-submodules of "QR. Let X be an essential
right Λ-submodule of "QR. Then we put XR= U_{(MR)**\M<=Fr(

nR) and
MaX}. It follows from (1), (2) of Lemma 1 that XR is a right JR-submodule
of "QR. Now, we note the following:

Lemma 2. Let X, Y be essential right R-submodules of nQR. Then
(1) XdXR.
(2) // Xc. y, then XRdYR.
(3) IfMtΞFr(

nR), then MR=(MR)**.

Proof. (1) Since XR is essential in nQR, there is a regular element a^Qn

with a nRaX. If x<=X, then xR+a "R<=Fr(
nR)y xR+a "Rc:X and x<=(xR

(2) and (3) are immediate from (2) of Lemma 1.

Two orders Rλ and Jf?2 iri Q are equivalent, denoted by ./?1~/?2, if there are
regular elements α, 6, £, deQ such that aRJbdRz and cR2dc.R1. An order
7? in Q is a maximal order provided that R^R'dQ and R~R' imply that

Λ=Λ'. Let Z, Y be submodules of Q. Then we put (X:Y),= {q&Q\qY
dX}y (X:Y)r={q^Q\Yqc:X}, Ol(X)={q^Q\qXc.X}, Or(X)={q^Q\Xq
C.X}, X~l={q^Q\XqXc.X} and Xυ=X~l~\ A right (left) J?-ideal / is

a right(left) v-ideal of R if /=/,. A right (left) Λ-module M is torsionless
(resp. reflexive) if the natural homomorphism M->HomΛ(Hom^(M,JR),JR) is a
monomorphism(resp. isomorphism). If R is a maximal order and if I^Fr(R),
then / is a right τ -ideal of R if and only if 7 is reflexive as a right 12-module.

A subring of Q which contains R is called an overήng of R. Let /?' be an
overring of R. Then, Λ72' is flat and R^Rf is an epimorphism in the category
of rings if and only if F={I\I is a right ideal of R and IR'=R'} is a right
additive topology on R and R'=RF= UCR:/)/ (see §13 of [14]). In this case,

Jε-.F

R<^>R' is said to be a right flat eipmorphism.

An overring R' of R is right essential over Λ if it satisfies the following

conditions:

(1) Rc-*R' is a right flat epimorphism.
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(2) If / is a right ideal of R with IR'=Rr, then RΊ=R' (see [7]).
A left essential over ring is defined in the symmetric way.

An order R in Q is a Krull order if there is a family \{R{}i^j of overrings

of R satisfying the following conditions:

(Kl) R= f) 72, Π S(72), where 5r(Λ)=feeQ|^cΛ and ̂ C72 for some

non-zero ideals yί, A' of

(K2) For each i ^<3, 72, is an essential overring of R and it is a Neotherian
local Asano order, and S(R) is an essential overring of R and it is a Noetherian
simple ring.

(K3) Each regular element of R is invertible in 72, for almost all i&<9.

REMARK, (i) We call S(R) the Asano overring of R. Since a Krull order
is a maximal order from Proposition 2.1 of [10], (R:A)l=A"1^=(R:A)r for any
non-zero ideal A of 72. Therefore S(R)= U {^l"1 1 -4 is a non-zero ideal of 72} .

(ii) Let Λ= f] 72,- Π 5(jR) be a Krull order in Q, and let P be the unique
i<ΞJ

maximal ideal of 72, for each ie J. Then P,=P, Π72 is a prime ΐ -ideal of 72,
and 72 satisfies the Ore condition with respect to C(Pi)={c^R\c+Pi is a
regular element of 72/P,} and Ri=RP. (see Proposition 1.1 of [6] and Pro-

position 2.1 of [10]). Therefore we write R=f}RPΓίS for a Krull order in
Pep

Q with the overrings {RP}P(=p and S=S(R), and P' for the unique maximal
ideal of RP for each PeP.

In what follows, 72= f| RP Γ\ S is a Krull order in Q.
Pep

We now prove the next lemma that is well-known in the case of maximal
orders, Asano orders and so on (see e.g. [4], [6], [12] and [13]).

Lemma 3. If Rn^e=e2^Q, then eRne is a Krull order in eQne.

Proof. It follows from Lemma 1.7 of [4] that eRne is a maximal order in
eQne.

First, we shall prove that Rn is a Krull order in Qn. Clearly, Rn= f| (RP)n

Γ\Sn. Let B be a non-zero ideal of Rn. Then B=An for some non-zero ideal
A of 72, and β-1^^-1).. Therefore S(Rn)=Sn. By Proposition 2.1 of [10],
BS(Rn)=AnSn=(AS)n=Sn=S(Rn)=S(Rn)B. It follows from Lemma 2.2 of
[10] that S(72n) is an essential overring of 72M. It is clear from well known facts
(see e.g. p. 37 of [2]) that S(Rn)=Sn is a Noetherian simple ring and (72P)n is a
Noetherian, local Asano order in Qn. Since RP is the partial quotient ring of
72 with respect to C(P), (72P)W is also the partial quotient ring of 72Λ with respect

(c 0\
to { '-. e72n \c^C(P)} . Therefore (72P)M is an essential overring of 72Λ.

\0 c)
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Let fa) be a regular element of Rn. Then there is (qij

:)=(aijd-l)^.Qn such
/I 0\

(^)(ίιv)= •.. . Then(^y)(^).=)(^)(Λίy)(lZp)lέ=(<iRp).. Therefore tfn

\0 I/
satisfies the condition (K3), so that Rn is a Krull order in Qn.

It is sufficient, now, to consider the case when n= 1. Clearly, &Re=

Π eRPe Π eSe. Let ΰ be a non-zero ideal of ^Re. Then RBR is a non-zero ideal

of Λ, and B~1=e(RBR)-1e. Therefore S(eRe)=eSe. It is easy to check that

S(eRe)=eSe is a Noetherian simple ring and eRPe is a Noetherian ring with a

unique maximal ideal eP'e. It follows from Lemma 4.2 of [12] that &RPe is an
Asano order in eQe. Since eRPeleP'e^(e+P')(RP/P')(e+Pf) is simple Artinian,
eRPe is a local ring.

It follows from Theorem 3 of [13] that eRPeleP'e^(e+P)(RPIP')(e+P)
is the quotient ring of eRe/ePe^(e+P)(R/P)(e+P). Hence any element C(ePe)
is invertible in eRPe. Let F= {I \ I is a right ideal of R and IRP=RP} . Then,
by the proof of Proposition 1.1, (4) of [6], I^F if and only if I+P/P is an es-
sential right ideal of R/P. Therefore if I^F, then e!e-}-ePe/ePe is an essential
right ideal of eRelePe, by the similar proof of Lemma 4 of [13]. Thus, elef}

Let r^eRe, c^C(ePe). Then c~lr^eRPe<Σ.RP, hence c~lr!dR for some
I<=F. Ύhtn c^reledeRe. Since there is d<=ele Γ\C(ePe), c^rd^stΞeRe. Thus
eRe satisfies the Ore condition with respect to C(ePe).

It follows from the similar proof of Lemma 3 of [13] that ece-\-l— e^C(P)
whenever ece^C(ePe). This implies that eReePec:eRPe. Conversely if <?e
eRPey then there is I^F such that qldR. Then qe!e<Σ.eRe. Since there is
c^e!eΓ\C(ePe), qc=r^eRe. Then q=rc~1^eReePe, so that eRPe=eReePe is a
right essential overring of eRe. In the symmetric way, we obtain that eRPe is
a left essential overring of eRe.

If ece is a regular element of eRe, then ece-\-l— e is a regular element of R.
Therefore eRe satisfies (K3), so that eRe is a Krull order in eQe. This com-
pletes the proof.

Let M be a finite dimensional torsionless right JR-module, and let (End MQQ,
Q,MQ, HomQ(MQ,Q), ( , ) , [ , ] ) be the Morita context derived from MQQ,
i.e. the mappings ( , ): MQxHomQ(MQ9Q)-*EndMQQ and [ , ]: HomQ(MQ,
Q)χMQ-*Q are defined as follows:

(xj)x'=x(fxf) and [/,*]=/*, where x,x'ξΞMQ and /eHomQ(MQ,Q).
Then we put (ΛfΛ)*={/eHomQ(ΛfQ,Q)|[/,ΛflCl2}. Through the natural
isomorphism we identify MQ with HomQ(Hom(?(MQ,Q), Q). Then (M*)** =
{*<ΞMQ I [(Mjf)*, *] C #} , and M* is reflexive if and only if 'M==(M *)**. If
MeFr("/Z),thenweidentify(EndMeg>e,MO,Homg(MQ,Q),( , ), [ , ]) with
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Let R' be a flat epimorphic overring of R. If M' is a right R'-submodule
of "ΛV, (M'n"#)R'=M'. If M, TV are right Λ-submodules of "RR with
MfΊΛΓ=0, (M®N)R'=MR'®NRf. We now prove the following:

Lemma 4. Le£ R' be an averring, and let R<^>R' be a flat epimorphism.
Suppose that M is a finite dimensional torsionless right R-module. Then

(MRV)* = R'(M*F and (MRV)** = (MR)**R' .

Proof. Since [R'(MR)*9 MR/]=/ϊ/[M*, M]R'dR', J2'(M*)*c(MJRV)*-
In order to show the converse inclusion, we take four cases.
Case 1. M&Fr(*R) and MR is finitely generated.
Let £e(MRV)* Since MΛ is finitely generated, there exists /eF/ such

that /[£,M]C#, where F,= {J\J is a left ideal of JR and R'J=R'}. Then
, so thztg<=R'g=R'Jg(=.R'M*.

Case 2. MtΞFr(
nR) and M=M**.

From Lemma 3, #Λ is a Krull order in Qw. For N<^Fr(
nR), let p(ΛΓ) =

n/?cΛ^}. Then /o induces a lattice isomorphism between integeral
right α-ideals of Rn and essential reflexive right Λ-submodules of "RR, by Lemma
1. Therefore "RR satisfies the asceding chain condition on essential reflexive
right 7?-sub modules. Hence there exists a finitely generated right 7?-submodule
M0cM such that M0<=Fr(

nR) and M*=M ?. Then R'M*=RrMt=(MJt'R')*

C(MRV)*, by easel.
CflwS. M(ΞFr(

nR).

By Lemma 2, Λί**=JtfΛcMKV Let oc^MR' R. Then there exists
M^Fr(

nR) such that M0cMR' and Λ;e(M0)**. Since *ΛΛ satisfies the as-
cending chain condition on essential reflexive right Λ-submodules, we can
choose MQ to be finitely generated. By cases 1 and 2, Λ;eM0**cM0**J?'=

(^/M0*)*-(M0ΛV)**c:(MjRV)**. Thus, MR'Λc(MΛV)** and hence
M**Λ'C(MRV)**. Consequently, (M^V)*d(M**JRV)* = Λ/Λί*, by case 2.

Cflίe 4. M is a finite dimensional torsionless right Λ-module.
By Proposition 2.4 of [5], we can assume that MdnR for some integer

w^l. Then there is a right Λ-submodule N of *RR such that (M®N)R is es-
sential in ΛΛΛ. Then M®N(ΞFr(

nR). Since

ΛΓΛ')* - ((M®N)R V)* - Λ'(M® ΛO* =
This completes the proof.

The next lemma plays a key role in the discussion of the Asano overring of
k = EndMR.

Lemma 5. Let M be a finite dimensional reflexive right R-moduley and
let &=End MR. Then
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End

Proof. Since MSS is torsionless and faithful, (MS, (MSS)*)MS=MS
[(MSS)*, MS] ΦO. Hence (MS, (MSS)*)ΦO.

It follows from Lemma 4 that (MS, (MSS)*)=(MS, M*). Let A be a
non-zero ideal of R. Then (MA~\ M*) (ΛL4, M*)=((MA~\ M*}MA, Λf*) =
(M^-1[M*,M]^,M*)C(M,M*)C^. Since ft is a maximal order from Theorem
2.8 of [3], (MA'1, Af*)c(ALί, M*)-1c.S(k).

Let J5 be a non-zero ideal of k. Since [[M*,BM]M*,B~1M] = [M*B(M,
M*), JS-WJczfM*, A/]c/Z, fi^Af c(Λ[Af*, £M]M*)*. By Lemma 2.1 of [10]
and Lemma 4, (Λ[M*, BM]M*)*S-(S5[M*, BM]Mψ = (sSM*)* = MS, for
M* is reflexive. Therefore B^MSdMS, and hence .B^cEndMSs. Thus,
S(Λ)cEnd MSS. This completes the proof.

The following lemma is modeled on and generalizes Lemmas in §2 of [7]
so that we exclude the hypothesis that R is bounded.

Lemma 6. Let I be a right v-ideal of R. Then

(1) O,(7)= Π OΠRp) Π OΠS) is a maximal order in Q.
Pep

(2) Oj(IRP)=IRpI-1 is a Noetherian local Asano order in Q, and it is an
essential overring of O/(7), where P^P.

Moreover, suppose that ISS is protective. Then

(3) Ol(IS)=ISI~1=S(Ol(I)) is a Noetherian simple ring, and it is an es-

sential overring of O/(/).

(4) Oi(I) is a Krull order in Q.

Proof. (1) Since / is a right ϋ-ideal, O/(/) is a maximal order from Satz.

1.3 of [1] (or Theorem 2.8 of [3]), and (Π O/ί/RpjΠ O,(/S))/C f]IRPf}IS=I.
Pep

Hence O,(I)= f] O,(IRP) Π O,(IS).
Pep

(2) Since RP is hereditary, O/(/R/,)=(/Rp)(/Rp)"1=/RP/~1 by Theorem
1.5 of [12] and Lemma 4. It follows from Lemma 2.3 of [12] that O^IRp) is

a Noetherian local Asano order.
Since RP is a principal ideal ring, IRP = aRP for some regular element a^I.

Then IRPΓ
l=aRPa-1. Let F={X\X is a right ideal of R and XRP=RP},

and let Y be a right ideal of O,(I). If YIRPΓ
l=IRPI-\ then a~lYIRP=RP.

Hence a'lYlΓ\C(P)^φ9 and hence <ΓlYlr\R&F and a(a~lYI t\R)Γlc:Y.
Conversely if X&F, aXΓlIRPΓ

l=aXRPΓ
l=aRPI-l=IRPΓ

l. Therefore,

YIRPΓ
l=IRPΓ

l if and only if Y^aXI~l for some X<=F.
Let Fr={Y\Y is a right ideal of O^/) and YIRPΓ

l = IRPI-1}. Then
F7 is a right additive topology on O/(/). In fact, (i) if #eO,(/) and if Ye.F7,

then YliaXΓ1 for some ZejP. Since a'lxa^RP, (a'lxa)"lX^F. Since
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a((a-lxaγlX)Γldχ-lY, ar'FeF,. (ii) If YzΞF, and if Z is a right ideal of
O,(7) such that x~lZ^Fj for each x^ Y, then Z^F, (see e.g. the proof of Lemma

1.1 of [7]).
I{q^Ol(I)Fτ=Γ\(Ol(I):Y)hthGnqaXΓ1c.Ol(I)forsomeX^F. Therefore

Y*Fr

q^qIRPI-1=qaXI-1IRpI-1c:IRPI-1. Conversely if q<=IRPI~\ then q=ata~1

for some t(=RP. Then tXdR for some ^<Ξ7\ Hence qaXΓλ=atXΓlC.Ol(I).

Thus O,(I)Fz=IRpI-1. Furthermore, for each J^eF, IRPΓ
lllIRPΓ

laXΓl=
IRPXI~1=IRPI~1. Consequently, Ol(IRP)=IRPI'1 is a right essential overring
of O,(7). Since / is a right t -ideal, O/(/)=Or(/"1). Therefore we obtain that
Ol(IRp)=Or(RPI~1) is a left essential overring of O/(7) = O^/'1), in the symmetric
way as the above.

(3) Since ISS is projective, Ol(IS) = (IS)(IS)-1 = ISΓ1 = S(Ol(I)) by
Theorem 1.5 of [12] and Lemmas 4 and 5. Since S is a simple ring, ISS is a
progenerator. Hence S(O,(/)) = O/(/S) is a Noetherian simple ring. Let J5
be a non-zero ideal of O,(7). Since /S/-1Z)β/<S/-1D/(/-1β/)S/-1=/ιS/-1

>

S(O,(I))=BS(O,(I)). In the symmetric way, we get S(O/(/))=S(O/(/))B.
Therefore S(O/(7)) is an essential overring of O/(7), by Lemma 2.2 of [10],

(4) Since α is a regular element, Ol(IRP)=aRPa~1 = RP for almost all
P. If # is a regular element of O/(7), Λ; is invertible in RP for almost all
Thus O/(7) satisfies (K3). Therefore O/(7) is a Krull order in Q from (1), (2)
and (3).

We are now in a position to prove the following theorem that is the ob-
ject of this paper.

Theorem 7. Let R= f| RP Π S be a Krull order in Q, and let M be a finite

dimensional reflexive right R-module. Then, k=End MR is a Krull order if and
only if MS is projective as a right S-module.

Proof. First, assume that &=End MR is a Krull order. Then S(k) is a
simple ring. Since (M5,(MSS)*) is a non-zero ideal of S(k) by Lemma S,
lζΞS(k)=(MS,(MSs)*). Therefore MSS is projective.

Conversely, assume that MSS is projective. Since MSS is finite dimen-
sional torsionless, it is isomorphic with a submodule of a finitely generated
free right 5-module from Proposition 2.4 of [5]. Since S is Noetherian, MSS

is finitely generated. Hence there exist an integer n^ 1 and a right S-submodule

Nr of "Ss such that MS®N'=nS. Let N=N' n "R Then (ΛΓΛ)**c(n^)**
="R and (^)**c(7VΛ)**5-(ΛΓSf

s)**-(AΓ/

s)**-ΛΓ/ from Lemma 4, so that
(NR)**c:N'Γ}nR=N. Hence NR is reflexive. Thus M®N is an essential
reflexive right Λ-submodule of "QR and (M®N)S=*S. Since (M®N)R is
reflexive, there exist an integer m^l and a right 72-submodule X of mRR such
that M®N@X is isomorphic with an essential reflexive submodule of mRR, by
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Proposition 2.4 of [5]. As stated in the proof of Lemma 4, mRR satisfies the
ascending chain condition on essential reflexive submodules. Hence, for some

*„ -, z^M@N@X, MΘ#θ*H*ιR+ '+*|β)**- Write *ί=y,+*ί where
and x^X for i=l, •••, /. Then M0N®JST=(^1IZH ----- f-*,jR)**c

\-yιR)**®Xc:M@N®X. Hence M0ΛΓ=(y1/?+-+y//Z)**. Since
VyιRtΞ.Fr(

nR), M@N<ΞΞFr(
nR) by Lemma 1. Therefore, it follows from

the similar proof when n=l that End(M(&N)R~Rn. Since End(Mξ$N)R is a
maximal order by Theorem 2.8 of [3], there is a right z -ideal / of Rn such that

End(M0JV)Λ=O/(7). Since 5n is a simple ring, SM=End(M07V)Ss:=S(End
(M0ΛΓ)^) = 5(O/(/))-=(/5M)(/5f

n)-1 by Lemma 5. Therefore ISH is projective as
a right 5n-module. It follows from Lemma 6 that End(M0JV)Λ=O/(/) is a
Krull order in ζ)n. Consequently, by Lemma 3, k=e(End(M®N)R)e is a Krull
order in eQne, where e is the projection from MφN onto M. This completes
the proof.

Corollary 8. Let R= [\RP {\Sbea Krull order in Q. Then gl.dim. 5^

if and only if, for each finite dimensional reflexive right R-module M, k=End MR

is a Krull order.

Proof. If M is a finite dimensional reflexive right .R-module, then MS is a
finitely generated reflexive right 5-module. Conversely if M1 is a finitely
generated right S-module, then there is a finite dimensional reflexive right
jf?-module M such that M'^MS. It is now easy to complete the proof using
Proposition 3.2 of [3] and the theorem.
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